Ex/SC/UG/GE/Stat/TH/02/2023

B. Sc. MATHEMATICS (HONS.) EXAMINATION, 2023

(2nd Year, 2nd Semester)

STATISTICS - II

PAPER – GE-4

Time : Two hours

Full Marks : 40

Symbols / Notations have their usual meanings.

Answer *any four* questions. 10×4

All questions carry equal marks.

1. a) Define unbiased estimate of a population parameter. Show that, if $x_1, x_2, ..., x_n$ are the random sample of size *n* from a population with variance σ^2 (σ^2 known), then $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$ is an unbiased

estimate of σ^2 where \overline{x} is the sample mean.

b) $x_1, x_2, ..., x_n$ are random observations on a Bernoulli variable taking the value 1 with probability θ and the value 0 with probability $(1-\theta)$. Show that $\frac{\tau(\tau-1)}{n(n-1)}$ is an unbiased estimate of θ^2 where $\tau = \sum_{n=1}^{n} x_n + 5 + 5$

is an unbiased estimate of θ^2 where $\tau = \sum_{i=1}^{n} x_i$. 5+5

 a) Define the term 'consistancy' of the estimators. Prove that for Cauchy's distribution, not sample mean, but sample median is a consistant estimator of the population median.

[Turn over

- b) Let $x_1, x_2, ..., x_n$ be a random sample from a uniform population on $[0, \theta]$, find a sufficient estimator for θ . 6+4
- 3. a) State and prove Rao-Blackwell Theorem in statistical theory.
 - b) For a random sampling from a normal population $N(m, \sigma^2)$, find the maximum likelihood estimators (MLE) for
 - i) μ when σ^2 is known,
 - ii) σ^2 when μ is known. 6+4
- 4. a) Find the MLE for the parameter λ of a Poisson distribution on the basis of sample of size *n*. Also find its variance.
 - b) Show that the sample mean \overline{x} is sufficient for estimating the parameter λ of the Poisson distribution. 7+3
- 5. Explain the following terms :
 - i) Type I and type II errors,
 - ii) The best critical region,
 - iii) Power function of a test,
 - iv) Level of significance,
 - v) Simple and composite hypotheses. 5×2

- [3]
- 6. Use the Neyman-Pearson Lemma to obtain the region for testing $\theta = \theta_0$ against $\theta = \theta_1 > \theta_0$ and $\theta = \theta_1 < \theta_0$ in the case of a normal population $N(\theta, \sigma^2)$ where σ^2 is known. Hence find the power of the test. 10