Ex/SC/GEOL/PG/CORE/TH/06/2023

M. Sc. Applied Geology Examination, 2023

(1st Year, 2nd Semester)

IGNEOUS PETROLOGY

PAPER - CORE/TH/06

Time: Two hours Full Marks: 40

(Use a separate Answer script for each Part.)

Part – I (20 Marks)

(Use appropriate phase diagrams and sketches whenever necessary)

- 1. a) Under what conditions could the mantle rocks equivalent to a plagioclase lherzolite in chemistry generate strongly silica-undersaturated nepheline normative magma and quartz tholeite magma? Discuss it with suitable phase diagram.
 - b) "Below a critical activity of water, hydrous mineral can never be stable at magmatic temperature" Explain why?
 - c) Why does the granitic magma produced from dehydration melting of hydrous minerals in continental orogenic setting commonly not erupt above the surface?

 4.5+3+2.5=10
- 2. Answer any *two* questions:

 $2 \times 5 = 10$

a) How does M-type granite differ from I-type granite in its genesis? Demonstrate their suitable tectonic settings.

[Turn over

- b) Explain the excessive growth of crystals in pegmatite. Why are they commonly granitic in composition? Why is aplite characteristically associated with pegmatite?
- c) What is inverted pigeonite? How does it develop? State the suitable conditions and composition of igneous rock in which it commonly develops.
- d) Discuss the evolutionary paths of alkaline, transitional and sub-alkaline magmas in Nephiline-Kalsilitite-Silica-H₂O phase diagram. How can phonolites, trachytes and rhyolites be evolved through magmatic evolution?

Part – II (20 Marks)

Q.1 is compulsory and answer any one from the rest.

All questions carry equal marks.

- 1. a) Discuss why many of the arc-set up magmatic rocks show
 - i) Higher ratio of ²⁰⁷ Pb/ ²⁰⁴ Pb
 - ii) Elevated values of ¹⁰ Be, and
 - iii) A sharp negative anomaly of Nb in chondrite normalized plot.
 - b) Are all Mid-oceanic ridge basalts (MORB) the product of partial melting of depleted mantle?

 Answer with reasons.

- c) How do you petrographically differentiate a tholeiitic basalt from a calc-alkaline basalt in an island-arc setting? 5+3+2
- 2. a) Discuss the role of 'degree of partial melting', 'depth of segregation of magma from the source' and 'variation in fluid composition' in generation of tholeitic and alkaline basaltic magma.
 - b) Is it possible to generate olivine-tholeiite and alkaliolivine basalt from a common fertile mantle source rock through magmatic differentiation at lower pressure conditions? Answer with reasons.
 - c) 'Ocean island basalt formed at greater depth compared to MORB' accept or reject the statement with reasons.

 5+2.5+2.5

Or

- 3. a) Do you expect primitive basaltic magma in the East Pacific Rise? Answer with reasons.
 - b) "Calc-alkaline series of magma are extremely explosive in nature" why?
 - c) Comments on:
 - Formation of dendritic and hollow crystals in some magmatic rocks
 - ii) Geochemical signature of altered basalt in arc magma. 3+3+4