Ex/SC/MATH/UG/DSE/TH/03/A/2023

B. Sc. Mathematics (Hons.) Examination, 2023

(3rd Year, 2nd Semester)

Number Theory

Paper - DSE-3A
Time : Two hours
The figures in the margin indicate full marks.
Special credit will be given for precise answer.
(Unexplained Symbols/Notations have their usual meanings.)
Use separate answer scripts for each Part.

Part - I (20 Marks)

Answer any four questions.
$4 \times 5=20$

1. The linear congruence $a x \equiv b(\bmod n)$ if and only if $d \mid b$, where $d=\operatorname{gcd}(a, n)$. If $d \mid b$, then it has d mutually incongruent solutions modulo n.
2. State Chinese Remainder Theorem. Find the unique solution of following the system of linear congruence

$$
\begin{align*}
& 7 x+3 y \equiv 10(\bmod 16) \\
& 2 x+5 y \equiv 9(\bmod 16) \tag{5}
\end{align*}
$$

3. Define pseudoprime. If n is an odd pseudoprime, then show that $M_{n}=2^{n}-1$ is a larger one.
4. If $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$ is the prime factorization of $n>1$, then show that
a) $\tau(n)=\left(k_{1}+1\right)\left(k_{2}+1\right) \cdots\left(k_{r}+1\right)$ and
b) $\sigma(n)=\frac{p_{1}^{k_{1}+1}}{p_{1}-1} \frac{p_{2}^{k_{1}+1}}{p_{2}-1} \cdots \frac{p_{r}^{k_{r}+1}}{p_{1}-1} . \quad 2+3=5$
5. Define multiplicative function. If f is a multiplicative function and F is defined by $F(n)=\sum_{d \mid n} f(d)$, then F is also multiplicative. Hence, show that $F(8 \cdot 3)=F(8) F(3) . \quad 1+3+1=5$
6. Define Möbius μ-function. If F and f are numbertheoretic functions related by the formula $F(n)=\sum_{d \mid n} f(d)$, then show that

$$
\begin{equation*}
f(n)=\sum_{d \mid n} \mu(d) F\left(\frac{n}{d}\right)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) F(d) \tag{5}
\end{equation*}
$$

Part - II (20 Marks)

Answer any four questions. $5 \times 4=20$

1. a) For a positive integer n, define a primitive root modulo n.
b) Using the result "an element $a \in U_{n}$ is a primitive root modulo n if and only if $a^{\phi(n) / q} \neq 1$ in U_{n} for each prime q dividing $\phi(n)$ ".
i) check if 3 is a primitive root modulo 7 .
ii) find a primitive root modulo 9 .
c) State for which integers n , there exists primitive root modulo n .
2. Let n be a positive integer and Q_{n} denote the set of elements $a \in U_{n}$ which are quadratic residues modulo n .

Prove that $1, a b, a^{-1} \in Q_{n} \forall a, b \in Q_{n}$. If $n>2$ and g is a primitive root modulo n then prove that Q_{n} has $\frac{\phi(n)}{2}$ elements which are even powers of g. $2+3$
3. a) Let p be an odd prime and $\left(\frac{a}{p}\right)$ denotes the Legendre symbol. Prove that $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) \forall a, b$.
b) Find the number of solutions to the congruence $x^{39} \equiv 1(\bmod 79)$.
State the relevant result that might have been used to solve the above problem.

3
4. a) Determine $\left(\frac{2}{59}\right)$ and hence determine if the congruence $x^{2} \equiv 2(\bmod 59)$ has solution. 3
b) Using Quadratic reciprocity law determine $\left(\frac{3}{61}\right)$.
5. Find all prime p such that $\left(\frac{10}{p}\right)=1$.
6. a) Determine the number of solutions of the congruence $x^{4} \equiv 61(\bmod 117)$.
b) State the results used in solving the problem in (a).

