M. Sc. Mathematics Examination, 2023

(1st Year, 2nd Semester)

Paper - 06

Linear Algebra and Module Theory

Time : Two hours
Full Marks : 40
The figures in the margin indicate full marks.
(Unexplained Symbols/Notations have their usual meaning.)
Special credit will be given for precise answer.
Answer Q. No. 4 and any three from the rest. $\quad 16+(8 \times 3)=40$

1. a) Define a torsion module and a finitely generated module.
b) Suppose V is a vector space over a field F and T is a linear operator on V. Then V is an $F[x]$-module via T. Prove that W is an $F[x]$-submodule of V if and only if W is a T-invariant subspace of the vector space V over F. Also prove that if as a vector space over $F, \operatorname{dim} V$ is finite then as an $F[x]$-module V is a finitely generated torsion module.
c) Give an example, with explanation, of a linear operator T on \mathbb{R}^{4} such that the $\mathbb{R}[x]$-module via T becomes a cyclic module.
2. a) Find the Jordan form J of the real matrix $A=\left(\begin{array}{cc}0 & 1 \\ -4 & 4\end{array}\right)$.

Find an invertible real matrix P such that $P^{-1} A P=J$. Compute $e^{t J}$. Using $e^{t J}$ and P solve the differential equation $\frac{d X}{d t}=A X$. Hence find the solution of $\frac{d^{2} y}{d t^{2}}-4 \frac{d y}{d t}+4 y=0$.
b) What are the invariant factors of the 100×100 real matrix with each entry 3 ?
3. a) Suppose A is a real matrix with the characteristic polynomial $(x+2)^{4}(x-5)^{5}$ and the minimal polynomial $(x+2)^{2}(x-5)^{2}$. Find all possible invariant factors, elementary divisors and then find the corresponding rational canonical forms (with respect to both invariant factors and elementary divisors) and Jordan canonical forms of A.
b) Let $V=\mathbb{R}[x] /\left\langle(x-3)^{4}\right\rangle$ be the canonical $\mathbb{R}[x]-$ module. Then V is a vector space over \mathbb{R} and $T: V \rightarrow V, v \mapsto x v$ is a linear operator. Find a suitable basis of the vector space V over \mathbb{R} with respect to which the matrix of T is the elementary Jordan matrix corresponding to 3 of order 4.
4. a) Suppose A is a complex $n \times n$ matrix such that $A^{k}=I, k$ is a positive integer. Then A is
diagonalizable. True or False? Justify. (I is the identity matrix of order n)
b) Suppose B is a real matrix of order 2023. Prove that $x^{2}+x+1$ cannot be the minimal polynomial of A. What happens if the order of B is 2024? Justify your answer.
c) Suppose T is a linear operator on a vector space V over a field F such that T has more than one eigenvalues. Prove that V has at least one subspace which is not T-invariant.
d) Suppose T be the linear operator on \mathbb{R}^{4} which is represented in the standard ordered basis by the matrix $A=\left(\begin{array}{cccc}2 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & a & 2 & 0 \\ 0 & 0 & b & 0\end{array}\right)$.
Consider three cases $a=b=1 ; \quad a=b=0$; $a=1, b=0 \quad$ and find, with least possible computation, the characteristic polynomial, the minimal polynomial for T and the geometric multiplicities of the eigenvalues in each case. 2
e) Suppose F is a field. Let A and B be two 3×3 matrices over F with the same minimal polynomial and the same characteristic polynomial. Prove that A
and B are similar. Does the result hold if A and B are of order 4? Justify your answer.
f) Suppose F is a field and A, B are two $n \times n$ matrices over F. Then $A B$ and $B A$ have the same minimal polynomial. True or False? Justify. 2
g) The companion matrix of a monic polynomial over a field cannot be triangular. True or False? Justify. 1
h) Suppose T is a diagonalizable linear operator on a finite dimensional vector space V over a field F. Suppose T has a cyclic vector. Then T has $n(=\operatorname{dim} V)$ distinct eigenvalues. True or False? Justify. 1
i) The Jordan form and the rational canonical form of a matrix of order greater than 1 cannot be identical. True or False? Justify.
5. a) The characteristic polynomial of the linear operator T on \mathbb{R}^{3}, defined by

$$
T(x, y, z)=(3 x+y-z, 2 x+2 y-z, 2 x+2 y)
$$

for all $(x, y, z) \in \mathbb{R}^{3}$, is $(x-1)(x-2)^{2}$. Find the minimal polynomial of T with the least possible computation. Then apply the Primary Decomposition Theorem on T to find a diagonalizable operator D on \mathbb{R}^{3} and a nilpotent operator N on \mathbb{R}^{3} such that $T+D=N$ and
$D N=N D$. Find also the matrices of D and N in the standard ordered basis of \mathbb{R}^{3}. 5
b) Suppose V is a vector space over a field F and T is a linear operator V. Suppose v, w are eigenvectors corresponding to two distinct eigenvalues of T . Prove that $v+w$ cannot be an eigenvector of T. State the general result in this regard.
6. a) Suppose T is a linear operator on a vector space V over a field F such that T commutes with every projection of V. Deduce at least four conclusions about T.

3
b) Let $V=M_{n \times n}(F)$ (F is a field). Let $A \in V$. Let T, U be the linear operators on V defined by
$T(B)=A B$
$U(B)=A B-B A$ for all $B \in M_{n \times n}(F)$
i) If A is diagonalizable then T is diagonalizable. True or False? Justify.
ii) If A is diagonalizable then U is diagonalizable. True or False? Justify. $\quad 1+4$

