- 4. a) What is a developable surface? Check whether the surface $x = f_1(u)$, $x^2 = f_2(u)$, $x^3 = v$ is developable or not, where f_1 , f_2 are differentiable functions.
 - b) The components of a contravariant vector in the (x^i) coordinate system are 8 and 4. Find its components in (\bar{x}^i) coordinate system if $\bar{x}^1 = 3x^1$ and $\bar{x}^2 = 5x^1 + 3x^2$.
- 5. a) Assume that $A(p,q)B_{qj} = C_{pj}$ holds, where B_{qj} is an arbitrary tensor and C_{pj} is a covariant tensor of type (0,2). Check whether A(p,q) is a tensor or not. If so, what is the type of it?
 - b) Find the Gaussian curvature of the surface $x = a \sin u \cos v$, $y = a \sin u \sin v$, $z = a \cos u$, where a is a constant and identify the surface. 4+6
- 6. a) Find the metric tensor and conjugate metric tensor for two-dimensional polar coordinates (r, θ) .
 - b) Prove that for Bertrand mates, $\tau \overline{\tau} = \text{constant}$, where τ and $\overline{\tau}$ are torsion of the Bertrand mates. 4+6

B. Sc. Mathematics (Hons.) Examination, 2023

(3rd Year, 2nd Semester)

DIFFERENTIAL GEOMETRY

PAPER – DSE-3C

Time: Two hours Full Marks: 40

The figures in the margin indicate full marks.

Symbols / Notations have their usual meanings.

Answer *any four* of the following questions.

- 1. Find the equation of the involutes of a space curve $\vec{r} = \vec{f}(s)$. Also find the curvature of the involutes at some point.
- 2. Establish Serret-Frenet formulae for space curve. Hence find the relation between curvature and torsion of a space curve $\vec{r}(t) = (3\cos t, 3\sin t, 4t)$.
- 3. a) Identify the surface whose equation is given by $x = a \sin u \cos v$, $y = b \sin u \sin v$, $z = c \cos u$, where a, b, c are constants. Find the first fundamental form and unit surface normal of this surface.
 - b) Find the angle between the parametric curves of this surface and expression of surface area between $u = u_1$ to $u = u_2$ and $v = v_1$ to $v = v_2$.