Ex/SC/MATH/UG/CORE/TH/09/2023
surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$, above the $x y$ plane.
6. State Green's theorem in a plane and verify it for $\oint_{c}\left\{\left(x^{2}+x y\right) d x+x d y\right\}$, where C is the curve enclosing the region bounded by $y=x^{2}$ and $y=x$.

B. Sc. Mathematics (Hons.) Examination, 2023

(2nd Year, 2nd Semester)
Multivariate Calculus
Paper - Core-9
Time : Two hours
Full Marks : 40

Use separate answer script for each Part.

Symbols / Notations have their usual meanings.

Part - I (20 Marks)

Answer any four questions.
$4 \times 5=20$

1. a) Find the equation of the tangent plane to $z=2 x^{2}+y^{2}$ at the point $(1,1,3)$.
b) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x y^{2}}{x+y}, & \text { when } x+y \neq 0 \tag{3}\\
0, & \text { when } x+y=0
\end{array}\right.
$$

Find $\frac{\partial^{2} f}{\partial x \partial y}+\frac{\partial^{2} f}{\partial y \partial x}$ at $(0,0)$.
2. a) Find the maximum rate of change of $f(x, y)=\sqrt{x^{2}+y^{4}}$ at $(-2,3)$ and the direction in which this maximum rate of change occurs. 2
b) Check whether the following function
$f(x, y)=\left\{\begin{array}{cc}\frac{x^{3}-y^{3}}{x^{2}+y^{2}}, & \text { when } x^{2}+y^{2} \neq 0 \\ 0, & \text { when } x^{2}+y^{2}=0\end{array}\right.$
is differentiable at the point $(0,0)$ or not.
[Turn over
3. Let S be an open subset of \mathbb{R}^{n} and assume that $f: S \rightarrow \mathbb{R}^{m}$ is differentiable at each point of S. Let \mathbf{x} and \mathbf{y} be two points in S such that $L(\mathbf{x}, \mathbf{y}) \subseteq S$, where $L(\mathbf{x}, \mathbf{y})$ denotes the line segment joining two points \mathbf{x} and \mathbf{y} in \mathbb{R}^{n}, that is, $L(\mathbf{x}, \mathbf{y})=\{t \mathbf{x}+(1-t) \mathbf{y}: 0 \leq t \leq 1\}$. Prove that for every vector \mathbf{a} in \mathbb{R}^{m}, there is a point \mathbf{z} in $L(\mathbf{x}, \mathbf{y})$ such that $\mathbf{a} \cdot(f(\mathbf{y})-f(\mathbf{x}))=\mathbf{a} \cdot\left(D f_{\mathbf{z}}(\mathbf{y}-\mathbf{x})\right)$, where $D f_{\mathbf{z}}$ denotes the derivative of f at the point \mathbf{z}.
4. a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function. If $g(u, v)=f\left(u^{2}-v^{2}\right)$, then prove that $\frac{\partial^{2} g}{\partial u^{2}}+\frac{\partial^{2} g}{\partial v^{2}}=4\left(u^{2}+v^{2}\right) f^{\prime \prime}\left(u^{2}-v^{2}\right)$.
b) Let $f: E \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function defined in an open set $E \subseteq \mathbb{R}^{2}$, and $D_{1} f$ and $D_{21} f$ exist at every point of E. Suppose $Q \subseteq E$ is a closed rectangle with sides parallel to the coordinate axes, having (a, b) and $(a+h, b+k)$ as opposite vertices $(h \neq 0, k \neq 0)$. Consider
$\Delta(f, Q)=f(a+h, b+k)-f(a+h, b)-f(a, b+k)+f(a, b)$.
Prove that there is a point (x, y) in the interior of Q such that $\Delta(f, Q)=h k\left(D_{21} f\right)(x, y)$.
5. Find and classify the stationary points of the function $f(x, y)=x^{3}-12 x y+8 y^{3}$.
6. Find the points on the sphere $x^{2}+y^{2}+z^{2}=4$ that are closest to and farthest from the point $(3,1,-1)$. 5

Part - II (20 Marks)

Answer any four questions.

$$
4 \times 5=20
$$

1. a) Define curl and divergence of a vector point function.
b) If the vectors \vec{A} and \vec{B} be irrotational, then show that the vector $\vec{A} \times \vec{B}$ is solenoidal.
2. a) Show that the greatest rate of change of ϕ takes place in the direction of, and has the magnitude of, the vector $\nabla \phi$.
b) Evaluate $I=\iiint_{E}\left(y^{2} z^{2}+z^{2} x^{2}+x^{2} y^{2}\right) d x d y d z$ taken over the domain bounded by the cylinder $x^{2}+y^{2}=2 a x$, and the cone $z^{2}=k^{2}\left(x^{2}+y^{2}\right) \cdot 2+3$
3. Prove that $\nabla^{2} f(r)=\frac{d^{2} f}{d r^{2}}+\frac{2 d f}{r d r}$,
where $r=\sqrt{x^{2}+y^{2}+z^{2}}$. Hence, determine $f(r)$ such that $\nabla^{2} f(r)=0$.
4. If $\vec{\beta}=(y z) \hat{i}+(x z+z+x) \hat{j}+f(x, y) \hat{k}$ is a vector field, such that curl $\vec{\beta}=-\hat{i}+\hat{k}$, find $f(x, y)$.
5. If $\vec{F}=y \hat{i}+(x-2 x z) \hat{j}-x y \hat{k}$, using the theory of surface integral, evaluate $\iint_{S}(\nabla \times \vec{F}) \cdot \hat{n} d S$, where S is the
[Turn over
