EX/SC/MATH/UG/DSE/TH/02/A/2023(S)

B. SC. MATHEMATICS (HONS.) EXAMINATION, 2023

(3rd Year, 1st Semester, Supplementary)

PROBABILITY & STATISTICS

Paper - DSE-2A

Time: Two Hours Full Marks: 40

Symbols / notations have their usual meanings.

Answer any eight questions.

 $5 \times 8 = 40$

- State and prove Tchebycheff's inequality for the case of discrete random variable having finite variance.
- 2. Define Empirical distribution. Show that the empirical distribution is the statistical image of the distribution of the population.
- 3. Two points P and Q are chosen at random on a line segment of length a. What is the probability that the distance between P and Q is less than $b \ (< a)$?
- 4. Show that k-th order sample moment about the origin is a consistent and unbiased estimate of the k-th order moment about the origin of the population.
- 5. State and prove law of large numbers for the case of equal components.
- 6. Let X be normally distributed with mean m and standard deviation σ . Show that the sampling distribution of the sample mean is also normally distributed with mean m and standard deviation σ/\sqrt{n} for a sample of size n.
- 7. If the random variable X and Y are connected by the relation aX + bY + c = 0 then show that $\rho(X,Y) = -1$ if ab > 0.

[Turn Over

- 8. Find the maximum likelihood estimate of p for a Binomial (N, p) population.
- 9. Prove that every odd order central moment is zero for a symmetrical continuous distribution.
- 10. If $W = \{x : x \ge 1\}$ is the critical region for testing the hypothesis $H_0 : \theta = 2$ against the alternative hypothesis $H_1 : \theta = 1$ on the basis of the single observation x from the population having probability density function

$$f(x) = \theta e^{-\theta x}, \quad 0 \le x < \infty$$

for the unknown parameter θ , then find the probability of Type-I error and the power of the test.

11. If X is a standard normal variate then prove that $\frac{X^2}{2}$ is $\Gamma\left(\frac{1}{2}\right)$ variate.