Ex/SC/MATH/UG/CORE/TH/05/2023

B. Sc. Mathematics (Hons.) Examination, 2023

(2nd Year, 1st Semester)

THEORY OF REAL FUNCTION

Paper - Core 5

Time: 2 hours Full Marks: 40

Use separate Answer-script for each part.

(Symbols have usual meanings, if not mentioned otherwise)

Part - I (20 Marks)

Answer *any four* questions. $5\times4=20$

- 1. a) Let I = (a,b) be a bounded open interval and $f: I \to \mathbb{R}$ be a monotone increasing function on I. If f is bounded above on I, then show that $\lim_{x \to b^{-}} f(x) = \sup_{x \in (a,b)} f(x).$
 - b) Give an example of a function $f: \mathbb{R} \to \mathbb{R}$ which is continuous exactly at two points.
- 2. a) Let I be an interval and $f: I \to \mathbb{R}$ be a non-constant continuous function on I. Prove that f(I) is an interval.

3

b) A real function f is continuous on [0, 2] and f(0) = f(2). Prove that there exists at least a point c in [0, 1] such that f(c) = f(c+1).

- 3. a) Let [a,b] be a closed and bounded interval and $f:[a,b] \to \mathbb{R}$ be continuous and injective on [a,b]. Prove that f is strictly monotone on [a,b].
 - b) Prove or disprove: If $f: \mathbb{R} \to \mathbb{R}$ is a continuous function such that $|f(x)-f(y)| \ge \frac{1}{2}|x-y|$ for all $x, y \in \mathbb{R}$, then f is both one-to-one and onto.
- 4. a) Let $D \subseteq \mathbb{R}$ and $f: D \to \mathbb{R}$ be uniformly continuous on D. If $\{x_n\}$ be a Cauchy sequence in D, then prove that $\{f(x_n)\}$ is a Cauchy sequence in \mathbb{R} .
 - b) Prove that the function $f(x) = \sin \frac{1}{x}$, $x \in (0, 1)$ is not uniformly continuous on (0, 1).
- 5. Let $f:[0,\infty)\to\mathbb{R}$ be continuous on $[0,\infty)$ and $\lim_{x\to\infty} f(x) = 0$. Prove that f is uniformly continuous on $[0,\infty)$.
- 6. a) Let $D \subseteq \mathbb{R}$ be a compact set and a function $f: D \to \mathbb{R}$ be continuous on D. Prove that f(D) is a compact set in \mathbb{R} .
 - b) Find the points of discontinuity of the function $f(x) = [\sin x], x \in \mathbb{R}$, where [x] denotes the greatest integer not greater than x.

Part – II (20 Marks)

Answer *any four* questions. $4 \times 5 = 20$

1. A function f is defined in (-1, 1) by

$$f(x) = \begin{cases} x^p \sin\left(\frac{1}{x^q}\right), & \text{when } x \neq 0\\ 0, & \text{when } x = 0 \end{cases}$$

Determine the conditions of p and q when f' is continuous and discontinuous at x = 0.

- 2. If for a function $f: \mathbb{R} \to \mathbb{R}$, f(x+y) = f(x) + f(y), $\forall x, y \in \mathbb{R}$ and f is derivable at some point $a \in \mathbb{R}$, then prove that f is derivable on \mathbb{R} .
- 3. State Rolle's theorem for polynomials and give also its geometrical interpretation. Use this theorem to show that the polynomial equation

$$c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0 = 0$$
 has at least one root
between 0 and 1, if $c_0 + \frac{c_1}{2} + \frac{c_2}{3} + \dots + \frac{c_n}{n+1} = 0$.

- 4. Using Mean value theorem to prove that if $\phi(x) = F\{f(x)\}$, $\phi'(x) = f'(x) \cdot F'\{f(x)\}$ assuming the derivatives to be continuous.
- 5. If $\phi(x) = f(x) + f(1-x)$, $x \in [0,1]$ and f''(x) < 0 for all $x \in [0,1]$, show that ϕ is increasing on $[0,\frac{1}{2}]$ and decreasing on $\left[\frac{1}{2}, 1\right]$.
- 6. Expand log(1+x) in power of x, as an infinite series and mention the region for validity of expansion.