Ex/SC/MATH/UG/GE/Stat/TH/01/2023 B. Sc. 1st Year, 1st Semester Examination, 2023 STATISTICS - I Paper – GE-I Time: Two hours Full Marks: 40

Use separate Answer script for each Part.

Part – I (Marks: 20)

The figures in the margin indicate full marks.

Answer Question No. 1 and any three from the rest.

 $2+6\times3=20$

- 1. Define mode of a frequency distribution with illustrative example. 2
- 2. Write down the formulas for the computation of median and mode for any frequency distribution. Derive the mentioned formulas. Also discuss their merits and demerits.

 2+2+2
- 3. If for a random variable X, the absolute moment of order k exists for k = 1, 2, 3, ..., n, then prove that the following inequalities (i) $\beta_k^2 \le \beta_{k-1}\beta_{k+1}$, (ii) $\beta_k^{1/k} \le \beta_{k+1}$ hold for k = 1, 2, 3, ..., n-1, where β_k is the Kth absolute moment about the origin.
- 4. a) Find the mode of the Poisson distribution with parameter λ .
 - b) Find the mean and central moments of arbitrary

 [Turn over

[3]

order n for the normal distribution with parameters m and σ . 3+3

5. Calculate the correlation coefficient from the following table:

y	0-10	10-20	20-30	30-40
0-5	1	3	2	0
5-10	7	10	8	1
10-15	10	13	10	8
15-20	5	8	10	7
20-25	0	1	5	4

6

6. Find the mean, mode and median of the following distribution.

class limits	60 - 62	63 - 65	66-68	69 - 71	72 - 74
frequency	5	18	42	27	8

Part - II (Marks: 20)

Attemp any two questions.

 $2 \times 10 = 20$

Each question carries ten marks.

1. a) A fair coin is tossed repeatedly and independently until a HH (two consecutive heads) appears. Let X denotes the number of tosses needed to get the first HH. Find the probability mass function function of X and mean of X.

- b) Do the same if the coin above is biased and $Prob(H) = \frac{1}{4}$.
- 2. Two points are chosen at random from the unit interval [0,1] independently. Let the interval [0,1] be divided by these two chosen points into lengths respectively of *a*, *b* and *c* units. Find the probability that *a*, *b* and *c* will form a triangle.
- 3. Calculate the characteristic function ϕ of a Binomial (n, p) random variable, $p \in (Q1)$, n a positive integer. Using ϕ , find the mean and variance of Bin(n, p) distribution.