plane.

surface of the sphere $x^2 + y^2 + z^2 = a^2$, above the xy-

 $\oint_C \{(x^2 + xy)dx + xdy\}$, where C is the curve enclosing

2+3

6. State Green's theorem in a plane and verify it for

the region bounded by $y = x^2$ and y = x.

(2nd Year, 2nd Semester)

MULTIVARIATE CALCULUS

Paper - Core-9

Time: Two hours

Full Marks: 40

Use separate answer script for each Part.

Symbols / Notations have their usual meanings.

Part - I (20 Marks)

Answer *any four* questions. $4 \times 5 = 20$

Ex/SC/MATH/UG/CORE/TH/09/2023

- 1. a) Find the equation of the tangent plane to $z = 2x^2 + y^2$ at the point (1, 1, 3).
 - b) Let $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{xy^2}{x+y}, & \text{when } x+y \neq 0\\ 0, & \text{when } x+y = 0. \end{cases}$$

Find
$$\frac{\partial^2 f}{\partial x \partial y} + \frac{\partial^2 f}{\partial y \partial x}$$
 at $(0, 0)$.

- 2. a) Find the maximum rate of change of $f(x,y) = \sqrt{x^2 + y^4}$ at (-2, 3) and the direction in which this maximum rate of change occurs.
 - b) Check whether the following function

$$f(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2}, & \text{when } x^2 + y^2 \neq 0\\ 0, & \text{when } x^2 + y^2 = 0 \end{cases}$$

is differentiable at the point (0, 0) or not.

[Turn over

- 3. Let S be an open subset of \mathbb{R}^n and assume that $f: S \to \mathbb{R}^m$ is differentiable at each point of S. Let \mathbf{x} and \mathbf{y} be two points in S such that $L(\mathbf{x}, \mathbf{y}) \subseteq S$, where $L(\mathbf{x}, \mathbf{y})$ denotes the line segment joining two points \mathbf{x} and \mathbf{y} in \mathbb{R}^n , that is, $L(\mathbf{x}, \mathbf{y}) = \{t\mathbf{x} + (1-t)\mathbf{y} : 0 \le t \le 1\}$. Prove that for every vector \mathbf{a} in \mathbb{R}^m , there is a point \mathbf{z} in $L(\mathbf{x}, \mathbf{y})$ such that $\mathbf{a} \cdot (f(\mathbf{y}) f(\mathbf{x})) = \mathbf{a} \cdot (Df_{\mathbf{z}}(\mathbf{y} \mathbf{x}))$, where $Df_{\mathbf{z}}$ denotes the derivative of f at the point \mathbf{z} .
- 4. a) Let $f: \mathbb{R} \to \mathbb{R}$ be a twice differentiable function. If $g(u,v) = f(u^2 - v^2)$, then prove that $\frac{\partial^2 g}{\partial u^2} + \frac{\partial^2 g}{\partial v^2} = 4(u^2 + v^2)f''(u^2 - v^2).$
 - b) Let $f: E \subseteq \mathbb{R}^2 \to \mathbb{R}$ be a function defined in an open set $E \subseteq \mathbb{R}^2$, and $D_1 f$ and $D_{21} f$ exist at every point of E. Suppose $Q \subseteq E$ is a closed rectangle with sides parallel to the coordinate axes, having (a,b) and (a+h,b+k) as opposite vertices $(h \neq 0, k \neq 0)$. Consider
- $\Delta(f,Q) = f(a+h,b+k) f(a+h,b) f(a,b+k) + f(a,b).$ Prove that there is a point (x,y) in the interior of Q such that $\Delta(f,Q) = hk(D_{21}f)(x,y)$.
- 5. Find and classify the stationary points of the function $f(x,y) = x^3 12xy + 8y^3.$

6. Find the points on the sphere $x^2 + y^2 + z^2 = 4$ that are closest to and farthest from the point (3, 1, -1).

Part – II (20 Marks)

Answer *any four* questions. $4 \times 5 = 20$

- 1. a) Define curl and divergence of a vector point function.
 - b) If the vectors \vec{A} and \vec{B} be irrotational, then show that the vector $\vec{A} \times \vec{B}$ is solenoidal. 2+3
- 2. a) Show that the greatest rate of change of ϕ takes place in the direction of, and has the magnitude of, the vector $\nabla \phi$.
 - b) Evaluate $I = \iiint_E (y^2z^2 + z^2x^2 + x^2y^2) dxdydz$ taken over the domain bounded by the cylinder $x^2 + y^2 = 2ax$, and the cone $z^2 = k^2(x^2 + y^2)$. 2+3
- 3. Prove that $\nabla^2 f(r) = \frac{d^2 f}{dr^2} + \frac{2df}{rdr}$, where $r = \sqrt{x^2 + y^2 + z^2}$. Hence, determine f(r) such that $\nabla^2 f(r) = 0$.
- 4. If $\vec{\beta} = (yz)\hat{i} + (xz + z + x)\hat{j} + f(x, y)\hat{k}$ is a vector field, such that $curl \vec{\beta} = -\hat{i} + \hat{k}$, find f(x, y).
- 5. If $\vec{F} = y\hat{i} + (x 2xz)\hat{j} xy\hat{k}$, using the theory of surface integral, evaluate $\iint_{S} (\nabla \times \vec{F}) \cdot \hat{n} \, dS$, where S is the Turn over