
 

 

A Design of Universal Intelligent 

Problem Solver 
 

Thesis submitted by 

Swarna Kamal Paul 

 

 

 

Doctor of Philosophy (Engineering) 

 

Department of Information Technology 

Faculty Council of Engineering & Technology 

Jadavpur University 

Kolkata, India 

 

2022 
 

  



 

 

 

 

 

 

 

 

 

 

Under the Guidance of: 

 

Dr. Parama Bhaumik 

Associate Professor 

Department of Information Technology 

Jadavpur University 

Salt Lake, Sector-3, Kolkata - 700106  
 

 



List of All Publications 

Conferences 

1. Paul, S. K. & Bhaumik, P. (2014, September), “A Density based clustering with Artificial Immunity 

inspired preprocessing”, In proceedings of 2014 International Conference on Advances in Computing, 

Communications and Informatics (ICACCI) (pp. 2648-2654). IEEE. 

 
2. Paul, S. K. & Bhaumik, P. (2016, September), “A fast universal search by equivalent program pruning”, 

In 2016 International Conference on Advances in Computing, Communications and Informatics 

(ICACCI) (pp. 454-460). IEEE. 

 

3. Paul, S. K., Gupta, P. & Bhaumik, P. (2018, December), “Learning to Solve Single Variable Linear 

Equations by Universal Search with Probabilistic Program Graphs”, In proceedings of International 

Conference on Innovations in Bio-Inspired Computing and Applications (pp. 310-320). Springer. 

 

4. Paul, S. K. & Bhaumik, P. (2020, May), “A Reinforcement Learning Agent based on Genetic 

Programming and Universal Search”, In proceedings of 2020 4th International Conference on 

Intelligent Computing and Control Systems (ICICCS) (pp. 122-128). IEEE. 

 

5. Paul, S. K. & Bhaumik, P. (2021, December), “Towards formalization of constructivist seed AI”. In 

ICCIS 2021, Springer, pp. 61-78 

 

6. Paul, S. K. & Bhaumik, P. (Jan 2022), “Disaster Management through Integrative AI”, In proceedings 

of ICDCN 2022 (pp. – 290-293). https://doi.org/10.1145/3491003.3493235 

Journals 

1. Paul, S. K. & Bhaumik, P. (2018), “AIDCOR: artificial immunity inspired density based clustering with 

outlier removal”, International Journal of Machine Learning and Cybernetics, vol. 9, issue 2, pp. 309-

334, https://doi.org/10.1007/s13042-016-0499-x. Electronic ISSN - 1868-808X, Print ISSN - 1868-

8071. 

 

2. Paul, S. K., Jana, S. & Bhaumik, P. (2020), “A multivariate spatiotemporal model of COVID-19 

epidemic using ensemble of ConvLSTM networks”, Journal of The Institution of Engineers (India): 

Series B, vol. 102, issue 6, pp. 1137-1142, https://doi.org/10.1007/s40031-020-00517-x. Electronic 

ISSN - 2250-2114, Print ISSN - 2250-2106. 

 

3. Paul, S. K., Jana, S. & Bhaumik, P. (2021), “On Solving Heterogeneous Tasks with 

Microservices”, Journal of The Institution of Engineers (India): Series B, pp. 1-9, 

https://doi.org/10.1007/s40031-021-00676-5. Electronic ISSN - 2250-2114, Print ISSN - 2250-2106. 

 

4. Paul, S.K., Jana, S. & Bhaumik, P. (2021), “Explaining Causal Influence of External Factors on 

Incidence Rate of Covid-19”, SN COMPUT. SCI. vol. 2, issue 6, article 465, 

https://doi.org/10.1007/s42979-021-00864-6. Electronic ISSN - 2661-8907. 

 

5. Paul, S.K. & Bhaumik, P. (2021), “Solving Partially Observable Environments with Universal Search 

Using Dataflow Graph-Based Programming Model”, IETE Journal of 

Research, https://doi.org/10.1080/03772063.2021.2004461. Print ISSN – 0377-2063, E. ISSN- 0974-

780X 

https://doi.org/10.1145/3491003.3493235
https://doi.org/10.1007/s13042-016-0499-x
https://doi.org/10.1007/s40031-020-00517-x
https://doi.org/10.1007/s40031-021-00676-5
https://doi.org/10.1007/s42979-021-00864-6
https://doi.org/10.1080/03772063.2021.2004461


 

 

 

PROFORMA – 1  

“Statement of Originality”  

 

I, Swarna Kamal Paul, registered on April 2018, do hereby declare that this thesis entitled 

“A Design of Universal Intelligent Problem Solver”, contains a literature survey and original 

research work done by the undersigned candidate as part of Doctoral studies.  
All information in this thesis has been obtained and presented in accordance with existing 

academic rules and ethical conduct. I declare that, as required by these rules and conduct, I 

have fully cited and referred all materials and results that are not original to this work.  

I also declare that I have checked this thesis as per the “Policy on Anti Plagiarism, Jadavpur 

University, 2019”, and the level of similarity as checked by iThenticate software is 

________%. 

 

Signature of Candidate:  

Date:  

 

Certified by Supervisor:  

(Signature with date, seal)  

 

 

 

 

 



 

 

 

 

 

PROFORMA – 2 

CERTIFICATE FROM THE SUPERVISOR 

 

This is to certify that the thesis entitled “A Design of Universal Intelligent Problem Solver” 

submitted by Shri Swarna Kamal Paul (Regd. No.: 229/18/E), who got his name registered 

on 16/04/2018, for the award of Ph.D. (Engineering) degree of Jadavpur University, is 

absolutely based upon his own work under the supervision of myself and that neither this 

thesis nor any part of it has been submitted for either any degree/diploma or any other 

academic award anywhere before.  

 

 

 

 

 

Dr. Parama Bhaumik  

Associate Professor 

Department of Information Technology 

Jadavpur University 

Salt Lake Campus, Sector-3, Kolkata-700106 
 

 

 



 

 

 

 

 

 

 

 

 

 

 

To Mother Nature … 

 

  



Acknowledgments 

 

This thesis is the much-awaited outcome of my hard work and many others who have led to 

the successful completion of my Doctor of Philosophy in Engineering from Jadavpur 

University. First of all, I would like to express my honor towards Mother Nature who is the 

greatest teacher of all. I am thankful for her blessings and the teachings she offered. I would 

like to extend my sincere thanks to Dr. Parama Bhaumik, Assistant Professor, Department 

of Information Technology, Jadavpur University for giving me the chance to pursue my 

doctoral work under her guidance. I would like to thank her for her continuous support, 

encouragement, and for leading me to the successful completion of my thesis. I would also 

like to thank Professor Samiran Chattopadhyay and respected Professors of the Department 

of Information Technology, Jadavpur University for providing valuable guidance to pursue 

my work. I am thankful to my co-worker Mr. Saikat Jana, who helped me out with several 

important contributions. I would like to express my gratitude to Mr. Shikhar Nath Sil for 

providing me all the encouragement and supporting me in my tough times. Finally, my deep 

gratitude to my son without whom this thesis would have been incomplete. I would like to 

thank my family, all my friends, and staff members of Jadavpur University who have lent 

their helping hands in pursuing my doctoral work.  

 

 

Swarna Kamal Paul 

 

 

 

 



Abstract 

General problem-solving in the real world requires high level of adaptability across multiple 

problem environments such that a problem solver should be able to solve problems in varied 

environments. A problem is usually solved by searching through a solution space. The search space 

should be of manageable size relative to the search speed and storage capacity in order to find a 

solution in a realistic time. However, for a majority of the real-world problems, the situation is 

barely the expected one. A brute force search would easily get lost in the combinatorial explosion 

of the search space. Thus, some sort of intelligence is required to dampen the search space and 

perform a focused search. Humans are good at adapting across different problem environments 

and consequently are effective general problem solvers. This is not quite true for artificial agents. 

Most of the research on artificial intelligent agents is mostly focused on domain-specific problems 

and achieving adaptability across environments is still a challenging task. Few pieces of research 

focused on designing general problem-solving agents based on strong theoretical groundings. Yet, 

creating a practically feasible agent which can sense and act optimally in varied environments 

under resource constraints of time and space is still far from trivial. Thus, we focused on designing 

a practically feasible general problem-solving agent. We took an integrative approach where 

multiple components can be integrated synergistically to build a problem solver. The solutions are 

represented as programs in a proposed programming model. The problem-solving agent searches 

through program space using generate and test approach to find solutions in varied problem 

environments. Solution programs can integrate multiple disparate components including sensors 

and actuators to interact optimally in a heterogenous problem environment. The search space is 

dampened using policy gradient-based incremental learning, equivalent program pruning, and 

genetic programming. We experimented with our designed agent in multiple problem 

environments and the results reinforced our claims. Comparison with the current state-of-the-art 

methods revealed the excellent performance of our developed agent. Last but not least we proposed 

a formal structure of a seed AI that has the capability to evolve into a general AI system. 
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1 
 

1 INTRODUCTION  

“A problem exists when a living organism has a goal but does not know how this goal is to 

be reached” – Karl Duncker (1945) 

1.1 MOTIVATIONS 

Much of the Artificial Intelligence (AI) field today is concerned with creating algorithms or 

solutions to demonstrate intelligence for one or other very specialized problems like chess 

playing, object recognizing from image, automobile driving, etc. Whereas a general problem 

solver should be capable of solving problems and adapting across a wide range of 

environments. Engineering rule-based expert systems with a pre-loaded knowledge base 

quickly become practically intractable due to the sheer volume of rules and knowledge 

required to solve few common real-world tasks, which humans can perform with ease. Thus, 

it is quite evident, some form of intelligence and learning capability is required to select and 

generate contextual knowledge for adapting from one problem environment to another. 

“Artificial General Intelligence” or AGI was a term coined to represent the concepts and 

methods developed to deal with creation of such an intelligent general problem-solving 

machinery. Many authors explored this avenue and attacked the problem of general problem 

solving with different flavors. Tremendous scientific progress has been made and many 

important concepts have been developed, which allows one to create a theoretically complete 

artificial general intelligent agent. Yet we hardly have any practically feasible method which 

can seamlessly operate in a real-world across multiple problem environments. The 

fundamental problem in dealing with real-world environments is scarcity of resources in 

terms of time, space, and knowledge. Searching for solutions in an arbitrary environment 

from scratch almost always leads to a combinatorial explosion in one form or another. Thus, 

it is of utmost necessity to generate, capture and reuse knowledge as much as possible to 

dampen the search space during the operation life-cycle. Though this is one of the 

fundamental goals of artificial intelligence, yet it is far from trivial in the context of general 

problem-solving. Knowledge gained in one domain may not be straightforward to apply in a 

different domain. Also, in order to act on variety of problem environments the artificial agent 
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should have the capability of interacting with all the environments and generating arbitrary 

logical pathways. Keeping these objectives in mind, we focused on developing and 

improving mechanisms for efficient knowledge capture, generation, transfer, and integration 

across multiple environments. We utilized the power of integrative intelligence, such that 

reusable solutions can be easily integrated to solve problems in various environments. This 

would dampen the search space as searching all solutions from scratch can be avoided. 

However, integrative intelligence is not simple plug-n-play type solution design method. 

Different components need to be integrated in a synergistic way, which makes it challenging. 

We focused on developing methods to efficiently integrate disparate AI components to solve 

heterogeneous tasks and tried to design a universal intelligent problem solver which has the 

capability to sense, plan and act to solve problems in multiple environments. The problem 

solver has been designed loosely based on the steps of the general problem-solving process 

which remains valid both for biological and artificial agents. Lastly, we explored what is 

needed to build an autonomous seed AI, based on integrative intelligence, which can adapt 

across multiple environments without explicit manual drive. 

1.2 GENERAL PROBLEM SOLVING 

“A problem exists when an information-processing system has a goal condition that cannot 

be satisfied without a search process” [1] – this is a nicely rephrased version of the original 

definition of a problem by Duncker [2]. The beauty of this definition lies in its broad sense 

as it remains valid, both for a biological organism and artificial computing machines, of 

course considering a biological organism as an information-processing system. This 

definition provides a necessary and sufficient condition for a problem to exist. The simple 

existence of a goal condition does not imply the existence of a problem if the solution path 

is known beforehand or it can be accessed without a search. The non-existence of a solution 

is a necessary condition for a problem to exist, where solution refers to a sequence of 

operations that can satisfy the goal condition [3]. The problem can be solved by searching 

for a solution and finding one. The same problem encountered twice will not be a problem 

in the 2nd encounter if the problem is solved in the 1st attempt and the solution is known 

during the 2nd. For example, adding two integers is a problem for a child who is still learning 

the addition process. A child may have multiple different sets of understanding for the 
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addition rules and methods, during her initial learning stage. She has to apply rules as per her 

different set of understanding and evaluate the result to verify if it is a correct one. That 

involves some level of searching. Once the rules are well understood, adding two numbers 

does not remain a problem as the path to obtain the solution becomes known and well-

defined. Therefore, some narrow contextual problem-solving methods may need to be 

redefined or updated from time to time to consider them as problem-solving methods. Once 

a problem is solved and a solution is known it does not remain a problem. Thus, a solver 

designed to solve that specific problem does not remain a solver once the problem is solved.  

A problem can be represented using four different components. An initial state – description 

of the state from where the problem-solving process begins; a goal state – state that needs to 

be reached in order to solve the problem; operators – actions that can be taken to change 

states; constraint – conditions that need to be satisfied while executing the solution path from 

the initial state to goal state [4]. A problem can be categorized as well-defined, if all the 

above-mentioned components are clearly specified, otherwise, it is ill-defined. Mathematical 

problems are mostly well-defined, whereas many of the real-world problems are ill-defined. 

For example, finding a solution to completely eradicate Covid-19 in a specific period of time 

is an ill-defined problem as an appropriate set of operators is still unknown. Full vaccination 

of a population may be one way but there is no guarantee that some mutated strain of the 

virus cannot evade the vaccine protection.  An ill-defined problem may be converted to a 

well-defined problem by finding an appropriate set of operators, formulating exact goal 

conditions, defining initial conditions. In this case, problem representation itself can become 

another problem, and so on. A problem can also be classified as an adversary or non-

adversary problem [1]. In a non-adversary problem, the solvers interact with non-responsive 

objects and the environment does not compete with the solver. In an adversary problem, the 

solver competes with an opponent in the environment who wants to defeat the purpose of the 

solver. A problem may be solved by finding a task or a sequence of tasks with respect to the 

problem-solving methods. Tasks are entities that can be executed by applying a known 

sequence of actions in an environment. Tasks need to be executed in an environment. A 

major difference between task and a problem is in a task the problem-solving methods are 

known whereas in a problem it is not [5]. There are multiple types of task environments 

categorized in the literature. Following are different types of task environments. 
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Fully observable vs partially observable – In a fully observable environment, the complete 

state information can be derived at any point in time whereas in a partially observable 

environment it is not. 

Deterministic vs stochastic – In deterministic environment, the next state is completely 

determined by the current state and action whereas in a stochastic environment next state 

probabilistically depends on the current state and action.  

Episodic vs sequential – In an episodic environment the solver’s interaction with the 

environment are divided into episodes. In each episode, a sequence of action and observation 

trail is generated and in the next episode, a reset is applied in the environment.  

Static vs dynamic – A static environment does not change during interaction with the solver 

whereas in case of a dynamic environment it is otherwise. 

Discrete vs continuous – In a discrete environment, the actions and observations are limited 

within a discrete finite set whereas in a continuous environment it is otherwise. 

Solving a problem is essentially a search process. Much of the solving process involves 

dealing with failed steps such that the solver gradually becomes aware of multiple routes of 

failure and eventually it helps to narrow down the search process. The complete steps of a 

problem-solving process can be enumerated as follows [6]. 

Detect the problem to be solved – The first step of problem-solving is to get aware that a 

problem exists. A problem can be assigned by an external entity in the environment or it may 

be realized internally. Internal realization of a problem comes from either discovering a 

subproblem while solving another problem or due to a drive to solve certain problems that 

are imprinted during the initialization of the information-processing system. For example, 

while solving an ill-defined problem a subproblem can be realized for discovering the 

appropriate set of operators, which would make the ill-defined problem a well-defined 

problem. In another scenario, finding ways for survival is an instinctive problem assigned to 

nearly all biological information-processing systems during initiation.  

Formulate a concrete definition of the problem – After knowing the existence of a 
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problem the next step is to formulate a concrete internal representation of the problem to be 

solved. This involves identifying all the components of the problem. Namely, goal 

conditions, initial state, available operators, and constraints. Constraints can be readily 

provided by the environment or maybe derived through assumptions made, based on existing 

knowledge. In case of ill-defined problems, finding an internal representation of the problem 

becomes another problem that needs to be solved.  

Identify a problem-solving method – Once concrete definitions of a problem are found, 

problems can be solved by direct state space traversal using the operators until the goal state 

is achieved. In this scenario, the whole problem is represented as a state-space where a path 

needs to be found from the initial state to the goal state by applying a sequence of operators. 

In another case, the problem may be divided into sub-problems and so on until fixed solutions 

are known for the respective sub-problems. Thereafter, individual subgoals can be achieved 

and aggregated to achieve the higher subgoal and so on, until the main goal is achieved. 

However, this method of problem-solving can also be mapped to state-space traversal, where 

the operators are, dividing problems into subproblems, identifying known solutions of sub-

problems if there are any, and aggregating solutions. The goal state is the aggregated solution 

of the main problem.  

Generate potential solutions – As problem solving is essentially a search operation, 

solutions need to be searched through generate and test method. Potential solution paths can 

be generated by sequencing operators. Usually, there can be an infinite number of potential 

solutions if no prior knowledge exists about probable solution paths. The search can easily 

get lost in a combinatorial explosion. However, domain knowledge, experiential knowledge, 

etc. plays a crucial role in dampening the search space. Learning is a mechanism to gain such 

knowledge while solving similar problems or contrasting problems and observing patterns 

across different problems. Knowledge creates initial biases during problem-solving and 

drives the solver towards known pathways to exploit the already learned solution. However, 

that might prevent the system from further learning and augment the knowledge base which 

eventually results in settling with suboptimal solutions in many cases. Thus, a balance 

between exploitation and exploration is needed for generating optimal solution pathways. 

Exploration is the art of controlled investigation of other solution pathways that do not 
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readily conform with the already learned pathways. The drive for exploration can be 

controlled by setting parameters during initiation of the system, experiential factors like age 

of the system, and internal/external problem-specific factors. For example, humans may feel 

bored after trying to solve a difficult problem for a while and stop exploring. In another 

scenario, the environment may assign a fixed time for solving a problem, and exploration 

gets restricted due to time constraint.  

Evaluate candidate solutions and select the best solution – In order to identify the correct 

solution among a set of potential solutions, the solutions need to be evaluated and tested. 

Usually, the testing needs to be done in a simulated environment instead of an actual 

environment and there might be multiple criteria to evaluate the fitness of a solution. For 

example, fitness can be measured based on how close the solution goes toward the goal state 

or how much resources are consumed to implement the solution, etc. There might be certain 

constraints imposed by the environment or by some internal assumptions. It also needs to be 

checked if the solutions satisfy those constraints. In many cases, the generation of potential 

solutions and evaluation of solutions are interleaved and iterative. In course of carrying out 

these two operations, the system may learn about the problem landscape and eventually use 

the learnings to generate more promising potential solutions. Also, there might be multiple 

potential solutions generated in one pass. The system should organize the solutions in a 

certain order and evaluate them through a scheduling process such that promising solutions 

are evaluated with more priority. After evaluation, the best solution or a set of solutions is 

selected for implementation. 

Develop a plan and implement the best solution – Once the best possible solution or set 

of solutions are selected, a plan needs to be made to implement them in the actual 

environment. Not all solutions may be executed in the actual environment due to resource 

constraints and other circumstances. Certain solutions may be delayed until an appropriate 

situation arrives. A set of solutions may be scheduled in some specific order to act on the 

actual environment. After implementation of a solution in the actual environment the goal 

may be reached and experiential learning gathers the required knowledge to improve 

performance in subsequent similar problems.  
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The steps of general problem-solving can provide high-level guidance in developing an 

artificial problem-solving agent. The field of Artificial General Intelligence deals with the 

design and development of such agents. Several works have been done and ideas have been 

proposed in formalizing the design of such agents. However, making it practically feasible 

across multiple problems is still a challenge. 

1.3 ARTIFICIAL GENERAL INTELLIGENCE 

Biological organisms apply some sort of intelligence to handle general problem-solving. 

Similarly, this idea can be extrapolated for artificial computing agents. However, artificial 

agents imparted intelligence or trained in a narrow domain may not handle all the aspects of 

general problem-solving. For example, an agent carrying a trained neural network for 

identifying objects in an image will fail miserably if placed in a route planning problem 

environment. Initially, the grand vision of creating human-like intelligent digital agents was 

part of the scope of AI research. However, it was eventually understood the inherent 

difficulty in achieving human-like general intelligence across multiple domains. Thus, a 

typical AI research considered focusing on specific domains, and eventually, a concept of 

Artificial General Intelligence (AGI) or Universal Artificial Intelligence was born which 

clung onto the grand vision of achieving general intelligence.  

An intelligent being, such as a human, has the ability to adapt in an arbitrary environment 

and learn from experience [7]. Machine general intelligence can be defined under similar 

lines. Among several definitions of “Universal Artificial Intelligence” available in the 

literature, we would consider the following definition to suit our goal.  

Universal Artificial Intelligence measures the agent’s ability to act optimally or achieve 

goals in a wide range of environments under constrained resources like space, time, and 

knowledge [8] 

The above definition of AGI is most suitable in a Reinforcement Learning (RL) setting, 

provided the environment can generate rewards and punishments for actions taken by an 

agent in the environment. Acting optimally can refer to maximizing the cumulative future 

expected reward by the agent. Though it seems such a problem can be handled quite easily 
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by existing RL techniques, yet the problem is far from trivial when the environment is 

unknown and varied. A general intelligent agent should be able to adapt across varied 

environments and environments can be of different types, as mentioned in the last section. 

The environment may produce delayed reward, which makes it difficult for an RL agent to 

converge towards an optimal policy. By optimal policy, it is meant as the sequence of actions 

that need to be taken in an environment to achieve some goal. On top of that transfer learning 

from one environment to another is non-trivial. Thus, an agent trained in one environment 

may not be able to transfer its experience and training to a different environment which 

results in solving the new environment from scratch. A realistic agent should also consider 

resource constraints while solving a problem environment. Time, space, and knowledge may 

be scarce and it is expected the agent should behave optimally to the maximum extent with 

whatever resources are available. If the agent is unable to achieve the goal it should display 

graceful degradation. With all such concerns, it becomes quite an engineering task to design 

a general intelligent agent. 

There have been several theoretical artificial general intelligent agents proposed in the 

literature, yet a major concern lies in practically realizing such agents mainly due to resource 

constraints. For example, Hutter’s AIXI framework [9] is a complete theoretical definition 

of an AGI agent in the sense that it can optimally act in any environment given infinite 

computational resources. A modified framework was also proposed, named as AIXItl which 

runs in a bounded computation time. However, it lacks incremental learning, due to which 

there is no reduction in computation time by utilizing experience. Godel machine is a self-

referential, self-improving optimal problem solver originally proposed by Schmidhuber [10]. 

A probable implementation roadmap was given using the continuous passing style (CPS) of 

programming and meta-circular evaluators [11]. However, proof-based systems face some 

challenges in POMDPs [12] and the search for proofs can also be expensive at times. Apart 

from these two theoretically complete architectures of AGI, there are several architectures 

proposed to date and multiple approaches are taken to construct an AGI architecture. The 

approaches are discussed in detail in Chapter 2. However, from practical feasibility 

perspective almost all architectures face challenges when the agents need to adapt across 

environments under constrained resources.   
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The next level challenge is to create a self-improving intelligent agent. Self-improvement by 

self-modification of an intelligent agent is necessary to adapt across environments and 

continue acting optimally. Since it is nearly impossible to create an intelligent agent with all 

possible rules and knowledge to act optimally in all real-world problem environments, a 

concept of seed AI was born. It states an agent bootstrapped with a minimal set of knowledge 

and an algorithm for processing the knowledge. The seed AI is expected to evolve into 

general AI and learn to adapt across multiple environments. Self-improvement can be 

recursive in the sense the seed AI program which searches for an improvement can get 

replaced with a better version of itself. However, such improvements are difficult to find 

with all possibility of getting into a combinatorial explosion. A formal structural definition 

of such a complete seed AI is still non-existent in literature. An abstract model of the seed 

AI and formalization of the seed program can guide the construction of general AI through 

varied approaches. 

1.4 SCOPE OF THE THESIS 

This thesis focuses on designing a practically feasible universal intelligent problem solver. 

An integrative AI approach along with program search-based methods [13] has been taken 

to come up with such a design. The primary focus is to address the challenges in the existing 

methods with respect to constrained resource usage, which seems to be one of the major 

roadblocks in creating an Artificial General Intelligent agent. A design of a RL agent has 

been proposed that can handle arbitrary general problems and the steps applied to solve a 

problem are loosely based on steps of general problem solving as mentioned in section 1.2. 

Last but not the least, a design of a seed AI has been formalized. Its properties are enumerated 

and an implementation roadmap has been demonstrated by implementing a prototype.  

Our objectives can be summarized as follows. 

To design a computable reinforcement learning agent which can solve problems in a wide 

range of environments provided the environment generates feedback signals in the form of 

rewards at minimum.  

The agent should utilize limited available resources in an optimal way to solve problems  
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The agent should be capable to learn from experiences and exploit them wherever possible. 

Derive a formal definition of seed AI and demonstrate how the proposed RL agent can be 

qualified as a seed AI.  

While designing our agent, we focused mostly on the program search-based design, inspired 

by universal search [14], due to the theoretical enrichments in the field. However, several 

ideas of integrative AI are also used while maturing the design. Thus, our approach can be 

broadly classified as integrative AI. The following aspects of the problem are addressed 

individually while designing the agent.  

1.4.1 Design a programming model ideal for AI component integration and universal search 

Universal search [14] in the true sense is asymptotically optimal for all machine inversion 

and time-limited optimization problems. This means time and space requirement for solving 

these problems is a constant factor away from the current best. However, though this constant 

factor is independent of problem size, yet it can be immensely large and depends on the 

solution size. Universal search searches for a solution in a program space on some machine 

model. The complexity of the search process is invariant on the machine model or the 

language chosen. Thus, the choice of grammar for the programs only affects the search by a 

constant factor. However, for practical application of universal search, we need to focus on 

dampening the constant factor. Transfer learning is a way to dampen the combinatorial 

explosion in the program space which enables knowledge gained in solving one task to be 

transferred to another related task. Given the focus is to dampen the program search space, 

the choice of a programming model is of high importance. Thus, we propose a programming 

model, based on dataflow graphs to be used for universal search. Dataflow graphs [15] are 

good at implicitly capturing data dependencies and independencies among different 

functions in a program. The relative independencies among different functions allow the 

program graph to be divided into logically independent subgraphs which solve separate 

specific subtasks. These subgraphs can be directly reused in solving subsequent related 

problems, thus making the transfer learning process efficient. However, most of the existing 

dataflow graph-based languages [15, 16, 17] were developed either with the intention of 

achieving implicit parallelization of code or allowing a programmer to graphically construct 
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a program with ease or both. For application in universal search, we identified the necessity 

of several features. Like, metaprogramming – the ability to generate and modify other 

programs from one, dynamical program generation – generating new programs during 

runtime of one, reuse of arbitrary code chunk, a simple but expressive syntax, and easy 

reasoning of programs to handle the problem of overrepresentation [18] which occurs due to 

presence of semantically redundant programs in the search space. The program interpreter 

should have some added features like storing and managing conditional probability 

distribution among functions and interrupting programs based on run time. Also, the 

language model should be flexible enough to integrate any external components developed 

in another language as a module. We also plan to use the programming model for integrating 

disparate AI components and serve it as an integration method for an integrative AI platform. 

At times, such integrations might be done by a human programmer as well. Thus, high 

expressivity, modularity, reusability, and abstraction are of utmost necessity to reduce the 

engineering effort of constructing an integrative AI application. Applications developed by 

a human programmer through AI component integration can in turn be used by the agent for 

specific problem solving, which we refer to as initial bias provided by a human to the agent. 

In order to address all these challenges, we decided to develop a custom programming model 

to be used in an integrative AI platform and a universal search based problem-solving agent. 

1.4.2 Design a mechanism for AI component integration  

Manual integration of AI components is necessary at times to provide an initial bias to the 

problem-solving agent. In many scenarios, it becomes computationally expensive and 

unnecessary to conduct a solution search from scratch where solutions of certain sub-

problems are known beforehand. There should be a scope for a human programmer to 

construct solutions by integrating disparate AI components with ease. This would allow 

humans to augment the ability of the problem-solving agent wherever possible and thereby 

dampen the search space. However, using AI components to solve real-world heterogeneous 

tasks is more than simple plug-and-play type integration and often necessitates tight coupling 

of components. With the current state of the art, such integration consumes large engineering 

effort due to problems like low expressivity, modularity, reusability, and abstraction. To 

alleviate these problems a platform for AI component integration is proposed. The 
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integration can be done using the proposed dataflow graph-based functional programming 

model and treating all AI components as microservices. Along with loose coupling, the 

integration platform also allows tight coupling of components to solve complex 

heterogeneous tasks without compromising modularity. A graphical method of construction 

of integration programs relieves a developer from learning programming syntax. The 

usability of the proposed method has been demonstrated by solving a heterogenous maze 

problem where an agent needs to solve a reinforcement learning environment, a machine 

vision task, and integrate them. Solving a speech recognition problem demonstrates 

modularity and functional abstraction of the method. Qualitative comparison with current 

state-of-the-art methods, based on these use cases, justifies the claims. 

1.4.3 Design a problem-solving agent using universal search 

Universal search allows one to create asymptotically optimal intelligent agent which can act 

in a wide range of computable environments. However combinatorial explosion is still 

lurking behind though its dependency shifted from problem size to solution size. For 

example, if a simple solution exists for a problem environment with a large state space size, 

universal search can quickly find the solution, as the time taken to find a solution is invariant 

with respect to the problem size. However, for many real-world problems, the solution size 

may not be small enough to find it in a realistic time. To combat this scenario, the proposed 

dataflow graph based functional programming model is used in universal search for solution 

program generation. We have justified the superiority of our proposed model compared to 

sequential token-based languages when used in universal search based intelligent agent. We 

have shown how applying an equivalent program pruning strategy can handle the problem 

of semantically redundant program generation. An incremental learning strategy based on 

gradient ascent is also proposed for our designed agent. Experimental results positively 

reinforced the theoretical justifications. We used our agent to solve some partially observable 

environments and compared with current state-of-the-art methods and it reveals exceptional 

performance of our agent. 

1.4.4 Formalize seed AI 

It has already been hypothesized that seed AI needs to be bootstrapped in a system that could 

evolve to handle multiple problem domains [19]. Such a seed AI may consist of few core 
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intelligent components and a seed program. However, there is no formal structural definition 

of seed AI in place. Thus, an abstract model of the seed AI is proposed and its generality has 

been proved. The formal structure of such an algorithm has also been derived. It has been 

discussed how and in what setting the proposed model of seed AI can achieve different 

properties of an intelligent agent like adaptability, constructivism, learnability, and recursive 

self-improvement. A prototype of seed AI has been developed using universal search to 

demonstrate and present guidance on the physical implementation of an agent-based system. 

The agent has been experimented in a heterogeneous toy problem to illustrate its usability 

1.4.5 Conduct experiments with the problem-solving agent 

We conducted several experiments with the problem-solving agent. Experiments with 

several toy problems and a comparative study with respect to the current state-of-the-art 

methods reveal exceptional performance of our proposed method. We also conducted 

experiments in two different real-world problem domains. In one case the solver needs to 

find solutions for simple algebraic equations and in another, it needs to find optimal neural 

architectures for certain computational problems. In both cases, the proposed method gave 

satisfactory results.  

1.5 ORGANIZATION OF THE THESIS 

The thesis is organized as follows. It is recommended to follow the sequence of the chapters 

to maintain the continuity of the ideas presented in this thesis. However, the sequence of 

Chapter 6 and Chapter 7 can be interchanged if the reader finds it suitable.  

Chapter 2: A survey on Artificial General Intelligence 

This chapter presents a brief survey of the major works in the field of Artificial General 

Intelligence to date. The survey has been segmented under five different major distinct 

approaches that are usually taken in pursuing AGI research. 

Chapter 3: FGPM: A programming model for Integrative AI and Universal Search 

The proposed graph programming model is articulated in this chapter. Its syntax and 

semantics are presented and all primitive functions are described in detail. 
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Chapter 4: The Integrative AI platform 

The integrative AI platform is proposed in this chapter. Two case studies implemented in 

this platform have been showcased and a comparative study is conducted with respect to two 

current state-of-the-art methods. 

Chapter 5: Design of a Universal Solver 

The design of a universal problem solver is proposed. The solver is built on the concepts of 

Universal Search. It has been experimented in few benchmark toy problems and results are 

compared against the current state-of-the-art methods. 

Chapter 6: Applications of the Universal Solver 

The universal solver is applied to two distinct problem areas, namely, finding solutions for 

simple algebraic equations and neural architecture search. Thereafter, results are presented. 

Chapter 7: Towards Constructivist seed AI 

A formal model of the seed AI is proposed and it has been demonstrated how universal solver 

fits into it. 

Chapter 8: Conclusion and Future work 

A final conclusion of the thesis and few suggested scope of future work. 
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2 A SURVEY ON ARTIFICIAL INTELLIGENT PROBLEM 

SOLVING APPROACHES 

“The problem of moving on flat surfaces is solved quite well by wheels, but generalizing the 

wheel might not be the best solution to move around on general surfaces” – Ben Goertzel 

(March, 2008) 

Biological organisms are already good at general problem solving. Humans have evolved to 

become the best general problem solver of all. However, mimicking natural problem-solving 

process and replicating it in an artificial substrate is quite a challenge. Though we have a fair 

understanding of the steps of general problem solving, yet we are unclear on how humans 

apply them across various problem domains quite efficiently. There have been several 

researches to create and understand general problem-solving in artificial agents. These 

researches mainly fall under Artificial General Intelligence, where an artificial agent needs 

to apply some form of intelligence to handle multiple problems across different 

environments/domains efficiently. The research area can be broadly classified under the 

following five different categories, based on their approaches [13].   

2.1 SYMBOLIC AI 

Symbolic AI is an approach to AI, based on the manipulation of knowledge represented in 

language-like symbolic structures in which all relevant semantics is explicit in the syntax 

(formal structure). 

A physical symbol system has been defined by Newell & Simon, 1976, p.116 [20]: 

"A physical symbol system consists of a set of entities, called symbols, which are physical 

patterns that can occur as components of another type of entity called an expression (or 

symbol structure). At any instant of time the system will contain a collection of these symbol 

structures. Besides these structures, the system also contains a collection of processes that 

operate on expressions to produce other expressions: processes of creation, modification, 

reproduction and destruction.”  
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Several AGI related projects were undertaken under Symbolic-AI paradigm. One such work 

was Simon and Newel’s famous project called “General Problem Solver” [21]. It used 

heuristic search to solve problems [13]. It had a separate knowledge base in the form of rules 

and a solver engine which deduced a strategy for solving a problem. GPS used divide and 

conquer approach where it divided the original problem into subproblems and so on until a 

subproblem is simple enough to be solved by heuristics. GPS was able to solve some 

sufficiently formalized problems like the tower of Hanoi by expressing problems as well-

formed formulas. But while solving any real-world problems it could get easily lost in a 

combinatorial explosion as there was no learning involved.  

Another famous project in Symbolic-AI paradigm was the CYC project undertaken by Doug 

Lenat [23]. The project targeted creating AGI system by encoding all commonsense and 

various domain specific knowledge required for problem-solving and efficient reasoning. 

But the encoding effort turned out to be a huge effort to create a complete knowledge base 

for a full-blown AGI system that can perform efficiently in dynamic environments. However, 

a vast knowledge base was created in an explicit logical form and a complex inference engine 

was developed. Knowledge was encoded in a predicate logic syntax called as Cycl.  

Allan Newell and John Laird’s SOAR project targeted to build a system to grasp human-

level AGI. The original theory underlying SOAR is called as problem space hypothesis [24]. 

The problem space hypothesis states that all goal-oriented behavior can be represented as a 

search through state space of the problem while attempting to achieve the goal. At each step, 

an operator is selected and applied, which might change the agent’s internal state or modify 

some external environment through some actions. Currently, it seems that the SOAR project 

has retreated into a system for experimenting some cognitive science theories. 

Pei Wang’s Non-Axiomatic Reasoning System (NARS) [25] is an attempt to create 

uncertainty-based, symbolic reasoning system. The main objective of the system is to adapt 

across varied problem environments under constrained resources and knowledge. It focuses 

to impart three distinct features within the system. Namely, a system with finite information-

processing capability, real-time handling of problems, and openness with respect to input 

data structure. It uses a term-oriented formal language called Narsese for knowledge 
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representation. It is characterized by the use of subject-predicate sentences. The truthfulness 

or validity of statements in its knowledge base is determined by evidential support from 

experience and validity of such statements, also called beliefs, gets updated from time to 

time. The inference engine uses a non-axiomatic logic, also known as NAL, and works on 

Narsese statements. It derives new pieces of knowledge from existing knowledge. It is also 

claimed that a certain form of ‘self’ can be evolved within the system, mainly through meta-

level mechanisms [26].  

2.2 CONNECTIONIST AI 

Connectionism is an approach to achieve Artificial Intelligence by mimicking the human 

brain and mental activity at neuron level. An intelligent system can be built by connecting 

multiple relatively simpler computation units called as neurons in a certain structure. 

Communication among the units is achieved through signal transmission across the 

connections and learning is achieved by modifying the connection strengths based on 

experience. Stephen Grossberg [27] designed special neural network models carrying out 

specialized functions modeled on specific brain regions. As a learning mechanism, self-

organizing parallel neural network architecture for pattern recognizer was proposed. Such 

pattern recognizers were used in visual perception, speech recognition, etc. 

Hugo de Garis [28] introduced the idea of evolvable hardware which applies evolutionary 

algorithms to the generation of programmable hardware as means of building artificial 

brains. A FPGA based hardware known as “CAM-Brain machine” was introduced which 

implemented genetic algorithm to evolve cellular automata based neural network circuit. 

Cellular automata based neural networks are evolved in different modules which form the 

components of the Artificial Brain.  

Due to immense progress in hardware performance and solving few engineering barriers like 

vanishing gradient problem, building and deploying deep neural networks to solve real-world 

use cases have become quite common. The power of deep neural networks has already been 

demonstrated in solving many domain specific tasks like machine vision, natural language 

understanding, etc. However, very little works has been done to create domain independent 

general intelligent systems using deep neural networks. Arel [29] suggested combining deep 
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machine learning models with reinforcement learning to create AGI architectures. Deepmind 

followed this concept and tried to solve the problem of AGI by combining deep learning on 

convolutional neural network with Q–learning, a form of model-free reinforcement learning 

[30]. It was tested on several video games where it received pixel data and game scores as 

inputs. The agent was able to surpass existing previous algorithms and achieved a 

performance comparable to a human game tester. Schmidhuber [31] claimed a fast deep 

recurrent network built for machine vision that obtained benchmark performances on several 

datasets, would prove an effective tool for building an AGI system. OpenAI is an 

organization that works on building AGI system that works for the best interest of humans, 

considering all safety goals. Till now they have achieved benchmark performances in few 

domain specific problems. For example, GPT-3 [32] is an autoregressive language model 

that uses deep learning to generate realistic texts that become indistinguishable from any 

human writing. GPT-4 [110] is a multimodal model that can accept text and image and 

produce text outputs. Similar to GPT3, it is a large transformer based model trained to predict 

next token using an excessively large corpus of data and it does not learn from experiences. 

Dall-e [33] is a text to image generation model that generates realistic images when given 

the description of the image as input. These models by themselves do not resemble AGI in 

any sense but they may prove useful tools in building one through integrative methods. 

GATO [109] is a generalist transformer model proposed by google. It has been trained on 

multimodal data transformed to sequence of tokens and produces sequence of tokens as 

output. GATO was trained and tested on multiple tasks like image captioning, game playing 

robotics control etc. However similar to GPT it requires excessively large corpus to train and 

it is also not evident how online learning will be effective in this model. 

Though recent advancements in deep neural networks helped achieve benchmark results in 

several problems like speech recognition and machine vision and they surpassed in 

performance compared to almost all other previous techniques. However, though deep neural 

networks perform well in a specific task when designed to carry out that specific task, they 

are not good generalizers. Learning to solve new tasks requires immense amount of training 

dataset and computational power. Neural networks designed for a specific task, in general, 

do not perform well in different tasks. Thus, they need to be manually designed for different 

tasks. Recently, Kaiser et. al. [107] proposed a single neural network model which can learn 
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to solve multiple problems. However, it is not obvious the same model will perform well in 

any arbitrary problem and self modification is not applied. There are several methods 

developed for automatic neural architecture search [85] for different tasks, but they are also 

quite resource hungry. Also solving a problem may require solving several tasks and 

integrating the solutions in some manner. There is no straightforward automated way of 

integrating multiple neural networks responsible for solving individual tasks, in an arbitrary 

way to solve an arbitrary problem. 

2.3 ARTIFICIAL LIFE 

Artificial life (ALife) studies the fundamental processes of living systems and interaction 

between them in artificial environments to gain a deeper understanding of complex 

information processing that defines such system. While synthesizing artificial life in a 

computing machine, it might be possible that the system may eventually evolve into a 

generally intelligent ALife. T.S ray was able to create a digital version of life called as Tierra 

[34]. Tierra used an evolutionary process and was able to create unicellular organisms. The 

drive for the evolutionary process was given as organisms’ ability to replicate and adapt in 

an environment. Ray further worked on Tierra [35] to produce multicellular organisms and 

eventually created a distributed system that allow organisms to migrate and exploit in 

different environments. Few multicellular creatures were evolved in the system. 

Avida [36] is a platform developed in Caltech to study and experiment with replicating and 

evolving digital organisms under various environments. It was created to address multiple 

purposes. One of which was to study evolution of digital organisms at a much faster scale 

which otherwise would be impossible in nature. The second important purpose was to find 

solutions for computational problems using digital organisms which would in fact sparked 

the possibility of creating a general problem solver. The Avida software is comprised of two 

major components. The first is an Avida core, an environment, a scheduler, and data 

collections components. Avida core maintains the population, replication, and evolution of 

digital organisms and the environment provides responses to the organisms during an 

interaction. The scheduler assigns computation resources to the Avida organisms. The 

second set of components is a collection of analysis and statistics tools. The authors proposed 
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several setups for experimenting with the Avida software. 

ALife is an interesting approach to solve general AI problem. Though it might be possible to 

create a general intelligent agent which could solve real-world problems in the future, yet till 

now digital ALife simulators are mainly restricted in creating simple mini-organisms. These 

tools are good at experimenting and studying the progression of life in simple digital 

organisms but deploying them to adapt across real-world environments and solve problems 

would need further significant work. 

2.4 PROGRAM SEARCH BASED AI 

Program search based AGI is relatively a newer approach of designing AGI architectures. 

The approach was initially inspired by the seminal work of Solomonoff, Chaitin and 

Kolmogorov on algorithmic information theory in the 1960s, but it did not become a serious 

approach to practical AI until quite recently. Hutter developed a reinforcement learning agent 

[9] by combining Solomonoff’s induction [37, 38] with sequential decision theory [39]. 

Hutter’s AIXI framework is a complete theoretical definition of an AI agent in the sense that 

it can optimally act in any environment given infinite computational resources. A 

reinforcement learning agent with some utility function can plan its actions to maximize its 

future expected reward in an environment with a known probability distribution. However, 

problem arises when the environment distribution is unknown and this is the most common 

scenario for real-world problems. AIXI can optimally deal with these environments by using 

Solomonoff’s universal prior probability as the distribution for environments. The agent’s 

objective is to maximize some rewards across all environments. The problem of 

uncomputibility of the Solomonoff’s prior was overcome by using a resource bounded 

version of it (bounded by time t and space l). The modified framework is named as AIXItl 

whose computation time is bounded by t.2l and this can also be immensely large at times as 

there is an exponential factor involved, which is proportional to solution size. It lacks 

incremental learning, due to which there is no reduction in computation time by utilizing 

experience. 

 Jurgen Schmidhuber made an efficient practical implementation of universal search for 

solving an ordered set of problems [40] known as Optimal Ordered Problem Solver (OOPS). 
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It employs incremental learning and tries to reuse solutions found in earlier problems to solve 

later problems and in the course of doing so it tries to find the most general solution solving 

all the ordered set of tasks. For solving the nth task, it uses half of the search time in extending 

and testing the previous successful programs and other half in testing fresh programs with 

arbitrary beginnings. In course of doing so, it tries to find out the most general program which 

solves all the ordered set of tasks. At the core, it uses a variant of Levin search [41]. OOPS 

was able to solve Towers of Hanoi with 30 disks which is unsolvable by traditional 

reinforcement learners. OOPS can provide possible speedup for a series of related tasks and 

not for a single task. It works in a resettable environment only. 

Schmidhuber developed a more general theoretical framework called as Godel machine [10] 

which is a self-referential, self-improving optimal problem solver. The system starts with a 

proof searcher and an initial problem-solving code that interacts with the environment. 

Employing a variant of universal search, the proof searcher searches for proofs which states 

that a rewrite of the problem-solving code and/or the proof searcher itself is beneficial in 

terms of some utility function.  If such proofs are found, the self-rewrite is applied. 

Schmidhuber points out that the Gödel machine could start out by implementing AIXI or 

some other program as its initial sub-program, and self-modify after it finds proof that 

another algorithm for its search code will be more optimal. A probable implementation 

roadmap was given using continuous passing style (CPS) of programming and meta-circular 

evaluators [11]. However, proof-based systems face some challenges in POMDPs [12] and 

the search for proofs can also be expensive at times. 

Looks and Goertzel presented a program representation in functional style with several 

transformation rules to alleviate the problem of over-representation [18]. Maximizing 

correlation between syntactic and semantic distance among programs will help minimize 

chaotic execution and manage resource variance. It was claimed that the proposed program 

representation and transformations increase the correlation between syntactic and semantic 

distance. 

Lukaz Kaiser [42] presented a program search based AI where the objective is to find a better 

algorithmic model of an arbitrary problem environment which eventually helps the agent to 
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take optimal actions. The agent interacts with the actual environment through sensor and 

actuation signals. The signals are maintained as event history and the model of the 

environment is searched which best explains the event history under constrained resources, 

namely time and space. An actor program is used to model the optimal expected behavior of 

the agent, which is used to calculate the response of the actor for an input event. A self-

improving program search mechanism has also been described. It uses a combination of 

program search and proof search techniques. Thus, the problems of combinatorial explosion 

related to these two approaches are prevalent in this case also. 

2.5 INTEGRATIVE AI 

Integrative AGI involves taking part or all elements from the above approaches and create a 

combined and synergistic system. However, an integrative approach does not refer to 

building each aspect of AGI as separate modules and then integrating them. The different 

approaches are too different from each other. Instead, a general framework of intelligent 

agent needs to be developed incorporating ideas from different approaches. Novamente [43] 

is an integrative artificial general intelligence design, which integrates aspects of many prior 

AI projects and paradigms, including symbolic, probabilistic, evolutionary programming, 

and reinforcement learning approaches. The overall architecture is unique, drawing on 

system-theoretic ideas regarding complex mental dynamics and associated emergent 

patterns. These are facilitated by a novel knowledge representation which allows diverse 

cognitive processes to interact effectively. Two primary cognitive algorithms are used to 

construct these processes: Probabilistic Term Logic (PTL), and the Bayesian Optimization 

Algorithm (BOA). OpenCogPrime [44] a newly designed AGI is a modification and 

enhancement of the Novamente Cognition Engine.  

Cognitive synergy [45] theory provides a theoretical framework to achieve AGI. A collection 

of cognitive processes acts in a synergistic way to control a single cognitive agent. The 

interconnectedness among the processes aids each other in overcoming memory-type 

specific combinatorial explosions during diversified knowledge creation. A series of 

hierarchical formal models starting from a simple reinforcement learning (RL) agent in the 

sense proposed by Hutter [9] to a complex and more specific PrimeAGI agent, is proposed, 
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to achieve a step-by-step design of such a cognitive agent. The RL agent can be improved to 

a cognit agent by introducing a kind of introspection. Cognit agent is a collection of atomic 

cognits which can act on external environments as well as internal memory objects. The next 

phase is organizing the memory of cognit agents as labeled hypergraphs giving rise to a 

model of hypergraph agent. The nodes and edges of the hypergraph are called as atoms and 

the cognit agents are represented as either atoms or collection of atoms (subhypergraph). 

Thus, a diverse set of cognit agents form a connected network which will enable hierarchical 

and heterarchical learning. The next level of transformation is to represent hypergraph atom 

types with a rich language where each atom can be labeled with some programmatic 

operators and thus called as rich hypergraph agent. The next level in the hierarchy is 

Probabilistic Growth and Mining Combinations (PGMC) based agents [46]. The core idea is 

to have a cognitive control process for a specific cognitive process to find out ways to extend 

the current cognitive process transition graph based on goal-oriented pattern mining from 

systems history. The final level is the PrimeAGI [47, 48] cognitive architecture implemented 

within the software platform called as OpenCog, which works within the “PGMC driven rich 

hypergraph memory model” agent framework and extending it via introducing a specific set 

of cognitive processes. While OpenCog solves many of the problems of integrative AI yet 

integrating new AI capabilities needs application-programming-interface (API) development 

within the framework, making black-box plug-n-play type integration non-trivial. The heart 

of the framework relies on the Atomspace knowledge base which again involves 

development effort to map existing third-party knowledge graphs to Atomspace. 

Honda ASIMO robot implements cognitive map architecture [49] for integrating multiple AI 

capabilities and uses constructionist design methodology [50]. They followed a component-

based architecture where individual components interact with each other through message 

passing using a publish-subscribe mechanism. The components are mainly categorized based 

on their functional roles, namely – perception, knowledge representation, decision-making, 

and expression. Though the architecture solves many problems of human-computer 

interaction, yet it might not scale well in distributed environments like IoT or cloud-based 

AI integration.  

Andrist et. al. [51] and Bohus et. al. [52] demonstrated a framework for development of 
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physically situated intelligent systems. The platform is built on .NET. It provides a 

programming model to integrate multiple AI components and built a situated intelligence 

platform that would be capable of reacting in a real-time environment. The platform provides 

a runtime that is capable of running programs created in the platform. The programs are 

internally represented as computation graphs, where a node represents components and edges 

represents streams of data. It also provides an ecosystem of components for multimodal 

audio-video sensing and processing. New custom components can also be built in the 

platform. Several low-level operational issues in a real-time streaming system, like 

synchronization across multiple channels, handling latency, etc. are handled within the 

runtime and abstracted away from the developer.  However, integrating external components 

is not straightforward which needs to be mapped to native components of the framework. 

Since it works mainly on streams, it might not easily solve use cases that involve working 

on bounded datasets, like recognizing objects in a single image that can be uploaded by a 

user on an adhoc basis. Also, for developers, it has some learning curve involved, since 

integration program needs to be implemented in C#. 

Thorisson proposed a theory of constructing a seed programmed intelligent system which 

rests on certain hypotheses of learning [53]. The theory contextualizes three high-level 

aspects of problem-solving, namely task-environments, cumulative learning, and seed 

program. The task environment represents the problem environment in which the agent needs 

to act upon. The agent can modify state values in a task environment through action signals 

and read observations through perceptions. The agent is supposed to achieve specified goals 

in the task environments. A seed AI is essentially a learner which is bootstrapped with few 

essential knowledge about the environment in which it is born. It should then be capable 

enough to evolve into a full-blown autonomous cumulative learner by turning gathered 

experience into knowledge. Knowledge is represented as causal relational models and 

patterns. Both are abstract and can represent knowledge at any level of detail in a hierarchical 

form. It can be manipulated, composed, and compared. Reasoning in all forms is used to 

manipulate and create knowledge at fine level of details and it is termed as micro-ampliative 

reasoning. Though it has been hypothesized that the proposed system would bear the 

characteristics of seed-programmed autonomous generality, yet a strict formalization of seed 

AI is not articulated.  
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Nivel et. al. presents an architecture blueprint for constructing a bounded seed AGI that can 

achieve operational autonomy in an underspecified environment [54]. They developed a 

prototype system AERA, which can learn complex real-world tasks. The three challenges of 

learning through experience, coping with resource limitations, and managing attention are 

addressed by learning, planning, and controlling attention mechanism, respectively. Learning 

and planning are not achieved by designing separate modules for the same but they are 

claimed to be emergent processes within the system from low-level processes. Knowledge 

in this system is represented by states and models. Models are executable codes that can 

generate new knowledge. The design of the system allows self modeling and introspection.  

The system was experimented in a human-to-human interaction scenario where the agent is 

to interact with another human effectively in real-time. The agent was able to learn proper 

sentence construction, gesture control, multimodal co-ordinations, and appropriate response 

generation. However, there is a serious open issue with this design. There is no guarantee 

that the system will actually pursue and achieve user-defined goals [22]. Also, it is not clear 

if the system would work in distributed mode, with multiple sensors and actuators not 

embodied in a single hardware.  

Stueinbrick et. al. introduced an experience-based AI system called as EXPAI [55] which 

can search for safe and beneficial self-modification. Several limitations of proof-based 

approach of self-modification have been highlighted and an experience-based approach was 

chosen for self-modification. However, there are no experimental results provided to 

measure the performance of the proposed system. 

TaskMatrix.AI [111] proposed by Microsoft is an integrative AI platform that uses a 

foundational model to understand the user intent and the task. Thereby, it generates solution 

by leveraging multiple APIs that can perform specific subtasks across different domains. 

TaskMatrix platform can perform both digital and physical tasks, can be augmented by 

adding new APIs and solutions are interpretable. It has several challenges and the foremost 

is building the foundational model that needs to handle multimodal tasks. 

2.6 CONCLUSION 

Multiple different approaches were taken by multiple researchers to attack the grand problem 
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of Artificial General Intelligence. Several important breakthroughs were made and 

advancements in the field seem quite promising. However, almost all of the prior-arts have 

some limitations in terms of the physical implementation of a real-world general problem-

solving system. The majority of the problem arises due to limited resources available in real-

world for solving problems. Other problems include, high engineering effort required to 

make the system adaptable across multiple environments, unable to work in distributed 

environments, etc. Thus, we focused on developing methods to overcome these challenges 

and tried to make an advancement in realizing a practically feasible general intelligent 

problem solver. We incorporated ideas from multiple prior works and tried to design an 

integrative Artificial Intelligent system capable of handling multiple problem domains.   
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3 FGPM: A PROGRAMMING MODEL FOR INTEGRATIVE AI 

AND UNIVERSAL SEARCH 

“The communicating of ideas marked by words is not the chief and only end of language, as 

is commonly supposed.” - George Berkeley, A Treatise Concerning the Principles of Human 

Knowledge, (1710) 

A dataflow graph is a directed acyclic graph where nodes represent some operation and 

directed edges represent the flow of data. The data dependency of individual operations can 

be nicely represented in a dataflow graph. A dataflow graph-based programming model 

allows a programmer to create an arbitrary computation graph in the form of a directed 

acyclic graph. Most of the existing dataflow graph-based languages [15, 16, 17] were 

developed either with the intention of achieving implicit parallelization of code or allowing 

a programmer to graphically construct a program with ease or both. For application in 

universal search, we identified the necessity of several features. Like, metaprogramming, 

dynamical program generation, reuse of arbitrary code chunk, a simple but expressive syntax, 

easy reasoning of programs to handle the problem of overrepresentation [18]. The program 

interpreter should have some added features like storing and managing conditional 

probability distribution among functions and interrupting programs based on run time. Also, 

the language model should be flexible enough to integrate any external components 

developed in another language as a module without compromising purity. Thus, we decided 

to develop a custom programming model specifically to be used in universal search based 

problem-solving agent and for integrating external AI components. 

The programs in the proposed Functional Graph Programming Model (FGPM) are 

represented as dataflow computation graphs. A function node can have multiple input ports, 

each serving as a placeholder for separate input arguments. It can have only one output port 

that emits the computed output of the function. However multiple edges can emanate from 

an output port and output value is copied on each output edge. Input and output ports are 

type-casted. Edges can run between output port of one node and input port of another, 

satisfying type compatibility. A program can be composed by connecting edges between 

multiple nodes. The programming system is preloaded with several primitive functions for 

https://www.goodreads.com/work/quotes/1430265
https://www.goodreads.com/work/quotes/1430265
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carrying out essential operations like arithmetic/logical computations, conditional pathways, 

Input/Output operations, repetitions, and construction/manipulation of different 

datatypes/functions. An arbitrary program graph can also be stored as a function node, 

consequently making it reusable. Each complete executable program must start with an initial 

node and end with a single terminal node. The initial node is responsible for initializing the 

computation environment. The computation environment represents the external world and 

the program communicates with it through I/O nodes, named as sensors and actuators. For 

example, standard input/output in a file can represent an environment and the program 

communicates by running sensor and actuator nodes which in turn reads or writes in the file. 

Fig. 3.1 illustrates few of the primitive function nodes and a sample program graph. Fig. 3.1a 

represents a constant node that returns a constant value (denoted as a) irrespective of any 

input value. Fig. 3.1b represents a conditional node. If the 1st argument is True the parent 

graph connected to input port# 2 is evaluated else the parent graph connected to input port# 

3 is evaluated. Fig. 3.1c represents an addition node that returns the sum of two input 

arguments. Fig. 3.1d represents a higher-order function called as apply. It receives a program 

graph as a function in its first argument and applies the same to the 2nd argument. Fig. 3.1e 

represents a sample program graph to return a sum of two constant numbers. 

3.1 EVALUATION STRATEGY OF PROGRAM GRAPHS 

Every single valid executable program in FGPM should end with a single terminal node and 

 

Figure 3.1 Illustration of a) a constant node, b) a guard node (conditional), c) an addition node, d) an apply 

node, e) a program graph to add 2 numbers where iW represents initial node 
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start with an initial node. However, a set of programs can be represented by a single graph 

with one initial node and multiple terminal nodes, where graphs between the initial node and 

each terminal node denote a separate program. Programs are evaluated in lazy style. The 

execution starts from the terminal node of a program and all the parent nodes are called 

recursively until the initial node is executed. Memoization is applied on each node and output 

value is cached during the course of the execution. The output value is copied on respective 

edges on each subsequent call. Fig. 3.2 demonstrates the execution techniques of FGPM 

programs. Fig. 3.2a illustrates execution of a sample program graph. The execution starts by 

calling the function h at the terminal node which in turn calls the function f first, as this is 

the parent node connected to input port 1 of node h. f is the initial node so it gets executed 

 

Figure 3.2 Illustration of execution strategy of programs in FGPM. a) Evaluation of a sample program 

graph. b) Evaluation of function node f where f is a composite function. c) Evaluation of function node f 

where f is a higher order function which takes another function as input and evaluates it.  
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right away and output data a is stored in the node. A copy of data a is transmitted over the 

outgoing edge for consumption by h. Next, function g is called by node h which is connected 

to input port 2. g, in turn, calls f. But f has already been executed thus it just copies the data 

a over the edge for consumption by g. Thereafter, g completes its execution and copies its 

output data b over the outgoing edge for consumption by h. Finally, h completes its execution 

and returns data ‘c’. Fig. 3.2b illustrates execution of a composite function node f. Definition 

of f is a program subgraph constructed by composing functions i after h. At function call, f 

is copied and substituted by its definition. In the reduction phase, the program subgraph gets 

executed and the output data of i get copied as the output data of the original node f followed 

by deletion of executed program subgraph i.h. Fig. 3.2c illustrates execution of a higher-

order function where the function takes another function as input. The definition of the 

higher-order function f states that it simply evaluates the function received as an argument. 

At function call, f receives the function h as data from node g followed by copy and 

substitution of itself by the function h. At reduction the function h is simply executed and 

output data is copied to the output port of original node f. Thereafter executed node h is 

deleted. 

3.2 INTEGRATING MONADIC FUNCTIONS 

The computation environment represents the external world with respect to the program and 

the program communicates with it through I/O nodes, named as sensors and actuators. For 

example, standard input/output in a file can represent an environment and the program 

communicates by running sensor and actuator nodes which in turn reads or writes in the file. 

Thus, in order to communicate with the external environment and to make the programs 

useful in real-world, I/O monads are needed. Interaction with the external environment 

always causes side effects. I/O monads allow these side effects without hampering the purity 

of the language. The output data from the I/O nodes are embellished with the environment 

object referred to as “world”, to create a monadic type and finally return the monadic type. 

It is presumed each I/O operation modifies the environment in some way and they return the 

data along with the modified environment thus preventing side effect. In fact, every other 

function node operates on the monadic type by scooping out the data from the embellished 

object, operating on it, and then recreating the embellishment with the environment object. 
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Due to such modifications, all composition operation is carried out using Kleisli composition 

[56]. The Kleisli composition is defined by equation 1 and 2 which represents the bind 

operation of two functions and the return operation respectively. M represents a monadic 

object which in our case is the environment. The bind operator is represented by the symbol 

>>=. 

≫=: (𝑀, 𝐴) → (𝐴 → (𝑀,𝐵)) → (𝑀,𝐵)                                                                            (3.1) 

The return operation at the output port of each node is modified as follows. 

𝑟𝑒𝑡𝑢𝑟𝑛: 𝐴 → (𝑀, 𝐴)                                                                                                            (3.2) 

The bind operator takes a monadic type (M, A) as input and a function that takes a specific 

data type A as input and returns a monadic data type (M, B). It extracts the datatype A from 

monadic type (M, A) and applies the function on datatype A which eventually returns a 

monadic type (M, B). In FGPM the function application operator in a node will take a 

monadic type from source node output port through a connected edge and apply the node 

function on it. The output will be returned from the target node output port. The return 

operation is modified as monadic return for all functions in FGPM. In FGPM we have only 

one monadic contextual object i.e., “world”. Thus, we will use “world” in place of M in all 

future references. Only the I/O monads are allowed to modify the world object. In order to 

prevent ambiguity on sequencing the I/O actions on external worlds, parallel modifications 

of world object in a single FGPM program needs to be prevented. After all, our observable 

environment is strictly sequential, and different sequence of the same set of actions can 

modify the environment differently. Combining lazy evaluation with monadic functions is 

problematic, especially when parallel execution pathways are possible. It somehow always 

leads to some side effect. However, if we cannot prevent side effect in this situation, we will 

keep the side effect outside of the FGPM program. We will use memoization from design 

perspective of the language and this is not a flexibility that will be available to the 

programmer. Every function in a program by default will be memoized and there will be no 

way to refer to the memo table from an FGPM program. This will not prevent side effect, 

but it will keep the side effect out of the FGPM program. Another side effect is allowed 

inside the world object to prevent creation of programs that might take I/O actions in non-
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deterministic order if independent paths in FGPM are executed parallelly. This constraint is 

applied by versioning the world object. At evaluation, each I/O monad upgrades the version 

of the world object which is implemented in the world object by incrementing some global 

(accessible by every instance of world object) sequence number by 1 and storing the same 

version number locally in the current instance of the world object. On evaluation, every node 

stores the current instance of the world object in its data section (due to memoization). While 

upgrading, every world object checks if the local version number (before upgrading) is same 

as that of the global version number. If not, it will generate an error as it signifies the world 

is updated parallelly elsewhere in the graph. Fig. 3.3 demonstrates an invalid FPGM program 

construction due to parallel combination of actuator functions. Suppose node 1 is a pure 

function f which gets a world object with version number n as input. The execution order is 

left to right. Suppose node 2 gets executed after receiving data from node 1. The actuator 

function will upgrade the world object and world version will be n + 1. Thereafter when 

node 3 tries to complete its execution after receiving data from node 1 it will match the 

current global world version which is n + 1 (as upgraded by node 2) with the local world 

version (n). Due to the mismatch, an error will be generated on upgrading the world object. 

Thus, this constraint will ensure sequential ordering of I/O monads in all valid 

programs. 

 

For functions with multiple input ports in a valid program, if the world object is modified in 

one of the input paths, then it will cause different versions of the world object to be available 

at different input ports of the function. To resolve the conflict, for functions with multiple 

 

Figure 3.3 Illustration of an invalid FGPM program due to parallel combination of I/O monad.    
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input arguments, world object is selected from that input port only which delivers the world 

instance with highest version number. A special case is for the guard node where the world 

object is selected based on the Boolean value at the first input node.  

Monadic function composition will be represented by the symbol  ͦ. Thus, monadic function 

composition of f after g will be written as 𝑓 ∘ 𝑔. From now onwards every function 

composition will refer to monadic function composition if not mentioned otherwise.  

3.3 AGENT ENVIRONMENT STRUCTURE 

Every program graph in the programming model is executed in the context of an initialized 

environment. The program interacts with the environment through sensor and actuator nodes. 

In that sense, the program is treated as an agent which can take action on the environment 

and read perceptions from it. The environment may contain the problem context or any 

reusable functional components written in another language. For example, the environment 

may represent a physical 2D space where a bot has to maneuver itself to meet some goals. 

Each action signal sent through actuators can be interpreted as some movement actions in 

the environment. Whereas perception signals received using sensors may return current 

observations from the environment. The actuator signals may be simple integer values 

provided from the program graph. Some libraries in the environment can be used to transform 

it into physical actuation signals for the bot, thus allowing incorporation of external libraries 

into the systems without hampering the purity of the programming model (as the library 

always remains external with respect to the core program).  

3.4 COMPARISON WITH CURRENT STATE OF THE ART 

Table 3.1 shows a comparison chart of the proposed programming model against two 

dataflow graph-based languages, namely Cuneiform [17] and Apache Beam [16]. Cuneiform 

is used to construct scientific workflows for large-scale data analysis and Apache beam is 

used to construct pipelines for streaming data processing. Each has its own set of features to 

serve the purpose for which they were built. However, we choose a set of comparison 

grounds in the context of Universal search, automatic program creation/manipulation, and 

applicability in solving arbitrary problem environments. On these comparison grounds, it 
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seems both of them are not equipped with all the required features whereas the proposed 

Table 3.1 Comparison of proposed Functional Graph Programming Model (FGPM) with 

Cuneiform and Apache Beam 

Feature Programming 

Model  
Comparison 

Metaprogramming - 

Dynamic function 

creation and evaluation  

 

FGPM Readily available using higher order primitives for program 

graph creation, modification and evaluation. 

Cuneiform Not natively available. 

Beam No core component is available to construct beam pipeline 

within runtime of another pipeline. 

Expressiveness - Can 

implement any arbitrary 

programming logic? 

 

FGPM 

Yes, as all required primitives for arithmetic/logical operations, 

conditional branching, recursion, datatype 

creation/manipulation, and I/O operations are available. 

Cuneiform Yes, all required primitives are available. However, I/O 

operations need to be done by incorporating functions written 

in other language. 

Beam Using core beam transforms any arbitrary logic may not be 

implemented. However, it allows construction of functions in 

other languages which allows to inherit the expressiveness of 

those languages. 

Program semantic 

reasoning 

 

FGPM Program reasoning can be done using simplified algebraic 

expressions constructed inherently for each program. 

Cuneiform Not inherently available. 

Beam Not inherently available. 

Allows higher order 

function 

FGPM Yes. 

Cuneiform Yes. 

Beam Not using core components. 

Metadata storage and 

manipulation on edges 

FGPM Readily available (for maintaining probability distribution). 

Cuneiform Not readily available. 

Beam Not readily available. 

Modularity in program 

construction 

 

 

 

FGPM 

Program is constructed by directly adding and connecting 

function nodes in a graph thus making each construction step 

functionally modular. 

Cuneiform Program construction is done by sequencing tokens in a lexical 

structure. Which reduces functional modularity as individual 

tokens are not functionally complete. 

Beam Program is constructed by directly adding I/O and 

transformation nodes in a pipeline thus making it functionally 

modular. 

Can build arbitrary 

reusable composite 

components? 

FGPM 

Yes, using a primitive called "gp" which makes any arbitrary 

program graph reusable by converting it into a composite node. 

Cuneiform Yes, readily available. 

Beam Not using core components. 

Reuse of arbitrary 

program subpart 

 

FGPM 

Any subgraph can be functionally reused by just connecting 

appropriate nodes in another program graph. 

Cuneiform Not trivial, as body of a function can be tightly coupled with 

the rest of the program. 

Beam Reuse of sections of pipeline is possible. 
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model is.  

3.5 SYNTAX OF FGPM 

Apart from using a graphical user interface to construct programs in FGPM, they can be 

constructed in textual format also. A program is initialized by invoking a command to create 

an empty graph object. Thereafter subsequent nodes are added to the graph object. The graph 

object is identified with a unique graph label which is basically a non-negative integer. The 

node object is created with a specific function from the list of available functions and a set 

of input links. A node object is identified by a unique node label. The set of input links 

contains node labels of parent nodes. The syntax of writing a program in FGPM is given in 

Backus-Naur form. The non-terminal symbols <whole numbers>, <negative integers>, 

<floating-point numbers>, <Boolean> and <string> are not expanded further as they hold 

usual meanings. The symbol <EOL> denotes the end of the line. 

< 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑠 >∷= 𝑖𝑛𝑖𝑡𝐺𝑟𝑎𝑝ℎ(< 𝑔𝑟𝑎𝑝ℎ𝐿𝑎𝑏𝑒𝑙 >) < 𝐸𝑂𝐿 > < 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑙𝑖𝑠𝑡 >  

< 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑙𝑖𝑠𝑡 >∷=< 𝑛𝑢𝑙𝑙 > |𝑎𝑑𝑑𝑁𝑜𝑑𝑒(< 𝑔𝑟𝑎𝑝ℎ𝐿𝑎𝑏𝑒𝑙 >, < 𝑁𝑜𝑑𝑒 >, <

𝑖𝑛𝑝𝑢𝑡𝐿𝑖𝑛𝑘 > < 𝑖𝑛𝑝𝑢𝑡𝐿𝑖𝑛𝑘𝑠 >)<EOL> < 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝑙𝑖𝑠𝑡 >  

< 𝑁𝑜𝑑𝑒 > ∷= 𝑁𝑜𝑑𝑒(< 𝑛𝑜𝑑𝑒𝐿𝑎𝑏𝑒𝑙 >,< 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 >)  

< 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 > ∷=′ 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦′|′𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡′, < 𝑎𝑡𝑡𝑟 >| ′𝑎𝑑𝑑′|′s𝑢𝑏𝑡𝑟𝑎𝑐𝑡′|′𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦′ 

           |′𝑑𝑖𝑣𝑖𝑑𝑒′|′𝑔𝑢𝑎𝑟𝑑′|′e𝑞𝑢𝑎𝑙′|′g𝑟𝑒𝑎𝑡𝑒𝑟′|′𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡′|′𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡′|′𝑛𝑒𝑔𝑎𝑡𝑒′|′𝑎𝑝𝑝𝑙𝑦′ 

           |′𝑙𝑎𝑚𝑏𝑑𝑎𝑔𝑟𝑎𝑝ℎ′|′𝑟𝑒𝑐𝑢𝑟𝑠𝑒′|′s𝑒𝑛𝑠𝑜𝑟′,< 𝑡𝑦𝑝𝑒 > |′𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟′, < 𝑡𝑦𝑝𝑒 > 

|′g𝑜𝑎𝑙𝑐ℎ𝑒𝑐𝑘𝑒𝑟′|′𝑖𝑛𝑖𝑡𝑊𝑜𝑟𝑙𝑑′|′𝑓𝑚𝑎𝑝′|′𝑐𝑜𝑛𝑠′|′𝑛𝑖𝑙′|′ℎ𝑒𝑎𝑑′|′𝑡𝑎𝑖𝑙′|′𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟′ 

           |′𝑧𝑖𝑝′|′𝑙𝑜𝑜𝑝′|′𝑗𝑜𝑖𝑛′|′𝑠𝑝𝑙𝑖𝑡′|′𝑧𝑖𝑝′|′𝑤𝑜𝑟𝑙𝑑𝑚𝑒𝑟𝑔𝑒′  

< 𝑖𝑛𝑝𝑢𝑡𝐿𝑖𝑛𝑘𝑠 >∶≔ < 𝑛𝑢𝑙𝑙 > |, < 𝑖𝑛𝑝𝑢𝑡𝐿𝑖𝑛𝑘 >< 𝑖𝑛𝑝𝑢𝑡𝐿𝑖𝑛𝑘𝑠 >  

< 𝑖𝑛𝑝𝑢𝑡𝐿𝑖𝑛𝑘 >∶≔< 𝑛𝑢𝑙𝑙 > | < 𝑛𝑜𝑑𝑒𝐿𝑎𝑏𝑒𝑙 >  

< 𝑎𝑡𝑡𝑟 > ∷=< 𝑛𝑢𝑚𝑏𝑒𝑟 > | < 𝑠𝑡𝑟𝑖𝑛𝑔 > | < 𝑁𝑜𝑑𝑒 > | < 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 >  

< 𝑛𝑢𝑚𝑏𝑒𝑟 > ∷=< 𝑤ℎ𝑜𝑙𝑒 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 > | < 𝑛𝑒𝑔𝑒𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 > | < 𝑓𝑙𝑜𝑎𝑡𝑖𝑛𝑔 −
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𝑝𝑜𝑖𝑛𝑡 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 >  

< 𝑔𝑟𝑎𝑝ℎ𝐿𝑎𝑏𝑒𝑙 > ∷=< 𝑤ℎ𝑜𝑙𝑒 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 >  

< 𝑛𝑜𝑑𝑒𝐿𝑎𝑏𝑒𝑙 > ∷=< 𝑤ℎ𝑜𝑙𝑒 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 >  

< 𝑡𝑦𝑝𝑒 >∶≔ ′𝑛𝑢𝑚𝑏𝑒𝑟′|′𝑠𝑡𝑟𝑖𝑛𝑔′|′𝐵𝑜𝑜𝑙𝑒𝑎𝑛′|′𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛′  

< 𝑛𝑢𝑙𝑙 >∶≔   

< 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 𝑔𝑟𝑎𝑝ℎ >∶≔  𝑔𝑒𝑡𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ(< 𝑔𝑟𝑎𝑝ℎ𝐿𝑎𝑏𝑒𝑙 >,< 𝑛𝑜𝑑𝑒𝐿𝑎𝑏𝑒𝑙 >)  

< 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑎 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 𝑔𝑟𝑎𝑝ℎ >∶≔  𝑒𝑣𝑎𝑙𝐺𝑟𝑎𝑝ℎ(< 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 𝑔𝑟𝑎𝑝ℎ >)  

3.6 DATATYPES OF FGPM 

There are seven primitive types allowed in the model. Namely number, string, Boolean, list, 

node, graph, and null. The number type includes three subtypes namely, whole numbers, 

negative integers, and floating-point numbers. The string type includes all alphanumeric 

characters. The Boolean type includes True and False. The node and graph datatypes are 

special datatypes that are used to store only the nodes and program graphs in FGPM. The 

graph type is also synonymously called as function type as it basically represents a function 

in FGPM. The null type is the initial datatype. Any function input can connect with the null 

type. The null type contains nothing and can be compared with the empty set. We are not 

discussing the implementation details of these primitive datatypes as these can be 

implemented in any other high-level programming language which would be used to create 

the interpreter of FGPM. However, we will be providing the constructors for these datatypes 

in later sections.  

3.7 FUNCTIONS OF FGPM 

A function in FGPM is a reusable description of a single or related operations. There are 

several primitive functions available in FGPM namely first-order node functions, higher-

order node functions, and I/O monads which can be grouped and composed for program 

construction. The semantics of the language is described in algebraic form. While writing 
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the semantics we will adopt the following notations. 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓) will represent the 

execution of function 𝑓, ∗ 𝐴 denotes multiple optional arguments of type A. {𝐴} denotes 

single optional argument of type A, (𝐴,𝑤𝑜𝑟𝑙𝑑) denotes type A embellished in world object, 

𝑎[𝑤𝑜𝑟𝑙𝑑]  denotes the world object extracted from a, 𝑎[𝑑𝑎𝑡𝑎] denotes data extracted from 

a, 𝑝𝑙𝑢𝑠(𝑎, 𝑏) adds two numeric objects a and b, 𝑚𝑖𝑛𝑢𝑠(𝑎, 𝑏) subtracts numeric object b from 

a, 𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝑎, 𝑏) multiplies two numeric objects a and b, 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛(𝑎, 𝑏) divides numeric 

object a by b, 𝑒𝑞𝑢𝑎𝑙(𝑎, 𝑏) checks for equality between two objects a and b, 𝑔𝑟𝑒𝑎𝑡𝑒𝑟(𝑎, 𝑏) 

checks if a is greater than b, 𝐴𝑁𝐷(𝑎, 𝑏) checks if both the boolean objects a and b are true, 

𝑂𝑅(𝑎, 𝑏) checks if either a or b is true, 𝑁𝑂𝑇(𝑎) inverts the boolean object a, 𝑟𝑒𝑎𝑑(𝑊) puts 

a read request in the world object W and returns the input data received from the world 

embellished with the modified world, 𝑤𝑟𝑖𝑡𝑒(𝑊, 𝑎) puts an action request a in the world 

object W and returns the modified world, 𝑐ℎ𝑒𝑐𝑘_𝑔𝑜𝑎𝑙(𝑊) checks if the goal is reached in 

the world object W and returns True or False embellished in the modified world, symbols A, 

B and C denotes datatypes and can be any datatype unless otherwise mentioned. 

3.7.1 Functions for program construction 

These functions are used to construct and execute program graphs in FGPM by writing the 

statements in sequential textual format. These functions are not allowed to be placed within 

a node, and thus are not part of program graphs constructed in FGPM.  

initGraph : whole number → graph. initGraph is the constructor of graph data type in 

FGPM. This is used to initialize a program graph. The function takes a whole number as 

input which is used to label the newly created program graph. The graph label is used to 

uniquely identify a program graph. Construction of any program or set of programs should 

start with initializing a graph object using the initGraph function. The semantics of the 

function is as follows. 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑖𝑛𝑖𝑡𝐺𝑟𝑎𝑝ℎ(𝑎))

= {
𝑔𝑟𝑎𝑝ℎ𝑎|𝑎 ∉ 𝐴

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑| 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 𝑤ℎ𝑒𝑟𝑒 

 𝑔𝑟𝑎𝑝ℎ𝑎 = 𝑒𝑚𝑝𝑡𝑦 𝑔𝑟𝑎𝑝ℎ 𝑤𝑖𝑡ℎ 𝑙𝑎𝑏𝑒𝑙 𝑎 

𝐴 = 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑔𝑟𝑎𝑝ℎ 𝑙𝑎𝑏𝑒𝑙𝑠
 

addNode : (whole number, node, *whole number) → graph. addNode function adds a 
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newly created node object in an existing program graph. It takes multiple arguments. The 

first argument refers to the graph label of an existing graph to which the node needs to be 

added. The second argument is a node object which needs to be added. Rest of the arguments 

are optional (the * sign in the function signature denotes optional and variable number of 

arguments of a specific type) and can be variable. These arguments refer to the node labels 

of the parent nodes of the newly added node. The input links of the newly created node will 

be connected with these parent nodes in the order in which they are supplied as arguments. 

If excess arguments are given compared to the number of input arguments required by the 

newly created node function, then those arguments will be ignored. All the node labels 

supplied in the argument should refer to only the nodes present in the graph identified by the 

graph label. The semantic equation is given as follows. 

 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑎𝑑𝑑𝑁𝑜𝑑𝑒(𝑎, 𝑛𝑜𝑑𝑒,∗ 𝑏)) =

 {
𝑔𝑟𝑎𝑝ℎ′𝑎|𝑎 ∈ 𝐺 ∧ 𝑏 ∈ 𝑁𝑎
𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 | 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝑤ℎ𝑒𝑟𝑒 
𝐺=𝑠𝑒𝑡 𝑜𝑓 𝑔𝑟𝑎𝑝ℎ 𝑙𝑎𝑏𝑒𝑙𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑔𝑟𝑎𝑝ℎ𝑠
𝑁𝑎=𝑠𝑒𝑡 𝑜𝑓 𝑛𝑜𝑑𝑒 𝑙𝑎𝑏𝑒𝑙𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑔𝑟𝑎𝑝ℎ𝑎

 𝑔𝑟𝑎𝑝ℎ𝑎= 𝑔𝑟𝑎𝑝ℎ 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑏𝑦 𝑙𝑎𝑏𝑒𝑙 𝑎  
𝑔𝑟𝑎𝑝ℎ′𝑎=𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑔𝑟𝑎𝑝ℎ 𝑎𝑓𝑡𝑒𝑟 𝑎𝑑𝑑𝑖𝑛𝑔 𝑛𝑜𝑑𝑒 𝑖𝑛  𝑔𝑟𝑎𝑝ℎ𝑎 

  

Node : (whole number, string, {A})→ node. The Node function creates a node type that can 

be added to a program graph. It takes two mandatory arguments and one optional argument 

(the optional argument is enclosed in a second bracket in the function signature). The first 

argument is a whole number that denotes the node label. The second argument is the function 

name of the function which needs to be placed in the node. The third argument is optional 

and can be of any type. For constant function, the third argument is the constant value that 

needs to be assigned. For sensor and actuator function the third argument is the type name 

of the input and output type of the respective functions. For all other functions, there should 

be no third argument. The semantic relation is given as follows. 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑁𝑜𝑑𝑒(𝑎, 𝑓, {𝑏})) =
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{
 
 
 

 
 
 
𝑛𝑜𝑑𝑒𝑎

𝑓
|𝑎 ∉ 𝐴 ∧ 𝑓 = ′𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡′ ∧ 𝑏 ∈ 𝐴𝑛𝑦𝑇𝑦𝑝𝑒 

𝑛𝑜𝑑𝑒𝑎
𝑓|𝑎 ∉ 𝐴 ∧ 𝑓 ∈ {′𝑠𝑒𝑛𝑠𝑜𝑟′,′ 𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟′} ∧ 𝑏 ∈ 𝑇 

𝑛𝑜𝑑𝑒𝑎
𝑓
|𝑎 ∉ 𝐴 ∧ 𝑓 ∈ 𝐹 ∧ 𝑏 ∈ ∅ 

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 | 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝑤ℎ𝑒𝑟𝑒 

𝑛𝑜𝑑𝑒𝑎
𝑓
=𝑛𝑜𝑑𝑒 𝑤𝑖𝑡ℎ 𝑙𝑎𝑏𝑒𝑙 𝑎 𝑎𝑛𝑑 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓
𝑇=𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑡𝑦𝑝𝑒 𝑛𝑎𝑚𝑒𝑠  

𝑖𝑛 𝑠𝑡𝑟𝑖𝑛𝑔 𝑓𝑜𝑟𝑚𝑎𝑡
𝐹= 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑛𝑜𝑑𝑒  

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑛𝑎𝑚𝑒𝑠 𝑒𝑥𝑐𝑒𝑝𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,
𝑠𝑒𝑛𝑠𝑜𝑟 𝑎𝑛𝑑 𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟

𝐴=𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒 𝑙𝑎𝑏𝑒𝑙𝑠
   

  

getSubgraph : (whole number, whole number)→ graph. The function getSubgraph returns 

the subgraph of a graph by starting from a specific terminal node and recursively fetching all 

parent nodes until initial node is reached. It takes two arguments of type whole number. The 

first argument denotes the graph label and the second denotes the node label of a specific 

node in the graph. This node is taken as the terminal node based on which the subgraph is 

extracted. The semantic relation is given as following. 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔𝑒𝑡𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ(𝑎, 𝑏)) = {
𝑔𝑟𝑎𝑝ℎ𝑎𝑏|𝑎 ∈ 𝐴⋀𝑏 ∈ 𝑎𝐵 
𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑| 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,  

𝑤ℎ𝑒𝑟𝑒 
 𝑔𝑟𝑎𝑝ℎ𝑎𝑏=𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝑜𝑓 𝑔𝑟𝑎𝑝ℎ𝑎 𝑎𝑛𝑑 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑛𝑜𝑑𝑒 𝑙𝑎𝑏𝑒𝑙 𝑏 

𝑎𝐵=𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒 𝑙𝑎𝑏𝑒𝑙𝑠 𝑜𝑓 𝑔𝑟𝑎𝑝ℎ𝑎 
𝐴=𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑔𝑟𝑎𝑝ℎ 𝑙𝑎𝑏𝑒𝑙𝑠

  

evalGraph : graph → A. The evalGraph function is responsible for executing a terminal 

node in a program graph. Due to lazy evaluation scheme once a specific node is executed it 

calls its parents on data requirement which results in execution of its parent nodes. This 

continues until the initial node is reached or data is already available in a specific node (due 

to memoization). This function takes a graph object as argument and evaluates the terminal 

node of the graph to store the result and return a copy of it. If result of the execution is already 

available in the node, then it directly returns a copy of the result. Clearly graph object should 

contain only one terminal node to be executable.  

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑒𝑣𝑎𝑙𝐺𝑟𝑎𝑝ℎ(𝑔𝑟𝑎𝑝ℎ𝑓)) = 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔𝑟𝑎𝑝ℎ𝑓) =

{
𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)| |𝑔𝑟𝑎𝑝ℎ𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑛𝑜𝑑𝑒𝑠| = 1 ⋀ 𝑔𝑟𝑎𝑝ℎ𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑛𝑜𝑑𝑒𝑠

𝑓𝑛𝑎𝑚𝑒
= "𝑖𝑛𝑖𝑡𝑊𝑜𝑟𝑙𝑑"

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑|𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,  
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𝑤ℎ𝑒𝑟𝑒 

𝑔𝑟𝑎𝑝ℎ𝑓=𝑔𝑟𝑎𝑝ℎ 𝑤𝑖𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓

𝑔𝑟𝑎𝑝ℎ𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑛𝑜𝑑𝑒𝑠
𝑓𝑛𝑎𝑚𝑒

=𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑛𝑎𝑚𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑖𝑛𝑖𝑡𝑎𝑙 𝑛𝑜𝑑𝑒𝑠 𝑜𝑓 𝑔𝑟𝑎𝑝ℎ

|𝑔𝑟𝑎𝑝ℎ𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑛𝑜𝑑𝑒𝑠|= 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑔𝑟𝑎𝑝ℎ
  

gp : graph → node. The gp function converts a subgraph to a reusable node. The node can 

later be reused in multiple other graphs. This is similar to the function constructor in any 

other language. The number of input arguments in the node is determined by number of open 

input nodes in the subgraph used to create the node and the order is determined by the order 

in which the data will be fetched from the input nodes during execution. There should always 

be one terminal node in the subgraph and that leads to one output port in the resultant node. 

The subgraph should not contain any initWorld node (stated in section 3.7.2). 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔𝑝(𝑔𝑟𝑎𝑝ℎ)) = {
𝑛𝑜𝑑𝑒 | |𝑔𝑟𝑎𝑝ℎ𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑛𝑜𝑑𝑒𝑠| = 1⋀ 𝑖𝑛𝑖𝑡𝑊𝑜𝑟𝑙𝑑 ∉ 𝑔𝑟𝑎𝑝ℎ

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 | 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

3.7.2 I/O monads 

I/O monads are functions in FGPM which are used to handle side-effects caused by 

interaction with the external environment, thereby preserving the purity of the language. We 

will use a first bracket notation to represent a monadic type. (A, world) represents a monadic 

type with data type A embellished with the external environment or the world object.    

initWorld : null → (null, world). The initWorld (iW) function initializes an environment 

which is denoted as world object. This function takes no input argument and returns an initial 

world object. Every valid program graph should start with this node and there should be only 

one node of this type in a program. The semantic equation is given as follows.    

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑖𝑛𝑖𝑡𝑊𝑜𝑟𝑙𝑑) = (𝑛𝑢𝑙𝑙, 𝑤𝑜𝑟𝑙𝑑) 

sensorA : (world) → (A, world). The sensorA function reads some data from the external 

environment represented as the world object. It takes a monadic type with the world object 

and returns a specific type embellished with the modified world. For each specific output 

type, there will be a different sensor function. The sensorA function sends a read request to 

the world object for some data of type A. The returned data is embellished with the modified 

world object and given as output by the sensor node. A sensor node can be a child node of 

initWorld node or an actuator node only. 



41 
 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑠𝑒𝑛𝑠𝑜𝑟𝐴 ∘ 𝑓) = 𝑟𝑒𝑎𝑑(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)) 

actuatorA : (A, world) → (world). The actuatorA function applies some action on the world 

object based on the input data. The actuatorA function takes a monadic type with a specific 

type A embellished with the world object. Multiple actuator functions are defined for 

different source datatypes. Based on the data input in the actuator function, it sends a write 

request to the world object to apply some action on the world object. Thereafter the modified 

world object is returned in the monadic type. Only a sensor or a goalchecker node can follow 

an actuator node. 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟𝐴 ∘ 𝑓) = 𝑤𝑟𝑖𝑡𝑒(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)) 

goalchecker : (world) → (boolean, world). The goalchecker function checks if the goal is 

reached or not in the world object. The goalchecker function takes a monadic type with the 

world object and returns a Boolean type embellished with the modified world. The Boolean 

type will contain True if the goal is reached else False. 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝐺𝑜𝑎𝑙𝑐ℎ𝑒𝑐𝑘𝑒𝑟 ∘ 𝑓) = 𝑐ℎ𝑒𝑐𝑘_𝑔𝑜𝑎𝑙(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)) 

3.7.3 First-order node functions 

These are pure functions. They might take or return any datatype available in FGPM. They 

are always represented by a single node in the program graph and perform atomic operations 

within a program execution phase. For simplicity, the type signatures of the following 

functions are not written in monadic form, but they can be easily extended in such form. In 

FGPM all functions will deal with monadic types only. 

identity : A → A. Identity is a polymorphic primitive function that can take any type as input 

and returns the same type as output. Initially, it looks pretty uninteresting function, however, 

in FGPM they play a crucial role in abstracting a function composition in a scenario where 

the inputs of multiple functions need to be joined (like recurse function). The following 

equivalence rule holds for this function. 

𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 ∘ 𝑓 = 𝑓 ∘ 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 = 𝑓 
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constanta : A → a. The constant function takes any type as input but returns a constant value 

as output. The constant value is assigned while creating the function definition. The constant 

value can belong to any type. The following equivalence rule holds true. 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑎 ∘ 𝑓) = (𝑎, 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑤𝑜𝑟𝑙𝑑]) 

add : number X number → number. Add is a primitive function that takes two numbers as 

input and produces a number type as output. It performs the operation of addition on inputs 

and provides the result as output. Equivalence rules are stated as below where 𝑏𝑒𝑠𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛 

operation denotes selection of the world object with the highest local version number. The 

following 2nd, 3rd, and 4th equations are due to the property of commutativity, property of 

identity and property of associativity respectively. 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑎𝑑𝑑 ∘ (𝑓 X 𝑔)) = (𝑝𝑙𝑢𝑠(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑑𝑎𝑡𝑎], 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔)[𝑑𝑎𝑡𝑎]),   

𝑏𝑒𝑠𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔)[𝑤𝑜𝑟𝑙𝑑], 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑤𝑜𝑟𝑙𝑑])) 

𝑎𝑑𝑑 ∘ (𝑓 X 𝑔) = 𝑎𝑑𝑑 ∘ (𝑔 X 𝑓) 

𝑎𝑑𝑑 ∘ (𝑓 X 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡0) = 𝑓 

𝑎𝑑𝑑 ∘ (𝑎𝑑𝑑 ∘ (𝑓 X 𝑔)X ℎ) = 𝑎𝑑𝑑 ∘ (𝑓 X 𝑎𝑑𝑑 ∘ (𝑔 X ℎ)) 

subtract : number X number → number. Subtract function takes two numbers and returns 

a number type as output after performing the subtraction operation on two input numbers. It 

subtracts the second number in the product type from the first number. The following 

equivalence relations hold good. The following 2nd, 3rd, 4th, 5th, and 6th equations are due 

to the property of anticommutativity, identity, opposites, double negation, and subtraction 

respectively. 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡 ∘ (𝑓 X 𝑔)) = (𝑚𝑖𝑛𝑢𝑠(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑑𝑎𝑡𝑎], 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔)[𝑑𝑎𝑡𝑎]),  

 𝑏𝑒𝑠𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔)[𝑤𝑜𝑟𝑙𝑑] , 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑤𝑜𝑟𝑙𝑑])) 

𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡 ∘ (𝑓 X 𝑔) = 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡 ∘ (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡0 X 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡 ∘ (𝑔 X 𝑓)) 

𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡 ∘ (𝑓 X 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡0) = 𝑓 
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𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡 ∘ (𝑓 X 𝑓) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡0 ∘ 𝑓 

𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡 ∘ (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡0 X 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡 ∘ (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡0 X 𝑓)) = 𝑓 

𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡 ∘ (𝑓 X 𝑔) =  𝑎𝑑𝑑 ∘ (𝑓 X 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡 ∘ (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡0 X 𝑔)) 

multiply : number X number → number. Multiply function takes two numbers and returns 

a number type as output after performing the multiplication operation on two input numbers. 

The following equivalence relations hold. The following equations starting from 2nd are due 

to the property of commutativity, identity, multiplication property of zero, associativity, 

distributivity, distributivity, and definition of multiplication respectively.  

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 ∘ (𝑓 X 𝑔)) = (𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑑𝑎𝑡𝑎], 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔)[𝑑𝑎𝑡𝑎])  

, 𝑏𝑒𝑠𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔)[𝑤𝑜𝑟𝑙𝑑], 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑤𝑜𝑟𝑙𝑑])) 

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 ∘ (𝑓 X 𝑔) = 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 ∘ (𝑔 X 𝑓) 

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 ∘ (𝑓 X 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡1) = 𝑓 

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 ∘ (𝑓 X 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡0) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡0 ∘ 𝑓 

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 ∘ (𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 ∘ (𝑓 X 𝑔)X ℎ) = 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 ∘ (𝑓 X 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 ∘ (𝑔 X ℎ)) 

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 ∘ (ℎ X 𝑎𝑑𝑑 ∘ (𝑓 X 𝑔)) = 𝑎𝑑𝑑 ∘ (𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 ∘ (𝑓 X ℎ) X 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 ∘ (𝑔 X ℎ)) 

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 ∘ (ℎ X 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡 ∘ (𝑓 X 𝑔))

= 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡 ∘ (𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 ∘ (𝑓 X ℎ) X 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 ∘ (𝑔 X ℎ)) 

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 ∘ (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡2 𝑋 𝑓) = 𝑎𝑑𝑑 ∘ (𝑓 𝑋 𝑓) 

divide : number X number → number. The divide function takes two numbers and returns 

a number type as output after performing the division operation on two input numbers. It 

divides the second number from the first number. The following equivalence relations hold. 

The following equations starting from 2nd are due to property of identity, division property 

of zero, anticommutativity, opposites, double division, definition of division, right 



44 
 

distributivity, and right distributivity respectively.  

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑑𝑖𝑣𝑖𝑑𝑒 ∘ (𝑓 X 𝑔)) = (𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑑𝑎𝑡𝑎], 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔)[𝑑𝑎𝑡𝑎]),  

 𝑏𝑒𝑠𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔)[𝑤𝑜𝑟𝑙𝑑], 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑤𝑜𝑟𝑙𝑑])) 

𝑑𝑖𝑣𝑖𝑑𝑒 ∘ (𝑓 X 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡1) = 𝑓 

𝑑𝑖𝑣𝑖𝑑𝑒 ∘ (𝑓 X 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡0) = 𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 

𝑑𝑖𝑣𝑖𝑑𝑒 ∘ (𝑓 X 𝑔) = 𝑑𝑖𝑣𝑖𝑑𝑒 ∘ (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡1 X 𝑑𝑖𝑣𝑖𝑑𝑒 ∘ (𝑔 X 𝑓)) 

𝑑𝑖𝑣𝑖𝑑𝑒 ∘ (𝑓 X 𝑓) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡1 ∘ 𝑓 

𝑑𝑖𝑣𝑖𝑑𝑒 ∘ (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡1 X 𝑑𝑖𝑣𝑖𝑑𝑒 ∘ (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡1 X 𝑓)) = 𝑓 

𝑑𝑖𝑣𝑖𝑑𝑒 ∘ (𝑓 X 𝑔) =  𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 ∘ (𝑓 X 𝑑𝑖𝑣𝑖𝑑𝑒 ∘ (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡1 X 𝑔)) 

𝑑𝑖𝑣𝑖𝑑𝑒 ∘ (𝑎𝑑𝑑 ∘ (𝑓 X 𝑔) X ℎ) = 𝑎𝑑𝑑 ∘ (𝑑𝑖𝑣𝑖𝑑𝑒 ∘ (𝑓 X ℎ) X 𝑑𝑖𝑣𝑖𝑑𝑒 ∘ (𝑔 X ℎ)) 

𝑑𝑖𝑣𝑖𝑑𝑒 ∘ (𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡 ∘ (𝑓 X 𝑔) X ℎ) = 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡 ∘ (𝑑𝑖𝑣𝑖𝑑𝑒 ∘ (𝑓 X ℎ) X 𝑑𝑖𝑣𝑖𝑑𝑒 ∘ (𝑔 X ℎ)) 

guard : Boolean X A X A → A. The guard function acts as a conditional function in FGPM. 

It takes three elements as input. The first element should be a Boolean and the other two can 

be of any type, but they should be of the same type. The output type is same as that of the 

second or third element of the input. Based on the Boolean value of the first element in the 

input it either passes the second element or the third element. If the Boolean value is True, it 

passes the second element else the third element. In the lazy evaluation scheme, the functions 

responsible for generating the second and third element of the input of the guard function is 

selectively called based on the Boolean value returned at the first element of the input. The 

following equivalence rules hold. The following 2nd equation is due to the property of fusion. 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒((𝑔𝑎𝑢𝑟𝑑 ∘ (𝑓 X 𝑔 X ℎ)) = 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒((𝑔 + ℎ) ∘ 𝑓)

= {
(𝑔′[𝑑𝑎𝑡𝑎], 𝑏𝑒𝑠𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑓′[𝑤𝑜𝑟𝑙𝑑], 𝑔′[𝑤𝑜𝑟𝑙𝑑])| 𝑓′[𝑑𝑎𝑡𝑎]  = 𝑇𝑟𝑢𝑒

(ℎ′[𝑑𝑎𝑡𝑎], 𝑏𝑒𝑠𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑓′[𝑤𝑜𝑟𝑙𝑑], ℎ′[𝑤𝑜𝑟𝑙𝑑])| 𝑓′[𝑑𝑎𝑡𝑎]  = 𝐹𝑎𝑙𝑠𝑒
  

𝑤ℎ𝑒𝑟𝑒, 𝑔′ = 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔), 𝑓′ = 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓), ℎ′ = 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(ℎ) 
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𝑖 ∘ (𝑔 + ℎ) ∘ 𝑓 = (𝑖 ∘ 𝑔 + 𝑖 ∘ ℎ) ∘ 𝑓 

equal : AnyType X AnyType → Boolean. As the name suggests the equal function checks 

equality between two inputs. It takes two elements as input and returns a Boolean type as 

output. The two elements can be of any type. Based on the equality test between the two 

input elements it returns either True or False. The following equivalence rules hold. The 

following equations starting from 2nd are due to property of symmetry, reflexive property, 

and property of cancellation. 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒((𝑒𝑞𝑢𝑎𝑙 ∘ (𝑓 X 𝑔)) = (𝑒𝑞𝑢𝑎𝑙(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑑𝑎𝑡𝑎], 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔)[𝑑𝑎𝑡𝑎]),   

𝑏𝑒𝑠𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑤𝑜𝑟𝑙𝑑], 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔)[𝑤𝑜𝑟𝑙𝑑])) 

𝑒𝑞𝑢𝑎𝑙 ∘ (𝑓 X 𝑔) = 𝑒𝑞𝑢𝑎𝑙 ∘ (𝑔 X 𝑓) 

𝑒𝑞𝑢𝑎𝑙 ∘ (𝑓 X 𝑓) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡True ∘ 𝑓 

𝑒𝑞𝑢𝑎𝑙 ∘ (𝑔 ∘ 𝑓 X 𝑔 ∘ ℎ) = 𝑒𝑞𝑢𝑎𝑙 ∘ (𝑓 X ℎ) | 𝑙𝑎𝑚𝑏𝑑𝑎𝑔𝑟𝑎𝑝ℎ, 𝐼/𝑂 𝑚𝑜𝑛𝑎𝑑𝑠 ∉ 𝑔 

greater : number X number → Boolean. The greater function takes a product type of 

numbers as input and returns True if the first number is greater than the second else returns 

False. The same function behaves like a lesser function if the arguments are reversed. The 

following equivalence relations hold. The following equations starting from 2nd are due to 

property of anticommutativity, reflexive property, and property of cancellation. 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒((𝑔𝑟𝑒𝑎𝑡𝑒𝑟 ∘ (𝑓 X 𝑔)) = (𝑔𝑟𝑒𝑎𝑡𝑒𝑟(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑑𝑎𝑡𝑎], 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔)[𝑑𝑎𝑡𝑎]),   

𝑏𝑒𝑠𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑤𝑜𝑟𝑙𝑑], 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔)[𝑤𝑜𝑟𝑙𝑑])) 

𝑔𝑟𝑒𝑎𝑡𝑒𝑟 ∘ (𝑓 X 𝑔) = 𝑛𝑒𝑔𝑎𝑡𝑒 ∘ 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 ∘ (𝑔 X 𝑓) 

𝑔𝑟𝑒𝑎𝑡𝑒𝑟 ∘ (𝑓 X 𝑓) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡False ∘ 𝑓 

𝑔𝑟𝑒𝑎𝑡𝑒𝑟 ∘ (𝑔 ∘ 𝑓 X 𝑔 ∘ ℎ) = 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 ∘ (𝑓 X ℎ) | 𝑙𝑎𝑚𝑏𝑑𝑎𝑔𝑟𝑎𝑝ℎ, 𝐼/𝑂 𝑚𝑜𝑛𝑎𝑑𝑠 ∉ 𝑔 

conjunct : Boolean X Boolean → Boolean. The conjunct function acts like logical AND. It 

takes two Boolean as input and returns a Boolean type. If both the input arguments are True 
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then output is True else it returns False. The following equivalence rules hold. The following 

equations starting from 2nd are due to property of commutativity, associativity, identity, 

annihilation, idempotence, property of distribution of conjunct over disjunct, and property of 

absorption respectively. 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒((𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡 ∘ (𝑓 X 𝑔)) = (𝐴𝑁𝐷(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑑𝑎𝑡𝑎], 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔)[𝑑𝑎𝑡𝑎]),   

𝑏𝑒𝑠𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑤𝑜𝑟𝑙𝑑], 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔)[𝑤𝑜𝑟𝑙𝑑])) 

𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡 ∘ (𝑓 X 𝑔) = 𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡 ∘ (𝑔 X 𝑓) 

𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡 ∘ (𝑓 X 𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡 ∘ (𝑔 X ℎ)) = 𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡 ∘ (𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡 ∘ (𝑓 X 𝑔) X h) 

𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡 ∘ (𝑓 X 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡True) = 𝑓 

𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡 ∘ (𝑓 X 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡False) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡False ∘ 𝑓 

𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡 ∘ (𝑓 X 𝑓) = 𝑓 

𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡 ∘ (𝑓 X 𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡 ∘ (𝑔 X ℎ))

= 𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡 ∘ (𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡 ∘ (𝑓 X 𝑔) X 𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡 ∘ (𝑓 X ℎ)) 

𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡 ∘ (𝑓 X 𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡 ∘ (𝑓 X 𝑔)) = 𝑓| 𝑙𝑎𝑚𝑏𝑑𝑎𝑔𝑟𝑎𝑝ℎ, 𝐼/𝑂 𝑚𝑜𝑛𝑎𝑑𝑠 ∉ 𝑔 

disjunct : Boolean X Boolean → Boolean. The disjunct function acts like logical OR. It 

takes two Boolean as input and returns a Boolean type. If either of the input arguments is 

True, then output is True else it returns False. The following equivalence rules hold. The 

following equations starting from 2nd are due to property of commutativity, associativity, 

identity, annihilation, idempotence, property of distribution of disjunct over conjunct, and 

property of absorption respectively. 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒((𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡 ∘ (𝑓 X 𝑔)) = (𝑂𝑅(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑑𝑎𝑡𝑎], 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔)[𝑑𝑎𝑡𝑎]),   

𝑏𝑒𝑠𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑤𝑜𝑟𝑙𝑑], 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔)[𝑤𝑜𝑟𝑙𝑑])) 

𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡 ∘ (𝑓 X 𝑔) = 𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡 ∘ (𝑔 X 𝑓) 

𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡 ∘ (𝑓 X 𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡 ∘ (𝑔 X ℎ)) = 𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡 ∘ (𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡 ∘ (𝑓 X 𝑔) X ℎ) 
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𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡 ∘ (𝑓 X 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡False) = 𝑓 

𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡 ∘ (𝑓 X 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡True) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡True ∘ 𝑓 

𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡 ∘ (𝑓 X 𝑓) = 𝑓 

𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡 ∘ (𝑓 X 𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡 ∘ (𝑔 X ℎ))

= 𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡 ∘ (𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡 ∘ (𝑓 X 𝑔) X 𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡 ∘ (𝑓 X ℎ)) 

𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡 ∘ (𝑓 X 𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡 ∘ (𝑓 X 𝑔)) = 𝑓| 𝑙𝑎𝑚𝑏𝑑𝑎𝑔𝑟𝑎𝑝ℎ, 𝐼/𝑂 𝑚𝑜𝑛𝑎𝑑𝑠 ∉ 𝑔 

negate : Boolean → Boolean. Negate function acts like logical NOT. It takes a Boolean type 

and returns a Boolean type. If the input is True, then output is False else it returns True. The 

following equivalence rules hold. The following equations starting from 2nd are due to the 

property of double negation, property of complementation over conjunct, property of 

complementation over disjunct, DeMorgan law 1, and DeMorgan law 2 respectively.  

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑛𝑒𝑔𝑎𝑡𝑒 ∘ 𝑓) = (𝑁𝑂𝑇(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑑𝑎𝑡𝑎]), 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑤𝑜𝑟𝑙𝑑]) 

𝑛𝑒𝑔𝑎𝑡𝑒 ∘ 𝑛𝑒𝑔𝑎𝑡𝑒 ∘ 𝑓 = 𝑓 

𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡 ∘ (𝑓 X 𝑛𝑒𝑔𝑎𝑡𝑒 ∘ 𝑓) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡False ∘ 𝑓 

𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡 ∘ (𝑓 X 𝑛𝑒𝑔𝑎𝑡𝑒 ∘ 𝑓) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡True ∘ 𝑓 

𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡 ∘ (𝑛𝑒𝑔𝑎𝑡𝑒 ∘ 𝑓 X 𝑛𝑒𝑔𝑎𝑡𝑒 ∘ 𝑔) = 𝑛𝑒𝑔𝑎𝑡𝑒 ∘ 𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡(𝑓 X 𝑔) 

𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡 ∘ (𝑛𝑒𝑔𝑎𝑡𝑒 ∘ 𝑓 X 𝑛𝑒𝑔𝑎𝑡𝑒 ∘ 𝑔) = 𝑛𝑒𝑔𝑎𝑡𝑒 ∘ 𝑐𝑜𝑛𝑗𝑢𝑛𝑐𝑡(𝑓 X 𝑔) 

nil : A → list. Nil function creates an empty list. It takes any datatype as input and returns a 

list datatype. The following equivalence relation holds true, where [] denotes an empty list. 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑛𝑖𝑙 ∘ 𝑓) = ([], 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑤𝑜𝑟𝑙𝑑]) 

cons : A X list → list. The cons function appends an element of type A to a list. The element 

is appended at the beginning of the list. It takes two input arguments, one of any arbitrary 
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type A and another of list type. It returns a list type. The following equivalence relation holds 

true. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑎, 𝑏) denotes a list append function which appends the element a in list b. 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑐𝑜𝑛𝑠 ∘ (𝑓𝑥𝑔)) = ( append(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑑𝑎𝑡𝑎], (𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔)[𝑑𝑎𝑡𝑎]), 

 𝑏𝑒𝑠𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑤𝑜𝑟𝑙𝑑], 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔)[𝑤𝑜𝑟𝑙𝑑])) 

head : list → A. The head function pops out the first element from a list and returns the 

popped element. It takes a list as input argument type and returns an element of type A. The 

following equivalence relation holds good, where the function 𝑝𝑜𝑝(𝑎) returns the first 

element from list 𝑎 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(ℎ𝑒𝑎𝑑 ∘ 𝑓) = (𝑝𝑜𝑝(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑑𝑎𝑡𝑎]), 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑤𝑜𝑟𝑙𝑑]) 

tail : list → list. The tail function returns rest of the list except the first element. It takes a list 

as an input argument and returns a list. The following equivalence relation holds good where 

the function 𝑡𝑎𝑖𝑙(𝑎) returns rest of the list a except the first element. 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑡𝑎𝑖𝑙 ∘ 𝑓) = (𝑡𝑎𝑖𝑙(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑑𝑎𝑡𝑎]), 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑤𝑜𝑟𝑙𝑑]) 

𝑐𝑜𝑛𝑠 ∘ ((ℎ𝑒𝑎𝑑 ∘ 𝑓) 𝑋 (𝑡𝑎𝑖𝑙 ∘ 𝑓))  = 𝑓 

len : list → number. The len function returns the number of elements present in a list. It 

takes a list as an input argument and returns a number. The following equivalence relation 

holds good where the function 𝑙𝑒𝑛𝑔𝑡ℎ(𝑎) returns the length of list a. 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑙𝑒𝑛 ∘ 𝑓) = (𝑙𝑒𝑛(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑑𝑎𝑡𝑎]), 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑤𝑜𝑟𝑙𝑑]) 

split : list X number → list.  Split takes a list and a number as input arguments. It splits the 

input list at the index position specified by the input number. Finally, two lists are returned 

wrapped within another list. The following equivalence relation holds good where the 

function 𝑠𝑝𝑙𝑖𝑡(𝑎, 𝑏) returns list of split lists 𝑎 in split position b. 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑠𝑝𝑙𝑖𝑡 ∘ (𝑓 𝑋 𝑔)) = (𝑠𝑝𝑙𝑖𝑡(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑑𝑎𝑡𝑎], 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔)[𝑑𝑎𝑡𝑎]), 

𝑏𝑒𝑠𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑤𝑜𝑟𝑙𝑑], 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔)[𝑤𝑜𝑟𝑙𝑑])) 
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join : list X list → list. Join takes two lists as input arguments and joins both the lists. The 

joined list is returned as output. The following equivalence relation holds good where the 

function 𝑗𝑜𝑖𝑛(𝑎, 𝑏) returns a list by joining two lists a and b. 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑗𝑜𝑖𝑛 ∘ (𝑓 𝑋 𝑔)) = ( join(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑑𝑎𝑡𝑎], 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔)[𝑑𝑎𝑡𝑎]), 

𝑏𝑒𝑠𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑤𝑜𝑟𝑙𝑑], 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔)[𝑤𝑜𝑟𝑙𝑑]) 

𝑗𝑜𝑖𝑛 ∘ ((ℎ𝑒𝑎𝑑 ∘ 𝑠𝑝𝑙𝑖𝑡 ∘ (𝑓 𝑋 𝑔)) 𝑋 (ℎ𝑒𝑎𝑑 ∘ 𝑡𝑎𝑖𝑙 ∘ 𝑠𝑝𝑙𝑖𝑡 ∘ (𝑓 𝑋 𝑔)))  = 𝑓 

𝑠𝑝𝑙𝑖𝑡 ∘ ((ℎ𝑒𝑎𝑑 ∘ 𝑗𝑜𝑖𝑛 ∘ (𝑓 𝑋 𝑔)) 𝑋 (𝑙𝑒𝑛 ∘ 𝑓)) = 𝑐𝑜𝑛𝑠 ∘ (𝑓 𝑋 𝑐𝑜𝑛𝑠 ∘ (𝑔 𝑋 𝑛𝑖𝑙)) 

pop : list X number → A. Pop takes one list and one number as input arguments. It returns 

the element present in the input list in the index position specified by the input number. The 

following equivalence relation holds good where the function 𝑝𝑜𝑝(𝑎, 𝑏) returns the bth 

element in list a. 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑝𝑜𝑝 ∘ (𝑓 𝑋 𝑔)) = ( pop(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑑𝑎𝑡𝑎], 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔)[𝑑𝑎𝑡𝑎]), 

𝑏𝑒𝑠𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑤𝑜𝑟𝑙𝑑], 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔)[𝑤𝑜𝑟𝑙𝑑]) 

reverse : list → list. Reverse takes a list as an input argument and reverses the order of the 

elements within the list. The final reversed list is returned. The following equivalence 

relation holds good where the function 𝑟𝑒𝑣𝑒𝑟𝑠𝑒(𝑎) reverses the content of list a. 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑝𝑜𝑝 ∘ (𝑓 𝑋 𝑔)) = ( reverse(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑑𝑎𝑡𝑎], 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔)[𝑑𝑎𝑡𝑎]), 

𝑏𝑒𝑠𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑤𝑜𝑟𝑙𝑑], 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔)[𝑤𝑜𝑟𝑙𝑑]) 

getdatatype : A → string. Getdatatype returns the datatype of the input argument in form of 

string. The following equivalence relation holds good where the function 𝑔𝑒𝑡𝑑𝑎𝑡𝑎𝑡𝑦𝑝𝑒 (𝑎) 

returns any of the following strings based on the datatype of 𝑎. ‘number’, ’string’, ’Boolean’, 

‘list’, ’node’, ’graph’, ‘null’. 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔𝑒𝑡𝑑𝑎𝑡𝑎𝑡𝑦𝑝𝑒 ∘ 𝑓) =

(𝑔𝑒𝑡𝑑𝑎𝑡𝑎𝑡𝑦𝑝𝑒 (𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑑𝑎𝑡𝑎]), 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑤𝑜𝑟𝑙𝑑])  

worldmerge : A X B → A. The worldmerge function takes two arguments and returns the 
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first argument. This node is similar to identity except it takes two arguments. The purpose of 

this node is to merge parallel pathways in a graph, mainly in scenarios where the world gets 

modified by I/O monads in one pathway.  

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑤𝑜𝑟𝑙𝑑𝑚𝑒𝑟𝑔𝑒 ∘ (𝑓𝑥𝑔))

= (evaluate(𝑓)[𝑑𝑎𝑡𝑎], 𝑏𝑒𝑠𝑡_𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)[𝑤𝑜𝑟𝑙𝑑], 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔)[𝑤𝑜𝑟𝑙𝑑])) 

3.7.4 Higher-order node functions 

Higher-order functions will at least take or return a function type. Higher-order functions are 

represented either as a single node primitive function or as a program graph by composing 

other inbuilt functions (composite function). Higher-order composite functions placed in a 

node is copied and replaced with the respective program subgraphs during evaluation as per 

the evaluation strategy mentioned earlier. 

apply : function X A X B → C. Apply function takes three input elements. The first element 

should be a function type and the next two elements can be of any type. The apply function 

applies the function received in its first input argument on the arguments received as second 

and third input elements. Clearly, the second and third elements should be type compatible 

with the input type of the function received as the first element. If the input function takes 

one argument, then the third argument is ignored, and apply returns the result of the function 

application on the argument received at input port 2. In case the input function takes two 

arguments then the function is evaluated on both of its arguments and apply returns result of 

the function evaluation. If the input function takes more than two arguments, then a partially 

evaluated function is returned by the apply function.  The following equivalence relation 

holds good. 

𝑎𝑝𝑝𝑙𝑦 ∘ (𝑓 X 𝑔 X ℎ)

= {

𝑓′ ∘ (𝑔 X ℎ), 𝑖𝑓 |𝑎𝑟𝑔𝑠(𝑓′)| >= 2 

𝑓′ ∘ 𝑔, 𝑖𝑓 |𝑎𝑟𝑔𝑠(𝑓′)| = 1  

𝑓′, 𝑖𝑓 |𝑎𝑟𝑔𝑠(𝑓′)| = 0  

𝑤ℎ𝑒𝑟𝑒 𝑓′ = 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓)

|𝑎𝑟𝑔𝑠(𝑓′)| =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑓′
 

lambdagraph : A→ function. Lambdagraph function takes an input of any type and returns 

a function definition. In FGPM lambdagraph function can be composed with any other 
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functions. It will return the function definition in the form of a graph after execution. It will 

return the complete subgraph ending with the parent node of the lambdagraph function. The 

initial node in a graph is replaced by an identity node in the returned program graph. Fig. 3.4. 

illustrates a lambdagraph function. The first graph is a sample program graph starting with 

marked initial nodes (initial nodes can be initWorld node or any other nodes marked as an 

initial node by a specific flag within the node) and ending with a lambdagraph function node. 

The second program subgraph is returned by the lambdagraph function after evaluation. The 

initial nodes are replaced by identity function node which is considered as the initial node of 

the returned program subgraph. All the child nodes of the initial identity node should have 

the same input type else error is raised on evaluating the lambdagraph function. Input type 

of the initial identity node is set as the input type of its child nodes. Lambdagraph is useful 

in creating arbitrary function definitions during program evaluation and using them as 

modules in other functions. The returned function has the same input type as that of the input 

type of the initial node and same output type as that of the output type of the terminal node. 

Consecutive composition of lambdagraph is not allowed in FGPM as they eventually do the 

same thing which a single lambdagraph does. The following equivalence relations hold true. 

 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑙𝑎𝑚𝑏𝑑𝑎𝑔𝑟𝑎𝑝ℎ ∘ 𝑓 ∘ 𝑔)

= {
(𝑓, 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔)[𝑤𝑜𝑟𝑙𝑑]))| 𝑔 ∈ {𝑖𝑛𝑖𝑡𝑊𝑜𝑟𝑙𝑑, 𝑎𝑛𝑦 𝑛𝑜𝑑𝑒 𝑚𝑎𝑟𝑘𝑒𝑑 𝑎𝑠 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑛𝑜𝑑𝑒}

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 | 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Figure 3.4 Illustration of a lambdagraph function in FGPM.   
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𝑙𝑎𝑚𝑏𝑑𝑎𝑔𝑟𝑎𝑝ℎ ∘ 𝑙𝑎𝑚𝑏𝑑𝑎𝑔𝑟𝑎𝑝ℎ ∘ 𝑓 = 𝑙𝑎𝑚𝑏𝑑𝑎𝑔𝑟𝑎𝑝ℎ ∘ 𝑓 

recurse : function  X function X A→ B. The recurse function takes three inputs out of which 

the first two elements are function type and the third element can be of any type. The recurse 

function implements the looping logic using recursion. The first argument is a function that 

is applied to the third argument recursively until the stopping condition is met. The function 

for checking the stopping condition is received as the second argument. The recurse function 

helps generate short programs for repetitive operations. It is actually a program subgraph 

built with other primitive functions and itself stored as a primitive function. Fig. 3.5 

illustrates the program graph of the recurse function. The sequence of input ports is in 

clockwise direction for all nodes. Nodes 1, 2 and 3 take the input arguments of recurse 

function. The function which needs to be recursed (fed to node 1) should at most take 1 

argument. The same constraint applies to the function which checks the stopping condition 

(fed to node 2). Node 6 applies the function received at node 1 on the argument received at 

node 3. As the source function takes at most one argument, the third argument of node 6 is 

ignored. The same is true for node 4. Node 5 is used to pass the updated world object (if 

updated by node 4 due to some monadic function fed to node 2) to node 6. This allows to 

sequence monadic actions if present in functions fed at node 1 and 2. Node 7 copies and 

substitutes the definition of recurse function. If the stopping condition is True, then node 8 

returns output from node 3 else it calls node 7. Clearly, the recursion depth will depend upon 

 

Figure 3.5 Illustration of a recurse function in FGPM 
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the stopping condition. If the function for the stopping condition always returns True then 

the function at argument 1 will be applied on the argument available at input port 3, once. If 

the function for the stopping condition always returns False it will loop forever and the output 

will be undefined. 

The following equivalence relations holds true where a program 𝑓 is said to be 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 if 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓) = 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 

𝑟𝑒𝑐𝑢𝑟𝑠𝑒 ∘ (𝑓 X 𝑔 X ℎ)

=

{
 
 

 
 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓) ∘ 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(ℎ) | 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔) =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑇𝑟𝑢𝑒 ∘ 𝑖

𝑖𝑛𝑣𝑎𝑙𝑖𝑑 | 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔) =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝐹𝑎𝑙𝑠𝑒 ∘ 𝑖

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓) | 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑓) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝐾 ⋀𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑔) ≠  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝐹𝑎𝑙𝑠𝑒 ∘ 𝑖

𝑔𝑎𝑢𝑟𝑑 ∘ (𝑘 X ℎ X 𝑟𝑒𝑐𝑢𝑟𝑠𝑒 ∘ (𝑓 X 𝑔 X 𝑎𝑝𝑝𝑙𝑦 ∘ (𝑓 X 𝑙 X 𝑙)))| 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

, 𝑤ℎ𝑒𝑟𝑒 𝑘 = 𝑎𝑝𝑝𝑙𝑦 ∘ (𝑔 X ℎ X ℎ), 𝑙 = 𝑔𝑎𝑢𝑟𝑑(𝑘 X ℎ X ℎ) 

loop : function X A X number → B. The loop takes 3 arguments, one of function type and 

another of any type, and the third one should be of number type. The input function is applied 

on the 2nd argument and number received as 3rd argument is decremented by 1. Thereafter 

the function is repeatedly applied on the output of the previous application of the function 

and the input number is decremented by 1 at each step. This continues until the value of the 

 
Figure 3.6 Illustration of a loop function in FGPM. a) subgraph for subloop function, b) subgraph for loop 

function 
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input number reaches 0. The output of the final application of the input function is returned 

as the output of the node. Fig. 3.6 illustrates the subgraph which implements the loop node.  

The input port numbers are denoted by the numbers displayed beside the input ports of the 

nodes.  It is implemented by two subgraphs. Fig 3.6a shows the subgraph for a subloop 

function that implements the loop logic using recursion. Fig 3.6b shows the graph for the 

loop node which reuses the subloop subgraph. A variant of loop node is also implemented 

which consists of 2 input ports. The 2nd and 3rd input ports are merged to one in this case.  

fmap : function X list → list. Fmap takes a function and a list as input arguments. The 

function is applied on each element of the input list and output is stored in another list in the 

same index position. The final output list is returned. Fig 3.7 illustrates the subgraph for 

fmap. 

aggregator : function X list → A. Aggregator takes a function and list as input arguments. 

The input function is applied on each element iteratively and the output is aggregated. The 

final aggregated output is returned. Fig. 3.8 shows the subgraph for aggregator function.  

zip : function X list X list→ list. Zip takes two list type input arguments and one function 

type argument. It pairs each element from both the list and the input function is applied on 

each pair. It returns a list containing the output of the input function applied on each pair. Fig 

 

Figure 3.7 Illustration of a fmap function in FGPM 
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3.9 illustrates the subgraph for zip function. 

 

 

3.8 CONCLUSION 

In this chapter, we presented a dataflow graph based functional programming model and 

demonstrated its usability and applicability in the context of Universal search. Though the 

primary purpose of constructing this programming model is to allow universal search to 

 

Figure 3.8  Illustration of aggregator function in FGPM 

 

Figure 3.9 Illustration of a zip function in FGPM 
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generate and test solution programs at ease, yet it can be used by human user to manually 

construct reusable AI applications by integrating multiple AI components. The later chapter 

describes how the programming model can play a vital role in the design of an integrative 

AI platform. This has a two-fold benefit. First, it allows easy construction of integrative AI 

applications through a graphical user interface. Second reusable components can be designed 

in the platform and eventually used in the problem-solver which would help to reduce the 

search space. The functional nature of the model allows every program to be written in terms 

of algebraic equations and consequently allows reasoning of programs.   
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4 THE INTEGRATIVE AI PLATFORM 

“Nature laughs at the difficulties of integration” – Pierre-Simon Laplace, (1847) 

Adopting AI to solve real-world problems requires integration of one or many domain 

specific AI methods due to the heterogeneous nature of the tasks. For example, a warehouse 

robot needs to navigate through multiple shelves in an inventory, recognize objects through 

vision, plan organization of objects and physically control its actuators to move objects. In 

some cases, it might need to understand speech commands from human. Several other 

examples of real-world heterogeneous problems are mentioned by Lombardi [57] which can 

be solved by integrative AI. Integrative AI combines disparate AI methods in a synergistic 

way for holistic problem-solving. Also, with the advent of Internet of Things (IoT) devices, 

development of distributed integrative intelligence looks very promising. Integration of IoT 

devices with AI methods can make Artificial Intelligence pervasive and ubiquitous.  

Though integrative AI sounds very promising yet it comes with several challenges. 

Development of such systems are highly contextual to a problem scenario. Thus, it is mostly 

a manual process and quite an engineering challenge [50, 51, 58]. The developers usually 

work under limited resources and large-scale integration of multiple AI methodologies from 

scratch becomes a mammoth task [59]. The difficulty in integration mainly arises due to 

heterogeneity of components and methods which makes them incompatible for integration 

[52]. For example, a sensor camera may capture images and stream them in a certain format 

whereas an object recognition algorithm can process individual images in a different format. 

Integrating them in a live streaming situation requires some low-level development effort. 

Such heterogeneous integrations are usually done on adhoc basis for a problem context and 

reusability of solutions in a different problem context is low. Low scalability and 

performance brittleness are other issues that come hand in hand with such adhoc solutions. 

Along with these challenges, a distributed integrative intelligent system employing IoT 

devices comes with a new set of challenges [60]. Among these, the complexity of large-scale 

integration and coordination of devices with heterogeneous AI components are fundamental 

challenges. 
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In order to address the aforementioned challenges, there is a need to create a platform for 

integrating disparate AI methods and transducers. It should allow easy integration of 

disparate components using plug-n-play type integration which can largely reduce the 

engineering effort. Development of integrated solutions should be modular to improve 

reusability. Designing real-world transducer devices and different AI components as 

microservices [61] can overcome this problem as it provides the flexibility to treat them as 

black-box components. On a contrary, as argued by Thorisson [62] a real-world AI 

architecture may not always be divided into loosely coupled modules and they often need 

tight coupling. Thus, the platform should also allow enough expressivity to implement any 

arbitrary integration logic.  

Current research efforts focus on solving some of these challenges of integrative AI. 

However, none addresses all of these issues. Current state-of-the-art solutions can be roughly 

divided into three groups. The first group focused on designing methods for building situated 

intelligence in a constrained environment and using native components [48, 49, 51]. Thus, 

ease of usage and scalability with respect to integrating external components becomes an 

issue. The second group focused on developing middleware for integrating IoT devices and 

disparate AI components [63, 64]. However, lack of expressive integration method prevents 

from implementing complex integration logic. The third group focused on developing 

integration methods based on microservices [65, 66]. Though they can provide a platform 

for integration of disparate components in a standardized way, yet difficulty of usage and 

lack of modularity in the integration method becomes a concern in this aspect. Thus, in order 

to address all the issues, an agent-environment based AI integration platform is proposed 

which considers all reusable AI components and IoT devices as microservices [67]. An 

intelligent system can be constructed in the platform by integrating different components 

using the proposed dataflow graph-based programming model as described in chapter 3. The 

programming model allows development of integration programs as white-box components 

and also provides a functional abstraction. 

4.1 AGENT-ENVIRONMENT BASED INTEGRATION PLATFORM 

Thorisson suggested using small white-box components instead of black-box components 
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for integration [62]. However extensive use of white-box components makes an architecture 

messy, which might reduce modularity and consequently incremental modifications become 

difficult. Instead, contextual black-boxing of components can solve the above problems. Few 

solution modules can be atomic in all contexts. Others may be contextually atomic. Thus, the 

integration method should be opportunistic and support loose coupling of components 

wherever possible in a problem context and allow switching to white-box tight coupling as 

needed.  

Fig. 4.1 illustrates an agent-environment model of AI integration. The environment consists 

of addresses and other access details of microservices that act as independent AI modules. It 

also includes middleware and a gateway to transform and redirect message requests or API 

calls to target microservices. The microservices can be hosted in any remote hosting platform 

or on the agent server itself. The agent serves as a host for the dataflow graph-based 

programming model where integration programs can be implemented. The integration 

programs are constructed in the proposed programming model. The functional dataflow 

graph-based programming model provides inherent modularity within a program. Treating 

each node as a complete function allows one to consider each subgraph within a program 

graph as a complete function. In this sense a program graph behaves as a white-box 

component, allowing reuse of any arbitrary subsection by just connecting edges with output 

ports of appropriate nodes. Programs are constructed by composing functions such that 𝑓 ∘ 𝑔 

represents a program composed by connecting 𝑓 after 𝑔. Every linearly composed program 

can be factored into any ordered combination of subset of all functions. Functions that are 

not composed linearly but combined parallelly can be represented by a product type. The 

constructed product type can be fed into multi-argument function nodes. Functions can be 

factored out by breaking the composition operator such that if 𝑓′ = 𝑓 ∘ 𝑔, then 𝑓′ can be 

factored into 𝑓 and 𝑔. Thus, a program graph can be factored into 𝑛 + 1 distinct functions 

where 𝑛 is number of composition operators in the algebraic expression of the program 

graph. It signifies every node in a program graph represents the terminal node of a sub-

function which can be reused in another program graph just by connecting the output of the 

corresponding node to some input port in the other program graph. 

The integration program within the agent interacts with the environment through actions and 
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perceptions using I/O monads. Actions are API calls and perceptions read data from the 

environment. The environment temporarily stores the returned data by the microservices 

which are read by the agent through perception calls (using sensor node). An AI architecture 

is implemented by integrating relevant microservices with an integration program and 

reusable AI modules built with an integration program can be pushed into the environment 

as microservices. This is done by hosting the program as an API and registering it in the 

environment. Every integration program can be partially or completely reused in another 

program as a white-box function or a black-box component. 

4.1.1 Middleware 

As shown in Fig 4.2 the middleware is responsible for communicating between the 

interpreter and the microservices. For communicating with the IoT devices, Google cloud 

IoT has been used. While communicating with AI services and data sources the middleware 

serves as an API gateway. Along with managing devices/APIs and routing data, it also 

applies some implicit data conversions to standardize the flow of data between the interpreter 

and different external components. The security layer and access control mechanisms are 

also implemented in the middleware. The access control mechanism ensures only authorized 

identities have access to respective services. The middleware is capable of both synchronous 

and asynchronous communications.  

4.1.2 Microservices 

The IoT devices, data sources, and AI services are treated as microservices within the 

platform. The IoT device connection is established through Google cloud IoT MQTT broker. 

The identity of the device is verified using an encrypted JSON web token (jwt). For each 

registered IoT device, a composite node is created (similar to microcall node as stated in 

 

Figure 4.1 Agent-environment model of AI integration 
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section 4.2) in the programming model which represents the API for communication with 

the device. The node can be used in a program graph to communicate with the device/service 

and implement any arbitrary programming logic. The data sources and AI services represent 

endpoints or APIs through which data or the AI service can be used. Similar to the IoT 

devices, for each data source and AI service, a composite node is created in the programming 

model for establishing communication with the endpoints. 

4.2 COMPARATIVE CASE STUDY 

The following two case studies demonstrate the capability of designing solutions for 

heterogeneous problems using the agent-environment integration platform and the functional 

graph programming model. The features of the proposed method have been compared with 

Jolie [65] and Microsoft’s Platform of Situated Intelligence (PSI) [51]. The demonstration 

and comparison have been done on the following grounds. Namely, functional abstraction, 

ease of integration, modularity, and expressivity. 

4.2.1 Learning to solve heterogeneous maze task 

A heterogeneous problem environment is constructed by combining a Reinforcement 

 

Figure 4.2 Architecture of integrative AI platform 
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Learning (RL) maze environment having sparse reward distribution, with a machine vision 

task. Fig. 4.3 illustrates the maze. A virtual agent is initially placed at coordinate 1,1 and its 

objective is to find a path towards a goal state marked as G, gaining maximum reward in 

course of its traversal. The agent can move in all four directions. Stepping into grey or white 

cells incurs a reward -0.5 and 0 respectively. On stepping into any of the blue cells a one-

time reward 1 is generated. However, the blue cells represent the vision zone where the agent 

can observe the direction of the goal state from the current state in form of an image. The 

directions are encoded as 1 - down, 2 – right, 3 – left, 4 - up.  

 

Figure 4.3 The maze problem environment 

Table 4.1 contains the list of microservices used as modules to solve the maze task. The value 

iteration module generates a policy for the maze-training module which serves as a RL 

training environment. The maze-training environment is same as the original maze-test 

environment except for the vision zone. Table 4.2 shows the list of primitives of the 

programming model, used to solve the maze task. The solution program has been constructed 

incrementally by divide and conquer approach. Logically separable program graphs are built 

as reusable functions using the gp node which in turn are used to construct the final program 

graph. gp node is similar to Lambda constructor in Lambda calculus and can convert any 

Table 4.1 List of atomic microservices 

Microservice Code Description Input Output 

Value Iteration 5 Runs Value iteration and 

generates optimal policy 

[Training-environment 

url, #iterations] 

Policy 

Digit 

Recognizer 

6 Recognizes Arabic 

numerals from image 

Encoded image data  Recognized digits 

Maze-training 3 Maze training environment [action, current state] [observation, current 

state, reward, 0] 

Maze-test 4 Maze testing environment [action, current state] [observation, current 

state, reward, goal-

reached] 
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arbitrary program graph to a reusable function. The reusable function created by a gp node 

act as a black-box component which can be directly used in another program graph. 

Table 4.2 List of function nodes 

Function Code Description Input Type Output Type 

constant a.K Returns value a any typeof(a) 

empty list nl Creates empty list any  list 

pop pop Returns nth element from the list  number X list any 

identity id Returns the input argument as-is any any 

tail tl Returns rest of the list except 1st element list list 

cons cn Appends an element in a list any X list list 

world merge wm Outputs the 1st argument as is.  any any 

actuator ac Take action on the environment. any null 

sensor sn Reads input from the environment null any 

recurse rc Applies 1st function on 3rd argument until 

stopping condition is satisfied.  

function X 

function X any 

any 

graph 

program 

gp Creates reusable function node with a 

program graph 

  

greater > Checks if 1st argument is greater than 2nd number X 

number 

Boolean 

Fig. 4.4a represents the program graph of the function microcall, created using gp node. The 

function takes two input arguments. The 1st argument should specify the numeric code of 

the microservice (specified in Table 4.1) which needs to be called and the 2nd argument 

should pass the data that needs to be sent to the microservice. The sequence of actuators 

sends requests to the environment to call the microservice. The data returned by the 

microservice is temporarily stored in the environment which is eventually consumed by the 

sensors. The final sensor in the graph returns the data returned by the called microservice. 

The world merger node is placed to deterministically sequence the I/O monads [56] in a 

pipeline, namely sensors and actuators. Fig. 4.4b represents the program graph to determine 

the stopping condition of the goal search. The search in the maze is stopped when the maze 

test environment returns 1 in the “goal reached” flag (mentioned in Table 1). Fig. 4.4c 

represents the program graph for evaluating the stopping condition of executing the policy. 

The agent traverses through the maze following the policy until it receives a positive reward. 

Fig. 4.4d illustrates the program graph to execute a policy. It has one input argument to pass 

the policy in the form of a list. Each index of the list represents the state and the 

corresponding value represents the action that needs to be taken. This program graph reuses 

the microcall function. The microcall node returns the data returned by the maze-test 

microservice. The policy is appended to this list to produce the final output. Fig. 4.4e 
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illustrates the program graph to guide the agent within the vision zone in the maze. After 

each action, the maze-test environment returns an encoded image as observation. The data is 

sent to the digit recognizer microservice to determine the direction of the goal. The final 

output of the function is the data returned by the maze-test environment. Fig. 4.4f represents 

the integrated solver program that learns the optimal policy through value iteration in the 

maze-training environment and applies the policy in the maze-test environment followed by 

a vision task to guide the agent to reach the goal. The integration is not simple communication 

among loosely coupled modules rather few tight couplings are required to solve the task. 

Solving this environment demonstrates the ease of implementation due to low syntactic 

dependence of constructing integration programs and the ability to handle complex 

integration logic for heterogeneous tasks without compromising modularity. 

Jolie [65] takes a procedural language based approach to solve the problem of development, 

deployment, and integration of microservices. Workflows in Jolie are used to coordinate and 

set dependencies among microservices. However, programming constructs to implement 

complex logic are not available while constructing workflows. Given the available external 

microservices as stated above, solving this use case is not obvious by defining a workflow, 

as the integration problem requires complex data transformation and coordination among the 

services. This can be implemented in a Jolie service using several language constructs it 

provides. But it follows a procedural style of text-based programming which compromises 

functional modularity compared to the proposed method. For example, a “loop” cannot be 

simply replaced with another function without modifying the rest of the code as they are 

semantically tightly integrated. In the proposed method any arbitrary subsection of the 

solution graph can be functionally reused in another program. This is usually not possible in 

procedural style unless every part of it is written as a reusable function, which seems like an 

overkill. 

4.2.2 Speech recognition 

This case study demonstrates the ease of integrating heterogenous components through 

functional abstraction. The objective is to stream audio from the microphone of an IoT 

device, convert it to text, and write it to a file in a file server. A similar solution [68] built on 

Microsoft’s Platform of Situated Intelligence (PSI) has been compared. 
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Figure 4.4 Program graphs to solve maze problem and speech recognition problem. Function nodes are 

represented by circles and edges by arrows. The direction of arrows represents data flow. The number on the 

edges represent input port# of the nodes. The black circles represent initial nodes and grey circles represent 

terminal nodes.  a) Program graph of reusable function microcall, b) Program graph of reusable function 

stopguidedpolicy c) Program graph of reusable function stoppolicy, d) Program graph of reusable function 

actpolicy, e) Program graph of reusable function guidedpolicy, f) Program graph to solve the maze problem, 

g) Program graph to solve the speech recognition problem 
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Fig. 4.4g illustrates the program graph build for solving the speech recognition problem. It 

involves 3 sequential microservices calls. The first microservice (encoded as 7), connects an 

IoT device to capture microphone audio and return a stream. The following service (code 8) 

reads the stream and transcribes it, which is, in turn, returned as a stream. The final service 

(code 9) reads the stream data and writes it to a file server. As illustrated the same reusable 

function microcall is used with different parameters to read audio stream from input device, 

transcribe it and write it to an output device, thus providing a layer of abstraction to the 

application developer. From an implementation perspective, the remote streaming 

components are implemented using gRPC remote procedure call and IoT device 

communication is achieved through google cloud IoT. 

In comparison to PSI the proposed platform can read and write data to remote devices, 

whereas from the demonstration of PSI such capability does not seem obvious. Development 

in PSI involves coding in C#. Syntactical and semantic knowledge of C#, as well as 

knowledge on the programming model of PSI, is a prerequisite for development whereas 

given a graphical-user-interface (GUI) the prerequisite of using the proposed platform is just 

semantic knowledge of the programming model. Programs are constructed graphically by 

creating and connecting nodes which simplifies the task. The proposed method abstracts 

majority of the underlying data conversion, communication, and configurations. The inherent 

functional modularity of the programming model allows quick reuse and modification of any 

arbitrary functionality of a solution by reusing or modifying the appropriate subgraph. Such 

functional modularization is difficult to achieve in text based procedural languages used in 

PSI. 

4.3 SUMMARIZED COMPARISON 

Solving the maze task in the proposed platform demonstrates the presence of features like 

modularity, expressivity, and ease of integration of heterogeneous AI components. Along 

with the aforementioned capabilities, the speech recognition task also demonstrated 

functional abstraction of components and availability of IoT devices as functions. Table 4.3 

presents a comparison chart among Jolie, Microsoft PSI, and the proposed platform based on 

some key features. Based on all the presented features the proposed platform excels as an 
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integrative AI platform compared to its prior arts. 

4.4 FEW CASE STUDIES ON DISASTER MANAGEMENT 

Multiple use cases related to disaster prevention and response can be addressed using 

integrative AI. However, in this section, two use cases are discussed at a high level under 

disaster prevention category and prototype solutions in the integrative AI platform are 

presented [108]. Section 4.4.1 showcases how a disaster can be averted due to potential 

failure of some mission-critical machinery by detecting early signs of failure. This 

methodology can be categorized as machine learning based predictive maintenance [69]. 

Section 4.4.2 discusses how early-stage forest fires can be detected using satellite images. 

Due to recent advancement of deep learning techniques, detecting fire through satellite image 

analysis is tractable with a high degree of accuracy [70].  

Table 4.3 Feature Comparison 

Category Feature Jolie Microsoft PSI Proposed Platform 

abstraction Integration 

middleware 

available for remote 

AI components? 

Not, readily 

available  

Available for few 

built-in services 

mainly using azure 

cognitive services.  

Yes, available for any 

Representational state 

transfer (REST) and 

gRPC based services. 

abstraction Can build arbitrary 

reusable composite 

components?  

Yes, by 

designing 

Jolie services 

Yes  Yes, using gp function 

abstraction Can connect to 

remote IoT devices 

as components? 

Not readily 

available. 

Not readily available. 

Components needs to 

be programmed 

Yes, available with few 

configurations 

ease of 

integration 

Syntactical 

knowledge of a 

language is needed? 

Yes Yes No, Application can be 

developed by graphically 

connecting functions 

expressivity Can implement 

arbitrary 

programming logic 

in integration layer? 

Not in Jolie 

workflow 

used for 

integration.  

Yes, but works for 

streaming data only 

Yes, as all required 

primitives are available 

modularity Integration of 

arbitrary remote 

microservices 

Yes Not readily 

available. 

Components need to 

be programmed 

Yes, available just by 

registering the endpoint 

modularity  Programming style Procedural Procedural Functional 

modularity can do lift and shift 

of arbitrary solution 

subpart to different 

problem context? 

No  No Yes, as explained in 

section 4 this is a 

consequence of using 

dataflow graph based 

functional programming 
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4.4.1 Machine failure disaster prevention 

Mission-critical machines are fundamentally important to carry out a specific operation. 

Failure of such machines can stop those operations in an unprecedented manner which may 

result in a disaster including casualty. Such machines are usually equipped with several 

sensors to monitor the health and performance of their several subparts. The sensors can be 

augmented with IoT devices to transmit the captured data into the integrative AI platform. 

The streaming data can be pre-processed to do feature engineering after applying a time 

windowing strategy. The processed data can be fed into an anomaly detector API which 

detects anomalies on the time series data and at the same time uses the data chunk to train 

and update the model. Finally, if some anomaly is detected a notification is sent out to the 

concerned personnel for manual intervention. All these components can be made available 

in the platform and the application can be built by constructing a program graph. Fig. 4.5 

represents a prototype program graph for machine failure detection. The graph starts with an 

initial node. It utilizes four microservices nodes. Namely, IoT Sensor – to capture the time 

series data, Data pre-processing API – for time windowing and feature engineering, Anomaly 

detector – for anomaly detection on real-time data, Send notification – send notifications to 

concerned personnel. It uses one primitive node called as conditional node (guard node). It 

receives a Boolean value at port number 1 and if it is true then the subgraph corresponding 

to port number 2 is called. 

4.4.2 Forest fire detection from satellite image 

Forest fires are geophysical hazards with a high damaging impact on surrounding lives. Once 

a forest fire spreads and gains intensity it becomes very difficult to control and, in most cases, 

 

Figure 4.5 Program graph for machine failure detection 
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it subsides after taking a high toll on surrounding vegetation and animal life. Thus, it is 

extremely important to identify localized regions of forest fires at a very early stage in order 

to contain the disaster. Forest fires can be detected at an early stage from high-resolution 

satellite images. This method is cheap and can be applied to monitor over a large area with 

minimal maintenance and human effort. The idea is to train a high accuracy model to detect 

fires from satellite images and pinpoint the pixel region where the fire has been detected. 

Thereafter the pixels in the image can be mapped to latitude and longitude to identify the 

original geographical location. Fig. 4.6 illustrates a program graph for forest fire detection. 

It uses four APIs to fetch the raw image, it’s metadata, identify forest fire and pinpoint 

geographical region of the fire. 

4.5 CONCLUSION 

The proposed integration platform is demonstrated to overcome several integration 

challenges in solving heterogeneous AI tasks. The programming model allows developers 

and architects to build and implement AI architectures with low engineering efforts using 

black-box AI modules and IoT devices as microservices. But at the same time, it also allows 

construction of white-box program graphs for implementation of arbitrary integration logic. 

The functional abstraction of the components offloads a developer from low-level 

implementation details. However, a higher level of abstraction comes with some limitations. 

There is a limitation on the available capability of tweaking low-level implementation since 

most of it is abstracted using predefined methods. The next goal is to convert it into a 

 

Figure 4.6 Program graph for forest fire detection 
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constructivist approach. Since the integration programs follow a functional style thus 

programs can be constructed by calculation and that opens the frontier of automatic 

programming. Machine learning models can be trained for automatic construction of 

integration programs to solve problem environments and that would largely reduce the 

manual effort of program construction. Another area of investigation would be automatic 

identification of reusable functions based on the usage pattern of the users to increase the 

level of abstraction.  
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5 DESIGN OF A UNIVERSAL SOLVER 

“Plurality should not be posited without necessity” – Occam’s Razor, (1495) 

Problem-solving is essentially a search operation. Solutions need to be searched through 

generate and test method. Potential solution paths can be generated by sequencing multiple 

operators and tested in a problem environment. Usually, there can be an infinite number of 

potential solutions if no prior knowledge exists about probable solution paths. The search 

can easily get lost in a combinatorial explosion. As Universal search allows one to create an 

asymptotically optimal search mechanism which can handle a wide range of problems, it is 

a good choice for building a problem-solver. However combinatorial explosion is still 

lurking behind though its dependency shifted from problem size to solution size. Carefully 

designing the search mechanism can rapidly dampen the search space. Also, domain 

knowledge, experiential knowledge, etc. plays a crucial role in dampening the search space. 

Learning is a mechanism to gain such knowledge while solving similar problems or 

contrasting problems and observing patterns across different problems. Knowledge creates 

initial biases during problem-solving and drives the solver towards known pathways to 

exploit the already learned solution. Thus, we focused on designing a search mechanism 

inspired by Universal search and developing several strategies for dampening the search 

space which aids in finding solutions for many problems in a realistic time. 

5.1 UNIVERSAL SEARCH 

Universal search, initially proposed by Levin [41] and further improved by Hutter [71] is an 

asymptotically optimal method to solve machine inversion problem or time limited 

optimization problem. A wide variety of computational problems can be either transferred to 

machine inversion problem or time limited optimization problem [72]. Given a specific 

machine model M the machine inversion problem is to find an input string p when given as 

an input to M will produce the desired output string y (𝑀(𝑝)  =  𝑦). Time limited 

optimization problem is to find an input string p within a fixed time such that the value of p 

computed on M is maximum. p can be a sequence of instructions of a programming language 

and M can be represented as the interpreter of the programming language. The universal 

search follows a generate and test method to search the solution program in the program 
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space. It generates and tests programs in the order of Levin’s complexity. The search process 

stops if the solution program is found for a machine inversion problem or time limit exceeds 

for time limited optimization problem. Levin’s complexity with respect to machine model M 

is calculated by the following equation where y is the solution string which is given as output 

when program p is run on the machine model M and time(p) is the runtime of program p. 

𝐾𝑡𝑀(𝑦) = min {𝑙(𝑝) + log(𝑡𝑖𝑚𝑒(𝑝)): 𝑙(𝑝) = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑝 𝑎𝑛𝑑 𝑀(𝑝) = 𝑦 }                  (5.1) 

If programs are represented as bit strings, then the probability that any random program p is 

a solution program can be stated as 𝑃 =  2−𝑙(𝑝), which approximates the algorithmic 

probability [14] of the string y. Thus, Levin’s complexity can be rewritten as  

𝐾𝑡𝑀(𝑦) = 𝑚𝑖𝑛 {log (
𝑡𝑖𝑚𝑒(𝑝)

𝑃
)}                                                                                                (5.2) 

The search process is carried out iteratively in phases starting from 1. Phase is incremented 

by 1 after every iteration. In each phase, it is expected that Levin’s complexity of the solution 

string is equal to that phase value. Thus, while testing a program it is expected that the same 

program is the solution program, and time is allocated to that program according to the 

equation 𝑡𝑖𝑚𝑒(𝑝) = 𝑃 𝑋 2𝑃ℎ𝑎𝑠𝑒 which is derived from equation (5.2). If the program fails to 

output the solution string within the allocated time, it tries the same strategy for other 

programs within the same phase. If no programs are left to test within a phase the phase value 

is incremented and the same process repeats. Clearly the search time for the solution program 

is bounded by 2𝐾𝑡𝑀(𝑦) = 𝑃−1𝑡𝑖𝑚𝑒(𝑝) which is proportional to the runtime of solution 

program p. However, there is a constant factor 𝑃−1 associated with it, which is independent 

of the problem size but is dependent on the solution size. This factor is generally huge and it 

needs to be dampened in order to make this search process practically feasible in real-world. 

Search space can be dampened by storing and updating the information gained about finding 

solutions in an environment through experience, in the form of conditional probability 

distributions or guiding probability distributions [73] among different instructions of the 

programming language. Successful trials will positively reinforce the probabilities of the 

solution programs whereas failures will negatively impact the probabilities of the concerned 

programs. Universal search when combined with reinforcement learning will need 
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probability updates based on rewards or punishments received. An efficient design of the 

search process and incremental learning process may dampen the constant factor enough to 

make it usable in practical environments. 

5.2 FGPM FOR UNIVERSAL SEARCH 

Universal search needs a specific programming model to generate and test solution programs. 

As stated in chapter 3, the proposed programming model FGPM is designed to serve this 

purpose. Each program in FGPM is assigned a program probability based on the conditional 

probabilities of the edges. A conditional probability is associated with each edge in a program 

graph. It signifies, given the history of graph between a node 𝑛 and the initial node, what is 

the probability of connecting the output of node 𝑛 with input port 𝑖 of a new node 𝑛′ such 

that continuity of the program from node 𝑛 solves a given task. The default probability of 

connecting input port 𝑖 of a new node 𝑛′ with the output port of node 𝑛 is calculated by the 

formula 1/∑ ∑ 𝑖𝑛′𝑖 ∈ 𝑖𝑛𝑝𝑢𝑡 𝑝𝑜𝑟𝑡𝑠 𝑜𝑓 𝑛′ 𝑛′∈ 𝑎𝑙𝑙𝑛𝑜𝑑𝑒𝑠 , where 𝑖𝑛′ = 1 if 𝑖𝑛′ is type compatible with 

output port of 𝑛 else 𝑖𝑛′ = 0 and 𝑎𝑙𝑙𝑛𝑜𝑑𝑒𝑠 represent the set of all distinct function nodes to 

be used in the search. A distinct type of edge is identified by its source node and the target 

input port of a specific type of function node. The default probability is assigned to all newly 

created edges. The total program probability can be calculated by multiplying all the distinct 

edge probabilities of a program. 

To implement phased search, another functionality is needed which would enable capturing 

the runtime of a program and abort when some time limit is exceeded. Each node gets 

allocated a time limit and before executing, it checks if the value of the time limit is equal to 

zero. If yes, then the program is aborted else the node function is executed and the value of 

the time limit is reduced by 1 for each atomic operation. This is applied for all nodes within 

a program graph including nodes within a composite higher-order function and dynamically 

generated nodes at runtime. 

5.2.1 Meaningful information gain in transfer learning 

Dataflow graphs are good at capturing independence among different functions based on 

data flow. This independence condition actually helps improve transfer learning. Meaningful 
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information can be stated as the minimum information that can be transferred from one task 

to another which evidently helps in reducing complexity of the later task. The information 

transfer or mutual information between two solution strings 𝑋 and 𝑌 can be written as 

follows, where 𝐾 denotes Kolmogorov complexity and 𝑋∗ denotes the program for 

generating 𝑋 [74]. 

  𝐼(𝑋: 𝑌) = 𝐾(𝑌) − 𝐾(𝑌/𝑋∗)                                                                                            (5.3) 

The program probability, algorithmic probability, and Kolmogorov complexity have equal 

status such that  −log (𝑃𝑈(𝑥)) ≈ 𝐾(𝑥) [75], where 𝑃𝑈(. ) denotes algorithmic probability 

and 𝑈 is some Turing complete language. Thus, we can replace Kolmogorov complexity 

with algorithmic probability in equation 5.3,  

 𝐼(𝑋: 𝑌) = log (
𝑃𝑈(𝑌|𝑋

∗)

𝑃𝑈(𝑌)
)                                                                                                    (5.4)  

Fig. 5.1 shows a sample program graph to demonstrate the effectiveness of storing 

conditional probability distribution of functions in dataflow graph. Let, 𝑝1 = 𝑗 ∘ ℎ, 𝑝2 = 𝑖 ∘

𝑔. Let the conditional probabilities be represented as 𝑃(. |. ), such that the probability of input 

port k of ℎ connecting with the output port of 𝑓 is given as 𝑃(ℎ𝑘|𝑓). The algorithmic 

probability of a string is approximated as the probability of the shortest program that 

generates the string, so that 𝑃𝑈(𝑥1, 𝑥2) = 𝑃(𝑓)𝑃(ℎ1|𝑓). The parallel paths in dataflow 

graphs are independent of each other in terms of the output data generated. The sequence 

𝑥1, 𝑥2, 𝑥4 and 𝑥1, 𝑥3, 𝑥5 are independent of each other in the sense that they are produced by 

 

Figure 5.1 A sample program with parallel data flow to demonstrate how storing conditional probabilities 

in graph helps in transfer learning. f, g, h, i, j has only one input port and k have two. 
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separate functions 𝑝1 ∘ 𝑓 and 𝑝2 ∘ 𝑓 independent from each other.  

Suppose the program graph 𝐺1 in Fig. 5.1 represents a solution for a specific task 𝑇1where 

𝑝1 ∘ 𝑓 and 𝑝2 ∘ 𝑓 solves two subproblems 𝑠1, 𝑠2 independent of each other. The program 

𝐺1 produces a partially ordered set of solution string (𝑆, 𝑅) = ({𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6},

{(𝑥1, 𝑥2), (𝑥1, 𝑥3), (𝑥2, 𝑥4),(𝑥3, 𝑥5), (𝑥4, 𝑥6), (𝑥5, 𝑥6)}). The partial order is due to 

independence of sub tasks 𝑠1, 𝑠2. Another related task can benefit from transfer learning from 

task 𝑇1 if it’s set of solution string contains a subset of (𝑆, 𝑅). Let us assume another program 

graph 𝐺2 solves another related task 𝑇2 with subproblem 𝑠2 in it. This results in inclusion of 

the set (𝑆2, 𝑅2) = ({𝑥1, 𝑥3, 𝑥5}, {(𝑥1, 𝑥3), (𝑥3, 𝑥5)}) in its solution string, which is a subset of 

(𝑆, 𝑅). Thus, the solution program will be 𝑝3 ∘ 𝑝2 ∘ 𝑓, where it is assumed when a function 

𝑝3 is composed with the subprogram 𝑝2 ∘ 𝑓 produces the solution for 𝑇2 (composition can 

be done just by connecting the output of node i to input port of 𝑝3). Let us consider 𝑋 and 𝑌 

be the partially ordered set of solution strings of tasks 𝑇1 and 𝑇2 respectively. 𝑃(𝑌|𝑋∗) =

𝑃(𝑝3
1|𝐺1) = 𝑃(𝑝3

1|𝑝2 ∘ 𝑓) as 𝑝3
1 is conditionally independent of any other functions in 𝐺1. 

Information transfer from task 𝑇1to 𝑇2 is given as follows. 

 𝐼1(𝑋: 𝑌) = log (
𝑃(𝑝3

1|𝑝2∘𝑓)

𝑃(𝑓)x𝑃(𝑝2
1|𝑓)x𝑃(𝑝3

1|𝑝2∘𝑓)
) = log (

1

𝑃(𝑓)x𝑃(𝑝2
1|𝑓)
)                                                        (5.5) 

Now considering some type of strictly sequential programming language. The conditional 

probability distribution of instructions represents the probability of a symbol following a 

sequence of symbols and naturally, it fails to capture the independencies among different 

parts of a program. Writing shortest program corresponding to the program graph 𝐺1in such 

a scheme will result in writing the descriptions of the functions from the set {𝑓, 𝑝1, 𝑝2, 𝑘} in 

some specific order without repetitions, along with some more symbols. Due to relative 

independence between 𝑝1and 𝑝2 the data produced by them will not affect each other. 

However, due to sequential ordering of symbols, a dependency between 𝑝1and 𝑝2 is captured 

in the conditional probability distribution. Let us assume the functions in the solution 

program for task 𝑇1 is written in the following order (𝑓, 𝑝1, 𝑝2, 𝑘) and ignoring other symbols. 

The conditional probability distribution table will contain a set of discrete probabilities 

{𝑃(𝑓), 𝑃(𝑝1|𝑓), 𝑃(𝑝2|𝑓, 𝑝1), 𝑃(𝑘|𝑓, 𝑝1, 𝑝2)} for the current program. Considering transfer 

learning from 𝑇1, the solution program for task 𝑇2 will contain the functions as per the 
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ordered set (𝑓, 𝑝1, 𝑝2, 𝑝4, 𝑝3) where the functions {𝑓, 𝑝1, 𝑝2} produces the ordered set of 

solution string {𝑥1, 𝑥3, 𝑥5} for 𝑠2 along with some other strings in the set. The function 𝑝4 

extracts the string set {𝑥1, 𝑥3, 𝑥5} from the complete ordered set of strings. Thereafter 𝑝3 is 

applied on the last string in the set (𝑥5) to output the final solution string. Thus, in this case, 

information transfer is  

𝐼2(𝑋: 𝑌) = log (
𝑃(𝑝3|𝑓,𝑝1,𝑝2,𝑝4) x 𝑃(𝑝4|𝑓,𝑝1,𝑝2)

𝑃(𝑓)𝑃(𝑝1|𝑓)𝑃(𝑝2|𝑓,𝑝1)𝑃(𝑝3|𝑓,𝑝1,𝑝2,𝑝4)𝑃(𝑝4|𝑓,𝑝1,𝑝2)
) =

log (
1

𝑃(𝑓)x 𝑃(𝑝1|𝑓) x 𝑃(𝑝2|𝑓,𝑝1) 
)                                                                                             (5.6)                                         

Considering no initial bias, clearly 𝐼2(𝑋: 𝑌) > 𝐼1(𝑋: 𝑌) which states that information transfer 

in the later is higher than the first. Also, the program probability of the solution program for 

𝑇2 in the sequential language should be comparatively lower than that is for the dataflow 

graph-based programming model (due to the presence of extra functions 𝑝1and 𝑝4). Thus, 

task 𝑇2 can be solved with a program of higher probability using lower information transfer 

than 𝐼2 after solving the same training task 𝑇1. It signifies that though information transfer is 

higher in the sequential language yet meaningful information transfer to solve 𝑇2 is same as 

that of 𝐼1. On top of that extra computation needs to be done to extract meaningful 

information from the total information transfer. This process of gaining extra information 

and then extracting meaningful information from it increases the complexity of the solution 

program thus making the transfer learning process inefficient in the sequential language. 

5.3 METASEARCHER 

The metasearcher of the agent is responsible for implementing universal search and searches 

for solution in the program space for a given problem environment [76]. It starts with 

initializing a phase variable, a phase limit, a list of available primitive functions to be used 

for program generation, and a graph object called as search graph (sg) containing initial node. 

Programs are generated by adding and connecting all possible primitives with all possible 

combinations of successfully executed nodes present in the search graph, after satisfying type 

compatibility. Nodes that create syntactically redundant programs are eventually deleted. All 

programs are generated within the same search graph where subgraphs between each 

terminal node and initial node represent a unique program. The search proceeds in phases 
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and in each phase, a fraction of phase value is allotted as the runtime for a program which is 

proportional to its program probability. Fig. 5.2 illustrates a sample search graph generated 

by the metasearcher where each node represents a function in the proposed programming 

model. For each node in the search graph, a unique program can be extracted by recursively 

fetching all parent nodes starting from the given node until the initial node is reached. During 

execution, program graphs corresponding to each terminal node are executed. 

Algorithm 5.1 Metasearcher algorithm 

Procedure evaluate (sg, Fk) 

    tk = Phase * Pk / C; Rk = 0 

    execute Fk for tk time or until it halts 

    set status = execution status of Fk 

    if status is succeeded 

        set Rk= reward gained by Fk 

    if goal reached 

        return Fk, Rk, status 

    else: 

        return null, Rk, status 

Procedure extend_execute (sg, Phase, Tl, TR) 

    for all new valid programs Fk generated by adding single function node k in sg such that 

Phase * Pk > 1 and TR < Tl 

        L, Rk, status = evaluate(sg, Fk) 

        set status in the node k in sg 

         TR= TR + Runtime of Fk 

        if Fk ≡ Fj | ∀ Fj ∈ sg 

            Halt continuation of Fk 

        if status is succeeded 

            Apply incremental learning on Fk using Rk 

        if status is incomplete 

            delete node k 

        if L != null 

            return L 

    return null 

Procedure metasearcher (sg) 

    run_Phase = 2; Phase = 2 

    while run_Phase < Phase_limit 

        Tl = run_Phase/C; TR= 0 

        while TR < Tl 

            L= extend_execute (sg, Phase, Tl, TR) 

            if L != null 

                return L, sg 

            Phase = Phase * 2 

        run_Phase = run_Phase * 2 

    return null, sg 
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5.4 PROGRAM PRUNING 

While generating all possible combinations of program graph the metasearcher creates a 

bunch of equivalent programs in terms of output produced for all inputs and some program 

produces undefined output (like non-terminating programs). As we are using functional 

program paradigm in FGPM so we can algebraically reason about programs for all inputs 

(due to the absence of side effects). Transforming programs to algebraic equations followed 

by simplification by applying different axioms (stated in Chapter 3 as semantic rules of 

different functions) helps us find equivalent programs just by comparing the algebraic 

expression. Programs that produce undefined output can also be recognized by simplifying 

the algebraic expressions. However, it is not possible to reason and find all equivalent and 

invalid programs due to halting problem and unknown environments. But a large number of 

the programs can be deterministically reasoned about, by this method. Paul & Bhaumik [77] 

proposed a method of pruning equivalent programs in universal search. However, their 

method would efficiently work in case of a single task. The strategy would not work in an 

agent with memory for solving incrementally a set of tasks in different but related 

environments. However, in this case, the semantic reasoning of functional programs 

 

Figure 5.2 A sample search graph generated by the metasearcher. Nodes 1-4 denote terminal nodes and each 

terminal node denote a separate program. For each node in the search graph a unique program can be extracted 

by recursively fetching all parent nodes starting from a given node until the initial node 
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guarantees the equivalence of equivalent programs across all environments. 

To implement the reasoning and pruning of programs, the nodes of FGPM are enhanced with 

another storage type to store the algebraic expressions of the programs which we will be 

calling as program expressions. For all functions, program expressions contain the results 

after applying evaluate function as per the semantic relations. Since all functions return a 

monadic type so the program expression stores a pair of data and world expression. It does 

not store a copy of the actual world object but a symbol for it. For monadic functions, both 

the data section and world section in the program expression are updated as per the semantic 

equation of evaluating the function by adding required symbols in the expression. For pure 

functions, only the expression of the data section is updated. Simplification, which 

essentially means reducing the number of distinct symbols in the expression in this context, 

is carried out on the program expression by applying various equivalence rules stated in 

chapter 3. Every node contains a program expression of the program of which the concerned 

node is the terminal node.  Let us consider the following example. 

A sample FGPM program can be written as 𝑎𝑑𝑑4 ∘ (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 1
2 𝑋 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦3) ∘ 𝑠𝑒𝑛𝑠𝑜𝑟𝐴

1 ∘

𝑖𝑛𝑖𝑡𝑊𝑜𝑟𝑙𝑑0, where the superscript represents the node labels and subscript represents either 

a value or a type. Here type 𝐴 is a numeric type. The program expression of all the nodes is 

written as follows, where 𝑛𝑜𝑑𝑒𝑛 represents node with label n. 

𝑛𝑜𝑑𝑒0 → (𝑤𝑜𝑟𝑙𝑑); 

𝑛𝑜𝑑𝑒1 → (𝑟𝑒𝑎𝑑(𝑤𝑜𝑟𝑙𝑑));  

𝑛𝑜𝑑𝑒2 → (1, 𝑟𝑒𝑎𝑑(𝑤𝑜𝑟𝑙𝑑)[𝑤𝑜𝑟𝑙𝑑]); 

𝑛𝑜𝑑𝑒3 → (𝑟𝑒𝑎𝑑(𝑤𝑜𝑟𝑙𝑑)); 

𝑛𝑜𝑑𝑒4 → (𝑝𝑙𝑢𝑠(1, 𝑟𝑒𝑎𝑑(𝑤𝑜𝑟𝑙𝑑)[𝑑𝑎𝑡𝑎]), 𝑟𝑒𝑎𝑑(𝑤𝑜𝑟𝑙𝑑)[𝑤𝑜𝑟𝑙𝑑]);  

If two such terminal node expressions are equal then two programs are functionally 

equivalent. If the data section (the remaining program expression after removing the 

expression for world object) of a program expression is 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 then such a program is 
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invalid. 

The metasearcher, while generating new programs by adding new child nodes, checks the 

current program expression against the program expressions of all generated valid programs. 

If it finds a match, it prunes the newly generated program by marking the terminal node 

invalid. For example, 𝑛𝑜𝑑𝑒1 and 𝑛𝑜𝑑𝑒3 are functionally equivalent. Thus 𝑛𝑜𝑑𝑒3 will be 

pruned and the above stated program will not be generated in the search graph, rather 

𝑛𝑜𝑑𝑒4 will directly connect with 𝑛𝑜𝑑𝑒1 instead of going through 𝑛𝑜𝑑𝑒3 to generate the same 

functionally equivalent program. It also checks for 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 symbol in the current 

program expression. If it finds one, it marks the terminal node invalid. No child node gets 

connected to an invalid terminal node. 

5.5 INCREMENTAL LEARNING 

Incremental learning is the process of gaining mutual information by solving a related 

sequence of tasks which would help solve later related tasks by reducing the search space. 

The metasearcher operates in a reinforcement learning setting where it is assumed the 

environment will generate some reward or punishment after a valid program interacts with 

it. Incremental learning in universal search is implemented by updating the conditional 

probability distribution of edges in the search graph based on the rewards received. The agent 

will be exposed to a series of problems. Incremental learning is achieved by updating the 

conditional probability distribution based on gradient ascent mechanism thereby maximizing 

future expected rewards. We will adopt the following notations while deriving the probability 

update expression. Let 𝑓𝑖 denote the ith node in the program search graph and 𝐹𝑖 denote the 

program graph ending with terminal node 𝑓𝑖. Let 𝑓𝑘 be the kth node of search graph which is 

an intermediate node in the program graph 𝐹𝑖. 𝑝(𝑓𝑙
𝑗
|𝐹𝑘) denotes the probability of connecting 

input port j of node 𝑓𝑙 with output port of 𝑓𝑘 or in other words probability of composing 

function 𝑓𝑙
𝑗
 after 𝐹𝑘 which might solve the task or generate a positive reward. Thus, the total 

probability of a program 𝐹𝑖 can be written as follows, where inp (𝑓𝑙) denotes set of all input 

port numbers of 𝑓𝑙, 

 𝑃(𝐹𝑖) = ∏ 𝑝(𝑓𝑙
𝑗
|𝐹𝑘)∀𝑓𝑙 ∈ 𝐹𝑖  ⋀∀𝑗 ∈ inp(𝑓𝑙) ⋀∀ 𝑓𝑘 ∈ 𝐹𝑖

                                                                 (5.7) 
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There is always a single type of initial node (initWorld) in the search graph. Thus, the prior 

probability of the initial node is 1 and this term is ignored in equation 5.7. Let 𝑅𝑖 be the 

reward received after executing program 𝐹𝑖. Given the agent has already tested a subprogram 

𝐹𝑘 of 𝐹𝑖 the probability of receiving reward 𝑅𝑖 in future can be given as, 

𝑃(𝑅𝑖|𝐹𝑘) =
𝑃(𝐹𝑖)

𝑃(𝐹𝑘)
                                                                                                                         (5.8) 

The total expected future reward of some horizon i’ in the search graph can be stated as, 

 𝐽(𝑝) = ∑ ∑ 𝑃(𝑅𝑖|𝐹𝑘)𝑅𝑖∀ 𝑖>𝑘 ⋀∀ 𝑖<𝑖′∀ 𝐹𝑘                                                                               (5.9) 

The goal is to maximize the objective function with respect to the factored conditional 

probability distribution (𝑝). The optimal probability distribution can be written as, 

𝑝∗ = argmax
𝑝
𝐽(𝑝)                                                                                                                   (5.10) 

We will be following stochastic gradient ascent method such that probability parameters are 

updated after each execution of a program. Thus, combining equation 5.7, 5.8, 5.9 and 5.10 

the update rule for each probability parameter after execution of the program 𝐹𝑖 can be 

written as, 

𝑝(𝑓𝑙
𝑗
|𝐹𝑘) = 𝑝(𝑓𝑙

𝑗
|𝐹𝑘) + 𝛼𝑝(𝑓𝑙

𝑗
|𝐹𝑘)

(1+𝑠𝑔𝑛(−𝑅𝑖))

2 (1 − 𝑝(𝑓𝑙
𝑗
|𝐹𝑘))

(1+𝑠𝑔𝑛(𝑅𝑖))

2 𝜕𝑃(𝑅𝑖|𝐹𝑘)𝑅𝑖

𝜕𝑝(𝑓𝑙
𝑗
|𝐹𝑘)

≈

𝑝(𝑓𝑙
𝑗
|𝐹𝑘) + 𝛼𝑝(𝑓𝑙

𝑗
|𝐹𝑘)

(1+𝑠𝑔𝑛(−𝑅𝑖))

2 (1 − 𝑝(𝑓𝑙
𝑗
|𝐹𝑘))

(1+𝑠𝑔𝑛(𝑅𝑖))

2
𝑅𝑖

𝑃(𝐹𝑖)

𝑃(𝐹𝑘) x 𝑝(𝑓𝑙
𝑗
|𝐹𝑘)

                 (5.11)         

where 𝛼 is a constant called as learning rate and the factor 𝑝(𝑓𝑙
𝑗
|𝐹𝑘)

(1+𝑠𝑔𝑛(−𝑅𝑖))

2 (1 −

𝑝(𝑓𝑙
𝑗
|𝐹𝑘))

(1+𝑠𝑔𝑛(𝑅𝑖))

2
 ensures to keep the probability value within 1. To keep things simple, 

we approximated the probability update expression by considering the factored probability 

values within a program graph are independent of each other. Updating the probability values 

just by the specified strategy will not ensure to keep the total probability mass of the program 

search graph within 1. In order to keep the total probability mass consistent, the delta 
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increment of a probability value of an outgoing edge from node 𝑓𝑘 needs to be balanced by 

reducing the same amount of probability mass from rest of the outgoing edges of node 𝑓𝑘. 

Thus, along with the above update rule the following update rule also needs to be followed 

where 𝑓
𝑙′
𝑗
 denotes an input port 𝑗 of function 𝑓𝑙′ compatible to be connected with the output 

port of 𝑓𝑘. Probability mass is extracted from rest of the edges in the proportion of edge 

probability, which means edges with highest value of conditional probability will lose the 

major share of the probability mass. This update rule needs to be applied for all outgoing 

edges of 𝑓𝑘 such that  𝑓
𝑙′
𝑗
≠ 𝑓𝑙

𝑗
. 

𝑝(𝑓
𝑙′
𝑗
|𝐹𝑘) = 𝑝(𝑓

𝑙′
𝑗
|𝐹𝑘)

−
(1 − 𝑝(𝑓

𝑙′
𝑗
|𝐹𝑘))

(1+𝑠𝑔𝑛(−𝑅𝑖))
2

𝑝(𝑓
𝑙′
𝑗
|𝐹𝑘)

(1+𝑠𝑔𝑛(𝑅𝑖))
2

∑ (1 − 𝑝(𝑓
𝑙′
𝑗
|𝐹𝑘))∀𝑓

𝑙′
𝑗
 ⋀ 𝑓

𝑙′
𝑗
≠𝑓𝑙

𝑗

(1+𝑠𝑔𝑛(−𝑅𝑖))
2

(1 − 𝑝(𝑓𝑙
𝑗
|𝐹𝑘))

(1+𝑠𝑔𝑛(𝑅𝑖))
2

        

                       𝛼𝑝(𝑓𝑙
𝑗
|𝐹𝑘)

(1+𝑠𝑔𝑛(−𝑅𝑖))

2 (1 − 𝑝(𝑓𝑙
𝑗
|𝐹𝑘))

(1+𝑠𝑔𝑛(𝑅𝑖))

2 𝜕𝑃(𝑅𝑖|𝐹𝑘)𝑅𝑖

𝜕𝑝(𝑓𝑙
𝑗
|𝐹𝑘)

                          (5.12) 

In the search graph, there can be multiple instances of node types 𝑓𝑙 and 𝑓𝑙′ having input 

ports 𝑗 and 𝑗′ connected to 𝑘. Each of them might be part of separate programs. However, to 

maintain consistency the update rules 5.11 and 5.12 apply to all such instances 

simultaneously even if it is due to the execution of a single program. 

As the agent uses universal search to find a solution, exploration is achieved through 

generating and testing multiple programs where each program is allocated a fixed time to run 

in each phase. Even when a solution program is found for a specific task the agent will 

continue to explore for other solution paths as per the universal search algorithm. 

Exploitation is achieved by increasing the program probability of solution programs through 

incremental learning, thereby allocating more time to those programs and extension of those 

programs for subsequent tasks. 
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5.6 HEURISTIC PLAYOUT 

Heuristic playout is a heuristic method proposed to run the agent in a time limited 

optimization setting with a trained search graph. Time limited optimization in this context 

means gaining maximum reward while running the metasearcher for a limited amount of 

time. The training is carried out by running the metasearcher in a training environment and 

thereby applying incremental learning to update the probability distribution. The following 

heuristic algorithm runs the agent in a test environment with the aim to collect maximum 

reward in a fixed amount of time. A section of the search graph (sg) is selected, containing 

all programs (Pk) which generated positive reward (Rk). Thereafter unbounded knapsack 

problem is solved repeatedly to select and execute the best program. The capacity of 

knapsack is set as remaining time (T), cost is average runtime (tk) of each program and value 

is average reward gained by each program. Following is the algorithm for test playout. 

 

5.7 MERGING GENETIC PROGRAMMING WITH UNIVERSAL SEARCH 

Genetic programming (GP) is a heuristic search technique which searches over program 

Algorithm 5.2 Heuristic Playout algorithm 

procedure  run_knapsack (sg
sub

) 

    Initialize knapsack of all Pk∈sg
sub

 

        Capacity = T; valuek = average Rk; costk= tk  

    Plan = solve unbounded knapsack 

    return Plan 

procedure  playout (sg, T) 

    sg
sub

 = subgraph of sg| Rk > 0, ∀ Pk ∈ sg
sub

  

    Plan = run_knapsack (sg
sub

) 

    RT=0 

    while T > 0 

        Run best program  PK from Plan 

        RT = RT + RK  

        update average RK and average tK of PK 

        T = T - tK 

        Plan = run_knapsack (sg
sub

)     

        if Plan is empty 

            return RT    

    return RT    
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space starting from an initial population of programs. The next generation of programs is 

evolved by crossover and mutation operations on the existing population followed by a 

selection operation based on some fitness criteria. In general, getting a good initial population 

of programs for a specific problem environment and finding the fitness function is quite 

challenging. On top of that choosing functions and terminals satisfying closure and 

sufficiency property [78] is another challenge. All these challenges except the need for 

sufficiency property, cease to exist when we combine GP with the universal search based RL 

agent.  

Universal search starts with the initial node in a search graph and incrementally adds 

subsequent function nodes. It is not required to strictly initialize a population of programs. 

Choosing a set of functions satisfying the sufficiency property is necessary to find solutions 

in a problem environment. Satisfying closure property is optional, as exceptions and errors 

are gracefully handled in universal search. In RL agent, the utility of a program is measured 

directly with respect to the total reward gained. Thus, formalizing a complex fitness function 

can be avoided. Recursions and loops can be gracefully used as functions without stumbling 

due to halting problem, as Levin’s search interrupts each program execution after a finite 

time, allocated proportional to program probability. 

5.7.1 Crossover and mutation 

In GP, programs are evolved by transforming them using three genetic operators, namely, 

mutation, crossover, and reproduction. The crossover operator arbitrarily combines sections 

of two parent programs and derives the child program. The mutation operator makes small 

arbitrary modifications in a single parent program to derive the child program. When GP is 

combined with universal search, crossover and mutation operators come for free. We define 

the crossover operation as connecting a multi-argument function node with output ports of 

arbitrary nodes of parent programs to create a new program. Fig. 5.3a shows a crossover 

operation in a program graph which involves merging of arbitrary sections of two parent 

programs using a multi-argument function node F. Merging of n unique non-overlapping 

programs with n argument function can be considered as applying the crossover operation n-

1 times. 

In this context mutation is defined as adding any single argument or multi-argument function 
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nodes anywhere within a single parent program, resulting in a new program. Fig. 5.3b and 

5.3c shows mutation operation on a single program graph, once with a single argument 

function node G another with double argument function node F. 

5.7.2 Selection 

GP evaluates a generation of programs based on a fitness function. Fitness measures the 

utility of a program in the context of the problem being solved. Based on the fitness a 

population of programs is selected as the next generation. Others are discarded. The RL agent 

uses the following fitness function where f
k
 is the fitness of the program with terminal node 

k, k
'
 denotes all parent nodes of k, γ is a decay constant such that 0 < γ < 1 and Rk is the 

reward gained after running program with terminal node k.  

fk = γmax
i ϵ k'

fi  + Rk                                                                                                              (5.13)   

The fitness function of a node recursively adds the max of fitness of its parents after decaying 

with a constant factor and in doing so younger nodes are given more importance in 

calculating overall fitness. The fitness function selects the historically best path within a 

program graph in terms of reward gained and calculates the fitness based on the rewards 

generated in that path. 

 

Figure 5.3 a) Crossover operation in a program graph. Nodes iW, A, C and E constitute one parent program 

and nodes iW, B and D constitute another. Node F is a multi-argument function node which combined parts 

of parent programs to generate a new program. b, c) Mutation operation in program graph. Nodes iW, A and 

C constitute a parent program. F is a multi-argument function node and G is a single-argument function node. 
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GP is essentially a beam search through search graph. The search is focused on a section of 

search graph of approximately same size. During selection, the fittest programs are chosen 

and added to the next generation until total number of nodes added in the population exceeds 

a population size. Population size is another hyperparameter. Multiple programs chosen for 

the next generation might have common subgraphs. Nodes in common subgraphs are counted 

once. All chosen programs will have at least the initial node as a common node. Thus, GP is 

like applying selection to choose a section of search graph and continue universal search with 

that section by applying crossover and mutation operation using available function nodes. 

Gradient based learning is like fine tuning the bias in the search space whereas selection in 

GP is like crude adjustment of search space based on fitness.  

5.7.3 Avoiding local optima 

GP may suffer from premature convergence or can get stuck in local optima for a long time. 

The problem amplifies in a delayed reward RL environment where an agent has to take 

multiple different actions in order to get a reward. To alleviate this problem, a hybrid GP 

search is carried out in parallel with regular universal search. In each phase, the total phase 

time is equally divided to GP search and regular universal search in the hope that the regular 

universal search will pull out the agent from local peak if GP is stuck.     

5.7.4 Metasearcher with GP 

The following algorithm implements GP within universal search. The crossover and mutation 

operations are carried out by the natural program generation method of universal search. The 

procedure extend_execute_gp implements the selection operation of GP, which is based on 

fitness f
k
 and program probability Pk. Population size SGP is a hyperparameter. The 

metasearcher has been modified to allocate half of the time to GP and half to regular universal 

search in each phase. 

Algorithm 5.3 Metasearcher with GP 

Procedure extend_execute_gp (sg, PhaseGP, Tl, TGP) 

    Initialize empty search graph sg
GP

 

    NGP = sort terminal nodes of sg by fitness fk, Pk in descending order 

    for node k in NGP 

        select program subgraph Fk from sg 
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        merge Fk in sg
GP

 

        if #nodes in sg
GP
 ≥ SGP 

            break 

    L= extend_execute (sg
GP

, PhaseGP, Tl, TGP) 

    return L 

Procedure metasearcher (sg) 

    run_Phase = 2; Phase = 2; PhaseGP=2 

    while run_Phase < Phase_limit 

        Tl = run_Phase/C; TR = 0; TGP = 0 

        while TR+TGP<Tl 

            L= extend_execute_gp (sg, Phase, Tl/2, TGP) 

            if L != null 

                return L, sg 

            PhaseGP = PhaseGP * 2 

            L= extend_execute (sg, Phase, Tl/2, TR) 

            if L != null 

                return L, sg 

            Phase = Phase * 2 

        run_Phase = run_Phase * 2 

    return null, sg 

5.8 EXPERIMENTAL RESULTS 

The interpreter of the programming model and the metasearcher is built in python 3. We 

conducted two classes of experiments. One class is to prove the above theoretical claims on 

how the agent can handle the problem of program overrepresentation, dampen the 

 

Figure 5.4 A sample 20x20 maze. A cell containing 1 denotes a blocked cell and the cells containing 0 

denotes open 
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combinatorial explosion through effective incremental learning and find a solution in a large 

partially observable environment with delayed reward setting. The later set of experiments 

are done to compare our agent against current state-of-the-art methods on some benchmark 

POMDP problems. These experiments show exceptional performance statistics against 

current state-of-the-art methods.  

For the first set of experiments, the agent is given a large partially observable maze to solve. 

As shown in Fig. 5.4, for experimenting with our solver agent, we used the same maze as 

described by Paul et. al. [77]. The maze is of dimension 20x20 with 274 open cells where 1 

denotes a closed cell and 0 an open one. The objective can be stated as follows. Given an 

agent placed in a specific cell facing a specific direction (initial state), find a path to the goal 

state which is specified by the coordinates of the final cell and the final face direction. Any 

action in the maze can be taken through the actuator node which includes moving and 

changing direction. At no point, the agent can read the exact coordinates of its location in the 

grid. It can only check if the next cell is open or blocked and if the goal is reached or not. 

This creates a partially observable environment. 

Within the environment, the combination of coordinates of the agent and the direction of the 

agent is represented as agent’s state. Direction is represented by a vector of size 2. [1, 0] 

represents south, [0, 1] - east, [-1, 0] - north and [0, -1] - west. The counting of rows and 

column starts from 0. Thus, an agent state can be represented as [x, y, [a, b]], where (0,0) ≤

(𝑥, 𝑦) ≤ (21,21) and 𝑎, 𝑏 ∈ {0,1, −1}.  

The first experiment demonstrates the effectiveness of the equivalent program pruning on 

universal search without incremental learning. The agent is given an initial state [1, 1, [1, 0]] 

and goal state [20, 20, [1, 0]] in the environment. Metasearcher is run up to phase 65536, 

once with equivalent program pruning and once without it. The runtime of the metasearcher 

is measured as total number of atomic operations done in executing functions. Fig. 5.5a 

shows the plot of the runtime of metasearcher with and without program pruning and 

demonstrates how program pruning helps in dampening the growth rate of runtime. Constant 

C is chosen as 0.1.  
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Experiment 2 is on demonstrating the effectiveness of incremental learning in universal 

search. The agent is given an initial state [1, 1, [1, 0]] and 4 subsequent tasks of finding the 

path to goal states [2, 1, [1, 0]], [2, 1, [0, 1]], [2, 2, [0, 1]] and [2, 2, [1, 0]] respectively. On 

solving each task, the agent is given a reward of 1. In all other cases, it receives no reward. 

After execution of each program, the probability is updated according to the incremental 

learning strategy. Learning rate 𝛼 is chosen as 0.5. Fig. 5.5b shows the plot of inverse of 

program probability of solutions found for different tasks.  

 

Figure 5.5 a) Plot for comparison of runtime of metasearcher with and without equivalent program pruning. 

b) Plot for comparison of inverse of program probability of solutions found by metasearcher with and 

without incremental learning. 
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In experiment 3 the initial state is set to [1, 1, [1, 0]]. The agent is trained multiple times with 

various goal states. Thereafter two related sets of tasks are given, and agent is required to 

find a single solution for them. Table 5.1 shows the training sequence and the program 

probability of the solutions found. The iteration column refers to the number of times the 

metasearcher was run with the same initial and goal state. The initial probability refers to 

program probability of the solution at the start of the first iteration in a task and the final 

probability refers to the program probability of the solution at the end of the final iteration in 

a task. Table 5.2 shows the task set for testing the agent. Two subsequent goal states are 

given and the agent is required to find a solution for the first goal state and then a solution 

for both the goal states. The unbiased program probability refers to the program probability 

of the solution in absence of any incremental learning. Clearly, the training sequence helped 

in increasing the initial and final probability of the solutions for the test tasks. The constant 

C is set to 0.05. 

In the second set of experiments, we compared our Universal search based agent (US-agent) 

against Deep-Recurrent-Q-network (DRQN) [79], Monte-Carlo algorithm for online 

planning in large POMDPs (POMCP) [80], and Monte-Carlo AIXI (MC-AIXI) [81]. Each 

of the three prior arts represents three distinct approaches to attack the problem of solving 

POMDP environments and obtained some of the best results. Table 5.3. shows the 

comparison results against each method in different POMDP environments. Both the vanilla 

metasearcher and the GP based metasearcher [82] have been experimented and compared 

with the prior arts. The training and test time denotes the total number of actions taken by 

the agent in the environment during training and test phase respectively. Since each of the 

Table 5.2 Test sequence for the metasearcher. 

Test# 
Initial 

state 

 Goal state Initial program 

probability 

Final program 

probability 

unbiased program 

probability 

1 [1,1,[1,0]]  [10,10,[1,0]] 5.83E-05 6.13E-05 1.1429891305E-08 

2 [1,1,[1,0]]  [20,20,[1,0]] 6.13E-05 6.43E-05 1.1429891305E-08 

 

Table 5.1 Training sequence for the metasearcher  

Training#  Initial state Goal state Initial program probability Final program probability Iterations 

1  [1,1,[1,0]] [2,1,[1,0]] 0.0666666 0.2222222 1 

2  [1,1,[1,0]] [10,1,[1,0]] 0.00051440 0.0010362 9 

3  [1,1,[1,0]] [2,2,[0,1]] 0.00023386 0.0008527 1 

4  [1,1,[1,0]] [2,2,[1,0]] 2.84E-05 0.0166102 7 
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methods majorly differ in their approach thus, to have a fair comparison the above-mentioned 

metric is chosen. DRQN and US-agent have distinct training phases where the agent is being 

trained for a specific time to generate the trained neural net and search graph respectively. 

Thereafter the agent is tested in the same environment for 200 actions. For US-agent, 

heuristic playout is being used. For POMCP, the simulation phase is considered as training, 

and the action taken in the original environment is considered as testing. For MC-AIXI 

initially, the agent is given a specific training time which includes actual action taken on the 

Table 5.3 Comparison of US-agent with current state of art methods 

Method Environment  Training 

time 

Test 

reward 

Performa

nce score 

Hyperparameters 

DRQN Gridworld 840000 2.01 23.92857 

out_size=5; time_step=8; max_steps=70; 

memory_size=2000; 

total_episodes=10000; 

POMCP 

 

Gridworld 
1822496 1.299 7.127587 

horizon=20; C=10; max_particles=700; 

reinvigorated_particles_ratio=0.05; 

simulation_time=5 sec 

MC-AIXI 

 

 

Gridworld 
547700 1.04 18.98849 

exploration=0.999; explore-decay=.9999; 

agent-horizon=8; ct-depth=96; mc-

simulations=200; learning-period=5000; 

terminate-age=5200 

Vanilla 

US-Agent 

 

Gridworld 7925 4.85 6119.873 

 

C=0.005, alpha=0.6 

GP US-

Agent 

 

Gridworld 1484 4.82  

 

C=0.005, alpha=0.6 

DRQN Tic-tac-toe 25176 44.05 17496.82 
out_size=9; time_step=3; max_steps=5; 

memory_size=1000; total_episodes=5000; 

POMCP Tic-tac-toe 603680 43 712.2979 

horizon=2; C =10; max_particles=700; 

reinvigorated_particles_ratio=0.05; 

simulation_time=0.1 sec 

MC-AIXI Tic-tac-toe 454800  -3.8 -83.5532 

exploration=0.9999; explore-

decay=0.999999; agent-horizon=9; ct-

depth=32; mc-simulations=200; learning-

period=10000; terminate-age=10200 

Vanilla 

US-agent Tic-tac-toe 3589 37.65 104903.8 

 

C=0.01; alpha=0.6 

GP US-

Agent 

 

Tic-tac-toe 1726 42  

 

C=0.005, alpha=0.6 

POMCP Tiger 431292 41 950.6320 

horizon=2; C =10; max_particles=700; 

reinvigorated_particles_ratio=0.05; 

simulation_time=0.1 sec 

MC-AIXI Tiger 1286200 0 0 

exploration=0.99; explore-decay=.9999; 

agent-horizon=5; ct-depth=30; mc-

simulations=200; learning-period=5000; 

terminate-age=5200 

Vanilla 

US-agent Tiger 13176 67 50850.03 

 

C=0.01, alpha=0.6 
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environment and action search in the context tree. Thereafter the agent is tested in the 

environment for 200 actions. The following section provides a brief description of each 

problem environment and configurations of each method. 

Gridworld: The structure of the gridworld environment is same as that of the maze 

environment described above (Fig. 5.4). However, the agent cannot change direction, but it 

can directly move in all four directions. The reward distribution is [2,1] →0.99, [2,2] → 0.99, 

[12,1] → 0.99, [10,10] → 0.99, [20,20] →0.99. The agent is allowed to move across all the 

cells but a cell containing 0 will incur a punishment of -0.01. The agent is not allowed to 

leave the maze. Each reward can be consumed only once during an episode (until a reset). 

After a reset, the agent’s initial position is set to [1,1]. This reward distribution creates an 

environment with delayed reward. But there exists a simple optimal solution policy. The 

agent can only get a local observation in the grid. In our experiments, all the methods except 

US-agent failed to collect all the rewards in the environment during test phase. Fig. 5.6 shows 

section of search graph executed by heuristic playout during the test phase. 

Tic-Tac-Toe: This is a conventional Tic-Tac-Toe game where a player wins if it can place 

same consecutive marks in a 3X3 grid. Each win generates a reward 1 and a loss incurs 

punishment -1. An invalid move like placing a mark on a filled cell incurs a punishment -

0.05 and a no-win situation provides a reward 0.5. After generating a reward or punishment 

the game is reset. The agent is given an encoded observation of empty and filled cells and it 

cannot exactly know the position of its own marks and the opponent’s marks. This creates a 

POMDP environment. The opponent places a mark randomly on any of the open cells.  

Tiger: The player is allowed to open any one door out of 2. There is a tiger behind one door 

and gold behind another. A tiger behind an opened door incurs a punishment -1 and gold 

generates a reward 1. The agent can also choose to listen, which will allow it to know the 

position of the tiger with 85% accuracy. After each reward or punishment game is reset.  

Table 5.3. compares different agents’ performance in terms of reward gained and number of 

training steps, in different environments. A performance score has been derived as 

reward x 107

𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑡𝑒𝑝𝑠
. US-agents outperforms all agents in all environments based on this measure. 
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5.1 CONCLUSION 

An agent developed based on universal search using dataflow graph based programming 

model with equivalent program pruning and incremental learning is able to successfully 

dampen the exponential factor in universal search to a large extent. We tested our agent in a 

large POMDP maze environment to establish the theoretical claims. The program pruning 

strategy improved the runtime of the search with an average improvement growth rate of 

around 1500 per phase.  The incremental learning strategy improved the program probability 

of the solution program around 50 times for the final goal state in the test scenario which 

suggests there is a 50 times improvement in search time.  The agent was also able to find an 

optimal solution path in the large maze even though there was delayed reward in the path. 

The agent is also tested against current state-of-the-art methods on some benchmark 

problems. Our agent outperformed all other methods in terms of total reward collected with 

limited training time. It outperformed the best competitor method by 250 times in gridworld, 

 

Figure 5.6 A subgraph from search graph for gridworld problem with 4 nodes (marked in gray) having 

total reward >0 in training phase. Out of 4 nodes, 3 are terminal nodes. Each gray node represents a 

separate program graph for which the respective gray node is a terminal node and iW is initial node. This 

search graph was executed by the heuristic playout algorithm. For this environment, allowed actuator 

input values are 0-3. 0 - move down, 1 - move right, 2 – move left, 3 – move up. 
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5 times in Tic-tac-toe, and 50 times in Tiger problem, based on a performance score.  

However, US-agent can be improved further. Introspection capability can be added in the 

programming model which would enable self-generation, self-modification, and self-

evaluation of code. This would allow the metasearcher to be a part of the program corpus in 

the search graph, thus allowing the possibility of evolution and automatic improvement of 

the searcher program itself. The metasearcher program can also be added as an external 

function in the environment. This would allow searching through a new program space 

within another search and consequently allow hierarchical problem-solving. However, 

performance benefits need to be investigated in such scenarios. 
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6 APPLICATIONS OF THE UNIVERSAL SOLVER 

“The key to artificial intelligence has always been the representation” – Jeff Hawkins, 

(2012) 

The Universal solver is capable of solving wide variety of problems in RL setting. The 

possibility for the solver applications is numerous. It can be applied in any problem 

environment which provides responses in the form of rewards or punishment. It can be 

applied in robotics, where a bot might need to learn some sequence of optimal actions in a 

problem environment, like learning to walk or balancing a cart pole. It can be used to create 

ambient intelligent systems, where the agent needs to control its transducers optimally in a 

problem environment, like a smart home environment or patient care environment. As the 

integrative AI platform already provides an interface to integrate multiple AI components 

and IoT devices, deploying the solver agent in the platform would enable automatic searching 

of integrative AI solutions and it would be particularly useful for creating ambient intelligent 

systems.  

In order to demonstrate its usability, we experimented in two problem domains. Namely, 

solving simple algebraic equations and neural architecture search. In both cases the solver 

was able to find satisfactory solutions in realistic time. 

6.1 LEARNING TO SOLVE SINGLE VARIABLE LINEAR EQUATIONS 

The problem solver was applied to solve simple algebraic linear equations [83]. The agent 

was given three different sets of single-variable linear equations in a sequence and it returned 

three different program graphs for each set, solving every equation in that set. We encoded 

the problem specification and the goal state in the environment. The agent can communicate 

with the environment with the transducer nodes. The problem environment returns the initial 

equation in a list, where each symbol in the equation is an element of character type in the 

list. For example, the list elements of the equation x + 15 = 20 will be ‘x’, ‘+’, ‘15’, ‘=’, ‘20’. 

The first set contain the equations x + 5 = 15, x + 80 = 100, x + 6 = 3. The agent is required 

to find a solution program that solves all the above equations. Solution program should return 

a list containing the elements in the form +x = +a or +x = -a. The second set contain the 
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equations x*2 + 5 = 15, x*8 + 20 = 100, x*3 + 6 = 3. The agent started with the search graph 

generated by the earlier search process. The second set of equations are little bit complex 

compared to the first, as they have a multiplicative term associated with the unknown 

variable. The third set contain the equations x = 5+15, x = 20 +100, x = -2 +3.   

The experimental results show the efficiency of transfer learning and the agent was able to 

quickly find general solutions for solving simple equations. Following is the list of primitives 

used for the search. Namely, identity (i), constant (K), nil (n), cons (c), head (h), tail (t), 

reverse (r), split list (s), join list (j), fmap (F), aggregator (ag), apply (a), loop (L), goal 

checker (G), sensor (S). The notation for constant node is given as a.K, where a represents 

the constant value and a can be data as well as a function. Apart from the primitives, few 

custom functions are used in the form of external services. Table 6.1 lists the external services 

used. The external services are called using microcall gp node as demonstrated in Chapter 4. 

Separate function nodes are built for each service using the microcall function and constant 

nodes. The custom-built function nodes are directly used in the search and will be referred 

with the function symbol as specified in Table 6.1, in all future reference. 

Table 6.1 List of external functions used in the search 

Function symbol 

(Function Name) 

input 

types 

Output 

type 

Operation 

I (invert operator) char char 

Takes the mathematical operators as input and inverts it. 

Allowed input characters are: ‘+’,’-‘,’*’,’/’. ‘+’ is inverted to ’-

‘ and ’*’ is inverted to ’/’ and vice versa 

E (evaluate 

expression) 

 

 

List(char) 
List(char) 

Simplifies a mathematical expression within a list. If first 

element of the simplified expression is not a mathematical 

symbol, then ‘+’ symbol is added as the first element. 

Example: For Input expression x + 5 +2 it will return + x + 7 

LE (Linear 

equation) 

 

None List(char) 
Represents the problem environment. Returns the linear 

equation to be solved in form of list of characters. 

6.1.1 Composite node functions 

Primitive functions can be composed in arbitrary ways, satisfying type compatibility to create 

arbitrary composite functions. We will create such composite functions and store it as 

available library functions to be used by the searcher. These functions are specifically created 

to aid the searcher program in finding solutions for algebraic equations. This can be 

considered as pushing some domain knowledge into the searcher process in the sense 
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mentioned by Schaul & Schmidhuber [84]. 

Append (A). Append is a composite node function. It appends the first argument to the list 

object received as the second argument. If the first argument is a list type, then it joins the 

two lists by appending elements of the first list after the second. 

Cut-Invert (CI). The function CI cuts the last two elements of a list and inverts the 

mathematical operator present at the second last position. Thereafter it returns the two 

elements in a list in the same order. It takes an input of type list and returns a list. Fig 6.1 

illustrates the program graph of the CI function. In all diagrammatic representations, the 

input port order of a node is in clockwise direction, starting from the output port.  

Partial append of Cut-Invert (aACI). The function aACI takes a list of lists as input. It 

applies the CI function on the first element of the input list and thereafter partially applies 

the append function on the result. The partially evaluated function is returned as output. Fig. 

6.2a illustrates the program graph of this function. 

 

Figure 6.1 Illustration of the program graph of composite function CI 

 

Figure 6.2 Program graphs of composite functions. a) program graph of function aACI. b) program graph of 

function s=. c) program graph of function j`, d) program graph of function j=. 
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Split on equality symbol (s=). The function s= takes a list of characters as input. It applies 

the function s on the input list and splits the list based on “=” symbol as an element. Fig. 6.2b 

illustrates the program graph of this function. 

Join on equality symbol (j=). The function j= takes a list of lists as input. It applies the j 

function on the input list and joins the lists within the list with “=” symbol as an element 

added in between. Fig. 6.2d illustrates the program graph of this function. It uses the helper 

function j` as illustrated in Fig. 6.2c. 

6.1.2 Generating solutions 

The vanilla metasearcher has been run to generate solutions for this problem. Following set 

of function nodes are used as an initial corpus to generate and search in program space. 

Namely, LE, E.K, s=, aACI, F, j=, L, r, 2.K. Fig. 6.3 shows the solution program graph found 

by the agent for solving the first set of equations. The output returns the value evaluated for 

the variable x in the form of a list.  

Fig. 6.4 illustrates the solution program found by the agent which solves all the equations in 

the second set. The second solution reuses the program graph found as the first solution. It 

 

Figure 6.3 Solution program graph found by the agent for solving equation set 1 

 

Figure 6.4 Solution program graph found by the agent for solving equation set 2. 
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just executes the solution program for the 1st equation set twice, using a loop, to deduce the 

solution graph for the second set.  

Fig. 6.5 illustrates the solution program found by the agent which solves all the equations in 

the third set. This program graph reuses a section of the solution program for the first set. 

However, it is a much simpler graph compared to the 1st program graph.   

The program probability of solutions for later tasks increased due to incremental learning 

and thereby reduced the search time. The solutions for subsequent problems reused a section 

of previous solution graphs due to the presence of common subproblems between the tasks. 

For example, the third equation set is just a subproblem of the first and second equation sets. 

The program graph in Fig. 6.3 is able to implicitly segregate these dependent or independent 

subproblems due to program representation as graph. The independencies among different 

functional nodes allow dividing the solution graph into several independent subgraphs, each 

solving a specific subtask. These subgraphs can be directly re-used for related tasks as it 

happened for the solution of equation set 3 in Fig. 6.5. This makes the transfer learning 

process efficient in program representation as data flow graphs.  

6.2 NEURAL ARCHITECTURE SEARCH USING UNIVERSAL SOLVER 

The performance and accuracy of a deep neural network in a problem context depend on the 

architecture of the network. The architecture of a deep neural network can be characterized 

by the number of layers in the network, type, and configurations of each layer, skip 

connections, etc. Designing such a network manually for a problem context is a labor-

intensive and unintuitive task and there is no well-defined formula that states an ideal way 

 

Figure 6.5 Solution program graph found by the agent for solving equation set 3. 
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of designing a neural network for any arbitrary problem. Even with hours of effort put in by 

experts, in designing the network and hyper-parameter tuning – tons of potentially promising 

architectures remain undiscovered. Neural architecture search or NAS attempts to search for 

an optimal neural network architecture for a problem context, in a systematic, principled and 

automated way. NAS can be categorized into the following 3 dimensions [85].  

Search space: Search space denotes the possible set of neural architectures that can be 

explored and searched through. Search space can be bounded by incorporating prior 

knowledge and determining a fixed set of possible configurations that would be tried while 

generating the architectures. This would reduce the search space and thus simplify the search. 

However, it would also restrict the search process from trying arbitrary novel architectures.  

Search strategy: Search strategy specifies the strategy of the search process. It deals with 

the typical exploration-exploitation problem as the search space is usually of exponential 

size. It is desirable to quickly find an optimal architecture exploiting previously learned well-

performing architectures. However, it is also essential to explore and try new architectures 

to find even better-performing architectures.    

Performance estimation strategy: Performance estimation of an architecture can be done 

by measuring the predictive capability on unseen data. Typical measures for estimating 

performance can be accuracy or error on training and validation dataset.  

6.2.1 Search space  

The search space in NAS can be setup in multiple ways.  

Sequential networks - One way of depicting/designing the search space for neural network 

architectures is to depict the network topologies as a list of sequential layer-wise operations 

[86, 87]. The serialization of network representation requires a decent amount of expert 

knowledge since associations between operations and layer specific parameters and 

constraints need to be explicitly specified. Networks are designed by chaining one layer after 

another. The full network can be specified by the number of layers, the type of operations in 

each layer, and hyperparameters associated with each layer.  
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Multibranch networks – Skip connections in a network allow creating complex 

multibranch architectures. Each layer may receive inputs from any number of arbitrary 

previous layers. Residual networks [88], dense networks [89], and sequential networks are 

all special cases of multibranch architectures. This type of efficient architecture has been 

generated by NAS successfully but at the cost of high computation power [90]. 

Cell-based architectures - These kinds of search spaces are perhaps motivated by the 

observation that many effective handcrafted architectures were designed with repetitions of 

fixed structures. Example: ResNet, Inception. The NASNet search space, as designed by 

Zoph et al. 2018 [90], defines the architecture of a conv net as the same cell getting repeated 

multiple times and each cell containing several operations as designed by the NAS algorithm. 

A well-designed cell module enables transferability between datasets. It is also easy to scale 

down or up the model size by adjusting the number of cell repeats. The NASNet search space 

is defined to be composed of two types of cells:  

a. Normal Cell: Input and output feature maps have the same dimension.  

b. Reduction Cell: Output feature maps have their width and height reduced by half. Such a 

strategy reduced the search space drastically as each cell contains significantly a smaller 

number of layers compared to the whole architecture. 

6.2.2 Search algorithm 

There are multiple approaches for attacking the search problem which includes Bayesian 

optimization, evolutionary methods, and reinforcement learning. Bergstra et. al. used 

Bayesian optimization to derive state of art neural architectures for vision problems [91]. 

Zoph et. al found competitive architectures for solving CIFAR-10 classification problem and 

Penn Treebanks [92]. In a reinforcement learning setting the actions are the individual 

network generation operators and the reward is the estimation of the performance of a 

generated network. For example, actions can be an operator to add a convolutional layer with 

certain hyperparameters or adding a skip connection. The objective is to perform a search in 

the action space and come up with an optimal sequence.     
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6.2.3 Evaluation strategy 

There exist several different ways of evaluating and estimating child model performance in 

order to provide feedback signals to the searcher algorithm in order to optimize it. The 

searcher algorithm uses the evaluation scores to guide the search process and dampen the 

search space. This process may turn out to be prohibitively expensive and many new 

evaluation methods have been proposed to save time or computation. Two common methods 

are discussed as follows. 

Training from scratch - This is the method utilized by Zoph et al. [92] wherein they trained 

each child model from scratch until convergence and thereafter evaluated their performance 

on a hold-out set. This method has the benefit of providing the most reliable performance 

estimates but it tends to be prohibitively slow. One complete train-converge-evaluate loop 

only generates a single data sample for training the RL controller. 

Proxy task performance - This method involves utilizing smaller, less computationally 

expensive tasks as a proxy for model performance. Some widely used ones are listed as 

follows.  

- Training on a smaller but representative dataset.  

- Training for fewer number of epochs  

6.2.4 Metasearcher as search method for NAS 

Metasearcher can be used to find optimal neural architectures for specific problems under 

proper environmental settings. The search strategy in the metasearcher is based on universal 

search accompanied with policy gradient based incremental learning. The search space is the 

program space where programs are constructed using primitives of FGPM. When executed, 

the programs in FGPM directly translate to neural architectures.  This section explains a 

method of constructing the problem environment which can be plugged into the metasearcher 

for performing NAS. However, this is just one way of representing the problem environment 

out of many other ways.  
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Fig. 6.6 illustrates an interaction between the metasearcher (agent) and the environment. The  

metasearcher will construct arbitrary programs and test them in the context of the problem 

environment. An environment expects a sequence of numbers as actuation signals from the 

program being run. The numbers represent code for specific configurations of layers of a 

neural network. The environment maintains a kernel map that translates the numeric code to 

a specific layer configuration. Table 6.2 shows the list of kernel maps used for experimenting 

with the CIFAR-10 dataset. Once a specific code is received as an actuation signal, the 

corresponding layer is added after the previous layer. Every layer in a constructed network 

is identified by a unique number, called as layer id. After addition of a new layer, the 

 
Figure 6.6 Illustration of interaction between the metasearcher and the environment for neural architecture 

search 

Table 6.2 Kernel Map used for Neural architecture search for CIFAR-10 dataset 

code Layer operation  Configurations 

1 Convolution 2D 

No. of filters = 64; kernel size = 3; activation = elu; regularizer = l2; 

padding = same; BatchNormalization = True 

2 Maxpooling kernel size = 3; padding = same 

3 Concatenation NA 

4 

Convolution 2D No. of filters = 128; kernel size = 3; activation = elu; regularizer = l2; 

padding = same; BatchNormalization = True 

5 Addition NA 

6 dropout Dropout rate  = 0.25 

7 Convolution 2D 

No. of filters = 128; kernel size = 5; activation = elu; regularizer = l2; 

padding = same; BatchNormalization = True 

8 Convolution 2D 

No. of filters = 256; kernel size = 3; activation = elu; regularizer = l2; 

padding = same; BatchNormalization = True 

9 Average pooling kernel size = 3; padding = same 
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environment returns the layer id of the added layer. Concatenation and addition are two 

operations that merges two different pathways in a network. Thus, for these two operations, 

the environment expects the layer id of one of the parent layers as the next number in the 

sequence. It merges that parent layer with the immediate previous layer. A minor 

modification was made in the metasearcher to add a special composite node (built 

with gp node) during the test phase of every constructed program. The node is added as a 

terminal node and it sends a signal to the environment to notify the end of the program. The 

environment in turn flattens the output of the last layer in the constructed network and adds 

a dense layer with 10 outputs for classifying CIFAR-10 dataset. It uses softmax activation 

for the dense layer. Finally, the neural network model is trained and validation accuracy is 

returned as a reward signal. The training was run for relatively a smaller number of epochs 

(10 epochs) due to high computational complexity of training a neural network. Since this is 

a generate and test method of searching the best architecture, an indicative relative 

performance measure is sufficient to get a comparative score for multiple architectures. Any 

invalid sequence of numbers, like numeric code not present in kernel map or invalid parent 

layer id, raises an error and the environment sends an error signal. After training a network 

and returning the reward signal, the environment is reset such that a new program can 

construct another neural network from scratch.  

6.2.5 Experimental results for CIFAR-10 dataset 

The metasearcher and the NAS problem environment were implemented in python. Keras 

library has been used to construct the deep neural networks in the environment. CIFAR-10 

data has been obtained from [93]. The search process was run in Google Collaboratory with 

a fixed Phase limit and it ran for around 6 hours. The search process was running using the 

following set of primitives. Namely, initWorld, constant1, constant2, sensor, actuator, 

addition, constant3, constant4, constant5, loop. The top two models in terms of validation 

accuracy are selected after the completion of the search. The two models were further 

retrained for 500 epochs. The final accuracy of the top two models were 88.72% and 89.93% 

respectively. Fig 6.7 and Fig. 6.8 illustrate the top two neural network architectures found by 

the metasearcher. Though the accuracy of the top architecture is behind that of the current 

state-of-the-art method (~98%), yet we can supposedly say that the proposed method gave a 
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Figure 6.7 Neural network architecture found by the metasearcher with a validation accuracy of 89.93% 
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Figure 6.8 Neural network architecture found by the metasearcher with a validation accuracy of 88.72% 
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satisfactory solution or rather a workable solution considering the computation power it 

consumed. We also focused on generating only simple sequential architectures. Generating 

more complex architectures like adding skip connections, would take more computation 

power but may find better architectures in terms of accuracy.  

6.2.6 NAS for COVID-19 spatiotemporal forecasting model using universal solver 

Wuhan city in China initially observed an outbreak of Covid-19 disease caused by SARS-

CoV-2. Eventually, it became a pandemic and more than 200 countries are fighting hard to 

contain the infection [94]. This has become a unique challenge for mankind as the 

competition has turned out to be against time due to the exponential rate of infection spread. 

One of the best ways to contain the infection is rapid identification of positive cases and 

isolation. However, due to limited resources, random and widespread testing may not be 

feasible in populous countries. Forecasting regional spread can help identify future hotspots 

and distribution of infection which would eventually help to take containment measures.   

A spatiotemporal epidemic spread model can accommodate both spatial and temporal 

correlations in data. However, most of the models either require disease specific domain 

knowledge [95] or are too spatially coarse [96]. Deep learning models can learn the dynamics 

of epidemic spread with high spatial resolution and high degree of accuracy with minimal 

initial bias, due to its capability of highly nonlinear representation. Deep neural network 

based spatiotemporal models [97] have already been applied to predict epidemic spread. 

However, this model is experimented on a small localized region and the influence of 

external factors was ignored. Deep learning models also tend to overfit due to their high 

representational capability. Thus, modeling of Covid-19 spread in a wide region with high 

spatial and temporal resolution is challenging.  

To address the problem of spatiotemporal prediction of Covid-19 spread in a large 

geographical region with high resolution, a Convolutional LSTM [102] based model was 

trained with multilayer geospatial-temporal data, transformed as a sequence of images [98, 

99]. Each layer of the geospatial data corresponds to a causal factor that might influence the 

spread of the epidemic. The data preparation method creates geospatial images of features 

based on latitudes and longitudes thus avoiding the need for location specific adjacency 
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matrix. However, one of the major challenges is finding an optimum Conv-LSTM neural 

architecture for the spatio-temporal model. 

6.2.6.1 Feature construction 

Covid19 daily data at USA county level are filtered by a spatial region of USA as shown in 

Fig. 6.9c. The region is geospatially divided into M x N grids of equal sizes, bounded by 

calculated latitudes and longitudes.  Fig. 6.9a illustrates a grid bounded by latitudes and 

longitudes. The dotted-line square is called as a frame. The overlapping areas in all 4 

directions in a frame allows the flow of spatial influence from neighboring grids. A frame is 

in turn divided into L x L pixels. Each pixel represents a bounded area in the geospatial 

region. Each pixel contains a value mapped to a certain feature in the bounded geospatial 

region. Frame matrices are constructed for each feature and concatenated through a third axis 

called channels. For example, transmission rate (𝛽𝑖) and population density are two features 

and they represent two separate L x L matrices in a frame concatenated across a third axis. 

Some features like transmission rate, active infection fraction, weather etc. are distributed 

spatio-temporally. Whereas other features like population density, female fraction, median 

age are assumed time-invariant and have no temporal component. Thus, they are only 

distributed spatially and copied along the temporal axis. Population density has been log 

transformed to reduce skewness and normalized. Other features are only normalized on 0-1 

scale. Daily transmission rate and removal rates at pixel level have been calculated as 

follows, where 𝑖 ∈ {1. . 𝑛} denotes each pixel, ∆𝐼𝑖
+(𝑡) and ∆𝑅𝑖(𝑡) are fraction of new cases 

 c) 
Figure 6.9 a) Illustration of overlapping frames obtained by spatially dividing a geographical region. The bold 

lines represent latitudes and longitudes which separate the grids. The box with dotted lines represents the frame 

with overlapping grids that are used for training the model. Each grid is divided LxL pixels. The margin refers 

to the number of pixels of overlapping regions. b) Illustration of sequence of a frame. t-0 is the most recent 

frame. Xtrain, Ytrain are the training samples, and Xtest, Ytest are testing samples. c) A region of USA divided 

into 18x30 grids. The red bubbles denote the cumulative number of Covid-19 cases. 
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in infected class and new individuals in removed class respectively, at time 𝑡 in pixel 𝑖. 𝑁𝑖 

represents population in pixel 𝑖. 𝑆𝑖(𝑡) and 𝐼𝑖(𝑡) are fraction of susceptible and infected 

respectively, at time 𝑡 in pixel 𝑖. 𝛿𝑖(𝑡) is the removal rate. 

𝛽𝑖(𝑡) = ∆𝐼𝑖
+(𝑡)𝐼𝑖(𝑡)/[𝑆𝑖(𝑡 − 1)𝐼𝑖(𝑡 − 1) + 𝑁𝑖

−2]  

𝛿𝑖(𝑡) = ∆𝑅𝑖(𝑡)/[𝐼𝑖(𝑡 − 1) + 𝑁𝑖
−1]                                                                                   (6.1) 

Each training sample of a frame is represented by a tensor of dimension T x L x L x C, where 

T is the total time span and C is number of channels or features. As shown in Fig. 6.9b each 

training sample is generated by sliding a time window of size 𝑊+1, by 1, leaving behind a 

test case sample of time window size 𝑊′ in the most recent period. The number of training 

samples for a frame can be calculated as 𝑇 −𝑊′ −𝑊 − 1. Thus, the total number of training 

samples 𝑆𝑡𝑟𝑎𝑖𝑛 for all frames can be calculated as 𝑆𝑡𝑟𝑎𝑖𝑛 = (𝑇 −𝑊
′ −𝑊 − 1) ∗  𝑀 ∗  𝑁.  

The forecasting problem is framed as a supervised learning problem. Given a sequence of 

observed multichannel frames of spatial data as matrices 𝑋1, 𝑋2…𝑋𝑡, the objective of the 

model is to predict the next single channel frame 𝑌𝑡+1. The training samples are divided into 

input sequences of length 𝑊 and output frames. The model forecasts the transmission rate in 

each pixel in a frame for each timestep. Thus, the output frame consists of only 1 channel. 

The input training dataset (𝑋𝑡𝑟𝑎𝑖𝑛 ) can be represented as a tensor of size 

𝑆𝑡𝑟𝑎𝑖𝑛 𝑥 𝑊 𝑥 𝐿 𝑥 𝐿 𝑥 𝐶 and the output dataset (𝑌𝑡𝑟𝑎𝑖𝑛) as 𝑆𝑡𝑟𝑎𝑖𝑛 𝑥 𝑊 𝑥 𝐿 𝑥 𝐿 𝑥 1. For training, 

the input sequences are selected from all frames having a non-zero total infection count. Fig. 

6.9b illustrates the sequence of a frame. The frames t-7 to t-3 represents an input training 

sequence (𝑋𝑡𝑟𝑎𝑖𝑛 ) of length 𝑊. The output frame (𝑌𝑡𝑟𝑎𝑖𝑛) for this training sample is t-2. 

Other training samples are generated by sliding the window W+1 backward in time by 1. 

The most recent images t-0 and t-1 represent the test output images (𝑌𝑡𝑒𝑠𝑡) and immediate 

sequence of images t-6 to t-2 is the test input sample (𝑋𝑡𝑒𝑠𝑡). The test set 𝑋𝑡𝑒𝑠𝑡 is represented 

by a tensor of size (𝑀 ∗ 𝑁) 𝑥 𝑊 𝑥 𝐿 𝑥 𝐿 𝑥 𝐶 and 𝑌𝑡𝑒𝑠𝑡 by (𝑀 ∗ 𝑁) 𝑥 𝑊′ 𝑥 𝐿 𝑥 𝐿 𝑥 1.  

6.2.6.2  Conv-LSTM model of transmission rate 

Recurrent neural networks (RNN) are a class of artificial neural networks with nodes having 

feedback connections, thereby allowing them to learn patterns in variable length temporal 
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sequences. A simple RNN has a feedback loop that is associated with hidden state weights. 

Fig. 6.10 illustrates an RNN unfolded in time. It has hidden states h(t) which change with 

time. The inputs and outputs are represented by x(t) and y(t) respectively. The dependency 

on historical values of the sequence is captured by the relationship between the hidden 

states. Wh, Wx, Wy are the weights that are learned through backpropagation during training. 

However, it becomes difficult to learn long-term dependencies for traditional RNN due to 

the vanishing gradient problem [100]. LSTMs [101] solve the problem of learning long-term 

dependencies by introducing a specialized memory cell as a recurrent unit. The cell can 

selectively remember and forget long-term information in its cell state through some control 

gates. We presume there might be long-term complex dependencies of several factors on the 

transmission rate. Thus, LSTM seems to be a preferred choice for time series modeling. In 

convolutional LSTM [102] a convolution operator is added in state-to-state transition and 

input to state transition. All inputs, outputs, and hidden states are represented by 3D tensors 

having 2 spatial dimensions and 1 temporal dimension. This allows the model to capture 

spatial correlation along with the temporal one. In our model, we configured multichannel 

input, such that distinct features can be passed through different channels. Multiple 

convolutional LSTM layers are stacked sequentially to form a network with high nonlinear 

representation. The final layer is a 2D convolutional layer having one filter which constructs 

a single channel output image as the next predicted frame.  

 

Figure 6.10 A simple RNN unfolded across multiple timesteps. 
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The model is tested by feeding in an input sequence of frames and the next frame is predicted, 

which in turn is combined with other features along the channel and appended with the input 

sequence. The new input sequence is fed to the model again to get the next predicted frame. 

This continues until forecasting completes for a desired time period. “Mean absolute percent 

error” (MAPE) and Kullback-Liebler (KL) divergence are used to measure the accuracy of 

the model. The model predicts the transmission rate for a future time period for each pixel, 

which in turn is used to calculate daily new infection cases ∆𝐼𝑖
+(𝑡). The removal rate is 

estimated as the running average of previous 3-days and daily removed cases are calculated.  

The active infection cases (𝐼𝑖(𝑡)) and susceptibles (𝑆𝑖(𝑡))  are also calculated. Cumulative 

infection cases (∑∆𝐼𝑖
+(𝑡)) are calculated by summing up all new infection cases up to a 

certain day. MAPE of transmission rate is calculated at pixel level for the prediction period 

and averaged. The pixels with 0 susceptible population count are filtered out while 

calculating MAPE and KL divergence. Pixel MAPE is calculated as per equation 6.2, where 

𝐺 is set of all grids and 𝐺′ is set of all pixels such that the frame for each corresponding grid 

have non zero cumulative infection count, 𝑊′ is prediction time period, 𝑊′′ = 𝑇 −𝑊′ is 

total time period in training set, 𝛽̂𝑖
′(𝑡) and 𝛽𝑖

′(𝑡) are predicted and actual scaled transmission 

rate for 𝑖𝑡ℎ pixel at time 𝑡 respectively.  

𝑀𝐴𝑃𝐸𝑝𝑖𝑥𝑒𝑙 =
1

𝑊′|𝐺′|
∑ ∑  

|𝛽̂𝑖
′(𝑡)−𝛽𝑖

′(𝑡)|

𝛽𝑖
′(𝑡)∀𝑖 | 𝑖𝑊′ ∈ 𝐺′                                                              (6.2)  

KL divergence at pixel level is calculated for modified transmission rate in the prediction 

period to measure the dissimilarity of distribution of predicted transmission rate with respect 

to actual. 𝜎 is softmax function applied after scaling a series in 0 to 1 scale and 𝑃(𝑋) is 

probability distribution of 𝑋. Softmax is applied to convert transmission rate as probability 

distribution across pixels. Since KL divergence measures the dissimilarity between two 

distributions thus a lower value of it indicates better performance of the model. 

𝐷𝐾𝐿
𝑝𝑖𝑥𝑒𝑙 = ∑ 𝑃(𝜎(𝛽̂𝑖

′(𝑡))) log (
𝑃(𝜎(𝛽̂𝑖

′(𝑡)))

𝑃(𝜎(𝛽𝑖
′(𝑡)))

)∀𝑖                                                                        (6.3) 

6.2.6.3 Experimental results 

Initially, a spatiotemporal forecasting model has been constructed manually by stacking 
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multiple layers of ConvLSTM. An optimal architecture has been derived manually after 

several hit and trials. Thereafter neural architecture search has been run using metasearcher 

to find an architecture and both the architectures are compared against each other. The 

manually constructed architecture consists of four ConvLSTM layers stacked sequentially 

and terminating with a Convolutional 2D layer. The final layer is followed by an exponential 

linear unit as activation. The input and other hidden Convolutional LSTM layers are followed 

by sigmoid activation. Each Convolutional LSTM layer has 32 filters and kernel size 3x3. 

The input layer is configured to take tensors of size 16x16x8. Eight input features are 

constructed and fed into the model as separate channels. Namely transmission rate, 

population density, female fraction, median age, active infection fraction, average 

temperature, temperature standard deviation, and average relative humidity. The model is 

trained for 20 epochs with a batch size of 50 and mean squared error as loss function. Out of 

11378 samples, 10809 are used for training the model and 569 are for validation. 

The dataset has a time span of 51 days starting from 2020-03-21, out of which data from 

42nd to 51st day is used for testing the model and the rest for training and validation. Fig. 

6.11 illustrates the plot of training/validation loss and training/validation mean squared error 

(MSE). Both the loss and MSE consistently decreased for training and validation as epochs 

increased. 

The NAS setup for metasearcher is similar to the previous use case (CIFAR-10). However, 

for this use case, the kernel map is modified as specified in Table 6.3. Only sequential neural 

 

Figure 6.11 Plot of loss vs epoch and mean squared error (MSE) vs epoch for both training and validation 

data set 
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architectures are constructed and tested.  The search process was run in Google Collaboratory 

with a fixed Phase limit and it ran for around 2 hours. The search process was run using the 

following set of primitives. Namely, initWorld, constant1, constant2, constant3, constant4, 

constant5, constant0, sensor, actuator, loop. The reward signal for each tested architecture is 

computed as (1 − min(mean absolute training error))/1.5. 

The top model in terms of reward gained is selected after completion of the search. The top 

model is further retrained for 20 epochs. Fig. 6.12 illustrates the top neural architecture found 

by the metasearcher. Table 6.4 shows the test results for the manually constructed 

architecture and the neural architecture found by the metasearcher. Based on the different 

performance metrics it can be deduced that metasearcher was able to find a near-optimal 

architecture whose performance is nearly the same as that of the carefully handcrafted 

optimal architecture. 

 Table 6.4 Model training, validation and test results 

Metric Manually constructed 

architecture 

Best architecture found through 

NAS 

Training mean absolute error 0.0140 0.0132 

Validation mean absolute error 0.0043 0.0044 

Pixel KL divergence 8.306x10^-9  8.338x10^-9 

Pixel MAPE 7.95% 10.2% 

Grid MAPE 8.39% 10.2% 

Country MAPE 0.19% 0.6 % 

Predicted total cases (1330525) 1331175 1306171 

 

Figure 6.12 Neural architecture found by the metasearcher 

Table 6.3 Kernel Map used for Neural architecture search for Covid-19 spatiotemporal model 

code Layer operation  Configurations 

0 ConvLSTM No. of filters = 32; kernel size = 3; activation = sigmoid; padding = same 

1 ConvLSTM No. of filters = 64; kernel size = 3; activation = sigmoid; padding = same 

2 ConvLSTM No. of filters = 32; kernel size = 5; activation = sigmoid; padding = same 

3 ConvLSTM No. of filters = 32; kernel size = 3; activation = elu; padding = same 

4 ConvLSTM No. of filters = 64; kernel size = 3; activation = elu; padding = same 

5 ConvLSTM No. of filters = 32; kernel size = 5; activation = elu; padding = same 
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6.3 CONCLUSION 

This chapter presents two different problem environments and showcases how the universal 

solver handles them. The solver was able to generate satisfactory solutions in both the 

problem environments. Due to immense use of deep neural networks in current times, the 

problem of Neural Architecture Search is of prime importance. NAS is usually prohibitively 

complex in terms of the computation power it uses. Most of the current solutions are based 

on deep neural networks operating in a RL setting. We have showcased how a program 

search based approach could also generate usable architectures with low computation effort. 

The solver can be experimented in multiple other configurations of the problem environment 

for NAS. It can be used to find other types of neural architectures also, like RNN, generative 

networks, etc. 

Though the solver is capable of handling multiple problem environments, yet the search time 

and space can be quite large for certain problems. Specially, problems which don’t have 

relatively shorter solutions or rather there are little observable patterns in the solutions. 

However, in such scenarios accurate and frequent reward signals can help to focus the search 

and reduce the search time. But in a delayed reward environment it becomes quite difficult 

to converge the search in such cases. The learning mechanism needs to be improved to better 

exploit the past experiences in the form of historical search graphs when immediate rewards 

signals are not available.   

.   
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7 TOWARDS CONSTRUCTIVIST SEED AI 

“No matter how tall or wide a tree is, it started off a seed.” - Matshona Dhliwayo 

Though there have been several major advancements in the last few decades in domain 

specific artificial intelligence, yet portability of an intelligent system from one problem 

environment to another is inefficient and requires manual reconstruction. Real-world 

problems are barely restricted to a small domain. For example, driving a car requires complex 

interconnections among visual processing, auditory processing, and motor skills. These 

complex systems are mostly hand-engineered by following a constructionist approach [50]. 

The constructionist method of designing an AI has its own limitations like restricted 

learnability and portability which calls for a new design approach, known as constructivist 

approach [62]. Constructivist systems are empowered with the automatic construction of 

solutions in a given arbitrary problem environment with limited resources and little external 

bias. In order to optimize usage of available resources the system is expected to self-modify 

and improve its learnability and portability. To create such an artificial intelligent agent, it 

needs to be bootstrapped with a seed program [19] and intelligent core, which would 

eventually improve itself and adapt to a variety of environments. Even for the constructivist 

approach a seed AI is necessary to let the agent know at least the method of construction. 

We discuss a principled approach of creating a seed program and provided a formal 

grounding [112]. Questions like, what is the minimum structure required to construct such a 

seed AI and how it achieves multiple properties of an intelligent system are answered. There 

are multiple architectures present in the literature [54, 9, 10, 26, 45, 53] to achieve general 

intelligence, however, any of them barely discusses the abstract minimal structural 

requirement to achieve different properties of general intelligence namely, constructivism, 

learnability, recursive self-improvement and adaptability across environments. 

A practical implementation of seed AI based on Universal search is also demonstrated. 

Universal search is a good candidate to design a constructivist framework due to its generate 

and test approach in program space. It has been shown how the metasearcher structurally 

resembles the seed AI. The implemented system is demonstrated to solve a heterogenous toy 

problem environment.  
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7.1 ABSTRACT MODELLING OF SEED AI 

Category theoretical approach has been used for abstract modeling of seed AI. Milewski 

[103] provides an excellent introduction to category theory. A useful seed AI is one that 

enables an agent to act optimally in a problem environment and learns to adapt across varied 

problem environments. It is assumed that all the problem environments in which an agent 

interacts in its lifetime would be computable. Thus, every problem environment can be 

represented as strings over some set of characters. Deductively, considering the agent as a 

part of the environment is also a computable one and all of its parts can be represented as 

strings. The environment can be considered as a single object monoidal category over a set 

of primitives in a Turing complete language, and a composition operator. The objects in the 

environment are programs. Programs can be created by composing primitives and other 

programs. Thus, the category is equipped with a bi-functor 𝜎𝑒: 𝐸 ⊗ 𝐸 → 𝐸, an identity or 

empty string 𝐼𝑒, where 𝐸 represents environment object. In a general sense, there can be 

infinitely many possible problems in any arbitrary environment, represented by different 

unique programs 𝑒 or elements of object 𝐸. However, only those problems are practically 

solvable by an agent which allows the agent to interact with it and halts on every input. On 

interaction with the agent, a problem 𝑒 can produce some output such that 𝑒(𝑥) → 𝑦. The 

output 𝑦 can be interpreted by the agent to identify reward signals 𝑟. Considering the 

objective of the agent is to act optimally, so as to maximize future expected total reward, let 

us assume a set of programs 𝑝 exists in another Turing complete language that can find 

optimal solutions for all such problems 𝑒. 

At least one optimal policy exists for all solvable problem environments 

Proof: Let us consider a cybernetic agent which runs a program 𝑝 in a Turing complete 

language, identified as policy for problem 𝑒. The agent is coupled with the environment in a 

sense mentioned in [9]. The problem environment’s output is consumed by the agent and 

vice-versa in an iterative manner. The environment’s output 𝑦 is interpreted as a product of 

observation and reward received, 𝑜 × 𝑟. Considering the agent’s goal is to maximize future 

expected reward on some arbitrary horizon 𝑚, an optimal policy is defined as, 



117 
 

𝑝∗ = argmax
𝑝
𝑉1𝑚
𝑝𝑒
, 𝑤ℎ𝑒𝑟𝑒 𝑉𝑘𝑚

𝑝𝑒
= ∑ 𝜇(𝑒′)∑ 𝑟𝑖

𝑝𝑒′𝑚
𝑖=𝑘𝑒′                                                      (7.1) 

𝑉𝑘𝑚
𝑝𝑒

 is the utility of the policy 𝑝 on problem environment 𝑒 in cycles 𝑘 to 𝑚. 𝑒 is a 

probabilistic mixture of problem environments 𝑒′ with probability distribution 𝜇(𝑒′). If 𝑒 is 

deterministic then 𝑒′ = 𝑒 and 𝜇(𝑒′) = 1. As per initial assumption, both 𝑒 and 𝑝 are 

programs constructed in two Turing complete languages 𝑈𝑒 and 𝑈𝑝, respectively. As they 

are Turing complete so they are Turing equivalent. Thus, any program 𝑒 have a semantically 

equivalent program 𝑝. Thus, every solvable problem environment 𝑒 have an equivalent 

program 𝑝𝑒 in 𝑈𝑝. 𝑉𝑘𝑚
𝑝𝑒

 can be calculated for any 𝑝 and finite 𝑚 if 𝑒 is known, by running 𝑒 

in coupled fashion with 𝑝 for 𝑚 steps. Considering in each step 𝑝 is allowed to write a fixed 

length (𝑙) string, a finite set of 𝑝 can be tested generating all possible combination of strings 

of a finite length 𝑚𝑙 and 𝑝∗ can be selected generating maximum 𝑉1𝑚
𝑝𝑒

. From the above 

argument, it is clear that once the problem environment 𝑒 is known there is a fixed 

algorithmic method to derive the optimal policy. Thus, every 𝑝∗ is a fixed functional 

extension of 𝑝𝑒. For every 𝑒 in 𝑈𝑒, there is a semantically equivalent 𝑝𝑒 in 𝑈𝑝 and 

consequently a 𝑝∗, although there might be many unsolvable 𝑒 and 𝑝𝑒 for which 𝑝∗ does not 

make any sense.  

Solution of any arbitrary solvable problem environment can be computed using an 

intermediate Turing complete language, a set of two lax monoidal functors and a monoidal 

product operator.  

Proof: Let 𝑃 denote a category of all such 𝑝𝑒 which semantically maps with every 𝑒 such 

that 𝑝∗ can be constructed by functionally extending 𝑝𝑒. For a single 𝑒 there can be multiple 

𝑝𝑒 which are semantically equivalent. To make a surjective functional map from 𝐸 to 𝑃 the 

𝑝𝑒 having minimum length is chosen for each 𝑒. All 𝑝 can be represented by strings 

constructed by a finite set of alphabets 𝐴𝑝 for 𝑈𝑝. Similar to 𝐸, 𝑃 is also a monoidal category 

equipped with a bi-functor 𝜎𝑝: 𝑃 ⊗ 𝑃 → 𝑃 and an identity object or empty string 𝐼𝑝.  

Let us define a lax monoidal functor between categories 𝐸 and 𝑃 that signifies the map of 

every problem from 𝐸 to 𝑃. A lax monoidal functor comes with a functor that maps objects 

between categories, a morphism to map identity, and a natural transformation to map 
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functorial product which satisfies the usual associativity and unitality conditions. 

𝐹 ∶  𝐸 → 𝑃                                                                                                                          (7.2) 

∈∶  𝐼𝑃 → 𝐹(𝐼𝐸)                                                                                                                    (7.3) 

𝜂𝐹 ∶ 𝐹(𝑒1) ⊗𝑃 𝐹(𝑒2) → 𝐹(𝑒1⊗𝐸 𝑒2), ∀𝑒1, 𝑒2 ∈ 𝐸                                                           (7.4) 

Functor 𝐹 maps semantically equivalent programs from 𝐸 to 𝑃. One way of doing it is taking 

any program in 𝑈𝑒 and convert it into 𝑈𝑝 by adding a required interpreter of 𝑈𝑒 written in 

𝑈𝑝. However monoidal product 𝜎𝑝 keeps only the shortest among semantically equivalent 

programs. Thus 𝐹 is a set of translation functions that translates any program in 𝐸 to shortest 

equivalent program in 𝑃 and preserves compositionality. As stated in equation 7.4 the usual 

commutative relation holds for 𝐹 and monoidal products of 𝐸 and 𝑃. Functor 𝐺 derives the 

program corresponding to the optimal policy for problem environment 𝐸 using the simulated 

image 𝑃 and maps that to semantically equivalent program in 𝐸. This can be done by adding 

a specific code piece in 𝑃 to derive the optimal policy using the model of the environment 

that can be interpreted by 𝑈𝑒. The code piece added by 𝐺 should also contain logic to preserve 

product operation 𝜎𝑒 in 𝐸. 

 

 

 

        (7.5) 

Equation 7.5 states that for any arbitrary solvable problem in 𝐸 there exist an optimal policy 

in 𝐸 itself which can be derived by applying functor 𝐺 ∘ 𝐹. The policy can also be constructed 

from existing sub-policies (𝑒4, 𝑒5) which may be full or partial, using the same monoidal 

product operator 𝜎𝑒 in 𝐸. If a problem environment 𝑒1 transforms into a more complex 

environment 𝑒3 the commutative diagram states that solution policy 𝑒6 can be derived by 

multiple pathways. One by applying 𝐺 ∘ 𝐹, which signifies deriving the solution from 
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scratch. The other two solution pathways are 𝐺 ∘ 𝜎𝑝 ∘  𝐹 ⊗ 𝐹 and 𝜎𝑒 ∘ 𝐺 ⊗ 𝐺 ∘  𝐹 ⊗ 𝐹. 

Both pathways reuse part of solutions found while solving subproblem 𝑒1. In many cases 

solving 𝑒1 and reusing solutions for 𝑒1 to solve 𝑒3 might be less costly in terms of resources 

like time and space. Thus, any solution can be derived by using functor 𝐹, functor 𝐺, 

monoidal product 𝜎𝑝 and intermediate Turing complete language 𝑈𝑝. Hence proved. 

7.2 FORMALIZATION OF SEED AI 

We define seed AI as the minimum algorithm which is capable of evolving and finding 

optimal solutions for a wide range of problem environments under resource constraints like 

time, space and prior knowledge. Following the abstract model, any arbitrary problem 

environment can be represented in a Turing complete language 𝑈𝑒. The solutions can be 

symbolically represented in another Turing complete language 𝑈𝑝 which can be simulated in 

𝑈𝑒. The seed AI can be represented as just another program in 𝑈𝑒. We choose the pathway 

𝐺 ∘ 𝜎𝑝 ∘  𝐹 ⊗ 𝐹 in our design of seed AI to map solutions to environment. Consequently, 

individual morphisms need to be implemented in 𝑈𝑒 to realize a concrete implementation of 

seed AI.  

The functor 𝐹 can be understood as an estimator of any problem environment 𝑒 in 𝑈𝑒, 

represented as program 𝑝 in 𝑈𝑝. Ideally 𝑝 should be exactly semantically equivalent with 

respect to 𝑒. But in real-world scenario, exact description of 𝑒 may not be known and 𝑒 can 

be estimated only by interacting with it. The quality of estimation depends on other 

environmental factors like resource constraints. Among multiple descriptions of the 

environment, the selection needs to be done based on some score that measures fitness or 

utility of the solution found using the description of the environment 𝑝 in the context of a 

specific problem environment 𝑒. The functor uses a helper function 𝜈 in 𝑈𝑒 to measure the 

utility in a specific context. Implementation of  𝐹 in 𝑈𝑒 is defined as follows, 

𝑓 ∶  𝑒 ×  𝜈 → 𝑝                                                                                                                  (7.6) 

𝜎𝑝 denotes a function constructor using composition operator, whose domain consists of all 

semantically unique and shortest programs in 𝑈𝑝. Considering 𝑈𝑝 a functional programming 
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language with a set of primitive functions or a generator set 𝜔, making 𝑃 a free monoid, all 

program equivalence can be calculated by algebraically simplifying program expressions due 

to absence of side effects. Implementation of  𝜎𝑝 in 𝑈𝑒 is defined as, 

𝜎𝑝 ∶ {

𝑝1 × 𝑝2 → 𝑝2 ∘ 𝑝1, 𝑖𝑓 𝑈𝑝(𝑝2 ∘ 𝑝1) ≢ 𝑈𝑝(𝑝1) ⋀𝑈𝑝(𝑝2 ∘ 𝑝1) ≢ 𝑈𝑝(𝑝2)

𝑝1 × 𝑝2 → 𝑝2, 𝑖𝑓 𝑈𝑝(𝑝2) ≡ 𝑈𝑝( 𝑝2 ∘ 𝑝1)

𝑝1 × 𝑝2 → 𝑝1, 𝑖𝑓 𝑈𝑝(𝑝1) ≡ 𝑈𝑝(𝑝2 ∘ 𝑝1)

                 (7.7) 

The natural transformation 𝜂𝐹 transforms the estimator function 𝑓 of a solved problem to 

find a new estimator for a new problem environment by reusing the estimator of the solved 

problem. The natural transformation in 𝑈𝑒 is derived using the estimator function 𝑓 and the 

function constructor 𝜎𝑝. Implementation of 𝜂𝐹 in 𝑈𝑒 is defined as, 

𝜂𝑓 ≡ 𝜎𝑝 ∘ (𝑓  ×  𝑓 )                                                                                                          (7.8) 

The functor 𝐺 computes the optimal solution program 𝑝𝑠𝑜𝑙 or the policy, using the 

environment description 𝑝 and transforms it to an executable 𝑒𝑠𝑜𝑙 in 𝑈𝑒. This can be done by 

adding the interpreter of  𝑈𝑝 written in 𝑈𝑒 so that 𝑝𝑠𝑜𝑙 can be interpreted in 𝑈𝑒. 𝐺 uses the 

helper function 𝜈 to find 𝑝𝑠𝑜𝑙 and consequently 𝑒𝑠𝑜𝑙. Implementation of 𝐺 in 𝑈𝑒 is given as 

follows. 

𝑔 ∶  𝑝 ×  𝜈 → 𝑒𝑠𝑜𝑙                                                                                                                (7.9) 

7.2.1 Seed AI algorithm 

For any solvable problem environment, the seed AI searches for a solution represented as a 

program in a Turing complete language. For any given problem environment 𝑒, the seed AI 

generates multiple programs as estimated representation of the problem environment and 

allocates execution time proportional to the fitness of solution programs 𝑒𝑠𝑜𝑙. This continues 

until a maximum age is reached. The fitness of a solution program is calculated by a helper 

function 𝜈, which might use the interaction history (𝑡𝑟𝑎𝑐𝑒(𝑒𝑠𝑜𝑙)) of the program with the 

problem environment to calculate the same. The fitness of the solution program also 

determines the fitness of the estimated environments (𝑝1, 𝑝2). 𝑓 selects two of the best 

estimations based on fitness and 𝜎𝑝 combines them to produce a new estimation. In order to 
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bootstrap, 𝑓 is supplied with a generator set which represents the primitives of 𝑈𝑝. 𝑔 

evaluates the new estimation by deriving the solution program and running it for a fraction 

of the total allocated runtime (𝑇𝑅) in a phase. The runtime allocation is based on expected 

fitness of the solution. If the program does not halt within the allocated runtime it is 

interrupted. Similar to the Levin’s search [41] the dynamic runtime allocation to individual 

programs alleviates the halting problem and makes the algorithm computable. 𝑇𝑝 is the total 

runtime of the program 𝑒𝑠𝑜𝑙 and 𝔼 represents the evaluator corresponding to 𝑈𝑒. After 

completion of each phase 𝑇 the total runtime allocation is doubled and the same process 

repeats.  

Algorithm 7.1 Seed AI 

Function seedAI(𝑒, 𝜈, 𝑓, 𝜎𝑝, 𝑔,maxage) 

While T < maxage 

     𝑇𝑅 = 𝑇  

     While 𝑇𝑅 ≤ 0 

         𝑓: 𝑒 ×  𝜈 × 𝑇𝑅 → 𝑝1 

         𝑓: 𝑒 ×  𝜈 × 𝑇𝑅 → 𝑝2 

         𝜎𝑝: 𝑝1 × 𝑝2 → 𝑝3 

        𝑔: 𝑝3 × 𝜈 × 𝑇𝑅 → 𝔼(𝑒𝑠𝑜𝑙 , 𝑇𝑅) × 𝑡𝑟𝑎𝑐𝑒(𝑒𝑠𝑜𝑙) × 𝑇𝑝 

        𝑇𝑅 = 𝑇𝑅 − 𝑇𝑝  

    𝑇 = 𝑇 ∗ 2  

7.2.2 Constructivism 

Constructivism is at the heart of the seed AI. Thorisson [62] already justified the need for 

constructivism in building artificial general intelligent systems. The seed AI achieves 

autonomy and adaptability by constructing estimations of problem environments, based on 

recorded action-perception history. One usual problem of the constructivist approach is 

facing exponential search space in order to find the right architecture or solution for a 

problem environment. The seed AI may also face this problem at its birth with minimal 

experiential knowledge as it needs to construct all possible programs and test them in some 

order. In course of doing so, gaining experiential knowledge will help dampen the search 

space and with the proper choice of 𝜈 the agent will gradually converge towards an optimal 

or near-optimal solution. The capability of constructing solutions for any solvable problem 

environment imparts a good generalization property to the seed AI. Yet, practically usable 

solutions may not be constructed from scratch in resource constrained environments. For 
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example, a specific problem environment may demand recognizing objects from captured 

images and picking up the objects which are recognized as apples using a robotic arm. 

Solving such an environment requires solving the subproblems of object recognition and 

robotic arm control. Creating solutions for these subproblems from scratch, in time 

constrained environment may not be practically feasible. Deep neural networks are already 

proved excellent in vision processing problems. Pretrained deep neural nets acting as object 

recognizers can be placed in the environment as a module. A robotic arm controller can also 

be placed as a library in the environment. The seed AI then constructs a program to integrate 

and control these modules in order to achieve the final goal. The addition of modules can be 

anytime without breaking the operation state of the seed AI, thus allowing integration of 

human intelligence with artificial intelligence. Such a level of abstraction in solution 

construction can also be achieved automatically by the seed AI. A seed AI may run another 

seed AI program which may construct a solution for a subproblem and place it in the 

environment as a module. Other constructed solution programs may reuse that module and 

achieve a level of abstraction.  

7.2.3 Learning 

Learning is the process of gaining experience with constrained resources based on interaction 

history with an environment so that the environment can be modified in the desired way as 

much as possible. Learning is analogous to the prediction problem with constrained 

resources. It can be defined as finding the best possible machine model 𝑀 for an environment 

with limited interaction history of action/perception, time, and space. The learned machine 

model 𝑀 can be used to predict an optimal sequence of actions for desired perceptions. Given 

a set of interaction histories an agent can find the best possible estimation of an environment 

using brute force. But it might use unlimited amount of time to find the model. Similarly, an 

expert system may tag outputs against inputs as rules, but it might need immensely large set 

of interaction history for any arbitrary environment to realistically model it, let alone 

assuming there is no effect of noise in measuring perceptions. In both cases it can be 

comfortably said that there is least amount of learning involved. Learning is essentially an 

optimization problem of finding patterns in interaction history with the environment, using 

limited resources and thereby modeling it to get maximum desired perceptions. For example, 
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while driving a car through a highway it is necessary to recognize and differentiate an animal 

lying on a road or a specific sign is written in the road. However, to avoid a collision it is 

irrelevant to identify if the animal is a wild animal or a pet of one of the car owner’s 

neighbors. While training the object recognizer to get that information may be useful but it 

will obviously need more training data and/or time and will not contribute to improving the 

desired results with respect to the car driving problem. 

The seed AI has inherent learning capability as it tries to find an estimate of the problem 

environment (𝑝3) so as to find out the program (𝑒𝑠𝑜𝑙) that generates desired set of actions. 

The usage of limited time to learn the model is already embedded in the logic as time 

allocated to evaluate a model of environment is directly proportional to the expected fitness 

of the solution. The choice of 𝜈 is important to drive the learning process. Proper choice of 

𝜈 would allow progressive learning such that it balances exploration and exploitation and the 

learned model improves with time. 𝜈 can also control the usage of limited space in the 

learning process. For example, 𝜈 considers models with smaller size more fit comparatively. 

The design of seed AI inherently adds metalearning capability. For example, suppose a 

problem environment requires finding neural architectures which provide high accuracy with 

low training effort and use minimal training examples. Then in such scenario 𝜈 helps the 

seed AI to learn to find out neural architectures with improved learning capabilities. Also, 

suppose the objective of a problem environment is to find out seed AI with better learning 

capabilities, it may generate a 𝜈 which may improve the child seed AI when evaluated by the 

parent one. This adds the capability of metalearning of metalearning and so on. 

7.2.4 Adaptability across environments 

Let us assume the seed AI acts optimally in problem environment 𝑒1 which transitions to 

environment 𝑒3 by combining with 𝑒2 in certain way. By equation 7.5 there is 𝑝1 

corresponding to 𝑒1 in the representative language 𝑈𝑝. If seed AI already learned 𝑝1 it needs 

to search for 𝑝2 corresponding to 𝑒2 which can be combined to form 𝑝3 and eventually 𝑒𝑠𝑜𝑙3 

which represents solution of 𝑒3. Thus, the seed AI effectively reuses solutions of solved 

problem environments to adapt to new problem environments if the search process is less 

costly for a given 𝜈. Otherwise, it may directly search 𝑝3 without reusing 𝑝1. In either case, 
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the seed AI is capable of transitioning to the new solution program when the problem 

environment changes, based on utility derived from action-perception trace. Making an 

instance of seed AI callable from programs constructed by the parent seed AI makes the 

search hierarchical. A problem may be automatically subdivided into subproblems and 

solved by child seed AIs and reused in the solution found by the parent seed AI.   

A practical embodied intelligent agent is born in a single continuous environment. The 

embodiment itself serves as the internal environment for the seed AI of which seed AI is a 

part. It might include several sensors, actuators, knowledge bases, other soft skills, etc. 

Sensors, actuators may be physical or virtual but they are meant to communicate with the 

environment outside embodiment. However, there should be a problem in its internal 

environment that should give the agent a drive for its intelligent behavior. It is solely an 

internal problem within the embodiment. The root level seed AI communicates with this 

problem environment and tries to search for the optimal solution. Now the question is what 

should be this problem? This problem can be anything for any arbitrary embodied agent 

depending on the objective the agent is created to serve. For a general intelligent agent, the 

problem can simply be “act optimally using all functional components present in the internal 

environment” or “strive to maintain a homeostatic condition of the internal environment”. 

This gives an internal drive for the agent. The internal environment can be influenced and 

changed by external perception signals which indirectly affect the drive of the seed AI. But 

the seed AI never communicates with the external environment which makes it impossible 

to control directly by an external being.  

Though creating an internal problem environment for a general intelligent agent may sound 

simple yet it is an engineering challenge. The root problem may consist of multiple problems 

and components. Actions and perceptions need to be properly routed between subproblems 

and seed AI. Some perceptions may get priority over others or multiple perceptions may get 

merged and transformed. For example, a physical damage in any part of the agent may 

generate a strong punishment signal irrespective of the problem in which the seed AI is 

currently engaged. Fig 7.1. Illustrates an embodied agent constructed using seed AI. The root 

problem represents the primary problem in the internal environment of the agent which may 

consist of multiple subproblems. Some subproblems may in turn communicate with external 
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environment. The seed AI communicates with the root problem and searches for solution. 

7.2.5 Recursive improvement 

Self-improvement by self-modification of an intelligent agent is necessary to adapt across 

environments and continue acting optimally [104]. Arguments provided by Hall establishes 

the usefulness of self-improvement in achieving universal intelligence and render the 

bootstrap fallacy as generalization of experience with brains and systems below the level of 

universality [105].  The seed AI is just a program synthesis and scheduling algorithm which 

makes it a synthesizer, selector, and evaluator of specific programs. Due to this property self-

modification is inherent to seed AI. If a specific program solves a specific problem it is going 

to get maximum time allocation. On changing the problem environment, the seed AI will 

eventually shift time allocation to some other program that serves as the solution for the new 

problem.  

Recursive self-improvement requires improving the self-improvement algorithm itself aka 

the seed AI. Recursive self-improvements can be found by creating a problem environment 

using the seed AI itself. Let us consider a problem environment 𝑒𝜉, where 𝜉 denotes an 

instance of seed AI. 𝑒𝜉 can run another instance of seed AI 𝜉′ with any 𝜈, 𝑓, 𝑔 and 𝜎𝑝 when 

interacting with 𝜉, considering 𝜉 can generate/modify arbitrary 𝜈, 𝑓, 𝑔 and 𝜎𝑝 in 𝑈𝑒 which 

serves as parameters for 𝜉′.  𝑒𝜉 generates a positive reward if the fitness or utility of instance 

𝜉′ exceeds all previous fitness when measured with 𝜈 with which 𝜉 is running. Considering 

𝜉 is also running within 𝑒𝜉, 𝑒𝜉 generates reward if 𝜈(𝜉′) > 𝜈(𝜉). 𝜈(𝜉) measures the utility 

 

Figure 7.1 Architecture of an embodied intelligent agent 
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of 𝜉 with respect to the root problem. 𝜉′ can be represented by a program generated by 𝜉 

while interacting with subproblem 𝑒𝜉. Increment of the utility of 𝜉 in general indicates 

improvement of 𝜉 itself. 𝜈 can be a function whose one component can represent future 

expected reward which makes one of the goals of 𝜉 is to maximize total future expected 

reward with respect to root problem. If 𝑒𝜉 is a part of root problem then finding self-

improvement of itself is a part of the goal of 𝜉. In such scenario, if  𝜉′ performs better than 

𝜉 with respect to root problem in general then 𝜈(𝜉′) > 𝜈(𝜉). Getting rewards for 𝜉′ from 

𝑒𝜉 positively reinforces the value of 𝜈(𝜉′) and its fitness gradually increases. As fitness of  

𝜉′ increases, 𝜉 allocates more time to 𝜉′ and it may eventually converge to a limit. Thus, it 

essentially means 𝜉′ evolved as the improved version of 𝜉 and occupies a major share of the 

execution time. This can happen recursively until no further improvements are found with 

respect to the root problem. Making the agent a part of the environment itself imparts the 

ability to self-modify [106]. Thus, the trick of achieving recursive improvement is making 

the solution part of the problem environment such that improvement of the solution can be 

automatically found by solving a problem environment which essentially asks for 

improvement of the prior solution. 

7.3 SEED AI IMPLEMENTATION WITH UNIVERSAL SEARCH 

The metasearcher is a physical implementation of seed AI using universal search. The 

metasearcher implements the synthesizer, the fitness function, and the evaluator. The 

evaluator serves as the interpreter of the programming model. The following functions 

demonstrate the implementation of each of the sub-methods of the seed AI. The metasearcher 

generates a search graph to solve a problem environment. The search graph consists of a 

cluster of generated programs in the programming model. Individual programs are executed 

and perceptions from the environment are recorded and reward signals are extracted for each 

program. The sequence of rewards constitutes the output trace of each program which in turn 

is used to update the fitness. The search graph loosely resembles a model of the problem 

environment which can be used to estimate expected reward on executing a sequence of 

actions as defined by a specific program graph.  

The fitness of a program is calculated by the program probability which in turn indicates the 
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fitness of a search graph. The maximum fitness among all programs in a search graph denotes 

the fitness of the search graph itself. The program probabilities are assigned and updated in 

the same strategy as mentioned in Chapter 5. Program probability distribution is updated 

incrementally based on the sequence of rewards received by individual programs. The 

probability distribution is updated using gradient ascent so as to maximize the total future 

expected reward, as defined by the objective function 𝐽(𝑝). xk is a program in search graph 

with index 𝑘, i' represents the horizon and 𝑝(ri|xk) represents conditional probability for 

gaining reward ri when program xk is extended to xi.  

The synthesizer selects program graphs (𝑥) from search graph based on fitness and extends 

them by adding another selected function node (𝑦). The 𝜎(. , . ) is the composition operator 

which composes two program graphs and produces a third program graph. If the new 

synthesized program is not semantically redundant, it is added to the search graph and 

resultantly modifies it. Semantically redundant programs with lower fitness are not added to 

the search graph to avoid the problem of over-representation in the sense mentioned by Looks 

and Goertzel [18]. The synthesizer implements the natural transformation 𝜂𝐹 in the seed AI. 

The evaluator selects the optimal program graph from the search graph, based on fitness and 

evaluates it using the interpreter of the programming model. The evaluator is allocated a time 

proportional to the fitness of the program graph where 𝑐 is a predefined constant value and 

0 < 𝑐 ≤ 1. If the runtime of the program exceeds the allocated time it is interrupted else the 

program is marked as executed and runtime (𝑇𝑟) is recorded.  

The metasearcher implements the main body of the seed AI using the helper functions, 

namely, fitness, synthesizer, and evaluator. The metasearcher is executed in phases and in 

each phase, a specific total runtime is allocated (𝑇𝑅). Once the total allocated time is 

consumed it is doubled in each subsequent phase and this continues until the maximum age 

(𝑇𝑙𝑖𝑚𝑖𝑡) is reached. 

Algorithm 7.2 Seed AI implementation with the metasearcher 

Function fitness(X, x) 

    If 𝑥 ∉ 𝑋 

        Assign default probability to 𝑥 and add in 𝑝𝑋
∗  

    𝐽(𝑝) = ∑ ∑ p(ri|xk)ri∀ i > k ⋀∀ i < i
'∀ xk∈𝑋  
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    𝑝𝑋
∗ ← argmax

𝑝
𝐽(𝑝) 

    𝑝𝑥
∗ ← probability of x from 𝑝𝑋

∗  

    Return 𝑝𝑥
∗  

 

Function synthesizer(X,𝑇, 𝑦) 
    𝑥 = argmax

𝑥
𝑓𝑖𝑡𝑛𝑒𝑠𝑠(X, 𝜎(𝑥, 𝑦))|∀𝑥∈𝑋 𝑎𝑛𝑑 𝑥 𝑖𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑𝑓𝑖𝑡𝑛𝑒𝑠𝑠(X, 𝜎(𝑥, 𝑦)) ∗ 𝑇 >

1⋀𝜎(𝑥, 𝑦) ∉ 𝑋   
    If 𝑥 exists 

        Add 𝜎(𝑥, 𝑦) in 𝑋 

   Return  

 

Function evaluator(X, 𝑇) 
    𝑥 = argmax

𝑥
𝑓𝑖𝑡𝑛𝑒𝑠𝑠(X, x)|∀𝑥∈𝑋 𝑎𝑛𝑑 𝑥 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑𝑓𝑖𝑡𝑛𝑒𝑠𝑠(X, x) ∗ 𝑇 > 1 

    𝑇𝑟 ← 𝑒𝑣𝑎𝑙(𝑥, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(X, x) ∗ 𝑇/𝑐)  
    If 𝑥 halts in  𝑓𝑖𝑡𝑛𝑒𝑠𝑠(X, x) ∗ 𝑇/𝑐 

        Mark 𝑥 as executed 

    Return  𝑇𝑟 

 

Function metasearcher(𝑇𝑙𝑖𝑚𝑖𝑡 , 𝑌) 
    𝑇 = 2 

    While 𝑇 < 𝑇𝑙𝑖𝑚𝑖𝑡 
        𝑇𝑅 = 𝑇 

        While 𝑇𝑅 > 0 

             For each y in 𝑌 

                synthesizer(X,𝑇, 𝑦) 

                 𝑇𝑟 = evaluator(X, 𝑇) 
                 𝑇𝑅 = 𝑇𝑅 − 𝑇𝑟 

        𝑇 = 𝑇 ∗ 2 

7.3.1 Agent as an environment 

After introducing an implementation of seed AI naturally, a question arises – What 

constitutes an intelligent agent? Is it the seed AI? No! The seed AI is a part of the 

environment or rather the internal environment of an embodied agent. The seed AI acts as a 

controller or integrator of various components of its internal environment including a copy 

of itself. The seed AI may generate a better version of itself and assign maximum resources 

to it. An agent can be constructed by building and connecting multiple components which 

constitutes its internal environment. An embodied agent may contain several sensors, 

actuators, internal knowledge base, reasoning capability, etc. All have some functional 

interfaces along with some subproblems to train the agent to use these capabilities. The agent 

has a root problem that gives the internal drive to do everything that an agent does. While 

acting optimally against the root problem it may reuse solution programs for individual 
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subproblems and integrate them with other programs. Interaction with the external 

environment is optional, yet to make an agent useful in real-world, it is necessary. 

Communication with the external environment is carried out with functionalities available in 

the internal environment of the agent. The embodied agent may be supplied with various 

inbuilt capabilities to act optimally against the external environment and the list may be 

augmented from time to time. The seed AI achieves autonomy by learning to integrate and 

control the functional capabilities available within the embodied agent so as to make it useful 

in an external environment.  

7.3.2 Case study 

Experiments are conducted with the prototype in a heterogenous maze environment. Fig. 7.2 

illustrates the maze environment. The prototype acts as an agent in the maze environment 

whose objective is to traverse through the cells in the maze and reach the goal state. The 

rewards and images of direction in the vision zone help guide the search. This is a resettable 

environment and the agent is initially placed in [0,0] cell. Five actions are allowed in the 

environment, each shifting the agent in a specific direction. Namely 1 – move front, 2 – move 

left, 3 – move right, 4 – move back, 0 – return current cells observation. The vision zone 

returns base64 encoded image of the direction of the goal state. The reward distribution and 

the vision zone together make it a heterogeneous problem environment. In order to reach the 

goal state, the agent has to initially follow the reward distribution and in later stage, it has to 

perform optical character recognition to decide the direction of movement. The agent 

searches through the program space and finds a program, executing which would generate a 

sequence of actions to lead the agent to the goal state. The problem environment and 

components external to the programming model are implemented as microservices. All the 

microservices are configured to take an action request as input and returns observation, 

reward pair as output. The agent interacts with these microservices through an interface that 

serves as the root problem environment for the agent. The following functions are used as 

generator set for the metasearcher. iW, 1.K, 2.K, 3.K, 4.K, maze, ocreco, lp. The maze and 

ocreco are composite node functions. Each contains a similar program graph as illustrated in 

Fig. 7.3a. For ocreco the node maze.K is replaced with ocreco.K. The composite nodes act 

as functions to interact with the maze environment and OCR component. The maze node 
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sends the input argument as an action to the maze environment and returns the observation. 

The cumulative reward obtained by running a program is used by the fitness function to 

update the probability distribution. The ocreco node takes an image encoded in base64 and 

returns the identified character in it. For any other input, it returns 0. Fig 7.3b. illustrates the 

program graph found by the metasearcher. There is a pattern in the solution which has been 

identified in the solution. The movement pattern is repeated 4 times in a loop to reach the 

goal state. The reward distribution is used to update the probability distribution of the 

programs and expedite the search process. The solution program took direct movement 

actions in the maze environment as well as used the OCR component wherever necessary to 

solve this heterogenous problem environment optimally.  

  0 1 1 0 0 0 0 
 

0 0 0 0 0 0 0 

0.11 1 0 0 1 0 0 
 

0 0 0 0 0 0 0 

0 0 0 1 0 0 0 
 

0 0 0 0 0 0 0 

0.26 1 0 0 0 1 0 
 

0 0 0 0 0 0 0 

0.32 0 0 1 1 0 0 
 

2 1 1 0 0 0 0 

1 0 0.32 0 0 0 0 
 

2 2 0 0 0 0 0 

0 0 0 0 1 0 0 
 

2 4 4 0 0 0 0 

0 0 0 0 1 0 0 
 

0 0 0 0 0 0 0 

a) b) 

Figure 7.2 Maze environment a) reward distribution. The grey cell is the goal state. Cells containing 1 

generate -0.5 punishment. All other cells generate rewards as specified in the illustration. b) The grey region 

denotes the vision zone. Each cell in the grey region returns a base64 encoded image of the number 

specified as observation. All other cells return 0 as observation 

   

a)                                                                                       b) 

Figure 7.3 Solution program graphs a) Program graph for the maze composite node. b) solution program 

graph found by the metasearcher for the maze problem environment. 
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7.4 CONCLUSION 

The presented formal architecture of seed AI provides guidance to implement any general 

intelligent system. It has been proved that the presented model of the seed AI is theoretically 

capable of finding a solution for any solvable problem. The seed AI algorithm states that a 

properly designed synthesizer of arbitrary computation logic and a scheduler is sufficient to 

achieve general AI. This alleviates the problem of finding an AGI system design from scratch 

through different approaches, as any system could evolve into AGI system if they are 

structurally similar to the seed AI. The seed AI guarantees to achieve generality by adapting 

across different solvable problem environments. It has also been discussed how the seed AI 

could achieve different properties of general intelligent systems, like learning, self-

improvement, constructivism, etc. An implementation roadmap of the seed AI is also 

demonstrated and the developed prototype is experimented in a toy problem. However 

physical implementation of a full-fledged general intelligent system is still an engineering 

challenge, especially designing an appropriate fitness function, the core internal components, 

the subproblem environments, and the root problem. Multiple subproblems need to be 

designed based on the situatedness of the system which would allow communicating with 

the external environment. On principle, the seed AI should be able to generate subproblems. 

But its engineering setting, feasibility, and applicability need to be investigated. The 

limitations of the seed AI in an embodied agent also needs to be investigated. 
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8 CONCLUSION AND FUTURE WORK 

 

Artificial Intelligence has revolutionized various fields and made a significant impact on the 

way we solve problems. General Problem Solving (GPS) is an important area of research in 

AI as it seeks to develop intelligent systems that can solve a wide range of problems, like 

how humans do. GPS is not just about finding a solution to a specific problem, but it is about 

developing intelligent systems that can apply knowledge from one problem domain to 

another, generalize knowledge to new situations, and adapt to new environments.  

The importance of GPS lies in its potential to automate complex tasks that are currently done 

by humans. This could lead to a significant reduction in time and cost, increased efficiency, 

and the ability to solve previously unsolvable problems. For example, GPS could help in 

medical diagnosis, robotics operations, and scientific research, where the amount of data to 

be processed is enormous and requires extensive human effort. 

However, achieving GPS is a challenging task. There are many reasons for this difficulty. 

One major challenge is the inherent complexity of many problems that require a deep 

understanding of the domain knowledge. This domain knowledge is often not explicitly 

stated and requires sophisticated methods for discovering, modeling, and integrating it into 

the problem-solving process. Additionally, many problems require reasoning with 

uncertainty, which adds another layer of complexity. 

Another challenge is the need for a flexible and adaptable system that can learn and reason 

across multiple domains. This requires not only the ability to learn from data but also to apply 

that learning to new situations, generalize knowledge to new domains, and integrate different 

types of knowledge. 

Moreover, building a GPS system requires the integration of different AI techniques such as 

knowledge representation, reasoning, planning, learning, and perception. Combining these 

techniques into a cohesive and efficient system is a significant challenge. 

In the first part of this thesis, we reviewed the current state of the art in general problem 

solving, using AI. We discussed the limitations of traditional AI approaches and the need for 
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more advanced techniques to solve complex problems. We also presented an overview of 

different approaches to problem solving, including classical AI, connectionist AI, program 

search based AI and integrative AI. The current AI systems lack a robust and flexible 

cognitive architecture, which is necessary to support GPS. The cognitive architecture must 

be able to integrate knowledge and reasoning from multiple sources, learn from experience, 

and adapt to new situations and act optimally under constrained resources like space, time 

and knowledge. Developing such an architecture requires a deep understanding of cognitive 

processes, which is still an active area of research. 

The survey chapter provides a comprehensive review of the existing AI prior arts and their 

limitations in tackling the general problem-solving task. From the analysis of the various 

techniques and approaches employed in AI, it is evident that none of the existing methods 

are completely practically feasible to handle wide range of general problem-solving tasks, 

specially under constrained resources. While they have been successful in solving specific 

problems, they lack the flexibility and adaptability to solve new problems under constrained 

resources, that they have not been explicitly designed for. 

The review of the existing AI methods reveals that most of them rely on a combination of 

techniques such as search algorithms, rule-based systems, and machine learning models. 

These methods are tailored towards solving specific problems and are designed to optimize 

for specific objectives, such as accuracy or speed. They lack the ability to generalize and 

adapt to new problem domains under constrained resources, which limits their usefulness in 

real-world applications. 

We proposed several methods and techniques to handle the task of general problem solving 

in a resource constrained environment, making it practically feasible. Though our work may 

not be considered as the final solution for general-problem solving, yet our contributions lie 

in providing few novel methods and frameworks that can be used in further development and 

enhancement of general-problem solving agents.  

The functional dataflow graph programming model proposed in this thesis has proven to be 

an effective tool in building an integrative AI platform that addresses the challenges of 

solving heterogeneous AI tasks. This platform allows the use of black-box AI modules and 

IoT devices as microservices, as well as the construction of white-box program graphs for 
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implementing arbitrary integration logic. The platform's functional abstraction of 

components offers a high level of abstraction, allowing developers and architects to build 

and implement AI architectures with low engineering effort. However, this higher level of 

abstraction comes with some limitations. The available capability of tweaking low-level 

implementation is limited, since most of it is abstracted using predefined methods. 

Nonetheless, the platform opens the possibility of automatic programming, where machine 

learning models can be trained for automatic construction of integration programs to solve 

problems. Due to functional nature of the programming model, it is easier to construct 

programs mathematically. Large language models can be trained to generate more accurate 

programs in this programming model based on natural language inputs.  

The integration platform's future scope is promising, especially in the area of General 

Problem Solving (GPS) systems. The platform's ability to handle heterogeneous tasks 

through an integrative approach can be used to construct GPS systems. Due to the graphical 

nature of the programming model, an user interface constructed on top of this platform would 

provide a low-code platform to integrate and construct AI solutions graphically. Treating AI 

modules and IoT devices as microservices helps building truly distributed AI architectures 

within the platform.  

The development of a solution searcher for general problems is a significant advancement in 

the field of AI for general problem solving. The use of a functional dataflow graph 

programming model, metasearcher, incremental learning, and genetic programming helped 

in creating an efficient and effective solution searcher that can tackle the problem of 

combinatorial explosion quite well during solution search. 

The functional dataflow graph programming model provides a flexible and scalable approach 

for building AI architectures. This allowed the development of a modular and reusable 

architecture that could be easily integrated with other AI modules. The use of a metasearcher 

helped in enhancing the search capabilities of the system by combining multiple search 

techniques.  

Incremental learning was used to improve the performance of the system by continuously 

updating the knowledge base. This allowed the system to adapt and learn from new data and 

experiences. The use of genetic programming helped in evolving solutions by creating new 
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combinations of existing solutions. This approach helped in tackling the problem of 

combinatorial explosion by reducing the search space. 

The solution searcher developed using these techniques has shown promising results in 

solving complex problems. However, there is still much work to be done to improve the 

performance of the system. The system could be further optimized for parallel processing to 

improve the speed of the search. 

The proposed theoretical structure of seed AI provides a promising path for the construction 

of general problem solving systems. The seed AI model presents a formal architecture that 

guides the implementation of a general intelligent system that is theoretically capable of 

solving any solvable problem. The model suggests that a properly designed synthesizer of 

arbitrary computation logic and a scheduler is sufficient to achieve general AI, thereby 

alleviating the problem of finding an AGI system design from scratch through different 

approaches. 

Furthermore, the seed AI algorithm guarantees the achievement of generality by adapting 

across different solvable problem environments, as well as achieving different properties of 

general intelligent systems such as learning, self-improvement, and constructivism. An 

implementation roadmap of the seed AI has been demonstrated, and a prototype based on the 

metasearcher has been developed and experimented within a toy problem. 

However, it is important to note that the physical implementation of a full-fledged general 

intelligent system is still an engineering challenge, and designing an appropriate fitness 

function, the core internal components, the subproblem environments, and the root problem, 

present significant challenges. Additionally, multiple subproblems need to be designed based 

on the situatedness of the system, which would allow communication with the external 

environment. While the seed AI should be able to generate subproblems, its engineering 

setting, feasibility, and applicability require further investigation. 

Nonetheless, the proposed theoretical structure of seed AI provides a solid foundation for the 

construction of general problem solving systems, and its principles can guide future research 

towards achieving the goal of building truly general AI systems capable of solving complex 

and diverse problems. By using the seed AI model as a guide, researchers can explore new 



136 
 

avenues of research to overcome the limitations of existing AI prior arts in tackling general 

problem solving. 

The research presented in this thesis opens up many avenues for future work. Here are some 

potential areas of investigation: 

1) Real-world application of the integrative AI platform: The proposed integrative AI 

platform has shown great potential in solving heterogeneous AI tasks. However, 

further research is needed to test its practical application in real-world settings. An 

user interface can also be built to make it a low code platform for constructing AI 

architectures. It would be interesting to investigate how the platform can be used in 

complex problem environments, such as healthcare, finance, and transportation. 

2) Improvement of the proposed functional dataflow graph programming model: The 

functional dataflow graph programming model proposed in this thesis has proved to 

be effective representational language in building the integrative AI platform. 

Parallelizing execution flows can significantly speed up evaluation of programs. It 

may be explored how program executions can parallelized. Functions for program 

construction and manipulation needs to be part of the programming model, so that 

programs can generate and manipulate other programs. It can be explored how to 

make them as node functions without hampering the purity of the language. 

3) Extension of the proposed solution searcher for general problems: The proposed 

solution searcher for general problems using metasearcher, incremental learning, and 

genetic programming has shown promising results in addressing the problem of 

combinatorial explosion. However, there is room for further research on how to 

improve the efficiency and effectiveness of the algorithm, as well as its applicability 

to different types of problem environments. Introspection capability can be added in 

the programming model which would enable self-generation, self-modification, and 

self-evaluation of code. This would allow the metasearcher to be a part of the program 

corpus in the search graph, thus allowing the possibility of evolution and automatic 

improvement of the searcher program itself. The metasearcher program can also be 

added as an external function in the environment. This would allow searching through 

a new program space within another search and consequently allow hierarchical 
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problem solving. Another challenge with the metasearcher is, it is still slow for many 

real-world problems. However, the searcher can be parallelized and that would 

significantly improve its runtime.  

4) Further investigation on seed AI: The theoretical structure of seed AI proposed in this 

thesis provides a promising direction for constructing general intelligent systems. 

One of the major parts of the seed AI is the fitness function. It may be explored if a 

general fitness function can be formalized that would on principle provide the drive 

for a general problem solver. Agents can be built and tested using other methods, like 

neural networks, following the structure of the seed AI. 

5) Investigating the use of the proposed metasearcher for other types of problems: 

The proposed metasearcher has shown promising results in finding solutions for 

different problem instances. Future research can investigate the applicability of the 

proposed approach to other types of problems, such as finding integrative AI 

architectures for situated intelligence. It can be tested in problems where the problem 

space changes over time, such as in robotics or adversary planning problems. 

The future research directions outlined above are just a few of the many avenues that can be 

explored to further advance the state-of-the-art in this field. 
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