$0 < \xi_1 < 1 < \xi_2$. Show that $x_{k+1} - \xi_1 = \frac{1}{2} (x_k + \xi_1) (x_k - \xi_1)$, $k = 0, 1, 2, \dots$ and deduce that $\lim_{k \to \infty} x_k = \xi_1$ if $0 \le x_0 < \xi_2$.

- 5. i) Give a brief description of round-off error and truncation error with proper examples.
 - ii) Show that for the bisection method, the convergence rate is linear. 2+2

Part – II (12 Marks)

Answer any two questions.

 $2 \times 6 = 12$

1. Evaluate y at x = 0.37 using the following table.

x	0.00	0.10	0.20	0.30	0.40
У	1.0000	1.2214	1.4918	1.8221	2.2255

The result should be correct upto four decimal places. 6

2. Find the quadrature formula

$$\int_{0}^{1} \frac{f(x)dx}{\sqrt{x(1-x)}} = \alpha_1 f(0) + \alpha_2 f\left(\frac{1}{2}\right) + \alpha_3 f(1)$$

which is exact for polynomials of highest possible degree. Then use the formula on $\int_0^1 \frac{dx}{\sqrt{x-x^3}}$.

3. Show that Euler method applied to $y' = \alpha y$, y(0) = 1, $\alpha < 0$ is stable for stepsizes satisfying $-2 < \alpha h < 0$.

B. Sc. Mathematics (Hons.) Examination, 2023

(2nd Year, 1st Semester)

Numerical Methods

Paper – Core-07 (Theory)

Time: Two hours Full Marks: 24

Use separate Answer script for each Part.

Symbols / Notations have their usual meanings.

Part - I (12 Marks)

Answer any three questions.

- 1. Show that for a system of linear equations Ax = b, the Gauss-Seidal iteration scheme converges for any initial starting vector if A is strictly diagonally dominant.
- 2. Using a proper numerical scheme, find the equation of a catenery of the form $y = c \cosh \frac{(x-a)}{c}$ passing through the points (1, 1) and (2, 3), correct to 4 decimal places.
- 3. i) What is an ill-conditioned system?
 - ii) Let $A(\alpha) = \begin{bmatrix} 0.1\alpha & 0.1\alpha \\ 1.0 & 1.5 \end{bmatrix}$. Using the maximum norm, determine α so that $cond[A(\alpha)]$ is minimized.
- 4. The iteration defined by $x_{k+1} = \frac{1}{2}(x_k^2 + c)$, where 0 < c < 1, has two fixed points ξ_1 and ξ_2 , where

[Turn over