- 4. Define isolated singularity. Prove that a meromorphic function cannot be bounded in the neighbourhood of an isolated singularity.

 1+4=5
- 5. i) Expand $f(z) = \frac{z}{(z-1)(2-z)}$ in a Laurent series valid for 1 < |z| < 2. 3+2=5
 - ii) Determine and classify all the singularities of the function $f(z) = z/(e^{1/z} 1)$.
- 6. i) Let f(z) = u(z) + iv(z) be an entire function in the complex plane \mathbb{C} . If |u(z)| < M for every z in \mathbb{C} , where M is a positive constant, then prove that f is a constant function.
 - ii) Let f be an entire function such that $|f(z)| \ge 1$ for every z in $\mathbb C$. Prove that f is a constant function.

|u(z)| < M

3+2=5

B. Sc. Mathematics (Hons.) Examination, 2023

(3rd Year, 1st Semester)

METRIC SPACE & COMPLEX ANALYSIS

Paper - CORE - 12

Time: Two hours

Full Marks: 40

Symbols / Notations have their usual meanings.

Goup - A (20 Marks)

(Metric Space)

Answer *any four* questions.

All questions carry equal marks. $4 \times 5 = 20$

- 1. Let (X, d_X) and (Y, d_Y) be metric spaces and $f: X \to Y$ be a map. Then show that the following statements are equivalent:
 - i) f is continuous on X;
 - ii) $\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$ for all subset B of Y;
 - iii) $f(\overline{A}) \subseteq \overline{f(A)}$ for all subset A of X.
- 2. Define homeomorphism between two metric spaces (X,d_X) and (Y,d_Y) . Show that the function $f: \mathbb{R} \to (-1, 1)$ defined by f(x) = x/(1+|x|) is a homeomorphism under usual metric. Also, show that f is uniformly continuous. 1+3+1=5
- 3. Let (X, d) be a metric space.

[Turn over

- a) Then the following statements are equivalent:
 - i) (X, d) is disconnected;
 - ii) there exists a continuous mapping of (X, d) onto the discrete two element space (X_0, d_0) , where $X_0 = \{0,1\}$.
- b) Define equivalent metrics. Give examples of two equivalent metrics. Show that the metrics d_1 and d_2 defined on C[0, 1] as

$$d_1(f,g) = \sup \{ |f(x) - g(x)| : x \in [0,1] \},$$

$$d_2(f,g) = \int_0^1 |f(x) - g(x)| dx$$

are not equivalent.

2+(1+2)=5

4. Define path connected space. If a metric space (*X*, *d*) is path connected, then show that it is connected. Give an example to justify that the converse is not true.

5. Let K be defined and continuous on $[a,b] \times [a,b]$, g be continuous on [a,b] and let λ be a real number. Prove that the integral equation

$$f(x) = \lambda \int_{a}^{b} K(x, y) f(y) dy + g(x), x \in [a, b]$$

has unique solution in C[a,b] for sufficiently small λ .

5

- 6. i) Define compact metric space.
 - ii) If *Y* is a compact subset of (*X*, *d*), then prove that *Y* is closed and bounded.
 - iii) Prove that continuous image of a compact set is compact. 1+2+2=5

Goup - B (20 Marks)

(Complex Analysis)

Answer any four questions.

All questions carry equal marks. $4 \times 5 = 20$

1. i) State the Cauchy's integral formula.

ii) a)
$$\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$$

b)
$$\oint_C \frac{e^{2z}}{(z+1)^4} dz$$

where C is the circle |z| = 3.

1+2+2=5

2. Prove that every polynomial $P(z) = a_n z^n + \dots + a_1 z + a_0$, where the degree $n \ge 1$ and $a_n \ne 0$, has at least one root.

- 3. Suppose $\tan z$ is expanded into a Laurent series about $z = \pi/2$. Show that:
 - i) the principal part is $-1/(z-\pi/2)$,
 - ii) the series converges for $0 < |z \pi/2| < \pi/2$,
 - iii) $z = \pi/2$ is a simple pole.

2+2+1=5

[Turn over