B. Sc. Mathematics (Hons.) Examination, 2023

(3rd Year, 2nd Semester, Special Supplementary)

Bio Mathematics

Paper - DSE-4B
Time : Two hours
Full Marks : 40
The figures in the margin indicate full marks.
Symbols / Notations have their usual meanings.

Part - I (Marks: 24)

Answer any three questions.

1. Deduce classical Lotka-Volterra Model of Prey-Predator Interaction stating its underlying assumptions. Show that all solutions of the model are periodic and structurally unstable. Write down also the basic drawbacks of the classical Lotka-Volterra model, if any.
2. Write down the single species time-delay model. Investigate the qualitative behaviour of the model and give your comments on the results.
3. Deduce the Gauss model of competition for two species sharing a common resources. Discuss the conditions for co-existence and extinction of either of the competing species.
4. Kolmogorov type Prey-Predator model is taken in the form :

$$
\begin{aligned}
& \frac{d x}{d t}=x g(x)-y p(x) \\
& \frac{d y}{d t}=y q(x)
\end{aligned}
$$

where the symbols have their usual meanings. Determine the steady states of this model and discuss their qualitative behaviour.

Part - II (Marks: 16)

Answer any two questions.
5. a) State Liapunov's stability theorem and Liapunov's function.
b) Considering the linear system $\dot{x}=A x, x \in \mathbb{R}^{2}$ with $\tau=\operatorname{trac} \mathrm{A}, \quad \delta=\operatorname{det} \mathrm{A}$, construct a bifurcation diagram $\tau-\delta$ plane by stating the conditions for different types of nature. $3+5$
6. a) Use Cobwebbing method to sketch the solutions of the difference equation

$$
x_{n+1}=\frac{\gamma x_{n}}{\mathrm{~A}+x_{n}} \cdot(\gamma, \mathrm{~A}>0)
$$

with different initial values.
b) If E is a open subset of \mathbb{R}^{2} containing (\bar{x}, \bar{y}) and $f, g \in \mathrm{C}^{\prime}(\mathrm{E})$.
State necessary and sufficient conditions for which the fixed point (\bar{x}, \bar{y}) of the nonlinear system

$$
\begin{align*}
& x_{n+1}=f\left(x_{n}, y_{n}\right) \\
& y_{n+1}=g\left(x_{n}, y_{n}\right)
\end{align*}
$$

is locally asymptotically stable.
7. a) Determine nature of the fixed point \bar{x} of the system $x_{n+1}=f\left(x_{n}\right)$ when $\left|f^{\prime}\left(x_{n}\right)\right|<1$. Justify your answer.
b) Consider a system

$$
\begin{aligned}
& x_{n+1}=(r+1) x_{n}-r x_{n}^{2}-b x_{n} y_{n} \\
& y_{n+1}=C x_{n} y_{n}+(1-d) y_{n}\left(r, b, c \in \mathbb{R}^{2}, \quad 0<d<1\right)
\end{aligned}
$$

Find all fixed points of this system.
Determine the nature of the fixed points.
$3+5$

