B. Sc. Mathematics (Hons.) Examination, 2023

(1st Year, 1st Semester)

Algebra, Geometry \& Calculus
 Paper - Core-01

Time : Two hours
Full Marks : 40
Use separate Answer script for each Part.
Symbols / Notations have their usual meanings.
Part - I

1. Answer any three questions.
$3 \times 4=12$
a) If a, b, c are the sides of a triangle, then prove that $A \leq \frac{s^{2}}{3 \sqrt{3}}$, where A is the area of the triangle and $2 s$ is the perimeter of the triangle.
b) i) Find the sum of the $33^{\text {th }}$ powers of roots of the equation $x^{5}-1=0$.
ii) Find the values of μ and λ such that the rank of

$$
\text { the matrix }\left[\begin{array}{cccc}
1 & 4 & 2 & 1 \\
2 & 7 & 5 & 2 \lambda \\
4 & \mu & 0 & 2 \lambda+1
\end{array}\right] \text { is } 2 . \quad 2+2
$$

c) Solve the equation by using Cardan's method:
$x^{3}-27 x-54=0$
d) i) Prove that the number of primes is infinite.
ii) Find the integers m and n satisfying

$$
\begin{aligned}
& d=858 m+325 n, \text { where } d \text { is the g.c.d. of } 858 \\
& \text { and } 325 .
\end{aligned}
$$

e) Let $A X=B$ and $R X=S$ be two equivalent systems and α be a solution of $A X=B$. Show that α is also a solution of $R X=S$.

4
2. Answer any three questions.

$$
3 \times 4=12
$$

a) Show that the point of inflexion of the curve $y^{2}=(x-a)^{2}(x-b)$ lie on the line $3 x+a=4 b . \quad 4$
b) i) Explain mathematically how to measure the bending of a planar curve at a given point.
ii) If $y=2 \cos x(\sin x-\cos x)$, show that $\left(y_{10}\right)_{x=0}=2^{10}$, where y_{n} denotes the $n^{\text {th }}$ order derivative of y with respect to x.
$2+2$
c) Find the area of the loop of the curve $x\left(x^{2}+y^{2}\right)=a\left(x^{2}-y^{2}\right)$. Also find the area included between the curve and its asymptotes.

4
d) Find a reduction formula for $\int \sin ^{m} x \cos ^{n} x d x$, where m and n are positive integers. Use the above formula to evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{8} x \cos ^{6} x d x . \quad 3+1$
e) Find the volume and the surface area of the solid generated by revolving the cardiode $r=a(1-\cos \theta)$ about the initial line.

Part - II

Answer any four from the following:

$$
4 \times 4=16
$$

1. Show that the equation of the circle which passes through the focus of the conic $(l / r)=(1-e \cos \theta)$ and touches it at the point $\theta=\alpha$ is given by $r(1-e \cos \theta)^{2}=$ $l \cos (\theta-\alpha)-e l \cos (\theta-2 \alpha)$.
2. A plane passes through a fixed point (a, b, c) and cuts the co-ordinate axes at A, B, C respectively. Show that the locus of the center of the sphere OABC is $(a / x)+(b / y)+(c / z)=2$.
3. Prove that the two circles each of which passes through the points $(0, k)$ and $(0,-k)$ and touches the line $y=m x+c$ will cut orthogonally if $c^{2}=k^{2}\left(2+m^{2}\right)$.
4. The plane $(x / a)+(y / b)+(z / c)=1$ cuts the axes at A, B, C. Find the equation of the cone whose vertex is the origin and the guiding curve is the circle ABC .
5. Show that the locus of the pole with respect to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ of any tangent to the director circle of the ellipse $\frac{x^{2}}{c^{2}}+\frac{y^{2}}{d^{2}}=1$ is $\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}=\frac{1}{\left(c^{2}+d^{2}\right)}$.
