B. Sc. Mathematics (Hons.) Examination, 2023

(3rd Year, 1st Semester)

PROBABILITY & STATISTICS

PAPER - DSE-2A

Time: Two hours Full Marks: 40

Answer **Q. No. 1** and *any six* from rest.

- 1. a) Let the random variable X be uniformly distributed on (1, 100). Find the probability of the event $\left(X + \frac{49}{X} < 50\right)$.
 - b) Let the random variable X be normally distributed with $E(X) = \mu$ and Var(X)=4. We are going to test the hypothesis $H_0: \mu = -1$ against the alternative hypothesis $H_1: \mu = 1$ on the basis of a sample of size $n: x_1, x_2, ... x_n$. If the critical region

$$W = \{(x_1, x_2, ..., x_n) : x_1 + 2x_2 + + nx_n \ge 0\}$$

and the power of the test is $0.5 + \Phi(a)$, then show

that
$$a = \sqrt{\frac{3}{8} \cdot \frac{n(n+1)}{2n+1}}$$
, where $\Phi(a) = \frac{1}{\sqrt{2\pi}} \int_{0}^{a} e^{-\frac{u^{2}}{2}} du$.

5+5

2. The joint probability density function of the random variables X and Y is given by

$$f(x,y) = \begin{cases} k(1-x-y), & x > 0, y > 0, x+y < 1\\ 0, & \text{elsewhere} \end{cases}$$

Find the value of k and $P\left(X < \frac{1}{2}, Y > \frac{1}{4}\right)$.

3. Prove that $\alpha_k = (-1)^k i^k k! a_k$

where $\alpha_k = k^{\text{th}}$ order moment of the random variable X about the origin,

 a_k = coefficient of t^k in the series expansion of $\chi(t)$.

 $\chi(t)$ = characteristic function of any random variable X, $i = \sqrt{-1}$.

- 4. If $E(X^2)$, $E(Y^2)$, E(XY) exists finitely for two random variables X and Y, then prove that $\left\{E\left(XY\right)\right\}^2 \leq E\left(X^2\right)E\left(Y^2\right)$ and hence show that $\left|\rho\left(X,Y\right)\right| \leq 1$
- 5. State and prove Bernoulli's theorem. Use this theorem to prove that

$$f(A) \xrightarrow{\text{in } p} P(A) \text{ as } n \to \infty$$

where $f(A) = \frac{n(A)}{n}$ and

n(A) = number of occurrence of the event A connected with a random experiment E out of n repetition of E. 5

- 6. Find the approximate $100(1-\epsilon)\%(0 < \epsilon < 1)$ confidence interval of the parameter μ of Poisson variate for large size of the sample drawn from the Poisson- μ variate. 5
- 7. Use the maximum likelihood method to estimate the parameter μ of a population of X having probability mass function $P(X=i) = \frac{1}{1+\mu} \left(\frac{\mu}{1+\mu}\right)^i$, $i=0,1,2,...,\mu>0$ Use a sample of size $n: x_1, x_2, ..., x_n$.
- 8. Let $x_1, x_2, ..., x_n$ be a sample of size n drawn from the population of the random variable X. If var(X) exists finitely, then determine the value of d such that the statistic $\sum_{i=1}^{n} d(x_1 \overline{x})^2$ with $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ is an unbiased estimate of the population variate $\sigma^2 = var(X)$.
- 9. Let $X = N(m, \sigma)$. Then the statistic $\frac{ns^2}{\sigma^2}$ has a χ^2 -distribution with (n-1) degrees of freedom.
- 10. If X is a standard Normal variable then find then probability density function of $7X^2$.