(1st Year, 1st Semester)

Ex/SC/MATH/PG/CORE/TH/01/2023

MATHEMATICS

Paper - Core-01

[ABSTRACT ALGEBRA]

Time : Two hours Full Marks : 40

Unexplained Notations and Symbols have their usual meanings.

Special credit will be given for precise answer.

- 1. Answer *any two* from the following questions: $5 \times 2 = 10$
 - a) i) Establish an isomorphism to prove that the fields $\mathbb{Q}(\sqrt[3]{2})$ and $\mathbb{Q}(\sqrt[3]{2}e^{\frac{2\pi i}{3}})$ are isomorphic.

2

- ii) Suppose F is an extension field of K with degree p (a prime number). Prove that for any $\alpha \in F K$, $F = K(\alpha)$.
- iii) Prove that a field of order p^r (p a prime number) contains a subfield of order p^k if and only if k divides r.
- b) i) Prove that if *F* is a finite extension field of *K* then *F* is finitely generated and algebraic over *K*. Give an example to illustrate that a finitely generated extension need not be an algebraic extension. 2+1

[Turn over

4. Answer *any two* from the following questions: $5 \times 2 = 10$

a) Prove that every nilpotent group is solvable. The converse is not true. Illustrate with an example.

3+2

- b) Give an example with explanation of
 - i) a Noetherian ring which is not Artinian;
 - ii) a ring R such that its every proper ideal is finite and hence it is Artinian but it is not Noetherian.

4

- c) i) Prove that for any field F, any homomorphic image of the polynomial ring F[x] is Noetherian. Is the result true if F is replaced by \mathbb{Z} ?
 - ii) Prove that any Artinian integral domain is a field.

- ii) Let p be a prime number such that the regular pgon can be constructed by ruler and compass.

 Prove that $p = 2^r + 1$ for some positive integer r > 0.
- c) Prove that the set \mathbb{A} of algebraic numbers
 - i) is a field and is algebraic over \mathbb{Q} ; 2
 - ii) is algebraically closed;
 - iii) is not a finite extension of \mathbb{Q} .
- 2. Answer *any two* from the following questions: $5 \times 2 = 10$
 - a) Let K be a field and K(x) be the field of rational functions over K. Prove that
 - i) x is transcedental over K;
 - ii) x is algebraic over any intermediate field $E \neq K$;
 - iii) for any intermediate field $E \neq K$, [K(x): E] is finite.
 - b) i) Suppose K is a field. Prove that if K is infinite then K(x) is a Galois extension of K.
 - ii) Suppose β is a root of $x^4 + x + 1 \in \mathbb{Q}[x]$ and $\alpha = \sqrt[3]{2}$. Find the degree of $\mathbb{Q}(\alpha, \beta)$ over \mathbb{Q} . 1
 - c) Let $F = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.
 - i) Prove that F is a normal and separable extension of \mathbb{Q} .

- ii) Prove that the fixed field of the Galois group $Aut_{\mathbb{Q}}F$ is \mathbb{Q} .
- iii) Applying the Fundamental theorem for Galois theory for finite dimensional extension, determine the number of intermediate fields between \mathbb{Q} and F.
- iv) Without finding explicitly explain that F has a primitive element over \mathbb{Q} .
- 3. Answer *any two* from the following questions: $5 \times 2 = 10$
 - a) i) Give an example, with explanation, of a non separable field extension as well as of a non normal field extension. 2+1
 - ii) Let n be a positive integer and F be a cyclotomic extension of order n of \mathbb{Q} . Then using the fact that the nth cyclotomic polynomial over \mathbb{Q} is irreducible, prove that the degree of F over \mathbb{Q} is $\phi(n)$.
 - b) Stating (no proof is required) the relevant result find the Galois group of $f(x) = x^5 6x + 3 \in \mathbb{Q}[x]$. Then show that this group is not solvable.
 - c) Define a perfect field. State three equivalent conditions for a field to be perfect. Prove that every finite field is perfect.

[Turn over