B. Sc. Mathematics (Hons.) Examination, 2023

(2nd Year, 1st Semester)

Ring Theory and Linear Algebra - I

Paper - Core-6
Time : Two hours
Full Marks : 40
Use separate Answer script for each Part.
Symbols / Notations have their usual meanings.

Part - I (20 Marks)

Answer any four questions. $5 \times 4=20$

1. Does there exist a ring R having no identity but a subing S with identity? Justify. Give an example of a ring R with identity 1_{R} and a subring S with identity 1_{S} such that $1_{R} \neq 1_{S}$. If R is an integral domain then show that $1_{R}=1_{S}$. $2+1+2$
2. Define field. Show that an integral domain with finite number of ideals is a field. Hence conclude that every finite integral domain is a field
$1+3+1$
3. Let R be a commutative ring with identity and N be the set of all nilpotent elements of R. Show that N forms an ideal of R and the quotient ring R / N has no non-zero nilpotent elements. Is commutativity of the ring R essential in the above result? Justify.
$(1+2)+2$
4. Let R and R^{\prime} be two rings and $f: R \rightarrow R^{\prime}$ be a mapping. When is f said to be a ring homomorphism? Let I be an
ideal of R. Is $f(I)$ an ideal of R^{\prime} ? Justify.
Let F be a field, R be a ring and $f: F \rightarrow R$ be a homomorphism of rings.
i) Show that f is either a monomorphism or a zero homomorphism.
ii) If there is a non zero element $\lambda \in F$ such that $f(\lambda)=0_{R}$, then show that f is the zero homomorphism.
$1+1+(2+1)$
5. State First Isomorphism Theorem for ring. By using this theorem, show that every epimorphism from the ring \mathbb{Z} of integers onto itself is an isomorphism. Is every monomorphism from the ring \mathbb{Z} of integers into itself an isomorphism? Justify.
$1+2+2$
6. Let R be a ring with identity such that $x^{2}=x$ for all $x \in R$. Show that characteristic of R is 2 and R is a commutative ring. Is every prime ideal of R a maximal ideal of R ? Justify.
$(1+2)+2$

Part - II (20 Marks)

(Linear Algebra)

1. Answer any two from the following questions: $3 \times 2=6$
a) Define
i) the column rank and the row rank of an $m \times n$ matrix A over a field F.
c) i) Prove that eigenvectors corresponding to two distinct eigenvalues of T are linearly independent.
ii) Suppose V is finite dimensional and $B=\left\{v_{1}, v_{2}, \ldots . ., v_{n}\right\}$ is a basis of V such that v_{i} is an eigenvector of T corresponding to an eigenvalue λ_{i}, for all $i=1,2, \ldots \ldots . n$. Find the matrix of T with respect to the basis $B . \quad 2+1$
2. Answer any one from the following questions : $2 \times 1=2$
a) Let the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $T(x, y, z)=(x+y, y, z)$. Find the eigenvalues of T and their geometric multiplicities.
b) Determine the subspaces of the vector space $\mathbb{R}^{2} .2$
b) Suppose the matrix of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with respect to the standard ordered basis of \mathbb{R}^{3} is $A=\left(\begin{array}{ccc}1 & 2 & 3 \\ 3 & 1 & -5 \\ 0 & 0 & 1\end{array}\right)$. Find $T(x, y, z)$ for any $(x, y, z) \in \mathbb{R}^{3}$ and find the matrix B (say) of T with respect to the ordered basis $\{(1,1,0),(0,0,1),(0,1,1)\} .2+1$
c) Verify that $B=P^{-1} A P$ where A, B are as in (b) and P is as in (a)(ii).

3
3. Answer any two from the following questions: $\quad 3 \times 2=6$
a) Let V be a vector space over a field F and $T: V \rightarrow V$ be a linear operator on V.
i) Prove that $v \in V$ is an eigenvector of T corresponding to an eigenvalue $\lambda \in F$ if and only if $v \neq 0$ and $v \in \operatorname{ker}(T-\lambda I)$.
ii) Prove that $\lambda \in F$ is an eigenvalue of T if and only if $\operatorname{Null}(T-\lambda I) \geq 1$. $2+1$
b) If V is finite dimensional then prove that $\lambda \in F$ is an eigenvalue of T if and only if λ is a root of the polynomial $\operatorname{det}\left(x I_{n}-A\right)$ where $n=\operatorname{dim} V, I_{n}$ is the identity matrix of order n over F and A is any matrix of T.
ii) the rank and nullity of a linear transformation between two vector spaces.
b) Suppose F is a field, m, n are positive integers and A is an $m \times n$ matrix over F. Prove that the mapping $L_{A}: F^{n} \rightarrow F^{m}, X \mapsto A X$ is a linear transformation. Conversely, prove that if $T: F^{n} \rightarrow F^{m}$ is a linear transformation then there exists an $m \times n$ matrix A over F such that $T=L_{A}$.
c) State and prove the rank nullity theorem for a linear transformation.

3
d) Prove that there cannot exist any onto linear transformation from \mathbb{R}^{4} to \mathbb{R}^{7}. Generalize this result.

3
2. Answer any two from the following questions : $\quad 3 \times 2=6$
a) i) Does there exist a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ such that $T(1,1,0)=(1,2,3-1)$, $T(0,1,1)=(0,1,3,-2)$? Answer with precise reason.
ii) Find the change of basis matrix P (say) for the change from the basis

$$
B_{1}=\{(1,0,0),(0,1,0),(0,0,1)\} \text { to }
$$

$$
B_{2}=\{(1,1,0),(0,0,1),(0,1,1)\} .
$$

