B. Sc. Mathematics (Hons.) Examination, 2023

(2nd Year, 2nd Semester)

Ring Theory and Linear Algebra - II

Paper - Core-10
Time : Two hours
Full Marks : 40

Use separate answer script for each Part.

Symbols / Notations have their usual meanings.

Part - I

All questions carry equal marks.
Answer any four questions.

$$
4 \times 5=20
$$

Let \mathbb{Z} be the set of all Integers.

1. Define prime and irreducible elements in a commutative ring with identity. Give an example of a prime element which is not irreducible and an example of an irreducible element which is not prime. Prove that $a+i b$ is irreducible in $\mathbb{Z}[i]$ if $a^{2}+b^{2}$ is irreducible in \mathbb{Z}.
2. Define a principal ideal domain. Show that in a principal ideal domain, a nonzero nonunit element p is irreducible if and only if p is prime.
3. Show that 2 and $1+i \sqrt{5}$ are relatively prime in $\mathbb{Z}[i \sqrt{5}]$.
4. Define a Euclidean domain. Let R be a Euclidean domain with Euclidean norm δ. Let $a, b \in R \backslash\{0\}$. Then show that b is a unit in R if and only if $\delta(a)=\delta(a b)$.
5. Let R be a commutative ring with identity such that $R[x]$ is a principal ideal domain. Show that R is a field.
6. Show that the polynomial $x^{7}-9 x^{4}+11$ is irreducible in $\mathbb{Z}[x]$.

Part - II

Answer any five questions. $\quad 5 \times 4=20$

1. Find the algebraic and geometric multiplicities of the eigenvalues of the matrix $\left[\begin{array}{ccc}-1 & 1 & 1 \\ -3 & 3 & 1 \\ -4 & 3 & 2\end{array}\right]$. Hence justify whether the matrix is diagonalizable or not.
2. Let V be a finite-dimensional vector space and T be a linear operator on V. Then show that T is invertible if and only if the constant term in the minimal polynomial of T is non-zero.
3. i) If f is a non-zero linear functional on a vector space V then show that the kernel of f is a hyperspace of V.
ii) Let $f: R^{3} \rightarrow R$ be defined by $f(x, y, z)=x+y+z$. Find a basis for the kernel of f.
4. Let $T: R^{2}(R) \rightarrow R^{2}(R)$ be defined as $T(x, y)=(y,-x)$ and $S: C^{2}(C) \rightarrow C^{2}(C)$ be defined as $S(z, w)=(w,-z)$. Then find the eigen-values of T and S, if they exist.
5. Using Gram-Schmidt orthogonalisation process
construct an orthonormal basis from the basis $\{(-1,0,1)$, $(1,-1,1),(0,0,1)\}$ of R^{3}.
6. i) Let x, y be eigenvectors corresponding to the distinct eigenvalues λ, μ of a linear operator T defined on an inner product space X. Justify whether the vectors x, y are orthogonal or not.
ii) Let V be a real inner product space and T be a linear operator on V such that $\langle T v, v\rangle$ is real for all $v \in V$. Justify whether T is self adjoint or not.
7. State Spectral theorem for a normal operator T on a finitedimensional inner product space. Using this prove that a normal operator T is unitary if and only if all the eigenvalues of T are of unit modulus.
8. i) Show that for a normal operator T, a scalar λ is an eigenvalue of T if and only if $\bar{\lambda}$ is an eigenvalue of T^{*}.
ii) Give an example of an orthogonal operator on R^{3} with justification.
