Ex/SC/MATH/UG/GE/Stat/TH/01/2023

B. Sc. 1st Year, 1st Semester Examination, 2023

Statistics - I
Paper - GE-I
Time : Two hours
Full Marks : 40
Use separate Answer script for each Part.

Part - I (Marks: 20)

The figures in the margin indicate full marks.
Answer Question No. 1 and any three from the rest.

$$
2+6 \times 3=20
$$

1. Define mode of a frequency distribution with illustrative example.

2
2. Write down the formulas for the computation of median and mode for any frequency distribution. Derive the mentioned formulas. Also discuss their merits and demerits. $\quad 2+2+2$
3. If for a random variable X , the absolute moment of order k exists for $\mathrm{k}=1,2,3, \ldots, n$, then prove that the following inequalities (i) $\beta_{k}^{2} \leq \beta_{k-1} \beta_{k+1}$, (ii) $\beta_{k}^{1 / k} \leq \beta_{k+1}$ hold for $\mathrm{k}=1,2,3, \ldots, n-1$, where β_{k} is the $\mathrm{K}^{\text {th }}$ absolute moment about the origin.
4. a) Find the mode of the Poisson distribution with parameter λ.
b) Find the mean and central moments of arbitrary
[Turn over
order n for the normal distribution with parameters m and σ.
$3+3$
5. Calculate the correlation coefficient from the following table :

y	$0-10$	$10-20$	$20-30$	$30-40$
$0-5$	1	3	2	0
$5-10$	7	10	8	1
$10-15$	10	13	10	8
$15-20$	5	8	10	7
$20-25$	0	1	5	4

6
6. Find the mean, mode and median of the following distribution.

class limits	$60-62$	$63-65$	$66-68$	$69-71$	$72-74$
frequency	5	18	42	27	8

Part - II (Marks: 20)
Attemp any two questions. $\quad 2 \times 10=20$

Each question carries ten marks.

1. a) A fair coin is tossed repeatedly and independently until a HH (two consecutive heads) appears. Let X denotes the number of tosses needed to get the first HH. Find the probability mass function function of X and mean of X .
b) Do the same if the coin above is biased and $\operatorname{Prob}(\mathrm{H})=\frac{1}{4}$.
2. Two points are chosen at random from the unit interval $[0,1]$ independently. Let the interval $[0,1]$ be divided by these two chosen points into lengths respectively of a, b and c units. Find the probability that a, b and c will form a triangle.
3. Calculate the characteristic function ϕ of a Binomial (n, p) random variable, $p \in(Q 1), n$ a positive integer. Using φ, find the mean and variance of $\operatorname{Bin}(n, p)$ distribution.
