Ex/UG/Sc/GE/COMP/TH/03/2023

_

B.	Sc. Examination, 2023
	(2nd Year, 1st Semester)
	Computer Science II
Paper – GE 3	
Time	: 1 hour Full Marks : 20
	Theoretical (20 marks)
(Symbols have usual meanings, if not mentioned otherwise)	
Part – I (10 Marks)	
Answer any two questions.	
1.	What is stack? How is it represented in computer memory? Write down two main functions for insertion and deletion in a stack. 5
2.	What is linked list? Write an algorithm to traverse a linked list considering that the linked list is stored in memory. 5
3.	Define binary tree. "There are three standard ways of traversing a binary tree T with root R." Mention the ways and write the algorithms. 5
4.	Describe the queue where the following operations take place. 5 a) F is added to the queue
	b) 2 letters are deleted

[Turn over

- c) K, L, and M are added to the queue
- d) 2 letters are deleted
- e) R is added to the queue
- f) 2 letters are deleted
- g) S is added to the queue
- h) 2 letters are deleted
- i) One letter is deleted
- j) One letter is deleted

Part – II (10 Marks)

Attempt **Q.1** and any **one** from the rest.

- 1. a) Prove that $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.
 - b) If f(n) is a polynomial in *n* of degree *k*, then show that $f(n) = \Theta(n^k)$. 2+2=4
- Write the Merge-sort algorithm to sort an array of integers and explain different steps in the light of divide-andconquer paradigm of algorithm. 3+3=6
- 3. a) What are the minimum and maximum numbers of elements in a heap of height *h*?

- b) Let a heap be implemented by an array with length equal to the heap size. Is the array with values 23, 17, 14, 6, 13, 10, 1, 5, 7, 12 a max-heap? 3+3=6
- Use induction to prove that radix sort works. Where does you proof need the assumption that the intermediate sort is stable?
 4+2=6