3. a) Let G be a finite group such that a prime p divides the order of G. Show that G has an element of order p.
b) Let G be a group of order p^{n}, where p is prime and $n \in \mathbb{N}$. Let $H \neq\{e\}$ be a normal subgroup of G, where e is the identity of G. Then show that $H \cap Z(G) \neq\{e\}$, where $Z(G)$ is the center of G.
4. a) Show that any group of order 99 is abelian. Hence find all non-isomorphic groups of order 99.
b) Let G be a group of order 231. Prove that G has a normal subgroup of order 11 which is lying in the center of G.
5. a) Define a simple group. Prove that A_{5}, the group of all even permutations on $\{1,2,3,4,5\}$ is simple.
b) Let G be a simple group of order 168 and H be subgroup of G of order 7. Show that the order of the normalizer $N_{G}(H)$ of H in G is 21 . Hence show that G has no subgroup of order 14 .
6. a) Let $(G,+)$ be an abelian group and r be an integer. Let $G[r]=\{g \in G \mid r g=0\}$ and $r G=\{r g \mid g \in G\}$. Show that $\mathrm{G}[r]$ and $r G$ are subgroups of G and $G / G[r] \cong r G$.
b) If G is a finite abelian group and $n \in \mathbb{N}$ divides the order of G, then show that the number of solutions of $x^{n}=e$ in G is a multiple of n.

B. Sc. Mathematics (Hons.) Examination, 2023

(3rd Year, 2nd Semester)
Group Theory - II
Paper - Core-13
Time : Two hours
Full Marks : 40
All questions carry equal marks.
Answer any four questions.
Let \mathbb{N} be the set of natural numbers.

1. a) Define the set of all automosphisms $\mathscr{A}(G)$ of a group G. Show that $\mathscr{A}(G)$ is a group for any group G. If G is a finite cyclic group of order n, then determine $\mathscr{A}(G)$.
b) Prove that every finite group having more than two elements has an automorphism other than the identity map.
2. a) Let $A(X)$ denote the permutation group on a nonempty set X. Let G be a group and H be a subgroup of G. Let S be the set of all left cosets of H in G. Then prove that there exists a homomorphism from G into $A(S)$ whose kernel is the largest normal subgroup of G contained in H.
b) Let G be a group of order $p m$, where p is a prime and $p>m \in \mathbb{N}$. Show that every subgroup of order p is normal in G.
