Ex/SC/MATH/UG/CORE/TH/06/2023

B. Sc. MATHEMATICS (HONS.) EXAMINATION, 2023

(2nd Year, 1st Semester)

RING THEORY AND LINEAR ALGEBRA - I

PAPER – CORE-6

Time : Two hours

Full Marks : 40

Use separate Answer script for each Part.

Symbols / Notations have their usual meanings.

Part – I (20 Marks)

Answer *any four* questions. $5 \times 4=20$

- 1. Does there exist a ring *R* having no identity but a subing *S* with identity? Justify. Give an example of a ring *R* with identity 1_R and a subring *S* with identity 1_S such that $1_R \neq 1_S$. If *R* is an integral domain then show that $1_R = 1_S$. 2+1+2
- Define field. Show that an integral domain with finite number of ideals is a field. Hence conclude that every finite integral domain is a field. 1+3+1
- 3. Let *R* be a commutative ring with identity and *N* be the set of all nilpotent elements of *R*. Show that *N* forms an ideal of *R* and the quotient ring R/N has no non-zero nilpotent elements. Is commutativity of the ring *R* essential in the above result? Justify. (1+2)+2
- 4. Let *R* and *R'* be two rings and $f : R \to R'$ be a mapping. When is *f* said to be a ring homomorphism? Let *I* be an [Turn over

ideal of R. Is f(I) an ideal of R'? Justify.

Let F be a field, R be a ring and $f: F \to R$ be a homomorphism of rings.

- i) Show that *f* is either a monomorphism or a zero homomorphism.
- ii) If there is a non zero element $\lambda \in F$ such that $f(\lambda) = 0_R$, then show that f is the zero homomorphism. 1+1+(2+1)
- 5. State First Isomorphism Theorem for ring. By using this theorem, show that every epimorphism from the ring Z of integers onto itself is an isomorphism. Is every monomorphism from the ring Z of integers into itself an isomorphism? Justify. 1+2+2
- 6. Let *R* be a ring with identity such that $x^2 = x$ for all $x \in R$. Show that characteristic of *R* is 2 and *R* is a commutative ring. Is every prime ideal of *R* a maximal ideal of *R*? Justify. (1+2)+2

Part – II (20 Marks)

(Linear Algebra)

- 1. Answer *any two* from the following questions: $3 \times 2=6$
 - a) Define
 - i) the column rank and the row rank of an $m \times n$ matrix *A* over a field *F*.

- c) i) Prove that eigenvectors corresponding to two distinct eigenvalues of T are linearly independent.
 - ii) Suppose V is finite dimensional and $B = \{v_1, v_2, ..., v_n\}$ is a basis of V such that v_i is an eigenvector of T corresponding to an eigenvalue λ_i , for all i = 1, 2, ..., n. Find the matrix of T with respect to the basis B. 2+1
- 4. Answer *any one* from the following questions : $2 \times 1=2$
 - a) Let the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by T(x, y, z) = (x + y, y, z). Find the eigenvalues of *T* and their geometric multiplicities.
 - 2
 - b) Determine the subspaces of the vector space \mathbb{R}^2 . 2

b) Suppose the matrix of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ with respect to the standard ordered

basis of
$$\mathbb{R}^3$$
 is $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & -5 \\ 0 & 0 & 1 \end{pmatrix}$. Find $T(x, y, z)$ for

any $(x, y, z) \in \mathbb{R}^3$ and find the matrix B(say) of T with respect to the ordered basis $\{(1,1,0), (0,0,1), (0,1,1)\}$. 2+1

- c) Verify that $B = P^{-1}AP$ where A, B are as in (b) and P is as in (a)(ii). 3
- 3. Answer *any two* from the following questions: $3 \times 2=6$
 - a) Let V be a vector space over a field F and $T: V \to V$ be a linear operator on V.
 - i) Prove that $v \in V$ is an eigenvector of T corresponding to an eigenvalue $\lambda \in F$ if and only if $v \neq 0$ and $v \in \ker(T \lambda I)$.
 - ii) Prove that $\lambda \in F$ is an eigenvalue of *T* if and only if $Null(T - \lambda I) \ge 1$. 2+1
 - b) If *V* is finite dimensional then prove that $\lambda \in F$ is an eigenvalue of *T* if and only if λ is a root of the polynomial det $(xI_n A)$ where $n = \dim V$, I_n is the identity matrix of order *n* over *F* and *A* is any matrix of *T*.

- ii) the rank and nullity of a linear transformation between two vector spaces. 2+1
- b) Suppose F is a field, m, n are positive integers and A is an m×n matrix over F. Prove that the mapping L_A: Fⁿ → F^m, X ↦ AX is a linear transformation. Conversely, prove that if T: Fⁿ → F^m is a linear transformation then there exists an m×n matrix A over F such that T = L_A.
- c) State and prove the rank nullity theorem for a linear transformation. 3
- d) Prove that there cannot exist any onto linear transformation from \mathbb{R}^4 to \mathbb{R}^7 . Generalize this result. 3
- 2. Answer *any two* from the following questions : $3 \times 2=6$
 - a) i) Does there exist a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^4$ such that T(1,1,0) = (1,2,3-1), T(0,1,1) = (0,1,3,-2)? Answer with precise reason.
 - ii) Find the change of basis matrix P(say) for the change from the basis $B_1 = \{(1,0,0), (0,1,0), (0,0,1)\}$ to $B_2 = \{(1,1,0), (0,0,1), (0,1,1)\}.$ 2+1

[Turn over