B. Sc. Mathematics (Hons.) Examination, 2023

(1st Year, 2nd Semester)
Differential Equation
Paper - Core-04
Time : Two hours
Full Marks : 40
Use separate Answer script for each Part.
Symbols / Notations have their usual meanings.

Part - I (Marks: 20)

Answer any two questions.

1. a) Define 'integrating factor' of the differential equation $M(x, y) d x+N(x, y) d y=0$.
If an integrating factor does exist, is it unique? Justify your answer.
b) Show that the solutions y_{1}, y_{2} of the 2 nd order linear differential equation

$$
a_{0}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y=0
$$

are linearly independent on [c, d] iff $w\left(y_{1}, y_{2}\right) \neq 0$ for some x on the interval $[\mathrm{c}, \mathrm{d}]$.
c) Show that the system of confocal conics

$$
\frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+\lambda}=1
$$

is self orthogonal, where λ is a parameter and a, b are given constants.
2. a) If y_{1}, y_{2} are two linearly independent solutions of $\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0$ then find the general solution of $\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=X(x)$ by using the method of variation of parameters, where P, Q and X are functions of x only.
b) Find general and singular solution (if any) of the differential equation $y=2 p x+p^{2}\left(p \equiv \frac{d y}{d x}\right) .5+5$
3. a) Does unique solution of $\frac{d y}{d x}=\sqrt{y}, y(0)=0$, exist? Justify your answer.
b) Solve: $\frac{d y}{d x}+\frac{y}{x} \log y=\frac{y}{x^{2}}(\log y)^{2}$
c) Reduce the differential equation
$(1+2 x)^{2} \frac{d^{2} y}{d x^{2}}-6(1+2 x) \frac{d y}{d x}+16 y=8(1+2 x)^{2}$
to Euler-Cauchy form and hence solve it. $\quad 2+3+5$

Part - II (Marks: 20)

Answer any two questions.
4. Show that $x=0$ is a regular singular point of $\left(2 x+x^{3}\right) \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-6 x y=0$ and find it's solution about $x=0$.
5. Solve the Legendre's equation

$$
\begin{equation*}
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+n(n+1) y=0 \text { about } x=0 . \tag{10}
\end{equation*}
$$

6. Find the general solution of the following linear system

$$
\left(\begin{array}{l}
\frac{d x_{1}}{d t} \tag{10}\\
\frac{d x_{2}}{d t} \\
\frac{d x_{3}}{d t}
\end{array}\right)=\left(\begin{array}{ccc}
7 & 4 & 4 \\
-6 & -4 & -7 \\
-2 & -1 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

