(2nd Year, 1st Semester)

Mathematics-II
 Paper - GE3

Time : Two hours
Use separate Answer script for each Part.
Symbols / Notations have their usual meanings.

Part - I (12 Marks)

Answer any three questions.

1. Find $\bmod \mathrm{Z}$ and principal amplitude of

$$
\begin{equation*}
z=1-\sin \theta(\sin \theta+i \cos \theta), \frac{\pi}{2}<\theta<\pi \tag{4}
\end{equation*}
$$

2. Show that the root of the following equation are all real $\frac{1}{x+a_{1}}+\frac{1}{x+a_{2}}+\cdots+\frac{1}{x+a_{n}}=\frac{1}{x+b}$, where $a_{i}, b \in \mathbb{R}^{+}$ and $b>a_{i} \forall i$.
3. Solve the equation $x^{4}-2 x^{2}+8 x-3=0$ by Ferrai's method.

4
4. Find the rank of A , where $\mathrm{A}=\left(\begin{array}{cccc}8 & 1 & 3 & 6 \\ 0 & 3 & 2 & 2 \\ -8 & -1 & -3 & 4\end{array}\right)$.

4
5. a) Find the eigenvalue(s) and eigenvector of $\left(\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right)$.
b) If the roots of the equation $x^{3}+p x^{2}+q x+r=0(r \neq 0)$ are α, β, γ. Find the
equation whose roots are $\frac{\alpha+\beta}{\gamma}, \frac{\beta+\gamma}{\alpha}, \frac{\gamma+\alpha}{\beta}$.

$$
3+1
$$

Part - II ($\mathbf{1 6}$ Marks)

Answer Q. No. 1 and any three from the rest four questions.

$$
4 \times 4=16
$$

1. Reduce the equation $x p^{2}-2 y p+x+2 y=0$ to Clairaut's form by using the substitution $x^{2}=u$ and $y-x=v$ and then solve it.

Solve the following differential equations (any three) :
2. $x y \frac{d y}{d x}=\frac{\left(1+y^{2}\right)\left(1+x+x^{2}\right)}{\left(1+x^{2}\right)}$
3. $\frac{d y}{d x}+\frac{a y}{x}=\frac{b}{x^{n}}$
4. $y\left(2 x y+e^{x}\right) d x-e^{x} d y=0$
5. $\left(D_{x}^{3}-7 D_{x} D_{y}^{2}-6 D_{y}^{3}\right) z=\sin (x+2 y)+e^{3 x+y}$

Part - III (12 Marks)

Answer any three questions.

1. Find by iteration method the real root of the equation $3 x-\cos x-1=0$ which lies between 0 and $\frac{\pi}{2}$, correct to three significant figures.
2. Find the real positive root of the equation $x^{3}-x-1=0$ by Newton-Raphson method, correct to three decimal places.
3. Calculate the approximate value of $\int_{-3}^{3} x^{4} d x$, by Simpson's one-third rule and Trapezoidal rule, taking six equal sub-intervals.
4. Solve the following system of equations $10 x+y+z=12$, $x+10 y+z=12, \quad x+y+10 z=12$ by Gauss-Jordan method.

4
5. Use Euler's method to find the value of y at $x=0.05$ from $\frac{d y}{d x}=x+y+x y, y(0)=1$, taking step size $h=0.025 \quad 4$

