Ex/SC/MATH/UG/CORE/TH/05/2023

B. Sc. Mathematics (Hons.) Examination, 2023

(2nd Year, 1st Semester)

Theory of Real Function

Paper - Core 5
Time : 2 hours
Full Marks : 40
Use separate Answer-script for each part.
(Symbols have usual meanings, if not mentioned otherwise)

Part - I (20 Marks)

Answer any four questions. $\quad 5 \times 4=20$

1. a) Let $I=(a, b)$ be a bounded open interval and $f: I \rightarrow \mathbb{R}$ be a monotone increasing function on I. If f is bounded above on I, then show that $\lim _{x \rightarrow b-} f(x)=\sup _{x \in(a, b)} f(x)$.
b) Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is continuous exactly at two points.
2. a) Let I be an interval and $f: I \rightarrow \mathbb{R}$ be a non-constant continuous function on I. Prove that $f(I)$ is an interval.
b) A real function f is continuous on $[0,2]$ and $f(0)=f(2)$. Prove that there exists at least a point c in $[0,1]$ such that $f(c)=f(c+1)$.
3. a) Let $[a, b]$ be a closed and bounded interval and $f:[a, b] \rightarrow \mathbb{R}$ be continuous and injective on $[a, b]$. Prove that f is strictly monotone on $[a, b]$.
b) Prove or disprove: If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function such that $|f(x)-f(y)| \geq \frac{1}{2}|x-y|$ for all $x, y \in \mathbb{R}$, then f is both one-to-one and onto.
4. a) Let $D \subseteq \mathbb{R}$ and $f: D \rightarrow \mathbb{R}$ be uniformly continuous on D. If $\left\{x_{n}\right\}$ be a Cauchy sequence in D, then prove that $\left\{f\left(x_{n}\right)\right\}$ is a Cauchy sequence in \mathbb{R}.
b) Prove that the function $f(x)=\sin \frac{1}{x}, x \in(0,1)$ is not uniformly continuous on $(0,1)$.
5. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be continuous on $[0, \infty)$ and $\lim _{x \rightarrow \infty} f(x)=0$. Prove that f is uniformly continuous on $[0, \infty)$.

5
6. a) Let $D \subseteq \mathbb{R}$ be a compact set and a function $f: D \rightarrow \mathbb{R}$ be continuous on D. Prove that $f(D)$ is a compact set in \mathbb{R}.
b) Find the points of discontinuity of the function $f(x)=[\sin x], x \in \mathbb{R}$, where $[x]$ denotes the greatest integer not greater than x. 2

Part - II (20 Marks)

Answer any four questions.
$4 \times 5=20$

1. A function f is defined in $(-1,1)$ by

$$
f(x)=\left\{\begin{array}{cc}
x^{p} \sin \left(\frac{1}{x^{q}}\right), & \text { when } x \neq 0 \\
0, & \text { when } x=0
\end{array}\right.
$$

Determine the conditions of p and q when f^{\prime} is continuous and discontinuous at $x=0$.
2. If for a function $f: \mathbb{R} \rightarrow \mathbb{R}, f(x+y)=f(x)+f(y)$, $\forall x, y \in \mathbb{R}$ and f is derivable at some point $a \in \mathbb{R}$, then prove that f is derivable on \mathbb{R}.
3. State Rolle's theorem for polynomials and give also its geometrical interpretation. Use this theorem to show that the polynomial equation
$c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0}=0$ has at least one root between 0 and 1 , if $c_{0}+\frac{c_{1}}{2}+\frac{c_{2}}{3}+\cdots+\frac{c_{n}}{n+1}=0$.
4. Using Mean value theorem to prove that if $\phi(x)=F\{f(x)\}, \quad \phi^{\prime}(x)=f^{\prime}(x) \cdot F^{\prime}\{f(x)\} \quad$ assuming the derivatives to be continuous.
5. If $\phi(x)=f(x)+f(1-x), x \in[0,1]$ and $f^{\prime \prime}(x)<0$ for all $x \in[0,1]$, show that ϕ is increasing on $\left[0, \frac{1}{2}\right]$ and decreasing on $\left[\frac{1}{2}, 1\right]$.
6. Expand $\log (1+x)$ in power of x, as an infinite series and mention the region for validity of expansion.

