Ex/SC/MATH/UG/DSE/TH/02/A/2023

B. Sc. Mathematics (Hons.) Examination, 2023

(3rd Year, 1st Semester)

Probability \& Statistics
 Paper - DSE-2A

Time : Two hours
Full Marks : 40
Answer \mathbf{Q}. No. 1 and any six from rest.

1. a) Let the random variable X be uniformly distributed on (1,100). Find the probability of the event $\left(X+\frac{49}{X}<50\right)$.
b) Let the random variable X be normally distributed with $E(X)=\mu$ and $\operatorname{Var}(\mathrm{X})=4$. We are going to test the hypothesis $H_{0}: \mu=-1$ against the alternative hypothesis $H_{1}: \mu=1$ on the basis of a sample of size $n: x_{1}, x_{2}, \ldots x_{n}$. If the critical region

$$
W=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{1}+2 x_{2}+\ldots .+n x_{n} \geq 0\right\}
$$

and the power of the test is $0.5+\Phi(a)$, then show that $a=\sqrt{\frac{3}{8} \cdot \frac{n(n+1)}{2 n+1}}$, where $\Phi(a)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{a} e^{-\frac{u^{2}}{2}} d u$. 5+5
2. The joint probability density function of the random variables X and Y is given by
$f(x, y)=\left\{\begin{array}{cc}k(1-x-y), & x>0, y>0, x+y<1 \\ 0, & \text { elsewhere }\end{array}\right.$
Find the value of k and $P\left(X<\frac{1}{2}, Y>\frac{1}{4}\right)$.
3. Prove that $\alpha_{k}=(-1)^{k} i^{k} k!a_{k}$
where $\alpha_{k}=k^{\text {th }}$ order moment of the random variable X about the origin,
$a_{k}=$ coefficient of t^{k} in the series expansion of $\chi(t)$.
$\chi(t)=$ characteristic function of any random variable X , $i=\sqrt{-1}$.
4. If $\mathrm{E}\left(\mathrm{X}^{2}\right), \mathrm{E}\left(\mathrm{Y}^{2}\right), \mathrm{E}(\mathrm{XY})$ exists finitely for two random variables X and Y , then prove that $\{E(X Y)\}^{2} \leq E\left(X^{2}\right) E\left(Y^{2}\right)$ and hence show that $|\rho(X, Y)| \leq 1$

5. State and prove Bernoulli's theorem. Use this theorem to prove that

$$
f(A) \xrightarrow[\text { in } p]{ } P(A) \text { as } n \rightarrow \infty,
$$

where $f(A)=\frac{n(A)}{n}$ and
$n(\mathrm{~A})=$ number of occurrence of the event A connected with a random experiment E out of n repetition of E. 5
6. Find the approximate $100(1-\varepsilon) \%(0<\varepsilon<1)$ confidence interval of the parameter μ of Poisson variate for large size of the sample drawn from the Poisson- μ variate. 5
7. Use the maximum likelihood method to estimate the parameter μ of a population of X having probability mass function $P(X=i)=\frac{1}{1+\mu}\left(\frac{\mu}{1+\mu}\right)^{i}, \quad i=0,1,2, \ldots, \mu>0$ Use a sample of size $n: x_{1}, x_{2}, \ldots, x_{n}$.
8. Let $x_{1}, x_{2}, \ldots, x_{n}$ be a sample of size n drawn from the population of the random variable X . If $\operatorname{var}(\mathrm{X})$ exists finitely, then determine the value of d such that the statistic $\sum_{i=1}^{n} d\left(x_{1}-\bar{x}\right)^{2}$ with $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ is an unbiased estimate of the population variate $\sigma^{2}=\operatorname{var}(\mathrm{X})$. 5
9. Let $X=N(m, \sigma)$. Then the statistic $\frac{n s^{2}}{\sigma^{2}}$ has a $\chi^{2}-$ distribution with $(n-1)$ degrees of freedom.
10. If X is a standard Normal variable then find then probability density function of $7 \mathrm{X}^{2}$.

5

