Bachelor Of Science Examination - 2023

(Third Year, First Semester)

Mathematics

Core 11

(Partial Differential Equation)

Full Marks: 40 Time: 2 Hours

Symbols/Notations have their usual meaning
Use separate answerscripts for each Group

Group A

(20 Marks)

Answer any FOUR questions

- 1. Determine the integral surface of the equation $x(y^2+u)u_x y(x^2+u)u_y = (x^2-y^2)u$ with the data x+y=0, u=1.
- 2. Reduce the equation $yu_x + u_y = x$ to canonical form and hence solve for u(x,y).
- 3. Use Charpit's method to solve pxy + pq + qy yz = 0.
- 4. Using the method of separation of variables suitably, show that the solution of the Cauchy problem $y^2u_x^2 + x^2u_y^2 = (xyu)^2$, $u(x,0) = e^{x^2}$ is given by $u(x,y) = e^{x^2 + \frac{i\sqrt{3}}{2}y^2}$.
- 5. Find the solution of the equation $u(x+y)u_x + u(x-y)u_y = x^2 + y^2$, with the Cauchy data u=0 on y=2x.
- 6. Find the general solution of the linear equation $x^2u_x + y^2u_y = (x+y)u$.

[Turn over

Group - B (20 Marks)

Answer any two questions

1. (a) If u(x, y, z, t) denotes the temperature at a point P(x, y, z) at time t in some domain D and κ is the thermal diffusivity of the substance, show that u(x, y, z, t) satisfies

$$u_t = \kappa \nabla^2 u, \quad t > 0, \quad (x, y, z) \in D.$$

(b) Prove that the canonical form of the Tricomi equation $u_{xx} + xu_{yy} = 0$ is $u_{\alpha\alpha} + u_{\beta\beta} + \frac{u_{\beta}}{3\beta} = 0$ for x > 0.

(10)

(10)

2. Find solution of the problem

$$u_{tt} = c^{2}u_{xx}, \quad 0 < x < \infty, \quad t > 0$$

$$u(x,0) = f(x), \quad 0 \le x < \infty$$

$$u_{t}(x,0) = g(x), \quad 0 \le x < \infty$$

$$u_{x}(0,t) = 0, \quad 0 \le t < \infty.$$

Derive the conditions on f(x) and g(x) necessary for existence of the solution.

3. Use separation of variables method to solve

$$u_t = u_{xx}, \quad 0 < x < \pi, \ t > 0,$$

$$u(x,0) = 2\cos^2 x, \ 0 \le x \le \pi$$

$$u_x(0,t) = 0, \quad u_x(\pi,t) = 0, \quad t \ge 0.$$