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Abstract

The technological advancements in Human-Computer Interaction (HCI) have been facilitated
through the evolution of novel solutions promoting smart living. While the contribution of
various specialized branches of HCI has been noteworthy, the commensurable increase in the
demand for assistive technologies in industry, education, entertainment, communication, and
others necessitates further innovations.
Among other domains, academia has experienced an unparalleled transformation during

and after the COVID 19 pandemic where the in situ meetings and classrooms changed to
virtual meetings and decentralized classrooms respectively. Massive Open Online Courses
(MOOC), virtual classrooms and online lectures eventually and partially replaced the traditional
classrooms. Besides the numerous advantages of online classrooms like self-paced learning,
comfortable environment, resource accessibility, effective visuals, there emerged more convo-
luted challenges than interrupting connection drops. Online classrooms lacked communication
amongst the students. Moreover, in such a setup, manually monitoring the attention of each stu-
dent, and hence their engagement in the class, became extremely difficult, if not impossible for
the faculties. These reasons, amongst others, made both the delivery and absorption of course
contents, challenging in virtual classrooms. For pre-recorded MOOC too, attention deficit has
led to high dropout rates, thus compromising the overall quality of education. Similarly, for any
type of online meetings, lack of attention among the participants adversely affects the meeting’s
quality. Automated estimation of attention can be used in both personalised assessment or
forecasting systems for the learners, and virtual response or feedback system for the educators.
Attention and overall engagement estimation of a person is not only essential in online

classes, but is also important in pre-recorded online videos, such as an educational video, or
other genres of videos. Here, the challenge lies in obtaining a fair and unbiased estimation of
how engaging a media content is. Even though applications like YouTube, provides an option
for leaving feedback, the reviews can be highly biased, non-real-time, and sometimes irrelevant,
thus providing an unfair estimation of the video quality. In this domain, engagement of a
person can be treated as an unbiased feedback to a media content. Estimating how engaging
a video, audio, or an article is, can aid in various trailing purposes like improved contents by
particular creators, relevant suggestions to an individual audience, fine-grained auto-feedback



and so on. Attention, being a mental process, should be estimated through ubiquitous solutions
in a non-intrusive manner.
While “ambient" assistive systems can analyze cognitive processes, HCI also suffers from

open challenges surrounding the explicit“interactivity" of a user and the device. On identifying
these intricate yet crucial problems, inclusive and globally feasible solutions for all users, in-
cluding those with clinical disabilities, needs to be designed. Pertaining to the social distancing
protocol induced by the recent pandemic, the exigency of touch-free interactive systems came
into being. On one hand, in educational domain, MOOC videos frequently needs to be con-
trolled through manual interaction with the device like mouse or button clicks. This becomes
proportionately difficult when a learner needs to simultaneously make manual notes of key
points taught in the video. On the other hand, for users with clinical conditions like Dactylitis,
Sarcopenia, Essential tremor and so on, basic touch-based writing with the device, such as
keyboard based text-entry, becomes difficult. These contributes to the exploration of novel
modalities in developing HCI models–both ubiquitous and interactive systems, that eliminates
the requirement of physical contact between the user and the device.
In this thesis, we first address the challenging problem of automated attention estimation in

onlinemeetings, online classes, MOOCs and different YouTube videos through the development
of ubiquitous assistive systems. In doing so, we classify the various types of attention and explore
the corresponding modality of the users that can attribute to each type. While exploring these
modalities at each level of attention, we aim at overcoming the challenges of the previous level.
Firstly, we explore gaze gesture as an indicator of visual attention and high level cognition in
MOOC. Secondly, we explore video-based facial expressions, vocal emotion, speech intent,
head gesture and ambient light reflection as an indicator of cognition and multitasking in online
meetings. Thirdly, we estimate a user’s engagement to a video, by analyzing their facial
expressions, estimated through acoustic sensing.
We then extend the utility of these modalities for developing interactive assistive systems

facilitating seamless touch-free interactions between different users and devices.
Firstly, we explore blink as the sole modality for controlling MOOC videos and automatic
generation of notes from them. Secondly, we design and develop a nose-tip gesture-based
writing system that operates on smartphones and can help the learners with clinical conditions.
To summarize, we identify and address two key challenges of smart education–(i) The

requirement for automated attention estimation during online classes, videos or meetings. The
group of lightweight solutions addressing this problem involve extensive studies on attention
and its variations, exploration of modalities like gaze, expressions and others for the estimation
of attention and the development of novel systems involving video procession and acoustic
sensing. (ii) The existing challenges of traditional touch-based interactive systems and the
requirement for touch-free HCI models. In this group of solutions, we explore blink and nose-
tip gesture for facilitating MOOC video controls along with automatic notes generation and



touch-free writing in smartphones for the users with clinical conditions respectively.
Keywords— MOOC, HCI, Smartphones, Gaze Gesture, Region of Gaze, Video Confer-

ences, Attention Estimation, Multitasking, Acoustic Sensing, Expression Detection, Blink
based Interaction, Notes Generation, Contact-less Text-entry, Nose Tracking, Nose-tip
Projection; Sensor-based Editing; Auto-complete Suggestion, In-device Computation.
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1
Introduction

Education, being one of the most essential and basic rights of human beings, has been well
defined in terms of its purposes, forms, sources and significance. While the formal definition
of education has been a debatable topic among Philosophers, they all converge to the common
notion of “knowledge"; a concept that has been widely studied in Epistemology1, and “learn-
ing"; a process that focuses on gaining knowledge. In the sphere of education, the transfer of
knowledge between two or more people can be uni- or bi-directional and can be mediated in a
formal classroom setup through structured courses, or in an informal setup through unstructured
activities like reading books, watching videos and so on. The mode of education has evolved
from centralised physical classrooms to decentralized global classrooms with the assistance of
advanced technologies. Correspondingly, the source of education has expanded with the inclu-
sion of e-books, articles, videos and other multi-media contents on websites and other online
platforms. Overall, education induces the learning of necessary knowledge and practical skills
that contributes to ones pragmatic approaches, emotional balance and logical decision-making
skills in life.
Traditionally, under formal setup, in-situ education has always been prevalent globallywhere

learners have visited classrooms during a lecture and read hard-copies of a books to gather
knowledge. However, with the unforeseen advent of the COVID-19 pandemic, Academia
experienced a major transformation when a significant proportion of educators and learners
started opting for the online mode of education. Moreover, most of the in-person academic

1https://en.wikipedia.org/wiki/Epistemology (Accessed: Friday 11th August, 2023)

1

https://en.wikipedia.org/wiki/Epistemology
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conferences, seminars, meetings, etc., were declared online worldwide during this time. The
social distancing protocol indeed played a key-role in initiating this shift, but what further
catalyzed it was the number of associated benefits. These benefits included, but were not
limited to, a reduction in travel cost, extensive choices in terms of timing and courses, self-
paced learning, and so on. As a result, this transformation majorly paced up the adaptation of
smart education [131], which was already emerging gradually and steadily.
Since smart education involves assistive systems that promote the teaching-learning experi-

ence, its domain [226] is highly faceted. This technology revolves around environment [223][75]
(cloud-based, local, hybrid ), portability (mobile or web applications for smartphones, laptops,
etc.), data for predictions and recommendations (Big data, public data sets, in-house data sets),
multimedia content (video, audio, text, image), privacy issues (information tracking, contextual
sensing etc.), cognitive impacts (distractions, engagement, etc.), hardware (sensors, trackers,
etc.) and so on. In the light of this discussion, it is essential to understand that smart classroom
does not merely refer to online classes. Rather, it can also include a closed physical classroom
[277], augmented by sensors and other hardware like camera, trackers, controllers etc. that
can facilitate digital content creation, delivery and distribution along with the enhancement of
learner’s cognition through interaction and attention estimation. Furthermore, a smart class-
room can also have features for automating the process of feedback generation through sensing,
smart evaluation techniques and so on. However, one of the principal features of smart educa-
tion is its inclusiveness. Smart education aims at maximizing the number of learners across the
globe, by making it reachable to everyone [204]. This is infeasible in a physical classroom setup
due to the limited capacity of the room to accommodate a very large number of students. Thus,
digital classrooms, that can reach beyond geographical, racial, and cultural barriers, comprise
a major part of smart education. Pertaining to the global shift in the mode of education, along
with the aim of accessibility for all, we focus on the remote mode of smart education in this
thesis and will use the term smart education to imply the online mode of education in the rest
of the thesis. Moreover, we essentially focus on the theoretical aspect of smart education as
considering both theoretical and practical (e.g. skill development through practical training,
laboratory-based experiments etc.) learning is beyond the scope of this thesis.
Based on the difference between the time of content generation and access, smart education

can be divided into two broad categories [204]: synchronous (also known as Distance Learn-
ing) and asynchronous (also termed as e-Learning). While earlier researches [166][242][46]
presented divergent explanations of these concepts, and either ambiguously or unambiguously
used them with terminologies like online learning, web-based learning, and virtual learning,
we adhere to a more recent and simplified categorization of these terms. In Distance learning,
the two remote parties interact in real time i.e., the time at which a teacher conducts a course is
same as the time at which the learners attend the course. A good example of such a system is
an online video conference in which a presenter (teachers/employees) presents a topic and the
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attendees (learners/employees) attend to it. The presenter can use additional smart devices like
smart cameras, interactive whiteboards, and so on. On the other hand, in e-learning the content
delivery is not real time. In this mode, the presenter creates a digital content, such as a recorded
video, notes, etc. which is stored and distributed later, according to the learner’s convenience.
Massive Open Online Courses (MOOC)s, where the lectures are pre-recorded, is an example of
e-learning. Both these types of smart education have their associated shortcomings which are
divergent in nature and requires novel solutions. For example, in Distance learning, improve-
ments in video quality, augmented reality techniques for promoting the virtual experience are
some of the areas in which research contributions are being made. Whereas, in e-Learning,
features like summarizing lectures automatically, relevant recommendation generation, etc. are
being developed. In this thesis, we identified two common challenges associated with both these
modes– (1) Ubiquitous Assessment of Attention and (2) Improved interactivity between users
and devices for seamless teaching and learning. In the following sub-sections, the background
of and motivation behind recognising these challenges are discussed, followed by a detailed
discussion of the research objectives and contributions.

1.1 Background and Motivation

This section presents the fundamentals of human attention and human-computer interactivity
in the context of smart education. The basic concepts then further leads to the discussion of
existing challenges in the corresponding domains and how they motivate the development of
novel assistive systems.

1.1.1 Ubiquitous Assessment of Learner’s Attention

Since learning is the constitutive core of any form and mode of education, identifying the
parameters that promote learning is necessary. Cognitive involvement is indeed the prime factor
in learning. While such involvement is often generalised as “Attention" or “Engagement", the
concept is much elaborate. Although psychological studies have extensively explained the
aspects and classes of attention, the technique of understating whether a learner is attentive is a
demanding task in itself. In case of online mode of education where continuous monitoring is
impracticable, understanding the learner’s cognitive response is even more difficult. To resolve
this challenge, a system, must detect the learner’s attention automatically and transparently with
the sparse availability of learner’s information. However, the development of such systems first
requires a thorough exploration of human attention which is presented in the following section.
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Dissecting Human Attention

“Everyone knows what attention is. It is the taking possession of the mind in clear and vivid
form of one out of what seem several simultaneous objects or trains of thought.”− William
James, The Principles of Psychology [91].
In real world, the environment contains various forms of information at any given point of

time. Attention is the mental process by which a person focuses on a particular information
from this information pool at a given instance. Posner [194] defined attention as the ability
of a person to be alert, select and process a certain information. Evidently, attention involves
the working memory of human beings and thus, is characterised by the limited availability of
resources for storing and processing information [177]. The information that we attend to, at a
give point, is a function of the top-down control and bottom-up salience [106]. While top-down
control involves the voluntary allotment of attention based on the current context and objective
of the person, the high salience of a certain information can automatically, give it access to the
working memory by using the bottom-up salience filters. For example, ideally during an online
class, at any given instance, a learner’s attention should be fixated to the course content, i.e.
the information being delivered by the teacher. While the objective of the student should be to
attend to this information explicitly, in practice, distractions like someone calling their name in
the proximity will cause a shift of their attention due to its higher salience, causing a higher
neural response. Pertaining to this understanding, any automated attention detection system
should allow and account for temporal context switching.
While inferring upon attentiveness through an automated system, we first need to analyze the

meaning of inattentiveness. Since human brain allows the shift of attention fromone information
to another in a continuous process, inattentiveness is a relative and contextual concept. In terms
of the objects (or information) we attend to, attention can be classified into several branches.
To understand the definitive difference between attentiveness and inattentiveness, we consider
the classifications of attention only in the context of education [102]. Next, we discuss these
sub-categories of attention and explore how, an automated system can infer upon them using
various data modalities.

• Visibility-based: In the first categorization of attention, it is segmented into two classes,
based on its visibility. In an online classroom, a learner can perform activities like reading
a slide, ask a question, involve themselves in active problem solving, and so on, to promote
attentiveness. These visible activities refer to external attention. Moreover, if a learner
thinks about the topic being taught, correlated it with some previously learnt concepts,
think about an answer to a question asked in the course, etc., these mental activities can
also promote the overall attention of the learner to the course. However, these processes
will be termed as internal attention, as they are not immediately visible to the observer.
Similarly, external inattentivenesswould refer to the instances when the learner plays with
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their smartphone, eats during the class, opens another tab and reads irrelevant articles,
and so on. Internal inattentiveness would refer to processes like mind wandering [21]
where the learner thinks of some topic, other than the one being taught. In this regard,
it is essential to note that complete absence of any activity like “staring blankly at the
screen without any active communication" can also indicate internal inattentiveness.

In case of external (in)attentiveness caused by activities like “visually following a content"
or “looking at the phone", gaze direction and patterns can reveal the insights of a person’s
cognitive direction. Hence, visual attention tracking has been widely employed in various
works through the use of commercial eye trackers [93][139], and head orientation trackers.
Eye-tracking techniques can work significantly well in case of overt visual attention [193]
which is characterised by precise yet observable shift of gaze towards the object of focus.
However, for the mental process of covert attention [83], where attention is not indicated
by gaze direction, eye trackingmethods cannot work with significant accuracy. Moreover,
merely relying on gaze region for inferring the location of attention can be misleading
due to the instances of inattentional blindness [145] caused by processes like blankly
staring at the screen without actually being aware [119] of the content. In the lights of
this discussion, it is evident that the automated estimation of internal (in)attentiveness
would involve other physiological and physical features like EEG [163], Pupillometry
[278] and so on. Such techniques are widely discussed in Chapter 2.

• Time-based: Attention can also be perceived as sustained [57], alternating [39] or divided
[232]. In sustained attention, the person pays attention to a particular task for a prolonged
duration of time. This type of attention is often characterised by a decreasing vigilance2
with increasing time span. This is trivial as continued focus is likely to be affected bymind
wandering. Nevertheless, it is highly dependant on the required effort to stay focused on
the stimuli, the reward related to the attended task, individual’s motivation, presentation
of the attended information and so on. For example, an online learner will show higher
level of sustained attention if the course content is easy to follow or is followed by a
certification process. Thus, in online mode of education, sustained attention becomes
crucial to estimated fromboth the student’s perspective for personalised recommendations
and faculty’s perspective for automated feedback. Furthermore, sustained attention can
also ensure that the learner is not only paying attention to the content but is also engaged3
to the content, such that they are absorbing the information being delivered. In case
of alternating attention, a subject switches their attention between two or more stimuli
alternatively. While some studies validated divided attention [232] as a distinct type of
attention where a person pays attention to more than one information simultaneously, its

2https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2865224/ (accessed: Friday 11th August, 2023)
3https://speakingaboutpresenting.com/content/attention-to-engagement/ (accessed: Friday

11th August, 2023)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2865224/
https://speakingaboutpresenting.com/content/attention-to-engagement/


1.1 Background and Motivation 6

existence is well debated with the argument that divided attention is only a rapid case of
alternating attention. Commonly, this type of attention is termed as multitasking.

• Relevance-based: Attention is a continuous process i.e., a learner can either pay attention
to the content or be inattentive. However, the term “inattentive" is only relative as, when
the learner is not paying immediate attention to the course, they are paying attention to
some other information (audio/visual/mental) which is irrelevant to the course. Thus, a
more detailed analysis of attention would rather classify it as either on-topic attention or
off-topic attention. However, for simplicity, we will use the term “inattentive" instead of
off-topic attention.

Applications of Automated Estimation of Human Attention

On exploring the categories of human attention, it is now essential to realise the necessity of
automating its estimation in online classes. The development of such systems are necessitated
by and can be applicable to the following domains.

1. Several reports have established the fact that online courses experience high drop out
rates and have explored the root causes 4. Other than difficulties related to technology,
connectivity and experience, the most evident cause has been found to be the lack of
motivation. This, in turn, is caused by the scope of distractions and inattentiveness in
online courses, due to factors like lack of monitoring, feeling of seclusion, low interaction
and unfair feedback received by the faculties. Such high dropout rates can be controlled
by facilitating automated attention detection in online education.

2. Automated attention estimation can also lead to personalised recommendations for the
participants of the online courses or meetings. For example, a learner who is detected to
suffer from attention deficiency, can receive more relevant and basic courses than those
wit higher attention. Moreover, such systems can be used to forecast grades of learners
and generate helpful warnings and schedules. Real time detection of attention can not
only prompt the educators to direct their focus to and address the inattentive learners,
these personalised predictions can also be transmitted to the educators to arrange the
course in an optimal way so that the pace of content delivery can be matched to the
learner’s capabilities.

3. Apart from the several branching applications of automated attention estimation, the
core necessity lies in terms of promoting the quality of online conferences, lectures,
presentations and other related activities. By understanding the attention distribution

4https://www.linkedin.com/pulse/so-hidden-problems-dropout-rates-online-learning-borg%
C3%BE%C3%B3r-%C3%A1sgeirsson/ (accessed: Friday 11th August, 2023)

https://www.linkedin.com/pulse/so-hidden-problems-dropout-rates-online-learning-borg%C3%BE%C3%B3r-%C3%A1sgeirsson/
https://www.linkedin.com/pulse/so-hidden-problems-dropout-rates-online-learning-borg%C3%BE%C3%B3r-%C3%A1sgeirsson/
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among the participants, influential speakers and sought-after topics can be detected. By
focusing on such aspects, the overall quality of the online activity can be improved.

Even though Psychological studies have identified the extensive categories of human atten-
tion, the early and automated detection of attention through with the help of modern technology
is still nascent. Automated estimation of attention, irrespective of its sub types, experiences
some inherent and non-trivial challenges that needs to be addressed while selecting the data
modality and developing the system. These challenges are discussed in the following sub-
section.

Challenges of Attention Estimation

To understand whether a learner is paying attention in a physical classroom is a challenging
task as it requires manual monitoring of individuals, often infeasible in a classroom of large
size. However, the body gestures and activities of the students can reveal much about their
attentiveness. This challenge gets exponentially more difficult to address in case of online
education due to the following reasons:

1. Ubiquity : The fundamental, indirect and final objective of attention estimation is to
ensure that the online participants are as attentive as they would be in any physical
classroom setup. Thus, its automation should be designed in a way that it does not
cause distractions to the participants. Not only does the system needs to be pervasive or
non-intrusive, it also needs to be ubiquitous so that the users do not have to explicitly
generate commands to the system. It is particularly challenging to develop a completely
transparent system that runs in the background, while the participant attends the online
event, as any minor disruption would cause a shift of cognitive focus, thus violating the
very purpose of the whole model.

2. Usability : The next challenge lies in developing a system that is globally usable. The
usability can depend on two aspects: the ease of adopting the technology and device /
hardware availability. While the first can be addressed through sufficient training, the
later needs to be addressed by minimising the requirements of additional hardware. The
devices available globally should be used as the target platforms for attention estimation
models.

3. Security and Privacy : In contrast to the challenge of ensuring ubiquity, it is also essential
that the users feel comfortable using the system. Since the system is supposed to work in
he background, the users might feel dubious about sharing data. To ensure user’s security,
the system must not capture contextual information that could pose thread to the user.
Moreover, remote processing should be limited to prevent the scope of data leakage.
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4. Processing : In continuation to the above challenge, the correct balance between pro-
cessing speed and accuracy needs to selected. With the limited processing capability of
terminal devices at the client’s side, especially if its a smartphone, in-device processing
becomes difficult and requires lightweight, yet accurate systems.

5. Data : Other than the generic challenge of data availability, selection of data modality
is crucial and arduous. In case of online education, only a limited region (facial region)
can be captured through the device (assuming the general tendency of sitting in front of
the device to attend a course or holding the smartphone near the facial region to view
the screen). Due to the occlusion of body gestures, the estimation of attention fully
depends on the analysis of facial attributes, if additional hardware/ sensors/ devices are
to be eliminated. This, not only makes the selection of the relevant data modalities
limited and challenging, but also demands a thorough analysis of the same. Only through
the exploration of such modalities, the research can be directed to the difficult task of
quantifying mental processes like attention and engagement.

1.1.2 Improved HCI in Smart Education

Now, that the background and details of the first research direction; automated attention es-
timation in online education; has been discussed, we discuss the other distinct, yet relatable
research direction for promoting smart education through novel interactive applications. Major-
ity of the recent works aim at developing smart devices like interactive tables and whiteboards,
smart chairs, etc. for in-situ mode of education or interactive smartphone applications for
stress management, finger pose detection, touch-based transfer of contents between laptop and
smartphones, etc. that can be used in the context of online education. However, we identified
a considerable research gap between online education and touch-free interactivity between the
users with the devices. To justify the selection of this particular problem, we need to understand
why touch-free assistive systems need to be developed in the context of online education. The
necessity can be analyzed from two different angles:

• Firstly, the recent COVID-19 pandemic caused the emergence of social distancing pro-
tocols and placed a restriction on touching surfaces in public places. Pertaining to the
scope of mobility (portability) of online classes, a learner might decide to take a course in
an outdoor environment, while travelling. This necessitates novel touch-free interactive
methods that would limit the requirement to touch the device.

• Secondly, the development of interactive systems should account for inclusivity of target
users. Ubiquitous systems for automated attention estimation does not require explicit
commands and hence, can be used by almost everyone. However, HCI models that
require physical interaction with the device, like mouse clicks to play-pause a lecture
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video on a laptop/desktop, finger-touch for writing a note on smartphones, are difficult
to use for users with clinical disabilities like Dactylitis, Sarcopenia, Essential Tremor,
Quadriplegia, etc. To expand the usability of the interactive assistive systems in any field,
especially in Academia, touch-free systems should be modelled so that they can be used
by all users, including those with clinical challenges.

Challenges and Scope of Innovative Interactive System

We now discuss some of the generic challenges associated with traditional touch-based HCI,
scope of visualizing novel solutions and the corresponding points of concern to be addressed.
The traditional methods of touch-based user-device interaction comes with some inherent
challenges like mobility issues. For example, a person travelling in a public transport, like a
bus, might find it difficult to type a text with one hand. Similarly, a pedestrian holding a bag in
one hand will not be comfortable using a phone to write something, even if it is urgent. Voice
commands can be an alternate solution, however,it is not recommendable in public places where
the texts can be overheard by others. In an indoor scenario, a learner might be busy taking
a note or solving some in-course exercise during which, they might find it difficult to pause
and play the videos frequently through mouse clicks. Such shortcomings can be addressed by
developing touch-free novel interactive methods.
While modelling such novel systems, feasibility analysis becomes the prime challenge. The

choice of input medium should be carefully selected so that the system can be used by a large
community. However, it is almost impossible to select one such medium that would be suitable
for all user types. For example, a text entry system using gaze would not be usable for people
with visual impairments. A system using hand motion for controlling the User Interface will not
be usable for users with paralysis and so on. However, the choice of modality should be such that
the system can be used by a significant proportion of the global population. Feasibility of the
system can also be analysed from the hardware’s perspective. As discussed earlier, we eliminate
the requirement of any additional hardware, to address this challenge. While the feasibility of a
system can be analysed by its usability, another crucial component is its adaptability. Although
traditional systems, e are not free from their corresponding drawback, they prevail globally.
New interactive methods can be difficult to learn for some users. To address this challenge,
significant user training is required to understand the true contributions of the novel systems.
In the view of these discussions, the research objectives of the thesis are enlisted next,

followed by the corresponding contributions.
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1.2 Objectives

In regards of the above discussions regarding the background, motivation and challenges asso-
ciated with the development of the assistive systems for smart education, we now discuss the
overall research objectives of the thesis. To summarize, the objectives of this thesis are enlisted
below.

1.2.1 Ubiquitous Assessment of Attention in Smart education

On identifying the research gap in the domain of ubiquitous estimation of attention of learners
in online courses, the first objective of this thesis is to present different applications- both
smartphone-based and laptop/desktop-based, that can detect overall attention of the learners
in an non-intrusive manner. In particular, we aim to propose different types of systems by
considering the nature of the course, modality used, and type of attention. Finally, the objective
is to understand the accuracy. robustness and usability of the systems through large and
lab-scaled evaluations.

1.2.2 Improved Interactivity between Users and Devices for Smart Education

In the context of interactivity, the current challenges motivates the development of touch-free
applications that can be used by the learners with clinical disabilities. In doing so, we aim
to limit the inclusion of hardware that are only present in the devices, for the purpose of
sensing. Similar to the ubiquitous systems, the objective is evaluate the interactive systems with
real-world users under different setups for understanding the system’s performance.

1.3 Contributions

In lights of the above objectives, now the major contributions of this thesis are highlighted next.

1.3.1 On-topic External Attention through Gaze Gesture Tracking

As discussed earlier, on-topic visual attention (overt) is external in nature as it can be estimated
through observable eye movements. In this work, firstly the three basic principles of visual
attention are proposed as: Observation, Tracing, and Focus, through a large-scaled human
study. Along with this, the concept of prime objects in MOOC videos are also revealed. Based
on these principles, a ubiquitous smartphone application that utilizes gaze gesture, measured
through the in-device front-camera, for understanding visual attention of a learner is modelled
and proposed. Finally, through real-world human studies, we not only establish the accuracy
of the system but also establish a significant correlation between visual attention and high level
cognition of a learner.
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1.3.2 On-topic Internal Attention & Off-topic External Attention through Ex-
pressions & Speech Tracking

For on-topic internal attention, estimating the cognition of a person becomes essential. To
overcome the shortcomings of visual attention, in this work, the major contributions encompass
the development of a system that can infer upon the cognitive attention of an online meeting
(lecture, presentations, etc.) participant. Further, it identifies the instances of off-topic external
attention (visual multitasking) and classifies them as either relevant (person reading/watching
relevant articles during the meeting) or irrelevant (reading/watching irrelevant articles during
the meeting). The system development is related to our concurrent theoretical contribution of
devising the association between expressions, communication and cognition of human beings.
The system uses modalities like facial expressions of an attendee, speech intent of a speaker, ac-
tive communication rate of the participants, vocal emotion and ambient light of the participants
to understand their attentive involvement and instance of multitasking.

1.3.3 Estimation of Engagement using Facial Expressions through Acoustic Sens-
ing

Envisioning an utopian educational system, the following objectivewas to remove the challenges
of camera-based expression detection systems. With this objective, the major contribution of
this work is the development of a smartphone application that leverages acoustic sensing for
assessing the on-topic sustained attention of viewers (of online videos), and hence their overall
engagement to the content.Through detailed and methodical evaluations, we prove how the
system can be used under robust conditions and distinguish well between an engaged and a
disengaged user.

1.3.4 Touch-free Interactivity between Users and Devices using Eye Blinks

In this first work of the second line of approaches (systems promoting interactivity), the contri-
bution lies in terms of utilizing visual cues like blinks as the interactivemedium, thus eliminating
the requirement of touch and clicks. The application allows the user generate commands for
playing or pausing a video (MOOC)with eye gestures. Moreover, a learner can take screenshots,
select video segments through blinks. The system eliminates the requirement of taking manual
notes by automatically generating textual notes with selected keywords, linked to Wikipedia
for reference. While it facilitates seamless interactivity for users with clinical conditions, it
also promotes the scope of sustained attention by eliminating the necessity of visual context
switching.
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Figure 1.1: Representation of the Facets of Assistive Systems for Smart Education

1.3.5 Touch-free Text Entry in Smartphones using Nose-tip Gestures

The final contribution of this thesis is the development of a smartphone application that uses the
in-device camera and sensors to track users’ facial orientations and track nose-tip movements
for writing on the device in a touch-free manner. The nose movements are used to draw
alphabets and numbers in air which are mapped to the device’s screen. Further orientation of
the phone, tracked through sensors, can be used for editing the entered texts. The usability of
the system has been extensively tested with real world users with clinical conditions. Figure
1.1 summarises the contribution of the works presented in this thesis, through the visualization
of their multi-dimensional aspects.

1.4 Organization of the Thesis

In this section, the organisation and content of the following chapters are described briefly.

Chapter 2 presents the extensive discussion of the existing literature in the field of auto-
mated attention estimation and novel approaches in the fields of HCI. In doing so, we discuss
the different dataset, approaches and modalities proposed in such works and identify the limi-
tations and future scopes.

Chapter 3 presents GestAtten, an ubiquitous smartphone application that utilises gaze ges-
ture for automatically inferring upon the visual attention and high level cognition of learners
attending MOOCs.
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Chapter 4 describes EmotiConf, an automated ubiquitous assistive system that uses partic-
ipant’s facial expressions, head movement, frequency of active communication and vocal intent
to understand their overall attention level in online meetings and classes.

Chapter 5 shows the utility of near-ultrasound signals in classifying user’s facial expres-
sions in a non-intrusive, camera-free approach. Through the development of ExpresSense, a
lightweight smartphone application that utilises such acoustic signals for expression detection,
we show how expressions can correlate to the user’s overall engagement to online videos.

Chapter 6 discusses eye-blink as a unconventional yet suitable modality for touch-free in-
teraction with devices. Such modality has been used to control online MOOC video playbacks
and generating notes automatically for the learners. This Human-computer interactive model
has been explained through the development and evaluation of AutoNotes.

Chapter 7 addresses the problemof inclusivity through the development and analysis ofNosype,
a smartphone application that utilises head orientation; hence nose-tip tracking for touch-free
writing. The system aims at benefiting the users with clinical disabilities like Dactylitis, Sar-
copenia, essential tremor and other problems. The system can be used for taking quick notes
on smartphones, in a touch-free manner.

Chapter 8 finally concludes the thesis by summarizing the previous chapters and envision-
ing the open scopes of future work in these domains.





2
Related Work

This chapter presents an in-depth exploration of start-of-the-art literature in the field of Human-
Computer Interaction (HCI), especially focused on ubiquitous and interactive techniques for
promoting smart living. Analyzing the research developments around the concepts discussed
in Chapter 1, and eventually identifying the scopes, also serves as a foundation on which, the
objectives and contributions of this thesis are stacked.
While the primary objective of this chapter is to provide an overview of the formative stages

of the following chapters, we also try to answer the following Research Questions (RQ) by
studying the state-of-the-art literature:
RQ1 : Is human-attention sensing different under physical and virtual setups?
RQ2 : What are the feasible modalities for online attention estimation?
RQ3 : Which forms of attention have been addressed through system development?
RQ4 : Are touch-free interactivity really necessary for novel HCI?
RQ5 : Can we promote such interactivity globally?
Sections 2.1 and 2.2, will aim at deriving the answers to RQ1–RQ3. Sections 2.4 and 2.5 will
provide answers to RQ4–RQ5.

2.1 Attention Estimation in Physical Scenario

Human attention itself has raised research interests in recent times. The research ranges from
defining, classifying attention [250], estimating the degree of attention [120], their causes and
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effects [187], developing different datasets [13], technologies and tools to identify attention [85]
and promote it [214]. In a physical setup, such as a traditional classroom, the requirement of
estimating learners’ attention automatically, can be argued to be inessential. This is due to the
fact that manual inspections are possible in such setups. However, imagine a classroom with
60-70 students and a single lecturer who is responsible for identifying individual’s attention
level, coordinate the classroom and deliver a lecture [196]. It instantly becomes evident that the
classroom requires an assistive system that can capture individual or the overall attention level
of the class. Further, based on the proposition that attention promotes comprehension, teacher-
learner interrelationship and the overall quality of the course, severalworks [72, 234, 173, 247, 4]
on classroom-based attention estimation has emerged. The works can be divided on the basis
of the type of data used to estimate human-attention. For example, while the most commonly
used modality is gaze, other modalities include facial expressions, body postures, and other
physiological data [26, 233]. Some of these modalities are described below.

2.1.1 Gaze-based Estimation

A number of works in the literature have used gaze to extract the attentiveness of a learners
under different educational setup including one-to-one tutorials [92], multi-learner setup [247],
robot-based learning [170], educational toys [222] for learners with physical challenges and
so on. In some works [86, 85], the authors have analyzed the involvement of gaze in assessing
the mind wandering instances of learners in intelligent tutoring systems. The works involve
gaze features like saccades and gaze fixations, estimated from the gaze recordings of learners
in a classroom, using commercial eye trackers. Under natural setup, gaze hierarchy [79, 248]
has also been captured through commercial trackers to understand the common patterns of
attention.

2.1.2 Facial Feature-based Estimation

Universal facial expressions like anger, surprise, disgust, enjoyment(happiness), fear, sadness
[54] have been long studied as an indicator of mental processes like attention [127]. To better
understand the mental involvement of learners, several works have relied upon expressions, cap-
tured through camera [227, 52]. By analysing the dominant and contextual expressions during
lectures, these works have achieved significant accuracy in detecting the learner’s attention-
related aspects like boredom, drowsiness, engagement etc. Moreover, existing studies [241]
have aimed at developing expression databases, specific to classroom scenarios, that can be used
to train the automated models for identifying affective states. Apart form macro expressions,
some of the works focus on detecting micro expressions [184] caused by fine-grained movement
of the facial Action Unit (AU)s.
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2.1.3 Physiological data-based Estimation

The three major physiological signals considered to measure attention of a learner are:
Electrodermal activity (EDA), Electrocardiogram (ECG) and Photoplethysmography (PPG).
In [47], the authors have captured EDA of both the students and the teachers through the
Empatica E4 wristband 1. By deriving the arousal of the learners, their emotional response,
and interest at any particular instance of the lecture, the authors classify their engagement.
A similar approach [67] has utilised EDA to investigate synchrony between a presenter and
attendees in a conference to facilitate automated feedback. EDA has also been used to correlate
seating positions of learners in a classroom [62], as study groups, with their engagement level
to the academic courses. However, a more recent work [49] shows that there is no significant
correlation between the instantaneous EDA and the observed engagement. This questions the
applicability of EDA in estimating real-time engagement. On the other hand, bio-signals like
ECG and Electroencephalogram (EEG) have been used to detect attention of students during
different cognitive tasks like mental calculations, programming tasks etc. Other custom-built
devices like smart chairs with pressure mats [175] and head bands with EEG sensors [110] have
also been used to estimate learners’ attention in a classroom scenario.

2.1.4 Audio-based Estimation

In the context of cognition detection through interactivity, audio has been used to identify
students’ groups in a classroom [237, 135]. Other works involve the use of web-based ap-
plications to detect engagement through interactivity in fixed classroom setups [9]. Despite
these approaches, the usage of acoustic signals for understanding human attention directly or
indirectly, has remained limited. One possible reason behind this, could be the susceptibility of
such systems to privacy breaches.

2.1.5 Multi-modal data-based Estimation

Gao et al. proposed a multi-modal engagement detection technique called n-gage [63] that
utilises multiple datamodalities for assessing student’s engagement in a classroom. In this work,
the authors have simultaneously recorded the physiological (EDA, PPG, etc.) and environmental
(CO2 level, temperature, humidity, noise) data from devices like Empatica E4 writbands, and
Netatmo stations respectively. n-gage then predicts the engagement score of the learners
in a multi-dimensional scale comprising of the emotional, cognitive and behavioral aspects.
Similarly, in [270], facial cues and body postures are combined to identify the behavioral
patterns of the learners in classrooms, including activities like yawning, stretching, writing etc.
to finally infer upon their attention states. Monkaresi et al. [165] used a Microsoft Kinect Face

1https://www.empatica.com/e4-wristband (accessed: Friday 11th August, 2023)

https://www.empatica.com/e4-wristband
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Tracker to capture the facial action units and heart rate of the learners, to infer upon their state
of mental engagement. Most of these approaches use self-reports as a ground truth estimator.
As observed from the start-of-the-art literature, attention estimation in physical classrooms

involve effective techniques and can be quite accurate in terms of assessment. However, these
approaches mostly involve the use of hardware- either commercial or custom-built. While
commercial systems are readily available to the common mass, their prices can be a barrier to
the globalization of such systems. Moreover, some wearables are inherently intrusive in nature
and causes the learner to get conscious about the setup. In spite of these shortcomings, physical
classroom sensing can include various aspects like posture tracking, communication-based
activity tracking, group detection, and so on. These expands the scope and design possibilities
to simplify the task of automated attention estimation. However, for virtual setups, such
techniques are not possible in terms of deployment, hardware availability and physical location
of the participants. This answers RQ1 with the indication that human attention tracking is
indeed different under physical and virtual setup. While deriving this answer, we also establish
the requirement of novel solutions, that would largely deviate from the physical-location-based
approaches, for automating the process of attention tracking in online courses.

2.2 Attention Estimation in Virtual Scenario

In order to answer RQ2, we need a thorough exploration of the modalities, techniques and
applications proposed in the existing literature. We divide this section into the various data
modalities that have been popularly used for estimating attention in virtual setups. While dis-
cussing these approaches, we also explore the underlying and related techniques and algorithms
that can be used to develop the models.

2.2.1 Gaze-based Estimation

Gaze has been a popular modality for attention estimation during online lectures. Although
the usage of commercial gaze trackers is not feasible in virtual setup, the device’s camera can
be used to track the learner’s upper body, specifically the face. Hence, the eye region can be
extracted and processed for estimating the learner’s gaze. These techniques, though not as
accurate as the ones with commercial tackers, are sufficiently capable of tracking human gaze
locations and gestures. Krithika et al. [113] proposed a vision-based technique where learner’s
eyes and head orientation are detected to infer upon their concentration level as either high,
medium or low. Based on the proposition that eye-contacts between an instructor and learner
encourages attentiveness, a recent work [5] has proposed the idea of a "virtual digital twin"-
a digital representation of a physical classroom where the gaze angle of each learner can be
represented in real time. In 2015, Mariakakis et al. [152] explored the field of estimating user’s
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attention, based on their viewing implications on the mobile device. The approach described
in the work is lightweight and can be conducted in a stand-alone mobile device. The approach
finds its utility in a text based sequential reading application. However, the approach does not
take into account the environmental factors like noise, ambient light change etc. which can
affect the cognitive aspect of the reader.
For facilitating gaze tracking, several works have aimed at developing lightweight and

accurate algorithms. Timm et al. [239] presented a cost effective, feature based eye center
localization technique that takes into account, the properties of image gradient vectors, inter-
secting at the center of a circular object, hence the center of detected iris region. Zhu et al. [282]
presents a novel eye gaze tracking approach that maps the gaze of an user into one of the 8
segments of a computer screen. An infrared illumination technique for glint formation and
detection is adopted to track the gaze of the user under free head movement. Gaze estimator
using webcams [182] for website visitors adds a new dimension towards generalizing the pro-
cess of gaze tracking which can elevate its utility in an unrestricted manner. Various gaze-based
datasets [111, 274] have also been built by the process of crowd-sourcing or controlled-sessions
for the purpose of eye tracking. Approaches have been proposed in [171, 58, 240], that aim
at locating the gaze points in continuous locations, rather than blocks of screen segments. A
lightweight gaze tracker, that is based on the idea of mouse gesture plugin for Firefox, has been
presented in [50]. Although ocular cues like gaze and blinks are generally detected through
vision-based techniques, Liu et al. [136] proposed a system called BlinkListener that operates
on the reflection acoustic chirps to detect blinking instances of an individual. The authors
have analyzed the correlation between blink-induced motion and the phase and amplitude of
the signal, as captured through a smartphone’s microphone. However, the applicability of this
system in attention estimation can be explored in future.
Several works have been conducted in gaze tracking, based on the eye model and hence the

optical axis [253]. Although these techniques are reliable, their applicability in mobile devices
with restricted screen size is a subject of further research. On the other hand, the learning
models that uses the feature information of eye images might require large scale databases to
be trained accurately. The optimal solution to an eye and gaze tracking problem in mobile
environment is hence, a scope of further research. Similarly, approaches based on eye feature
fusion [14] have been proposed for detecting gaze points on standalone mobile devices and
have been tested on image data sets like GazeCapture [112], MPIIFaceGaze [276], etc. Similar
other works have been presented in the literature [30, 260, 100, 98], although the approaches
have not been applied for correlating the gestures with the video being played. Moreover, their
performance for real time videos is a matter of further experimentation.
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2.2.2 Facial Feature-based Estimation

Facial expression has been a rich source of information, revealing insights about a person’s
attention span. However, the recent approaches also aim at maintaining users’ privacy. Pertain-
ing to this, applications that can run on a client’s device, without the requirement of contextual
data transfer to remote servers, are being developed. Thus, applications that use efficient neural
networks models and performs seamlessly on devices in real time are preferred for attention
related tasks. In [209], the authors propose such a system that can assess learners’ engagement,
affect and expressions.
Apart from works proposing novel attention estimation approaches involving expressions,

authors have also aimed at developing public dataset where facial expressions are correlated to
user’s engagement [158]. While most of the expression detection mechanisms rely on learner’s
facial video capture [31], near-ultrasound acoustic chirps have been used in [64] for capturing
various facial expressions and a person’s hand-to-face gestures, using commercial microphone
arrays. Apart from the microphone arrays, earphones have also been used for monitoring facial
muscle movements [125] pertaining to the flexible positioning of the speakers andmicrophones.
Natural facial cues like gaze activity, lip movement, eyelid tracing can also reveal the underlying
level of attention [12].

2.2.3 Physiological Data-based Estimation

When it comes to online lectures, the options for physiological data trackers become rather
limited. The authors in [263] have used a mobile phone based divided attention monitoring
for MOOC videos using photoplethysmography (PPG) signals. These signals are sensed using
a commodity based camera that eliminates the requirement of an additional hardware. While,
in [262], a PPG based personal event monitoring system has been proposed for indicating
disengaged learning and reviving attention by immediate alerts, [188] uses the PPG signals for
deciding the difficulty levels faced by a learner and also recommends the best videos based on
the perceived difficulty level.

2.2.4 Speech, Mouth Tracking and Acoustic Feature-based Estimations

The utility of acoustic sensing for attention estimation in online classes has remained unexplored,
to the best of our knowledge. However, there are some related and interesting applications of
acoustic sensing that promises its scope in the domain of automated attention estimation. Joon
et al. [36] has presented a system that aims at estimating the synchronization between the
voice and video of a speaker in the video. In doing so, they take advantage of the audio
data and the mouth images to track the mouth movement in the video. Smartphone-based
acoustic systems have also enhanced communication clarity by inducing acoustic signal-based
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lip movement tracking [272]. Acoustic signals have been used extensively in coarse-grained
motion and location tracking of objects [124, 66, 25], as well as tracking subtle movements
like respiratory patterns of individuals [87, 252]. In EchoSpot [129], target localization is
performed using Frequency Modulated Continuous Wave (FMCW) signals that get reflected
in the microphone from different paths. The system can find an individual’s location in an
indoor scenario by processing the received echo. Apart from chirps, ultrasonic tones [130]
has also been used in course-grained motion detection, e.g., sudden falls, using techniques like
Doppler Shift [215]. Fine-grained motion tracking facilitates several healthcare applications,
such as monitoring an individual’s chest wall [229]. Motion tracking can account for learners’
engagement to a content by indicating whether or not they are distracted by secondary tasks.
Whereas, fine-grained motion like respiration can indicate stress level of the learner during
online evaluations.

2.2.5 Multi-modal data-based Estimation

Apart from the single modalities, models have also utilised multi-modal data. Video confer-
encing systems generally consider individuals to be connected in a virtual conference room. In
most cases, one user is present at each end in a static condition. However, research has also
been extended towards considering scenarios where multiple users can be present at one end of
the conference and are connected to other participants over the video conferencing platform. In
[60], the audio and video-based features are enforced to develop a speaker identifier so that the
camera’s focus can be auto-shifted towards the active speaker around the table. In [144], the
authors have designed a platform for online lectures, where the instructors can view behavioral
summary of the learners, even when their videos are turned off. The system displays their
engagement level, based on their expressions, their emotions, head gestures and on/off-screen
gaze gestures. Although the system works well for formal presentation-oriented courses, its
applicability in interactive sessions can be explored through further studies.
The discussion of the modalities leads to the answer to RQ2. Although virtual mode of

education restricts the utilization of body sensors and specialised devices, modalities like gaze,
facial expressions, oral features (mouth movement/speech analysis) can be employed to detect
users’ attention. This can be facilitated through vision-based techniques, as well as acoustic
signal processing. Next, we discuss the systems that explore individual attention types and aims
at automating the estimation of various forms of attention.

2.3 Systems for Various Attention types

As discussed previously, early research in the field of Psychology revealed different stages
of attention: focused attention, sustained attention, selective attention, alternating attention,
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and divided attention [161]. In [1], the authors present a novel approach that correlates
facial temperature, captured through thermal imaging, with their cognitive state. Based on
the hypothesis that sustained, alternating, selective and divided attention are associated with
different levels of cognitive load, they employ thermal imaging and gaze tracking to estimate
and classify user’s attention. The methodical selection of audio-visual and Stroop tests for
data collection, along with the accuracy of the system proves the applicability of thermal scans
as one possible modality for human attention classification. The study, presented in [118],
facilitates selecting the optimal degree of cognitive or observable attention to be allowed in the
meeting by the meeting authorities. Moreover, the modular subdomain of attention categories
is depicted as attention by direction, attention by action, and attention by state. Attention by
direction is a direct derivative of the participants’ visual direction in the meeting. In contrast,
attention by action is more inclined towards verbal addressing, giving a purposeful insight of
attention.
On the other hand, the impacts of multitasking (causing divided attention) at workplaces

and during remote meetings have been well studied [27]. The study presented in [143] shows
an essential comparison between the level and effect of multitasking during formal meetings,
teleconferences, and virtual meetings. It reveals that even though multitasking is not prevalent
in face-to-face meetings, they are almost inevitable in teleconferences and virtual meetings. It
further explains the statistical results regarding the positive or negative impact of multitasking
and its effects on attention span. Avrahami et al. [11] proposed a system that reduces the
effect of multi-tasking based impoliteness in video meetings by automatically selecting the
camera showing the best view of the participant’s face in a dual monitor setup. While this
model aims to support the necessary simultaneous tasks during a meeting, it is often essential
from the organization’s perspective to identify whether or not a participant is losing attention
due to multi-tasking. In [155], the authors have conducted a series of extensive interviews to
reveal that multitasking involving the same device/screen as that of the online meeting is better
accepted than that involving other devices like smartphones or another monitor. The study also
suggests some design ideas like redirecting notifications to the meeting’s screen, auto-switching
of camera angles and optimized meeting layouts. Moreover, the positive and negative effects
of parallel chats during a virtual meeting have been studied extensively in [208]. In [264], the
authors have proposed a smartphone-based divided attention detection system that records the
user’s PPG, using the back camera of the device. However, this imposes a severe restriction of
placing the finger-tip on the back camera for continuous sensing.
From this discussion, we can answer RQ3. We see that works have been conducted around

sustained, divided, alternating, and selective attention. However, majority of these works are
suitable for physical setups as they require commercial trackers and specialised sensors. Others
impose severe restrictions on the users, thus being non-pervasive in nature. This necessitates
the development of ubiquitous techniques, dedicated to these attention types.
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2.4 Interactive Systems for Content Control

In this section, we discuss some of the common parameters that have been used for touch-
free control of online media contents, mouse movements, and other interactive purposes.
Interaction has been identified as a key component for determining user experience in virtual
scenarios. Although analysed in terms of Virtual Reality (VR), [45] summarises different
categorical analysis of hand gestures as an interactive modality. While some systems allow
static poses, others work with moving gestures for controlling the elements of the virtual
environment, or establishing communication with the system. These interactive gestures can
also be classified based on their functions, like, directional indications, moving / translating
virtual objects, etc. By discovering the current limitations of electromyography-based gestures
(as compared to touch-less controller-based interactions) in, the study [45] presents an open
scope of improvement in this domain of research. Facial gestures have been largely contributing
to the research domain involving almost every aspect of life. While facial gestures largely
involve facial emotion detection [142] for a wide range of applications starting from medical
condition detection [202] to cognition estimation [169], eyes solely can contribute majorly to
these purposes. In [17], Zhen et al. uses a commercial depth camera that tracks the nose
position along with the subject’s status of mouth. While the facial location is mapped to the
cursor locations, mouth-open gesture is used to re-adjust the position of the cursor. The system
has been found to be beneficial for people suffering from Tetraplegia.
Gaze and gaze gestures are widely used in ubiquitous computing applications but require

extensive continuous tracking for significant performance. Eye blinks [114] are much simpler
to identify through different approaches like color appearance [181], feature based [167] and
neural network based models [128] to contribute in fields like transport safety by identifying
fatigue level of drivers [41], contact free mobile/computer interactions [179][164] primarily to
help the physically challenged individuals, security domain [128] and so on. Similar tro [17],
[162] depicts a system that uses blink to generate mouse click commands in desktops. However,
the application of blink based human computer interaction in the domain of academia is still
nascent.
Audio commands are commonly used for touch-free interactions with the device. In this

context, voice recognition is a prerequisite for tasks like voice search. Google developed
a very rich language recognition model [84]. Schalkwyk et. al. presented a study [212]
on Google Search by Voice and demonstrated its accuracy. However, voice commands in
mobile environments might get distorted due to facial obstructions like masks. Moreover, vocal
commands are prone to eavesdropping in outdoor scenarios, thus limiting its applicability.
In the context of educational videos and slides, auto-summarization is a well researched

area [224]. Text processing has been widely been used for this purpose. Text processing can be
executed from images through using optical character recognition [35]. However, identifying



2.5 Interactive Systems for Text Entry 23

the salient concepts from a group of texts has been an open challenge for many years. The
classical approach had been to identify the significant keywords in the text utilizing approaches
like POS tags, n-grams etc [138][244][183]. However the limitation of this approach is that
oftentimes the actual salient concept is not mentioned in the text but must be inferred from
the contextual information. To address this limitation, it is common to utilize an external
knowledge base to infer the contextual information. Tagme [59] is a very widely accepted
entity linker identifies and links text topics to wikipedia entries. [189] is an improvement to the
Tagme pipeline that significantly improves its performance. However, neither tagme nor WAT
is designed for the entity salience task. SWAT, extends on the WAT approach to propose state
of the art salience detection [191]. In the lights of these discussions, we now focus on some
HCI models that can be used for touch-free writing (of notes, short texts, quick points, etc.) on
portable and static devices. These systems are discussed in the next section.

2.5 Interactive Systems for Text Entry

The concept of hands-free typing assists people with physical and motor impairments. The
incorporation of camera and tracking facility in mobiles has led to the use of gaze cues [256, 70]
and head orientation of the user to select particular characters from soft keyboards [267, 265].
Even though different approaches can use these tracked features, mapping it to the exact location
of a soft key is particularly difficult in terms of accuracy. As soft keyboard layout [148] places
the characters in close proximity, even a minor error or shift in the mapped gaze point on
screen can lead to selecting a wrong key, thus requiring the user to retype it several times.
The characters typed per second can be decreased if the error rate in character selection is
high. Conversely, if a sequence of pose estimation stages has to be performed to detect a
single key, the typing speed decreases as well. Some other approaches use voice dictations for
voice-text typing [115, 200]. While this approach is accurate for a noise-free environment, it
can be significantly affected by background noise or the presence of barriers like face masks.
The recent pandemic caused by the COVID 19 virus requires touch-free interfaces that are not
affected by the use of facial masks.
Systems like [243] prove that for unconventional systems like gaze-based typing, which

largely deviate from touch-based text entry, training is essential to achieve equivalent typing
speed and acceptance. In this domain, successful approaches have been proposed for desktop
computers [213], and mobile devices’ development is still nascent. In [146], the authors pro-
pose a gaze-blink based text entry system for disabled users that show promising results. Räihä
and Ovaska[197] presents a study of metrics for evaluating such systems using eye tracker and
computers on different participants. Apart from this, the major focus has also been placed
on diminishing the dwell time for gaze-based text entry systems, even for medium portable
devices [207, 246]. Novel fast systems for performance enhancement have been proposed in
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doing so [48]. Gaze localization has been achieved involving large scale dataset based train-
ing [105, 123] or iris localization and calibration based mapping functions [68]. Other text
entry systems also employ hand gesture tracking using other equipment [76], muscle move-
ments [141], touch-based gesture [281], silent speech commands [235], peripheral vision [140],
head orientation [71] and key compaction, and even tongue orientation concerning teeth loca-
tions [174]. Khan et al. [104] presents a desktop based system that employs nose tracking to
control the cursor locations by clinically challenged users.
Face, hence nose tracking, has been a prevalent research problem for years as it is one of

the most contributing facial features [73] in image processing applications. With the increasing
demand for technology and its involvement in daily life, this research domain’s approaches
and applications have expanded and are still evolving. This section discusses some of the
nose tracking approaches and their existing applications. Like gaze tracking, nose tracking can
also be incorporated using deep learning frameworks [257] and used in various applications,
including driver’s fatigue detection. Nose shape [268] and feature construction can not only aid
in interface control but also help in facial projection, graphical reconstruction, and expression
detection. Another unconventional application of nose tracking has been proposed by Yasuyuki
et al. [266] where the olfactory display is considered for virtual reality applications. The
applicability of nose tracking mainly includes interfacing control in desktop computers due
to the easy accessibility of webcam images, static environment, and high processing power
[74]. The approaches for such an application can vary from HAAR based feature extraction for
nose localization to Multi-Domain Networks and other neural network models [271, 19, 225].
However, formobile devices, the tracking nose should be executed using lightweight approaches,
thus eliminating the chances of frame lag.
We can answer RQ4 by considering the utility of the existing interactive systems, as

discussed above, as well as their future scopes and limitations that require novel solutions.
Indeed, such interactive systems are extremely useful for learners with clinical issues. However,
whether the systems can be globally promoted (RQ5) depends on the ease of their usability. We
believe that with considerable training, novel systems can be incorporated seamlessly in daily
lives.

2.6 Summary

By analyzing the existing literature, we not only perceive their contributions in the respected
domains, but also identify their limitations. Firstly, with respect to RQ1 andRQ2, we understand
that assessment of attention in virtual educational setup is not only different, but also difficult.
The current works can efficiently work in physical classrooms where specialized hardware can
be deployed in the environment for multi modal sensing. However, in a decentralised setup,
commercial or custom-built trackers cannot be considered. Thus, some of the currentworks have
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utilised the commodity smartphones and laptops for tracking an individual’s behavioral cues and
bio-signals. However, these methods are often intrusive in nature and causes distractions. This
leads to the motivation behind (1) developing systems built specifically for virtual educational
setups like MOOCs, Online Classes, etc. that can optimally work with a restricted set of data
modality, (2) innovating assistive systems that can ubiquitously estimate subjects’ attention, and
(3) considering in-built sensors and hardware components of smartphones/laptops. With respect
to RQ3, we observe that the categorical analysis of attention is quite limited in virtual setup.
While a few of the works individually address a single form of attention, say divided attention,
there is no common direction along which these works can be linked and evolved. Moreover,
inevitable activities like visual multitasking needs automated identification. Although some
works have aimed at identifying micro and macro activities in different other contexts, visual
multitasking in online meetings has not been addressed in any of the prior works, to the best of
our knowledge. This limitation motivates (1) The development of systems that are dedicated
to individual attention types and (2) building such models in a stratified manner to identify
and eliminate the shortcomings of the previous model. While answering RQ4 and RQ5,
we explored the different existing works that propose novel approaches towards contact-less
communication with devices. However, most of them use custom-built hardware with limited
availability to the commonmass. Moreover, some of these systems are suitable for desktops and
require commercial devices like a webcam. Similarly, with voice-based approaches, the utility
gets restricted due to the systems being prone to eavesdropping. The existing literature also
lacks the correlation of these systems in educational domains. These limitations motivate the
development of touch-free systems for learners with clinical issues. Using these motivations,
derived from existing the research gaps, we design and develop assistive systems that can be
used for automated cognitive assessments and seamless interaction with the devices in the
context of smart online education. The following chapters discuss there systems in details.



3
Ubiquitous System for Estimating Visual

Attention of Learners in MOOC

In Massive Open Online Courses (MOOC), the cause of high dropout rates can be related
to the lack of learner’s attentive engagement with the online videos [258, 236, 37, 263].
Moreover, even if a learner completes the certificate course online, manual evaluation neither
guarantees the full comprehension of subject by the learner, nor the attentiveness of the learner
throughout the course [28]. Automatic attention estimation and feedback, not only estimates
the learner’s involvement, but also appraises the efficacy of the video tutorial. A number
of recent studies [279, 116, 188, 97] has shown that mobile based MOOC learning has been
emerged as awidely-acceptable platform; consequently, almost all the popularMOOCplatforms
come with an associated mobile application. The existing approaches for learner attention
estimation on mobile MOOC learning platforms primarily rely on physiological signatures,
such as heart rate sensing and PPG signals obtained through the back camera of the mobile
phone [261, 263, 262, 188], finger tracking [56], and so on. However, the accuracy of such
approaches depends on the assumption that at least one of the fingers will be in the vicinity of
the back camera when the learner holds the mobile on her hand; otherwise the accuracy drops
down significantly.
In contrast to the above approaches, the front camera of the mobile can be effectively used to

capture the visual expression of the learner. Visual aspects like gaze and gaze gesture can furnish
sufficient relevant information regarding the attention level of a learner. Based on an online
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Figure 3.1: Correlation of visual cues and object movement trajectory in MOOC videos. The set
of MOOC frames to the left depicts the movement of the lecturer which is highly correlated to the eye
movement of the user, showing high level of attention. The visual gesture of the user on the right shows
no similarity to the movement trace of the lecturer, implying low attention level.

survey conducted over more than 1200 participants across the globe (details in Section 3.1),
we observe that the gaze gestures of a MOOC video user depend on the content of the video,
like the movement patterns of the instructor during the lecture delivery, the textual contents in
the presentation as they appear during the lecture, the pattern of the pen or hand movement as
the instructor illustrates something by writing it over the display area, and so on. Therefore, a
sufficient estimate of visual cues can adequately indicate the learner’s attention level and even
enhance the learning process [219, 220]. Figure 3.1 shows an example, where the eye gaze
gesture of the user should follow the hand movement pattern of the course instructor, when the
instructor explains the concepts by writing texts on a board.
However, there are multiple challenges for inferring cognitive attentiveness of a user from

gaze and gaze gesture patterns, as mentioned below.

1. Multi-tasking is common while observing a MOOC video over the mobile platform. Our
online survey indicates that a MOOC user may perform different other related (or even
sometime unrelated) tasks while going through a MOOC video, primarily, taking notes,
solving related problems as being discussed in the lecture, searching for the reference
materials, checking emails or Internet, looking into the messages in mobile, and many
more. Because of this reason, it is not expected that the user will continuously gaze into
the video, and the gaze pattern may shift from the video to the outsize objects frequently.
This needs to be accounted for while developing a system from the eye gaze patterns.

2. To understand whether the user is following the video, the eye gesture pattern of the user
needs to be correlated with the object movement patterns in the video. These objects
can be multi-fold – the teaser of the instructor, the hand and the pan of the instructor
while the instructor writing something in the board, the text that is being illustrated by
the instructor, and so on. A proper methodology is required to understand each of these
important objects (we call them as the prime objects) in the video and then to check which
object the user is following or whether the user is following the correct object. This can
be challenging considering the diverse types of videos available in the MOOC platforms.
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3. Existing approaches for eye gaze and gaze gesture tracking [275, 239, 180] rely on com-
putationally heavy methods for video processing at the pixel level as well as incorporates
complex supervised machine learning techniques, for which server-side computation is
required. However, it is not a good idea to transfer the video captured through the front
camera of the mobile to a different server primarily because of two reasons – first, it
invades the privacy of the learner as the learner may watch the video during her personal
free time and may not like to get captured in a video, and second, transferring the video
from the mobile to the server will also incur an additional non-negligible cost.

4. As we consider the scenarios of observing MOOC videos over handheld devices like
smartphones or personal laptops, a user can use the platform under different environment;
even the environment may change while the user is observing the video. For instance,
the user may observe the video while traveling in a cab – thus the ambient light of the
environment may change continuously. This affects the lighting conditions of the video
that is being recorded by the front camera of the smartphone or laptop for the purpose
of analyzing the eye gaze and gaze gesture. The existing light-weight eye detection
techniques [180] rely on threshold based approaches. However, a single threshold does
not work under varying ambient lighting condition. This poses a major challenge in the
development of an on-device processing methodology for eye gesture tracking.

Owing to the above challenges, in this paper, we develop an ubiquitous platform for auto-
mated detection of user attentiveness as an ad-on service over a MOOC video platform. Based
on the eye gaze and gaze gestures of the user as processed from the video captured through the
front camera of the hand-held device, the add-on service over theMOOC video platform assigns
a score against the perceived attentiveness of the user, which can be used to develop multiple
recommendation services for the MOOC service providers, course developers as well as the
learners. To mitigate the challenge of preserving privacy as we capture the user’s video, in this
paper, we rely on in-device computing to extract the eye gaze and gaze gesture from the video
captured through the front camera of the hand-held device. Consequently, we developGestatten
where the cognitive aspect of a person is assessed by correlating her tracked gesture of the eye
with the movement of an object of interest in the MOOC video, as the frames progress. The
initial offline module of our approach extracts the prime object (an object where the user should
focus) movement trajectory from the MOOC video. The real time module extracts the user’s
eye movement trajectory from the live capture through the mobile’s front camera. These two
trajectories are correlated together based on three criteria – (i) gaze tracking, (ii) gaze gesture
patterns and (iii) importance of the MOOC video object as captured through the gaze.
The model developed in this paper serves a two way purpose – the technique finds its way in

estimatingwhether or not, the learner is attentive in a course and unlocks a scope for personalized
recommendation system. Moreover, the model determines the effectiveness of the course, based
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on the average attention level of the students. Secondly, the proposed technique uses efficient
in-device low-overhead unsupervised machine learning techniques for classification, simple
pixel level calculations for processing the video streams and pattern mapping procedures for
inference. The absence of high computational overhead makes the model suitable for mobile
devices. Storage of user specific data is only restricted to files containing coordinates and labels.
No real time images or videos are stored for training or testing purposes, thus maintaining user’s
privacy. In doing so, the model proposes a novel concept of identifying prime objects of focus in
a video and tracks the user’s visual cues under dynamic ambient light conditions for estimating
their degree of attention. The claim that gaze gesture can reveal relevant information regarding
the high level of comprehension of the topic, has been proved by correlating themodel generated
and subjective scores for 48 different participants. We have implemented and tested Gestatten
over 48 participants using various models of mobile phones, using two different subjective
tests. In the first test scenario, the learners have participated in a small cognitive examination
that judges their attention level during watching the MOOC video. In the second test scenario,
a set of different adjudicators judged the attention level of the learner, and the learners have
been ranked accordingly. The results of the subjective tests have been compared with the
Gestatten generated results, and we observe a high accuracy with 8.68% average absolute error
rate in estimating the attention level of the learner. We also benchmark the Android application
developed for Gestatten; we observe that the application is significantly lightweight compared
to existing baseline eye gesture tracking techniques, whereas it consumes minimum battery
power while in execution.

3.1 User Study

The advent of ubiquitous learning and advanced mobile frameworks has instigated a convention
of smartphone usage for the purpose of learning. This trend is not only limited to young
population but has also spread among individuals belonging to all age groups. To establish the
necessity of an automated mobile based lightweight approach for the estimation of attention,
we have conducted an online anonymous survey over more than 1200MOOC users. The survey
aimed at understanding the popularity of mobile devices for MOOC videos and also to identify
the pattern in which learners watch a video as well as to examine whether visual cues can
sufficiently contribute for estimating learner’s attention level.
The survey, apart from focusing only on MOOC usage patterns, also collected some basic

information like age group, gender, demography and eye color of the participants. The survey
was attended by a total of 1256 participants from different locations across the globe includ-
ing India, Chile, Canada, United States, United Kingdom, Bangladesh, United Arab Emirates,
Switzerland, Germany, Singapore, Nigeria, Brazil, Bangladesh, Switzerland, Mauritius, Singa-
pore and so on. The variation of eye colors was limited to black (73.2%) and brown (19%) and
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blue(.3%), as per the responses. The rest 7.5% did not reveal their eye color. We use "black
eye" for "dark brown" eye.

(a) (b) (c)

(d)
(e) (f)

(g) (h) (i)

(j)

(k)

(l)

Figure 3.2: (a) Popularity of MOOCs, (b) Choice of device, (c) Multitasking (d) Constant on screen
gaze time for a 3 mins video (e) Frequency of watching off screen (f) Context switch for a 3 mins video
(g)Preference of video over audio (h) Single Object of focus (text) (i) Single Object of focus (person) (j)
Two Objects of focus (Text and person) (k) Three Objects of focus (Text, image and person) (l) Visual
preference for better comprehension

3.1.1 Observations from the Survey

Figure 3.2 summarizes the outcomes from this survey. The survey unveiled some of the key
points involving MOOCs, their usage pattern and the role of visual cues for attentiveness and
comprehension. The details are discussed next.

Popularity of MOOCs: The survey indicated a high popularity of MOOCs among people be-
longing to different age groups 71.6% of the people watches these videos more that or at least
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once a month (Figure 3.2(a)). The high acceptance rate of these videos demands an automated
evaluation that is free from manual bias.

Choice of devices: The usage of mobile devices like smartphones and tablets is strongly por-
trayed by the responses that showed a spiked percentage of 52.8% of smartphone use plus 6.1%
of tablets (Figure 3.2(b)). Along with this, 73.5% of the users use personal laptops for watching
MOOC videos. For device usage, participants were allowed to select multiple options.This
motivates us to develop a lightweight attention estimator for MOOCs that can seamlessly run
on smartphones and other mobile devices.

Multitasking: The survey revealed that majority of the MOOC users perform simultaneous
activities while watching a video lecture (Figure 3.2(c)). 72.9% of the participants opted for
multitasking that includes reading books, taking notes, solving problems, looking for alterna-
tive sandbox sites or additional examples, playing games, eating etc. This factor proves that
performing relative activities require shift of visual gaze, while still indicating discrete attention
of the learner that does not hamper comprehension. The provision of multitasking is hence
incorporated in our approach.

Constant on screen gaze time: As a contrary to the previous fact of context switching, it is
also established that a certain amount of constant gazing is required to understand the topic.
99.3% of the responses validate this factor by choosing different rates of constant on screen
gaze times (Figure 3.2(d)). Thus it can be inferred that a certain level of constant viewing can
reveal significant visual information. This fact further motivated the design of Gestatten.

Context Switching: The absence of multitasking cannot prevent the occurrence of periodic
shifts of the learner’s gaze. Even though, looking at the video promotes comprehension, it is
quite infeasible for the learners to continuously gaze at the video, thus leading to occasional
off screen gazing. 91.4% of the participants stated that they would switch their gaze to some
off screen object, once in a while. 63.8% of the participants supported periodic visual context
switching at different rates varying from 1sec to 30 secs, even for a short 3mins video lecture
(Figure 3.2(e) and Figure 3.2(f)). This constraint is considered and addressed while developing
Gestatten.

Visual Emphasis: 81.6% of the participants preferred to watch a video lecture, rather than
just listening to the audio and 97% supported the claim that observing a video lecture assists
comprehension (Figure 3.2(g) and Figure 3.2(l)). This forms a major motivation for the design
of an automated attention estimator that can rely on visual sequence.
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(a)
(b) (c) (d)

Figure 3.3: (a) Framewith single object of focus (text), (b) Framewith single object of focus (person),
(c) Frame with two objects of focus (text and person) (d) Frame with three objects of focus (text, image
and person)

Object of Focus: The participants were asked to select one or more of the marked key objects
from the frames they are more likely to observe to understand the content of the frame. To
understand a basic visual preference, we selected four video frames containing objects like a
lecturer, explanatory texts and images. Figure 3.3 presents the four different frames shown in
the survey. The four different frames are – (a) a text only frame (Figure 3.3a), (b) a frame with
the instructor as the primary object (Figure 3.3b), (c) a frame where the instructor explains
by writing on a board (Figure 3.3c), and (d) a frame where the instructor explains using a
presentation slide (Figure 3.3d). In the frames, we have highlighted the major objects using
different colored boxes. For the frames with multiple objects, the object at which the learner
focuses, becomes dependent on the learner. To learn, which of these objects stands out to
be most relevant, all possible combinations of informative objects have been marked in these
frames from different video lectures. We limited our study to a maximum of 3 such objects
due to space constraint in each video frame and the fact that too many objects in a frame can
automatically lead to diversion of attention.
For a frame containing a single object of focus (Figure 3.3a and Figure 3.3b), majority of

the people (90.1% for texts as shown in Figure 3.2(h) and 83% for the instructor as shown in
Figure 3.2(i)) chose to look at the object instead of the background or off screen. For more
than one of such objects, majority of the participants decided to switch their gazes between the
objects (Figure 3.2(j) and Figure 3.2(k)). This factor is attributed by a concept of prime objects,
their multiplicity and variations in the design of Gestatten.

3.1.2 Challenges and Opportunities

The user study provides as various insights which highlight the challenges in developing an
ubiquitous mechanism for user attention prediction based on eye gaze and gaze gestures. This
is summarized as below.

1. Eye gaze gives a good indication for learner’s attention estimation. The learner prefers to
look into the video objects, more particularly if it is a text object, some presentation or the
instructor is writing something on the board. Although the learners may not continuously
gaze at the video while performing multitasking like taking notes or searching for the
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references, they definitely gaze at the video within a time duration depending on the type
of the content shown in the video. This gives us the opportunity to use eye gaze for an
estimation of the learner’s attentiveness.

2. The survey indicates that the learner prefers to change the gaze among different objects,
when multiple objects are shown simultaneously in the video. This pattern of gaze
changing is also influenced by the priority of the objects in the video shown. Therefore,
gaze gesture also gives an indication for the estimation of a learner’s attentiveness.
Further, there is expected to be a high correlation among the gaze gesture of the learner
and the object shifting pattern in the video. We capture this correlation in Gestatten to
estimate the attentiveness of the learner.

Based on this, we develop the detailed framework for Gestatten as discussed in the next
section.

3.2 The Design of Gestatten

This section gives the overall architecture and design details of Gestatten.

3.2.1 Architectural Overview

The overall architecture of Gestatten can broadly be classified into two sub modules – (1) The
video tracker that generates the tracked locations and shifts of the objects displayed in the video.
(2) The attention estimator that performs a three fold evaluation of user’s attention, based on
eye detection, gaze region and gaze gesture. A mapping function correlates the tracked video
object to the tracked gaze of the user for this purpose. Figure 3.4 presents the overview of the
proposed model. The video tracking module accepts the MOOC video as input. A frame-wise
processing of the video is performed by the Single Shot Multibox Detector (SSD) [137] model
using MobileNet [81] as a feature extractor which performs classification and tracking of video
objects and locates them using a bounding box (anchor box), as shown in the figure. This model
is trained using the Common Object in Context (COCO) dataset [133]. The box coordinates
provide the location of the object and its relative shifts in each frame, which eventually forms
the output of this module.
The Attention Estimator module receives the frames from the device’s front camera,

previewing the user’s face. The user can optionally create personalized templates or use the
default ones in the Template Creation sub-module – the templates help inmapping the eye center
with the device coordinates for various different sizes of mobile front screen. TheGaze Gesture
Tracking sub-module starts once the user opens the MOOC video, tracked by the video tracking
module. This sub-module accepts the variable threshold value generated by the ambient light
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Figure 3.4: Gestatten Architectural Components

tracking phase. The Gaze Region Tracking module simultaneously accepts each of these user
preview frame and estimates the region of gaze using the templates. A mapping function is
required to match the shift sequence of the video object with that of the user’s eye. This mapping
results in statistical estimation of the user’s attention and is performed at the end of the course,
thus estimating the overall attention level of the user. However, the other mapping function
estimates the object of gaze by mapping the gaze region of the user with the location of the
video object from the previous module. This is a continuous frame wise mapping, generating
the object of gaze throughout the course. The estimated attention is, hence, both a statistical
average evaluation as well as a continuous monitoring process. Next, we discuss the MOOC
video pre-processing module to extract prime objects from video frames.

3.2.2 MOOC Video Pre-Processing: Tracking Prime Objects

The offline video tracking module focuses on classifying and tracking different video objects.
It is assumed that a course video will mostly contain 1-3 different objects that might include
person (the lecturer), boards, pen/pencil etc. The range of various objects to be tracked can be
adjusted based on the video being used. In the proposed model, the concept of a prime object
is used to estimate the attention level. Each video is assumed to include at least one and at
most three main objects that should be focused on. In most of the video lectures, the lecturer is
the main object in the video, whose movement and activities should be followed by the learner.
This object will be referred to as the prime object in the video. It is to be noted that a prime
objects can either be one of the following or a combination of the following types:

• Type 1 : These objects are content-wise dynamic and location-wise static. The example
of type 1 prime objects are static texts like the ones shown in simple presentations.

• Type 2 : These objects are content-wise static and location-wise dynamic. Type 2 prime
objects are lecturers whose location changes inside the frame as they walk around during
the lectures.

• Type 3 : These objects are content-wise dynamic and location-wise dynamic. Example
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of type 3 prime objects are dynamic texts flashing at different regions of the screen. This
type of prime objects are rare for video lectures.

• Type 4 : These objects are location-wise and content-wise static. Type 4 prime objects
are lecturers standing at a particular location while delivering the lecture.

In our approach, type 1, 2 and 4 prime objects are considered due to the restricted screen size
and limited gaze area. A video lecture may contain any combination of these types of prime
objects. We also consider the fact that the importance of prime object can vary from user to
user. For eg. in a lecture where both the lecturer and a textual data is displayed simultaneously
(as shown in Fig. 3.4), one user might visually follow the lecturer, while the other might
find it convenient to gaze at the textual part. In such cases, both the objects are prime and
if the user gazes at either of the two objects or even at the intersection of the two objects
(considering overlapped/proximal objects), he/she is considered as attentive. Also, for multiple
prime objects, trajectory correlation can be maintained respectively. The prime objects can be
one of the 100 different objects (like person, board, pain, text, etc.) that can be detected using
MobileNet.
Figure 3.5 depicts an instance of a type 2 prime object. By comparing the positions of

the prime object in frames given in Figure 3.5a and Figure 3.5b, it can be seen that object has
shifted to the right. This positional shift is tracked. For classification of these objects, a SSD
MobileNet model in used due to its high speed and significantly reduced computational cost
[82]. The above model can classify and track up to 100 different objects in a video. However
only up to 3 prime objects are considered in Gestatten.

(a) Frame 1 (b) Frame 2

Figure 3.5: Prime Object Tracking : Shift of prime object in different video frames. The prime
object in (b) shows a right shift (increase in the value of 𝑇𝐿𝑋 AND 𝐵𝑅𝑋 in (b)), relative to the prime
object in (a).

As an outcome of this phase, two different record sets are generated for each object in
the video – (a) the location and (b) the shift of the object in each frame. The records in
location set provides an account for the top left and bottom right coordinates of the bound-
ing box, along with the frame dimensions. The frame dimensions are recorded to find the
relative region of location of the object, so that it can be flexibly adapted to a wide range of
devices with varied screen sizes. The location records are required by the mapping module,
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dedicated for the third level of evaluation, where region of gaze is estimated, thus inferring
if the user is observing the prime object in the video. Each record is of the following for-
mat: < 𝑓 𝑟𝑎𝑚𝑒, 𝑇𝐿𝑥 , 𝑇𝐿𝑦 , 𝐵𝑅𝑥 , 𝐵𝑅𝑦 , 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑏𝑟𝑒𝑎𝑑𝑡ℎ, 𝑐𝑙𝑎𝑠𝑠 >, where 𝑓 𝑟𝑎𝑚𝑒 is the frame
number, 𝑇𝐿𝑥 , 𝑇𝐿𝑦 are the X and Y coordinates of the top left coordinates of the object in
𝑓 𝑟𝑎𝑚𝑒 (Figure 3.5), 𝐵𝑅𝑥 , 𝐵𝑅𝑦 are the X and Y coordinates of the bottom right coordinates
of the object in 𝑓 𝑟𝑎𝑚𝑒 (Figure 3.5), 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑏𝑟𝑒𝑎𝑑𝑡ℎ are the length and breadth of the video
frame on the device’s screen, 𝑐𝑙𝑎𝑠𝑠 defines the class of the object being classified using SSD
MobileNet. The classes are according to the COCO dataset labels that include person, desk,
TV, laptops, cell phone, book and other common objects. From the given coordinates and the
frame dimensions, the relative region of the object can be determined. The shift information
of each classified object in the video is tracked independently based on the class label, the
confidence score and the location information. The location and shift information, as discussed
above, are stored along with the video in the video database and sent to the mobile along with
the video content, when a learner views the video. These information are used for attention
estimation, as discussed in the next section.

3.3 Attention Estimation

This is a real-time module which runs in the mobile while a learner views a MOOC video.
In this module, the prime object movement trajectory is correlated to the eye gaze and gaze
gesture of the user. The module begins with creation of a personalized template by the user,
followed by a dynamic binarization of live captured user’s eye regions, aided by the inbuilt
ambient light sensors in mobile devices for evaluating the iris center of the user’s eye. These
centers are tracked in subsequent frames to infer upon the gaze directions and region of interest
in the MOOC videos. The gaze is detected and the gaze directions (gesture) are mapped to
the direction of the prime object movements to estimate whether the user has visually followed
it, thus estimating her level of attention. Each of these phases are discussed in the following
subsections.

3.3.1 Template Creation

The cardinal phase is directed by a calibration process, based on a one-time template creation.
The templates are user specific facial record for estimation of gaze region or object. This
calibration process is required to compensate the variations in dimensions of the device’s
screen and user’s position. The user is asked to gaze at 5 different sections of the mobile’s
screen as shown in Figure 3.6 where TL, TR, BL, BR and C represents the top left, top right,
bottom left, bottom right and center of the mobile’s screen, respectively. At these instances, the
user’s eye locations are captured, the iris centers are calculated and stored as calibrated points.
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Firstly, the device’s front camera is accessed to preview the user’s face. Each frame is converted

Figure 3.6: The segments of the mobile screen showing Top Left (TL), Top Right (TR), Bottom Left
(BL) and Bottom Right (BR) regions.

from RGB to gray-scale for further processing. Based on the tracked gray-scale frames, the
user’s face location and eye locations (Region of Interest) are identified using a trained Cascade
AdaBoost Classifier [249, 259] model. It can be noted that the training is done offline, and
the trained model is loaded to the mobile; hence, it does not incur significant computation
cost. Further, classification using a Cascade AdaBoost Classifier is lightweight, therefore can
be performed effectively on a mobile [77]. Now, the user’s facial images and hence the Region
Of Interests (ROI) i.e. the left and right eye centers (iris centers) are tracked while associating
the iris centers with the gaze locations on the screen in a predefined order of top-left corner,
top-right corner, bottom-right corner, bottom-left corner and center (calibration points).
The criteria based binarization of ROI relies on the fact that the intensity of pixels in a

grayscale ROI varies from 0-255, 0 representing the darkest pixels while 255 representing the
brightest ones. Experimentally, it can be seen that the pixel intensities, in the iris region of
the ROI, are the lowest, representing the darkest region i.e. below a threshold. The proposed
technique uses a simple threshold comparison and scalar addition or substitution of pixel
values. This results into the binarization of the ROI, where the pixels in iris region (along
with some noise due to the presence of eyelashes) are represented by black pixels (0) and
the rest of the area by white pixels (255). It is assumed that most of the dark pixels are
accumulated in the iris region. Estimating the centroid of the black pixel locations provides
the approximate iris center. The eye centers are tracked for the subsequent frames, using the
eye center localization algorithm described in Algorithm 1. In this algorithm, each ROI is
considered as a group of two sub ROIs, each referring to the left or the right eye. The algorithm
only considers the frames where both the eyes are detected. For refined iris tracking, the
first fifty rows and columns are pruned out from the intensity matrix, as they mostly cover
parts of eye brows, and adjacent eye regions. During template creation, the user can select
proper frames where the eye centers are tracked accurately. Only these selected frames are
captured and hence five records corresponding to the five calibration points are recorded for the
mapping of user’s gaze to the screen coordinates. Each record is associated with the following
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Algorithm 1: Eye center localization in a single frame
Input: Candidate ROI including left and right eye regions.
Output: The estimated iris centers for left and right eye (𝐶𝑥 , 𝐶𝑦).
if count(ROI)==2 then

foreach ROI do
Set 𝐶𝑥 ← 0, 𝐶𝑦 ← 0, 𝑐𝑜𝑢𝑛𝑡 ← 0
Extract pixel intensity matrix (𝑀𝑝𝑥 ).
for 𝑘 ← 50 to (𝑟𝑜𝑤𝑠 (𝑀𝑝𝑥 ) − 50) do

for 𝑙 ← 50 to (𝑐𝑜𝑙𝑢𝑚𝑛𝑠 (𝑀𝑝𝑥 ) − 50) do
𝑣𝑎𝑙𝑖 ← 𝑀𝑝𝑥 [k][l]
if 𝑣𝑎𝑙𝑖 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

𝑣𝑎𝑙𝑖 ← 𝑣𝑎𝑙𝑖+255 ; // set pixel to white
else

𝑣𝑎𝑙𝑖 ← 0 ; // set pixel to black
𝐶𝑥 ← 𝐶𝑥+k ; // add X locations
𝐶𝑦 ← 𝐶𝑦+l ; // add Y location
𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 +1 ; // count black pixels

𝐶𝑥 ← 𝐶𝑥 /𝑐𝑜𝑢𝑛𝑡 ; // mean of X
𝐶𝑦 ← 𝐶𝑦 /𝑐𝑜𝑢𝑛𝑡 ; // mean of Y
if 𝐶𝑥 < 𝐹𝑟𝑎𝑚𝑒𝑊𝑖𝑑𝑡ℎ then

Record 𝐶𝑥 , 𝐶𝑦 as eye center for left eye.
else

Record 𝐶𝑥 , 𝐶𝑦 as eye center for right eye.

structure: < 𝐶𝑥 , 𝐶𝑦 , 𝑇𝐿𝑥 , 𝑇𝐿𝑦 , 𝐵𝑅𝑥 , 𝐵𝑅𝑦 , 𝐸𝑖𝑛𝑑𝑒𝑥 , 𝐿𝑎𝑏𝑒𝑙 >, where 𝐶𝑥 , 𝐶𝑦 are the estimated
X and Y coordinates of the iris center inside the eye frame, respectively, 𝑇𝐿𝑥 , 𝑇𝐿𝑦 are the X
and Y coordinates of the top left coordinates of the detected eye frame (ROI) inside the facial
frame on screen, 𝐵𝑅𝑥 , 𝐵𝑅𝑦 are the X and Y coordinates of the bottom right coordinates of the
detected eye frame (ROI) inside the facial frame on screen, 𝐸𝑖𝑛𝑑𝑒𝑥 is the eye index and can
take the value of either "Left" or "Right" i.e. 𝐸𝑖𝑛𝑑𝑒𝑥 ∈ {𝐿𝑒 𝑓 𝑡, 𝑅𝑖𝑔ℎ𝑡}, Label represents the
corresponding gaze location on screen | 𝐿𝑎𝑏𝑒𝑙 ∈ {𝑇𝐿,𝑇𝑅, 𝐵𝑅, 𝐵𝐿, 𝐶}, indicating whether the
user was looking at the top left, top right, bottom right, bottom left or center of the screen,
respectively, at that instant.

3.3.2 Ambient Light Tracking

The ambient light level plays an important role while analyzing video frames. Figure 3.7
presents the overview of how the ambient light sensing module works in parallel with the live
video processing. A threshold that decides the probability of a pixel to be considered as an iris
pixel is affected by the ambient luminance of the user, measured in lux (lx) units. The fixation
of manual thresholding can incorporate considerable misapprehension in the desired output.
This is due to the fact that ambient light affects the intensity values of the frame pixels. An iris
pixel 𝑥𝑖 having intensity 𝑦𝑖 under ambient light of L lx, will have an intensity of 𝑦′𝑖 under the
ambient light of (𝐿 + 𝛿)𝑙𝑥 |𝑦′

𝑖
> 𝑦𝑖 . In this scenario, if the threshold is fixed, the same pixel

𝑥𝑖 , might not be identified as an iris pixel under a higher luminous. This scenario is handled
by sensing the ambient light of the user using the mobile’s inbuilt light sensor. Based on the
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change in the sensed luminous level, the threshold for binarization is adjusted. Figure 3.8 shows
the change of pixel intensities of iris region under different ambient light conditions and natural
face orientations. The gray cross depicts the estimated iris centers.

Figure 3.7: Ambient light sensing and eye center localization : The camera preview showing the
user’s face is captured and converted to grayscale image, from which, the eye region is extracted.
Parallel to the eye region extraction, the ambient light is sensed and dynamic threshold is estimated for
binarization. The extracted eye regions and dynamic threshold value are integrated and processed for
eye center localization.

(a) (b) (c)

Figure 3.8: Eye center localization at different levels of ambient light and face orientations: (a)
shows eye region of the user, looking straight in a bright room (b) shows the eye region of the user, with
the face oriented towards right, in a moderately illuminated room, (c) shows the eye region of the user,
looking straight, in a comparatively dark room. The eye centers are correctly identified in all 3 cases.

The estimation of varying thresholds is conducted by evaluating the luminance level of
the BioID dataset1 images as shown in Algorithm 2. The dataset contains 1521 images under
a large variety of illumination, background, and face size; therefore, it can be considered to
pre-learn the thresholds need to be used for a specific illumination level. In our approach, the
ambient light sensor of the mobile phone captures the illumination level of the environment.
These captured levels are compared to the selected ranges of luminance, and the corresponding
estimated threshold is used for the eye center localization in the mobile application.

3.3.3 Gaze Gesture Tracking

The gaze gestures are tracked using a continuous and simple string pattern creation. This
process is similar to the approach presented in [50]. However, unlike [50], there is no start
or stop criteria once the gesture tracking is started. The gestures are tracked continuously
throughout the length of the usage of the application. Firstly, each frame is processed to
identify a valid pair of ROIs. If two ROIs, separated by a minimum distance (non-overlapping
pair) in the X-direction of screen coordinates, are identified in the frame, the frame is considered
as a valid frame. Only these frames are considered, eliminating any further processing of the

1https://www.bioid.com/facedb/ (accessed: Friday 11th August, 2023)

https://www.bioid.com/facedb/
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Algorithm 2: Estimation of threshold based on ambient light
Input: BioID images
Output: Thresholds for given luminous range (𝐴𝑣𝑔𝑇ℎ𝑟𝑒𝑠ℎ)
foreach 𝐼𝑚𝑎𝑔𝑒 ∈ 𝐵𝑖𝑜𝐼𝐷 do

𝐶𝑥𝑙𝑔 , 𝐶𝑦𝑙𝑔 ←Marked X,Y coordinate for left eye
𝐶𝑥𝑟𝑔 , 𝐶𝑦𝑟𝑔 ←Marked X,Y coordinate for right eye
𝐼𝑚𝑔𝐴𝑣𝑔← Average pixel Intensity of entire frame
𝐹𝑎𝑐𝑒𝐴𝑣𝑔← Average pixel Intensity of face region
𝐸𝑦𝑒𝐴𝑣𝑔← Average pixel Intensity of left/right eye region
𝑙𝑥𝐼𝑚𝑎𝑔𝑒 ← .2 ∗ 𝐼𝑚𝑔𝐴𝑣𝑔 + .5 ∗ 𝐹𝑎𝑐𝑒𝐴𝑣𝑔 + .3 ∗ 𝐸𝑦𝑒𝑆𝐴𝑣𝑔

𝑚𝑖𝑛← 9999
for 𝑖 ← 0 to 255 do

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝑖

𝐶𝑥𝑙 , 𝐶𝑦𝑙 ← Calculated X,Y coordinate for left eye using Algorithm 1
𝐶𝑥𝑟 , 𝐶𝑦𝑟 ← Calculated X,Y coordinate for right eye using Algorithm 1
𝑑1← (𝐶𝑥𝑙𝑔 −𝐶𝑥𝑙)2 + (𝐶𝑦𝑙𝑔 −𝐶𝑦𝑙)2

𝑑1←
√
𝑑1

𝑑2← (𝐶𝑥𝑙𝑔 −𝐶𝑥𝑙)2 + (𝐶𝑦𝑙𝑔 −𝐶𝑦𝑙)2

𝑑2←
√
𝑑2

if 𝑑1 < 𝑚𝑖𝑛 then
𝑚𝑖𝑛← 𝑑1
𝑡ℎ𝑟𝑒𝑠ℎ𝐼𝑚𝑎𝑔𝑒 ← 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ; // minimum error

if 𝑑2 < 𝑚𝑖𝑛 then
𝑚𝑖𝑛← 𝑑2
𝑡ℎ𝑟𝑒𝑠ℎ𝐼𝑚𝑎𝑔𝑒 ← 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ; // minimum error

Record 𝑙𝑥𝐼𝑚𝑎𝑔𝑒 , 𝑡ℎ𝑟𝑒𝑠ℎ𝐼𝑚𝑎𝑔𝑒 in 𝐿𝑥𝑅𝑒𝑝
𝑅𝑢 ← Defined upper limit of light range
𝑅𝑙 ← Defined lower limit of light range
/* Ranges are set as: 0, 1-30, 31-60, 61-91, 92-122, above 122 */
𝑐𝑡𝑟 ← 0, 𝑎𝑣𝑔← 0
foreach 𝑙𝑥𝐼𝑚𝑎𝑔𝑒 ∈ 𝐿𝑥𝑅𝑒𝑝 do

if 𝑙𝑥𝐼𝑚𝑎𝑔𝑒<=𝑅𝑢 && 𝑙𝑥𝐼𝑚𝑎𝑔𝑒>=𝑅𝑙 then
𝑐𝑡𝑟 ← 𝑐𝑡𝑟+1
𝑎𝑣𝑔← 𝑎𝑣𝑔+ 𝑡ℎ𝑟𝑒𝑠ℎ𝐼𝑚𝑎𝑔𝑒

𝐴𝑣𝑔𝑇ℎ𝑟𝑒𝑠ℎ← 𝑎𝑣𝑔/𝑐𝑡𝑟

rest of the invalid frames. Secondly, for the first valid frame after opening the camera, the
(𝑋𝑠𝑡𝑎𝑟𝑡 , 𝑌𝑠𝑡𝑎𝑟𝑡 )𝑙𝑒 𝑓 𝑡 and (𝑋𝑠𝑡𝑎𝑟𝑡 , 𝑌𝑠𝑡𝑎𝑟𝑡 )𝑟𝑖𝑔ℎ𝑡 are estimated where (𝑋𝑠𝑡𝑎𝑟𝑡 , 𝑌𝑠𝑡𝑎𝑟𝑡 )𝑙𝑒 𝑓 𝑡 is the start
location of the iris center for the left eye and (𝑋𝑠𝑡𝑎𝑟𝑡 , 𝑌𝑠𝑡𝑎𝑟𝑡 )𝑟𝑖𝑔ℎ𝑡 is the start location of the
iris center for the right eye according to the screen coordinates relative to the detected ROIs
respectively. Next, for each consecutive valid frame, (𝑋𝑛𝑜𝑤 , 𝑌𝑛𝑜𝑤)𝑙𝑒 𝑓 𝑡 and (𝑋𝑛𝑜𝑤 , 𝑌𝑛𝑜𝑤)𝑟𝑖𝑔ℎ𝑡
are estimated. The 𝑋𝑛𝑜𝑤 of the detected iris location is subtracted from the 𝑋𝑠𝑡𝑎𝑟𝑡 , and the𝑌𝑛𝑜𝑤
coordinate of the detected iris location is subtracted from the 𝑌𝑠𝑡𝑎𝑟𝑡 for both the left and right
eyes, to estimate the magnitude of the shift. The shift direction and associated string pattern is
estimated according to Table 3.1. Lastly, the new (𝑋𝑠𝑡𝑎𝑟𝑡 , 𝑌𝑠𝑡𝑎𝑟𝑡 )𝑙𝑒 𝑓 𝑡 and (𝑋𝑠𝑡𝑎𝑟𝑡 , 𝑌𝑠𝑡𝑎𝑟𝑡 )𝑟𝑖𝑔ℎ𝑡
are updated with the current (𝑋𝑛𝑜𝑤 , 𝑌𝑛𝑜𝑤)𝑙𝑒 𝑓 𝑡 and (𝑋𝑛𝑜𝑤 , 𝑌𝑛𝑜𝑤)𝑟𝑖𝑔ℎ𝑡 after processing each
frame.
This technique of gaze gesture tracking provides a better and more accurate estimation of

user’s gaze over tracking the point of gaze. The main reason behind this is its simplicity in
calculation and allowance of free head and device movement. It can be stated that even if a false
gesture is estimated due to the sudden movement of user’s head position, face orientation or
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Table 3.1: Shift Direction and Associated Symbols
Shift in X di-
rection

Shift in Y di-
rection

Shift direction Symbolic rep-
resentation

=0 =0 No shift X
>0 =0 Left L
<0 =0 Right R
=0 >0 Top T
=0 <0 Bottom B
>0 >0 Top Left M
>0 <0 Bottom Left P
<0 >0 Top Right N
<0 <0 Bottom Right O

device’s frame, the subsequent gesture strings will be related on the preceding coordinates only.
Hence the following patterns should match the intended sequence. The obtained sequence
of tracked gaze gestures is recorded and each record contains the following structure: <
𝑓 𝑟𝑎𝑚𝑒, 𝑆𝑦𝑚𝑏𝑜𝑙, 𝐸𝑖𝑛𝑑𝑒𝑥 >, where 𝑓 𝑟𝑎𝑚𝑒 corresponds to the frame number and 𝑆𝑦𝑚𝑏𝑜𝑙 is the
gaze shift direction depicted in Table 3.1.

Figure 3.9: Eye gesture tracking and string generation: The first row of RGB frames show a sequence
of eye movements by the user. These regions are converted to grayscale in the second row. The third row
shows the dynamically binarized representation of the grayscale frames. Eye centers are generated from
the binarized frames in the fourth row. The initial location of the centers are represented by ’X’ and the
consecutive locations are tracked by their relative positions to their previous frames and assigned to the
appropriate string symbols in the fifth row.

Figure 3.9 shows a sequence of captured frames depicting user’s eye movement and the
process of generating strings based on tracked gaze gesture. Here, the left eye movement
trajectory generates a sequence of XNRPN , while the right eye generates a string of XRRPN.
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3.3.4 Region of Gaze Tracking

The region of gaze tracking is executed by mapping the approximate gaze point on one of the
four regions of the mobile screen, as shown in Figure 3.6. {0, 0} represents the origin of screen
coordinates. The orientation of the device is set according to the given figure for wide area
display of video frames. The region of gaze tracking is performed according to Algorithm 3.
The tracked region of gaze for both left and right eyes, obtained as 𝑙𝑒 𝑓 𝑡𝑆, 𝑟𝑖𝑔ℎ𝑡𝑆 are further

Algorithm 3: Region of Gaze Tracking
Input: The records obtained from calibration stored in Template file (section 3.3.1) and localized eye center from each

frame (Algorithm 1).
Output: The estimated region of gaze (𝑙𝑒 𝑓 𝑡𝑆, 𝑟𝑖𝑔ℎ𝑡𝑆).
𝑙 ← 0, 𝑟 ← 0, 𝑚𝑖𝑛𝐿 ← inf, 𝑚𝑖𝑛𝑅 ← inf, 𝑙𝑒 𝑓 𝑡𝑆 ← 𝜙, 𝑟𝑖𝑔ℎ𝑡𝑆 ← 𝜙

foreach 𝑟𝑒𝑐𝑜𝑟𝑑 ∈ 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒 do
/* left eye coordinates & labels */
if 𝐸𝑖𝑛𝑑𝑒𝑥==”𝐿𝑒 𝑓 𝑡” then

𝑙𝑒 𝑓 𝑡𝐶𝑜𝑜𝑟𝑑[l][0]← 𝐶𝑥

𝑙𝑒 𝑓 𝑡𝐶𝑜𝑜𝑟𝑑[l][1]← 𝐶𝑦

𝑙𝑒 𝑓 𝑡𝐿𝑎𝑏𝑒𝑙[l]← 𝐿𝑎𝑏𝑒𝑙

𝑙 ← 𝑙+1
else

/* right eye coordinates & labels */
𝑟𝑖𝑔ℎ𝑡𝐶𝑜𝑜𝑟𝑑[r][0]← 𝐶𝑥

𝑟𝑖𝑔ℎ𝑡𝐶𝑜𝑜𝑟𝑑[r][1]← 𝐶𝑦

𝑟𝑖𝑔ℎ𝑡𝐿𝑎𝑏𝑒𝑙[r]← 𝐿𝑎𝑏𝑒𝑙

𝑟 ← 𝑟+1
foreach 𝑓 𝑟𝑎𝑚𝑒𝑖 do

foreach 𝐸𝑖𝑛𝑑𝑒𝑥 do
if 𝐸𝑖𝑛𝑑𝑒𝑥==”𝐿𝑒 𝑓 𝑡” then

for 𝑗 ← 0 to 𝑙𝑒𝑛𝑔𝑡ℎ (𝑙𝑒 𝑓 𝑡𝐶𝑜𝑜𝑟𝑑) do
𝑑 ← (𝐶𝑥𝑖 − 𝑙𝑒 𝑓 𝑡𝐶𝑜𝑜𝑟𝑑[j][0])2 + (𝐶𝑦𝑖 − 𝑙𝑒 𝑓 𝑡𝐶𝑜𝑜𝑟𝑑[j][1])2

𝑑 ←
√
𝑑

if 𝑑 < 𝑚𝑖𝑛𝐿 then
𝑚𝑖𝑛𝐿 ← 𝑑
𝑙𝑒 𝑓 𝑡𝑆 ← 𝑙𝑒 𝑓 𝑡𝐿𝑎𝑏𝑒𝑙[j]

else
for 𝑗 ← 0 to 𝑙𝑒𝑛𝑔𝑡ℎ (𝑟𝑖𝑔ℎ𝑡𝐶𝑜𝑜𝑟𝑑) do

𝑑 ← (𝐶𝑥𝑖 − 𝑟𝑖𝑔ℎ𝑡𝐶𝑜𝑜𝑟𝑑[j][0])2 + (𝐶𝑦𝑖 − 𝑟𝑖𝑔ℎ𝑡𝐶𝑜𝑜𝑟𝑑[j][1])2

𝑑 ←
√
𝑑

if 𝑑 < 𝑚𝑖𝑛𝐿 then
𝑚𝑖𝑛𝑅 ← 𝑑
𝑟𝑖𝑔ℎ𝑡𝑆 ← 𝑟𝑖𝑔ℎ𝑡𝐿𝑎𝑏𝑒𝑙[j]

Record 𝑙𝑒 𝑓 𝑡𝑆, 𝑟𝑖𝑔ℎ𝑡𝑆

analyzed to draw a rectangle on the focused segment of the screen.The top left (𝑅𝑇𝐿) coordinates
and bottom right (𝑅𝐵𝑅) coordinates of the rectangle to be drawn are evaluated based on Table
3.2, whereWidth and Height refers to the frame width and frame height. The 𝑙𝑒 𝑓 𝑡𝑆 and 𝑟𝑖𝑔ℎ𝑡𝑆
in a single frame are expected to be the same as both the iris movement should have nearest
points belonging to the same label. However, in some cases, computational inaccuracy might
lead to the difference in values of 𝑙𝑒 𝑓 𝑡𝑆 and 𝑟𝑖𝑔ℎ𝑡𝑆. In these cases, either one of the tracked
location is considered for a frame.
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Table 3.2: Coordinates of Gaze Region
𝑙𝑒 𝑓 𝑡𝑆 or 𝑟𝑖𝑔ℎ𝑡𝑆 𝑅𝑇𝐿(x) 𝑅𝑇𝐿(y) 𝑅𝐵𝑅(x) 𝑅𝐵𝑅(y)
TL 0 0 Width/2 Height/2
TR Width/2 0 Width Height/2
BR Width/2 Height/2 Width Height
BL 0 Height/2 Width/2 Height
C Width/2 Height/2 Width/2 Height/2

3.4 Mapping Gaze Gesture and Region to MOOC Video Object

The final phase, for estimating the user’s attention, comprises of mapping the gaze gesture and
the region to the tracked video object. We assume, each video contains one to three prime
objects which require to be focused on, by the user. For simplicity, we restrict our mapping to
one prime object of the video. In most MOOC courses, the prime object can be assumed to
be the lecturer (person). However, the system can be adapted for annotating the prime object
while uploading the video, in case it differs from a lecturer.
The estimation of user’s attention level is a 3-fold process that combines the output from

the previous phases of the proposed model. Figure 3.10 presents the overview of the 3-fold
evaluation technique. The three levels of evaluations rely on three basic assumptions in this work
which encircles the core notion about the correlation between high level cognitive attention and
low level visual cues [211, 55]. The fact that an automatic pruning of visual data is performed
by visual systems, ensures the visual attention on only a relevant segment of the visible image,
and in turn, promotes learning [251]. The three principles considered in this approach are :
Observation, Tracing and Focus.

3.4.1 Observation

The first level of estimation relies on the assumption that the user has to observe the video,
either constantly or periodically, to be considered as attentive. The objective of this level is to
identify whether the learner is watching the video at least occasionally. Based on this criteria,
each frame is analyzed to obtain valid ROIs. If and only if a valid pair of eyes are found, it is
inferred that the user is looking at the screen and is "Attentive". In cases where eye regions
are not detected, the user is treated as "Inattentive". However, in some frames, even though the
user is looking at the screen, valid eye pair might not be detected due to the improper lighting
condition, calculation errors or inaccurate classification of faces. To avoid such scenario and
allow periodic glancing, a window interval is maintained. This estimates the level of attention
based on whether or not, the user is looking at the screen for at least once during the window.
For videos, where plain texts are the prime objects (or no specific prime object), this estimation
technique is helpful, as text movement on screen is minimal.
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Figure 3.10: Attention estimation based on the 3-fold evaluation : Level 1 evaluation utilises the
rendered frames with valid eye pairs. Level 2 and level 3 evaluations use textual data extracted during
prime object, gaze gesture and region of interest tracking. Each level results to a certain binary decision
regarding attentiveness depicted by scores or on screen alerts, which jointly decides the final attention
level of the user (scores).

3.4.2 Tracing

The second level of estimation is based on the assumption that the user must visually follow
the prime object in the video to be considered as attentive. This process aims at tracking the
visual gesture of the learner to identify whether the learner is observing the relevant object
in the video.To satisfy this criteria, the gaze gesture tracking is considered. From the tracked
locations of the prime objects in the MOOC video, the shift symbols for the prime objects are
fetched for each frame. The corresponding shift symbols derived by tracking the gaze gesture
of the user’s eyes are derived. If, either the left eye shift symbol or the right eye shift symbol
for a frame matches with that of the shift direction of any of the prime object in that frame,
the user is marked as attentive. However, due to free head and device movement, not all shift
symbols match with the corresponding video object shift symbols.
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Figure 3.11: The locations of video objects on the segmented regions of the mobile screen showing
all possible locations any video object (numbered) can hold on the mobile screen.

Table 3.3: Mapping Objects to Gaze Region
Object no. (Figure 3.11) 𝐵𝑇𝐿 𝐵𝐵𝑅 𝑙𝑒 𝑓 𝑡𝑆 or 𝑟𝑖𝑔ℎ𝑡𝑆
1 TL TL TL
2 BL BL BL
3 TR TR TR
4 BR BR BR
5 TL BL TL/BL
6 TL TR TL/TR
7 TL BR TL/BR/TR/BL/C
8 BL BR BL/BR
9 TR BR TR/BR

3.4.3 Focus

The third level of evaluation considers the assumption that the user might look at the screen and
randomly gaze at different points, leading to some level of gesture matching. For the user to be
attentive, he/she must focus on the prime object in the video. This evaluation is an extension of
the previous evaluation stage that further strengthens the estimation of gaze gesture and accounts
for the gaze location which is important in the presence of multiple overlapped or discrete prime
objects. To further ensure that the user’s gaze is focused on the prime video object, a gaze
region mapping is performed. Figure 3.11 displays the possible location of the video object
on the device’s screen. The figure provides an estimate on how the object orientation can be
mapped to the gaze region. For object 5, since the top left point of the bounding box lies in top
left region of the screen and the bottom right corner lies in bottom left region of the screen, the
user’s gaze region should be either top left or bottom left. Table 3.3 tabulates the possible object
locations displayed in Figure 3.11, the coverage of their bounding boxes (top left and bottom
right regions as 𝐵𝑇𝐿 and 𝐵𝐵𝑅) and the corresponding allowed gaze regions (𝑙𝑒 𝑓 𝑡𝑆, 𝑟𝑖𝑔ℎ𝑡𝑆) for
the user to be marked as attentive. If for a particular frame, the 𝑙𝑒 𝑓 𝑡𝑆 or 𝑟𝑖𝑔ℎ𝑡𝑆 falls in the
permitted set of values, according to the table, it is inferred that the user is focusing on the
prime object in the video.
Figure 3.12 shows the visual representation of mapping prime objects to gaze location,
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Figure 3.12: Mapping prime object location to gaze location : In this figure, the user is looking at
the bottom right corner of a Video frame and the prime object in that video frame is also present at the
bottom right corner(i.e. Top left and bottom right locations of the prime object’s bounding box falls
inside the bottom right region). Hence 𝐵𝑇𝐿=𝐵𝐵𝑅=𝐵𝑅. The current eye center is mapped to obtain
the nearest known eye center from the templates. In this case, the current eye center is nearest to the
Bottom right eye center in the template list. Hence the current centers are associated with the BR label
(leftS=rightS=BR). Since the 𝑙𝑒 𝑓 𝑡𝑆 or/and 𝑟𝑖𝑔ℎ𝑡𝑆 matches with 𝐵𝑇𝐿 or/and 𝐵𝐵𝑅, it is concluded that
the user is focusing at the prime object in this frame.

according to the third level of evaluation. The template matching shown in the figure, is in
terms of obtaining the eye center coordinates from the template records, that is nearest to the
eye center of the current captured frame. In this case, the location of the prime object matched
with that of the gaze location of the user, hence inferring that the user is looking at the prime
object.

3.4.4 Design of Dynamic Window for Handling Context Switches and Multitask-
ing

The usage of window frames alleviates the requirement of continuous gazing as an indicator
of attentiveness. In case of mobile platforms, continuous gazing is rather unrealistic, unlike in
traditional classrooms. Mobile based lectures can be attended with periodic multitasking like
taking notes, simultaneous referencing to books or reading relevant materials and occasionally
listening to lecture audio only. While temporary shift of visual focus from the video can still in-
dicate attentiveness, in most cases, a learner prefers to pause the lecture while he/she is focusing
on a note or book. Hence, it is expected that even if the visual focus is temporarily shifted from
the video, the learner will continue looking at the video after a certain period. This occasional
glancing is allowed and facilitated by the use of window frames.In our implementation, the first
level of evaluation uses a window of 50 frames. If the user’s eyes are not detected within this
interval, the first attention level is depleted by one from the current gaze attention level. For the
second level of evaluation window size of 20 is maintained. If the shift symbols of tracked eye
gesture in 20 frames, do not match with the corresponding shift symbols of the video object,
the second attention level is depleted by one from the current gaze gesture based attention
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level. Since, short lecture videos are considered in the experiments, the window frames are
proportionally less. For longer videos, these videos can be expanded accordingly to facilitate
appropriate occasional glancing.
The maximum gaze and gaze gesture attention levels are set to 𝑀𝑎𝑥𝑔𝑧 and 𝑀𝑎𝑥𝑔𝑠 at the

beginning, where 𝑀𝑎𝑥𝑔𝑧= (Number of frames in the video)/(Window size for gaze estimation)
and 𝑀𝑎𝑥𝑔𝑠 =(Number of frames in the video, where eye centers were detected)/(Window size
for gesture estimation). The third level of evaluation is not mapped to a statistical output, rather
produces a continuous alert to the user during the course. The overall estimation of attention is
hence based on the following equation: ET=𝑀𝑎𝑥𝑚 − (𝑀𝑎𝑥𝑔𝑧 − 𝐸𝑇𝑔𝑧) − (𝑀𝑎𝑥𝑔𝑠 − 𝐸𝑇𝑔𝑠)
where, 𝐸𝑇, 𝐸𝑇𝑔𝑧 and 𝐸𝑇𝑔𝑠 are the overall estimated attention, estimated attention based on

gaze and estimated attention based on gaze gesture, respectively. 𝐸𝑇𝑔𝑧 and 𝐸𝑇𝑔𝑠 are obtained
from first and second levels of evaluations. For our experiment, 𝑀𝑎𝑥𝑚=𝑀𝑎𝑥𝑔𝑧+𝑀𝑎𝑥𝑔𝑠 and
finally the estimated 𝐸𝑇 has been scaled down within the range of 0–100. The differences
(𝑀𝑎𝑥𝑔𝑧 − 𝐸𝑇𝑔𝑧) and (𝑀𝑎𝑥𝑔𝑠 − 𝐸𝑇𝑔𝑠) signifies the points lost due to inattentiveness based on
gaze and gesture. Subtracting these differences from 𝑀𝑎𝑥𝑚 evaluates the total score, based on
the points lost in gaze and gesture tracking.

3.4.5 Dissecting Gestatten

The accuracy of the eye center localization algorithm used in the proposed approach greatly
relies on the variation in sensed ambient light level, using the inbuilt sensor. We examined
the binarization technique with a static threshold value on the BioID dataset, containing 1521
different faces under various lightning conditions. The evaluation was based on the error levels
of the better, worse and average eye detection, according to equations : 𝑒𝑟𝑟𝑜𝑟 ≤ 𝑚𝑖𝑛(𝑑𝑙, 𝑑𝑟 )/𝑑𝑚
, 𝑒𝑟𝑟𝑜𝑟 ≤ 𝑚𝑎𝑥(𝑑𝑙, 𝑑𝑟 )/𝑑𝑚 and 𝑒𝑟𝑟𝑜𝑟 ≤ (𝑑𝑙+𝑑𝑟 )/2𝑑𝑚, where 𝑑𝑙, 𝑑𝑟, 𝑑𝑚 are the Euclidean
distances between measured and marked left eye centers, right eye centers and the distance
between the marked left eye and right eye centers respectively. For fixed thresholds, the worse,
better and average eye hits rates for error less than or equals to 0.25 are 80.21%, 99.45%
and 81.59% respectively. However, the respective accuracy for error less than equals to 0.1
significantly decreases to 56.86%, 88.46% and 64.01%. This leads to the consideration of
varying threshold levels based on the ambient light of the user. To address this problem with
static threshold, we have used dynamic threshold levels, based on the instantaneous ambient
light, as discussed in the previous section. Using these dynamic thresholds, the accuracy of
worse, better and average eyes significantly increases to 78.84%, 99.17% and 81.59% for error
less than or equals to 0.1 and 82.14%, 99.72% and 82.15% for error less than or equals to
0.25. The respective accuracy shown in [239] are 93.4%, ≈100% and ≈95% for error less than
or equals to 0.1 and 98%, ≈100% and ≈100% for error less than or equals to 0.25 which are
comparatively higher. However, Gestatten, that depends mostly on relative shifts, rather than
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Figure 3.13: Analysis of localization approach with static and dynamic thresholds

accurate gaze points, is significantly lightweight. Figure 3.13 compares the performance of
localization approach for constant and varying thresholds on the BioID dataset. We observe
that the dynamic threshold approach used inGestatten significantly improves the gaze detection
accuracy.

3.4.6 Benchmarking Gestatten

Figure 3.14: The android application profiler for Memory usage

Memory and CPU usage: Figure 3.14 shows the memory usage of the Gestatten. The
performance of two smartphones has been measured in this approach. It can be seen that
the maximum memory usage is 122.2MB. To visualize the maximum memory usage by the
application, the internal visual record files are retained throughout the application usage. In
practical scenario, the memory usage will be much less as these files can immediately be auto
deleted after viewing each video shown by the application. This is due to the fa ct that these
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textual data are not used any further, once the application scores are generated immediately after
each video ends. The CPU usage by the Moto E3 Power is 18-24% and that of Asus Zenfone
2 is 27-33%, making it significantly lightweight. These parameters are measured by android
studio application profiler.

Battery Consumption: For estimating the battery usage by the application, the smart-
phones were initially fully charged. The applications were used continuously on both the
smartphones till the battery charge dropped to 20%. The Asus Zenfone 2 could run the ap-
plication continuously for 4hrs, while the Moto E3 Power ran the application for more than
5hrs. The smartphones were again charged to 100% and only the videos shown by Gestatten
were continuously played on the same devices, till their battery charge dropped to 20%. This
experiment was to test the battery usage of the standalone videos only, without their involvement
in Gestatten. The Asus Zenfone 2 could display the videos continuously for 6hrs, while the
Moto E3 Power displayed the videos continuously for 6hrs 50minutes. This statistics shows the
low battery drainage by the operations involved in Gestatten.

Figure 3.15: Comparison of eye tracking algorithms used in Gestatten and Accurate eye center
localisation by means of gradients [239]

3.4.7 Baseline Comparison

Finally, to establish the feasibility of using a lightweight model like Gestatten, for mobile
devices, we compare the eye center tracking algorithm proposed in Gestatten, with that of one
of the bench marking algorithms presented in [239], which also uses pixel level calculation for
locating the eye centers. The comparison is made due to the following similarities between
Gestatten and [239]: (1) Both works deal with pixel level calculations on eye region only and
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(a)

(b)

Figure 3.16: Profiling GPU rendering of Gestatten in mobile device : The graph depicts the time
(milliseconds) for each frame to be rendered by the application within 16milliseconds depicted by the
green horizontal line, in (a) an android device with Android version 5.0, 1.8GHz CPU (b) an android
device with Android version 6.0, 1000MHz CPU.

claim to be computationally simple. (2) Similar to [239], Gestatten uses BioID dataset and
similar metrics for error calculation (accuracy of eye centre estimation) like worse eye, average
eye and better eye. Moreover, the comparison shows why, the highly accurate pixel based eye
centre estimation that are computationally simple enough for other computing devices, might not
work for smartphones.Both the algorithms are implemented for android devices using Android
studio. The in-device run-time frame rendering is analyzed using profiler for GPU rendering
using bars on screen (Figure 3.16) and the back-end run time frame rendering information is
analyzed by using dumpsys. Figure 3.15 presents the comparison graph. The total rendered
frames indicate the initial frames before the camera is turned on and only the total number of
frames where valid eye pairs were detected and processed to evaluate their centers, after the
camera is turned on. The number of total frames shown in the graph is based on the natural
viewing pattern of the user, consisting of occasional context switching and multitasking, for
1 hour. The aim of this task was to identify whether the eye center localization module of
Gestatten and that of [239] can work in real time, rather on the level of attention paid by the
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user. The number of frames is proportional to the constant on screen gaze time of the user.
The performance of the eye center localization module was examined for 1hour, using intervals
of 5minutes. This lead to the problem of frame congestion for the algorithm used in [239],
due to its intensive pixel level calculations. From the graph, it can be seen that throughout the
period of 1 hour, the rendered frame has a constant value of 128. This is due to the fact that
at the 128th frame, a valid eye pair was detected and the algorithm was initiated by the mobile
application for estimating the centers. The frame took more than 1 hour to be processed by the
algorithm, hence rendering no further frames. It took 67 minutes, to process this single frame
by the algorithm, whereas Gestatten worked in real time. This proves the feasibility of Gestatten
in mobile devices, as it requires simple calculations, optimal for devices with restricted powers.
Figure 3.16 and 3.15 validates the lightweight nature of our approach and depicts that the eye
center localization algorithm of Gestatten can work seamlessly for mobile devices. In Figure
3.16, the green horizontal line depicts the standard benchmark of 16ms (default rendering
time of each frame is set to 16ms ). This is due to the fact that the modern smartphone’s
have an inbulit refresh rate of 60 frames per second for seamless display of motions. Even
though 24-30fps is sufficient to provide smooth visual effect for basic frames, for frames with
high graphical effects, human brains can perceive consistent and fluid video motions at 60fps.
Hence, it is the default benchmark in GPU rendering profilers. In the figure 3.16a, we can see
that most of the frames are rendered within 16ms. Even for figure3.16b, we can see that the
elevated bars are only due to the GPU usage, however, the Misc time indicating the execution
time for operations between the frames by the application, in significantly within the limit of
16ms. Also, additional processing is required to display the extracted eye region in each frame,
that adds to the height of the bars. Figure 3.16 shows the suitability of our approach for mobile
devices, working at 50-60fps. The proposed approach is computationally simple and hence is
faster than several other existing mobile based approaches which allows lower frame rates of
10-30 fps [100, 171, 260].The performance can further be optimised by eliminating the display
of the eye region in the interface design of the application.

3.5 Experiments and User Study

Gestatten is a standalone android application that requires no separate Internet access, can
display videos and use the device’s front camera to preview the user’s face, while simultaneously
processing the facial images. The model has been implemented using Android studio and has
been tested in several mobile devices including Asus Zenfone 2 with Android version 5.0, Moto
E3 Power with Android version 6.0.
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3.5.1 Experimental Methodology

We have tested Gestatten over 48 participants divided into two sets of experiments. The
participants are primarily university undergraduate and graduate students, in the age group
of 19–30 years. The ethical considerations for these experiments have been followed and
participants have been given a token incentive of $3 Amazon Gift card for participation in each
experiment. In overall, the participants have observed video segments from some pre-selected
MOOC courses over a mobile with a player that incorporates Gestatten as an add-on module.
We use two different evaluation technique as discussed next.

Method-1: Assessing the Correlation between the System Predicted Attentiveness Score
and the Learner’s Performance after Completing the Video Course

The first set of subjective evaluation verifies the results of the application using a Multiple
Choice Question (MCQ) based evaluation on 28 participants for the generation of ground truth.
This technique also correlates the attention level of a learner to his/her degree of comprehension.
It is evident that for a short video lesson, the participants will remember the answers, at least for
a short time, if not for a long time, only if they have paid attention to the video, as established
in the existing literature [263, 103, 273, 262]. We try to find out, how visual attention can
account for such comprehensions, and this provides an indirect measurement of the success
of our application. If we can observe a high correlation between the predicted attention level
by Gestatten and the performance of the learner in the test just after watching the video, we
can say that the system does a good job in understanding the attentiveness of the learner. The
hypothesis for this experiment is to check how the system predicted attention level correlates
with the user performance in an "attentiveness test", pertaining to various user studies from
the literature that shows high correlation among the two. From this correlation, we show how
good the system can predict the attentiveness of the user. In this technique, each participant
was shown a sequence of 10 different MOOC videos of average duration of 3 minutes and
belonging to different field of studies, in succession. The videos were selected in a way that
each contained at least one prime object, except videos 4-7, which had no fixed prime object.
Videos 4 and 6 contained mostly textual and audio based information. The videos used for the
experiment are mostly lecture videos containing textual as well as visual presentations. The
topics covered in these videos varies from Engineering subjects to Political Science and History
lessons. We also believe that, for a 3 minutes demonstrative video, the user should visually
follow the lecture material to have good interpretation of the topic being taught. After each
video, the participant was provided with 5 questions based on the shown video. Each question
of 1 mark belonged to a certain difficulty level in ascending order. Hence, the subjective scores
ranged from 0 to 5. The MCQs were directly from the video content and have been answered
following each video, so that the participant can answer them only if they have observed it in
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the video. Further, they have been discouraged to guess an answer. In addition, it has been
ensured that the participants have observed those videos for the first time to eliminate any bias
during the MCQ answering. We have used external stimuli (such as loud noise through music
player, dropping the sound of the video, etc.) to distract the attention level of 5 participants out
of the 28 participants, to emulate an environment when the learner is not attentive. For each of
the videos, the mobile application generated the gaze gesture based scores and the gaze based
score, thus finally generating the estimated score 𝐸𝑇 . The subjective scores were scaled up and
normalized to the range of the application generate score.

Method-2: Validation Through Independent Observers

The second set of subjective evaluation has been conducted with 20 more participants under
different environments such as low illumination, at different rooms, etc. The objective of this
user study was two-folded: to examine the usability of the application and to determine whether
"human perception" matches with the "machine perception". For this second objective, we have
matched the agreement among the annotators.In case of manual agreement, the score given
by the annotator is compared with the score generated by Gestatten. the hypothesis behind
the second experiment is to find out the agreement between the machine generated score and
human evaluated score. The machine may fail in various adverse conditions; so we may not be
able to draw any conclusion from the first set of experiments (attentiveness test) under those
adverse settings. Therefore, from the second experiment, we have shown the impact of such
adverse conditions, like low light intensity, absence of prime objects, etc., when Gestatten
may fail to provide a reliable score. Moreover, further analysis of the manual evaluation has
been performed to explore its difference from the application generated results. The task was
performed in groups of 3 to 5 participants. For each group, one participant was initially
requested to use the application (user), while the rest manually evaluated the attention level of
the user (evaluators). This procedure was repeated for each participant of the group and for
all the groups, where each volunteer had to play the role of the user once and evaluator for at
least twice, depending on the group size. Each evaluator was assigned the task of observing
the user and identifying her point of gaze in the video. For mobile devices, with restricted
screen dimensions, this is a difficult task to perform, as the point of gaze can be confused
between multiple proximal objects on the screen from the manual point of view. Moreover,
it is practically impossible for the evaluators to note the point of gaze for every frame for
a video played at about 60 frames per second. To address these problems, videos with one
prime object and one to two secondary objects shown in each frame, are selected. Also, an
interval of 10 seconds between two consecutive evaluations has been fixed for the evaluators,
eliminating the requirement for frame-wise monitoring. This might lead to another problem
where, discontinuousmonitoring can result in disregard of some instances, where the user might
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have lost attention within the time frame of 10 seconds. To avoid this, different evaluators were
assigned to different random time intervals. After the observation was made according to the
time intervals, the evaluators marked the user from 0-100, based on the amount of time, the
user paid visual attention to the video objects. The evaluators performed a strict monitoring on
the user by sitting at different locations within a close proximity of the user. To facilitate this
process and eliminate incorrect readings, the seating were arranged in such a way that both the
user’s eyes and the mobile screen could be simultaneously visible. Also, since the number of
prime objects were only restricted to 3, it was easier for the evaluators to marks the object of
gaze. The evaluators continuously marked whether the user gazes towards the video, or looks in
a different direction other than the video objects. We believe that a single evaluator might not be
trusted to assess the performance. To ensure reliability, multiple evaluators are employed. For
the videos to be displayed on full screen, the landscape mode is used in our experiment.This is
due to the reason, that for portrait mode, the screen dimension is further restricted, making the
subjective observation nearly impractical. However, since the shift and location of the prime
objects are relative to the device, the application result would not be practically affected by the
orientation of the screen.

(a) Score distribution

(b) Average score comparison

Figure 3.17: Video-wise Comparison of Subjective and Application Generated Scores
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3.5.2 Results

Here, we discuss our salient observations from the two different types of experiments as
discussed above.

Correlation Between the Subjective Score (Test Performance) and the Application Gen-
erated Score (Experiment-1)

In the first set of subjective evaluation, for each video, the subjective scores of 28 participants
are compared with the respective application generated estimated scores (ET) and has been
depicted in Figure 3.17 by the parameters like range, quartiles, means and medians (Figure
3.17a). The average subjective and application generated scores for 28 participants in each
video has been compared in Figure 3.17b. It can be observed, that for all videos except 4 and
6, the subjective scores and application generated scores are comparable and has a minimal
deviations. The inaccuracy of the scores for videos 4 and 6 can be attributed to the absence
of prime objects and projects the necessity of gesture based attention estimation. For videos
where no particular object of interest is present, the participant was free to visually follow
any part of the screen. The gaze gesture based estimation is not functional in this case. The
application’s attention estimation hence, only depended on the gaze of the participant for these
cases. For these videos, even though the students stared continuously at the screen, making
them score highly in application generated estimation, their actual apprehension of the subject
lacked as the textual and audio information were not adequate enough to be comprehended by
the participants, which was reflected in their subjective evaluations. This proves, not only the
applicability of our approach, but also proves the efficacy of explanatory MOOC lectures over
textual videos.
Figure 3.18 presents the comparison of participant wise average estimations. For each

participant, the average subjective score across 10 videos has been compared with the average
application generated scores. The average absolute error between the subjective and estimated
score generated by the application is found to be 8.68. Further, we observe that Gestatten can
identify both the learners who are attentive as well as no attentive as the average subjective
scores matches with that of the application generated scores. Low scores have been observed
for the last four users (for both the application generated scores as well as the subjective scores)
for whom we have used external stimuli to divert their attentions.

3.5.3 Analysis of Application Generated Score versus the Score Given by Evalu-
ators (Experiment-2)

Table 3.4 presents the manual and application based results for the participants from five
different groups in the second set of subjective evaluation. Different groups of users have been
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Figure 3.18: Participant-wise Comparison of Subjective and Application Generated Scores

evaluated at different environments as shown in the table. Here, we have grouped the scenarios
based on the evaluation environments, and we observe that the disagreements between the
human annotator and the system are because of unfriendly environments, such as low lighting,
absence of prime objects in the video, etc. It can be observed that, for users 1-5 and user 12,
the application failed to produce any estimation of the gaze gesture based attention level. The
ambient illumination for all these cases were set to a low value where, the camera of the device
and hence the algorithm could not capture and identify the eye center of the user’s face for each
frame. However, in these cases, the eye regions were still correctly identified and an estimation
of attention level, based on whether or not, the user was looking at the screen, was produced
by the application. It can be seen, that for group 4 and 5, the average manual evaluations has
less deviation from the application generated results. The video displayed for this group had
distinct primal object which had comparatively less movement in the video and location wise
well separated from the other video objects. Also, angle of observation affected the manual
evaluations greatly. The manual evaluation in group 5 produced the closest results. This can
be attributed to its small size. as the group size increases, manual evaluations deviate greatly,
proving the necessity of personalized and automated models to monitor the attention levels
of individual students. Moreover, the huge deviation of subjective evaluations for individual
user proves the inefficiency of manual estimations. User 15 was evaluated for 90 seconds that
covered 47.36% of the total video. The user preferred to stop the video instead of completing
it. The subjective scores were based on the evaluator’s perception. To generate the ground
truth for proving the correctness of the application generated results, 11 participants mentioned
their object of gaze for 20-40 seconds. During this time, their faces and application screens
were simultaneously recorded. The application continuously generated the point of gaze (the
object at which the user is looking at, based on the region of gaze), while the face of the user
proved the correctness of the dictated point of gaze by the user. The dictated point of gaze was
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Table 3.4: Subjective Evaluations and Application Results Under different Environments (Eval
indicates Evaluator)
User Env. Eval 1 Eval 2 Eval 3 Eval 4 Gaze Gesture Comments
1

Textual
video

65 90 60 X 95 X The high deviation between subjective
and application score can be attributed
to the lack of prime objects in textual

videos and group size.
For larger groups, observation and

manual evaluation gets erronous and difficult.

2 60 70 60 X 95 X
3 60 50 40 X 95 X
4 50 60 50 X 98 X
5 80 80 80 X 94 X

6 Medium
low
light

54 45 50 79 97 94 The deviation in subjective and
application score is due to the poor
lighting condition where the subjective
evaluators faced difficulty in following

the user’s eye movements.

7 55 55 75 X 95 100
8 70 75 70 X 95 84
9 80 82 85 90 96 98

10
Low
light

40 8 30 X 97 99 The deviation in subjective and
application score is due to

poor lighting condition where the subjective
evaluators faced difficulty in

following the user’s eye movements.

11 70 90 40 X 99 87
12 60 X X X 95 X
13 50 45 X X 98 94

14
Normal

environment
Room-1

90 90 95 X 98 100
The similarity between subjective and
application score is due to proper

lighting condition and presence of prime
objects where the subjective

evaluators could easily track the point
of gaze of the user.

15* 90 90 90 X 99 100
16 70 80 85 X 97 99
17 70 50 79 X 97 94

18

Normal
environment
Room-2

89 97 X X 98 93 The similarity between subjective and
application score is due to

the proper lighting condition, presence
of prime objects and smaller group
size where the subjective evaluators
could easily track the point of

gaze of the user.

19 86 98.5 X X 99 88
20 95 95 X X 97 99

matched with the application generated point of gaze. The results showed that 76.31% match
was generated in average, for the dictated and generated values.

3.6 Discussion

In this section, we dicuss some of the limitations of Gestatten and their remedies as future
scopes.

1. In Gestatten, we focus on developing a lightweight attention estimator that can be operated
seamlessly on a mobile device. While most of the existing works rely on techniques
like gradients, glint detection, we employ simple binarization of grayscale eye frames
and centroid calculation. Apart from this the novelty of our approach lies in terms of
incorporation of ambient light sensors, prime object tracking and trajectory mapping.
However, the variation in iris colors has not been considered for our experiment. We
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believe that the iris/ pupil pixels are mostly darker than the surrounding sclera pixels
and the threshold based binarization will convert them into black pixels for centroid
calculations.

2. The application currently needs the videos to be locally added to the device along with
their tracked prime object trajectories that are obtained in an offline module. In future,
for practical deployment, we aim at eliminating the requirement of local storage and use
cloud services, so that differentMOOC organizers can simultaneously upload their videos
for Gestatten to stream them. Although significant result has been obtained, accuracy of
region of gaze algorithm is affected by free head and device movements. This can be
addressed by considering the user’s face location while estimating the nearest calibration
point.

3. The subjective evaluation of the model purposely avoids in-video prompts and quizzes for
estimation, and instead relies on quizzes only after the completion of a video. This is due
to the fact that in-video prompts leads to the distraction of the learner, not only visually, but
also mentally. While prompts and scheduled tasks can estimate the learner’s cognition,
they practically also diverts the concentration. We tend tomake the evaluation of attention
more seamless and automated for the learner, which can be achieved using visual cues.
To promote attentiveness, the users were periodically shown the instantaneous level of
their attention on screen. One disadvantage of relying on visual trajectories is that the
learner may choose to rely on the audio. However, this is unlikely to happen in majority
of the cases as video contents display information which can mostly be comprehended
through simultaneous hearing and viewing. For most of the textual videos, the results
shown reveals the fact that visual gesture cannot account for the underlying attention and
comprehension level of an individual. Based on the experimental results, mere glancing
at such videos reveal little or no relevant information regarding the participant’s cognition.
Even though, from experimental observations, we infer that visual attention cannot be
strongly correlated to cognition in absence of a prime object, the approach is practically
scalable for videos with any number of prime objects. The fact that most of the MOOC
videos contain limited number of objects, we restrict our case studies to 3 prime objects
only.

3.7 Summary

In this chapter, we proposedGestatten, a ubiquitous mobile platform for learner’s attention esti-
mation from eye gaze and gaze gesture tracking. The significance of the proposed approach lies
in terms of its lightweight nature and applicability. Experimental results reveal its practicality
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in shaping one of the major aspects of academics. However, the proposed approach can be
improvised to integrate other contextual information like noise level and video specific attention
requirement, which we plan to keep as a future direction of this work. From the experiments,
we understood that background noise level can be a contributing factor in assessing the learner’s
attention. Moreover, some video lectures do not require continuous observations and emphasize
more on audibility. Hence, involving external and video sound levels will reveal the concealed
aspects of learner’s attention levels. Parameters like initial attention level, number of prime
objects, etc. can be modified to substantiate the scalability of the approach.



4
Ubiquitous System for Estimating Cognition and

Multitasking in Online Meetings

For over two decades, video conferencing has been a productive approach for exchanging
conversations between multiple participants through a digital online mode [88]. During the
COVID-19 pandemic and beyond, it became a necessity rather than an option when almost
every meeting, be it a classroom teaching or a business meeting, is being conducted virtually
through various online video conferencing platforms. Nevertheless, there has been a serious
concern about these meetings’ quality due to the lack of engagement from the participants,
particularly in the business meetings or the classroom teachings, educational seminars, etc [44].
Many participants tend to be passive during the sessions, mainly when they find other more
exciting activities, like reading a storybook or an article over the Internet or browsing through
their social networking feeds [160]. Consequently, attending the meeting becomes merely a
proof of participation, like giving the class attendance while not following the lectures!
Understanding participants’ engagements in an online meeting are essential for the or-

ganizers and speakers because it helps plan quality meeting sessions. The Zoom Platform
incorporated the attention tracking feature during the onset of COVID-19. Still, they later
removed it due to privacy concerns1. Various works in the literature [250, 187, 118, 214, 110]

1https://support.zoom.us/hc/en-us/articles/115000538083-Attendee-attention-tracking
(accessed: Friday 11th August, 2023)
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have argued for estimating the users’ attention levels during online meetings. However, assess-
ing the attention level in such online meetings is challenging. Notably, the most prominent cue
available during such meetings is the video feeds from the participants, which contain their
facial expressions and gestures. Although participants prefer to keep the video feed off during
general meetings such as academic conferences or seminars, specialized meetings like business
discussions or online classrooms typically mandate keeping the video turned on.
Participants’ attention during a videomeeting is difficult to quantify as it involves a cognitive

process. Overt attention [193] involves precise shifting of gaze towards the instantaneous point
of interest. However, covert attention is more of a mental rather than a sensory process. Thus,
it is not reflected by gaze shifts (they can be related to fine-grained saccades). Psychological
studies have also discovered cases where a subject “looks without seeing” [145]. In light
of this concept, Lamme [119] has distinguished visual attention from awareness. In a video
meeting, which lacks alertness to draw attention, a person might blankly gaze at the screen
(which we refer to as visual concentration/attention in this paper) without processing or being
aware of any of the information shown/delivered, as their attention is fixed on another complex
object/thought. “Cognition”, on the other hand, involves memory and processing of information
[192]. In this paper, we use the term “cognitive attention” to imply the germane cognitive load
[96] or awareness of the subject concerning the online meeting being attended.
In this line, several works [12, 34, 156] correlate visual concentrations with cognitive

attention. However, such techniques are difficult to apply for online meetings because of the
following reasons. (1) During online meetings, participants may not continuously gaze at the
screen; they may look in other directions and still listen to the speaker attentively. Thus a lack
of visual concentration may not imply inattentiveness all the time. Eye-tracking has already
been applied to track divided attention [8], overt attention [190], selective attention [18] and
so on. Techniques like blink detection [149, 43] and Pupillometry [245] have been found to
hold a high correlation with sustained attention. While these techniques can be used during
online conferences, they generally require devices like commercial eye trackers, electrodes
for electrooculograms, etc., which are not usually available to the common mass. Given the
current resolution of the webcams or in-built cameras in laptops, it isn’t easy to accurately
track intricate movements like pupil dilation. Even though commodity cameras can detect eye
blink, this technique is likely to fail if the participant is paying attention to an irrelevant article
(cognitive disengagement in the meeting) on another tab instead of the meeting. (2) Eye gaze-
based attention estimation can fail in the scenarios when the participant opens up a new tab in
the browser to browse her social profiles, chat with a friend using text messages on a different
tab, take notes, or even look into online materials related to the topic of discussion (we call
such activities ‘multitasking’) [154, 153, 160]. Interestingly, a recent work [27] has shown that
multitasking is unavoidable during remote meetings; indeed, in many instances, multitasking
may promote attentiveness and productivity. The existing methods [12, 34, 156] may still find
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the participant attentive, whereas her activities are entirely uncorrelated with the online meeting
going on. On the other hand, certain multitasking instances, like taking notes during a meeting,
can promote engagement of the participants; however, a gaze gesture-based attention estimation
method may mark the user as inattentive. Therefore, it is necessary to correctly identify such
multitasking instances and correlate them with the participant’s cognitive attention.
The fundamental premise behind this paper is that a lack of visual concentration towards the

meeting app may not imply inattentiveness; similarly, visual engagement towards the computer
screen does not indicate that the participant is engaged with the meeting. Other metrics, like
facial expressions and active participation, can account for the alertness of a subject. Such an
attention estimationmechanism can only add to the accuracy of gaze-based attention assessment
systems. The visual (multi)tasks during such meetings can further enhance the traditional gaze-
based methods. Accordingly, we propose EmotiConf – a cooperative framework for automated
estimation of participants’ cognitive attention towards the meeting by leveraging audiovisual
sensing over the meeting participants coupled with some interesting observations from human
social behavior during virtual interactions. EmotiConf develops a software wrapper on top of
the meeting platform and is entirely a client-side application that does not send any data outside
the user’s device.

4.1 Contributions

In the backdrop of the existing works on participants’ attentiveness estimation during an online
meeting, our novel and salient contributions in this work are as follows.

(1) Bifurcating Cognitive Attention : One of the significant primitives behind the design of
EmotiConf is that attentiveness toward a meeting’s discussion causes similar emotional states
as reflected in their facial expressions. A typical facial expression is imperative even if a par-
ticipant is not visually concentrating on the screen but is cognitively connected to the virtual
interactions in the meeting. We conducted a human study to establish this fact and to infer the
participants’ cognitive attentiveness during a meeting session. Visual multitasking significantly
impacts the cognitive attention of a participant. We also demonstrate that certain multitasking
instances, like using a notepad to take notes, searching for relevant materials, etc., promote
cognitive attentiveness during an online meeting; we call this positive multitasking. On the
other hand, activities like browsing social media profiles, chatting with friends, etc. affect
attentiveness; we call this negative multitasking. EmotiConf uses a cooperative and collective
audiovisual analysis of all the meeting participants to classify multitasking instances into pos-
itive and negative using three interesting primitives. (a) A change in the vocal expression of
active speakers triggers a difference in the facial expression of the participants engaged in the
meeting. (b) Positive multitasking instances have a causal relationship with the intent of the
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speech; for example, a question asked by the speaker may cause a participant to open a new tab
to find out the answer. (c) The degree of facial movements, like head nodding, indicates that
the activities are related to the meeting.

(2) System Development and Evaluation: For distributed expressions and attention estima-
tion, we analyze the lip movement patterns of the participants to infer the active speakers in an
online meeting. As the active speakers are sure to be engaged or attentive towards the meeting,
we use their behavior as the ground truth for attentiveness estimation of other speakers. This
information, coupled with the facial expression of the participants in a cooperative way, helped
us to mark the inattentive participants in a meeting correctly. Moreover, EmotiConf uses a
novel approach for the separation of positive and negative multitasking instances by analyzing
the change in the on-screen ambient light reflected on the faces of the participants. We have
developed a prototype of EmotiConf and evaluated it over a pilot study (30 meetings, 3-12
participants per meeting) and through feedback from 96 in-the-wild participants from a public
broadcast about the platform. While we observe a good performance of EmotiConf in identi-
fying attentive/inattentive participants and various positive and negative multitasking instances
performed by them, the in-the-wild study returned an average usability score of > 80% on the
system usability scale (SUS).

4.2 Human Study

The primary motivation and assumptions for the development of EmotiConf have been estab-
lished by two different human-based studies: an anonymous public survey and an annotation
task. The detail follows.

4.2.1 Anonymous Public Survey – Realizing the Notion of Attentiveness during
Online Meetings

The objective of the public survey was to understand the factors that influence participants’
attention during an online meeting. Here we discuss the survey procedure followed by our
observations.

Survey Procedure and Participant Details

We floated a Google form containing a set of questions over various social media and news-
groups to obtain the public view about participants’ attention and its implications during an
online meeting. The form contained 18 questions divided into two sections. The first section
contained 4 questions related to the participant’s age, gender, demography, and profession. The
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second section had two subsections – the first subsection contained 8 questions focusing on
the frequency and purpose of the online meetings that the participant typically participates in
and the type of different activities that the participant performs during an online meeting. The
second subsection contained 5 questions where the participant had to rate the importance of the
following factors during an online meeting, on a scale of 1 (Low) to 5 (High) – visual attention,
positive multitasking (tasks related to the meeting, like taking notes), negative multitasking
( tasks not related to the meeting, like playing a game), cognition (auditory attention on the
meeting discussion) and active participation (participating in the discussions). The different
types of activities that can positively or negatively impact meeting efficiency have been widely
discussed in literature [178, 143].
We received ∼ 600 responses from different age groups, locations, and professions. 74.7%

of the participants belonged to the age group of 18-30 years, 16.3% to that of 31-40 years, 5.3%
to 41-50 years, and the remaining were above 60 years. 75% of the participants were male,
and the rest were females. The participants were from different countries like Canada, China,
Germany, India, Italy, Nigeria, the UK, and the USA. Most of the participants (∼ 75%) were
from academics; however, people from other professions, like corporate (12.9%), government
service (.3%), freelancers (.3%), etc., also participated in the survey. Among the participants,
65.3% mentioned that they use video conferencing applications at least once a day. The
survey also showed that video conferencing systems serve a wide range of purposes, including
Corporate meetings (17.1%)2, academic online classes (79.2%), educational meetings (52.6%),
personal conversations (44.5%), Webinars (0.3%), etc. We next discuss the observations made
from this survey.

Does Inattentiveness Impact the Meeting’s Quality?

Hypothesis: This question is included to test whether our hypothesis–Lack of attention impairs
the quality of the meeting. There can be a lot of factors attributing to the disengagement of
a person in a meeting – the participant might be attending consecutive sessions of different
meetings, preoccupied with other tasks in mind, unable to follow the meeting’s discussion,
fatigued, and so on. We consider inattentiveness (cognitive) to have a direct impact on the
quality of the meeting.
Findings: To assess how the speaker and hence the meeting’s quality is affected when the
participants are not attentive, we asked the participants how their speech/presentation gets
affected in a meeting where they notice that others are not attentive. Even though 42.4% of the
responses indicated that they would ignore the inattentive participants or draw their attention,
24.5% mentioned that they would feel demotivated, and 15% would like to shorten the actual
content (Figure 4.1a), thus degrading the quality of the meeting. Therefore, inattentiveness is a

2The numbers in brackets indicates the percentage of respondentswho used video-conferencing for such purposes.
The participants could select more than one option.



4.2 Human Study 65

severe concern during an online meeting.
Recommendation: The survey results prove that inattentiveness indeed affects the meeting’s
quality. This finding recommends the development of a system that can, not only infer upon the
cognitive attentiveness of the participants in online conferences but also perform it in realtime,
so that the speaker/ the participant can be alerted. Thus, the real time attention detection method
is incorporated in EmotiConf .

(a) Effect of non-attentive participants on
the speaker

(b) Forms of multitasking in absence of attention

(c) Necessity of posi-
tive multitasking

(d) Correlation between active
speech and negative multitasking

Figure 4.1: Outcomes from the Online Survey

Is Multitasking Common during an Online Meeting?

Hypothesis: The set of questions pertaining to “multitasking” was based on the hypothesis that
multitasking, positive or negative, is inevitable in online conferences where manual surveillance
is difficult. The objective was also to understand the range and type of tasks people perform
during online meetings.
Findings: When asked, 83.2% of the participants mentioned that they perform simultaneous
activities during online meetings. This proves that multitasking is often inevitable in online
meeting scenarios. However, such activities included a wide range of tasks, including reading
books, taking notes, texting, reading emails, reading references, writing notes, eating, playing
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games, checking social media profiles, and so on. However, the most popular activities are
reading articles in a different browser tab. The articles can be both meeting-related (responded
by 68.2% of the participants) or meeting-unrelated (responded by 26.3% of the participants).
Additionally, 37.9% of the respondents mentioned that they even use other electronic devices,
like smartphones or tabs, during the meetings. It can be noted that a participant could choose
multiple options in this question. The survey indicates that people typically engage in various
activities during a meeting; many of which are not related to the meeting’s context. 63.68%
of the young participants, belonging to the age group of 18-30 years, were found to perform
simultaneous activities during a meeting, but only 26.5% of these young people mentioned that
they read relevant articles during the meeting. The rest of them said that they read meeting-
irrelevant online articles or newspapers (10.05%), use electronic devices (6.5%), read books
(2.3%), and so on.
Recommendation: This finding indicated that EmotiConf should be designed in a way that
it can capture the multitasking instances and classify the instances as positive or negative. In
doing so, we aim to identify those specific instances where a participant uses the same screen
to read relevant/irrelevant articles. This is due to the fact that these types of multitasking
involve little to no facial muscle movement or apparent visual context switching and are hence,
very difficult to be detected. The categorization of positive and negative multitasking has been
explained in the following subsection.

Attention and Multitasking – How do They Go Together?

Hypothesis: This set of questions was circulated in light of three hypotheses–(1) visual focus
does not always guarantee cognitive attention and vice versa. (2) Multitasking does not always
hinder attention and (3) Active participation is related to attention.
Findings: As we mentioned earlier, attention can be perceived as visual attention (or ‘con-
centration’) and cognitive attention. To understand whether the former implies the latter,
our survey questionnaire included a scenario where the participants were asked to mention the
activities they would perform if they could not follow the meeting contents. The answers to
this question are related to visual attention and cognition, as explained next. According to
Figure 4.1b, 35.3% of the participants said that they would open a different tab to read relevant
articles to understand the discussion. Even though it is a form of multitasking, such activity
leads to insufficient visual attention towards the meeting yet indicates high cognition as the
participant is ultimately focusing on the content of the meeting. We categorized such activities
as positive multitasking as they promote cognition towards the topic of the meeting.
On the other hand, 30.3% of the participants mentioned that they would note down the

points and read about them after the meeting. This will lead to close visual attention in the
meeting and average synchronous cognition due to context switching. This form of activity
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is also positively attributing to some aspect of attention. However, 4.7% of the participants
said that they would perform no action and keep looking at the meeting tab, which will lead to
close visual attention but low cognition. Finally, 26.3% of the participants mentioned asking
the speaker to explain more details for every point they could not follow. In this case, there
will be close visual attention, active participation, and high cognition. Among the other 3.4%
responses, activities like playing games were mentioned. This form of activity results in low
visual and cognitive attention and can be considered as negative multitasking. Hence, it can
be inferred that multitasking (positive) can also promote attention depending on the context.
This claim is supported by Figure 4.1c where the majority of the participants mentioned that
positive multitasking, if not always, sometimes is necessary for an online meeting scenario.
Incidentally, most participants (62.4%) prefer to be passive attendees in the online meetings
(Figure 4.1d), during disengagement. Therefore, we can infer that multitasking instances are
not negligible in such online video conferencing-based meetings. From the third section of the
questionnaire which involved questions on how different types of attention and multitasking are
important for maintaining the quality of a meeting, it was also observed that 37.6% of the people
stated that Visual attention is essential (score=4) , 33.5% mentioned that positive multitasking
is essential (score=4), 53.6% mentioned that negative multitasking is not essential (score=1),
47.7% mentioned that cognitive attention is most essential (score=5) and 49% mentioned that
active participation is most essential (score=5).
Recommendation: The results infer that EmotiConf should involve a measure to identify
the cognitive involvement of a participant, rather than just their visual engagements. Active
participation (communication), being a good indicator of engagement, has also been used in
our model.

4.2.2 Human Experiments to Correlate Attentiveness with Facial Emotions

The design of EmotiConf is based on the hypothesis that facial emotions play a pivotal role
in defining participants’ attentiveness during an online meeting. We argue that facial emotion
plays an essential role in determining the participants’ attentiveness in an online meeting. For
instance, the context or the discussion during themeeting should directly impact the participants’
facial emotions. Suppose a participant is attentive towards the meeting. In that case, his facial
emotion should reflect such contexts, and ideally, it should tally with most of the participants’
facial emotions in the meeting. To validate this argument, we performed an annotation-based
evaluation to answer the following two questions. (1) Does the facial emotion of a participant
get changed during an online meeting? (2) If the answer to the above question is “yes”, then do
the facial expressions of the majority agree to a common notion?
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Experiment Procedure

This experiment performs an annotation task to map facial emotions with attentiveness in an
online meeting. We recruited 9 different annotators with low to high domain knowledge and
low to increased experience with video conferencing. This annotation task aimed to validate the
claims – (1) facial emotions vary over time in an online meeting, and (2) correlated emotions
among participants indicate greater attention. In this task, four annotators were male, and
five were female. Two of them had domain knowledge of video processing and were research
scholars. One of them had moderate experience with video processing (IT professionals), and
the remaining was a novice. Two of the annotators used video conferencing rarely (once in 6
months), three of them used it ordinarily (once in a month), and the remaining four used video
conference-based meetings very frequently (once a day).

Figure 4.2: A sample frame for hu-
man annotations of the facial expressions

Figure 4.3: Heatmap of inter-annotator agreement

The experiment has been conducted as follows. We considered 5 pre-recorded online
meetings, each of ≈ 30 minutes duration, consisting of different types, including formal group
discussions, online video conferencing, group discussion with presentations, and online classes.
Each of the meetings had a minimum of 3 and a maximum of 8 participants, with a total of
24 participants (P1 - P24) over all the meetings. For these 5 meetings, we selected up to 36
frames in the timescale for each of the meetings (a sample frame from the first meeting having
5 faces is shown in Figure 4.2) and asked 9 independent annotators to label the perceived
emotion of the individual faces in those frames, from a set of 8 emotion levels – ‘happiness,’
‘anger,’ ‘surprise,’ ‘disgust,’ ‘contempt,’ ‘neutral,’ ‘sadness,’ and ‘fear.’ The frames were
selected to ensure that the overall change in expressions (if any) could be captured from the
timeline of the meeting. We intended to choose 1-2 frames from each time frame (≈ 1 min) of
the video to increase the chance of capturing the overall emotion of the minute. Since macro
expressions are known to change within a short span of time, we carefully choose the frame(s)
within a time frame, so that the change of expression can be captured before it is faded off.
For example, if the speaker is discussing a funny instance, we randomly choose a frame within
the tenure of that discussion. If there is no perceivable change in the discussion topic within
the consecutive time frames, we choose the frames randomly from those time frames. We use
the following expressions: anger, surprise, disgust, enjoyment(happiness), fear, contempt and
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sadness Additionally, we have allowed the annotators to mark facial emotion to be “neutral” if
no prominent expression was found. The annotators were not the participants of those recorded
meetings.
To see the viability of these annotations for further study, we compute the inter-annotator

agreement using Cohen’s Kappa statistics [157]. We observe an average score of 0.813 that
indicates a reasonable degree of agreement among the annotators. Figure 4.3 shows the heatmap
of inter-annotator agreement, suggesting that most of the annotators agree on the label of the
facial emotions. The heatmap indicates that nearly 60.4% of the Kappa values are more than
0.8 indicating an almost perfect agreement. In contrast, the remaining 40% values are between
0.6 and 0.8, indicating substantial agreement among the annotators. The overall inter-annotator
agreement, measure by the Fleiss’ Kappa3 statistics [195] is found to be .809. We next try to
find out the answer to the two questions, as mentioned above, from these annotated values.

Observations

The pre-consideration for the first question is that, the facial expression of the subjects in a
conference will change gradually or rapidly with respect to the topic of discussion. To answer
the first question, we compute the emotion labels’ change points as marked by the annotators
for individual meeting participants. Then we calculate the agreement among the annotators on
those change-points. For example, wheneverwemove from frame 𝑖 to frame 𝑖+1 for a participant
𝑃 if 𝑛 out of the 9 annotators mark a change in the facial emotion labels (as inferred from the
labels), we compute the agreement as 𝑛

9 × 100%. An agreement value of 100% indicates that
all the annotators have agreed that the participant’s emotion has changed over time. Similarly,
a value of 0% suggests that all the annotators have agreed that the participant’s emotion has not
changed at all. The value has been averaged over all the frames for each of the 24 participants.
Figure 4.4 shows the average agreement on the emotion change for all the 24 participants in
different video sessions. The figure indicates that for the majority of the participants, the
facial emotions change over time. This recommends the utility of facial expression variation
in attention estimation. We base the expression detection module of EmotiConf , based on this
observation.
We next answer the second question. We consider expression to collective in nature during

online conferences, i.e. people having cognitive engagement are likely to react/ express in a
similar way to the meeting content. We have estimated the percentage of the match for each
of the facial expressions found in each frame. For each of the facial images in a frame 𝑖, the
label selected by most annotators has been selected as the participant’s labeled emotion. We
then count the number of different emotion labels found in each frame and the percentage of a
match (𝑚𝑒) for each emotion label 𝑒 found in the frame. In an ideal scenario, for a particular

3https://en.wikipedia.org/wiki/Fleiss%27_kappa (accessed: Friday 11th August, 2023)

https://en.wikipedia.org/wiki/Fleiss%27_kappa
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Figure 4.4: Agreement on expression change
from consecutive frames

Figure 4.5: Matched expressions in frames

frame 𝑖, there should be one emotion label for all the faces with a 100% match indicating all
the participants have the same emotion label. If there are 𝑘 participants shown in frame 𝑖,
and 𝑙 out of those 𝑘 participants have the emotion label 𝑒 then 𝑚𝑒 = 𝑙

𝑘
× 100%. Figure 4.5

shows a sample scenario with 5 frames having 8 participants. We see 1–3 different emotion
labels as expressed by the participants, and each of those emotion labels has been contributed
by an almost similar number of participants. On average, 1.13 different expressions have been
found on each of the frames. Further, we observe that these emotion labels are closely similar
– like ‘neutral’ and ‘happiness.’ Therefore, we can say that if there is a drastic difference
in the emotion label of one participant from the emotion labels of others, that participant is
likely to be inattentive towards the meeting. This leads to the development of the emotion
mapping module of EmotiConf . It is to be noted that there are multiple streams of literature
that support [53, 201] or question [15] the role of discrete expressions in expressing emotions.
The intent of this study is to analyze and emphasize the similarity of expressions (positive
expressions like happiness or negative expressions like disgust etc.) rather than how well these
expressions reveal the emotions. Empirically, we found that in a meeting set up, positive and
negative emotions, expressed through these 8 broad categories are indeed similar for attentive
participants. However, in the future, overlapping micro-expressions, revealing further insight
into a person’s emotions will be explored.

4.2.3 Lessons Learnt

From the public survey and human annotation-based study, we have the following takeaways. (1)
Multitasking can promote attentiveness if utilized positively. Therefore, ‘visual concentration’
does not always imply ‘cognitive attention.’ Consequently, the existing studies based on visual
cue and gesture analysis from the participants’ video feeds are not very suitable to accurately
quantify the attentiveness of a participant towards ameeting. (2)We observe that facial emotions
play a pivotal role in defining the participants’ cognitive attention towards the meeting. Even
if the participant is not directly concentrating on the browser tab or the application running
the meeting platform, (s)he may still get cognitively connected to the discussion going on in
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the meeting. Such cognitive attentiveness is likely to get reflected in their facial emotions;
therefore, the facial emotions of the participants should match. We next proceed with these
observations to develop EmotiConf to identify the inattentive participants in a meeting.

4.3 Proposed Model – An Overview

EmotiConf infers the following from a cooperative audiovisual analysis of the participants’
video feeds – (a) cognitive attentiveness of a participant, (b) multitask instances over the
device/computer used for the meeting, and (c) whether the multitask instances are positive
or negative. It is designed to work on a client’s device that displays the participants’ facial
previews (video feeds) in a windowed (grid) layout. Based on empirical evidence from our
experiments, the grid layout has been chosen so that the facial previews of all participants can be
monitored simultaneously and continuously by EmotiConf . The overall idea of EmotiConf is
to analyze six different multi-modal aspects from the facial region of interest (ROI) and audible
conversation: (1) mouth movement, (2) facial expression, (3) change in the reflection of light,
(4) facial movement, (5) vocal expression, and (6) conversation type. While the two former
aspects identify the cognitive attention level, the third one infers visual multitasking. The rest
of the parameters are used to classify the detected multitask instances as positive or negative.

Figure 4.6: The overview of EmotiConf

Figure 4.6 shows an overview of EmotiConf. The pipeline of EmotiConf includes a real-
time (synchronous) estimation of attention and a non-real-time (asynchronous) detection of
visual multitasking categorization of these tasks. EmotiConf assumes that the video feeds from
a majority of the participants are available and processes these video feeds locally as a software
overlay on top of the meeting app. We extract 68 facial landmarks [101] that help us to analyze
any specific parts of the face. These facial landmarks are used in both the synchronous and the
asynchronous modules.
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4.3.1 Synchronous Module for Attention Estimation

The synchronous module works in real-time for a frame rate of up to 60fps. This module
aims at presenting a statistical comparison of the attention levels of the different participants.
The synchronous module analyzes the facial landmarks over a person’s mouth and the entire
facial area. EmotiConf tracks the lip movements of individual participants using these facial
landmarks. Unless the person talks offline outside the meeting, lip movements indicate their
engagement as a meeting speaker. We utilize this information to find out the active speakers
by correlating the lip movements of all the meeting participants. For the non-active speakers,
the synchronous module of EmotiConf performs a frame-wise matching of the participants’
emotional states (facial expressions) captured through a pre-trained deep neural network model
resulting 8 different classes of emotional states. By combining the cooperative observations
from active speaker detection and facial expression matching, the synchronous module of
EmotiConf marks a participant as attentive or inattentive with a confidence value.

4.3.2 Asynchronous Module for Multitasking Analysis

The asynchronousmodule processes the collection of features derived from all the video frames.
One of the significant sources of multitasking during an online meeting is to use different tabs
or applications on the computer beyond the meeting app. EmotiConf uses a novel idea to detect
such multitask instances by monitoring the reflection of the ambient light from the device’s
screen on the face of the participant. By analyzing the patterns of the reflected light, EmotiConf
determines whether a participant performs multitasking during the meeting hour.

Tagging Multitasking as Positive and Negative

To classify the multitask instances as positive or negative, EmotiConf models the general human
behavior by combining the facial expression (emotional states) of the participants, as captured
earlier, with the vocal expressions and the intent of the speech by the active speakers. By
analyzing the behavioral patterns of individuals while engaging in an onlinemeeting, EmotiConf
designs a rule-based approach to mark the multitask instances as positive or negative. For this
purpose, EmotiConf utilizes pre-trained models [176, 238] that are well-established in the
literature for extracting the vocal expressions and the intent of the speech from the audio signal
captured during the meeting.

4.4 Synchronous Module: Who Are Inattentive in My Meeting?

The synchronous module works in real-time to determine attentiveness of the participants. The
details follow.
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4.4.1 Detection of Faces and Facial Landmarks

EmotiConf detects the facial region of the participants using the method proposed in [40],
following which, the 68 facial landmarks are detected using the method shown in [101]. More
details can be found in Appendix A.1.

4.4.2 Extraction of Mouth Region and Speaker Detection

This module considers the facial landmarks detected near the lips to precisely extract a partici-
pant’s mouth region.

Feature Extraction

From the outer and inner lip regions’ landmarks, we extract the following two features for each
participant.
(i) Average Pixel Value at the Mouth Region (F1): The first feature is a pixel-based mean
intensity value from the inner region of the mouth. For example, the landmarks 50 and 57
approximately indicate the two corners of the mouth. Accordingly we extract a rectangular
patch from {𝑋50, 𝑌50} to {𝑋57, 𝑌57}, where {𝑋ℓ , 𝑌ℓ} denotes the x and y coordinates of the
landmark ℓ. The first feature (F1) from this given patch is estimated by taking the average of all
the RGB pixel values along with the patch. Since mouth movement occurs in the presence of
verbal communication, a large deviation in this value in consecutive frames should be tracked
if a person is talking.
(ii) Mouth Height to Face Height Ratio (F2): The second feature is derived by the formula,

F2 =
1
5 (D(50, 60) + D(51, 59) + D(52, 58) + D(53, 57) + D(54, 56))

D(20, 9)

where D(ℓ1, ℓ2) is the Euclidean distance between two landmarks ℓ1 and ℓ2. Instead of relying
on a single pair of points, the numerator takes an average of mouth heights, measured at five
different points on the mouth region. If this ratio is more than a threshold, it can be assumed that
the mouth is opened. However, an increase in this value can also indicate non-verbal activities
like yawning. The difference between talking and yawning in terms of F2 is that yawning
increases the mouth height for a few consecutive frames. However, talking required more rapid
movement of the mouth region; thus, the inter-frame difference will be more for the consecutive
frames. Based on empirical evaluations on different video recordings of people attending online
conferences (both in-house and open source YouTube videos), we set the inter-frame thresholds
for these two features as 𝑇 (F1) = 1 and 𝑇 (F2) = 0.15, respectively.
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Detection of Lip Movements

Let I(𝑖, 𝑝) be an indicator variable that determines whether a lip movement is detected for
participant 𝑝 over the video frame 𝐹𝑖 . Let, F 𝑖

1 and F
𝑖
2 be the feature values measured over the

video frame 𝐹𝑖 . For each participant 𝑝, we compute 𝑑1 = |F 𝑖
1 − F

𝑖−1
1 | and 𝑑2 = |F

𝑖
2 − F

𝑖−1
2 |.

If 𝑑1 > 𝑇 (F1) and 𝑑2 > 𝑇 (F2), then we set I(𝑖, 𝑝) = 1 (indicating a lip movement), else
I(𝑖, 𝑝) = 0 (indicating no lip movement).

Figure 4.7: The CNN architecture: Each Convolution layer (Conv2D layer is used since the input
is an image of shape 48x48x1) uses a kernel of size 3X3 and is followed by a LeakyReLu function for
activation. The MaxPooling layers use a kernel of 2X2 and are followed by Dropout layers. The final
output layer produces a vector of size 8 representing the eight classes of facial emotion from the CK+
dataset.

4.4.3 Emotion Mapping

EmotiConf estimates the emotion of a participant from her facial expression, when no lip
movement is detected over a frame, i.e. I(𝑖, 𝑝) = 0. For this purpose, we use a Convolution
Neural Network (CNN) trained with the extended Cohn-Kanade dataset [142] that consists of
eight different classes of facial expressions – anger, sadness, happiness, surprise, contempt,
fear, and neutral. The structure of the CNN is shown in Figure 4.7.

Quorum on Emotional States

EmotiConf executes a quorum function Quorum(E𝑝, 𝑝), shown in Algorithm 4, where 𝑝
is a participant and E𝑝 is the integer encoding of the emotional state of participant 𝑝. This
function is executed for each participant independently, and the function determines whether
the participant is cognitively attentive or not.

4.4.4 Marking the Cognitive Attentiveness for Each Participant

EmotiConf maintains a positive frame count A𝑝 for each participant 𝑝 to count the frames
where the participants are found to be attentive. This frame count is processed as follows. For
a frame F𝑖 , A𝑝 is incremented if one of the following two conditions are satisfied – (i) a lip
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Algorithm 4: Emotion Mapping – The Quorum Function
Input: Current Frame (F𝑖), Number of participants (N), Set of emotion labels (integer encoding of the emotional

states) of the participants (E) predicted by the trained CNN
Result: Estimated attention of a particular participant (True/ False) through mapped emotion
Function Quorum(E𝑝, 𝑝)

𝑙𝑐𝑜𝑢𝑛𝑡𝑒𝑟 [8] ← 0;
foreach E𝑥 ∈ E do

// E𝑥 denotes the emotion E (mapped to integer value) of participant 𝑥 among the
total set of participants.

if 𝑥 ≠ 𝑝 then
𝑙𝑐𝑜𝑢𝑛𝑡𝑒𝑟 [E𝑥 ] ← 𝑙𝑐𝑜𝑢𝑛𝑡𝑒𝑟 [E𝑥 ] + 1;
// Increases the counter of that emotion which is shown by the participant 𝑥.

𝑖𝑛𝑑𝑒𝑥 ← −1, 𝑚𝑎𝑥𝑣𝑎𝑙 ← 0, 𝑒𝑙 ← 0;
while 𝑒𝑙 < 8 do

// Finds the maximum emotion shown by the participants excluding 𝑝.
if 𝑚𝑎𝑥 < 𝑙𝑐𝑜𝑢𝑛𝑡𝑒𝑟 [𝑒𝑙 ] then

𝑚𝑎𝑥 ← 𝑙𝑐𝑜𝑢𝑛𝑡𝑒𝑟 [𝑒𝑙];
𝑖𝑛𝑑𝑒𝑥 ← 𝑒𝑙;

𝑒𝑙 ← 𝑒𝑙 + 1;
if E𝑝 == 𝑖𝑛𝑑𝑒𝑥 then

// If the emotion shown by max participants match with participant 𝑝’s emotion
E𝑥.

return True;
// Attentive.

else
return False;
// Inattentive.

movement is detected for the participant 𝑝 over frame F𝑖 , (ii) Quorum(E𝑝, 𝑝) returns true
over frame F𝑖 . Let within the time duration [0, 𝑡], 𝑓 number of frames have been processed;
then EmotiConf marks the cognitive attentiveness of the participant 𝑝 as A𝑝

𝑓
× 100%.

4.5 Asynchronous Module: What are You Doing, Man?

The asynchronous module works offline after the meeting is over and finds out the occasions
of positive and negative multitasking after analyzing all the detected multitask instances for a
participant. This module starts with the detected facial regions of each participant along with
68 facial landmarks for each of them. The different steps of execution in the asynchronous
module follow.

4.5.1 Detection of Multitasking Instances

The core idea is to analyze the ambient light reflected from the participants’ faces to check
whether the participant performed multitasking during the meeting session. Whenever a par-
ticipant changes the foreground application on her device, the ambient light from the device’s
screen should also change. It can be noted that if the participant starts playing a video, that
would also trigger continuous changes in the ambient light; however, the frequency of such
changes will be very high. On the other hand, for a typical meeting app, even if the main
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display of the meeting app shows some presentation, the intensity of the ambient light is not
likely to change much. In order to understand how much the light intensity will vary during
presentations, we considered about 10 presentations and calculated the average pixel values
from each slide on presentation mode. We calculated the difference between two consecutive
slide intensities and found that for 69% of the slides, the difference was only up to 6.67. These
presentations are mainly academic lecture materials following formal themes or presentations
of research papers. However, we do agree, that other types of animated presentations might
affect the ambient light, to some extent. Based on this idea, EmotiConf monitors the pattern of
the ambient light reflected from the participants’ faces to detect a change in that pattern.

Feature Generation

From empirical experiments, we observe that for a typical right-handed person, the reflection of
the ambient light is maximum from the right cheek of the participant4. Further, we observe that
the red and the green channels of the facial image have the maximum impact on the ambient
light; therefore, we use the intensity of the ambient light over these two channels, as reflected
from the right cheek of the participant. This intensity is used for finding out a “significant”
change in the intensity distribution, as we discuss next.

4.5.2 Extracting Multitask Instances

To extract the multitask instances based on an observation of the reflected light intensity, we
use an online unsupervised learning mechanism – Hierarchical Temporal Memory (HTM) [2].
An HTM is suitable when we want to find out a deviation, called anomalies, over time-series
data. HTM is lightweight and fast in processing time-series data to identify anomalies in its
pattern; therefore, an HTM perfectly suits our case.
Architecturally, an HTM consists of an Encoder that takes the feature at time 𝑡 and encodes

it, then passes it to a spatial pooler layer that generates a sparse vector. The active columns of
a spatial pooler are based on permanence values, indicating how confidently the column can
represent a particular input data feature. The model views the input steam series; it gradually
learns to predict the next timestamp’s value using a temporal memory. New patterns are also
learned as the columns responsible for predicting the data are continuously updated.
In our approach, we use the time-series average light intensity over the red and the green

channels as the input/output distribution for the HTM. Based on the predicted intensity values,
EmotiConf computes the prediction error for each timestamp 𝑡 by taking the absolute differ-
ence between the actual and predicted light intensity values. Since the data is processed in
asynchronous mode, the mean error is estimated after generating the errors at each timestamp,
up to 𝑡𝑛, where 𝑡𝑛 is the video’s duration. It is observed that task switching on the screen is

4For a left-handed person, we can similarly use the left cheek



4.5 Asynchronous Module: What are You Doing, Man? 77

indicated by a sharp increase in error, preceded and followed by slightly increased errors for a
few consecutive timestamps.
Taking advantage of this pattern, we estimate the threshold to be twice the average error

and identify the continuous blocks of timestamps where the errors are more than this threshold.
These blocks capture multitask instances.

4.5.3 Classification of Visual Multitasking

For classification of visual multitasking into positive and negative instances, EmotiConf uses
the idea that for positive multitasking, a participant typically switches the task in sync with the
discussions going on in the meeting. Consequently, the vocal emotion of the speaker and the
intent of the speech, cooperatively, plays a pivotal role here.

Audio Processing for Vocal Emotion Detection

We extract the vocal emotion of a speech signal using the well-adopted approach proposed
in [186]. EmotiConf captures the speech signal from the meeting and divides it into audio
segments of 5 seconds duration. The duration of individual and continuous audio signals has
been empirically estimated through experiments by considering two aspects, discussed in the
literature. In [185], it has been shown that different vocal emotions require varying amount (in
duration) of auditory data to be identified. The work shows that the duration varied from .5-1
second for 6 different emotions. Conversely, a complete sentencewith 10−15words on average,
takes around 4 − 65 seconds to be uttered. While segmenting the audio, the intention was to
encompass as many complete sentences as possible, from individual audio segments. Hence,
an optimal duration of 5 seconds was used. From each of the audio segments, it calculates the
following three features – Mel Spectrogram, Mel Frequency Cepstral Coefficient (MFCC), and
Chromagram. Mel Spectrogram and MFCC provide a perception of the frequencies present
in the audio tone in the Mel scale. In contrast, Chromagram or the Chroma feature provides
a representation of the 12 different pitch classes. These tonal and pitch features are used to
identify the vocal emotion using a Multi-layer Perceptron (MLP) having one hidden layer with
300 nodes. We trained the MLP model using a subset of the IEMOCAP dataset [24] that
contains 5 scripted or improvised dialogue sessions between 10 different actors. It can be noted
that the complete set of vocal emotional labels available in this dataset is not required for our
purpose, as many of those labels are not feasible in the context of online meeting scenarios. We
selected 5678 annotated audio utterances corresponding to 6 vocal emotional labels – angry,
happy, sad, neutral, excited + surprised, and fearful6. The pre-trained MLP model using this

5https://en.wikipedia.org/wiki/Words_per_minute (accessed: Friday 11th August, 2023)
6Although the facial emotional model as discussed earlier in Section 4.4 uses a contempt class, this class is

absent in the IEMOCAP dataset. On the other hand, the disgust class is highly imbalanced. So, we could not use
those two classes for vocal emotion extraction.

https://en.wikipedia.org/wiki/Words_per_minute
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dataset is used in EmotiConf to detect the vocal emotion of every audio segment into one of the
above six labels.

Text processing for Speech Intent Detection

To detect the intent of the speech of meeting discussion, we first use the Google Speech-to-Text
API7 to convert the speech into text. For the identification of conversational intent, EmotiConf
first segment the textual blocks and put proper punctuation based on an approach proposed in
[238]. This work uses a bi-directional Recurrent Neural Network (RNN) to consider variable-
length contexts in both the directions (previous and later) for a current word in the textual block.
The model has been pre-trained with 40M words from the English Europarl dataset [108]
containing statements from the European Parliament’s Proceedings.
Once the model segments and punctuates the textual blocks, the next task is to classify each

sentence into one of the three categories – statement, command, and question. For this purpose,
we use a simple CNN with a single convolution layer with ReLu activation, a pooling layer
followed by a fully connected layer that classifies the input to either of the three categories. This
model has been trained with two datasets – Stanford Question Answering Dataset (SQuAD)8,
and the Speech Act Annotated Dialogues (SPAADIA) Dataset9. These two datasets collectively
contain 80, 000 statements, 11, 000 commands, and 131000 questions.

Detection of Active Speakers and Head Movement Tracking

EmotiConf uses the vocal emotions and the intent of the speech for the active speakers. To
detect the active speakers, we utilize the indicator variable I(𝑖, 𝑝) (denoting whether there is
a lip movement) computed during the synchronous module of the framework. Let [𝐹𝑘 , 𝐹𝑘+𝑛]

be a window of 𝑛 consecutive frames. If
𝑘+𝑛∑
𝑖=𝑘

I(𝑖, 𝑝) > 𝑛
2 , then we mark the participant 𝑝 as an

active speaker for that window. It can be noted that 𝑛 is a tunable parameter depending on the
frame rate of the video; we set 𝑛 = 50 that corresponds to approximately 1sec of video duration.
Further, EmotiConf correlates the instances as headmovements with the multitask instances

to determinewhether the participant is actively engagedwith themeeting’s discussion. Based on
the position of the nose-tip (landmark 31), EmotiConf tracks the participant’s headmovement in
either of the four directions – Up, Down, Left, Right. For each consecutive frame, we calculate
the head shift direction based on the nose tip position in the previous frame. Let, {𝑋𝑛

31, 𝑌
𝑛
31} be

the x and y coordinates for the detected nose-tip over frame 𝐹𝑛. If |𝑋𝑛+1
31 −𝑋

𝑛
31 | << |𝑌

𝑛+1
31 −𝑌

𝑛
31 |,

i.e. the nose-tip movement in the vertical direction is significantly more than its movement in

7https://cloud.google.com/speech-to-text (accessed: Friday 11th August, 2023)
8https://rajpurkar.github.io/SQuAD-explorer/ (Access: Friday 11th August, 2023)
9http://martinweisser.org/spaadia_release_v01.zip (Access: Friday 11th August, 2023)

https://cloud.google.com/speech-to-text
https://rajpurkar.github.io/SQuAD-explorer/
http://martinweisser.org/spaadia_release_v01.zip
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the horizontal direction, then we mark it as the Up movement. Similarly, we compute the head
movements in other three directions.

Rule Mapping

Finally, EmotiConf classifies the instances of visual multitasking as follows. We use a rule-
based approach by correlating the detected multitask instances of a participant with the vocal
emotion of the speaker and the intent of the speech. For marking a multitask instance at time 𝑡,
we use the following rules.

1. If (a) the vocal expression of the speaker during the time interval [𝑡 − Δ, 𝑡 + Δ] (Δ is a
configurable parameter, we set the value as 0.5sec based on empirical observations during
the experiments) matches with the facial expression (emotional state) of the participant,
and (b) the speaker is commanding/questioning, then the multitasking instance is marked
as positive. The intuition is that whenever the speaker instructs the participants to do
something, the attentive participants (indicated by a match between the vocal emotion
of the speaker and the facial emotion of the participant) may trigger another task (like
taking a note or searching something over the Internet), which is positive multitasking.

2. If the participant has been an active speaker within the time interval [𝑡 − Δ, 𝑡 + Δ],
the multitask instances are marked as positive multitasking. The intuition is that if a
participant actively participates in a meeting discussion, it will be difficult for them to
continue with a completely unrelated activity for a long duration.

3. If we observe a significant facial movement of the participant within the duration [𝑡−Δ, 𝑡+
Δ], and the facial expression of the participant mostly matches with the vocal expression
of the speaker, then the multitasking instance for that participant is marked as positive.

Although the above three rules look simple heuristic and may not hold for 100% cases, we
observe that these are the general behaviors of engaged participants. An attentive participant
typically performs activities that engage them with the meeting’s discussion. Such activities
are supported by their active involvement in terms of expression change, assertive indications
like head nodding, etc. EmotiConf captures such behavioral instances to generate the above
rules. However, we concur that this set of rules may not be exhaustive to identify all the cases
of positive multitasking, and new rules can always be included in the design of EmotiConf .
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4.6 Deployment and Experiments

We developed EmotiConf using Python toolboxes, which works as a wrapper on top of two
existing meeting platforms – Appear (now Whereby)10 and Zoom11. Figure 5.10 shows the
screenshots of the application working in synchronous and asynchronous modules. Figure 4.8a
(top) shows the “in-meeting” processing of expressions and active participation in the estimation
of instantaneous attention. At the bottom, is the post-meeting result for the particular meeting
attendee, displaying his/her distribution of facial expression throughout the meeting (pie chart
on the top left corner), average attention on the top right corner (out of 100), average attention
with respect to the average attention of the other participants (bottom left) and the average
match of expressions with other participants (bottom right). The graph also shows the attention
score curve and the speech curve of the participant throughout the meeting. Moreover, figure
4.8b shows the feature graph of 2 participants and the post-meeting analysis of the multitasking
instances and their classes (positive peak implies positive task and negative peak indicates
negative task). We evaluate the platform’s performance on two different experimental setups
– (i) a pilot study over 30 different meetings to asses the performance of different components
of EmotiConf , (ii) an in-the-wild study with 96 separate users to assess the usability of the
platform.

4.6.1 Pilot Study (30 Online Meetings, 3–12 Participants per Meeting)

We considered three types of meetings. Table 4.1 enlists the meeting types, setup, duration of
each meeting type, number of participants in each type of meeting and the number of sessions
recorded for each type. For the 7 classroom scenarios (meeting type T3), although there were
∼ 55 students, only 5 of them agreed to share the ground-truth annotations. So, we have
validated EmotiConf on the data obtained from those 5 students during online classes. Out
of all the participants, approximately 48% were men, and the remaining were women; ∼ 50%
were wearing glasses. 60% of the participants belonged to the age group of 24-35 years, and
the remaining belonged to the age group of 35-60 years. 70% of the participants were graduate
students or research scholars, 20% were industry professionals, and the remaining were faculty
members at academic institutions.

4.6.2 In-the-wild Study (96 Individual Participants)

For the in-the-wild usability study of EmotiConf , we have made the system publicly available
along with a demo video that explains the working steps of the platform. As EmotiConf is
entirely a client-side application, all the meeting participants don’t have to use the platform.

10https://whereby.com/ (Accessed: Friday 11th August, 2023)
11https://zoom.us/ (Accessed: Friday 11th August, 2023)

https://whereby.com/
https://zoom.us/
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(a) Attention estimation over synchronous module (b) Multitask analysis over asynchronous module

Figure 4.8: The application screenshots: The synchronous module (left side) inscribes the attention
estimation along with emotional ground truth over participants’ video feed. The asynchronous module
(right side) shows the HTM prediction pattern from which the multitasking analysis is done offline.

With this advantage, individual participants can try the solution and provide their feedback on
the system’s usability.
To obtain the feedback, we have used the standard questionnaire from the System Usability

Scale (SUS) [23], where the participant needs to give a rating on a scale of 1 (Strongly Disagree)
to 5 (Strongly Agree) against 10 different usability statements. The statement and the formula to
calculate the SUS score can be found in Appendix A.2. It can be noted that obtaining a strong
agreement towards the odd statements and a strong disagreement towards the even statements
would indicate high usability of EmotiConf . For each participant, the scaled average score was
calculated using the formula shown in [23]. From the public survey, we have obtained 96
filtered responses from a total of about 104 responses from in-the-wild participants. ≈ 4.16%
of the responses were from UK, ≈ 7.29% from the US, ≈ 2.08% from Canada and the rest from
India. To ensure data validity, those responses that showed random answering patterns (e.g. all
questions are scored 5 or 1 and missed any feedback) were treated as outliers and removed.

4.6.3 Ground Truth Annotation

Ground truth annotation is a major challenge for evaluating EmotiConf , as attentiveness is
a subjective measure. For ground truth annotation, we had asked the participants to also
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Type Setup Duration Participants Sessions
T1 General discus-

sions among a
group of partic-
ipants without a
formal presentation

Total=5.85 hours (min =∼
18 minutes, Max=∼ 40
mins)

Average=4 (min =
3, max = 5)

18

T2 Group discussion
with a formal pre-
sentation by a par-
ticipant

Total =5.5 hours, (min
=∼ 50 minutes, max =1.2
hours)

Average 9 (min = 7,
max = 12)

5

T3 Classroom teach-
ing scenario

Total =7 hours (each hav-
ing a duration of∼ 1 hour)

5 7

Table 4.1: Details of different meeting types

record their computer screens using OBS Studio12. The participants’ video feed, along with the
recorded screen, is used for annotating the data. Additionally, we use a test-based validation of
the annotated attention labels.

Annotating Participants based on Attentiveness

Based on the activities being performed by the participants during the meeting, we have marked
the participants as attentive or inattentive for every 5min window duration during the meeting.
For this annotation, the entire meeting is divided into 5min windows (similar to [42]). We have
recruited 4 independent annotators, out of which one is the participant herself. The annotators
have been asked to carefully scrutinize the video feed of the participant and their recorded
screens. Accordingly, they mark the participants as attentive or inattentive. We observe that for
around 60% of the cases, the annotators agree on the cognitive attention state of the participants,
with an average inter-annotator ^ value of > 0.80 over a Cohen’s Kappa test [157]. When the
annotators have a high agreement, we use those annotations as the ground truth to evaluate
EmotiConf . From the annotated data, we observe that for around 62% of the cases, participants
were attentive; for remaining cases, participants were inattentive.
To further cross-validate the annotated data, we provided a set of questionnaires, based on

Multiple Choice Questions (MCQs), to the participants just after themeeting. The questionnaire
contained a set of questions carefully chosen on the discussions going on at various meeting
instances. To our best, we discussed with the meeting coordinators (like the presenters in the
type T2 meetings, the teacher for the type T3 meetings, etc.) a priori and ensured the minimum
possibility of utilizing background knowledge of the participants to answer the questions. We
observed that the validation matches for the instances that we have taken as the ground truth,
i.e., the attentive participants could answer the questions, whereas the inattentive participants

12https://obsproject.com/ (Accessed: Friday 11th August, 2023)

https://obsproject.com/
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could not answer.
To estimate how quickly and efficiently, a meeting organizer might detect the inattentive

participants on manual inspection, we requested 2 distinct annotators to view 5 recorded
meetings and identify the inattentive participants as quickly as possible. These annotators had
no prior bias towards any participant as they did not know any of the participants personally. The
annotators marked each Earliest Occurrence of Inattentiveness (EOI) by closely observing the
beginning and end of inattentiveness span of each participant. For example, if participant 𝑃1was
found to be inattentive from time 3minutes 15seconds-5minutes 30seconds and from 8minutes
30seconds-9minutes 35seconds by annotator 𝐴1, the EOIs of 𝑃1 were marked at 3minutes
15seconds and 8minutes 30seconds respectively. The exact EOI of their inattentiveness were
obtained through self-annotation. The EOI were also recorded by EmotiConf . To understand
how quickly and accurately inattentive participants could be detected both manually and by
EmotiConf , we compared the ground truth with the manual and predicted EOIs.
For EmotiConf , the time required for the detection of inattentive participants was sig-

nificantly less (p-value of 0.0003238 over Mann Whitney U-test) than that required by the
annotators. The average delay in EOI by the annotators was found to be 1.06 minutes while
that by EmotiConf was 7.43 seconds. To capture more nuanced reasons for this difference, we
interviewed the annotators and observed the following points:
(i) Lack of definition of attentiveness: Since no clear instruction was provided to the annotators
(organizers), regarding which parameter should define “attentiveness”, both of them looked for
visual inattentiveness. They only marked a participant to be inattentiveness if the participant
gazed away from the screen. This, not only delayed the detection, but also lead to inaccurate
detection. (ii) Parallel observation: The meetings consisted of 3-4 participants each and were
20 minutes long. Even though the number of participants was less, it was difficult for the
organizers to observe the participants simultaneously to monitor their attentiveness. The delay
was highly based on this fact. The difficulty in parallel monitoring also lead to missed detection
of exact inattentive instances (45.8% of the instances were missed by the organizers). These
results show the necessity of EmotiConf .

Annotating Multitasking

Here we work with part of the data for which we have successfully been able to annotate
the cognitive attention state of the participants, as discussed above. To annotate multitasking
instances, we utilized the information from the screen recordings. The recorded screen shows
the different tasks the participants performed on the computer while attending the meeting. We
have used four independent annotators, out of which one is the participant herself, to annotate
the multitasking instances, as well as their labels as positive or negative, depending on whether
the task is related to the meeting. For this annotation, we observed that for all the cases, we have
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(a) Overall performance over entire experiments (b) Performance for meeting Type T1 (General Dis-
cussions)

(c) Performance for meeting Type T2 (Group Presen-
tation)

(d) Performance for meeting Type T3 (Class-rooms)

Figure 4.9: EmotiConf ’s performance for attention estimation (Synchronous Module)

an agreement among the annotators with inter-annotator ^ > 0.80 for Cohen’s Kappa test [157].
It can be noted that the above annotations can correctly provide the ground truth for the

on-screen multitasking instances, i.e., the participants perform it on the same primary device
where the meeting app is running. If the participant takes a note on her mobile, the annotators
might mark it as a negative multitasking although it is a positive one, because they do not know
whether the participant is taking notes on her mobile or chatting with a friend over WhatsApp.
The participants themselves can only annotate such cases; however, we did not want to rely
on the participants’ annotations entirely. Further, we observed that such instances where the
participants do something out of their primary device are low (< 2%) in our data; therefore, we
did not explicitly consider those cases in our evaluation.
In addition, we collected following details from the participants – (i) screen size of the

primary device, (ii) approximate screen-to-face distance, (iii) lighting condition in the room.
As EmotiConf ’s Asynchronous module relies on the reflected light from the participants’ faces,
we utilized this information to analyze its performance under diverse scenarios.

4.7 Results and Evaluation

We start with the analysis of the attention estimation, followed by a detailed study ofmultitasking
detection and classification.



4.7 Results and Evaluation 85

4.7.1 Pilot Study: Attention Estimation

EmotiConf computes an attention score in a scale of [1-100] based on the factors like lip move-
ment and facial emotion matching. We then apply a threshold on this computed attention score
to mark a participant as attentive or inattentive. Figure 4.9 shows the average precision, recall,
and F1-score for different threshold values for four different cases – the overall scenario and
the three meeting types as we mentioned earlier. Precision indicates the average percentage of
inattentive (attentive) participants detected by our method, out of all the inattentive (attentive)
participants. In contrast, recall indicates the average percentage of correctly detected inattentive
(attentive) participants out of all the detected inattentive (attentive) participants. We compute
the F1-score as the harmonic mean of precision and recall. The figure indicates that overall
EmotiConf achieves a F1-score of 0.91 with Precision 0.89 and Recall 0.94 with a threshold
of 47 (Figure 4.9a). Further, it is comforting to see that EmotiConf detects the inattentive
(attentive) participants for the Type T1 meetings (group discussions without formal presenta-
tion) with an F1-score of 0.92 (Precision 0.89, Recall 0.94) with a threshold value of 48. For
the Type T2 meetings (a group discussion with formal presentations), we observe a maximum
F1-score of 0.91 (Precision: 0.86, Recall: 0.97) with a threshold value of 53. Finally for
the Type T3 meetings (online classrooms), EmotiConf achieves a F1-score of 0.89 (Precision
0.94, Recall 0.92) with a threshold range of 35-47. In summary, we observe that a threshold
value between 45-55 works well for all the cases. It was interesting to notice that EmotiConf
shows slightly better results for meeting types T1 (many-to-many discussion setup with high
rate of active communication) and T2 (one-to-many discussion setup with moderate rate of
active communication) when compared to T3 (one-to-many discussion setup with low rate of
active communication). It could hence be inferred that the setup had little or no effect on the
system’s performance, rather, the difference in the F1-score resulted from the degree of discus-
sion. EmotiConf performed better for meetings with higher rate of active communication.
In order to compare the performance of EmotiConf in the different types of meetings, we have
performed a significance analysis using Welch’s unpaired t-test and unpaired t-test. For this,
we have considered the scores of the participants in the MCQ tests for each of the videos and
compared themwith the attention score generated by EmotiConf . By comparing the differences
(error) between these two scores for each video, it could be seen that EmotiConf worked the
best for the meeting type T1 with an average error of 7.05. The error was significantly less than
both types T2 ( p-value of .000105 for the unpaired t-test and .039 for Welch’s unpaired t-test)
and T3 (p-value of .000000016 for unpaired t-test and .0324 for Welch’s unpaired t-test). For
type T2, the mean error was 14.53 which was significantly less (p-value of .041 for unpaired
t-test and .046 for Welch’s unpaired t-test) than type T3 which had a mean error of 25.7.
In the light of this result, the challenges and advantages of each setup with respect to Emoti-
Conf need to be discussed. The design of EmotiConf relies on active speaker detection and
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emotion matching for attention estimation, making it best suitable for meeting type T1. Under
T1, all participants had an equal chance of actively participating in the discussion and were
likely to express themselves more actively in an ideal scenario. This, in turn, would allow
EmotiConf to capture the outliers in a better way. However, in a real scenario, even under a
many-to-many communication setup, we found a significant imbalance in active communica-
tion among the participants in some meetings. For example, in one meeting, participant P1
introduced participant P2 to P3 and allowed them to interact. Even though P1 was fully engaged
throughout the meeting, their communication was sparse. However, EmotiConf solved such
cases by relying on the change in their facial expressions. In setup T2, the opportunity for
active vocal participation was limited as the presenter was the main speaker and others could
occasionally communicate with them. Moreover, during formal presentations, we observed that
the changes in facial expression were not significant and mainly varied from neutral to happi-
ness/surprise/anger primarily. However, since EmotiConf relies on emotion matching, instead
of change rate, it could perform seamlessly. Considering the average rate of active participation
and expressiveness EmotiConf can also be applied to type T2. The most challenging setup of
EmotiConf is, however, type T3. The major disadvantage of such a setup is the significant (or
sometimes complete) absence of communication between the teacher and students during the
lessons. Even though EmotiConf performs well with a limited number of students under T3
setup, estimating the performance of EmotiConf with an increased number of students in this
setup would be an interesting observation in the future.

Improvement Analysis

To analyze whether EmotiConf can further improve gaze-based methods by capturing the
cognitive aspect of the subject, rather than mere visual focus, we used a technique similar to the
one proposed in [86]. In this approach, we track the eye gaze and gaze gesture using a method
proposed in [199] and then use that information to find out when the participant’s mind diverts
from the meeting, i.e., the participant is inattentive. Figure 4.10 shows a comparison between
EmotiConf and gaze-based attention over the data collected during the pilot study. We observe
EmotiConf performs better than gaze-based attention. Interestingly, while the precision for
both the methods is closer, EmotiConf has a higher recall than the gaze-based method. While
the gaze-based methods can detect most of the inattentive (or attentive) instances (therefore,
the precision is high), it also results in high false positives by marking some attentive instances
as inattentive. Such false positives are mainly for the cases when the participant gazes on a
different application.
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Figure 4.10: Comparing EmotiConf with
gaze-based attention estimation

Figure 4.11: Sensitivity of EmotiConf in dif-
ferentiating between attentive and inattentive par-
ticipants

Sensitivity Analysis

The classification of the participants into attentive and inattentive depends on the value of a
threshold that we use. To analyze the sensitivity of this threshold, we plot the distribution of
the attention scores (Figure 5.9), as generated by the synchronous module of EmotiConf . The
figure indicates that the scores corresponding to the attentive instances are distributed around
the high values (more than 60 for the majority of the cases), whereas the scores corresponding
to the inattentive instances are around the low values (less than 40 for most of the cases).
Consequently, we see that EmotiConf produces the attention scores on a scale that indicates
significantly different distributions between the two classes. Thuswe can obtain a clear threshold
for most cases to mark the participants as attentive or inattentive.

4.7.2 Pilot Study: Multitasking Detection

We use the metrics Precision, Recall, and F1-Score to analyze the performance of EmotiConf
in correctly identifying the multitasking instances over the Asynchronous Module. Precision
indicates the percentage of multitasking instances detected out of all the multitasking instances.
In contrast, the Recall indicates the percentage of correctly detected multitasking instances out
of all the detected multitasking instances. We compute the metrics for each participant over
every meeting session and then find out the average values.

Design of a Naïve Baseline

To understand how well the HTM-based model used in EmotiConf works in comparison with
other possible approaches, we design a threshold-based naïve baseline as follows. We compare
the feature value (as used in HTM) for two consecutive frames. If the difference of the feature
value over two successive frames is more than a threshold, we mark it as a multitasking
instance. The core idea in this threshold-based approach is that the intensity difference of the
ambient light over two consecutive frames should have a significant deviation whenever the
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participant switches the task on her computer screen. Experimental evaluations showed that
the average F1 score was ≈ .74 when a static threshold was calculated to be about twice the
average difference between two consecutive features for all participants under different setups.
However, choosing an optimal threshold dynamically increased the overall F1 score to ≈ .809
for the naïve baseline. As we are interested in comparing the performance of EmotiConf with
the best possible performance of this naïve baseline, we experimentally choose the threshold
value for each participant over each meeting session that results in a maximum F1-Score.

(a) Normal light and a distance < 50cm (b) Bright light and a distance < 50cm

(c) Normal light and a distance > 50cm (d) Bright light and a distance > 50cm

Figure 4.12: Comparison of performances between HTM and threshold-based methods

Observations

Figure 4.12 summarizes the results from four different cases with different lighting conditions
and screen-to-face distance combinations. We observe that the HTM-based method used in
EmotiConf in general performs better than the naïve threshold-based approach under a normal
lighting condition. However, HTM suffers apparently a bit in terms of F1-score under bright
room-lights (Figures 4.12b and 4.12d), notably because the change-points in the intensity
of the reflected light from participants’ faces gets subverted by the intensity of the room
lights. Interestingly, we observe that under bright lighting conditions, the naïve threshold-based
approach shows a high precision with a low recall. This indicates that although the naïve
threshold-based method detects many multitasking instances, the false positives are very high,
thus resulting in a low recall. This implies that although EmotiConf suffers in terms of the
overall F1-score under the bright room-lights, the overall performance of EmotiConf is still
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better than the naïve baseline as whatever multitasking instances it detects, it detects most of
them correctly.

Figure 4.13: Performance of HTM-based vi-
sual multitask detection under different screen
sizes

Figure 4.14: Performance of multitask classi-
fication

Impact of the Screen Size

The screen size of the primary device plays a vital role in our approach for detectingmultitasking
instances, as the intensity of the ambient light changes with a change in the screen size.
Figure 4.13 shows the impact of the screen size on the performance of the multitasking detection
module of EmotiConf. The figure indicates that although the performance varies marginally for
different screen sizes, it is comforting to see that the F1-Score always remains more than 0.80.
Further, we do not observe any specific patterns in the performance based on the screen size.
From this analysis, we conclude that factors like the room’s lighting condition, screen-to-face
distance, the brightness of the screen, etc. influence the performance more than the screen size.

4.7.3 Pilot Study: Multitask Classification

Classification of the multitasking instances is the most challenging module in the design of
EmotiConf , as it depends on a complex interplay of various factors. We utilized a rule-based
heuristic following various general observations from the behavioral patterns of individuals
during an online meeting. The rules classify the multitask instances as positive or negative or
abstain when none of the rules match. Figure 4.14 shows the precision, recall, and F1-score for
classifying multitask instances. The figure shows that although the precision is low, the recall
is high, indicating that although the rule-based approach may not classify all the multitask
instances, the positive and negative instances that it returns are mostly correct. Indeed we
observe that the low precision is attributed to the low accuracy of the vocal emotion detection
module, which is around 70%. Detection of vocal emotion is much more challenging than
detecting facial expressions, as the audio signal gets significantly affected by the presence of
the noise from the environment. This is one of the precise reasons why we avoided utilizing
vocal emotions in the synchronous module.
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Table 4.2: Distribution of Classification Rate for Classification of Multitasking Instances

Features Positive instances % Negative instances %
Vocal emotion, Statement intent,
Mouth movement, Face (head) move-
ment

58.69% 66.33%

Statement intent, Mouth movement,
Face (head) movement

39.13% 41.58%

Vocal emotion, Mouth movement, Face
(head) movement

19.56% 13.86%

Vocal emotion, Statement intent, Face
(head) movement

2.17% 26.73%

Vocal emotion, Statement intent,
Mouth movement

56.52% 14.85%

Ablation Study

We primarily used four features to develop our rule-based approach – vocal emotion of the
speaker, intent of the statement (speech) from the speaker, mouth movement of the participant,
and face (head) movement of the participant. We perform an ablation study here, whereby we
use a combination of these features to see how it impacts the performance ofEmotiConf in terms
of multitasking classification. Table 4.2 summarizes the results. The table shows the percentage
of positive and negative multitasking instances retrieved correctly by EmotiConf with different
combinations of features. This ablation study confirms that all four features are important to
maximize the percentage of correctly marking multitasking instances in the respective classes.

4.7.4 Runtime Performance

During the pilot study, we also compute a few runtime performance metrics of EmotiConf .
The synchronous module takes 0.00097ms to process each frame for a video feed with a frame
rate of 30fps. In general, the output is displayed with a lag of ∼ 0.05 sec, which is minimal.
Consequently, the attention information can be displayed in real-time. The asynchronous
module of EmotiConf takes ∼ 100 mins to process a ∼ 58 mins video and display the output.
During the runtime, the synchronous module takes around ∼ 60MB, whereas the asynchronous
module takes ∼ 520MB of memory.

4.7.5 Usability Study In-the-Wild

Figure 4.15 shows the distribution of the SUS score as obtained based on the feedback from
the public deployment and survey (Cronchbach alpha=.753). It can be noticed that the even
statements ( mentioned in Section 4.6.2 ) which are negative in nature, have received lower
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scores than the odd statements which are positive statements about EmotiConf . We get an
average SUS score of 80.5, indicating that the respondents on average felt EmotiConf as a
usable platform. Figure 4.15b shows that the majority of the participants have given an average
SUS score of more than 70.

(a) Statement wise score distribution (b) Participant wise score distribution

Figure 4.15: Statistical distribution of SUS scores: Statement-wise and Participant-wise

The survey also contained a field for providing textual feedback from the respondents.
Apart from appreciating the effort, we also obtained a few exciting feedback. One of the
participants mentioned “I think it would change the experience of online meeting calls....It
would make everyone as a responsible person.....”. Indeed, one of our primary objectives of
developing EmotiConf was to design a watchdog that can oversee the participants’ activities
during an online meeting. Such a platform can undoubtedly boost up the responsibility of
individuals during an online meeting. While this is inherent during an in-person meeting as
the participants know that others are watching them; however, this has been a challenge for
online meeting platforms. Another interesting feedback is – “One other interesting application
could be showing how "interesting" the content is. For example, if many people are focusing
their attention on the meeting, that must mean that something interesting is going on.” While
this was not in our list of objectives, identification of interesting contents can undoubtedly be a
by-product of EmotiConf .

4.8 Discussion

Overall, we observed that EmotiConf performs satisfactorily while tested over a diverse setup.
During the entire phases of design, development, and evaluation of the platform, we got some
interesting insights that we summarize here.

(1) Diversity of Multitasking: EmotiConf performs best in detecting on-screen visual mul-
titasking instances when the participant switches the task on her primary device where the
meeting application is also running. There can be other forms of multitasking, like browsing
mobiles, reading a storybook, talking over mobile, etc. Such multitasking instances can be
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detected directly by applying a video-based activity detection framework such as [6]; therefore,
we have not focused on them in this work. EmotiConf ’s detection accuracy will drop if there
are instances where a person’s facial expression while reading irrelevant articles during the
meeting coincidentally matches with the expression of the conference attendees. However, such
cases are sparse and will not significantly reduce the overall accuracy of the system. Further, it
isn’t easy to correlate such kinds of multitasking instances with the cognitive attention of the
participant. For example, a participant can chat with her friend over WhatsApp while simul-
taneously listening to the discussion in the meeting. Consequently, we believe that a detailed
study needs to be done further to characterize such multitasking, which is currently beyond the
scope of EmotiConf .

(2) Privacy and Permission Issues: EmotiConf runs entirely as a wrapper on top of the
meeting client and does not use any additional data beyond the ones available with the meeting
client. However, while collecting the public feedback, one respondent mentioned that “Does
not make much sense as a lot of permissions would need to be granted leading to breach of
privacy.” However, as we mentioned earlier, EmotiConf uses the participants’ video feeds
(from the webcam) and the audio data which the meeting client provides. As the platform
works as a wrapper, depending on the OS or the browser setting, the participants might have
to give additional permission to access the webcam and the audio; however, it is not more than
what is needed for an online meeting client to run.

(3) Impact on the Presenter or the Primary Speaker during the Meeting: During the public
feedback, one respondent shared a very interesting observation on the applicability of the syn-
chronous module of the platform: “The attention of the teacher may be diverted to observing
the students rather than presenting the content with interest. ... In the process of identifying
the non-listeners, we may not present well to the active listeners. This will compromise the
purpose.” We indeed partially agree to this point. For some cases, primarily for the teachers in
an online class, such additional informationmight divert their minds. However, the synchronous
module can always be made asynchronous by providing complete feedback about participants’
attentiveness at the end of the meeting. Consequently, we may keep this module configurable,
depending on whether the participant wants the information live or not.

(4) Complex Device Setup and Environmental Conditions: One inherent assumption behind
the design of EmotiConf is that the participant uses a single computer screen during the meeting
duration. However, in practice, we observed that some participants might use more than one
screen and switch between the tasks over those two screens. EmotiConf fails to correctly detect
the multitasking instances in such scenarios, as the ambient light from one screen interferes
with the ambient light from the other screen. Further, a change in room lighting condition, for
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example, due to the window curtain movement during the daytime, can also affect the detection
and increase false positives.

(5) Utilizing Deep Learning for Multitask Classification: We used a simple rule-based ap-
proach based on behavioral modeling of the participants to classify the multitasking instances
into the positive and the negative ones. One can certainly argue for using a deep learning
model to perform this classification. While we agree with this view, any realistic deep learning
model will need massive labeled data to train the model. To reliably generate the labeled data,
we need the screen recording of the participants, which provides the ground-truth information.
However, it was highly challenging for us to convince the participants to share their screen
recordings. As a matter of fact, we could obtain the data from only 5 participants from the
online classes, whereas the course had ∼ 55 students on average. However, it is comforting
to see that the rule-based approach can correctly detect ∼ 66% of the negative and ∼ 59% of
the positive multitasking instances. One exciting aspect of this rule-based method is that the
system remains silent when none of the rules matches, resulting in low false positives. Future
workwill also aim at exploringmeeting-oriented datasets13 for gesture and expression detection.

(6) Multitasking over Applications Having Similar Color Contrast: One of the major crit-
icisms of using the ambient light intensity to detect the multitasking instances can be that the
approach may fail when the participant switches between two applications having similar back-
ground intensity. However, in practice, we observe that the popular online meeting applications
like Zoom, Google Meet, Microsoft Teams, etc., typically use a contrasting background so that
the individual video feeds from the participants or the main presentation screen becomes clearly
visible. On the other hand, applications that individuals typically use simultaneously with a
meeting app, like emails, browsers, notepads, etc., have a white or light-colored background.
Therefore, EmotiConf works well for such a majority of the cases. EmotiConf is not affected by
blurred backgrounds as the light reflection is analyzed from the facial region of the participants.
However, we admit that a user can cheat the platform by changing the background color contrast
of different apps they want to use simultaneously with the meeting app.

(7) Workplace Surveillance and Risks: The experiments with EmotiConf also included
feedback from several participants. Among positive feedback like “I think it will change the
experience of online meeting calls. It would make every one as a responsible”, “A good ap-
plication for immense use for schools and institutions”, “The system is very user friendly and
the use case is appropriate for the current scenario. I found this idea remarkably worthy.”, and
so on, there were some negative yet interesting feedback that depict that EmotiConf is not free
from certain loopholes and pitfalls. The evident drawbacks of EmotiConf can be discussed in

13https://groups.inf.ed.ac.uk/ami/corpus/ (accessed: Friday 11th August, 2023)

https://groups.inf.ed.ac.uk/ami/corpus/
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the context of the following feedback:
“There’s a simple way one can cheat this system... direct the webcam stream to a looping video
of a face attentively watching a lecture.”
Indeed, there are scopes for cheating the system. Even though liveness detection is not incor-
porated in EmotiConf , playing pre-recoded videos will not have an effect on the performance
of the system as the expressions can only match coincidentally. However, one may cheat the
system by imitating the expressions of others by observing their faces, rather than listening to
the discussion itself.
“The attention of the teacher may be diverted to observing the students rather than presenting
the content with interest. My opinion, no need to bother about those who are doing other tasks.
Evaluate them based on some Q&A or test. In the process of identifying the non-listeners, we
may not present well to the active listeners. This will compromise the purpose.” If the attention
scores are continuously visbile in realtime, it might both help and hinder the speaker in terms of
attentiveness. As a solution, a future versions of EmotiConf will provide the option of viewing
the scores after the meeting has ended.
“what about security”, “a lot of permissions would need to be granted leading to breach of
privacy.”
The most crucial aspect of EmotiConf is the maintainance of participant’s privacy. While, no
user-centric data is stored for processing, many users do not feel comfortable with a system
being a “watchdog” or being monitored continuously. In addition, one of the undeniable pitfall
of EmotiConf is the requirement for all users to turn their camera on. Granting the permission
to access their camera might not be comfortable for a lot of users (as observed during our ex-
periments). In addition, automated systems like EmotiConf are rarely free from false positives.
These false positives in case of multitask detection, can jeopardize the confidence, reputation,
assessment and even the attention of some participants.

4.9 Summary

To the best of our knowledge, EmotiConf is the first of its kind that develops a platform to detect
and characterize multitask instances during an online meeting to understand the cognitive
attentiveness of its participants. Such a platform can certainly promote better engagement of
the participants towards the meeting, even when they work from home. While the quality
of an online meeting has been a serious concern among different professions, a watchdog
platform like EmotiConf can help in making the meeting more productive. While a thorough
evaluation of EmotiConf shows that the platform may fail in certain boundary cases; however,
overall, we observe a satisfactory performance with feedback of high usability of the platform.
Nevertheless, individuals need to be responsible for their duties, as technologies can always be
cheated, as in the case of EmotiConf too.





5
Ubiquitous System for Detecting Engagement in

Online Videos

Imagine an interactive smartphone application that can “sense” its user’s mood when browsing
social media profiles, watching a movie, or typing a long message on it. Considering the global
prevalence of depressive and anxiety disorders, particularly among the young population [80],
such an application can pervasively help and alert individuals early. It can even recommend
remedies, such as suggestingmusic, a funny reel, or a comedymovie that helps change themood.
Facial expressions are one of the prominent ways to correctly infer an individual’s mood [132]
and thus can fulfill the above vision if the smartphone can monitor the temporal changes of its
user’s facial expressions. Interestingly, there have been decades of research on inferring facial
expressions from video or image-based data [134, 159, 280, 16]; however, these works are not
suitable to fulfill the above vision of developing a pervasive smartphone application because
of the following reasons. Firstly, image and video processing is computationally heavy and
consumes a significant amount of system resources and energy. Running a computationally
heavy model on a hand-held device like a smartphone is not always feasible as it will affect
the device’s performance. Secondly, in the absence of proper lighting conditions, camera-
based techniques result in missed detection. In a scenario where a person is watching a movie
while sitting in a dark room, camera-based expressions detection will fail due to the lack of
ambient light. Thirdly, the most important drawback of image and video-based systems is the
privacy concern. In systems that aim to monitor all user activities continuously and operate
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as a “watchdog”, the users often feel uncomfortable. Moreover, continuous camera usage also
depletes the battery life at an unusually faster rate.
To achieve the above vision, in this paper, we explore acoustic sensing over a commercial

off-the-shelf (COTS) smartphone to identify four basic facial expressions of the user when they
browse through a smartphone app (say, watching a movie on Netflix). Due to smartphones’
relatively lower processing capabilities, lightweight solutions need to be developed for expres-
sion detection, and acoustic processing evokes less power consumption than image processing
techniques. Since the trade-off between accuracy and system resource consumption should be
optimal while designing expression detection models for smartphones, unlike that for desk-
tops where accuracy is of prime importance, acoustic sensing becomes a suitable approach for
smartphones. Summarily, developing

Figure 5.1: Our vision in contrast to the existing literature

a pervasive smartphone system for facial expression recognition has the following require-
ments – (1) lightweight technology with in-device computing, (2) no use of external hardware,
(3) performance-invariant under different lighting conditions, (4) correct detection of different
facial movements, (5) should not get impacted from occlusions, like glasses or face masks, and
(6) performance-invariant from external noises, like motion or interference from other signals.
Interestingly, there have been a few recent works [64, 126] that explore acoustic sensing for
tracking facial movements. Vision-based approaches [159] can capture a maximum number of
facial expressions while capturing the video/image with the embedded camera of the device.
However, both SonicFace [64] and EarIO [126], although work based on acoustic sensing prin-
ciple, they need external hardware supports (while the former needs a microphone array, the
latter works on earphones). Further, SonicFace is computationally heavy and typically works on
a desktop computer, while EarIO needs specific hair arrangements (ponytail hairstyle). Further,
EarIO captures only some specific facial movements (like eye, mouth open/close, and their
combinations) and not the expressions directly. Although the design of ExpresSense is inspired
from [136], it novelty lies in utilizing the simple acoustic features in classifying facial expres-
sions; rather than merely exploring the magnitude of its displacement caused by the movement
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of facial areas (like blink). Moreover, ExpresSense eliminates the requirement of any static
threshold for comparing the derived acoustic features. Figure 5.1 shows how our vision bridges
these gaps and addresses the basic requirements.

5.1 How Do We Utilize Acoustic Sensing?

In general, visible facial expressions that last between 0.5–4 seconds are broadly grouped under
macro expressions. Apart from these, more subtle and spontaneous micro-expressions last for
less than half a second [283]. Irrespective of the type of facial expression, each expression
results from a set of Action Units (AU) (facial muscle movements). Interestingly, facial muscle
movements are the building blocks of expressions and can be categorized under ocular (around
the eye region), nasal (around the nose region), and oral (around the mouth area) groups [228].
For example, a particular expression, say “Happiness”, is a combination of facial muscle
movements, mainly around the oral region and subtly around the ocular and nasal area. The
core idea of this paper is to detect such AUs through lightweight acoustic sensing over a COTS
smartphone to capture a subject’s facial expression. In contrast to the complex signal processing
techniques over microphone array as used in SonicFace [64] or deep learning model used in
EarIO [126], we rely on simple signal processing techniques and light machine learning models
that can effectively be implemented on a smartphone app, while using only the embedded
smartphone hardware.

5.2 Contributions

In the essence of the above discussion, we propose ExpresSense, a lightweight smartphone
application that utilizes near-ultrasound acoustic signals to detect four basic expressions [90, 7]
of a user: Happiness, Anger, Surprise, and Sadness (orNeutral1). ExpresSense transmits chirps
between the range of 16-19 kHz, using the inbuilt speaker of a commercial smartphone. The
reflected chirps are recorded through the single microphone of the smartphone, filtered, and
processed to derive the amplitude and phase of the reflected signal for different frequency bins.
The frequency bins that contribute the most to predicting the expressions are selected. This
process of bin pruning is followed by utilizing the phase and amplitude of the echo from the
desired frequency bins and using them to predict the corresponding expression of the subject
by a pre-trained ensemble of classifiers.
The significant challenges in developing ExpresSense arise from three primary aspects:

design, development, and data. From the perspective of designing the system, the underlying
characteristics of facial expressions, acoustic signals, and their intricate correlation needs to

1Existing literature argue that for both Sadness andNeutral, there is no visible sign of the facial gestures, and they
appear to be very similar; therefore, these two expressions are used interchangeably in the literature [122, 255, 89].
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be considered. Assessing whether the facial expression has an identifiable effect on the signal
reflection concerning the signal features poses a challenge in designing the proposed system.
Next, a major challenge is to develop a system that overcomes the limitations of commodity
smartphones. We address this issue by developing a model that can thrive on any commercial
smartphone’s very minimal and basic capability. The main contributions of this work are as
follows.

1. Development of a lightweight and camera-free smartphone application that uses acoustic
signals for facial expression detection. The system works on a standalone smartphone
and requires no additional hardware.

2. Experimental analysis of ExpresSense and its application, demonstrating its significant
performance under a realistic environment for both posed and natural expressions.

We conduct a thorough lab-scaled study with 12 participants to evaluate the performance
of ExpresSense2 – both as a standalone platform under a controlled environment as well as
an embedded application in the wild. The experimental results reveal that ExpresSense can
work with an average accuracy of about ≈ 75% as a user-dependent model and performs
significantly well under different conditions like angular variance, ambient sound, motion, and
so on. Further, to evaluate ExpresSense under a realistic setup with natural expressions, we
develop a smartphone app that can monitor and measure user engagement while watching a
streaming video. The application matches the overall facial expressions of the subject and the
video genre to provide a temporal variation in the engagement score, which we compare with
the ground truth captured from questionnaires and self-assessment. From a thorough study
with the 12 participants under an in-the-wild setup, we observe that the app performs with an
average F1-score of 0.84. Further, we performed a large-scale study with 72 participants to test
the usability of ExpresSense with the help of this video streaming app that monitors the users’
engagement and shares a summary report with them at the end of the streaming. The study
revealed a high usability score of 85, indicating the system’s effectiveness.

5.3 ExpresSense Design: Opportunities and Challenges

We start with a pilot experiment to understand how the acoustic signal generated from a
COTS smartphone gets impacted by the movement of facial muscles. By showing how near-
ultrasound signals can detect such movement, we then discuss the challenges associated with a
COTS smartphone in designing a system like ExpresSense.

2We have taken the institute’s ethical committee’s approval to perform all the human studies reported in this
paper.
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5.3.1 Pilot Study

ExpresSense considers Frequency Modulated Continuous Wave (FMCW) or chirps that have
linearly increasing frequency in time. Based on the characteristic of transmitted and reflected
signals, we can say that a reflected signal is only a time-delayed variation of the transmitted
chirp. In [136], the authors explain how a change in the reflective surface, along with subtle
movements causes a shift in both phase and amplitude of the signal. This is caused by both the
nature of the reflective surface and the length of the path the transmitted signal travels before
hitting the reflective surface. If the reflective surface is skin, some signals will be absorbed,
causing higher attenuation. On the other hand, more reflective surfaces, like teeth, eyeballs,
etc., will result in lower attenuation. This affects the amplitude of the signal. Therefore, the
amplitude value of the signal when a person is laughing (teeth are visible) or surprised (eyes
enlarged) will be significantly different from when they are sad (mouth closed, eyes normal).
The signal path is affected by actions like an eye blink when the eyelid comes before the eyeballs
and reflects the incoming signal. This causes a change in the signal phase. In terms of facial
expressions, the phase of a signal will be significantly different when a person is surprised
(mouth opened) or laughing (lips separated) from a scenario when the person is sad (lips cover
the teeth).
Thus, in contrast to the existing approaches [64, 124, 66, 25, 129] that use complex

frequency-domain signal processing techniques, we consider the time-domain amplitude and
phase of a signal by intelligently and adaptively choosing a frequency bin that can capture the
facial expression information. For choosing the frequency bin, we rely upon the discussed
characteristic of amplitude and phase variation. If there are moving objects in the environment,
like ceiling fans, moving curtains or passing vehicles, the changes in amplitude of the signals
from thesemediumswill be less due to the static reflective surface. Based on this understanding,
we select the frequency bin with the largest variance in the phase. We next analyze how the
amplitude and the phase of a signal varies due to the movement of facial muscles.

Methodology

To test whether smartphone-generated acoustic signals can differentiate between relaxation and
contractions of facial muscles in different regions, we performed a pilot study with two subjects.
We asked the subjects to perform the following sequence of facial actions while relaxing the
facial muscles in between every two actions: Raise eyebrows/frown (B), blink (E), raise left
cheek (CL), raise right cheek (CR), move mouth region (left and right) (M), and smile (S).
During the experiment, we placed a smartphone in front of their faces at a distance of about 30
cm and an elevation and angle of zero degrees. We continuously played FMCW signals between
16-19 kHz, through the speaker. The reflected signals are recorded through the microphone.
After a series of processing (explained in Section 5.5), we derive the phase and amplitude of the
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Figure 5.2: Facial Muscles and Acoustic Feature Variation

Figure 5.3: Movement of facial muscles due to Forced Expressions (FE) and Natural Expressions
(NE)

reflected chirps and select the frequency bin with the most significant variation, as mentioned
earlier. We then plot the absolute difference in consecutive amplitudes and consecutive phases
of these signals with respect to the time.

Observations

The pilot study led to the following observation: (1) Facial AUs involving a significant muscle
movement induce a change in either amplitude, phase, or both. (2) AUs that involve lower
muscle movement and no change in the reflective surface do not affect the signal features. For
example, the movement in the nasal region failed to change the amplitude and the phase in the
selected face-bin. To further compare the degree of effect individual AU has on the phase and
the amplitude, we plot Figure 5.2. We prune out the zones with no movement (face is relaxed)
and nasal movement as they cause no variation in features. Then, we plot these variations
for phase and amplitude individually, along with the corresponding facial AU that caused it.
Figure 5.2 shows that each AU has resulted in a peak in the plot. However, it can be seen
that the blink has caused the most prominent peak, whereas the AUs around the oral region
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generated lower peaks. This observation infers that the amplitude and the phase of an FMCW
signal reflection can be used to predict the facial expressions of a subject due to their varying
characteristics and correlation with the underlying expressions.
Notably, we observe the above variations in the amplitude and phase values of the reflected

signal for facial expressions that are posed. In most popular image data sets, facial expressions
are posed and quite different from more subtle expressions in real life. In Figure 5.3, the
difference between posed or forced expressions and natural expressions is shown in terms of
displacement around ocular and oral regions. It can be seen that forced expressions are much
more animated, thus causing much more movement of the AUs. However, normal expressions
that can be seen in daily life are more abstruse in terms of AUs. Therefore, in ExpresSense, we
aim to estimate how smartphones can distinguish between these challenging natural expressions,
by exploring the features (amplitude and phase) of the reflected signal and then learning the
subtle variations in the signal properties through light-weight machine learning approaches.

5.3.2 Challenges and Design Ideas

Although observing the time-domain signal properties for judicially selected frequency bins
provides us an opportunity to develop a lightweight model for detecting facial expressions over
smartphones, we still face the following challenges.

Supported Frequency Range : Majority of the COTS smartphones work over the audible
frequency range (< 20 kHz). Moreover, signals above 19 kHz are very noisy and unsuitable for
the purpose of sensing. Consequently, in ExpresSense, we use a near-ultrasonic range of 16-19
kHz to utilize the maximum possible bandwidth of 3 kHz and ensure the least overlap with the
audible range. Notably, even though the audible range varies between 20 Hz to 20 kHz, most
of the audible sounds lie below 16 kHz, thus ensuring minimal interference with ExpresSense.

Single Microphone: The popular acoustic sensing approaches [64, 124, 66, 25, 129] use
a microphone array to estimate the Direction of Arrival (DoA) of the signal, thus eliminating
the unwanted signal components. In contrast, most COTS smartphones use a single micro-
phone, thus limiting the number of signal properties we can utilize. Further, approaches like
SonicFace [64] uses signal fusion technique to precisely track even minor object movements,
which is not possible with a single microphone due to the lack of sophisticated interference
cancellation techniques. Therefore, ExpresSense solely relies on lightweight, intelligent signal
processing and machine learning methods to judicially select the frequency bins, which can
eliminate signal components reflected from the background objects.
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Figure 5.4: Spectrum of received signals when only no chirp is played (left), chirp is played (middle)
and fused signal is played (right)

Signal Fusion: In acoustic sensing, Signal Fusion is a technique where two different sig-
nals (such as a chirp and a pure tone signal) are transmitted in sync so that both coarse-grained
and fine-grained movements of a target can be tracked. However, in a standalone smartphone,
Signal Fusion can cause severe interference in the recorded signals and generate impaired and
noisy data. Figure 5.4 shows why ExpresSense will be unusable if Signal Fusion is performed.
The figure is a waterfall graph of ambient sound in absence of chirps (left image), presence of
chirps (middle image) and presence of fused signal (right image), as generated and recorded
by a smartphone. The figure is a time series plot of ambient signal frequencies between
0-20kHz where the brighter color zones indicate higher intensity and darker colors indicate
lower intensity of signals. We see that chirps only effect the frequency bins between 16-19kHz
whereas, fused signals effect different frequency bins and create noise component in all bins. It
also increases the intensity of the sound, thusmaking it unsuitable for non-intrusive applications.

Multi-Class Expression Detection : In context of the above device-related challenges,
the task of expression detection becomes difficult. Although some of the previous works have
considered a single or dual microphone(s) [65] and signals with frequency between 16-19kHz,
for tasks like continuous tracking respiratory functions [229] or binary classification of au-
thentic and unauthorized users [32, 109], multi-class classification of facial expressions using
acoustic sensing is particularly challenging due to the following reasons: (a) The corresponding
features should not only reflect deviations indicating displacement (like chest movement), but
should also account for differentiating patterns induced by movement of different facial AUs,
(b) without at least 2 microphones, signal enhancement processes like beamforming are not
possible, making the selection of relevant frequency bins; and hence the corresponding features;
more challenging.

Lightweight: The developed system should be lightweight to be deployed directly on the
smartphone. Existing studies use complex frequency-domain signal processing techniques or
computationally heavy deep learning models. Such methods will consume significant computa-
tional resources (like RAM) and thus can slow down other running services on the smartphone.
So, we have to rely on lightweight techniques that need minimal computation and can work in
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Figure 5.5: The overview of ExpresSense

Figure 5.6: The interface of ExpresSense for data collection.

real time.

5.4 The Overview of ExpresSense

Figure 5.5 shows the overview of ExpresSense in terms of chirp transmission, reception, and in-
device processing. We start with discussing an overview of the proposed architecture, followed
by a discussion on the smartphone applications developed for data collection and prediction,
adhering to the proposed architecture.
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5.4.1 Proposed Architecture

In ExpresSense, a standalone commodity smartphone is used for camera-less expression detec-
tion using near-ultrasound signals. The overall idea of ExpresSense is to generate near-inaudible
chirp signals ranging from 16-19 kHz utilizing the smartphone’s speaker. The smartphone’s
microphone is used to capture the echo of the signals reflected from the facial regions of the
subject, along with other objects in the subject’s vicinity. The recorded echo is then processed to
prune out the static multi-path interference. The amplitude and phase from different frequency
bins are extracted from the residual signal. In the next phase, only the appropriate bin is selected,
and the phase and amplitude features from this bin are passed through a learning algorithm
to predict the expression of the subject’s face as one of the four basic expressions: Sadness,
Happiness, Surprise, or Anger. The following sections describe the individual modules of
ExpresSense in detail.

5.4.2 The Smartphone Application

As shown in Figure 5.6, an Android phone usually has a camera on the top, besides an earpiece
speaker. This speaker is responsible for transmitting in-call audio to the user. Apart from this
speaker, every smartphone has a main speaker that facilitates the transmission of sounds like
call alerts, music, etc. In addition, a typical smartphone generally contains one microphone
at the bottom. This microphone aids in capturing voice and other ambient sounds. However,
somemodern smartphones are equipped with two or more microphones. In this work, we assess
smartphones with minimal capabilities, thus considering only those with a single microphone.
Figure 5.6 shows the interface for data collection. We use the earpiece speaker for trans-

mitting the chirps with low intensity. The main speaker can also be used for sending signals.
The interface consists of simple play and stops buttons for starting and stopping the chirps. It
also contains a text box for manually entering the ground truth label for expressions like Hap-
piness, Anger, Surprise, and Sadness. Apart from that, we also use an automated ground-truth
labeling method using image-based techniques. For this purpose, the application uses a camera
preview that tracks the subject’s facial region and automatically detects the expression using
an image-based detection model. This camera-oriented feature has been used to validate the
manually entered expression labels, as discussed in Section 5.7. Notably, we use the camera
only to collect the ground-truth under a pure lab-scale controlled setup, and the system does
not need it during its actual runtime.

5.5 Design Details

We now discuss the details of each sub-module used in ExpresSense.
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5.5.1 Generation of FMCW Signals

We consider FMCW signals or chirps that sweep from 𝑓𝑚𝑖𝑛 = 16 kHz to 𝑓𝑚𝑎𝑥 = 19 kHz. Each
chirp is played for an optimal duration of 𝑇 = 40 ms; 𝑇 is directly proportional to the degree
of overlap in the reflected echoes. Consecutive chirps are played while ExpresSense remains
active and are separated by a silent period of 𝑇𝑠𝑖𝑙 = 30 ms. 𝑇𝑠𝑖𝑙 ensures that a recorded chirp
does not contain a part of the next chirp being played in sequence, thus reducing the interference
through overlap.
For a linear chirp, like the ones generated in ExpresSense, the instantaneous frequency ( 𝑓 )

is dependent on the time (𝑡) and can be expressed as,

𝑓 (𝑡) = 𝑓𝑚𝑖𝑛 + 𝑐𝑡, (5.1)

where the chirp rate is 𝑐 =
𝑓𝑚𝑎𝑥− 𝑓𝑚𝑖𝑛

𝑇
. The corresponding phase of the same signal is an

integration of 𝑓 (𝑡) and can be expressed as,

𝜙(𝑡) = 𝜙𝑚𝑖𝑛 + 2𝜋(
𝑐

2
𝑡2 + 𝑓𝑚𝑖𝑛𝑡), (5.2)

where 𝜙𝑚𝑖𝑛 is the phase at 𝑡 = 0. Now, by considering the sign of Equation (5.2), the linear
chirp can be expressed as the function of time 𝑡. Hence,

𝑥(𝑡) = 𝑠𝑖𝑛[𝜙𝑚𝑖𝑛 + 2𝜋(
𝑐

2
𝑡2 + 𝑓𝑚𝑖𝑛𝑡)] (5.3)

Reception of Reflected Signals

In exponential form, Equation (5.4) can also be written as,

𝑥(𝑡) = 𝑒− 𝑗2𝜋 ( 𝑓𝑚𝑖𝑛𝑡+ 𝑐2 𝑡
2) (5.4)

Let 𝑟 be the reflected signal that is also a function of time 𝑡. As discussed in Section 5.3.1, a
reflected signal is only a time-delayed (𝑡−𝜏) version of the original signal, having a time-of-flight
𝜏. Therefore, it can be expressed as,

𝑟 (𝑡) =
𝑁∑︁
𝑝=1

𝛼𝑝𝑒
− 𝑗2𝜋 ( 𝑓𝑚𝑖𝑛 (𝑡−𝜏𝑝)+ 𝑐2 (𝑡−𝜏𝑝)

2) (5.5)

Notably, the reflected signal 𝑟 is a superimposition of multiple signals received from various
environmental reflectors. For ExpresSense, the primary reflector is assumed to be the subject’s
facial region by default. However, besides reflectors like walls, furniture, etc., the echo also
contains the direct path reflections from the speaker to the microphone. In Equation (5.5), 𝑁
denotes the number of such multi-path signals. 𝛼 is the signal attenuation. Similar to [136],
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we define the mixed signal to be recorded as a multiplication of the received signal with the
complex conjugate of the transmitted signal, as follows.

𝑟𝑚(𝑡) =
𝑁∑︁
𝑝=1

𝛼𝑝𝑒
− 𝑗2𝜋 (𝑐𝜏𝑝𝑡+ 𝑓𝑚𝑖𝑛𝜏𝑝− 𝑐

2 𝜏
2
𝑝) (5.6)

The recorded signal is then passed through a high pass filter to allow the frequency range above
15.9kHz. This automatically removes the ambient noises that fall within the audible frequency
range.

5.5.2 Processing of the Recorded Signals

The in-device signal processing begins with synchronizing the speaker and the microphone.
This allows us to remove the delay between the transmitted and the received signals caused
by the device’s imperfection. This is achieved by measuring the signal similarity between the
generated and the reflected signals at different delays through cross-correlation. Assuming
there are 𝑁 points in the transmitted and the reflected chirps, the normalized cross-correlation
of the transmitted signal 𝑥(𝑡) and the received signal 𝑟𝑚(𝑡), shifted by 𝑛, can be expressed as,

𝑋𝑐𝑜𝑟𝑟 (𝑛) =
1
𝑁

∑𝑁
𝑡=0 [𝑟𝑚(𝑡) − 𝑟𝑚] [𝑥(𝑡 − 𝑛) − 𝑥]

{∑𝑁
𝑡=0 [𝑟𝑚(𝑡) − 𝑟𝑚]2

∑𝑁
𝑡=0 [𝑥(𝑡 − 𝑛) − 𝑥]2}

1
2

(5.7)

Here, 𝑟𝑚 and 𝑥 can be estimated by taking the average of 𝑟𝑚 over 𝑁 points and 𝑥 over 𝑁
points, respectively. Pertaining to the nature of the direct path signal, it should be maximally
correlated to the generated chirp, as it suffers from no reflection. Thus, the delay at which
the correlation value is maximum is considered in ExpresSense to synchronize the speaker and
the microphone of the smartphone. Hilbert Transform [94] is used on the reflected signal to
derive the analytic signal, i.e., its representation in the exponential form. As mentioned earlier,
𝑟𝑚(𝑡) is a product of this analytic signal and its complex conjugate in this domain. As we are
interested in only the real part, the final expression of the mixed signal is just the real part of
this complex multiplication.
This step is followed by the Fourier Transformation of the received signal and static inter-

ference cancellation. In signal processing, static multi-path reflections are created from objects
whose locations are fixed in the environment. For example, the chirp generated by the speaker
will also be reflected from a wall, present behind the subject, a nearby table, and so on. Since
these objects are static, the irrelevant noise induced by the reflections from these objects can
be subtracted from the overall reflection capturing both static and dynamic reflections (caused
by facial expressions). To achieve this, we first generate template recordings by transmitting
chirps in an environment without the subject’s presence. As a new session begins, where the
subject is present in front of the device, the recorded template is subtracted from the reflected
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chirp, thus eliminating the external interference caused by static objects in the room.
The next step is to select the frequency bins that are most likely to capture the information

about different facial regions (Facial AUs). As we use a bandwidth of 3 kHz, any two objects
or points of reflection, separated by a distance of 5.6 cm or more, will result in a reflected echo,
having distinct frequencies. For example, while the signal path generated by the reflection of
the transmitted chirp from the eye region will fall in a frequency bin 𝑓1, that from a wall behind
will fall in a different frequency bin 𝑓2. To further ensure that the frequency bin capturing the
information about the face is selected, we depend on the phase-amplitude variation induced by
AUs. Thus, we choose the frequency bin with the maximum variance, as shown in [136].

5.5.3 Prediction of expressions

Finally, the phase and amplitude of the signal with the selected frequency are used to predict
the subject’s facial expression using an ensemble of three different classifiers using a majority
voting technique. The three classifiers are chosen by comparing the classification accuracy
of different algorithms. Empirically, we observed that the average accuracy of Support Vec-
tor Machine was 17.5%, 3-Nearest Neighbour was 44.1%, Adaboost with 50 estimators was
47%, MLP Classifiers was 49%, Random Forest with maximum depth of 10 was 72.72%,
Decision Tree was 96.61%, Logistic Regression was 66.41% and Naive Baye’s Classifier was
36.29%. In our implementation, the three classifiers with the highest accuracy, which were
chosen for the ensemble, were – Logistic Regression with L2 Penalty 3 and Limited-memory
Broyden–Fletcher–Goldfarb–Shanno (BFGS) solver4, Decision Tree with Gini impurity 5 and
the Random Forest with a maximum depth of 10. By using the majority voting method with
these three best classifiers, we achieved an overall improvement of ∼ 4% in the classification
accuracy, as compared to the average accuracy of the individual models (details in Section 5.7).

5.6 Implementation, Resource Profiling, and Evaluation Method-
ology

This section provides the implementation details and resource consumption benchmarking of
ExpresSense and an overall discussion on howwe conduct the evaluation of the proposed system
in a principled way. The implementation of ExpresSense along with partial data (anonymized)
has been made open-sourced6.

3https://medium.com/@aditya97p/l1-and-l2-regularization-237438a9caa6 (Accessed: Friday
11th August, 2023)

4https://machinelearningmastery.com/bfgs-optimization-in-python/ (Accessed: Friday 11th
August, 2023)

5https://towardsdatascience.com/gini-impurity-measure-dbd3878ead33 (Accessed: Friday 11th
August, 2023)

6Code link: https://github.com/anonymous0304/ExpresSense.git.

https://medium.com/@aditya97p/l1-and-l2-regularization-237438a9caa6
https://machinelearningmastery.com/bfgs-optimization-in-python/
https://towardsdatascience.com/gini-impurity-measure-dbd3878ead33
https://github.com/anonymous0304/ExpresSense.git
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5.6.1 Implementation Apparatus

ExpresSense has been developed for Android Platforms, using Android Studio7. A sampling
rate of 44100 Hz has been considered for the FMCW signals, which are encoded using Pulse
Code Modulation (PCM) to represent the sampled signals. For transmitting these signals,
the AudioTrack8 class has been used, which allows the streaming of Pulse Coded signals.
In order to observe the general capability of commodity smartphones in facilitating acoustic
sensing-based facial expression detection, we have installed and used the application on dif-
ferent commodity smartphones (Realme and Samsung) having 4, 6 and 8 GB of RAM. The
minimum Android Version considered is 9. The chipset of the tested devices include Qual-
comm Snapdragon 730G, Qualcomm Snapdragon 710, Qualcomm SDM730 Snapdragon 730G
(8 nm), MediaTek Helio G95 (12 nm), Qualcomm SDM675 Snapdragon 675 (11 nm), and so
on. For testing the accuracy of different models in predicting expressions, we train and test the
various models offline using Python sckit-learn9 library. Finally, the trained model is uploaded
to the Heroku10 platform and connected to the smartphone application using an intermediate
FLASK-API11. It is to be noted that the entire signal processing part is executed locally in
the user’s smartphone and only the numeric values of generated amplitude and phase are sent
to the remote server for being predicted. The class label is then communicated back to the
user’s device. For FMCW signals, range resolution can be defined as the ratio between the
speed of sound in the air and twice the bandwidth of the signal [136]. Hence, for a signal with
a bandwidth of 3 kHz, if there are two reflected signals, caused by two objects, placed at a
distance of 5.6cm or more, with respect to the sound source, then these two signals will fall in
different frequency bins. Hence, we need to select a particular frequency that corresponds to
the reflection from the facial region of the person. Due to some of the inherent limitations of
a smartphone (discussed in Section 5.3.2), it is difficult to reduce the range resolution of the
signal, without making it overlap with the audible sounds. Thus, we assume that the user’s
face and any other nearby object are separated at least by a distance of 5.6 cm. If there is an
object very close to the face (< 5.6 cm), then the selected frequency bin will also reflect the
information of the second object, along with the face.

5.6.2 Profiling the Resource Consumption

ExpresSense consumes around 75-112MBRAM during the runtime. The lightweight nature of
our model is tested by fully charging a smartphone and keeping the application on till the charge

7https://developer.android.com/studio (Accessed: Friday 11th August, 2023)
8https://developer.android.com/reference/android/media/AudioTrack (Accessed: Friday 11th

August, 2023)
9https://scikit-learn.org/stable/ (Accessed: Friday 11th August, 2023)
10https://www.heroku.com/ (Accessed: Friday 11th August, 2023)
11https://flask.palletsprojects.com/en/2.1.x/ (Accessed: Friday 11th August, 2023)

https://developer.android.com/studio
https://developer.android.com/reference/android/media/AudioTrack
https://scikit-learn.org/stable/
https://www.heroku.com/
https://flask.palletsprojects.com/en/2.1.x/
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drops to 20%. The application could continuously run for more than 7 hours. Further, to ensure
near real-time processing, we analyzed the time taken to process the received signals using
different smartphones with 4, 6, and 8 GB RAM. For this purpose, we calculate the processing
time for each chirp for different expressions. The time reflects the total time in which a reflected
chirp is captured through the microphone and processed locally in the smartphone to generate
the amplitude and phase values from the selected frequency bin. The average processing time
was estimated to be ≈ 5 seconds, ≈ 3.5 seconds, and ≈ 1 second, respectively, with the three
different RAM availability.

5.6.3 Evaluation Methodology

To evaluate ExpresSense in a principled manner, we set the following objectives to analyze the
system thoroughly under different aspects.

1. How well can ExpresSense infer the four basic facial expressions of a subject in general?

2. How do different environmental factors, like the elevation, orientation, and tilting of the
phone, motion of the subject, ambient sound, hand placement, glasses, finger movement,
etc., impact the performance of ExpresSense?

3. How does ExpresSense perform under natural expressions?

4. How usable ExpresSense is in practice?

Evaluating ExpresSense under objectives (1) and (2) above is straightforward, as we can go
for a controlled lab-scale setup where trained subjects can pose for different expressions under
different conditions for a short and fixed duration while holding the phone in front. We can also
collect the ground truth using other modalities, such as self-annotation, annotation through one
or more dedicated volunteers, or well-established vision-based automated labeling techniques
by capturing the subject’s face through the phone’s front camera. We performed controlled
experiments to evaluate ExpresSense in a general setup, as discussed in Section 5.7.
However, evaluating ExpresSense under Objective (3) is challenging. First, we need third-

party applications that can naturally trigger changes in the subject’s facial expression. For
example, a video streaming app may trigger natural changes in facial expression based on
the genre of the video being streamed. Second, annotating the data is challenging as the
facial expressions may change continuously, so we need precise time boundaries when the
expression changes. Human annotation cannot work with this precision. Further, automated
annotation using the camera may cause discomfort to the subject or may divert their attention,
thus affecting their natural expressions. To solve this issue, we use an indirect way of evaluating
the system by utilizing the existing research on gauging human engagement through facial
expressions [51, 20, 221]. We match the temporal changes of the subject’s facial expression
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with the video genre and derive an engagement score for the entire duration of the video
streaming session. We then collect the ground truth through questionnaires and self-assessment
and match the ground truth with the computed engagement score. The underlying hypothesis
is that if there is a good match between the computed and the ground-truth engagement scores,
then ExpresSense has captured the facial expressions accurately. Section 5.8 discusses this
evaluation methodology and the corresponding results in detail.
Finally, we performed a thorough usability study in the wild using the proof of concept

(PoC) video streaming application that can inform the subjects about their engagement level
while watching the video.

5.7 Evaluating ExpresSense under a Lab-Scale Controlled Envi-
ronment

First, we explore the performance of ExpresSense, as an individual module for detecting facial
expressions based on acoustic chirps from a standalone smartphone. The details follow.

5.7.1 Experimental Setup

The data collected for training and testing ExpresSense has been generated in a monitored
setup from 10 participants (P1-P10) who volunteered in the evaluation. These 10 participants
(4 females, 6 males) belonged to different age groups and professional backgrounds. Two
participants belonged to the age group of 20-25 years, four participants belonged to the age
group of 26-49 years, and the rest belonged to the age group of 50-65 years. To ensure
professional diversity, we chose the participants in such a way that three belonged to the IT
industry and were Software Engineers, two were Undergraduate students, two were home tutors,
one belonged to the banking sector, one was a research scholar, and one was a retired personnel.
Four of them used glasses and others had normal eyesight.
In this setup, the participants were asked to place the smartphone at a distance of ≈ 30

cm from their faces. The angle of elevation of the device with respect to the face was not
fixed a priori; however, in all the cases, the participants preferred to place the phone at about
−20𝑜 (on the vertical axis), corresponding to the face. The azimuth angle of the smartphone
with respect to the face was roughly 0𝑜 (directly in front of the face), as this was the natural
viewing angle for all the users. The subjects were asked to hold the smartphone by hand or use
a smartphone holder for convenience during the session. One of the participants performed the
experiment in complete darkness, while others performed under normal lighting conditions.
The experiment was performed indoors, in the presence of natural ambient sounds generated
by ceiling fans, outdoor noises (like cars passing by, children playing on the ground, etc.), and
so on. For collecting the data, the methodology aligned with that explained in Section 5.8.2.
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For each participant, the entire experiment was conducted in three different sessions, preceded
by a training session. In each session, the participants reproduced the four facial expressions
in different orders. In each session, every expression was captured for a duration of 1 min
when the participant could render different variants of a chosen expression, followed by a pause
between two expressions. The participants were free to choose the pause duration. We advised
the participants to keep the expressions as natural as possible.

5.7.2 Ground Truth

The ground truth generation and validation has been conducted in a 3-layered technique. Firstly,
the data was labeled manually by the participants themselves. During the pause phase between
two expressions, the participants entered the expression to be produced next in a text box in the
application. These expression labels acted as the ground truth. Secondly, automated labels were
generated. The application constantly monitored the facial expressions of the subjects through
the camera and automatically predicted the expressions using the trained MobileNet model
[205], incorporated into the application. For the automatic detection of the facial expressions,
we have used the MMA Facial Expression dataset12 which contains about 92, 958 training and
17, 356 testing images from different expression categories like surprise, fear, angry, neutral,
sad, disgust, happy. The MobileNet V2 [205] model has been trained for this purpose as it
provides a significant accuracy (loss=.01) and performs real-time predictions onmobile devices.
Thirdly, labels were verified through close monitoring. During the experiment, the participant’s
expressions were closely monitored by two different individuals to ensure that the correct
expression is being produced with respect to the manually entered label and the expression
sequence. In case of disagreement, the participants were requested to repeat the expression.
Finally, the manually entered and auto-generated labels were synchronized and compared

for validated sessions. It is to be noted that, pertaining to the possibility of misclassification
of expressions by MobileNet, more weight was given to the manually entered labels. For
example, if for one minute of “Happy” (manually entered) expression, the MobileNet predicted
expression was “Happy” for the majority of the data, then the rest of the data labels, although
classified as a different expression, were also considered as “Happy”. Finally, a simple pruning
was performed to select the data points generated about 3–5 seconds after clicking the “Start
Chirp” button and those generated before 3–5 seconds of clicking the “Stop Chirp” button.
This is because we observed that for most of the participants, the actual expressions started a
little after starting the chirps as they shifted their focus from clicking the button to creating the
expression during that time. Similarly, the participants released the expressions slightly before
stopping the chirps as they cognitively prepared to press the button.

12https://www.kaggle.com/datasets/mahmoudima/mma-facial-expression (Access: Friday 11th Au-
gust, 2023)

https://www.kaggle.com/datasets/mahmoudima/mma-facial-expression


5.7 Evaluating ExpresSense under a Lab-Scale Controlled Environment 112

Dataset collected. From each session, we finally collect a total of 20 data points (each of
≈ 1 min duration with labeling and pruning as discussed above) for each class in a session, i.e.,
a total of 80 data points per session. Each data sample is a pair of amplitude-feature values,
along with the ground truth label. The entire dataset thus contains ≈ 2400 data samples from
all four classes across all 10 participants combined. Apart from these regular sessions, the users
were also asked to attend additional sessions where data was created in a similar method for
different conditions like elevation and angular change of the device, different ambient sound
levels, degree of motion, different hand positions for holding the device, different degree of
finger movement, and presence of surrounding objects. In total we have collected ≈ 6880 data
samples for the lab-scale controlled experiments, which have been divided into train-test splits
for different test scenarios, as we explain later for individual cases.

5.7.3 Results

Wenext discuss the user-specific system performance ofExpresSense and its sensitivity analysis.

User-Specific System Performance

We first explore the performance of ExpresSense for individual subjects. We analyze Ex-
presSense from three perspectives – overall performance, inter-session performance and intra-
session performance. In the overall performance testing, we mix the data from all sessions
and make a 4:1 data segmentation for training and testing the model based on stratified random
sampling. By shuffling the data and randomizing the segmentation, we run the learning model
10 times and present the average accuracy of the system per subject. To further analyze whether
the system can capture the characteristics of the subjects from independent sessions, we perform
an inter-session performance estimation. Here, we train the model using data from two sessions
and predict the data derived from the third experimental session of individual subjects. This
allows us to better estimate if ExpresSense can capture the overall characteristics of a subject
from independent sessions. Finally, in the intra-session study, we trained the model with ≈ 16
out of the 20 data points for each expression class in a single session, and the rest 4 data points
per class per session were used to test the model.
Figure 5.7 shows the comparison of the overall, inter-session, and intra-session accuracy

of detecting expressions of individual subjects. In the overall performance assessment, Ex-
presSense achieves an average accuracy of ∼ 73% across all the subjects. In inter-session
performance testing, we achieve an average accuracy of ∼ 73.5%. However, it can be seen
that the individual accuracy for some subjects from the inter-session study has been improved
(≈ 2.45%) than the overall accuracy (when data is shuffled). This infers that the model is able
to learn the feature pattern better when individual sessions are fed to it, particularly because of
the inter-session variations caused by the dislocation of positions and renewed expressions.
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In intra-session performance testing, we achieve an average accuracy of 74.6%. The
observation aligns with the expected output, as individual sessions are more likely to have
distinctive features due to the lack of involuntary positional and angular shifts. However, for P7,
the accuracy dropped from 96% in inter-session evaluation to 83% in the intra-session study.
Notably, P7 took less pause time than other participants, which induced muscular fatigue,
causing the participant to rapidly produce variations while holding individual expressions.
To further analyze the performance of ExpresSense in classifying individual expressions,

Figure 5.8 shows the confusion matrix for the overall performance of the system. In this figure,
the true positives, true negatives, false positives, and false negatives are derived by considering
the average detection results of the 10 subjects. The figure depicts that the highest accuracy
has been achieved for the “Sad” expressions, closely followed by “Happiness”. Although the
accuracy for the class “Angry” is comparable to these classes, that of the class “Surprise” is less
than the rest. The matrix shows that this expression has mostly been confused with “Angry” and
vice versa. By considering the AUs that generate expressions like “Anger” and “Surprise”, we
observe that both these expressions have overlapping characteristics like widening of eyes and
furrowed brows (similar characteristics of ocular AU) along with distinct characteristics like
tensed mouth, jaws in anger and relaxed or dropped jaws in surprise (dissimilar characteristics
of oral AU). However, depending on the individual, the expression of anger can also show
similarities in the characteristics of the oral AU with that of surprise. This explains the
performance of the system in detecting “Surprise” with lower accuracy as the analysis of
the underlying characteristics of AUs aligns with the observation (refer to Section 5.3.1) that
ocular AUs have the highest effect on the signal features. Similarly, the overlaps between other
expressions have resulted from the similarity in different AUs (e.g., partial visibility of teeth for
“Happy” and “Angry”).
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Figure 5.7: Comparison of participant-wise variation of overall, inter-session and intra-session
accuracy
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Figure 5.8: Overall classification accuracy of individual expressions

5.7.4 Sensitivity Analysis

We next analyze the sensitivity of ExpresSense under different environmental conditions that
may impact the performance of the system.

Impact of Distance

To analyze the effect of distance on the classification accuracy, we asked the subjects to place
the smartphone at 30 cm, 45 cm, and 60 cm from their face, in three consecutive sessions,
respectively. While recording the reflected signal from three different distances, the devices
were placed at zero-degree elevation and tilting angles to the user. Figure 5.9a shows that the
performance of ExpresSense drops (≈ 6-14%) as the distance is increased. Notably, we observe
maximum drop in the performance (≈ 14%) for the “Surprise” class as it gets confused with
“Angry”.

Impact of Phone’s Elevation

In this study, the distance between the subject and device was kept fixed at 30cm, and the
angle of elevation (vertical height) of the device was varied from −45◦ to +45◦ with respect
to the subject’s face. Interestingly, even though the performance of the system (Figure 5.9b)
was comparable (74% and 72%, respectively) for 0◦ and +45◦ of device’s elevation, at −45◦,
the accuracy of the system dropped to 62%. The contributing factor behind this observation
was the location of the microphone. At −45◦, the microphone of the smartphone, placed at the
bottom of the phone, captured a noisy signal due to interference from the parts of the upper
body.
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Figure 5.9: Sensitivity Analysis of ExpresSense: Impact of Various Environmental Factors

Impact of Phone’s Tilting Angle

Similar to the previous study, in this analysis, the devices were kept at −45◦ (left), 0◦ (in front),
and +45◦ (right) horizontally, with respect to the subject’s face, at an elevation of 0◦. However,
in this case, the angle had no significant impact on the results (Figure 5.9c).

Impact of Environmental Noise

ExpresSense uses near-ultrasound signals that should not interfere with most of the audible
frequency range. To test this hypothesis, we asked the subjects to produce facial expressions
in three different environments, while the smartphone with ExpresSense was placed at 0◦ of
vertical and horizontal angles from the user’s face at a distance of 30 cm. In the first case, we
aimed to eliminate all possible sources of sound. It is to be noted that complete silence (0 dBa)
is not possible to attain, even in a lab-scaled study. Hence, by no sound, we indicate the absence
of all audible ambient noises created by ceiling fans, keyboards, etc. In the second level, we
induced noise between ∼ 15-30 dBa, which was generated by human whispers, ceiling fans,
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and so on. This was marked as an environment with low ambient sound. In the third level, we
incorporated a high sound level by playing background music, loud conversations, and traffic
sound. Figure 5.9d shows that environmental sounds did not significantly affect the overall
and class-wise accuracy of the system. This is because most of the environmental sounds fall
well below the frequency of 16 kHz and are eliminated by the high pass filter of ExpresSense.
However, the performance of the system will be adversely affected if ultrasound signals that
overlap with the frequency range of the chirps in ExpresSense are introduced in the environment
(refer to Section 5.3.2).

Impact of Motion

Next, we assess the effect of motion for three scenarios – (1) No motion, where the smartphone
was placed on a phone holder, (2) Mild motion, when the phone was held by a hand, while
the users remained seated and (3) Major movement created by allowing the users to walk in
the room while holding the phone by hand. Figure 5.9e shows that only major movements
decrease the system’s accuracy by ≈ 9% on average. Further, it had the most significant effect
on the detection accuracy of the expression “Angry” (average decrease of 18.2%) and “Sad”
(average decrease of 12.5%). The effect of major motion can be explained by the workflow of
ExpresSense where bin-selection (calibration) is a one-time process. Any large change in the
position and distance of the reflector (face), as indicated by the selected bin, caused by body
motion or change of hands will cause the system’s accuracy to be affected. However, this can be
solved by re-calibrating the system as and when the smartphone’s inertial sensors detect large
body movements.

Effect of Hand Placement

Next, we estimate if the holding position of the phone affects the system’s performance. For
this study, we asked the subjects to (1) place their fingers on the side of the phone and (2) place
their palm toward the bottom of the phone. Figure 5.9f shows that placing the fingers on the side
allows the system to perform with an accuracy of about 74% while placing the palm towards
the bottom decreases the accuracy to 55%. This is because, in the latter case, the palms cover
the microphone, making it unable to capture the reflected signals completely.

Effect of Finger Motion

To analyze whether the system is affected by the movement of fingers, we asked the users to (1)
restrict the movement of fingers, (2) periodically reply to text messages received in a floating
window on the smartphone’s screen (requires gentle finger movement), and (3) continuously
chat or use the video controls (requires significant finger movement) while using the system in
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the background. Figure 5.9g shows that there was no significant effect of finger movement on
the overall and expression-wise accuracy of the ExpresSense. This observation was fascinating
as it did not align with the impact of (body) motion on the system’s performance. However,
it should be noted that the reflector’s position (face) was fixed for this experiment, and the
calibration phase captured the presence of the fingers that were kept static during calibration
(which takes about 4 seconds). However, if the fingers are moved during the calibration phase,
the bin selection can be affected, thus decreasing the overall system performance. This overhead
can be eliminated by detecting the degree of change in the signal’s amplitude and phase, as a
movement in facial AUs is significantly more fine-grained than finger movements.

Effect of Surrounding Objects

In this experiment, the subjects were asked to perform the same experiment while (1) a monitor
(a reflective surface) was placed at about 45 cm behind the smartphone, and (2) no object was
present within a distance of 60 cm from the smartphone. This experiment aimed to test whether
surrounding reflectors like a monitor can affect the system’s performance. Interestingly, these
static objects did not affect the system’s performance (Figure 5.9h). This observation can be
explained through the fact that static interference cancellation is performed by ExpresSense in
the signal processing stage.

Effect of Glasses

Finally, we present the result by considering the subjects (1) with glasses (power glasses or
reading glasses) and then (2) without glasses. Figure 5.9i shows that the performance of
ExpresSense is not affected by the presence of glasses.

5.8 Evaluating ExpresSense Under Natural Expressions

As discussed in Section 5.6, we developed a smartphone video streaming app that uses Ex-
presSense at its core to continuously sense the facial expressions of the subject while watching
a video and measure how engaged the subject was during the session. The application has been
open-sourced13 so that participants can use it in an uncontrolled environment and record their
feedback.
Figure 5.10 depicts the interface for ExpresSense video streaming app. The image to the

left displays theContent Display Areawhere the user can view YouTube Videos. The user can
also select the length of the content as either short (7-10 mins ), medium (≈15 mins), or long

13Code link: https://github.com/anonymous0304/ExpresSense.git

https://github.com/anonymous0304/ExpresSense.git
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(≈30 mins). Moreover, the user is allowed to select the genre of the content as either: comedy,
tragedy, horror, anger, or mixed.

Figure 5.10: Interface of ExpresSense Video
Streaming App: The Content View (left) and the
Result View (right)

Once the user selects these fields, they can
click on the start chirp button, which starts
the video and simultaneously emits the chirp
signals as described in ExpresSense. The
received signals are processed using the
pipeline mentioned in Section 5.5, and the
final phase and amplitude values are trans-
mitted to the trained ensemble model to pre-
dict the expression label. Thus, the applica-
tion continuously monitors the instantaneous
expressions and estimates the rate of expres-
sion change throughout the video. As the
user completes watching the content, they
can click on the Check Result button, which

opens the interface shown to the right of Figure 5.10. In the result view, the user can see
the percentage of each expression, as predicted by ExpresSense throughout the usage of the
application. Along with this, the user can also see how their expressions varied over time.
These two graphs provide the user with a visual representation of their engagement which is
then summarized as detected engagement indicator and the overall engagement score. We use a
rule-based approach, as discussed next, to generate the engagement indicator and engagement
scores.

5.8.1 Engagement Estimation from Facial Expressions

The rules for this score generation are derived from previous works [254, 107, 95] that correlate
expressions with video types. Assume that 𝑘 defines the Genre ID (𝑘 = 0 if the genre is
comedy, 𝑘 = 1 if the genre is tragedy, 𝑘 = 2 if the genre is Anger, 𝑘 = 3 if the genre is Horror).
Assume that an array 𝐸 [4] stores the total expression count for the 4 expression categories14, as
predicted during the content viewing. Let 𝑅 denote the number of times the expressions have
changed during the content length of 𝑙 minutes. Let the function indexOf return the index of
an element from the array 𝐸 [] (−1 if the element doesn’t exist in the array), and ∧ denote the
logical AND operator. Then, the engagement indicator (E) is estimated as follows.

1. E = True if 𝑘 = indexOf(max(𝐸)): The strongest andmost frequent expressionmatches
with the content genre. For example, if the subject was mostly happy while watching a

14We consider Sadness as Neutral, as discussed earlier.
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comedy video, it implies that the subject was engaged in the video.

2. E = True if 𝑘 ≠ indexOf(max(𝐸)) ∧ indexOf(max(𝐸)) =
1 ∧ 𝐸 [𝑘] > avg(𝐸 [0], 𝐸 [2], 𝐸 [3]): This formula is based on the observation that even
if a person is engaged, they might stay Neutral for most of the time and occasionally
show an expression that matches with the genre. It implies that even if the most frequent
expression is neutral, the expression matching the content genre should be greater than
the average of all expressions (other than neutral) found during the course. For the genre
of tragedy, we check if the frequency of neutral (or Sadness) is greater than the average
of all expressions predicted.

3. E = True if 𝑘 ≠ indexOf(max(𝐸)) ∧ indexOf(max(𝐸)) =1 ∧ 𝑅 > 0.3 × 𝑙): This for-
mula is based on the observation that if a person is engaged, and neutral for most of the
time, they will show at least some changes in the expression during the content viewing,
to ensure that they are not blankly staring at the screen. However, this condition fails if
some auxiliary task in the background causes a difference in the expression.

4. E = False, if none of the above conditions hold true.

5. For the content ofmixed genre, where there is no predetermined expression to compare the
predictionswith, facial expression alone cannot be used to detect the person’s engagement.
Hence, for mixed-type contents, this score is NULL.

Computing the Engagement Score

Engagement score is taken as the percentage of the expression that matches with the genre of the
content, concerning all expressions for the genre “Tragedy” or with respect to all non-neutral
expressions for all other genres. The following formula generates the score.

𝐴 =


𝐸 [𝑘 ]∑𝑛
0 𝐸 [𝑛]

× 100 such that 𝑛 = 0, 2, 3 if 𝑘 ≠ 1
𝐸 [𝑘 ]∑𝑛
0 𝐸 [𝑛]

× 100 such that 𝑛 = 0, 1, 2, 3 if 𝑘 = 1
(5.8)

For mixed genre, the engagement score is displayed as the percentage of each found expression.

5.8.2 Experimental Setup

We recruited 12 volunteers for this study. 10 of them (P1-P10) were the same participants who
volunteered in the previous experiment (Subsection 5.7.1). As discussed earlier, ExpresSense
works best as a user-dependent model. Therefore, to test the system’s performance for new
subjects, we further considered two additional participants (P11, P12) – one male being an IT
Professional and one female teacher between 31 and 52 years of age, respectively.
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Content

For this study, we considered 15 YouTube videos from the categories of Comedy, Tragedy,
Anger, Horror and Mixed for testing ExpresSense. Each category contained three videos of
different duration. The short videos had an average duration of 7 minutes, medium ones had
an average duration of 15 minutes, and long videos had an average duration of 30 minutes. We
intentionally avoided the usage of any video longer than 45minutes to avoid the possibility of a
major involuntary drop in the sustained attention level of the participants due to disinterest. To
ensure that the videos were engaging, their ratings were considered for selecting them. Most
of the videos had a YouTube rating of more than 25k. The comedy videos consisted of clips
from Mr. Bean and other popular movies; tragedy videos were tagged under “Sad stories",
Horror videos ranged from short stories to long animated horror stories. Mixed-type videos
were selected so that they could not be categorized as any of the categories distinctly. For
example, a tutorial on “Machine Learning", a documentary on the best historical places in the
world, or a video explaining Drake’s Equation. All these videos could give rise to amazement,
amusement, surprise, confusion, or no emotion at all. The horror stories had an element of
surprise, like “Jump scares” that were not only meant to invoke fear but also surprise. While
these four categories had distinctive characteristics, it was difficult to choose videos under
the category of “Anger" due to the inadequacy of videos under such a tag and also due to
the uncertainty of the emotion the videos invoke amongst the viewers. For example, a video
displaying a major social issue might cause anger in one viewer during empathy in another.
We carefully selected three videos on social injustice like animal cruelty, bullying, and elder
abuse that are likely to cause anger in the viewer. Since YouTube videos have been found to
cause expressions like anger [121], the selection of videos for this category was also based on
the selection of representative emotional terms [33] like “angry,” “force,” etc. from the video’s
title, and comments [210][206].

Methodology

The total experiment was conducted in two non-consecutive sessions – an initial training
session of 15 minutes and a session for testing ExpresSensestreaming app. In the first session,
the entire experiment was explained to the participants. The participants could choose to watch
a video using ExpresSense streaming app to understand its basic functionality. To eliminate
forced attention, we assured the participants that there would be no penalty for lower scores
of engagement or disengagement. After the training session, the participants were asked to
use the ExpresSense streaming app for the second session. This session 𝑠2 was divided into 5
sub-sessions – 𝑠12... 𝑠

5
2, where 𝑠

1
2 was dedicated to viewing the 3 videos from the genre Comedy,

𝑠22 was dedicated to tragedy and so on. Within each sub-session 𝑠
𝑛
2 , the participant had to watch

3 videos of different duration and were interviewed after each video. The participants were
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free to take breaks (at least for 15 mins) within or between these sub-sessions to remove eye
fatigue. Each sub-session 𝑠𝑛2 was planned to have a duration of 1.5 hours as the total viewing
time for short, medium, and long videos were ≈ 60 minutes, and the total interview time
was 30 minutes. However, considering the breaks within the sub-sessions, the maximum time
was increased to 2-3 hours. Hence, for each participant to complete viewing all the videos in
ExpresSense streaming app from each of the 5 categories, a total of 10-15 hours were estimated.
Each participant completed these experiments over multiple consecutive days based on their
interests. Also, they were free to choose which video they wanted to see at a point in time from
the list of available videos. We delegated these choices to the participants to ensure that they
could watch the videos freely and that watching consecutive videos does not put much cognitive
load on them, which might affect their engagement level.
There was no restriction on the sitting position of the participants; however, the placement

of the device was kept optimal based on the viewing preference of individual participants. The
participants were requested to minimize significant body movements during the sessions, and
the ambient noise was minimal to avoid disturbance. In addition, we added secondary tasks
like showing funny, sad, and scary images (that did not match with the instantaneous video
genre) on a screen behind the device for Participant 7 during the experimental sessions. This
was to test if ExpresSense streaming app could also capture low engagement levels caused by
secondary tasks. For each video genre, the predictions of ExpresSense were generated for a
total of ≈ 930 data points while each participant watched the short (≈ 126 data points), medium
(≈ 270 data points) and long (≈ 540 data points) videos.

Interview Mechanism

After each experimental session, the interview consisted of two question-answer sessions.

(1) Questions from the video content: These questions were asked based on the video viewed
before the interview and were selected in such a way that captured the overall engagement of the
participant. For example, for a 30minutes long video, the first question was based on the first 3
minutes of the video, the second question was from 3rd to 6th minute of the video, and so on.
For short videos, medium, and long videos, there were two, five, and ten questions, respectively.
The questions did not come with options to avoid the possibility of guessing. Based on whether
the participant answered the question correctly, we marked it as 0 or 1. The final ground truth
engagement scorewas estimated by taking the percentage of the correct answers for each video
under each category. A total of 85 questions were asked to each participant for all the videos
and genres combined.
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(2) Self-assessment: Self-perception of engagement refers to whether the user considers them-
selves engaged or disengaged. Self-perception is essential in the case of content rating. For
example, if they feel that the content is engaging, their ratings of the content will be high.
Suppose the estimation generated by ExpresSense can relate to this personal or self-assessment
of engagement. In that case, it can promote automated feedback by eliminating the requirement
of manual rating or feedback, as manual feedback can be biased or influenced by different
compelling factors15. Whether the user perceives themselves as engaged depends on two un-
derlying factors – Whether the viewer pays attention to the content (F1) and whether the viewer
found the content interesting (F2); in some cases, F2=F1. For example, if the user is bored
with the content, their sustained attention will drop. Conversely, exciting content will promote
engagement. In other cases, F1 and F2 can be unrelated. For example, the user may find the
content boring but still choose to pay attention to it. Thus, it is essential to analyze each of the
two factors independently to understand the overall engagement of the user.
Based on this understanding, after each video, the participants were asked if they paid

attention to the video shown in the application or were focused on something else. They were
also asked if they found the video interesting. These two questions were yes(1)/no(0) type. The
self-engagement indicator for each video was calculated by taking the logical AND between
these two answers.

5.8.3 Hypotheses

This study hypothesizes thatExpresSense-generated scores will highly correlate with the ground
truth engagement score and the self-engagement indicator. From theoretical evidence, we also
hypothesize that most facial expressions will be Neutral, as, in real-world scenarios, content-
invoked expressions are sparse and aperiodic. Therefore, changes in the expressions would be
natural depending on the video content, and the models should still be able to correlate with the
manual (ground truth engagement score and self-engagement indicator) scores. If we observe
a high accuracy in this prediction, ExpresSense could likely identify the natural expressions
correctly during the session.

5.8.4 Results

In this subsection, we discuss the performance of ExpresSense through the analysis and com-
parison of engagement scores and engagement indicators.

15https://factorialhr.com/blog/bias-in-performance-reviews/#types-of-bias-in-performance-reviews
(Accessed: Friday 11th August, 2023)

https://factorialhr.com/blog/bias-in-performance-reviews/#types-of-bias-in-performance-reviews
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Figure 5.11: Distribution of participant-wise actual and predicted engagement scores in ExpresSense.
The null hypothesis is that the two score distributions are similar. The graph shows that, for P1-P10, the
null hypothesis is accepted (p>0.05). For P11-P12, the alternate hypothesis that the scores are different,
is accepted.

Analysis of Engagement Score

Figure 5.11 depicts the distribution of the ground truth engagement scores generated from the
interview with that of the scores generated by ExpresSense streaming app. The graph compares
the distribution of these two scores for each participant by considering all the videos from the
4 video genres – comedy, tragedy, anger, and horror. We infer the following observations from
these results.

1. The ground truth and the predicted scores are significantly correlated (with the reported
p-values of a statistical T-test between the two distributions) for most of the participants,
thus proving a part of our hypothesis.

2. For P7, it can be seen that both the ground truth and the predicted scores are low. This is
because P7 paid attention to the secondary task, which caused a variety of facial expres-
sions (based on the images), thus leading to a lower predicted score. Similarly, for P3,
both these scores are high as the participant was fully engaged to the videos and could
answer most of the questions correctly. This proves the capability of ExpresSense stream-
ing app to distinguish engaged participants from the less-engaged ones, thus indicating
the success of ExpresSense for correctly inferring the natural facial expressions.

3. For P11 and P12, the difference in the ground truth and predicted scores were caused
by the misclassification of expressions by ExpresSense. This is because the system is
user-dependent and needs to be calibrated and trained with a few data samples from the
users before being able to perform with significant accuracy. However, even though the
error level for unseen participants was high, we could observe a correlation between the
score level. For higher ground truth scores, the overall distribution of the predicted scores
tends to be higher.

This observation leads to the inference that affective facial expressions are correlated to the
attention level of a person [99]. The correlation can be estimated by analyzing its similarity
with the video genre.
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Figure 5.12: Distribution of genre-wise actual and predicted engagement scores; the null hypothesis
is that the two score distributions are similar. The graph shows that, for all genres, the null hypothesis is
accepted (p>0.05).

Next, Figure 5.12 shows the genre-wise distribution of the ground truth engagement score
and the predicted scores. We observe a strong correlation between the two scores indicating
that ExpresSense streaming app can perform well for various video types. However, the overall
score under the anger category is lower than that of others. This is because anger videos failed to
invoke the expression of anger inmost of the participants. Moreover, the participants were found
to be less attentive to such videos in this study. On the contrary, the expressions were mainly
neutral for tragedy, but the attention levels were high. This aligns with the interchangeability
of sadness and neutral expressions in ExpresSense. However, it was noted that some of the
tragedy videos received “empathetic smiles” from the users. Such instances were mis-classified
as “Happy” thus leading to some level of disagreement between the video genre and found
expressions. By comparing these scores based on different thresholds, it was found that the
average F1-score for optimal thresholds in each video category is .84.

Analysis of Engagement for Mixed Genre

As discussed earlier, for mixed videos, since there are no pre-determined regular expressions,
engagement score based on one single expression is rather unfair. Hence, we compare the
percentages of all the found expressions for these videos for each participant for the three
different videos of lengths short, medium, and long. Figure 5.13 graphically shows these
distributions for different video duration. The following inferences can be drawn from the
figure.

1. As hypothesized, for almost all the participants and video duration, the most prevalent
expression is found to be neutral.

2. A clear correlation between the video length and the number of expressions can be
established. It can be seen that for medium or longer videos, the participants showed a
greater number of expressions than for short videos. This indicates that for mixed-type
videos of longer duration, engagement can be estimated by mapping the user’s expression
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(a) Short videos (b) Medium videos (c) Long videos

Figure 5.13: Distribution of facial expressions for different mixed type videos for individual partici-
pants

Figure 5.14: Comparison of Overall Precision, Recall and f1-score for self reported engagement
indicator vs predicted engagement indicator for ExpresSense

with other video viewers.

Analysis of Engagement Indicator

We now explore ExpresSense streaming app’s performance in terms of engagement indicator.
In Figure 5.14, we compare the engagement labels as predicted by the ExpresSense streaming
app with the self-assessment score. The graph shows a significant correlation between the
predicted score and the self-assessment score. It aligns with the assumption that engagement
is the underlying attention and interest of the user to the video content and that it can be
quantified by considering the strength of expressions and their rate of change. Even though
engagement indicator and engagement scores are estimated as separate variables, Figure 5.15
shows that if a user is marked as engaged by ExpresSense streaming app, they are likely to have
higher engagement scores. In contrast, disengaged users will usually have significantly lower
engagement scores.
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Figure 5.15: Correlation between engagement score and engagement indicator, as predicted by
ExpresSense. The null hypothesis that the distribution of these scores are similar is rejected by the ttest
as the p-value << 0.05.

5.9 Large-scale Usability Study with ExpresSense Streaming App

The objective of this study is to analyze how well the participants in-the-wild rate ExpresSense
streaming app in terms of its usability in the practice. In this study, we have considered 72
subjects from different countries, professions and age groups (between 18-71). The participants
were from different countries like United States (10), India (27), South Korea (4), Germany (3),
United Kingdom (2), Australia (5), Bangladesh (3), Japan (3), Austria (1), Brazil (2), Canada
(3), Croatia (1), Israel (1), Hong Kong (3), and China (4). 47 of the participants were male,
and the rest were female. While Figure 5.16 shows the distribution of age-groups and the
corresponding count of participants, Figure 5.17 shows the professional categories to which
the participants belonged. The category “Academics” comprises of professions like Professors,
Research Scientist, Research Scholars, Post Doctoral Fellows and Educators. We have grouped
professions like Service, Software Engineers, Software Developers and IT under “Industry”.
Banking Services and Government employees are categorized under “Others”. It can be noted
that these participants are distinct from those who participated in the previous studies. Notably,
we did not have the ground-truth information for these participants, so we only analyzed the
usability ratings they submitted after experiencing the app.
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5.9.1 Methodology

In this study, we released theAPK ofExpresSense streaming app to the participants, alongwith a
video demonstrating the applications. The participantswere requested to install the applications,
use them thoroughly and provide their feedback through SUS questionnaire. Refer to Appendix
A.2 for the statements and formula for SUS scores.

5.9.2 Result

From this experiment, we received an average SUS score of 85.34which establishes the usability
of a system like ExpresSense. To further test our hypothesis, we plot Figure 5.18 that shows
the questionnaire’s statement-wise average score (on the scale of 1–5), as provided by the
participants. Figure 5.19 shows that the majority (61) of the responses indicated an SUS score

Figure 5.18: Distribution of SUS scores
based on individual statements
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Figure 5.19: Histogram of SUS Scores

80 or more. We also found that age of the participants had no effect on the usability of the
system. The age-group-wise aggregation of the scores varied between 82.1 to 90, showing
the application was equally usable by people from all age groups. Similarly, for both male
and female users, the average SUS score was similar (84.5 for males and 86.02 for females).
Based on professions, the application was rated highest by academicians (87.5), followed by
users from industry (86.09), students (81.1) and other services (80.6). The application was also
found to be widely accepted by people from various cultural backgrounds. The average score
based on the demographic information of the participants showed that for different countries,
the SUS score ranged from 80.1 to 91.25.

5.10 Discussion

ExpresSense demonstrates howa singlemicrophone and a single speaker present in a commercial
smartphone can address the problems of camera-based facial expression detection. However,
our model also suffers from a few limitations that make it suitable as a performance enhancer of
camera-based techniques. However, in scenarios with a limited number of expression variations,
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ExpresSense can even replace camera-based techniques. This section discusses some of the
limitations and future scopes of ExpresSense.

5.10.1 Near-ultrasonic nature of the signals

The supported frequency range is up to 20 kHz in a commodity smartphone; the near ultrasound
signals used in this model are slightly audible. This can cause mild discomfort in some users.
As reported by some of the participants under feedback, the chirps, though mildly audible,
created minor distractions. However, this problem can be mitigated by periodic system usage
or by further narrowing the frequency range. In the future, we will aim to extend the system to
the iOS platform as some iPhones can support frequencies above 20 kHz.

5.10.2 Effects of obstruction, movement and device orientation

Though the current experiments allow natural body movements, they lack large-scale move-
ments. The performance of ExpresSense in the presence of significant activity is subject to
further testing. However, such noises can easily be eliminated by sudden and abnormal changes
in I-Q values, measured against a manual threshold. Moreover, since we use smartphones, it
has been assumed that the face will be the nearest object to the device, and the reflected signals
from the facial regions will be the strongest. However, the performance of ExpresSense might
degrade if an additional obstruction (like a mask or spoon) is inserted between the device and
the face. The current prototype of ExpresSense is developed to work in portrait (vertical orien-
tation). Even though some users might prefer to hold the device in landscape mode, it would
negatively impact the accuracy of ExpresSense. This is due to the fact that in this orientation,
when a person hold the smartphone the microphone (as well as the speaker) will be mostly
covered by the user’s palm (based on the observation in section 5.7.4).

5.10.3 Validity of engagement scores

In this work, due to the lack of any standardmetric, we have compared the predicted engagement
score with that generated manually through interviews and questions based on the viewed
content. However, such manual scores can sometimes be misleading. Since the interviews
take place at the end of each video/reading session, for longer content, the users could forget
the answer to a question based on the first part of the video or story. This might lead to a
lower manual engagement score and a high predicted score based on continuous monitoring
of expressions. However, we assume that the contents are of optimal duration, such that if
a participant pays engagement, the information will be retained in their short-term memory.
Moreover, misclassified expressions can be generated byExpresSense, whichmight create lower
scores. In the future, we aim to extend the data for training the model to achieve higher accuracy.
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5.11 Summary

In this chapter, we present ExpresSense, a lightweight near-ultrasound signal-based facial ex-
pression detection system that works in real-time on a commodity smartphone. The system not
only eliminates the requirement of any additional hardware ormodification of the inbuilt compo-
nents of any inexpensive smartphone with minimal processing capacity but also overcomes the
challenges associated with camera-based techniques – such as occlusion or privacy impairment.
Through rigorous lab-scaled and unconstrained testing, ExpresSense depicts a significant per-
formance in classifying various facial expressions and proves the application of acoustic sensing
in this domain. It also reveals the capabilities of commercial smartphones in facilitating such
acoustic applications, thus proving its feasibility and scope of global acceptance.





6
Interactive System for Touch-free Control on

MOOC videos by Learners

Massive Online Courses (MOOCs) have gained enormous popularity due to the evolution of
traditional learning from centralized classrooms to global knowledge distribution. Moreover,
the unforeseen pandemic situation due to the COVID-19 virus has led to the avoidance of mass
gathering and limiting physical contact among individuals and devices. The inflation in the
utility of online courses is also a direct result of this scenario.
However, in pre-recorded video lectures, the pace of delivery of the contents does not match
with that of cognition for every student. Even in a real-time presentation, it is often impractical
to discuss each of the personal queries. In the case of confusion, the learner often takes note of
the important points so that the queries can be mediated later. The learner might often look into
important terms discussed in a lecture and find relevant materials from other online resources.
These may include keywords or figures shown in a video. While key terms can be noted quickly,
noting down figures or descriptions while the online video is being played, requires repetitive
pausing and playing involving physical contact with the device. This is further infeasible if the
course is being followed by the learner in a mobile scenario. Since the process of taking notes
for relevant article search is essential, the mentioned intricacies necessitate an interface that
does not require physical contact like button clicks and can be controlled through facial cues
for selecting the sections from the lecture and generate relevant links for the keywords.
However, such a model needs to address generic problems like the free head movement, context
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switching, and restricted set of gestures to be used for controlling the interface. In this paper, a
novel, automated note-generation system has been proposed which can be controlled through
simple blinks. The model is an integration of simultaneous eye tracking from the user’s preview
and notes selection and image capture based on the blink counts, followed by a speech to text
translation and keyword retrieval, generating Wikipedia links for the relevant keywords. A
video instance can also be paused, captured, or closed by blinks or gazing down.

6.1 Contributions

The contributions of the paper include the depiction of a novel touch-free interface, controlled
through simple blinks. This facilitates touch-free interaction of the user with the device. In
doing so, we only utilise the device’s camera and eliminate the requirement of any additional
hardware. Further, the generation of notes and relevant web links are automated requiring
no explicit search. The system is lightweight, required only a device camera and imposes no
restriction on the learner’s natural movement.

6.2 Proposed Model

In this section, a detailed discussion of the proposed model has been presented, along with
the discussion of its individual submodules. Figure 6.1 depicts the overview of different
architectural components of the system. The following sections present the details of the Blink
based control module and the section processing and notes generation module, as shown in the
figure.

6.2.1 Blink based control module

The execution of the system begins with this initial module which integrates a sequence of
hierarchical condition checking mediated through continuous eye tracking and corresponding
lecture video execution. The control actions that can be performed by the user to control the
selection and viewing process are as follows:
Double blink: Each double blink marks the beginning and end of a note section in an alternate
pattern. If the user forgets to end the last section selection, the end point is taken as the end
point of the video. For each section, a sectional note will be generated after the program closes.
Triple blink: In some cases, the user might want to freeze a particular frame, e.g. a diagram, to
follow further references to the diagram in the later parts of the video. In the proposed model, a
learner can perform a triple blink when a diagram is shown in the video (or at any frame). This
will capture the frame and display it in a window for reference while the video lecture plays in
the window beside.
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Figure 6.1: The architecture and workflow of the proposed model

Gaze down/ Moving out of the frame: If the learner temporarily looks down, closes his/her
eyes for a few seconds or becomes temporarily unavailable, the video lecture will automatically
pause until the learner looks back at the screen or moves back in front of the screen. This is to
ensure that periodic context switching is supported by the system. However, each time the user
looks down/ moves out of the frame, a program closing counter starts. At 5th second, the user
is prompted with a voice command. If the user continues to look down/ stay out for 5 more
seconds, the program closes. This ensures a contact-free exit mechanism at any instance of the
lecture. Mathematically, if

𝐸𝐴𝑅(𝐹𝑟𝑎𝑚𝑒𝑛 (𝑝𝑟𝑒), ..., 𝐹𝑟𝑎𝑚𝑒𝑛+150(𝑝𝑟𝑒)) < .15(𝑇ℎ𝑟𝑒𝑠ℎ),

the program is closed. However, if

𝐸𝐴𝑅(𝐹𝑟𝑎𝑚𝑒𝑛 (𝑝𝑟𝑒), ..., 𝐹𝑟𝑎𝑚𝑒𝑛+𝑘 (𝑝𝑟𝑒)) < 𝑇ℎ𝑟𝑒𝑠ℎ

such that 𝑘 < 150, then display

𝐹𝑟𝑎𝑚𝑒𝑛 (𝑙𝑒𝑐)∀𝐹𝑟𝑎𝑚𝑒(𝑝𝑟𝑒) ∈ {𝐹𝑟𝑎𝑚𝑒𝑛 (𝑝𝑟𝑒), · · · , 𝐹𝑟𝑎𝑚𝑒𝑛+𝑘 (𝑝𝑟𝑒)},
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afterwards 𝐹𝑟𝑎𝑚𝑒𝑛+1(𝑙𝑒𝑐) is displayed.
Here, 𝑝𝑟𝑒 and 𝑙𝑒𝑐 refers to the preview video displaying the user’s face and the lecture video,
respectively.
If the preview contains the face of the user, the eye region is detected using the eye landmarks

and the Eye Aspect Ratio (EAR) is calculated [231]. The double and triple blink functionality
of this module has been depicted in Algorithm 5. The threshold for counting a valid consecutive
blink is set as 20 frames for restricting false positives or false negatives. Logically, a triple
blink will always be preceded by a double blink. Since double blink invokes the start/stop
function in an alternate pattern, a triple blink will always start or stop the selection process
before capturing the frame. This is not particularly a problem if the triple blink invokes a
section selection start. However, if the selection has already been started, a triple blink will
prematurely end it. To avoid this error, a temporary stop function has been added to the system.
When a double blink is encountered for an active section selection, the next 20 frames are
checked for a valid blink while keeping the stop function temporary. If a blink is found within
the window of the next consecutive 20 frames, the temporary closure is undone and the current
frame is captured/frozen. However, finding no blinking within the consecutive window stops
the session permanently. At the end of every committed stop function, the section is stored for
further processing.

6.2.2 Section processing and notes generation module

This module is a sequential flow of operations performed on the total set of sections. For each
section, the frame numbers are mapped to the corresponding time of the video. From each
extracted frame in a section, the written words (if any) are extracted using optical character
recognition. This is based on the assumption that in lectures, keywords are often written
on boards by the lecturers while explaining the details verbally. For the audio sections, the
audio-to-speech module generates the corresponding set of texts (notes).
The final submodule identifies the keywords from each text section and provides the related

Wikipedia links to the learner. The proposed system leverages the advantage of the salient
concept annotator, SWAT [191], successor to the widely popular annotator, tagme [59], to
identify the conceptual entities from their mentions in the generated notes. Eg. in the sen-
tences “The current pandemic has increased the demand for MOOCs..." the module correctly
identifies “pandemic", “the demand" and “MOOCs" as the mention of the conceptual entities
“Pandemic", “Video on demand" and “Massive open online course" respectively. The module
then hyperlinks the mentions to the Wikipedia article corresponding to the conceptual entity.
Since Wikipedia articles generally are written to be comprehensible with minimal prerequi-
site knowledge but have adequate references for further detailed perusal, we feel that such a
convenient link in the generated notes will greatly magnify its usefulness to the user.
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Algorithm 5: Blink based control
Bcount← 0, CurrentFrame← 0, FoundTwoAt←0, start←0, stop←1, i←0, sectionList[n,2]←0;
foreach frame ∈ Lecture Video do

CurrentFrame← CurrentFrame+1;// Increase frame counter
if CurrentFrame>FoundTwoAt+20 then

Bcount=0;// Reset blink counter if no blink found for 20 frames
end
if (DetectBlink()) then

if FoundTwoAt > 0 && CurrentFrame < FoundTwoAt+20 then
// If one blink is found within 20 frames from the double blink,
consider it a triple blink

FoundTwoAt←FoundTwoAt-20;// To ensure that a fourth blink is not
treated as a triple blink

CaptureFrame(CurrentFrame);
if start==0 && stop==1 then

start←1;
stop←0;
sectionList[i,1]←0;// Undo section selection stop
i←i-1;

end
end
if Bcount==0 then

FrameLast← CurrentFrame;
Bcount←Bcount+1;
else

if CurrentFrame<FrameLast+20 then
Bcount← Bcount+1;
// Increase blink counter iff a blink is found within an
interval of 20 frames from the last blink

end
end

end
if Bcount%2==0 then
// If blink counter is 2
Bcount←0;
FoundTwoAt← CurrentFrame;
if start==0 && stop==1 then

sectionList[i,0]← CurrentFrame;// Start selection is previous selection
has stopped

start←1;
stop← 0;

end
else

sectionList[i,1]← CurrentFrame;
// Stop selection if current selection has started
// This will be undone if a third blink is found
i← i+1;
start←0;
stop←1;

end
end

end
end
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6.3 Experimental Results

The system has been tested on a device with Intel Core i5-4440 CPU @ 3.1GHz x 4 processor.
The python libraries like dlib, SpeechRecognition and pytesseract are used for the development
of the system.

6.3.1 Module estimation and real world study

The first study aimed at estimating the usability of the system in the real world. The SUS
was used for this purpose on a total of 21 participants, 11 females and 10 males, belonging to
the age group of 25-70 years after they watched the demonstration of the system. The survey
revealed an average score of 84.17 for the system, thus proving its feasibility. Figure 6.2 shows
the distribution of the scores.

Figure 6.2: Distribution of SUS scores by participants.

The performance of individual modules were tested by performing a set of evaluations on
real world users, similar to [29]. The second and third studies were conducted on 5 participants,
2 females and 3 males belonging to the age group of 25-60 years. In the second study, each
participant was asked to use the system under two different light conditions: low and normal. A
set of predefined blink patterns (a double blink followed by a triple blink followed by a voluntary
(V) single blink) were given to the users which had to be performed by them at short intervals
to time with no additional constraint. The given pattern had to be repeated for 10 times under
each lighting condition. Hence, each participant had to manadatority blink for 120 times along
with any additional involuntary blink (InV).
Figure 6.3a and 6.3b shows the comparison between the average misses (false negatives)

and number of extra blinks detected (false positive) under the two lighting conditions. The
results show that the impact of light is negligible on the performance.
The missed count can be interpreted as the V and InV that go undetected. For double and

triple blinks missed indicate the number of double or triple blinks that were not/ mis-registered.
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False positive accounts for the total false blinks that are generated by the system ( total blinks
). For double, triple blinks, it is the additional number of false triggers that results in additional
section creation or image capture. It is noted that most of the false positives are single blinks,
thus resulting in no additional section or capture. However, in case of some participants, sets of
falsely generated blinks had falsely triggered triple blinks and hence additional image capture.
Analysing the total intended blinks and correctly predicted blinks in each category, the accurate
blink prediction rates are shown in figure 6.3c. Total blink accounts for the correctly detected
Single (V) + Double * 2+ Triple *3 + InV.

(a) Missed Blinks (b) False Positives

(c) Accuracy

Figure 6.3: Distribution of missed blinks (a), false positives (b) under low and normal light and the
total accuracy (c) for each blink type.

Even though involuntary blinks are registered by the system, they had no practical impact
on the function calls. This is due to the fact that in the implementation of the approach, some
criteria were set. Firstly, if the second double/ triple blink occurs immediately after the first,
the session start is reversed/ capture is not registered. Secondly, exactly two/ three blinks will
invoke a function call. If a sequence of four (say) blinks are detected due to false positives or
user’s involuntary blink, the fourth blink will not have an impact.
In the third study, the keyword detection and overall system performance has been estimated.

In this study, 10 sections are selected from 5 different lecture videos from the Computer
Science (CS) domain. Each section is approximately a few minutes long. The transcript
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corresponding these sections were obtained and then manually annotated by two post graduates
from the CS domain, independently. The annotations typically consisted of marking the
keywords from the given texts. These were then validated by two doctoral researchers from
the same domain. Five users were asked to select these predefined sections from the video
lecture using double blinks. The generated textual note and the keywords were validated with
the previously created ground truth. The results showed that 91.56% of the transcripts were
generated correctly and 70.41% of the keywords were identified and linked to Wikipedia in
proper contextual form.

6.4 Summary

The chapter presents a novel approach that facilitates touch-free interaction with a video lecture
to automatically generate relevant study materials and reference links based on the user-selected
sections. The use of simple blink gestures facilitates easy handling of the system features by the
learners. Even though experimental results demonstrate the usefulness of the proposed system,
future directions will aim at improving the note generation accuracy. Moreover, board occlusion
removal is a feature that can promote the quality of the lecture video. Even though freezing
frames for reference is a solution for occluded boards in frames, by extracting foreground
pixels and extrapolating background pixels, occluded boards can be recovered. The usability
scale proves the feasibility and necessity of such a system in the practical domain and hence
establishes its promising scope.



7
Interactive System for Touch-free Writing in

Smartphones

The exchange of textual messages is one of the most routine functions of mobile devices.
Touch-based typing systems are prevalent but are often inadequate for users experiencing
medical conditions. Users suffering from conditions like dactylitis, sarcopenia, tennis elbow,
or other forms of joint pains are often unable to use finger movements and touch-based text
entry methods. Moreover, eyesight problems hinder the usage of the tiny keyboard layouts in
a smartphone. This necessitates the development of hands-free text entry systems for these
user groups. Some of the notable research directions have been driven towards gaze-based text
entry systems [150, 151, 218, 117] and head orientation-based key selection [78, 269, 267].
However, most of these systems are either suitable for desktop or laptop environments or
use commercial trackers to increase the accuracy. Touch-free text entry has also been aimed
by the voice processing researches for the development of voice to text entry and editing
systems [61, 69, 216]. However, they come with challenges like noise incorporation and
privacy concern in outdoor environments.
The challenges of adopting touch-free typing in a smartphone are manifold. First, desktop

computers have ample space between proximal keys in the soft-key layout. The same soft-key
design, if placed on amobile screen, will have significantly reduced inter-key space. Hence, even
a small shift in the facial feature can affect the result. Second, even though powerful algorithms
can identify the minor change in patterns, the computational cost restricts the application those
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algorithms for mobile applications. Lightweight models are feasible in such cases that perform
simple processing with high accuracy. Third, additional resources like webcams, trackers in
desktops, or smartphones can be incorporated, but outdoor mobile applications need to be
standalone using only the device’s included capabilities. Fourth, desktop monitors are fixed.
Thus a certain degree of head movement can be adjusted. Since portable device screens are
prone to free movement and accelerometer noises, head and face tracking are significantly
challenging. Lastly, apart from the computational and hardware restrictions, human beings
tend to check the typed text for correctness while typing. In gaze-based systems, occasional
glancing at the text region can shift the gaze from the key location, resulting in erroneous key
selection.
In this paper, a lightweight contact-free smartphone-based text entry model, called Nosype,

has been proposed for the clinically challenged users, which uses nose tip tracking and projection
as the medium of text entry. Nosype uses a “draw-n-locate” interface for drawing alphanumeric
characters and selecting whole words or punctuation marks through the nose-tip projection.
While the user can move their head in a pattern to draw out a character in the air, the phone’s
front camera can be used to capture the pattern by tracking the nose-tip movement for some
consecutive frames. Once the camera follows the character’s outline, the model probabilistically
predicts the character and types it. The system generates a suggestion list based on the characters
typed. Words can be selected from the list by pointing the nose-tip towards the word. Similarly,
punctuation marks can be entered using the system. Additionally, the system allows the users to
edit the texts by changing the device’s orientation, tracked through the in-built device sensors.
The system uses a soft-key to switch between interfaces, which can be activated through facial
overlap. The design of such an application also faces some significant challenges like prediction
speed, user control, and accuracy. In Nosype, these challenges are addressed by optimizing
the model, choosing the appropriate probability threshold for predictions, and incorporating an
easy refresh feature into the application.

7.1 Contributions

The primary contributions of this paper are summarized as follows.

1. A novel touch-free lightweight typing technique is presented, which shows high accuracy
and acceptable typing speed under the natural head and device movements. Such a system
can be handy for the user groups who face difficulty in free finger movements.

2. Computationally expensive gaze tracking and mapping are eliminated, and the user’s
privacy is maintained as no data has to be stored in the back-end.

3. In-built sensor tracking is induced to allow simple device movements to be used as text
editing options.
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Figure 7.1: The interfaces in Nosype: Draw interface (left), Locate interface (middle, right)

The evaluation of Nosype has been facilitated by the development and usage of an An-
droid application that has been profiled and tested on different smartphones. Apart from the
system testing, an in-depth user study has also been performed through experimental methods
over multiple sessions. In the first study, we employ 11 volunteers with clinical disabilities,
preventing them from typing using a touch-based smartphone keyboard. In a semi-controlled
lab-scale environment, the subjects have been asked to type a few texts using Nosype as well
as four other gaze and finger projection-based approaches. We observe that Nosype results in
a 70.11% improvement compared to the average of different baselines in terms of projection
accuracy. Further, the study reveals that the participants can type 6.31 words per minute with
the autocomplete suggestion in Nosype and reports an average key-stroke per character of 1.06.
In the second study, we make the application public, where any user can download the app and
starts using it. Once the user types at least 30 words using the app, the system probes the user
to fill up a survey form concerning the system’s usability. We have collected 60 such surveys
in the wild (including 10 participants having clinical disabilities, which does not overlap with
the 11 volunteers from the lab-scale study) and observe that the system indicates a good score
of 77.708 on the SUS.

7.2 Application Overview

The primary idea of Nosype is to allow the users to move their head freely in the air while
holding the smartphone in front of their face. Alternatively, they can also move the smartphone,
keeping the head still. The device’s front camera continuously tracks the nose-tip movement
as the user moves the head or the device. By controlling the movement’s direction, the user
can draw out letters and numbers in the air. Simultaneously, the application displays the drawn
character on the screen and predicts them as valid alphanumeric characters. Each predicted
character is added to the text to form the complete message. After each prediction of a drawn
character, the system recommends a list of dictionary words to the user based on the letters of
the current word predicted so far. The user can select these words by merely pointing their
nose-tip towards the chosen word. The nose-tip is projected on the screen, and the word from
that screen’s location is added to the current message. This eliminates the requirement of
drawing each letter of a word, which is difficult if it is too long. Similarly, the user can select
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punctuation marks to be added to the text using nose-tip projection.
Figure 7.1 shows the different interfaces ofNosype. The necessity of two different interfaces

arises from multiple factors. Firstly, alphabets in the upper or the lower cases and the numbers,
if placed within a fixed soft-key layout, will have proximal placement as the smartphone’s screen
is small. This makes their selection using precise nose-tip location difficult for the user as minor
shakes result in wrong selection. Hence, the Draw interface is developed. Since the system
primarily aims at facilitating users with clinical conditions, certain issues like Vertigo can lead
to dizziness, neck pain, etc. after prolonged head rotation while using this interface. However,
this can easily be avoided by drawing the characters by moving the smartphone with respect
to a static head position. In this case, even though there is no head movement, the relative
location of the nose-tip will move with respect to the smartphone camera due to the device’s
movement, thus preventing nausea or dizziness for users with particular conditions. Secondly,
longer words are difficult to draw. If the application can predict an entire word based on one or
a few characters, the user can select the word using the projected nose-tip. This greatly reduces
the effort, drawing complexity and increases the writing speed. Thirdly, punctuation marks
require discontinuous strokes to be drawn. To detect these pauses while drawing would require
advanced computation, thus making the system unsuitable for smartphones. Since there is a
limited set of punctuation marks required for text messages, they can be placed in a grid layout
on the screen, and the users can select one of them using a focused projection. Due to these
factors, the Locate interface is developed.

7.2.1 The Draw Interface

Nosype uses a dynamic canvas for this interface. This concept allows the user to draw a letter
anywhere within the screen and in any font size. Since the font size is proportional to the degree
of the free head movement, the application automatically detects the specific area of the canvas
(screen) where the letter is drawn, based on the nasal position detected from the user’s preview
through the device’s front camera, and extracts it (Figure 7.2). It is then scaled to a uniform
size for prediction.
The interface also uses an adaptive dwell time to mark the end of a drawn letter. Since

users with different medical conditions and age will have different drawing speeds, it is crucial
to identify the drawing time. Keeping the drawing time for each letter static makes the system
unusable for many people. Hence, Nosype allows the users to draw letters at their paces. The
drawing is marked completed and sent to the prediction pipeline if there is no movement (shift
less than 5 pixels) of nose-tip for the last 5 frames.
The drawn letter is predicted with a prediction score. If the score is more than a threshold,

the drawn letter is accepted as a valid prediction. The score-based filtering reduces the chance
of misprediction and allows some level of distortion in the drawing, which is inevitable while
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moving the nose in the air. The auto-complete suggestion (auto-suggestion) list is refreshed
after each prediction and displayed to the user. In our implementation, there can be up to 19
suggested words in the display and an option to close the suggestion if the user does not find
the required word.

Figure 7.2: User drawing ‘T’ using the Draw interface

7.2.2 The Locate Interface

The Locate interface has two different utilities – (1) to select words from the auto-suggestion
list, and (2) to choose punctuation marks ( Figure 7.1(right)). For any of these selections, the
user has to point the nose-tip towards the display location where the word/mark is shown. The
nose-tip coordinates are projected on the screen. The user might move their face to adjust the
focus and hold the position for a fraction of a second to locate the corresponding word or mark
to be added to the text. Soft button activation is required to switch to/from the punctuation
grid from/to the Draw interface. This punctuation grid button is shown in Figure 7.1 (left). To
activate this contact-free interactive button, the user should move their face towards the button.
When the detected facial region overlaps slightly with the button, it is activated.
Both the interfaces use a common orientation-based editing. Even though space after

each word is automatically added if the word is selected from the suggestion list, the user can
add space by tilting the device 90𝑜 to the right. Similarly, to backspace out a character, the user
can tilt the device 90𝑜 to the left. To refresh a half-drawn letter, the user can tilt the device
upwards or move their face away from the screen for 1 second.

7.2.3 Features of Nosype

Following points briefly summarize some of the other features of Nosype.

1. Nosype is not affected by the presence of glasses or facial hair as nose-tip is used as the
medium of text entry.

2. Free head movement is allowed in Nosype. Simultaneously, the head movement can be
restricted by the user based on the font size they choose or if they choose to move the
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device with respect to their faces. This makes Nosype suitable for users with conditions
like vertigo.

3. Flickering trajectory and projection point is controlled by further extrapolation for unde-
tected frames and restricting the deviated projections for minor movements.

4. Uppercase letters are easier to draw. Hence, Nosype has auto-conversion feature for
upper-lower case.

5. Nosype is a completely contact-less text-entry method, which is lightweight enough to be
used in a standalone smartphone with no additional resources.

7.3 Methodology: Nose Tracking-based Text Generation

This section discusses the architecture and the functional sub-modules ofNosype. The core idea
of Nosype is “prediction and projection” of characters through head movements captured by
nose-tip trajectory tracking. Prediction is used in theDraw interface to predict an alphanumeric
character from the nose-tip trajectory. Projection is used in the Locate interface to project the
nose-tip on an auto-suggested word or punctuation mark to select the corresponding word or
punctuation. Nosype uses a pre-trained CNN model to predict the character from the nose-tip
trajectory. The main reasons for using prediction and projection for the Draw and the Locate
interfaces, respectively, are as follows.

1. Deep neural networks like CNN, trained with popular datasets like EMNIST [38], of
feasible size, showed significant accuracy in detecting handwritten characters or digits.
Therefore a pre-trained CNN model can be used to predict the character written through
nose-tip trajectory. This is advantageous over using large-scale datasets to map eye-gazes
to a particular key on the soft keyboard layout.

2. The reason for using projection for punctuation, instead of drawing, is that they require
discontinuous curves or strokes to be drawn. For example, ‘;’ has to be drawn by
adding a gap between ‘.’ and ‘,’. Unlike the uppercase alphanumeric characters, which
can be drawn continuously, discontinuous tracking is complicated and needs additional
processing. Hence, projection is more feasible and easier to control for the punctuation
marks.

The core system architecture of Nosype is shown in Figure 7.3. The following sub-sections
discuss the Prediction and Projection sub-modules in detail.
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Figure 7.3: Overview of the Proposed Model

7.3.1 Nose-tip Trajectory Tracking and Character Prediction

In the Draw interface, the user draws the uppercase alphanumeric character using head move-
ment, and the system predicts the corresponding character using a deep neural network-based
approach. The detailed steps follow.

Detection of Facial Gestures

Nosype uses the device’s front camera to capture the preview of the user’s face. The initial stage
is to detect the facial ROI and prune the ROI to the nasal area of the face. To detect the nose-tip
precisely, we use the approach proposed in [198] to detect 68 landmarks (landmarks 0–67) from
the user’s facial preview. In this approach, initially, the feature mapping is performed by a series
of local feature mapping functions by a Random Forest [22]-based regression for individual
landmarks, using 300 facial images in-the-wild [203]. These locally obtained binary features
are then integrated to learn the global projection and identify the landmarks. After the lower
nose tip is detected from the landmarks, it is tracked in each consecutive frame, and the relative
nasal shift between the two consecutive frames is recorded for each new frame.

Tracking Nasal Movements

The next task is to track the nasal movements to extract the character drawn on the screen.
Nosype uses an adaptive dwell time defined as the maximum time a user is provided to draw
out each character on the screen. In Nosype, the default dwell time is set to be 100 frames
(denoted by the variable 𝑀𝑎𝑥𝐷𝑟𝑎𝑤) which is approximately 3secs. However, this dwell time
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is too high for most participants as most of the characters can be drawn within a second or
less. Therefore, a lower dwell time value is more practical, although some users might take a
long duration to draw the character. To balance the constant high dwell time and reasonable
low dwell time, an adaptive dwell time is employed in the model. For each new frame,
the nose-tip location indicates its relative movement to the previous frame. When the user
completes drawing a letter, they are supposed to stop moving the head. This marks a zero
or low shift of nose-tip in the consecutive frames. If the average shift of the nose-tip in 5
consecutive frames is less than 5 pixels, the adaptive dwell time is stopped, and the nose-tip
trajectory is considered as the drawn character. A 5 pixel relaxation is provided instead of
checking for strict zero-shift because a slight head movement can be present even if the user
has completed drawing the character. To summarize the estimation of dwell time of each
character drawing, 𝑀𝑎𝑥𝐷𝑟𝑎𝑤 is set to either 100 or 𝑛 frames where the absolute shifts between
{{𝑛 − 5, 𝑛 − 4}, {𝑛 − 4, 𝑛 − 3}, {𝑛 − 3, 𝑛 − 2}, {𝑛 − 2, 𝑛 − 1}, {𝑛 − 1, 𝑛}} frames are less than 5
pixels, whichever is less. On the expiry of the 𝑀𝑎𝑥𝐷𝑟𝑎𝑤 limit, the drawn character is sent to
the prediction pipeline, and the 𝑀𝑎𝑥𝐷𝑟𝑎𝑤 counter (𝐷𝑟𝑎𝑤𝐹𝑟𝑎𝑚𝑒) is refreshed and set to 1 for
the next character drawing.

Character Prediction

Once we get the nose-tip trajectory indicating the drawn character over the smartphone screen,
the next task is to predict the actual English character from the drawn one and then suggest the
possible dictionary words to the user based on the text’s context typed so far. For this purpose,
we first extract the canvas area from the smartphone screen. While the user moves his head to
draw a character, the minimum (top-left) and the maximum (bottom-right) coordinates from the
set of traced coordinates are identified. These points on the screen denote the current canvas
area on a screen region containing the entire drawn character. This dynamic canvas area depends
entirely on the size of the illustrated character and the degree of nose movement. Making the
canvas dynamic allows free facial movement for the users, thus facilitating convenient drawing.
It is to be noted that the entire screen can be used as a canvas by the user, but only the part
of the screen which contains the drawn character is extracted as the canvas area. This area is
presented with a white background and black font color for the drawn character. To cope with
the effect of varying canvas size, each canvas, after extraction, is resized to 28× 28 pixel and is
inverted in color for prediction.
Once we get the canvas, we use a pre-trained CNN model for alphanumeric character

recognition from handwritten texts. Here, our basic intuition is that the drawn character on
the canvas should look-alike a handwritten character with some noise. The CNN used for
this prediction is shown in Figure 7.4. This CNN model is trained using the EMNIST [38]
dataset containing 731, 668 training and 82, 587 testing data for English alphanumeric characters
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Figure 7.4: CNN Architecture for Character Prediction: The drawn character image is resized to
28 × 28 pixels with a single channel. This 3 dimensional image is fed into the first Convolution 2D
(conv2d) layer. Since this layer accepts a 3D image with the kernel striding by 1 in two dimensions, the
Convolution 2D layer is required. In this layer, the number of filters is 24, and kernel size is 6× 6 pixels.
This layer produces an output of shape 23 × 23 × 24. Each of the 3 conv2d layers is followed by batch
normalization, an activation function (ReLu), and a dropout layer with a rate of 0.25 to avoid overfitting.
The second conv2d layer has 48 filters with a kernel size of 5× 5 striding by 2 units, producing an output
of shape 10 × 10 × 28. The third conv2d layer uses 64 kernels of size 4 × 4 and produces an output of
shape 4 × 4 × 64. This is flattened in the next layer producing a vector of size 1024. A fully connected
layer of size 200 is used, followed by batch normalization, activation, and dropout. The final layer is
used to predict the input image into one of the 47 classes corresponding to the English alphanumeric
characters.

belonging to 47 different classes. Each sample is a 28 × 28 image with a black background
and white font color. For our model, the EMNIST-balanced class having 112, 800 training
and 18, 800 test samples is used to train the CNN with the layered architecture, as shown
in Figure 7.4. This pre-trained model is imported to the Nosype mobile application for the
prediction process. We have tested the CNNmodel for character prediction with all the English
alphanumeric characters drawn by the 11 volunteers (details in Section 7.4.2). We observe
an average accuracy of 87.23% in predicting the characters from the drawn image over the
smartphone screen.

Word Suggestion

To increase the typing speed, Nosype incorporates an auto-suggestion feature where a list of
possible words is suggested to the users based on typing of the initial few characters, and
the user can select a word from the list, if available (Step 4 in Figure 7.3). To build up this
suggestion, as a proof of concept, we use a corpus of 1200 frequently used English words, as
reported by Wikipedia and other articles1. It can be noted that the entire dictionary can also
be incorporated; however, it will increase the search time. In this approach, we use a simple
linear search of words based on the current set of drawn letters in a word. We use an existing

1https://www.ef.com/in/english-resources/english-vocabulary/top-1000-words (Accessed:
Friday 11th August, 2023)

https://www.ef.com/in/english-resources/english-vocabulary/top-1000-words
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approach for word suggestion based on dictionary matching [78], and Nosype displays the 19
most relevant words in the dictionary order, along with a close option, to close the suggestion
list. A set of 19 words are displayed to minimise the number of letters drawn per word.
In Nosype, the word selection from the above list and selecting the punctuation marks are

based on the projection of the nose-tip over a choice, which is incorporated in the Locate
interface. The details of the projection method used in Nosype is discussed next.

7.3.2 Projection based Selection by Nose-tip Mapping

In the projection interface, the user can either select a word from the suggestion list, overlap the
facial area with the touch-free buttons to activate them, or select punctuation marks from the
punctuation grid.

Projection of Nose-tip and Word Selection

The first use of projection is to select the entire word from the suggestion list. For this purpose,
Nosype uses six landmarks over the face – nose, chin, and the four eye corners. The nose-tip is
projected on the screen based on the facial yaw, pitch, and roll, computed from the above six
landmarks. The projection of the nose-tip on the image plane (screen) is shown in Figure 7.5.
We use the detected nose-tip and the minor facial yaw to map the projected screen-coordinates
with the suggestion list index.

Figure 7.5: Facial Projection: The intrinsic camera parameters (approximate optical center from
image center, approximate focal length from image width), word coordinates of 6 facial landmarks are
estimated. Using these parameters, the facial translation, yaw, pitch and roll are estimated. Using these
vectors, the respective projection point of all the landmarks on the screen are estimated.

Overlap of Facial Region with Interactive Button

Nosype uses one interactive, touch-free button for opening the punctuation grid. The activation
of these buttons works based on an overlap of the user’s displayed facial area on the screen. By
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Figure 7.6: Position (orientation) of smartphone and most effective changes in the corresponding
axis in accelerometer reading: placing the phone on a surface, with its front side up and down results in
highest and lowest Z values, respectively. Placement of the phone facing the front and back towards the
user in horizontal position results in highest and lowest X values, respectively. Keeping the top of the
phone upwards and downwards in portrait mode leads to the highest and the lowest Y-axis value.

shifting the face towards the top left corner, the user can overlap the facial area with the button’s
area to open or close the punctuation grid.

Projection of Nose-tip and Punctuation Mark Selection

The same function, described previously in Section 7.3.2, is used when the user opens the
punctuation grid. Figure 7.8(right) depicts the 4 × 6 grid layout of the punctuation mark
placements. On selecting the virtual punctuation button, this grid is displayed on the screen.
The projection function using the camera parameters, facial landmarks, and translation vectors
is executed to calculate the projected nose-tip coordinate on the screen. Each grid is of 𝑚𝑎𝑥𝑋
pixels in width and 𝑚𝑎𝑥𝑌 pixels in height, depending on the screen resolution. Each grid
cell’s central coordinate is taken as reference points to calculate the projected point’s shift
from the actual point. If the shift is less than the accepted 𝑚𝑎𝑥𝑋 and 𝑚𝑎𝑥𝑌 , the corresponding
punctuationmark is selected. If the shift is more than that, the adjacent grid cells are considered.
Here, the dwell time for selecting a punctuation mark is kept static to 5 frames, followed by a
5 frames of the gap in the nose projection so that the user can shift to the next desired location
on the screen. The dwell time for selecting a word from auto-complete suggestion is kept as 20
frames to provide the users sufficient time to switch visual context to check the words displayed
in the list and then choose the corresponding option/index. The dwell time can be increased
based on the user’s convenience. However, increasing the dwell time for selecting a key can
reduce the typing speed.

Continuous Sensor Reading and Orientation Tracking.

Almost every commercial smartphone houses several built-in sensors, among which the ac-
celerometer is the most common one. A smartphone’s orientation can be measured by the
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instantaneous accelerometer reading in the X, Y, and Z directions. Typically, a change of orien-
tation along any of these axis triggers a sharp change in the reading in that direction. Figure 7.6
shows how the direction and phone’s position are correlated. Since Nosype works in landscape
mode, the change in the Y direction is used for the editing function. While using Nosype in
landscape mode, if the user tilts the device to the right (accelerometer reading for Y-axis > 7)
for 1 second, a space is added to the current text. Conversely, if the device is tilted to the left
(accelerometer reading for Y-axis < -7) for 1 second, the text’s last character is deleted. A span
of 1 second is maintained to ensure that the change in orientation is voluntary and implied for
editing. This orientation tracking is a continuous process to register the desired editing at any
instant of the application’s usage. Additionally, if the user moves the device away from the face
and no facial region is detected for 30 consecutive frames, the current trajectory 𝑇 is refreshed
and set to null.

7.3.3 Handling the Corner Cases

For both the modules of Nosype, we considered events like the possibilities of periodic partial
occlusion of face, motion blurring, or failed detection of nose-tip, etc. To compensate for these
effects, extrapolated detection on missed frames is considered. In this case, where a nose area
goes undetected for an intermediate frame, the last detected nose-tip position is stored, and its
distance from the detected facial boundaries is considered. In a frame where the nose is not
detected, the extrapolated nose-tip is placed at the same location, relative to the current facial
area, at which the last recorded tip was detected concerning that immediate facial area. This
extrapolation is based on the assumption that the relative nasal location for a user’s face will
remain unchanged unless the face significantly rotates. This ensures continuous disruption-free
drawing and locating of nose-tips.

7.4 Experimental Setup for Lab-Scale Evaluation

In this section describes the details ofNosype’s implementation, in terms of Software, Hardware
and environment setup. The detail follows.

7.4.1 Software & Devices: Implementation and Profiling of Nosype

Nosype has been implemented in Android Studio using OpenCV library2. The CNN model’s
offline training is performed in Python, and the trained model is imported to the mobile
application as a .tflitemodel. The application has been tested with 10 different smartphone
models having amemory (RAM) from 1GB to 8GB, three different Android versions (8.1, 9, and
10), and with minimum resolution as 540×960 pixels, and maximum resolution as 1080×2340

2https://opencv.org/ (Access: Friday 11th August, 2023)

https://opencv.org/
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pixels. The application profiling is done on two different smartphones having different RAM
– Realme 2 Pro and Samsung Galaxy A2 Core. Figure 7.7a shows a low memory usage by the
application on both the devices over a time frame of 30minutes. Figures 7.7b and 7.7c show that
the application can work well in real-time (≥ 30 frames per second (fps) frame rendering). Each
vertical bar in the graph depicts the time required to render a frame. The horizontal lines depict
the time-frame. The green line marks 16ms, the time required for each frame to be rendered at
60fps. The yellow and red lines in Realme 2 pro (not available for Samsung Galaxy A2 Core)
depict a time-frame of about 21ms and 31ms, respectively. Figure 7.7d shows the different
components3 of each of the horizontal bars shown in Figures 7.7b and 7.7c. Component 1
(Swap buffer) is proportional to the amount of GPU processing required by the application.
Component 2 (Command Issue) is the total time for the execution of display lists. Sync &
Upload (Component 3) indicates the usage of graphical components, and Draw (Component 4)
indicates the time for creating or updating the view list. Component 5 is theMeasure or Layout
component that indicates the time taken by the view hierarchy. Animation (Component 6)
depicts the time for running any animation component in the application. Components 7 (Input
handling) and 8 (Misc time) indicate the time to process user input and UI threads, respectively.

(a) Memory Usage of Nosype (b) GPU Rendering in Realme 2 Pro

(c) GPU Rendering in Galaxy A2 Core (d) GPU Rendering : color codes

Figure 7.7: Profiling Nosype Smartphone Application for Resource Usage Analysis

To test the application’s battery usage, the Samsung Galaxy A2 Core was charged to 100%,
and the application was started and kept open till the battery dropped to 5%. The application
kept running continuously for ∼ 6 hours on the device before dropping the battery charge to

3Check https://developer.android.com/topic/performance/rendering/
inspect-gpu-rendering (Access: Friday 11th August, 2023) for detailed meaning of the color codes.

https://developer.android.com/topic/performance/rendering/inspect-gpu-rendering
https://developer.android.com/topic/performance/rendering/inspect-gpu-rendering
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5%.

7.4.2 Participant Details

For the lab-scale evaluations, 11 participants with one or more medical issues like dactylitis,
a neurological disorder causing essential tremor, vertigo, visual problems, and joint pains,
were considered. The participants were provided with a demonstration of Nosype and four
other applications developed for baseline comparison. The participants were allowed to use
all the applications initially under practice session. This allowed them to be familiar with the
unconventional interfaces and control the text entry methods. These discontinuous practice
sessions varied from 30–60 minutes depending on the user’s convenience and the degree of
comfort. After the practice session and the user’s acquaintance with the applications’ usability,
we conduct the experiments and record the results. The users were not intimated with Nosype’s
advantages before the experiments to avoid any possible bias.
The participants’ selection aimed at including people with different medical conditions and

considered their comfort in performing the experiments. The specifics of each participant are
shown in Table 7.1.

7.4.3 Evaluation Methodology

Nosype combines a projection-based method to select appropriate words from the suggestions
or the punctuation marks (the ‘Locate’ interface), along with a ‘Draw’ module to use nose-tip
movements to draw characters. We evaluate these two components of Nosype separately and
compare its performance with other baselines. The details of these evaluations have been
discussed in the following sections.
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Table 7.1: Details of participants with clinical issues
Participant Age Gender Profession Medical Condition Additional remark

1 62 Female Retired
Teacher

Visual issues, ver-
tigo and dactylitis

2 63 Male Retired cor-
porate pro-
fessional

Poor eyesight at
night, thumb stiff-
ness and tennis el-
bow

3 58 Male Lawyer Myopia and essen-
tial tremor

4 29 Female Scholar Vertigo, ganglion
cyst on the right
hand’s wrist

Even though the
cyst was treated,
she has been pre-
scribed to restrict
conventional tex-
ting or gaming
activities

5 30 Male Software de-
veloper

Severe migraines
after prolonged
viewing of texts
with tiny fonts
or using mobile
keypads.

6 32 Male IT Profes-
sional

Early arthritis, oc-
casional stiffness of
fingers and hands

7 27 Female IT profes-
sional

Eyesight issue

8 35 Male IT profes-
sional

Migraine arising
from focused and
prolonged gazing
at a mobile screen.

9 58 Female Self-
employed

Arthritic issues,
leading to restricted
finger and hand
movement, partial
optical cataracts

The participant
also reported less
familiarity with
smartphones and
is not comfortable
with the touch-
based text entry
method.

10 40 Female Private tutor severe migraine
arising from view-
ing small fonts,
thus having diffi-
culty in working
with smartphone
keyboard

11 40 Male Banking
professional

Vertigo and essen-
tial tremor.
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7.5 Evaluation of the ‘Projection’ Interface

The objective of this experiment is to check how accurately a user can select a key over the
mobile soft-keyboard using the projection method as discussed earlier. We evaluate the ‘Locate’
(Projection) interface of Nosype as follows.

7.5.1 Baselines

We compare the performance of Nosype ‘Locate’ interface with four baselines, three using
eye-gaze and eye gesture-based, and the fourth one using fingertip projection-based. The details
follow.
Vanilla Eye Projection (VEP): We developed this customized projection-oriented text entry
application by using a slightly modified version of the projection function used in Nosype’s
‘locate’ interface. This application solely uses a projection interface for selecting alphabets
from a layout grid (Figure 7.8 (left)). However, instead of projecting nose-tip, eye gaze is
projected for the selection of alphabets. To enter a text, the user had to gaze at a particular key
on the soft grid layout.
EyeSwipe: This application is based on a calibration ratio-based approach [3] for the detection
of gaze location on smartphone screen, and hence selection of individual letters from the
keyboard (Figure 7.8 (left)) to construct a text.
Cascading Dwell Gaze Typing (CDGT) [168]: This approach uses a CNN-based [172]
approach for localizing the gaze coordinate on the screen along with a dynamic, cascading
dwell time selection. The same QWERTY layout (Figure 7.8 (left)) has been used for the text
entry.
Vanilla Finger Projection (VFP): VFP is another customized application developed by us and
uses the same features and functions of Nosype. However, instead of detecting the facial
landmarks in this application, the users’ hands and fingertips are detected. Using finger
movement in the air, the user can draw letters or select words and punctuation marks. The
punctuation grid is similar to the one use for Nosype, as shown in Figure 7.1 (right).

Figure 7.8: QWERTY Layout for VEP, EyeSwipe, and CDGT (left), TBK (middle) and punctuation
grid (right) for Nosype
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7.5.2 Evaluation Metrics

In this experiment, we compare different approaches using the following metrics.
Accuracy: Whenever a user projects the nose-tip, the fingertip, or the eye-gaze on a particular
key, we record the projection for consecutive 5 frames. If the projection detects the target key
for at least three out of the five frames, we consider it a correct projection. The accuracy is
measured as the ratio of the number of accurate projections versus all the projection attempts
during the experiment.
Shift: Let (𝐾𝑒𝑦.𝑥, 𝐾𝑒𝑦.𝑦) be the 𝑥 and 𝑦 coordinates of the central point of each grid, which is
also the central point of each key on the screen, and (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛.𝑥, 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛.𝑦) be the 𝑥 and
𝑦 coordinates of the predicted or projected gaze/nose-tip/fingertip location on the smartphone
screen. Then the metric Shift (𝑆) is defined as follows.

𝑆 =

√︃
(𝐾𝑒𝑦.𝑥 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛.𝑥)2 + (𝐾𝑒𝑦.𝑦 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛.𝑦)2 (7.1)

The above metric estimates how well the user can control the key selection using the respective
facial or fingertip attributes. A shift (𝑆) close to zero will prove the system’s accuracy and the
degree of control of the user on the system, as the participants are asked to target the central
location of the key on the screen for projection.

7.5.3 Study Design

The 11 participants were presented with the five different applications (Nosype and the other
four baselines), as discussed above, in the given sequence.
In this training session, each of the participant was asked to select the complete set of

all keys once using each of the applications. In case a participant felt discomfort or failed to
complete a round, they were instructed to take a 5 minutes break after the partial round and
restart the round. In total, each participant completed 5 complete rounds and 0–6 additional
partial rounds of key selection using the 5 applications for in the practice session.
In the experiment session, they were asked to install these applications on their smart-

phones. Each participant completed 6 experiment sessions. The first session was used to
explain the tasks that they have to perform. However, the specific details (like what each key-
board does, which one is our model, etc.) have been hidden from the participants to eliminate
the bias. The next five sessions involved the experiments with the five different applications.
The first session lasted for 30 minutes on average, and the remaining five sessions lasted for 1
hour each, on average. Session 2 involved experiments with Nosype, where the users have been
asked to select one of the keys from the punctuation grid layout by looking firmly on that key.
As the user looks at a specific key, the nose-tip gets projected on that key using the method.
In this experiment, the user had to select each key five times from the punctuation grid. The
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remaining four sessions involved experiments with eye-gaze detection and fingertip projection.
In the experimentswith eye gaze, the users have been asked to choose a key highlighted on the

screen by looking (gazing) on that key and hold the gaze until a beep sound is played. Once the
beep sound is played4, the user has been asked to select another key by gazing at that. The users
have been instructed to choose punctuation marks in the fingertip projection session, similar
to the Nosype interface. In all these experiments, the participants were seated comfortably in
a good lighting condition to eliminate the errors due to the surrounding environments, which
might affect the comparability among the four applications. Further, we have given at least
a 30 minutes gap between two different experimental sessions to eliminate one experiment’s
influence on another. We have repeated the experiments at least 5 times on different days for
each of the participants and finally computed the average performance.

7.5.4 Task Ordering for Evaluation

The order of tasks (conducting the experiments with five different applications) might have an
influence on the overall performance of typingwith individual applications, as thememorization
while typing with one application might affect the typing with another. Further, the fatigue
from one task might also affect the next task. To eliminate such bias from the task ordering,
we employ a Latin Square method to order the applications and allocate a task sequences to a
set of participants. In this case, we repeat the same tasks with a randomized sequence based
on the Latin Square. Following this, the orders of tasks and the corresponding participants are
mapped in Table 7.2.

Table 7.2: Latin Square-based task scheduling to counterbalance the impact of fatigue in evaluating
the ‘Locate’ Interface
Participants y\ Task Or-
der −→

1 2 3 4 5

1, 6, 11 Nosype VEP EyeSwipe CDGT VFP
2,7 VEP EyeSwipe CDGT VFP Nosype
3,8 EyeSwipe CDGT VFP Nosype VEP
4,9 CDGT VFP Nosype VEP EyeSwipe
5,10 VFP Nosype VEP EyeSwipe CDGT

7.5.5 Results

Figure 7.9 shows the dominance of our proposed approach in key selection in terms of accuracy
of key selection using the Projection interface. To check whether the task ordering impacts the
performance, we compare the results obtained from the Latin Latin Square (LS) task ordering

4The beep sound is played after recording the projection for five consecutive frames. We compute the accuracy
based on this as discussed earlier.
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Figure 7.9: Comparison of prediction accuracy with SS and LS task orderings

with a Single Sequence (SS) task ordering method. In the Single Sequence task ordering,
all the participants have used the same sequence while executing the individual tasks – VEP,
EyeSwipe, CDGT, VFP, and Nosype. We experience that the participant could select almost all
the keys usingNosype. Interestingly, Figure 7.9 indicates a similar trend in the result for both the
Latin Square and Single Sequence task ordering-based experiments. The closest competitors
are, however, the VEP and VFP models. The difference in the prediction accuracy for these
projection models resulted from the fact that the eye was more challenging to control for key
selection than nose tip-based selection, and finger movements were difficult for the participants
as they have difficulty in flexibly using the fingers. Indeed, we observe that the majority
of the participants’ finger projection were shaky, resulting in poor accuracy in selecting the
keys. The accuracy of EyeSwipe and CDGT are very low since it is challenging to gaze on a
particular key over a small display screen. It indicates that even though eye and gaze projection
is suitable for the approximate gaze region selection over a large screen system like a desktop,
accurate coordinate mapping is often erroneous over a small smartphone screen, thus requiring
an alternative solution like nose-tip projection.
To further investigate the mapped coordinates’ accuracy on the smartphone screen, we plot

the shift values calculated according to the Equation (7.1) from the experiments with the Latin
Square-based task ordering. For each character, the maximum Shift, the minimum Shift, and
the average Shift were calculated from the 5 recorded frames. Figures 7.10a, 7.10b, and 7.10c
compare the maximum, the minimum, and the average pixel shifts (error) in predicting each
key by the 11 participants (P1–P11) over the five applications. We also perform a pairwise
statistical testing to check the significance of Nosype over other baselines usingMann-Whitney
U test. In all the cases, the prediction error (Shift) in Nosype is significantly less (with 𝑃 < 0.05
over Mann-Whitney U test) than the other four approaches. Interestingly, we observe that
glasses significantly increased the vanilla eye projection’s error rate, thus implying another
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(a) Comparison of maximum errors in prediction (b) Comparison of minimum errors in prediction

(c) Comparison of average errors in prediction

Figure 7.10: Comparison of Baseline Approaches - NoSype works better than other baselines (𝑃 <
0.05 in the significance test)

disadvantage of using eye-based models.
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7.6 Evaluating the Messaging Speed

In this experiment, we evaluate how quickly one can input texts using Nosype. The tasks
primarily aim at understanding the utility of the ‘Draw’ interface of Nosype along with the
auto-suggestion feature. In this experiment, the same set of 11 participants was provided with
the instructions for the tasks to be performed. The details follow.

7.6.1 Baselines

We use the VFP and a Touch based keyboard (TBK) as the baselines for this experiment.
The TBK is a simple smartphone application that uses the standard Google keyboard for the
text entry, as shown in Figure 7.8 (middle). This application helps compare the performance of
Nosype with conventional smartphone text entry systems for clinically challenged users.

7.6.2 Study Design

This study was conducted in two sessions. In the first session, each participant was given a
set of sentences from [147] and was asked to type any 3 of them by using the following two
approaches – (a) drawing individual characters of the sentence without using auto-suggestion
to select the word, and (b) selecting words from auto-suggestion lists, as quickly as possible.
They could redraw a letter in case of the wrong prediction. Selecting a word from the auto-
suggestion automatically appends a space after the word in the typed sentence, thus eliminating
the requirement of inserting a space explicitly by the user. Moreover, the user could choose to
draw the alphabets in either upper or lower case. On selecting the word from the suggestion
list, the application automatically converts an entire common English word in lower case.
This task identified the typing speed in terms of words/characters per minute. The task was
performed with all the 3 applications : Nosype, VFP, and TBK. To make a fair comparison,
auto-suggestion was turned on over the other two applications, VFP and TBK, as well, when we
used the auto-suggestion feature of Nosype.
In the second session, the participants were given 3 sentences from the same sentence

corpus and asked to draw out each letter in the sentence at their own pace. However, they were
instructed not to select words from the suggestion list (auto-suggestion was explicitly turned
off). This estimates the accuracy of the prediction of letters from the ‘Draw’ interface. Each
sentence consisted of 14 to 40 characters without punctuation and had additional white spaces.
This task was also performed with the three applications: Nosype, VFP, and TBK. All the
letters, spaces, and punctuation typed by the user were stored in textual log files in the back-end
during these two tasks.
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(a) Comparison of typing speeds without auto-
suggestion

(b) Comparison of typing speedswith auto-suggestion

Figure 7.11: Comparison of typing speeds

7.6.3 Task Ordering for Evaluation

To test the possibility of ordering effect on the results, we reorganize the order of the applications
used by the participants using Latin Square, using the similar approach as discussed earlier.
The orders of tasks and the corresponding participants are mapped in Table 7.3. This method
of task ordering counterbalances the effect of possible fatigue on the participants. For each of
the applications, we also change the order of keeping auto-suggestion on and off.

Table 7.3: Latin Square-based task scheduling to counterbalance the impact of fatigue in evaluating
the speed of text input

Participant y\ Task Order −→ 1 2 3
1, 4, 7, 10 Nosype VFP TBK
2, 5, 8, 11 VFP TBK Nosype
3, 6, 9 TBK Nosype VFP

7.6.4 Results

Here we summarize the results from the above experiments.

Analysis of Writing Speed

From the first session of this experiment, the typing speed using the draw module in terms
of average Words Per Minute (WPM) is computed as 6.31, across all the 11 participants
using auto-suggestion in Nosype. This calculated value is slightly less than gaze-based models
using commercial trackers [168] but more than desktop-based eye gaze oriented text entry
systems [10]. Figures 7.11a and 7.11b show the text entry speed of the individual participants
using the three applications with two scenarios – without auto-suggestion and with auto-
suggestion. By comparing characters typed per minute with and without using the auto-
suggestion feature, an average increase of about 27.76 characters, including spaces, has been
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observed for Nosype, when the auto-suggestion is used. The average characters entered by
participants in a minute without auto-suggestion was 11 and that with auto-suggestion was
37.9. We observe that the participants had to draw 1.72 characters on average to get a correct
suggestion from the auto-suggestion feature of Nosype. For TBK and VFP, the average words
per minute without suggestion were 6.9 and 1.6 respectively, and that with auto-suggestion were
8.9 and 3.3 respectively. For TBK the average characters per minute without suggestion is 32.8
and with suggestion is 45.6. For VFP the average characters per minute without suggestion
is 8.0 and with suggestion is 16.8. In Nosype, without auto-suggestion, the average word per
minutes is 2.9. However, the users reported discomfort in using the TBK and VFP applications
due to their clinical conditions. Even though TBK has a marginally higher speed, the speed-
comfort trade-off has been eliminated by Nosype’s dominance in term of accuracy. Further,
it is comfortable to see that the performance of Nosype is close to a standard TBK when the
auto-suggestion feature is turned on.

Analysis of Error Percentage during Typing without Auto-Suggestion

From the second session of this study, where participants had to draw out each character
without using the auto-suggestion feature, we measured the system’s accuracy based on the
‘Draw’ module. The error percentage in each sentence is evaluated using the standard formulas
for 9 different metrics as shown in [230] – Minimum string distance (MSD) error rate (M1),
Keystrokes per character (KSPC) (M2), Correction Efficiency (M3), Participant’s Conscien-
tiousness (M4), Utilized Bandwidth (M5), Wasted Bandwidth (M6), Total error rate (M7), Non
corrected error rate (M8), and Corrected error rate (M9). To derive these standardmetrics, some
of the following independent parameters are first derived by comparing the original sentence
from the given corpus, and the user’s typed text. Correct (𝐶) refers to the number of characters,
including spaces present in both the original text and the typed text. Incorrect but not fixed
(𝐼𝑁𝐹) refers to the characters or spaces which are present in the typed text but not there in the
original text or the number of characters or spaces that are missing in the typed text but present
in the original text. Incorrect but fixed (𝐼𝐹) accounts for the intermediate incorrectly typed
characters or spaces that were backspaced and edited and thus fixed (𝐹), referring to the number
of editing keys pressed (for example, backspace button). Since 𝐼𝐹 and 𝐹 do not appear in the
final typed text, we derive these counts from the log files. Table 7.4(left) depicts the formulas
to derive the metrics M1-M9 along with their significance to the text entry system.
Table 7.4 shows the average values of these metrics for the three applications. Green cells

depict the best, and Blue cells depict the Second Best performance out of the 3 applications,
with respect to each metric. 𝑀8 and 𝑀9 are not compared as they are proportional to the
total error rates.The average typing error for Nosype is 6.9 and that of VFP and TBK are 35.7
and 20.6, respectively. The average, standard deviation and 95% Confidence Intervals (CI) of
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Table 7.4: Details of the performance metrics (top) and corresponding values (bottom) for the textual
evaluation (Green and Blue cells depict the Best and the Second Best performance, respectively, out of
the 3 applications, with respect to each metric. 𝑀8 and 𝑀9 are not compared as they are proportional
to the total error rates.). P indicates ‘Participant’.

Metric Formula Significance
M1 ( 𝐼𝑁𝐹

(𝐶+𝐼𝑁𝐹) ) × 100 Indicates the rate of error in the typed text.
M2 (𝐶+𝐼𝑁𝐹+𝐼𝐹+𝐹)

(𝐶+𝐼𝑁𝐹) Proportional to the cost related to the error and fixes.
M3 𝐼𝐹

𝐹
Refers to the effort required for correcting the errors.

M4 𝐼𝐹
(𝐼𝐹+𝐼𝑁𝐹) Refers to the user’s attentiveness and perfection.

M5 𝐶
(𝐶+𝐼𝑁𝐹+𝐼𝐹+𝐹) Rate of transfer of useful information in the system.

M6 (𝐼𝑁𝐹+𝐼𝐹+𝐹)
(𝐶+𝐼𝑁𝐹+𝐼𝐹+𝐹) Rate of transfer of wasted information.

M7 ( (𝐼𝑁𝐹+𝐼𝐹)
(𝐶+𝐼𝑁𝐹+𝐼𝐹) ) × 100 Rate of combined errors, both corrected and uncorrected.

M8 ( 𝐼𝑁𝐹
(𝐶+𝐼𝑁𝐹+𝐼𝐹) ) × 100 Rate of errors that were corrected.

M9 ( 𝐼𝐹
(𝐶+𝐼𝑁𝐹+𝐼𝐹) ) × 100 Rate errors that were not corrected.

P Model M1(%) M2 M3 M4 M5 M6 M7(%) M8(%) M9(%)

P1
Nosype 8.82 1.00 - 0.00 0.91 0.09 8.82 8.82 0.00
VFP 47.06 1 - 0 0.53 0.47 47.06 47.06 0
TBK 0 1 - - 1 0 0 0 0

P2
Nosype 3.92 1.07 1 0.5 0.9 0.1 7.33 3.81 3.52
VFP 44.44 1.11 0 0 0.5 0.5 44.44 44.44 0
TBK 15.15 1 - 0 0.85 0.15 15.15 15.15 0

P3
Nosype 3.33 1.13 0.83 0.75 0.87 0.13 8.02 3.03 4.99
VFP 43.75 1 - 0 0.56 0.44 43.75 43.75 0
TBK 10 1.1 1 0.33 0.82 0.18 14.29 9.52 4.76

P4
Nosype 5.71 1.04 1 0.17 0.91 0.09 7.45 5.6 1.85
VFP 35.29 1 - 0 0.65 0.35 35.29 35.29 0
TBK 5.88 1.24 0.33 0.5 0.76 0.24 11.11 5.56 5.56

P5
Nosype 7.79 1.09 0.75 0.28 0.85 0.15 11.02 7.47 3.55
VFP 35.29 1 - 0 0.65 0.35 35.29 35.29 0
TBK 3.13 1.28 0.8 0.8 0.76 0.24 13.89 2.78 11.11

P6
Nosype 2.08 1.1 0.67 0.5 0.9 0.1 5.59 2.08 3.51
VFP 23.53 1.12 1 0.2 0.68 0.32 27.78 22.22 5.56
TBK 42.11 1 - 0 0.58 0.42 42.11 42.11 0

P7
Nosype 13.5 1.04 1 0.11 0.83 0.17 15.14 13.29 1.85
VFP 37.5 1 - 0 0.63 0.38 37.5 37.5 0
TBK 29.41 1.71 1 0.55 0.41 0.59 47.83 21.74 26.09

P8
Nosype 9.71 1.04 - 0.11 0.87 0.13 11.34 9.49 1.85
VFP 58.82 1 - 0 0.41 0.59 58.82 58.82 0
TBK 41.18 1.06 1 0.07 0.56 0.44 42.86 40 2.86

P9
Nosype 7.98 1 - 0 0.92 0.08 7.98 7.98 0
VFP 25 1 - 0 0.75 0.25 25 25 0
TBK 26.32 1.11 1 0.17 0.67 0.33 30 25 5

P10
Nosype 10.83 1.1 0.5 0.25 0.81 0.19 13.75 10.63 3.13
VFP 11.76 1.24 1 0.5 0.71 0.29 21.05 10.53 10.53
TBK 17.65 1.47 0.6 0.5 0.56 0.44 30 15 15

P11
Nosype 2.5 1.06 1 0.5 0.92 0.08 5.28 2.5 2.78
VFP 31.25 1 - 0 0.69 0.31 31.25 31.25 0
TBK 36.36 1 - 0 0.64 0.36 36.36 36.36 0

each of the metrics (M1-9) for each of these applications are depicted in Table 7.5. VFP’s and
TBK’s error rates are high, particularly because the participants were uncomfortable using their
fingers for typing. The performance metrics show significant accuracy in the Nosype’s ‘Draw’
module’s performance of the proposed approach and are comparable to popular gaze-based
text entry methods [217]. Interestingly, we observe that Nosype performs either the best or the
second best among all the participants across all the metrics. Thus, we infer that nose-tip-based
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Table 7.5: Average (Avg.), Standard Deviation (Stdv.) and 95% Confidence Intervals of performance
metrics (Green and Blue cells depict the Best and the Second Best performance, respectively, out of the
3 applications, with respect to each metric. 𝑀8 and 𝑀9 are not compared as they are proportional to the
total error rates.)
Model M1(%) M2 M3 M4 M5 M6 M7(%) M8(%) M9(%)

Nosype
Avg. 6.93 1.06 0.84 0.29 0.88 0.12 9.25 6.79 2.46
Stdv. 3.72 0.04 0.19 0.24 0.04 0.04 3.19 3.68 1.54
95%
CI

4.73,9.13 1.04,1.08 0.73,0.95 0.15,0.43 0.86,0.9 0.1,0.14 7.36,11.14 4.62,8.96 1.55,3.37

VFP
Avg. 35.79 1.04 0.67 0.06 0.61 0.39 37.02 35.56 1.46
Stdv. 12.9 0.08 0.58 0.16 0.1 0.1 10.96 13.26 3.44
95%
CI

28.17,43.41 0.99,1.09 0.33,1.01 -
0.03,0.15

0.55,0.67 0.33,0.45 30.54,43.5 27.72,43.4 -
0.57,3.49

TBK
Avg. 20.65 1.18 0.82 0.29 0.69 0.31 25.78 19.38 6.4
Stdv. 15.3 0.23 0.26 0.29 0.17 0.17 15.68 14.98 8.16
95%
CI

11.61,29.69 1.04,1.32 0.66,0.98 0.12,0.46 0.59,0.79 0.21,0.41 16.51,35.05 10.53,28.23 1.58,11.22

text entry is more feasible for the specific user group with clinical disabilities in finger usage.
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7.7 Human Study in the Wild

This subjective evaluation of Nosype aims at understanding the usability of the application in
the real world. This system’s objective, even though, is to primarily benefit the users with
clinical issues, this evaluation aimed at understanding if a model like Nosype can be globalized
and be used as a substitute the generic text entry systems. The study hypothesizes that if the
common masses can use the application, it can be used under scenarios where traditional text
entry methods get cumbersome, even beyond clinical issues. For example, such an application
can also be useful for a straphanger carrying commodities in one hand and using the other hand
only to send a text message or a user using a smartphone with a damaged or unresponsive touch
screen.

7.7.1 Methodology

The users could install Nosype in their smartphones and use it for entering a textual message.
The participants were instructed to enter at least 30 words using Nosype and then provide
feedback for the application by filling up a questionnaire based on the popularly used SUS [23].

7.7.2 Participant Details

We received responses from 60 participants, including 10 participants with medical conditions
like dactylitis and sarcopenia that prevent them from using the regular touch-based text entry
applications using small soft-keyboards. It can be noted that in this study, we have not included
the previous 11 volunteers who participated in the lab-scale study, as they had been trained
explicitly to use the system. Among the 60 participants, 56.7% were male, and 43.3% were
female. By categorizing them according to the age groups, 18.33% were found to be under
25, 43.33% belonged to the age group of 25-40, and 38.33% were above 40. The lower and
upper age limits were 23 and 90, respectively. The participants also belonged to a wide variety
of professions. To categorize them professionally on a higher level, users belonging to the IT
industry, sales profiles, and banking services were grouped under ‘Service.’ 33.33% of the
participants belonged to this category. Faculties and research scholars formed the ‘Academics’
category, which was 15% of the participants. 20% were undergraduate students, and 31.67%
were either retired professionals, doctors, lawyers, homemakers, businessmen, or self-employed,
forming the “Others” category. 5 of the 10 participants with clinical disabilities were male,
and the rest were female. All these 10 participants were senior citizens and belonged to the
specific age group of 65–90. Three of them have been diagnosed with dactylitis and the rest
with sarcopenia.
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7.7.3 Survey Outcome

The System Usability Scale (SUS) revealed an average score of 77.708 over all the 60 par-
ticipants, thus showing our proposed model’s feasibility. Individual average scores of the 10
questions have been displayed in Figure 7.12a. From the figure, we observe that the odd ques-
tions have higher scores than the even ones, as expected, thus proving the application’s usability.
However, we observed that the users are a bit concerned about the application’s complexity,
and they preferred a training session before using it. This is mostly because people are not
very convenient in drawing characters using head movements. Participants who are less than
25 years of age gave an average score of 69.5, those between 25-40 provided 73.8, and people
above 40 scored Nosype, 84.02. It is interesting to note that older people found the system most
usable. Indeed, the older people may not feel very comfortable with finger typing over the tiny
soft keyboard on a smartphone, so they found Nosype to be a usable system.
The average scores given by the professional groups Service, Academics, Students and

Others were 81.5, 70.27, 66.04, and 84.60, respectively. We found that the service and other
people saw the application as most useful. The service people need to type short messages a
lot during busy hours when they can use Nosype in case the hands are blocked. On the other
hand, retired and old-age people feel uncomfortable with finger typing on smartphones; thus
Nosype was more comforting to them. Gender-wise scores were nearly balanced (Male 77.94
and Female 77.40). From this analysis, it could be inferred that the system was widely popular
among people from different backgrounds, ages, and gender.

(a) Question-wise average scores by all the users (b) Question-wise scores by users with clinical con-
dition

Figure 7.12: SUS : Average question-wise scores

Figure 7.12b shows the average scores for the 10 SUS questions for the 10 participants with
clinical disabilities. We observe that these participants have found the application to be very
useful while reporting usability scores between 75 to 87.5. It is comforting to see that Nosype
can be beneficial for senior citizens and disabled people of the society who can take advantage
of smartphone features by using their head movements for interaction.
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7.8 Summary

In this work, a novel touch-free writing model has been proposed for mobile devices that use no
additional resources and allow flexible head movement, making its applicability more feasible.
The approach presents the feasibility of using a nose tip, a rather unconventional facial feature,
for touch-free interactive text entry systems. The approach can be beneficial to many users,
especially the physically challenged or visually impaired users. Since the model is free from
calibration, restricted movement, and erroneous eye tracking due to reflective glasses, it can be
used under various indoor and outdoor scenarios. The subjective evaluation and usability study
using the standard measurement metrics reveal the model’s advantages over popular touch-free
text entry models.
Interestingly, to explore whether Nosype can perform in the presence of a face-mask (which

is inevitable during COVID-19 Pandemic), we also asked 2 of the 11 participants to draw all 26
alphabets and 10 numbers using the Draw interface and select 22 punctuation marks using the
Locate interface of Nosype, once wearing a mask and then without wearing the mask. Without
themask, the overall accuracy% ofNosype for entering all these 58 alphanumeric characters and
marks is 93.61%. With mask, even thoughNosype can perform, its accuracy reduces to 70.83%.
As a future scope of this work, Nosype can include mask detection technique to further enhance
its accuracy. Despite the propitious results, this primary version of the proposed model can be
improved by incorporating features like automated numeric and alphabetical mode changing,
using n-gram models for the generation of focused suggestion list, using Trie data structure for
storing the entire Dictionary , mask detection sub-module and anti-shake or motion-reduction
aspects. To this end, this model serves significantly well for short messages. By examining
the results, this model’s scope seems promising as it will find immense usage among users
belonging to all age groups.



8
Conclusion and Future Scopes

The idea of an Utopian future is meshed around the core of educational advancements in the
society. We believe that the true essence of societal and personal progress can be experi-
enced through proper education. Education, however, should not be constricted by classroom
boundaries, predetermined tenures, and limited accessibility. Therefore, this thesis focuses on
smart education, especially it’s online mode, where the learners can overcome the drawbacks
of classroom-based lectures. Even though self-motivation, and hence attention is a personal
responsibility for absorbing the contents of the course, it is often difficult for an online meeting
participant to maintain attention. Such inattentional spans are caused by different factors like
boredom, lack of comprehension, personal priorities leading to mind wandering, scope for
parallel activities, lack of active communication, etc. In this thesis, we address this problem of
online education through the development of non-intrusive assistive systems for MOOCs, live
meetings and open access YouTube videos. Further, mental disruptions can be an indirect effect
of visual context switching. In attempt of taking notes continuously, while attending an online
lecture, a learner might get fatigued and miss some key points. On another hand, a learner
with certain clinical challenges might not even interact with the device in a convenient way.
These challenges, in addition to the COVID 19 protocols of social distancing and touch-free
interactivity, led to the development of assistive systems that can promote interactivity between
users and devices in a non-conventional, yet seamless manner. The thesis also discusses these
novel systems in details.
In this chapter, we first discuss the summary of the entire thesis and then discuss some
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future scopes with respect to the proposed models.

8.1 Summary

The thesis begins with a broad discussion on the concepts of attention and human-computer
interactivity. Through this exploration, we discuss the challenges associated with automated
attention estimation and novel interactive systems. However, the inherent challenges, along
with the aim of addressing them motivates the contributions of this thesis. To present a better
understanding of the correlated works, the thesis then presents an elaborate study of the existing
literature in the field of smart education, thus discussing major research directions like sensing
types, educational setups, data modalities and interactivity. These works, along with their
future scopes help us understand some research questions regarding whether it is possible to
develop some improved assistive models to promote the quality of education. Next, we discuss
the major research contributions as follows:
Firstly, we aim at automatically estimating the very basic level of attention– visual attention,

through gaze gesture tracking. Based on the observation that a significant proportion of the
global population uses smartphone sot attend MOOCs, we develop a smartphone application
GestAtten, that uses gaze and visual patterns to infer upon the learner’s visual attention. In
particular, the system checks if (a) the learner is looking at the screen to follow the concept, (b)
visually following the content and (c) visually focused on particular objects of interest. Through
thorough human evaluations, we prove that the system not only accurately distinguishes pupils
with higher visual attention from thosewith lowattention, but also establishes a direct correlation
of visual attention with short term memory (high-level cognition). Further, the system shows
that manual inspections are perspective in nature and can often be inaccurate. In such cases, an
automated estimator is reliable and accurate.
Secondly, we solve the problem of estimating a deeper level of attention– cognition, through

facial expression, active communication and vocal cues of presenters/speakers and audiences
of live online meetings. Considering the fact that formal meetings are more likely to be at-
tended using laptops/desktops, we propose an application EmotiConf that ubiquitously tracks
the participants’ cognitive focus. Further, through ambient light sensing and human-behaviour
modelling, the system identifies whether the participants have opened a different tab to read-
/watch another relevant/ irrelevant article during the meeting. The lab and large-scaled human
evaluations show that such a system can accurately work for different types of online meetings–
formal, informal, presentation-based. Although he systemworks on client side and is completely
secured, it uses the device’s camera to track the facial cues.
Thirdly, we propose a system ExpresSense, that eliminates the requirement of opening a

camera for tracking the facial cues of the learners. This smartphone-based system utilises
near-ultrasound signal features to capture the movement of facial AUs and hence the overall
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expression. Through thorough evaluation, we show how, the system is robust and work well
under external noise, finger movements, distance, elevations, angles, etc. On proving the
system’s performance, we then utilise the predictions in understanding the engagement of the
users, as they watch YouTube videos of different genres.
To solve the challenge of disruption due to visual context switching required for taking

manual notes from online courses, we next develop AutoNotes, an application that allows
the users to simply blink for recording different sections of the lecture. The system then
automatically generates textual notes along with blink-based screenshots and auto-marked
keywords with their corresponding Wikipedia references. The experimental evaluation show
that the system can perform significantly well even in the presence of natural eye-blinking
tendencies of the learners.
Finally, we propose a system called Nosype that addresses the problems of touch-based

text entry in smartphones. The system requires the users to simply move their head in air
to draw alphabets. The nose-tip trajectory is hence captured by the application through the
smartphone’s front camera and reproduced on the device’s screen as entered alphabets. From
the corresponding auto-generate suggestions and punctuation list, the user can then point their
face to a particular word or mark to complete the entire sentence. Through user study, we found
that such a system is highly useful for users of different age groups, suffering from Sarcopenia,
Dactylitis and other clinical issues. Such a system can be used for taking quick notes while
watching course videos in different indoor or outdoor environments by all types of users.

8.2 Future Scopes

Finally, we discuss some of the future scopes of the works presented in this thesis.

8.2.1 Capturing Guessing Behavior in Online Examinations

Online examination is another crucial aspect of online education. While many works have
aimed at promoting the quality of lectures, developing recommendation systems for learners,
feedback systems for teachers, understanding the guessing behaviour of learners in online MCQ
based tests have remained unexplored. Our finding regarding ubiquitous attention estimation
from facial cues, along with aspects like response time measurement can be used to understand
whether a particular answer has been guessed by the student. Moreover, future work can also
aim at classifying guesses as either random, intellectual or analytical guessing based on the
learner’s answer patterns, interface activities and physiological signals and data, collected solely
from the smartphone or laptop’s inbuilt hardware.
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8.2.2 Tracking Macro and Micro-activities during Online Lectures

In our current works, we have dealt with visual multitasking. However, a learner often prac-
tices micro activities like involuntary body movements that can account for their stress levels.
Moreover, macro activities like playing games, eating, chatting can lead to disengagement. In
future, we will aim at utilising ultrasound chirps for detecting and classifying such activities for
fine-tuned estimation of a learner’s cognition.

8.2.3 Tracking Typing Speeds and Smartphone Addiction among Students

While exploring the robustness of ExpresSense, we realised that not only can finger movements
be detected through acoustic sensing, but their patterns can also be detected. Based on this
observation, our future works will aim at solving a major social challenge of mobile phone
addiction amongst young adults. The system will not only be helpful for the users to control
their smartphone usage, but can also be extended to promote their performance in educational
courses.

8.2.4 Expression-based Text Generation in Online Classes

Finally, we aim at extending Nosype, to develop different text entry systems that can work with
facial expressions. Further, such systems can be used to sense sarcasm or predict the mood of
the user. The system can also be useful for children with early signs of autism and can be used
as a medium for learning various expressions.
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A
Appendix

A.1 Facial Landmark Detection

The detection of facial region is facilitated by using the method proposed in [40], which is based
on Histogram of Oriented Gradients (HOG) and Linear Support Vector Machine (SVM). In this
approach, the input image is divided into a grid of cells containing several pixels. Histograms
are derived from the gradient magnitude and the orientation of these cells, indicating the degree
and direction of change for each pixel location in the cell. For making the system more tolerant
towards variations in lighting conditions, these cells are grouped into blocks of overlapping
cells for the final estimation of the HOG features. Using these features, the SVM is trained for
the detection of facial regions. From the detected facial regions, 68 facial landmarks (shown in
Figure A.1) are extracted using the method proposed in [101], that uses an iterative training of a
cascade of regressors, each using a gradient boosting tree algorithm. The iBug 300-W dataset1
has been used for training this model. This dataset is particularly suitable for EmotiConf
due to two major reasons. Firstly, this dataset contains landmark annotations for the different
facial images, taken from categories like “conference” etc. which is necessary in EmotiConf .
Moreover, facial occlusion is common in online conferences as participants might voluntarily
or involuntarily move out of frame partially. The dataset works significantly well for occluded
faces (distribution of occluded facial images is 29.83%), which is essential for natural video
conferences.

1https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/ (Access: Friday 11th August,
2023)
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Figure A.1: 68 facial landmarks on a video frame from Youtube-8M dataset

A.2 System Usability Scale Questions

Table A.1 enlists the 10 System Usability Scale Questionnaire and their indication towards the
usability of the system.

Number Question Type Ideal Score
Q1 I think that I would like to use this system frequently Positive 5
Q2 I found the system unnecessarily complex Negative 1
Q3 I thought the system was easy to use Positive 5
Q4 I think that Iwould need the support of a technical person

to be able to use this system
Negative 1

Q5 I found the various functions in this system were well
integrated

Positive 5

Q6 I thought there was too much inconsistency in this sys-
tem

Negative 1

Q7 I would imagine that most people would learn to use this
system very quickly

Positive 5

Q8 I found the system very cumbersome to use Negative 1
Q9 I felt very confident using the system Positive 5
Q10 I needed to learn a lot of things before I could get going

with this system
Negative 1

Table A.1: System Usability Scale–questions and types

The final SUS score is calculated as :
((QA1-1)+(5-QA2)+(QA3-1)+(5-QA4)+(QA5-1)+(5-QA6)+(QA7-1)+(5-QA8)+(QA9-1)+
(5-QA10))*2.5, where QAn is the score to statement Qn, provided by a participant.
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List of Acronyms

AU Action Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
BFGS Broyden–Fletcher–Goldfarb–Shanno . . . . . . . . . . . . . . . . . . . . . . . 107
CDGT Cascading Dwell Gaze Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
CI Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
CS Computer Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
CNN Convolution Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
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SSD Single Shot Multibox Detector 

SUS System Usability Scale 

TBK Touch based keyboard 

VEP Vanilla Eye Projection 
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VR Virtual Reality 
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