
A MULTIMODEL CLOUD DATA STORAGE SYSTEM
HAVING AN OBJECT BASED VIEW

Thesis Submitted by

Anindita Sarkar Mondal

DOCTOR OF PHILOSOPHY (ENGINEERING)

Department of Information Technology

Faculty Council of Engineering & Technology

Jadavpur University

Kolkata, India

2023

Supervisors Details:

Name: Prof. Samiran Chattapadhyay

Designation: Professor
Institution of the Supervisor:
Department of Information Technology

Jadavpur University, Salt Lake Campus

E-mail samiranc.ju@gmail.com

Kolkata-700106

West Bengal

India

AND

Name: Prof. Anirban Mukhopadhyay

Designation: Professor
Institution of the Supervisor:
Department of Computer Science and Engineering,

University of Kalyani, Kalyani, Nadia

E-mail anirbanbuba@yahoo.com

Kalyani-741235

West Bengal

India

Page ii of 126

List of Publications
Journals

1. Anindita Sarkar Mondal, Anirban Mukhopadhyay, Samiran Chattopadhyay, "Ma-

chine Learning-driven Automatic Storage Space Recommendation for Object-based

Cloud Storage System", Complex & Intelligent System Journal, DOI: 10.1007/s40747-

021-00517-4, 2021

2. Anindita Sarkar Mondal, Somnath Mukhopadhyay, Kartick Chandra Mondal, Sami-

ran Chattopadhyay, "A Double Threshold Based Power Aware Honey Bee Cloud Load

Balancing Algorithm", SN Computer Science Journal, Volume: 2, Article number: 395,

2021.

3. Anindita Sarkar Mondal, Sarmistha Neogy, Nandini Mukherjee, Samiran Chattopad-

hyay, "Performance analysis of an efficient object-based schema oriented data storage

system handling health data." Innovations System Software Engineering (ISSE), Vol:

16, Issue: 1, Pages: 63-77, 2020.

4. Anindita Sarkar Mondal, Sarmistha Neogy, Nandini Mukherjee, and Samiran Chat-

topadhyay, "A survey of issues and solutions of health data management systems."

Innovations Syst Softw Eng (ISSE), Vol: 15, Pages: 155–166, 2019, doi:10.1007/s11334-

019-00336-4

5. Anindita SarkarMondal, Madhupa Sanyal, SamiranChattopadhyay, andKartick Chan-

dra Mondal, "Performance Analysis of Structured, Un-structured & Cloud Storage

Systems", International Journal of Ambient Computing and Intelligence (IJCAI), IGI

Global (SI titled: "Storage, Process and Intelligent Systems”) Vol: 10, Issue: 1, Pages:

1-29, 2019, doi: 10.4018/ IJACI. 2019010101

International Conferences

1. Anindita Sarkar Mondal, Samiran Chattapadhyay, “Comparative Analysis of Load

BalancingAlgorithms in Cloud Computing”, Proceedings of International Conference

on Advanced Computing Applications - ICACA 2021, AISC series Springer, Kolkata,

(Conference Proceedings), 2021

2. Anindita Sarkar Mondal, Kshitij Pant, Samiran Chattapadhyay, "DRSQ - A Dynamic

Resource Service Quality Based Load Balancing Algorithm." 2nd International Con-

ference on Computational Intelligence, Communications, and Business Analytics (CI-

CBA 2018), Communications in Computer and Information Science, Springer, Singa-

pore, ISSN: 18650929, Kalyani, India, (Conference Proceedings), 2018.

3. Anindita SarkarMondal, Madhupa Sanyal, SamiranChattapadhyay, andKartick Chan-

draMondal, (2017) "ComparativeAnalysis of Structured andUn-structuredDatabases."

In: Computational Intelligence, Communications, and Business Analytics (CICBA

2017), Springer, Singapore, vol 776, pages 226-241,(Conference Proceedings), 2017.

Page iii of 126

4. Anindita Sarkar Mondal, Samiran Chattapadhyay, (2017) "A Storage Model for Han-

dling Big Data Variety." In: Computational Intelligence, Communications, and Busi-

ness Analytics (CICBA 2017), Springer, Singapore, vol 775, pp 59-71, (Conference

Proceedings), 2017.

5. Anindita Sarkar Mondal, Samiran Chattopadhyay, Sarmistha Neogy, and Nandini

Mukherjee, (2016) "Object based schema oriented data storage system for supporting

heterogeneous data." In IEEE International Conference on Advances in Computing,

Communications and Informatics (ICACCI), Jaipur, pp. 1025-1032, 2016, (Conference

Proceedings), 2016.

6. Anindta SarkarMondal, Samiran Chattopadhyay, "A Context Aware Big Data Analyt-

ics Service-Centric Process Modeling Approach", M. Khan et al. (eds.), Smart Cities:

A Data Analytics Perspective, Lecture Notes in Intelligent Transportation and Infras-

tructure. (Book Chapter)

7. Kartick Chandra Mondal, Sayan Bhattacharya, Anindita Sarkar, (2017) "A Suffix Tree

based Parallel Approach for Association Rule Mining and Biclustering." In proceed-

ings of 1st International Conference on Computer, Electrical & Communication En-

gineering (ICCECE 2016), Kolkata, India. (Conference Proceedings)

8. Debasmita Pal, Anindita Sarkar, Kartick ChandraMondal, (2017) "Knowledge Discov-

ery From HIV-1-Human PPIs Assimilating Interaction Keywords." In proceedings of

1st International Conference on Computer, Electrical & Communication Engineering

(ICCECE 2016), Kolkata, India. (Conference Proceedings)

9. Kartick Chandra Mondal, Sayan Bhattacharya, Anindita Sarkar, (2017) "Comparative

Study of Parallelism on Data Mining." In: Mandal J., Satapathy S., Sanyal M., Bhateja

V. (eds) Proceedings of the First International Conference on Intelligent Computing

and Communication, ICIC2 2016, Advances in Intelligent Systems and Computing,

Springer, Singapore, vol 458, Pages: 195-204 (Conference Proceedings)

10. Soumyadeep Basu Chowdhury, Debasmita Pal, Anindita Sarkar, Kartick Chandra

Mondal, (2017) "Closure Based Integrated Approach for Associative Classifier." In:

Mandal J., Satapathy S., Sanyal M., Bhateja V. (eds) Proceedings of the First Interna-

tional Conference on Intelligent Computing andCommunication, ICIC2 2016, Kalyani,

Nodia, Pages 225 - 235, (Conference Proceedings)

11. Kartick Chandra Mondal, Ankur Paul, Anindita Sarkar, (2017) "Brief Review on Op-

timal Suffix Data Structure." In: Mandal J., Satapathy S., Sanyal M., Bhateja V. (eds)

Proceedings of the First International Conference on Intelligent Computing and Com-

munication (ICIC2 2016), Kalyani, Nodia, Pages 205 - 214, (Conference Proceedings)

Page iv of 126

List of Patents
• Innovation Patent Number: 2021107061, Kartick ChandraMondal, SomnathMukhopad-

hyay, Sunita Sarkar, Samiran Chattopadhyay, Moumita Ghosh, Anindita Sarkar Mon-

dal, Rohmatul Fajriyah, "Suffix Forest: A novel in-memory data structure for analyz-

ing time-series data", Term of Patent: Eight years from 24 August 2021, Australian

Govt. IP Australia.

Page v of 126

List of Presentations in National/
International/ Conferences/ Workshops:

International Conference Presentation

1. Anindita Sarkar Mondal, Samiran Chattapadhyay, “Comparative Analysis of Load

BalancingAlgorithms in Cloud Computing”, Proceedings of International Conference

on Advanced Computing Applications - ICACA 2021, AISC series Springer, Kolkata,

(Conference Proceedings), 2021

2. Anindita Sarkar Mondal, Samiran Chattapadhyay, (2017) "A Storage Model for Han-

dling Big Data Variety." In: Computational Intelligence, Communications, and Busi-

ness Analytics (CICBA 2017), Springer, Singapore, vol 775, pp 59-71, (Conference

Proceedings), 2017.

3. Anindita Sarkar Mondal, Samiran Chattopadhyay, Sarmistha Neogy, and Nandini

Mukherjee, (2016) "Object based schema oriented data storage system for supporting

heterogeneous data." In IEEE International Conference on Advances in Computing,

Communications and Informatics (ICACCI), Jaipur, pp. 1025-1032, 2016, (Conference

Proceedings), 2016.

4. Kartick Chandra Mondal, Sayan Bhattacharya, Anindita Sarkar, (2017) "Comparative

Study of Parallelism on Data Mining." In: Mandal J., Satapathy S., Sanyal M., Bhateja

V. (eds) Proceedings of the First International Conference on Intelligent Computing

and Communication, ICIC2 2016, Advances in Intelligent Systems and Computing,

Springer, Singapore, vol 458, Pages: 195-204 (Conference Proceedings)

Page vi of 126

PROFORMA – 1

“Statement of Originality”

I ANINDITA SARKAR MONDAL registered on 18/06/2019 do hereby declare that

this thesis entitled “A MULTIMODEL CLOUD DATA STORAGE SYSTEM HAVING
AN OBJECT BASED VIEW” contains literature survey and original research work done

by the undersigned candidate as part of Doctoral studies.

All information in this thesis have been obtained and presented in accordance with ex-

isting academic rules and ethical conduct. I declare that, as required by these rules and

conduct, I have fully cited and referred all materials and results that are not original to this

work.

I also declare that I have checked this thesis as per the “Policy on Anti Plagiarism, Ja-

davpur University, 2019”, and the level of similarity as checked by iThenticate software is

07 %.

Signature of Candidate:

—————————

(Anindita Sarkar Mondal)

Date :

Certified by Supervisors:

(Signature with date, seal)

1.————- ————–

(Samiran Chattopadhyay)

2.————- ————–

(Anirban Mukhopadhyay)

Page vii of 126

PROFORMA – 2

“CERTIFICATE FROM THE SUPERVISORS”

This is to certify that the thesis entitled “A MULTIMODEL CLOUD DATA STOR-
AGE SYSTEM HAVING AN OBJECT BASED VIEW” submitted by Ms. ANINDITA
SARKAR MONDAL, who got her name registered on 18/06/2019 for the award of Ph.D.

(Engg.) degree of Jadavpur University is absolutely based upon her own work under the

supervision of Prof. Samiran Chattapadhyay, Department of Information Technol-
ogy, Jadavpur University, Kolkata and Prof. Anirban Mukhopadhyay, Department
of Computer Science and Engineering, University of Kalyani, Kalyani, Nodia and

that neither her thesis nor any part of the thesis has been submitted for any degree/diploma

or any other academic award anywhere before.

1. ——————————————-

Signature of the Supervisor

and date with Office Seal

2. ——————————————-

Signature of the Supervisor

and date with Office Seal

Page viii of 126

ACKNOWLEDGEMENT

First of all, I wish to express my profound regards to my supervisor, Prof. Samiran
Chattapadhyay, Professor, Department of Information Technology, Jadavpur University,

and Prof. AnirbanMukhopadhyay, Professor, Department of Computer Science and En-

gineering, University of Kalyani, for their valuable guidance, scholarly inputs and consis-

tent encouragement I received throughout the research work. No word would be sufficient

to express my gratitude towards them. This feat was possible only because of the uncon-

ditional support provided by them. I consider it as a great opportunity to do my doctoral

programme under their guidance and to learn from their research expertise.

I would like to express my deepest appreciation towards Prof. Nandini Mukher-
jee, Department of Computer Science and Engineering, Jadavpur University, and Prof.
Sarmistha Neogy, Department of Computer Science and Engineering, Jadavpur Univer-

sity for their invaluable guidance supported me in completing this thesis. They were a great

inspiration on the path of my research. Words are inadequate to express a deep sense of

gratitude to members of the doctoral committee, Jadavpur University, Kolkata.

I gratefully acknowledge the research project “RemoteHealth: A Framework for Health-

care Services using Mobile and Sensor-Cloud Technologies” in ITRA research scheme un-

der Prof. Nandini Mukherjee, Department of Computer Science and Engineering, Jadavpur

University who is PI of the project. It helps me to find out my research challenge in real

domain. I would like to thank School of Mobile Computing and Communication depart-

ment, Jadavpur University, for supporting the lab work. I also wants to thank all the asso-

ciated technical and nontechnical members involved in the laboratory who helps to finish

the tasks. I also wants to thank to the RUSA 2.0 research scheme as the research funding

agency.

All of them helped me directly or indirectly during this memorable journey. I also ac-

knowledge all Cloud Storage System researchers as well as data scientists whose works in-

spired me to undertake this research. At last, I must express my sincere heartfelt gratitude

to all the members of the Department of Information Technology of Jadavpur University

who helped me directly or indirectly during this course of work.

The thesis would not be possible without the technical and moral support of my hus-

band, Dr. Kartick Chandra Mondal who have shown condense in me and supported me

in completing my thesis work. My Parents and In-Laws have always been there to show

their blessing and inspiration to complete this thesis work. My little son Kaayaan Mondal

is the source of my strength to keep going when I feel like giving up. Above all, I owe it

all to Almighty God Lord Sri Krishna for granting me the wisdom, health, and strength to

undertake this research task and enabling me to its completion.

Anindita Sarkar Mondal

Page ix of 126

Page x of 126

Abstract

As the digital data generation grew, there has been an enormous increase in the demand

for storing such data. This gave rise to the paradigm of cloud storage system. Side by side,

cloud storage system is no longer limited to tasks of data storing or data accessing; data

management became an integral part of such cloud storage systems. Data processing or

knowledge extraction related jobs are also dependent on the cloud storage system for data

accessing or data storage purposes. However, to build up such a cloud storage system, one

needs to consider certain points, such as virtual machines as resources, storage model for

deciding the storage architecture, load balancing technologies for supporting the multi-

tenancy, security for protecting the data, monitoring unit to observe the health status of

the system and supporting the pay as you go model.

The cloud storage system developer faces a lot of challenges and difficulties when they

want to consider all these aspects and their internal relationship. The foremost challenge

is the characteristics presents in the cloud storage system. Since, this data is not only big in

volume, rather, it also has other complex data characteristics (e.g., value, variety, velocity,

veracity). To store and access such unstructured or semi-structured data, enough resources

are necessary. These resources can be any hardware (e.g., data rack) or software (e.g., model,

algorithm, tool).

In this thesis, the main focus is to develop a novel cloud storage system where the issue

of big data variety property is handled. A series of frameworks, algorithms, and models

are presented to reach this objective. Different concepts of cloud storage systems such as

the association of multiple storage devices, object-based storage models, and unique URI to

communicate with the storage systems are considered here. Besides, the facilities of pop-

ular NoSQL database models and machine learning technologies are incorporated within

the storage system to make the storage system more acceptable and applicable. The service

quality parameters are also examined to judge the performance of the involved resources,

the significance of resources in workload handling, and load balancing algorithms for han-

dling the multi-tenancy.

The architecture of the big data management system along with the workflow model,

their issues and the corresponding solutions of the big data management system, popular

cloud storage system viz., google cloud platform, Amazon S3, Windows Azure, Rackspace,

and Openstack Swift with the storage model of SQL, NoSQL, and cloud storage system are

discussed in detail.

The proposed novel cloud storage system is named as Object based Schema oriented

Cloud Storage system or RSoS System, in short. Three different data types are used as

replicas of big data variety properties. Three databases are used as storage resources viz.,

column-family oriented NoSQL database (Cassandra), document-oriented database (Mon-

goDB) and distributed data file system (HDFS). A storage model is presented using the con-

cept of object-based cloud storage system for the RSoS System, which follows the account-

container-object-database-schema structure. The task of this storage model is to store (and

retrieve) data to (from) the corresponding storage location/device. Three query elements

are considered: reading, writing, and deleting. Data service operations to communicate

with the proposed cloud storage system. In order to assess the performance of the proposed

cloud storage system, query execution time of data insertion, deletion, extraction, and ag-

gregation are considered as performance metrics with Amazon S3, andWindows Azure. To

do the experiment, three different data formats are used viz., health sensor data (structured

A MULTIMODEL CLOUD DATA STORAGE SYSTEM

HAVING AN OBJECT BASED VIEW

Page xi of 126 Anindita Sarkar Mondal

data, medical images (unstructured data), and patient’s personal data (document format).

A classification engine framework is designed by using a feature selection algorithm and a

classifier to predict the storage space of the input dataset at the storage time. To judge the

performance of the classification engine framework, namely accuracy, precision, and recall

are used. Proposed RSoS system has run on top of Amazon cloud services for observing the

behaviour of the RSoS system.

Load balancing algorithms in the cloud environment have been further explored. Two

load balancing algorithms are proposed, namely Dynamic Resource Service Quality Based

Load Balancing Algorithm (DRSQ), and Double Threshold Based Power Aware Honey Bee

Cloud Load Balancing Algorithm (DTPAHBF). The purpose of the DRSQ is to find out the

efficient resource based on the service quality parameters (e.g., maximum CLOCK_SPEED,

minimum LOAD in last 15 minutes, minimum number of processes, minimum number of

RUNNING processes, and maximum Number of CPU CORES) for handling the arriving re-

quests and select the appropriate resources for evenly distributing the workload. DTPAHBF

load balancing algorithm assists to reduce the energy consumption of virtual machines in

addition to equal load distribution among the available resources.

Page xii of 126

Contents

Table of Contents xiv

List of Figures xvi

List of Tables xvii

1 Introduction 1
1.1 Context . 2

1.2 Thesis Territory . 9

1.3 Research Questions of the Thesis . 12

1.4 Aims and Objective . 13

1.5 Contribution . 13

1.6 Thesis Organization . 15

2 Background Study 17
2.1 Big Data . 18

2.2 Health Data . 20

2.3 Big Data Management System . 22

2.3.1 Data Service Pathway . 22

2.3.2 Visualization . 22

2.3.3 Issues and Solutions . 24

2.4 Evolution of Storage Systems . 30

2.4.1 SQL Data Model . 31

2.4.2 NoSQL Data Model . 31

2.4.3 Cloud Storage Systems . 34

2.4.4 Comparative Study . 37

3 Storage Model 43
3.1 Introduction . 44

3.2 Research Challenges and Solutions . 44

3.3 Background . 44

3.4 Modelling Components . 45

3.5 Modeling Elements . 47

3.6 Testing Platform . 49

3.7 Resultset . 50

3.8 Discussion . 50

3.9 Conclusion . 51

4 Load Balancing in cloud platform 53
4.1 Introduction . 54

4.2 Background . 54

4.3 Motivation and Research Problem . 55

4.4 Resources relevant for Load Balancing in the Cloud 56

4.5 DRSQ-Dynamic Resource Service Quality Based Load Balancing Algorithm 57

4.5.1 Algorithm . 57

A MULTIMODEL CLOUD DATA STORAGE SYSTEM

HAVING AN OBJECT BASED VIEW

Page xiii of 126 Anindita Sarkar Mondal

4.5.2 Testing Platform . 58

4.5.3 Comparative Results . 59

4.5.4 Discussion . 59

4.6 Double Threshold Based Power Aware Honey Bee Cloud Load Balancing

Algorithm (DTPAHBF) . 61

4.6.1 Algorithm . 61

4.6.2 Testing Platform . 63

4.6.3 Comparative Results . 66

4.6.4 Discussion . 68

4.7 Conclusion . 68

5 Object based schema oriented cloud storage system 71
5.1 Introduction . 72

5.2 Background . 72

5.3 Research Challenges and Solutions . 72

5.4 Object Storage Space . 73

5.4.1 Global Database Schema . 73

5.4.2 Temporary Database . 74

5.4.3 Hierarchical Structure of The Storage Object 74

5.5 Hypergraph Data Model . 75

5.6 Architecture . 76

5.7 Query Elements . 78

5.8 Machine Configuration . 78

5.9 Testing Platform . 80

5.9.1 Query Descriptions . 84

5.9.2 Query Time . 84

5.10 Comparative Resultset . 86

5.11 Conclusion . 86

6 Automatization of Object based schema oriented cloud storage system 89
6.1 Introduction . 90

6.2 Motivation and Approach . 91

6.3 Background . 93

6.4 Classification Engine Framework . 96

6.4.1 Architecture . 96

6.4.2 Workflow . 97

6.4.3 Testing Platform . 99

6.4.4 Results and Discussion . 104

6.5 Conclusion . 107

7 Conclusion and Future Work 109
7.1 Outcome of the thesis . 110

7.2 Future Work . 110

Bibliography 110

Page xiv of 126

List of Figures

1.2 The timeline of data storage system from 1725 to 2000 [adopted from [20]] 3

1.1 The timeline of cloud computing from 2005 to 2020 [adopted from [19]] . 4

1.3 The task distribution of service models in between cloud service provider

and customers of cloud computing [adopted from [21]] 5

1.4 Diagram of three physical models, DAS vs. NAS vs. SAN [adopted from [32]] 6

1.5 Diagram of three cloud storage models, instance vs. volume vs. object

[adopted from [26] . 6

1.6 Cloud Data Life Cycle [adopted from [37] 7

1.7 Object Based, file based, and block based cloud storage system [adopted

from [39] . 8

1.8 Public cloud storage model, private cloud storage model, and hybrid cloud

storage model [adopted from [40] . 9

1.9 Scenario of the thesis . 10

1.10 Focused Area of the Thesis . 11

2.1 Volume, Variety, and Velocity properties of big data [adopted from [38]] . 18

2.2 Graphical representation of Data Service Pathway 23

2.3 A UML Representation of the Components and their relationship 23

2.4 Architecture of Mapping-based data storing approach 25

2.5 Architecture of ontology-based data access approach 25

2.6 Architecture of MVCC . 27

2.7 Strategy of OCC . 27

2.8 Architecture of Vertical Scaling . 29

2.9 Architecture of Horizontal Scaling . 29

2.10 MongoDB System Storage Structural Components 33

2.11 Data Storage supported by OrientDB . 33

2.12 Components of Property-Graph model . 34

3.1 A Diagrammatic Representation of Information Of The Modeling Compo-

nents And their Relationship Using UML 46

3.2 Applicability of a storage model . 51

4.1 Diagramatic sketch of the Experiment Setup 58

4.2 Pattern of response times for streaming data requests 59

4.3 Characteristics of requests under different frequency rates 60

4.4 Task accuracy rate in percentile for (a) Round-Robin and (b) Dynamic Re-

source Service Quality Load Balancing Algorithm in mentioned scenario . 61

4.5 Flowchart of proposed double threshold based power aware honey bee (DT-

PAHBF) load balancing algorithm . 62

4.6 Flowchart of the modified double threshold honey bee foraging algorithm 63

4.7 Comparison of all algorithms in terms of average response time 67

4.8 Comparison of all algorithms in terms of average processing time 67

4.9 Comparison of all algorithms in terms of total CPU cost 67

4.10 Comparison of all algorithms in terms of total storage cost 67

4.11 Comparison of all algorithms in terms of total memory cost 67

A MULTIMODEL CLOUD DATA STORAGE SYSTEM

HAVING AN OBJECT BASED VIEW

Page xv of 126 Anindita Sarkar Mondal

4.12 Comparison of all algorithms in terms of energy consumption per request 67

5.1 Multilevel view of the data container for storing different types of datasets 74

5.2 Configuration of requested object storage space 76

5.3 Basic architecture of object based schema oriented data storage system . . 77

5.4 Query1 execution time on table type dataset 87

5.5 Query1 execution time on document type dataset 87

5.6 Query1 execution time on file type dataset 87

5.7 Query2 execution time on all type dataset 87

5.8 Query3 execution time . 87

5.9 Query4 execution time . 87

5.10 Comparison of query execution times in between Amazon S3, Azure and

RSoS . 87

6.1 Architecture of RSoS System for Automatic Storage Space Prediction . . . 96

6.2 Workflow model of proposed classification engine 98

6.3 Comparative study of the performance matrix values of the components of

the decision maker . 106

Page xvi of 126

List of Tables

2.1 Performance comparison between four database systems 37

4.1 Performance Results of Dynamic Resource ServiceQuality and Round-Robin

Load Balancing Algorithm . 59

4.2 Parameter Settings for CloudAnalyst Simulation 64

4.3 Configuration of User Bases used in the experiment 65

4.4 Configuration of Application Deployment used in experiment 65

4.5 Configuration of Data Center used in the experiment 65

4.6 Configuration details at one Data Center (e.g., DC2) used in the experiment 66

4.7 Response Time (RT) and Processing Time (PT) considering Optimized Re-

sponse Time service broker policy . 66

4.8 CPU cost, storage cost, memory cost, data transfer cost, and energy con-

sumption results considering Dynamic Service Broker policy 67

5.1 Query Elements for performing database operations 79

5.2 Information about Resource setup . 82

5.3 Detailed description of the database architecture of various case study . . 83

5.4 The description about queries . 84

5.5 The experimental resultset of four different queries 85

5.6 Detailed description of the data types of various case study 86

6.1 Comparative analysis on systems overview of ML-based storage solutions 95

6.2 Comparative study on technical parameters of ML-based storage solutions 99

6.3 Example of query set for different users . 100

6.4 Comparative study on experimental parameters ofML-based storage solutions103

6.5 Example of feature values used for testing purpose 105

6.6 Comparative resultset shows the test output of feature selection algorithms

with classification algorithm where Sensor = S, Document = D, File = F . . 105

6.7 PerformanceMatrix of the Combined Feature SelectionAlgorithm andClas-

sifier. 106

A MULTIMODEL CLOUD DATA STORAGE SYSTEM

HAVING AN OBJECT BASED VIEW

Page xvii of 126 Anindita Sarkar Mondal

Page xviii of 126

Introduction

Chapter 1

Introduction

1.1 Context . 2

1.2 Thesis Territory . 9

1.3 Research Questions of the Thesis 12

1.4 Aims and Objective . 13

1.5 Contribution . 13

1.6 Thesis Organization . 15

A MULTIMODEL CLOUD DATA STORAGE SYSTEM

HAVING AN OBJECT BASED VIEW

Page 1 of 126 Anindita Sarkar Mondal

Chapter 1

In this thesis, a novel object-based cloud storage system is developed to support newer

requirements arising for big data storage and management. The main objective of the pro-

posed system is to address big data variety issue jointly with big data volume issue. The

proposed mechanism enhances data access performance measures.

1.1 Context

In this era, we are moving towards a digital world that makes our lives easier. IoT devices

and web applications have become a part and parcel of the new world. The data generated

by such billions of devices are known as big data. Big data is said to follow 5V properties

viz., volume, veracity, variety, velocity and value. Cloud has become a standard choice to

handle such big data. Cloud is used to store and manage this huge set of data. Natuarlly,

we refer to them as cloud storage system [1].

Historically, data were stored in the form of punch cards whose capacity was 0.08KB [2]

in 1980s. Before 1956, the storage capacity of storage devices (magnetic tapes) was limited

to a few KB (around 231 KB). In 1956, hard disk drive was invented and storage capacity

increased to 3,750 KB. But they were huge in size and heavy in weight (nearly 1 ton). Evo-

lution of storage system in a timeline is shown in Figure 1.2. When virtualization became

possible in around 1970, research took place in a new direction [3]. With the advancement

of internet services, virtualization technique has become more effective. In 1972, the first

virtual machine was launched as a working framework by IBM [4]. In 1990, cloud com-

puting was considered as empty space between the user and the provider [5]. After 1997,

the concept of cloud changed drastically Professor Ramnath Chellapa of Emory University

defined cloud computing as a “computing paradigm, where the boundaries of computing

will be determined by economic rationale, rather than technical limits alone” [6]. This con-

cept made it more popular in the IT industry. The first successful development made by the

salesforce [7] in 1999, introduced cloud computing infrastructure as a space where other

organizations could sell their software to their customers. From the storage perspective, a

successful development took place when Amazon [8] launched Amazon Web Service with

AWS S3 as cloud storage system in 2006. Cloud storage system allows to store a big array

of data in a secure manner and also prevents data loss or corruption. It became so popular

that other big organizations moved towards the development of cloud storage systems. In

2007, IBM, Google, and several other organizations invested more money on such research

projects where high-speed processing and management of huge dataset was possible. In

2007, Netflix [9] launched such a storage system for supporting their streaming video ser-

vices. In 2011, Apple launched the iCloud [10] to store or share personal photos, music

and documents. In 2012, Oracle introduced oracle cloud [11] with three basic architecture

layers, viz. Infrastructure as a Service, Platform as a Service, and Software as a Service.

Also, at almost the same time, in 2012, the incorporation of the pay-as-you-go model

in cloud computing created a new milestone [12]. Through this model, customers have to

pay only for the services that they consume and not not for the system utilities. Though

this model was invented in 2000 by Jürgen Gehr for running his solar home system [13],

this concept made cloud computing very popular to the service providers as well as service

consumers from the business perspective. The timeline of cloud computing is shown in

Page 2 of 126

Introduction

Figure 1.1.

cloud service models are categorized as Infrastructure as a Service (IaaS), Platform as

a Service (PaaS), and Software as a service (SaaS). Figure 1.3 shows the tasks of the cloud

service providers and customers in these three models. The target of the Infrastructure as

a Service (IaaS) [14] developer is only to provide hardware components like storage disks,

cpu, monitors, network bandwidth etc. to the customers who rent them in such a manner

that customers need not bother about hardware problem such as disk corruption, limitation

of disk space etc. The IaaS customer needs to install their required operating system, set

up their personal network, and the applications as per their requirements. The Amazon

S3 [8], and Rackspace [15] act as IaaS service providers. Platform as a Service (PaaS) [16]

developer provides a hardware-software framework to the software developer so that the

software developers just install their required application to build up the software. The

maintenance of the framework such as the operating system, hardware components, and

network sections are provided by the PaaS developer. Windows Azure [17] provides the

PaaS related services. A complete software product is provided to the users as Software as

a Service (SaaS) [18]. Even SaaS users do not need to install any application to support the

software but there has to be an internet service by which they can take the facilities of the

software.

Figure 1.2: The timeline of data storage system from 1725 to 2000 [adopted from [20]]

Three basic physical models are involved in supporting storage systems shown in Fig-

ure 1.4, viz., (i) Direct Attached Storage (DAS), (ii) Storage Area Network (SAN), and (iii)

Network Attached Storage (NAS). DAS [22] represents a storage system where hardware

storage devices are directly connected with a server or a workstation without any internet

connection. These storage devices can be connected with the host internally or externally.

SAN [23] is composed of a special type of high-speed network, hosts, storage devices, stor-

age elements, and switches, attached with servers. SAN is used for sharing real-time data

between the servers. SAN enhances the performance of applications by protecting and

Page 3 of 126

Chapter 1

F
i
g
u
r
e
1
.1
:
T
h
e
t
i
m
e
l
i
n
e
o
f
c
l
o
u
d
c
o
m
p
u
t
i
n
g
f
r
o
m

2
0
0
5
t
o
2
0
2
0
[
a
d
o
p
t
e
d
f
r
o
m

[
1
9
]
]

Page 4 of 126

Introduction

Figure 1.3: The task distribution of service models in between cloud service provider and

customers of cloud computing [adopted from [21]]

managing the data in storage devices in an effective manner. NAS [24] storage devices are

connected with several workstations via the network. Here, data is stored by following the

file level architecture. It is used for sharing data or applications among connected worksta-

tions. With the advancement of cloud computing, cloud storage system model has changed

dramatically. Through virtualization techniques, cloud computing encapsulates or hides

the complex hardware infrastructure that is built up with storage devices, network connec-

tion between the storage devices, and the hypervisor that hosts software applications [25].

Developers do not need to bother about the hardware components and their corresponding

network system for supporting data storage and data sharing. Also, they do not need to

consider other related tasks like hardware storage device monitoring, scaling the resources

according to the data requirements, etc. They focus on the storage models by creating the

mirrors of virtual disks [26]. The three most popular cloud storage models are instance,

volume, and object, as shown in Figure 1.5. In the instance storage model, the storage sys-

tem acts as a conventional virtual disk. In general, it is built on DAS storage system but

it is not very reliable. NAS is more reliable. This storage model is more popular on such

applications where regular replication is needed in multiple locations. Amazon EC2 [27]

and openstack [28] follows a similar storage model. To maintain data, volume cloud storage

model [26, 29] divides the data into two parts: data files, and database tables. Files stores

Page 5 of 126

Chapter 1

the user data and the other stores OS and application data. It is also known as block storage

and is used in a SAN. For storing data files in a SAN, they are divided into several blocks and

each block has a unique identifier. It maintains the information of running virtual machines

through system files. OpenStack’s Cinder [30] uses volume storage concept. Object storage

[31] is highly reliable and very efficient for storing, archiving, backup and managing huge

volumes of static and unstructured data. NAS allows sharing of data among different data

centres placed in different geographical regions using a single namespace. It looks like a

file. It supports eventual consistency. Amazon S3 [8] follows object storage architecture.

Figure 1.4: Diagram of three physical models, DAS vs. NAS vs. SAN [adopted from [32]]

Figure 1.5: Diagram of three cloud storage models, instance vs. volume vs. object [adopted

from [26]

Applications which run in a system generate data and customers communicate with the

running applications to generatemore data. The generated data is processed in downstream

applications. Customers may want to extract knowledge from data, which may be used to

keep track of performance of the systems. In 1997, the term big data was introduced in

an article “Application-controlled demand paging for out-of-core visualization” by Michael

Page 6 of 126

Introduction

Figure 1.6: Cloud Data Life Cycle [adopted from [37]

Cox and David Ellsworth. According to this definition, local disk and memory are not

enough for storing big data. In 2000, Francis Diebold, in “Big Data’ Dynamic Factor Models

for Macroeconomic Measurement and Forecasting” [33], said that big data would be useful

in the domains of physical, biological, and social sciences. Doug Laney characterized big

data in terms of 3 dimensions, also known as 3V: Volume, Variety, and Velocity in the article

“3D Data Management: Controlling Data Volume, Velocity, and Variety” in 2001 [34]. In

2005, Tim O’Reilly argued in the article “What is Web 2.0?” that big data cannot be handled

by traditional tools [35]. In 2005, yahoo introduced Hadoop [36] for processing big data of

around petabytes in size. Hadoop was a key turning point in handling big data. In 2006,

when Amazon S3 [8] was launched for storing data in a cloud. This had been another

turning point in the storage of big data. Gradually, cloud computing became more popular

to the customers and the size of data stored in the cloud increased immensely. Several tools

became available for managing big data. In 2012, when oracle cloud [11] was introduced

with three cloud computing service modules IaaS, PaaS, and SaaS, then the relationship

between customers and service providers with respect to big data management got more

organized and fruitful. Big data and cloud computing started to act as complementary to

each other.

As big data is going to be stored using a cloud computing platform is known as cloud

data [37, 38]. The life cycle of the cloud data shown in Figure 1.6 indicates data uploaded

to and deleted from the cloud storage system. There are four stages in the life cycle of

the cloud data [37] as discussed below: (i) Data Creation: When data is stored in a cloud

storage system one or more replicas are created for supporting data backup policy. (ii) Data

Maintenance: In this stage, data is going to be used by certain applications, stored for later

use, and the replicas are to be maintained for later use. (iii) Data Recovery: Due to the

previous data maintenance stage, the modified data or replicas can be lost. At this stage,

various methods are used to recover the datas which is lost for the storage failure. This

is the stage where data consistency is achieved. (iv) Data Deletion: This is the last stage

where the storage space reclamation mechanism is run to delete the cloud data which is no

longer used in future and also to delete those data which were not used for a long time in

past. In such a way, the storage system makes empty space for new data.

Page 7 of 126

Chapter 1

Cloud computing technology is responsible to process and store big data. Due to the

volume and faster growth nature of big data, it is not possible to store them in a local drive.

On the other hand, each and every data item helps to reach an analytical decision. Cloud

storage systems, data warehouse, data mart, etc. all are cloud provided data storage-related

services. Also, data analyzer needs such powerful machine that it can process this big data.

Cloud storage is a cloud computing service model where data are managed, protected,

and backed up remotely, and it is accessed via internet. A system which provides all such

data storage-related services is known as a cloud storage system. There are three main

types of cloud storage systems [shown in Figure 1.7]: (i) Block Storage System: This stor-

age system is built up with SAN. Here, data is used to store in big volumes by forming

blocks. The block storage system divides the large volumes into multiple nodes. It provides

better performance due to the low I/O latency. (ii) File Storage System: The file storage

system follows the hierarchy of directory and file for storing the data. File storage supports

the storage of different data types like video, image, and text under a single node. It also

supports the accessing of the same data file by multiple users. It is highly scalable, so the

resources are managed in a better way. (iii) Object Storage System: Through this storage

system, data in any format, viz., structured, semi-structured, or unstructured, are stored

in nodes by forming objects. Each object is associated with metadata. By customizing the

metadata, we can control the data arrangement in the storage nodes. This concept sim-

plifies data storage, access, and analysis jobs. It is highly available, scalable, and durable

compared to the other two storage systems.

Figure 1.7: Object Based, file based, and block based cloud storage system [adopted from

[39]

From the business perspective, cloud storage is divided into three cloud storage models.

A diagrammatic representation of public cloud storage model, private cloud storage model,

and hybrid cloud storage model is shown in Figure 1.8. (i) public cloud storage model:

These cloud storage services are provided by cloud service providers. Here, customers can

be anyone: individual persons or organizations. The cloud service provider is responsible

for deploying, maintaining, and protecting the storage system. Users need to pay for the

utilities that they are using. Dropbox and google drive are examples of public cloud storage

Page 8 of 126

Introduction

Figure 1.8: Public cloud storage model, private cloud storage model, and hybrid cloud stor-

age model [adopted from [40]

models. (ii) Private Cloud Storage Model: Through this storage model, the storage services

are restricted within an organization. The provided storage system is maintained by the in-

house employees. They follow the cloud storage technology to build up the storage system

but external parties have no permission to store or retrieve data. This storage model is

better than the public cloud storage model with respect to data security but both the storage

model have the same flexibility and scalability. This storage model is popular to maintain

an organization’s private data. (iii) Hybrid cloud storage model: This cloud storage model is

designed by combining the facilities of both the public cloud storage model and the private

cloud storage model. It is cheaper than the private cloud storage model but more secure

than the public cloud storage model.

1.2 Thesis Territory

This is the era of “digital age”. To maintain a smart lifestyle, people are using more comput-

ing devices and generate huge data that is not only big in size but also, complex in nature.

Such data can be of any format (i.e., structured, unstructured, and semi-structured). The

value of such data changes very frequently. Cloud computing applications compute using

this huge and complex data. Before computation, this big data needs to be stored.

We consider that cloud storage system is the base platform. The objective of a cloud

storage system is to organize such big data in the devices in such a manner that at the time

Page 9 of 126

Chapter 1

Figure 1.9: Scenario of the thesis

of computation the needed data can be retrieved as fast as possible and similarly store the

generated result efficiently for further use.

According to Figure 1.9, data enters into the system in the form of a very wide pipeline

and comes out from the system through a comparatively narrower pipeline. The entered

raw data are collected frommany input sources. For example, in the health care domain, big

data sources are, hospitals, clinics, pathological laboratories, researchers and many other

health-related devices. This data has to pass through some components before it is trans-

ferred as an organized data. In the process the volume of the ingested data may decrease.

This organized data is then used for computation in a fast and efficient manner. Big data

management system helps to reach this goal. More detailed insight is available in Chapter

2.

The cloud storage system is a part of the big data management system where data is

stored in an organized manner. Here, we are dealing with big data. So, the traditional

technologies e.g., RDBMS and excel file systems are not enough for storing the huge data.

The characteristics of big data, such as volume, variety and velocity must be taken into

account at the design time of the storage system. As already mentioned, big data does not

follow any specific structure. Side-by-side a lot of resources and a large number of clients

are associated with the cloud storage system. Therefore, these issues must be addressed

when we design a cloud storage system.

The prime components of a cloud storage system keeping in mind the services to be

provided may be as follows: storage model, storage devices, monitor, load balancing, and

protection as shown in Figure 1.10. Storage Model describes the storage architecture in

Page 10 of 126

Introduction

Figure 1.10: Focused Area of the Thesis

the storage system. The examples of storage models are the object-based, block-based, and

file-based cloud storage models. The cloud storage system developer adds the contents with

the basic storage models to fulfil the system demand. An analysis regarding the involved

resources is described through the Storage Device component. These storage devices are

nothing but a set of virtual machines. According to the system requirement, these devices

are set up. Monitor unit is responsible to control or detect the health status of the system.

This unit helps to build up a cost-efficient, service optimized, effective storage system. Mul-

titenancy is typically associated with cloud applications. These applications have a a huge

workload. This workload is balanced by using a Load Balancing component.

Query Element consists of a set of communication process (e.g., REST API, HTTP pro-

tocol, URI) by which cloud storage service consumers can interact with the cloud storage

system. The involved resources and stored data of the cloud storage system are needed

to be protect from unauthorized access or data loss by resource corruption. Through the

Security component, the necessary actions are taken for protecting data and resources of a

cloud storage system.

The objective of this thesis is to develop a cloud storage system by considering two

big data characteristics, namely volume and variety primarily for health data applications.

To achieve this target storage system, we focus on the following central components: the

storage model, storage devices, and Query elements Additionally, a few tasks of load bal-

ancing and monitoring components are also considered. Query elements consist of a

set of instructions by which consumers instruct the provider about their requirements and

what type of jobs (e.g., read, write, and delete) they want to perform. Monitor components

understand the consumers need and make a link between consumer requests and avail-

able resources to support the consumers’ demand. As the number of consumers increase,

load on the system is increased. For supporting such load, load balancing and monitoring

components are used.

Page 11 of 126

Chapter 1

1.3 Research Questions of the Thesis

In accordance with the boundaries of the thesis, some research questions have been posed.

These research questions are considered as the building blocks of the thesis and our target

is to explore the answers to these questions in this thesis.

Question 1: How have the characteristics of digital data have influenced the design
of the storage system?
As mentioned earlier, big data has popular 3V properties namely volume, variety, and

velocity. For designing a storage system, one needs to understand the characteristics

of the big data and their system requirements.

Question 2: How are the cloud computing solutions employed to support big data
management?
The study [41, 42, 43] said that the cloud storage system are capable enough for man-

aging the volume of big data. However, a big data storage system should be scalable,

reliable, and flexible. For that reason, cloud computing is a much better solution for

big data rather than the traditional data centres.

Question 3: How to enhance the time efficiency of a storage system?
The efficiency of a storage system is measured by some storage service properties,

such as service response time, the maximum amount of data that can be stored at

a time, the number of services that can be processed at a time, and the range of

the service cost. Among them, service time is very crucial as its increase implies

degradation of productivity. It is important to measure and improve how fast the

data related operations (store, retrieve and delete) can be performed on a storage

system. The storage system architecture and the involved components are directly

related to the storage system service time.

Question 4: How to automate management of a storage system to reduce the hu-
man intervention?
A lot of machine learning technologies can be explored to find out how a storage

system can be managed without human intervention.

Question 5: How easily can the users interact with the storage system?
The storage system needs a set of queries by Clients communicate with the storage

system using a set of queries (write query, read query, and delete query). Hence, the

cloud storage system design time needs to take into consideration the storage server

URI and protocols for transferring data between the users and the storage server.

Question 6: How can the storage systemmanage the task load in an effective way?
A cloud storage system is accessed by URI. By using this URI, multiple clients can re-

quest for database services (i.e., retrieve, store, and delete) to the same storage system

server at the same time. This multitenancy feature [44] is used to support requests

of multiple users who hit the same resource. A set of load balancing algorithms are

key to the issue of multitenancy. Resource distribution in the storage system may be

another way of handling concurrent multiple requests.

Page 12 of 126

Introduction

1.4 Aims and Objective

The aims and objectives of this thesis are as follows.

• To study characteristics of health data and the associated data management system.

• To empirically investigate cloud storage system different data storage models that

can handle health data volume and variety properties from the perspective of a data

management system.

• To investigate the load balancing techniques for distributing data storage service re-

quests among associated resources of a cloud storage system.

• To explore the machine learning techniques for predicting the data type of a given

health data item.

• To design and develop a prototype of a cloud storage system for health data that can

handle the big data variety property.

1.5 Contribution

The contributions of this thesis are as follows.

Contribution 1: An architectural diagram of a big data management system
In this contribution, we explore the evolution of big data using cloud computing. Our

aim is to provide a basis architecture of a typical big data management system. The

proposed architecture comprises four primary components: data source unit, data

storage unit, data accessing unit, and data processing unit. Each unit of this system

has individual requirements, (i) Data source unit refers to the sources from where the

data is generated (e.g., digital device, organization, person etc.), (ii) Data storage unit
is for describing the big data storage elements (e.g., virtual machines, hard disks) and

their features (flexibility, reliability, accessibility). (iii) Data accessing unit consists of
the procedures by which a big chunks of data is retrieved from the remote server,

support multitenancy and so on. (iv) Data Processing Unit is associated with the data

analyzing process. Through the data service pathway, the data is circulated among

the components. A detailed discussion of this architecture is presented in Chapter 2

and which has also been published in [45].

Contribution 2: Characterizing the big data variety property with respect to the
cloud storage system
Big data is the combination of structured, unstructured, and semistructured data.

From the database design perspective, they follow different storage mechanism. It

is not possible to segregate big data on the basis of the data type because they act

as a single unit during data processing. This contribution talks about storage model
that supports big data variety property. This storage model is expressed in .xml for-

mat. Initially, we have developed a simple and basic XML based structure which has

Page 13 of 126

Chapter 1

been later represented through a hypergraph. The detailed explanation is provided

in Chapter 3 and this proposal is published in [46, 47].

Contribution 3: A framework for the cloud storage system that supports big data
variety property
We combined the big data variety property and cloud storage system to design a

cloud storage system. The name of this novel cloud storage system is “Object based

Schema oriented Cloud Storage system” (RSoS). All associated components of RSoS

and their relationships, and a set of algorithms are described to formalize RSoS. REST

APImethods are used to communicate with clients remotely. RSoS is shown to handle

big data variety property through a unified platform. A detailed explanation is made

in Chapter 5 and these are published in articles [46] and [48].

Contribution 4: Sketch of the storage space structure of the cloud storage system
that supports big data variety property
The cloud storage system follows an object storage model to store data. These stor-

age models could be object storage, file-based storage mode or block-based storage.

Different cloud storage providers consider these models as the base and generate the

storage space structure for organizing the stored data. In this contribution, our tar-

get is to develop a storage space structure that uses the object storage model as the

underlying data model. The multi-layer view of the object storage space structure

depicts how data is organized in the proposed RSoS system. The storage space is rep-

resented in terms of account-container-object-database-schema format. The detailed

description is made in Chapter 5 and the related articles are [46] and [48].

Contribution 5: Interaction between cloud storage system and clients
The cloud storage server is placed remotely. Side by side, the intention of the cloud

storage system is to support the database related services (e.g., store, retrieve, and

delete). We explore to find out themost effective communicationmechanism between

the server and the users for performing database related operations. Three query

elements, namelywrite, read, and delete are developed for RSoS using JSON and REST

API. The detailed explanation is made in Chapter 5 and the corresponding article is

published in [48].

Contribution 6: Design of resource-aware load balancing algorithms for cloud com-
puting domain
We investigated how to manage task load by utilizing the involved resources (e.g.,

CPU, memory and network). The intent is to maximize the throughput and to min-

imize response time. Nowadays, researchers also focus on minimizing energy con-

sumption and cost-efficiency to enhance the overall system parameters. In this con-

tribution, we have designed two algorithms: one is an efficient load-balancer and the

other is energy aware. The latter not only balances the workloads of the multitenants

but also preserves the energy of the resources. The detailed description is provided

in Chapter 4 and the related articles are published in [49, 50], and [51].

Contribution 7: Intelligent framework for allocation of storage space in a cloud
storage system
Till now, cloud storage systems is used as a repository of data where analytics may

Page 14 of 126

Introduction

be performed using various machine learning techniques. We attempt to apply ma-

chine learning techniques for predicting the storage space of the cloud storage system

where numerous storage resources are associated with it. Our framework utilizes fea-

ture selection algorithms and classifiers. The detailed description is made in chapter

6 and the related article is published in [52].

1.6 Thesis Organization

Chapter 2 surveys the state of the art big data management systems including NoSQL

databases to identify the challenges and probable solutions. All big data architectures are

described with an intent to have a comprehensive understanding of storage models needed

to handle big data in an efficient manner.

Chapter 3 presents a storage model that is designed to handle big data variety property

and describes the design of a unified platform that can handle multiple types of data. Two

different data formats are considered, viz., tuple structured data and a document structured

data. It is the first step towards designing a cloud storage system in the healthcare domain

by focusing on the big data variety property.

Due to increasing demand for cloud computing services, the number of tenants in-

creases and so increases the number of service access requests. But the number of available

resources is limited and hence, load balancing becomes important. Load balancing tech-

niques are involved in the distribution of the multi-tenants multi-service requests.Chapter

4 studies the load balancing algorithms for cloud computing systems. Also, we discuss the

resource characteristics which are important for load balancing. Two novel load balancing

algorithms are presented. Dynamic Resource Service Quality Based Load Balancing Algo-

rithm (DRSQ) and Double Threshold Based Power Aware Honey Bee Cloud Load Balancing

Algorithm (DTPAHBF).

Chapter 5 introduces a novel storage architecture on top of the chosen storage model.

The proposed cloud storage system is named as Object based Schema oriented Cloud Stor-

age system (RSoS). This storage system follows account-container-object-database-schema

oriented storage architecture to store the dataset. Here, an object is considered as an ab-

stracted box that contains differently structured data. Object storage space and hypergraph

data model are used to place the data in proper storage space so that big data variety issue

can be handled. A comparative analytical study is discussed with Amazon S3, andWindows

Azure.

Chapter 6 describes how the proposed RSoS system can be made smarter and more in-

telligent. In the previous chapter, clients are made responsible for specifying the storage

space for a particular data. Smart RSoS system helps overcome this drawback by introduc-

ing a classification engine framework in the RSoS architecture. The classification engine

uses feature selection and classification to predict the correct storage space required to store

data that is being written by a write query. We have also discussed a study on performance

analysis to identify the correct combination of machine learning techniques to be employed

in the classification engine.

Page 15 of 126

Chapter 1

Chapter 7 concludes with a summary of the works done. I have also pointed out the

probable research directions which may be taken up in future.

Page 16 of 126

Background Study

Chapter 2

Background Study

2.1 Big Data . 18

2.2 Health Data . 20

2.3 Big Data Management System . 22

2.3.1 Data Service Pathway . 22

2.3.2 Visualization . 22

2.3.3 Issues and Solutions . 24

2.4 Evolution of Storage Systems . 30

2.4.1 SQL Data Model . 31

2.4.2 NoSQL Data Model . 31

2.4.3 Cloud Storage Systems . 34

2.4.4 Comparative Study . 37

A MULTIMODEL CLOUD DATA STORAGE SYSTEM

HAVING AN OBJECT BASED VIEW

Page 17 of 126 Anindita Sarkar Mondal

Chapter 2

Figure 2.1: Volume, Variety, and Velocity properties of big data [adopted from [38]]

In this chapter, we discuss all terms, state of the art techniques topics related to this

thesis. This chapter also brings out the basic intent of the present work.

2.1 Big Data

Big Data is huge in volume and possesses some unique characteristics. These character-

istics include variation in data format, trust worthiness and ability to change values very

frequently.

The term big data was coined in in 1999 by an American computer scientist, and en-

trepreneur John R. Mashey in his article "Big Data and the Next Wave of InfraStress Prob-

lems, Solutions, Opportunities" [53]. Francis presented an oveview of big data in his article

"Big Data" Dynamic Factor Models for Macroeconomic Measurement and Forecasting in

2003 [33]. He presented big data as an explosion of data in terms of quantity that had

arisen in physical, social, and biological sciences. Big data is defined by the three V’s viz.,

volume, velocity, and variety by an industry analyst Doug Laney in "3D Data Management:

Controlling Data Volume, Velocity, and Variety" at 2001 [54]. Figure 2.1 According to the

McKinsey Global Institute report in 2011, cloud computing and machine learning technolo-

gies used big data [55].

The importance of big data is never ignored because of it contains an ocean of hidden

knowledge. To make better decisions and take corresponding actions at the right time, one

needs to extract the knowledge hidden in big data. To explain the importance of big data,

Chris Lynch, Vertica Systems, said - "Big Data is at the foundation of all the megatrends

that are happening today, from social to mobile to cloud to gaming."

Number of big data properties kept on increasing. The 5V properties of big data are

mentioned below.

• Volume: This property discusses the massive size of the big data. Big data size is

nearly petabyte.

• Variety: This property determines different types of big data. It may be structured,

semi-structured, or unstructured. It also refers to the various sources from which

Page 18 of 126

Background Study

big data may be generated. To make a reasonable decision, a data scientist needs to

consider more than one type of data generated from different sources.

• Velocity: It determines the flow of big data. Anyone can estimate the system’s health

by analyzing the generated continuous dataset in real-time. For this reason, this prop-

erty has more importance than others.

• Veracity: This property is about trustworthiness and accuracy of big data.

• Value: This property is about the usefulness of the data for processing.

It is observed that data generated from any sphere of life such as finance, media, en-

tertainment, transportation, administration, health, industry possess the 5V properties.

Data are generated at a speed that is double compared to that of 2013. As Eric Schmidt,

Google, said, "There were 5 exabytes of information created between the dawn of civiliza-

tion through 2003, but that much information is now created every 2 days.”

An international Data Corporation (IDC) report shows that the expected compound

annual growth rate (CAGR) for health data is 36 percent; the CAGR for financial data is

26 percent; and the CAGR for media-entertainment data is 25 percent. This study says

that health data growth rate is much higher than others. Health data includes medical

records, patient profile, financial data, administration data, research data, and digital device-

generated data. Themedia and entertainment dataset consists ofmusic, movie, news, series,

and advertisement audio and video. Financial service data consists of banking-related data,

such as customer portfolios, banking transactions, and credit and debit information. Of

them, some are structured, some are unstructured, and some are semi-structured.

Handling big data poses several critical challenges which are enumerated below.

• Requirement of ever increasing storage spaces. The high of data growth of data needs

more and more storage space.

• Big Data integration: A data scientist needs to consider big data from different sources

for data analysis.These data are heterogeneous in nature.

• Real time data processing: Some applications (e.g., sharemarket, health system, bank-

ing industry) need that processing is done.

• Data Reliability: The correctness of processing depends upon the hidden information

of big data. The conflict occurs when As the same data are collected from separate

sources, there could be conflicts.

• Data Load: The amount of information hidden in big data is often much less. It is

difficult to figure out which data are important for the purpose of analytics.

• Data Security: Big data repositories are accessed over internet by very large number

of sources and client. Thus, it is important to keep this data safe.

• Data Service Response time: Cloud storage systems should be fast in terms of data

access and data storage.

Page 19 of 126

Chapter 2

A data scientist needs to work with several technologies for handling big data. For

example, the data scientist may need to have knowledge in one or more computer pro-

gramming languages (e.g., R, python, java), statistics, data mining, artificial intelligence

and so on. Afew such important technologies are introduced in the following.

• NoSQL Database: Such database are used to store big data. NoSQL database is chosen

over the traditional database system becuase of its efficacy in storing huge volume of

heterogeneous data that are processed in a distributed manner.

• HDFS: HDFS (Hadoop Distributed File System) is an open source specification of a

distributed file system. Such a file system is used as the physical storage of data to

store big data. Data in HDFS are stored in distributed clusters of low-cost hardware

component. Fault-tolerance and consistency are guaranteed in HDFS.

• Apache Spark: It is an open-source unified analytic engine for real-time big data

processing. Its in-memory cluster computing property makes data processing task

faster.

• Splunk: It is a tool that is used to analyze the data present in the log file and convert

them into a human-readable format in real-time. It consists of three components, For-

warders for collecting data, Indexers for storing data and Search Heads for analyzing

and visualizing data. In addition, it helps the user by presenting system performance,

failure conditions, data patterns, business matrix, and data visualization.

• Hadoop MapReduce: MapReduce is a software framework that allows executing an

application in a parallel and s=distributed manner. The framework consists a mapper

that divides input data into small chunks and a reducer that shuffles the generated

data from the mapper and generate a new set of data.

• Hadoop YARN: YARN (Yet Another Resource Negotiator) is a resource manager for

big data processing tasks. It has two modules in two ways: resource management

monitor and a job scheduler. The first one monitors the applications running in clus-

ters. If the assigned task fails, it is restarted. job scheduler launches the application

on available resources based on query parameters such as capacity etc.

• Apache Kafka: Kafka is an open-source distributed message streaming platform that

uses publish and subscribe mechanism. There is a time gap between message con-

sumption and deletion to publish the messages. Besides real-time streaming data

pipelines, it also supports messaging (e.g., sending notifications to consumers), stor-

age (i.e., storing the generated messages), and stream processing. Kafka is composed

of three components: Producer, Broker, and Consumer. The producer is responsi-

ble for generating messages, The Broker is a software that maintains and manages

message passing. The Consumer is responsible to consume messages.

2.2 Health Data

In this thesis, health data is considered for experiments. The health care system acts as the

source of health data. Health care system is multidimensional and consists of more than

Page 20 of 126

Background Study

one component, such as doctors, technical staff, researchers, nurses, health administrators,

and patients which make health data really enormous in size and complex in nature.

From market research [56], it is estimated that by 2022, the volume of health data will

reach 34.27 billion bytes. This health data can be divided into categories based on their

nature (i.e., data source, purpose, and so on).

• Administrative Data:

• Clinical Trial Data: This data is produced during research CONDUCTED BY scien-

tists, doctors, and OTHER researchers. It consists of the data related to new drug

analysis, treatment methods, medical tool analysis, disease diagnosis, and so on. It

is important to know how to distribute the available resources between the patients

and new researches.

• Electronic Health Record: It is the set of information generated during the treatment

procedure of individual patients, such as lab report, medical history, personal details,

post-treatment, and outcome.

• Medical Insurance Data: This data consists of patient admission, patient release, cost

of treatment, and medical diagnosis data. It helps to identify which set of patients are

readmitted to hospitals and the disease concerned. It also helps to identify expendi-

ture for treatment, overuse, and reuse of the insurance. People are also interested to

know which types of diseases are costlier to insurance companies.

• Patient Survey: Health care organization wants to know whether patients are satis-

fied with their services and the improvements needed to create a better health care

system through patient surveys. Also, a government wants to know the health con-

ditions of its citizens, which is done through patient surveys.

These data are in structured, unstructured, and semi-structured formats. According

to the Healthcare Information and Management Systems Society (HIMSS),[57] Personal

details of a patient may be structured data. Doctors’ written hand prescriptions, etc. belong

to the group of unstructured data.

Only an expert data analyst can extract hidden knowledge from this health data. For

health data analysis purposes, $300 million per year is spent [56]. Until now, all generated

health data cannot be analyzed due to the lack of infrastructure but are stored as historical

datas. Predictive analytics reduces the fault of the health care system by 210.7 million per

year. Also, 57% of health organizations believe that predictive analytics will reduce the cost

by more than 25%.

As health data is one type of big data, it follows all challenges related to big data. More-

over, as health service is one of the basic necessity services, data scientists face some more

difficulties.

• Big Data Repository: The repositorywhere health data is placed needs to have a faster

data access and storage facility because it may involve questions of life and death.

Page 21 of 126

Chapter 2

• Health Data diagnosis: The chances of providing better and more fruitful health ser-

vices will be increased by how much and faster data scientists can help in the process

of diagnosis.

• Fault Tolerance: The loss of a patient’s health reports will be catastrophic to the

patient’s treatment procedure. Therefore, the system where the data is put should be

super fault-tolerant.

• Data Security: Health data holds some private information like patients’ personal

details, hidden diseases which they do not want to disclose, medical insurance-related

data of a patient, health billing, and so on. These are essential and secure information.

2.3 Big Data Management System

Big data management system is one that helps data scientists to work on big data in an

efficient manner. It combines strategies and technologies adopted by the organization to

store, process, and visualize the big data.

2.3.1 Data Service Pathway

The data service pathway describes themovement of data from source to consumer through

a big data management system. See Figure 2.2. It consists of four entities: (i) Data Source,

(ii) Data Manager, (iii) Data Warehouse, and (iv) Service Consumer. IoT devices, disks, or

memory act as data sources. The generated data formats are text, image, video, or audio.

The Data Manager is responsible for collecting, integrating, preprocessing, and storing the

generated data in Data Warehouse. The data storage structures are variable, i.e., they can

be documents, rows, columns, or tree-based. The service consumers retrieve the data from
the data warehouse as per their requirements. Service consumers can also control other

entities, like a proper selection of data sources, presenting the service requirements to the

data manager, such as expenditure amount, access time, data, and storage duration.

For managing big data, a data manager faces a few challenges, such as (i) lac og avail-

ability of storage (ii) the ratio of data volume between valuable data and the not so useful

data (iii) data concurrency and consistency, (iv) supporting data variety issues by providing

different types of data storage units. Also, there are other requirements. For example, such

a datamanager cannot use an unlimited amount of resources to support the system or needs

to assign the same amount of resources for the same operation. The management system

should be secured, reliable and flexible enough to satisfy the users’ service demands.

2.3.2 Visualization

According to big data variety property, one type of storage system is not suitable for storing

all data types. A good storage model solves this problem, as mentioned earlier, by deciding

Page 22 of 126

Background Study

Figure 2.2: Graphical representation of Data Service Pathway

Figure 2.3: A UML Representation of the Components and their relationship

the allocation of storage resources (or databases) based on the data type. It can even cus-

tomize the storage structure of each storage resource. These storage modeling-components

not only helps in the way storage resources are allocated or configured but also helps to

give a structural representation of the data storage units. Storage resources are nothing

but the set of data storage devices controlled by available databases like Cassandra, SQL,

MongoDB, Neo4j, and HDFS. The components of a storage model and their relationships

are shown in Figure 2.3.

Page 23 of 126

Chapter 2

2.3.3 Issues and Solutions

Data Complexity:
Data complexity is about the the characteristics which make one data similar or dis-

similar to other data. For example, health data is collected from different sources.

Also, the collected data are different in their structure. Some are tuple-oriented, some

are file-based, some are graph-oriented, some are web-based representation, some are

image structure and so on. To put all these differently structured data in a single data

modelis a challenging task. Two approaches are considered here as probable solu-

tions.

Mapping-based data storage: In this storage architecture, a single data model and

interface is used to support different data model of the various database for

storing and accessing the collected data. Figure 2.4 shows the multi-layer archi-

tecture of mapping-based data integration approach. A client communicates via

put, get, and delete queries. In the data representation layer, data is arranged

according to its context, i.e., value, entity, relationship, and metadata. Then,

this data is mapped with NoSQL databases’ data model and stored in the corre-

sponding database.

There are differentmapping approaches for storing and accessing data in databases.

According to object-data storemapping, [58, 59], data are represented as objects.

Each object has an entity, a value. The entities are related. During data stor-

age, data elements (e.g., a snapshot of the aggregated data, metadata of their

aggregation relationship and contents) are mapped and stored in the particu-

lar NoSQL databases (e.g., Apache Cassandra, Couchbase, Oracle NoSQL, Dy-

namoDB,MongoDB and Redis). For this purpose, authors in [58] use the concept

of NoSQL abstract data model (NoAM) [60]. It is designed using the common

behavior of different NoSQL databases.

In Save, [61], MetaLayer is used to perform the mapping between several lan-

guages with a common language. MetaLayer acts in two steps: (i)It manipulates

the collected data objects according to their structure. (ii) Performs mapping to

store these data parts according to their type. The collected data object repre-

sentation is organized in three parts: (i) Set: defines the collected data, (ii) Struct:

Each object of the collected data, and (iii) Attribute: the value of each object. The

mapping operation maps the set part with document-oriented NoSQL database

MongoDB, struct part with hash-based NoSQL database Redis and attributes

part with column-oriented database HBase.

Ontology based data access: Ontology-based data access approach tries to resolve

the dissimilarity between different NoSQL data storage systems [62, 63, 64]. Au-

thors use semantic webs to integrate different NoSQL data stores like document-

oriented data stores (e.g., Mongodb) and column-family data stores (e.g., Cas-

sandra, HBase). This technique mainly works in three ways, as shown in Fig-

ure 2.5. (i) It generates the local ontology by considering the corresponding

schemaless NoSQL data stores, (ii) It designs the global ontology by considering

all local ontologies (iii) SPARQL queries written by end-user is translated into

the corresponding set of NoSQL data queryies This translation takes the help

Page 24 of 126

Background Study

Figure 2.4: Architecture ofMapping-

based data storing approach

Figure 2.5: Architecture of ontology-based data access

approach

of global ontology and local ontologies to access data from the corresponding

NoSQL data storage system. This approach helps to enhance data quality and

data consistency.

Resource Optimization:
It is a technique by which available resources are distributed between the set of orga-

nizations to optimize system parameters. The growth of big data entails an increase in

the cloud resource demands for storage, analysis, and so on. It is challenging to meet

the expectations and requirements of all organizations. As we know, the capacity of

any cloud service provider is limited. In such cases, cloud service providers consider

different approaches to use their resources optimally. In this survey, we shall present

two such popular approaches.

Pay-as-you-go: Every user does not want to invest a huge cost for managing their

data. In this model, consumers act as the controller. They specify their demand

for the resources. Amazon Simple Storage Service (S3) [8] provides an elastic

storage system to the user as a server on-demand service for storing frequently

used large data. It also provides life-cycle support like durability, backup, recov-

ery, and content distribution of the stored data. Microsoft Azure [65] provides

window server-based cloud platform where customers can deploy their appli-

cations. In this model, customers only pay for the resources used for deploying

the application or storing the data.

The cloud computing platform helps the service consumer to reserve the re-

sources in the form of virtual machines. Initial reservation helps to reduce the

total computing time by avoiding initial setup time. Users who need more re-

sources can achieve it via on-demand services. Amazon EC2 [27] supports this

reserved resource methodology. Here, users can assign resources on a primary

basis for starting the cloud computing job. If the service consumer needs extra

resources, he can assign them by paying only the additional cost.

Data Size Minimization: Big Data naturally contain redundant data. A massive

amount of unnecessary storage spaces are required to store raw data. In health-

Page 25 of 126

Chapter 2

care, the patient’s data needs to be protected from disaster. Allover, the data

needs to be arranged and stored so that it uses few resources with backup.

The data management system must be efficient enough so that it can use a min-

imum amount of resources to store data. MapReduce techniques [66] help mini-

mize resource usability by merging the data using the notion of key-value pairs.

The authors in [67] proposed a 3-stage approach for end-to-end set similarity

joins to support balancingworkload among different nodes. This is done tomin-

imize the need for replication and control the main memory data size in each

node. Llama [68] designed a technique to compress the data size for reducing

storage requirements.

Data Concurrency:
The main difficulty in big data management is that it is necessarily distributed dis-

tributed in nature. Simultaneously, multiple users update data to a different ends. In

this situation, there is a high probability of data override or loss of data. So data man-

agement becomes challenging for supporting data concurrency by synchronizing the

data copy of all nodes with the updated data copy so as to maintain data consistency.

We present two most fundamental approaches for this job: MVCC [69] and OCC[70].

Multi-version Concurrency Control (MVCC): In a multi-user database environ-

ment, the shared database can be manipulated by multiple users simultaneously

using locking. Here, the read operation must wait for the write operation to fin-

ish or vice-versa. Multi-version concurrency control allows users to write and

read operations on the same data simultaneously without locking the data file.

This method considers multiple versions of data. Figure 2.6 represents the ar-

chitecture of MVCC. At the transaction time, the write operation updates the

records and saves the new version. This new version is identified by the trans-

action id, a single number that number with the number of transactions. For

the read operation, there is confusion about which version is needed to be read.

Transaction id of the record version is compared with the Transaction id of the

read operation. If the read operation is started after the last write operation

committed, it returns the record’s latest version. This technique stores every

updated data version by using transaction id as an identifier. It helps to return

the old copy of the data record. PostgreSQL
1
supports MVCC using two trans-

action IDs and a row-based data record version. The two transaction IDs are (i)

creation transaction id: The last updated data row version is signed by this id.

and (ii) expiration transaction id: Before the last modified data row version is

identified by this id. Blobseer [71] uses metadata to serialize the different ver-

sions of the distributed data blob (i.e., a set of data content act as a unit and is

named as a data blob), which is generated after the write operation. CouchDB
2

allows a client to consistently read and write on the same document by sup-

porting MVCC. Short-running transactions do not wait to finish long-running

transactions in NuoDB
3
to support MVCC. Other technologies also support the

1
http://www.onlamp.com/pub/a/onlamp/2001/05/25/postgresql_mvcc.html

2
http://guide.couchdb.org/draft/consistency.html

3
http://dev.nuodb.com/techblog/2013/03/12/mvcc-part-1-an-overview

Page 26 of 126

Background Study

Figure 2.6: Architecture of MVCC Figure 2.7: Strategy of OCC

MVCC are Virtuoso
4
, Cassandra, IBM DB2

5
, DynamoDB

6
.

Optimistic Concurrency Control (OCC): This type of concurrency control sup-

ports a multi-user, shared database system. This technique is helpful in dom-

inant query systems where transaction conflict occurs rarely. In the case of

locking, it locks the whole data even in a read operation. This may lead to a

deadlock. OCC avoids the locking of the data. This procedure helps to provide

a deadlock-free database system.

Figure 2.7 shows the strategy of OCC for data transaction jobs. The transaction

has two operations: read and write. Loss of integrity does not occur for read

operations. However, when it is going to return the data content of the read

query to the application, all write phases have to be completed. Writing passes

through three phases: read, validation, and write [72]. Firstly, data is read, a

local copy of the data is made, and all data writing is done on the local data

copy. After reading the data, the transaction process goes through the valida-

tion phase. Here system checks the consistency of local data copy. The read

operation checks the similarity of the current data with the local data copy, and

the write operation checks the validity of the updated local data copy. If the val-

idation phase returns true, the writing phase is entered where local data copy

is made global. The global database is rewritten with the local data copy for a

write operation, and the local data copy is returned to the application for a read

operation. If not validated, rollback is performed, and the operation is restarted.

OCC improves the data service performance by avoiding the waiting time for

data locking. Microsoft SQL Server
7
supports optimistic concurrency control to

support data transaction.

Data Scalability:
Nowadays, the volume of big data is increasing proportionally with the number of

devices. Also, historical big data needs to be kept in storage because no data can be

deleted. At the same time, a data storage system is also affected by a data-related

operations like backup, recovery, and fault tolerance. Data scalability is required to

handle the growth of data and applications. The challenge is how to make a big data

4
http://virtuoso.openlinksw.com/

5
http://www.ibm.com/software/data/db2

6
http://aws.amazon.com/DynamoDB/

7
https://msdn.microsoft.com/en-us/library/aa0416cz(v=vs.110).aspx

Page 27 of 126

Chapter 2

management system scalable. Two crucial approaches are discussed in the following.

Scale Up/ Vertical Scaling: Such scaling adds more hardware (e.g., RAM, CPU,

network) in a single machine. Vertical scaling aims to increase the power of

hardware to achieve the desired performance Suppose an application needs

more memory for handling increasing data size. In that case, the load balancer

adds memory to a single machine, or if it wants to make faster data access, the

load balancer adds more processing units as shown in Figure 2.8. This tech-

nique applies to read-heavy applications like a blog website, where most people

like to read an article rather than a comment. Single address space with multi-

threading is used for performing tasks. Message passing and data sharing are

done by passing the data file references. There are limitations to adding hard-

ware in a single machine.

Amazon Relational Database Service (Amazon RDS)
8
provides a web service to

manage the multi-user accessible relational database in the cloud. Each hard-

ware component is handled individually tomakeweb servicesmore cost-effective

and efficient for the data service (e.g., recovery, backup) by following techniques

of vertical scaling. Object-relational database system PostgreSQL
9
considers

scale upmethodology to increase the power of the server for supporting increas-

ing transactional workload. In-memory document-oriented data storage sys-

tem, D-Store [73] adds more memory in a single server to decrease the cost/size

ratio. MySQL
10
supports vertical scaling for providing multi-user, in-memory

storage space.

Scale Out/ Horizontal Scaling : Scale-out provides a much better solution based

on cloud computing and by adding new nodes in a distributed manner. These

nodes act as web servers with storage devices, networks, and processors, form-

ing clusters. For handling scalability, the load balancer adds machines rather

than hardware in a single machine, as shown in figure 2.8. During the pro-

cessing time, data files are shared via the network. There is a low operational

impact for adding nodes in the cluster to handle the increasing volume of the

data because the structure of the new node is the same as that of the first node.

This technique ismore beneficial forwrite-heavy applications like onlinemoney

transfers, where more write transactions, rather than read, are involved.

Different technologies support horizontal scaling to achieve specific goals like

resource cost, data recovery, data processing time, etc. CouchDB [74] is a docu-

ment oriented database system where data is stored in .json format. It supports

horizontal scaling where replicated data is stored in distributed web server to

maintain high performance and fault tolerance. For better data services like

minimizing data query time from a large dataset, HDFS [75] is used. HDFS re-

duces processing time by distributing data nodes with the processor. VoltDB

[76] provides relational database management system for big data. Real-time

data analytics enhances data service performance. For this reason, data is par-

titioned across machines in a cluster to support parallel data processing. Other

8
https://aws.amazon.com/rds/

9
http://www.postgresql.org/

10
https://www.mysql.com/

Page 28 of 126

Background Study

Figure 2.8: Architecture of Vertical Scaling

Figure 2.9: Architecture of Horizontal

Scaling

database systems like Cassandra
11
, HBase

12
follow the horizontal scaling tech-

nique.

Data Reliability:
It deals with data integration, data completeness, data accuracy, and data consistency

of the collected data. Also, big data is collected from different sources. So, there is a

huge that may lead to unreliable data. The issues regarding reliability are discussed

below.

Statistical Parameter-based : These parameters are used to measure data reliabil-

ity.

• Accuracy:.
Accuracy is the number of correct values/number of total collected values.

• Completeness: It measureswhether data values are present in the database

corresponding to the actual real-world data. It is defined as:

number of not null values/number of total values

• Consistency: It determines the integrity of the data present in the database.

It is defined as:

number of consistent data values/number of total values.

Data in the database system are more reliable to a data analyzer if optimum

of the parameters discussed earlier are optimum. Therefore, the main focus

of reliability approaches is to increase the values of those parameters. These

approaches are heuristic or knowledge-based algorithms[77].

Data-Driven : This strategy focuses on the update of data to increase the parameters

of the data reliability. This approach follows different techniques as mentioned

below, (a)Update the data with the more actual real world data, (b)Follow a fixed

set of integrity constraint rule to design the database. (c) Synchronize data of

the same objects stored in different databases. (d) Integrate data obtained from

11
http://cassandra.apache.org/

12
http://hbase.apache.org/

Page 29 of 126

Chapter 2

various heterogeneous sources. (e) Select data source so as to increase the pa-

rameter values. (f) Discard the data that cannot reach the quality needed for

a data analyzer Through using statistical techniques. However, this technique

offers a temporary solution to data reliability.

Amazon supports data reliability tomaintain financial needs and customer trusts

[78]. In this case, data reliability depends on the state of the application. For ex-

ample, healthcare needs high-quality, very reliable data. Amazon has designed

Simple Storage Service (S3) to support data reliability. Dynamo manages the

state of the services, which requires high reliability.

Process-Driven : It examines the processes which are responsible for generating

the storage data. To avoid erroneous data collection and processing, processes

responsible for data generation, data update, and data processing needs to be

controlled. Process redesigning helps to improve the process quality by adding

new techniques. It attacks the root cause of data reliability issue and hence,

results in which applies to long-term data reliablity.

Hadoop uses MapReduce [66] for processing large sets of data and generating

reliable data that the processors use. MapReduce can automatically detect any

hardware failure, which helps maintain the data quality. Hadoop helps in the

bioinformatics field for processing and knowledge extraction from large datasets

of about petabytes size. [79]. This paper uses HBase andMapReduce techniques

to achieve data reliability.

Availability:
Availability means “readiness for use”. For real-time applications, a continuous flow

of data is needed. It must not stop due to system failure. Llama [68] provides contin-

uous data services by rescheduling a task on another machine if one map task fails.

Recovery:
Due to some reasons, if the system crashes, the stored data are not lost. It must be

recovered by allowing/providing data replication on different nodes. GFS [80] allows

data recovery by performing data replication. Data partitioning is a technique to

support data availability. GFS supports the data partitioning technique. PNUTS [81]

supports data availability via redundancy at different levels (data, metadata, serving

components, etc.).

Security:
Data Security helps to protect data from corruption and unauthorized access. Amazon

S3 [82] controls user accessibility by providing client authentication.

2.4 Evolution of Storage Systems

A database’s logical structure is determined by the data models, which specify the organi-

zation of data in the database. These models provide a layer of abstraction to the database

and describe how data is present and how they are interlinked.

Page 30 of 126

Background Study

Structured Data [83] refers to the data that are essentially present as the field-rows-

column structure and can be easily manipulated by algorithms and queries. Some common

examples include data in excel sheets and relational data in a relational database. Semi-

structured data [84] are not precisely organized as relational data but have some structured

format like XML tags that enable analysis algorithms to read data easily. JSON (JavaScript

Object Notation) data is a common example of semi-structured data. However, most of the

data present today is unstructured data [85] which does not follow any format, for example,

prescriptions, cliical notes, videos, and other multimedia content.

2.4.1 SQL Data Model

The logical structure of a database defines the organization of data. The earliest data model

was hierarchical data model e.g., IBM Information Systemwhichwas followed by hierarchi-

cal database [86]. Further evolution of databases resulted in foundation of relational model

[87] where data is represented as tuples or rows which aggregate to form a relation and

such systems are called Relational Database Management System (RDBMS). RDBMS uses

structured query language (SQL) as its data query and data manipulation language. The

storage architecture of RDBMS helps in maintaining the entity relationship [88]. However,

the organization of data in the form of field is very stringent, and rigid that leads to many

limitations.

PostgreSQL (Example of RelationalModel RDBMS): Data are stored as tuples in relations

(tables) in PostgreSQL. Structurally, it comprises different modules or components which

communicate amongst themselves and function to form a complete working unit of the

database [89].

As shown in Figure 2, the components are Client Process (Client Application + Client

Interface), Server Process (Server+ Postmaster), and back-end or data Storage. The end-

user communicates with the client process via the client application. For example, the user

might write SQL queries or procedural methods to access data in the application. One of

the main components of the client process is the Interface. It converts procedural code to

SQL queries that the server can understand. Then comes the server process. Two essential

components are present here. First is the Postmaster, which maps a client process to a

server process. Next is the Multi-version Control System, which ensures a proper locking

mechanism while any server tries to access the innermost component.

2.4.2 NoSQL Data Model

NoSQL (Not Only Structured Query Language) not only supports storing of data but also

supports durability, reliability, availability, and scalability [90]. Furthermore, the NoSQL

database follows CAP (Consistency, Availability, and Partition Tolerance) rather than fol-

lowing the ACID property.

Considering the NoSQL databases, they have better management of semi-structured,

and unstructured data [91]. There are four types of NoSQL databases, (a) Key-Value: In

Page 31 of 126

Chapter 2

this NoSQL database, data are stored in groups. A group is identified by a unique identifier

known as the key. Amazon S3, and Azure follows this type of data storage structure to

store a large volume of data such as Redis [92] (b) Document: A set of data groups with

variable attributes are stored by forming a document. This document is identified by key

value and presented in XML, JSON, or BSON format. CouchDB, and MongoDB are ex-

amples of document NoSQL databases. (c) Graph: In a network-based system, an entity’s

instance is connected with another instance of another entity, and this connection has ex-

plicit meaning to the storage data. In this situation, the graph database stores the data by

holding information about how one instance is connected with another. OrientDB, and

Neo4j are the most popular graph-based NoSQL databases. (d) Column-family: In this stor-

age, data are stored column-wise rather than in terms of horizontal tuples. This concept

makes data operations (i.e., access, storing) faster. Cassandra, and HBase are two examples

of Column-family NoSQL databases.

• MongoDB (Example of Document Model Document-oriented Database): In Mon-

goDB [93, 93, 94, 95], complex documents are stored as arrays, hash tables etc. that

are supported by JSON Documents. MongoDB stores documents as data in a binary

representation of JSON called BSON. An index is used for ordering the documents

as a collection in MongoDB, and a unique id is automatically created for a particular

index. Index helps in sorting the documents [94, 95]

Several documents are integrated into a collection. Collections can be compared to

tables in RDBMS, documents to rows, and fields to columns. Data are split across

numerous shards. The application that needs to access data in a shard connects to

underlying MongoDB processes. However, small collections need not be split across

shards. As given in the Figure 2.10, the structural components of MongoDB are:

1. Shard: Multiple shards are present, which hold parts of data. Read and write

operations are done on the target shard, i.e., the primary shard. A replica set is

present as a backup to the primary shard. All the changes need to be distributed

gradually across replicated secondary shards.

2. Config Server: Multiple config Servers are present, storing metadata about what

data is stored in a shard.

3. Routers: The client directs queries to routers. A router consults with the config

server and redirects to the desired shard.

4. Mongo Client Library: Clients, which are a part of an application, issues a query

to be routed via the client library.

• OrientDB (Example of Multi-Model Document-oriented Database): OrientDB is the

first multi-model NoSQL database whose engine supports four kinds of data model:

document model, graph model, key-value model, object-oriented data model [96].

Generally, multi-model databases have an abstraction layer with a set of APIs to han-

dle multiple models. It limits performance. But in OrientDB, the engine provides

direct support to the data model. It combines the graph concept in its representa-

tion of data as documents. "LINKS" are between documents that cannot be found in

document-oriented databases like MongoDB. The graphical representation of data in

Page 32 of 126

Background Study

Figure 2.10: MongoDB System Storage Structural Components

Figure 2.11: Data Storage supported by OrientDB

OrientDB is almost similar to that of a graph database. One subtle difference is the

property of Inheritance which is applied while defining a "class"(analogous to tables

in RDBMS). The class extends Vertex class "V" or edge class "E".

As shown in Figure 2.11, theOrientDB database supports four kinds of storage, namely

Paginated Local Storage(PLocal), Remote Storage, Memory Storage, and Local Stor-

age. PLocal comprises Clusters, Write Ahead logs (WAL), Indexes and Index Contain-

ers, and File mapping. A cluster is a logical portion of disk space to store records/data.

Clusters are split into pages. Hence the name "Paginated". cpm files in the cluster map

the cluster location of file data to its actual physical location. WAL is used to record

operations/activities. Indexes are necessary to store the file, and file mapping maps

the file name to the file id. Remote storage supports Data storage in remote machines.

Memory storage is where data is stored in memory, and Local Storage is disk storage

which PLocal has replaced.

• Neo4j (Example of Graph Model Graph-oriented Database): Neo4j [97, 98] is essen-

tially an open-source NoSQL database implemented in Java. It follows the Graph

Data Model and maintains data in that way, even at the storage level. On top of it

, an additional Cache is maintained for implementation of Node-Relationship. Disk

is organized into record-based storage assigned to every data structure (node, rela-

Page 33 of 126

Chapter 2

Figure 2.12: Components of Property-Graph model

tionship, and property). Each node and relation are identified by ids. The size of a

block depends on the type of data structure stored. The data represented in the graph

storage system mainly comprises the following components as shown in Figure 2.12.

– Node: It contains labels, and key-value pairs. Pointers are there, which point to

the first relationship, and the first property block.

– Property: It stores information related to a node. For example if "Sachin" be the

node, its properties may include run, average, noOfMatches etc.

– Relationship: It defines the kind of association. Along with it, pointers are

present. These point to the start, and end the node; There are pointers to the

previous and the next relation of the start and end node.

– Label: In Figure 2.12, these are represented as rectangular boxes. Each node is

associated with a label that must specify the creation time. Nodes belonging

to different labels may have relationships (edges) between them. Along with

it, pointers are present. These points to the start, and end node; first property

block; pointer to the previous and next relation of the start and end node.

– Caches: They Implement nodes or relationships.

2.4.3 Cloud Storage Systems

Cloud storage systems [99, 100, 101, 102] store data in remote hosts, and it is expected to be

available all the time. A third-party vendor manages data in cloud storage. There are innu-

merable cloud storage vendors like Amazon, Microsoft, and others. Each provides its cloud

storage services. Cloud-based storage systems are used to store structured, semistructured,

and unstructured data.

Every cloud storage has its own data manipulation mechanism, authentication mecha-

nism, data handling and encryption techniques. Data handling can be done using a Cloud

Page 34 of 126

Background Study

Console Platform (Graphical User Interface), REST (REpresentational State Transfer) APIs

(Application Programming Interfaces), or by designing its API to communicate with the

cloud. The available storage systems are divided into three parts based on storage architec-

ture.

• Bucket Based Object Oriented Data Storage System: A bucket acts as a data storage

container for storing data files as an object.

– Amazon S3: Amazon S3 [82, 8] follows this type of architecture to store data.

Using the rest API based web service. data of the bucket is edited, retrieved, or

deleted. A bucket name is associated with an URL for performing data service-

related read, write, and delete operations. For example, if the bucket name is

reader, than the URL will be http://reader.s3.amazonaws.com. For a specific re-

gion, the bucket name is unique, which acts as a data service controller and

permits the account that can use this bucket of architecture to store data. For

a specific region, the bucket name is unique, which acts as a data service con-

troller and permits the account that can use this bucket.

In this container, data contents are stored as objects in Amazon S3. This object

is identified by a unique identifier known as an object key. It contains meta-

data. Bucket Oriented Object Based Data Storage System stores data objects as

flat files simplifying data organization. This simple methodology helps to sup-

port data scalability by adding nodes. However, this type of storage system is

unsuitable for multitasking relational-based online data analysis tasks.

– CACSS: Authors of CACSS [103] were concerned about the interoperability

among cloud storage vendors. For this reason, they used a bucket as the primary

container to store data objects. Here bucket name is unique, and the object index

is the composite value of the bucket name and object key. Google Cloud Plat-

form provides cloud storage named Google Cloud Storage. This storage system

considers reliability, group-based access controls, backup, and restore function-

alities. The storage architecture is bucket-object oriented. RESTful API is used

to communicate with this storage system using JSON, or XML API. The GET

verb is used to retrieve the data object; the POST verb is used for storing new

data object with its metadata and the DELETE is used for deleting an object with

its metadata.

– Google Cloud Storage System: It provides an object storage solution where the

data are stored in the form of objects present in buckets [104, 105, 106]. Each

bucket is associated with a unique predefined key that is used for the protection

of data. Every data in the bucket is identified uniquely by the URL in the form

of “https://storage.googleapis.com/bucket_name/object_name”. The file can be

uploaded manually and through JAVA client Google APIs, and REST APIs.

• Account Container Based Object Oriented Data Storage System: Using this storage

technique data are placed in a tree-based address space. This tree follows from the

account, and container of the data object. The container holds a specific storage

policy for storing data in the particular container, and the data operations (i.e., update,

replicate, delete) corresponding to the stored data object follows this policy. The

Page 35 of 126

Chapter 2

client request hits the account, and if the storage policy is justified, the request is

responded to with the corresponding data object.

– OpenStack Swift: Swift [107, 108, 109] supports account container based object

storage system by building rings. The account, container, and data object have

a separate ring. Mapping is done based on zone, partition, replication, and de-

vices. The ring is responsible for providing swift services. Rest API (GET, PUT,

DELETE) is used to communicate with the data storage system. Metadata holds

the information of the data object. The minimum number of replication is 2.

– Rackspace: Rackspace [15, 110, 111, 112] supports account container based ob-

ject data storage architecture similar to OpenStack Swift and file based stor-

age architecture. Web applications communicate with Rackspace using REST-

ful APIs. Content Delivery Network (CDN) [113] is used to make the tasks of

storage and data file sharing of the object storage system faster. Here, a dedi-

cated container is needed, which is assigned in CDN, and then the stored file is

operated by the generated web-ready URL.

Rackspace stores an data object by making three copies of the data object, mak-

ing it more reliable and available to the user. Through object storage architec-

ture, large data files, and media files can be stored. The user needs to pay only

for the storage spaces which he uses.

– Windows Azure:Azure [114, 65, 115] supports four types of data storage ser-

vices: Table storage, File Storage, Queue Storage, and Blob Storage. Blob storage

services of Azure are known as object storage. It focuses on availability, scal-

ability, and durability properties. Azure supports an auto-partitioning system

for automatically adding resources to handle massive data traffic. It gives users

the facility for payment only when the resources are allocated to them. After

the creation of the account, all storage services are accessible. The data object is

placed in the container for blob or object storage service. By blob or object stor-

age service, Azure stores only unstructured data (e.g., media files, documents).

Azure also has a table storage service for structured data.

• Distributed Object Oriented Data Storage System: In this storage system, specific

computing units build the cluster, and data are stored as objects [116, 117]. Flat file

organization is used to locate the data storage space. The advantages of this type of

storage system are that it is highly available, reliable, and does not have a single point

failure. More than one Object Storage Device (OSD) is used as a storage disk, and a

single monitoring unit configures or manages the data distribution in the devices.

– Ceph: It uses Reliable Autonomic Distributed Object Store (RADOS) for sup-

porting distributed object storage features [118, 119]. For deciding the storage

space of data object into ceph cluster, CRUSH algorithm is used. The cluster

node is placed in a different zone. The number of replication copies of the data

object is more than one and distributed in such a manner that no duplicate copy

of the data object is stored in the same cluster.

– Sheepdog supports durability by dividing the virtual volume of data into mul-

tiple copies, and each copy is stored in several servers [120, 121]. The object

Page 36 of 126

Background Study

Table 2.1: Performance comparison between four database systems

Cases PostgreSQL MongoDB OrientDB Neo4j

Initial creation of schema 100ms 150ms 538ms NaN

Insertion of one data item 81ms 97ms 52ms 580ms

Insertion of N records together 144ms 2ms 9ms 135ms

Query with one filtering condition only 110ms 33ms 25ms 35ms

Query all records 81ms 1ms 27ms 27ms

Delete only one record 111ms 48ms 44ms 105ms

Delete all records 108ms 1ms 39ms 76ms

storage location is decided by hashing technology. The client can add the exter-

nal disk of any volume with a sheepdog gateway to handle the increased data

volume of the collected data. Data recovery is made in case a server crashes.

Here, zookeeper [122] is used as a monitoring unit. According to the pgbench,

the sheepdog is better than ceph.

2.4.4 Comparative Study

Big Data is a combination of structured and unstructured data. Due to the rise in un-

structured data, NoSQL databases have become a common storehouse of such data. For

experimentation, four different NoSQL databases have been chosen. (a) MongoDB stores

document-oriented dataset. (b) Neo4j follows the graph model. (c) OrientDB, which fol-

lows a hybrid model, is a bridge between the document database and graph database. (d)

An extension of the relational database management system. Performance comparison is

shown in Table 2.1.

We have evaluated the performance of the four databases on seven different criteria:

• Time required for creating Table or Collection or Class or initial creation of schema;

2. Insertion of one data item;

• Insertion of N records together;

• Query with one filtering condition only;

• Query all records (total count=21); 6. Delete only one record;

• Delete all records.

The above cases have been executed in the four databases using their respective query

language. The results have been represented graphically in the form of 2D lines. Time in

milliseconds is given along the Y-axis, and along the X-axis, the name of the database is

given. For PostgreSQL, the standard Structured Query Processing Language is used, and

for Neo4j, Cypher Query Language is used (Panzarino, 2014). Let us now look into the case

studies.

Page 37 of 126

Chapter 2

Case 1: The initial creation of the outline structure of Table/Collection/Class/Label:
This covers the initial design of tables (or equivalents) using their respective query

language. Table 2.1 shows the time taken for each database. It is evident from the

table that OrientDB takes much greater time than others in this case:

1. PostgreSQL: The SQL query that is required to create a table is “create ta-

ble student_db (name text, school text, class int, roll int, age int)” where “stu-

dent_db” stands for the name of the table created to accommodate data along

with columns names: school, class, roll, and their respective data types (e.g.,

text, int);

2. MongoDB: To create a database for MongoDB, the query used is “use stu-

dent_db”. Here “student_db” is the database name, which is the actual container

of collections that will hold data. To create a collection, query is used as db. Cre-

ateCollection “Student” where Student is the collection name that will hold the

documents or records. It is worth mentioning that if no collection is created

separately, MongoDB creates a collection automatically and names it the same

as the name of the database;

3. OrientDB: In the case of OrientDB, first, a class needs to be created which ex-

tends either predefined Vertex class V or edge class E. The query used is “create

class student extends V”where “student” is the name of the class. The time taken

for creating the class is 439 msec. After creating the class, properties need to be

created, which are class attributes. The properties can be made using a query as

well as by using options that OrientDB Studio provides. The following query is

used to create properties in this article: “create property Student.name string”

where “Student” is the name of class extending vertex class “name” and type

is string. The time recorded in this case is 62 msec. In this way, other proper-

ties like school, class, age, and roll each of string type have also been created;

“Neo4j:” For Neo4j, separate creation of labels is not required since the label can

be specified while creating the nodes.

Case 2: Insertion of First Data or Record:
Insertion of first data always takes greater time than the subsequent insertions due to

initialization and memory allocation. Case 2 analyses the first insertion of a record in

each of the databases. The execution time is shown in Table 2.1. Neo4j takes a much

greater time in this case to insert the first data:

1. PostgreSQL: The SQL query “insert into student_dbvalues(‘Ram’, ‘DPS’, 9, 40,

13)” inserts a row or tuple in the table student_db. The entire relation or row

represents the data in the database.

2. MongoDb: The query used to insert data is “db.student_db.save ([“name”:“Shyam”,

“school”:“CPS”, “class”:9, “roll”:20, “age”:12])”. Also, insert() function could have

been used instead of save(). In this case save() and insert() works in the same

way. However, when id is passed as a parameter in save(), it performs update if

document already exists and inserts if not. insert() will never perform an update

operation and it will throw an error.

3. OrientDB: To create a record in OrientDB, class names always need to be men-

tioned. The query “create vertex Student set name=‘Ram’, school=‘DPS’, class=9,

Page 38 of 126

Background Study

roll=40, age=13” creates data in JSON structure with key and value pair. Since

the Student class extends the Vertex class, the data created will be of Vertex type.

Graph model features are also available in the studio, and the same data can be

visualized as a node from the graph editor.

4. Neo4j: TheCypherQuery Language “create(ram: Studentname:“Ram”, school:“DPS”,

class:9,roll:40,age:13)” is used to create a node named “Ram” which belongs to

label Student. The key: value pair denotes the properties of the node.

Case 3: Insertion of N records together:
This case is used to simultaneously analyze the time taken to insert n-records, n is

set to 4. More or less, the same query structure is used as for case 2 with the only

exception of a customized javascript function that is used to insert data in OrientDB.

Table 2.1 lists the time taken for insertion of 4 records. PostgreSQL takesmuch greater

time than the other three databases to insert a collection of records.

1. PostgreSQL: The query to insert 4 tuples in student_db is “insert into stu-

dent_db(name, school, class, roll, age) values(‘abc’, ‘CPS’, 9, 20, 12), (‘def’, ‘JPS’,

10, 10, 16), (‘ghi’, ‘HPS’, 10, 50, 15), (‘jkl’, ‘IPS’, 8, 70, 14)” where the value in each

“()” denotes the tuple or record to be inserted;

2. MongoDB: save() function can be used to insert 4 document records like “db.student_db

.save([“name”:“rita”,“school”:“JPS”,“class”:10,“roll”:10,“age”:16, “name”:“mita”,

“school”:“HPS”,“class”:10,“roll”:50,“age”:15, “name”:“sita”,“school”:“IPS”,“class”:8,

“roll”:70,“age”:14,“name”:“amy”,“school”:“CPS”,“class”:9,“roll”:20,“age”:12])”. In this

case, insertMany() function can also be used to insert multiple data.

3. OrientDB: In this experiment, a javascript function is used to create multiple

records. The input parameters are specified, taking input and storing it in vari-

ables. The variables are passed as values in the key-value pair generated for

every document record.

4. Neo4j: Like in previous case, the sameCypherQuery is used: “create (shyam:Student

name:“Shyam”,school:CPS,class:9,roll:20,age:12),(rita:Studentname:“Rita”,school:“JP

S”,class:10,roll:10, age:16), (mita:Student name:“mita”, school:“HPS”, class:10, roll:50,

age:15), (sita:Student name:“sita”, school:“IPS”, class:8, roll:70, age:14)” where

the value in each “()” denotes the node to be created. Since the name of the label

is mentioned only once, all nodes belong to the same label “Student”.

Case 4: Query with one filtering condition only:
Similar to Case 3, more records have been inserted into the database. The total count

of the papers here is 21. Table 2.1 shows the time taken for selection based on one

filtering condition. It has been seen that PostgreSQL takes a much greater time than

others:

1. PostgreSQL: Here, the query is filtered on the basis of “names”. The query

“select * from student_db where name=‘Ram’” retrieves the required dat.

2. MongoDB: In this database, find() function is used to retrieve records. For ex-

ample, “db.student_db.find (name:“Ram”)” is the corresponding query for the

required operation.

Page 39 of 126

Chapter 2

3. OrientDB: In case of OrientDB, the query is the same as that in PostgreSQL.

The query is “select * from Student where name=‘Ram’”.

4. Neo4j: The Cypher Query Language to filter with condition must include the

name of the label to uniquely identify the node. The query is: “match(Ram:Student)

where id(Ram) in [177] returns Ram” filters on the basis of id (assigned at the

time of creation) which uniquely identifies the node.

Case 5: Query all records (Total record count is 21)
This case analyses the time taken to query all records present in the database. Table

2.1 lists the time taken in this case for selection of all records and PostgreSQL takes

a much greater time than others:

1. PostgreSQL: SQL Query is very similar to that in Case 4 but only exception is

that it does not have any filtering condition i.e., “select * from student_db”;

2. MongoDB:MongoDB uses find() function for case 5 in the form of

“db.student_db.find()”;

3. OrientDB: OrientDB provides three kinds of view of data. It uses the query

“select * from Student” where one can view the raw data in document-based

format along with graphical representation and tabular view;

4. Neo4j: For a graph database, a variable x is defined which is required to retrieve

all the nodes e.g., “match(x:Student) return x”.

Case 6: Delete Only One Record:
This case analyses the time taken to find a particular record and to delete that record.

Table 2.1 lists the time taken for deletion of 1 record. PostgreSQL takes much greater

time than others for deletion:

1. PostgreSQL: SQL query for deleting one record is “delete from student_db

where name=‘Ram’”;

2. MongoDB: For selective deletion we need to pass the name and value pair as

parameters to remove() function like “db.student_db. remove(name:“Ram”)”;

3. OrientDB: The query in this case is relatively simple by just mentioning the

condition in a where clause as in case of SQL e.g., “delete vertex Student where

name=‘Ram’”;

4. Neo4j: The delete query for Neo4j is “MATCH (n name:‘Ram’) DETACHDELETE n”,

where Detach Delete is used to delete a node irrespective of edges connecting

them.

Case 7: Delete All Records:
This case demonstrates the use of a query to delete all recordswithout deleting a table,

collection, or Class. Table 2.1 lists the time to delete all records from the database.

PostgreSQL takes a much greater time than other databases:

1. PostgreSQL: Query in this case is same as in case 6 except the filtering condi-

tion. For example, the query coul be: “delete from student_db”;

Page 40 of 126

Background Study

2. MongoDB: The same remove() function is used to delete all the records. Only

difference with the previous case is use of empty which signify that all records

needed to be deleted i.e., “db.student_db.remove()”;

3. OrientDB: Deletion of class Student deletes all records. However, the class still

remains and the corresponding query is: “delete vertex Student;”.

4. Neo4j: The Cypher query “MATCH (n:Student) DELETE n” deletes all the nodes

with their properties.

From the experimental analysis, we see that the initial setup cost of Neo4j is more,

yet the cost of select, insert, and delete operations is the costliest for PostgreSQL.

MongoDB and OrientDB seems to be the most effective even when for structured

data. From the experiments, we can see that Neo4j has a slight edge over PostgreSQL.

Page 41 of 126

Chapter 2

Page 42 of 126

Storage Model

Chapter 3

Storage Model

3.1 Introduction . 44

3.2 Research Challenges and Solutions 44

3.3 Background . 44

3.4 Modelling Components . 45

3.5 Modeling Elements . 47

3.6 Testing Platform . 49

3.7 Resultset . 50

3.8 Discussion . 50

3.9 Conclusion . 51

A MULTIMODEL CLOUD DATA STORAGE SYSTEM

HAVING AN OBJECT BASED VIEW

Page 43 of 126 Anindita Sarkar Mondal

Chapter 3

3.1 Introduction

Nowadays, billions of digital things generate a massive amount of data, known as big data.

Big data storage is difficult due to its volume, velocity, and variety properties [123]. Di-

verse types of stakeholders and their applications are associated with a data storage system.

During data processing, these applications receive and generate a vast amount of data in

different formats (e.g., text, document, image, video, audio, etc.). The responsibility of the

database manager is to provide data storage support so that the application can efficiently

run its job. Going beyond the traditional data storage system, the storage manager use dif-

ferent cloud data storage systems [124, 125]. In this case, allocation of storage resources is

performed based on their demand. This technique helps to support scalability, reliability,

and durability but fails to support data variety.

3.2 Research Challenges and Solutions

There are a variety of data storage systems. The services provided by these storage systems

vary from one another. Therefore, selecting a storage unit is a challenge and the selection

depends on the purpose. Some storage systems provide services according to the resource

capabilities (e.g., feature, performance, cost, etc.) like an automated approach [126]. Some

platforms convert raw data to the application-specific data structure like MVaaS [127]. It

is even more challenging to manage a storage systems that attempts to handle the variety

property of big data.

We aim to find out a reasonable solution to overcome such challenges.

• We have proposed a storage model to allocate storage resources at run time. Storage

resources are assigned based on users’ demand. Two features are considered for such

an assignment: resource capability, and application feature.

• We aim to make the storage system flexible enough to support application demands.

Therefore, our proposed storage model provides such facilities where users can de-

sign the storage resource architecture according to their needs.

• We demonstrate the applicability of the proposed storage model using a single user-

defined data storage request. This request holds a set of data types in any sequence.

The purpose of this request is to store multiple types of data through a single inter-

face.

3.3 Background

As mentioned earlier, there are multiple types of data storage systems. Every system has

a set of functionality for storing the collected data that differ from system to system. As

an example, a column family-based data storage system, Cassandra, stores the data in key-

value-based table form [128]. Document oriented database, MongoDB, stores data in json

Page 44 of 126

Storage Model

based document format [129].

It is seen that XML-based model makes the storage system efficient to support appli-

cations’ needs. In [101], the author automatically selects jobs of the cloud storage service

based on resource capabilities using an XML schema. T information related to resource

capabilities is provided by cloud users. Author of paper [130], selects infrastructure-based

services (e.g., bandwidth, CPU cost, latency, etc.) by considering the relation between func-

tional and nonfunctional configurations provided by users (e.g., CPU type, memory size,

costs, regional availability). Cloud service selection (e.g., web service) is based on cloud

capabilities and human requirements. All these storage models focus on the resource ca-

pability for selecting storage services. The author in [127] proposes a framework where

data storage structure depends on ways to make applications faster. We aim to support the

variety property of incoming data by storing them in user-assigned storage spaces. For this

reason, allocation of storage resources is done based on the type of the incoming data.

User willingness has a significant impact on the services selection process. Author in

[131] makes a survey of the Chinese market about the users switching from one cloud

storage service to another cloud storage service. For this reason, he considers some non-

functional factors, related to human nature like risk, trust, switching costs, and social in-

fluences. In this work, we also consider the user willingness, but it depends on the input

data type and the corresponding database system. Author in [132] thinks that the opinion

of users regarding getting services depends on the quality of service. This selection proce-

dure is accomplished by ranking cloud service s after opinion mining of users and applying

multi-attribute decision-making models on quantitative (user’s review) and qualitative data

(QoS parameter). However, this model is not good for our purpose as the selection of stor-

age services is dependent on quality and not on type of the input data.

3.4 Modelling Components

The first task is to collect storage-related information. Such information is collected from

a set of components mentioned in Figure 3.1. These storage modeling-related components

are considered for allocation and configuration. These components also provide a struc-

tural representation of data storage units. The relationship between the components is

presented in Figure 3.1, which describes how one component affects another component.

We have mentioned a set of components that directly affects the allocation of resources

and helps to sketch a structural representation of such allocations. In this case, storage

resources are nothing but the set of data storage devices controlled by available databases,

like, Cassandra, SQL, MongoDB, Neo4j, HDFS, etc.

Resource Allocation Feature: These features are about requirements which enable us

to allocated resources. For example, storage cost, throughput, storage space size, storage

data information needed for the application, etc., are either user-defined or application-

defined. Designing an optimized and friendly data storage system depends on specific

points like storage space, usage pattern, storage cost, storage response time, etc., [133, 134,

135].

Page 45 of 126

Chapter 3

Figure 3.1: A Diagrammatic Representation of Information Of The Modeling Components

And their Relationship Using UML

Property values of this component depend upon the data Information details described

below. Such information is divided into two parts:

1. Resource Capability: Under this sub-component, resource structured related require-

ments are mentioned. It mentions the lower-level architecture-related information of

the storage resources, like storage memory size, retrieval time, etc.

2. Application Feature: This sub-component define the usage patterns. Different appli-

cations or different users require various representation of the raw data. Users prefer

to view the generated data in graph or file format. Applications prefer to receive the

raw data in a data format suitable for these applications so that computation cost

becomes low. [136].

Data Information Details: Without a complete knowledge about the collected data, de-

sign of a storage system cannot be very effective. This component mentions properties

which help to understand the collected data, like data type, format, source types, genera-

tion frequency, etc. This information helps to decide which data storage device units are

suitable for storing such data. Based on given information type, information about data

may be categorized in two ways.

1. Data Source Details: Source-related information dramatically contributes to under-

standing the characteristics of the collected data. Data source information helps to

Page 46 of 126

Storage Model

understand the data generation frequency, data volume, generated data types, etc.

Depending on this feature, appropriate resources must be allocated by the data stor-

age system [137].

2. Data Extension: In the case of big data, the storage system has to store a variety of

data. [138]. Data extension helps distinguish one type of data from other type of

data. Each data extension has a specific meaning which helps us to understand the

nature of the data. Also, the output generated by these applications are stored using a

specific data extension. Conversely, every data storage device cannot store any type

of data. However, data extension type helps to decide the corresponding data storage

device units.

Resource Configuration Information: For storing data, a storage system needs to ar-

range the resources in a proper manner. Supporting the data operations like reading, writ-

ing, and deleting are also part of a data storage system that stores raw data. Therefore,

resource configuration plays a crucial role in organizing data so as to minimize the cost

of future computation. Storage resource configuration focuses on specific points like data

structure, data operation, and storage device unit. The assigned value-set of this component

depends on the data information details and resource allocation features. This component

points out the set of actions that are needed to configure the resources. Based on actions,

this information list can have two categories.

1. Storage Infrastructure: This sub-component mentions information, which helps to

sketch the storage architecture. For example, storage location, device unit name,

attribute list, database name, etc., help define the storage schema. The storage schema

structure varies with data type and resource type.

2. Data Operation Type Any storage system has to support at least three types of data

operation: read, write, and delete. For each operation, necessary storage structure

definition is needed.

3.5 Modeling Elements

In this section, we describe the structural representation of the storage model. Exten-

sible Markup Language is chosen to describe the storage model because it is machine-

understandable and user-friendly. Each XML-based storage model has a specific identifier

mentioned as mentioned in 3.1 so that a user can uniquely identify it.

Listing 3.1: Example of Storage Model identifier

< s to r agemode l i d =<unique i d va lue o f s t o r a g e model>>

:

< / s t o r agemode l >

The modeling components mentioned earlier in this section are presented in the XML-

based storage model using a few elements. These elements have specific meanings to the

Page 47 of 126

Chapter 3

storage system. They act as control units to identify storage resources needed for the in-

coming data, map with the user-defined information, and allocate corresponding resources

to store this incoming data. These elements are described based on their functionality:

1. Database Element: It is used to define the data storage structure of the data storage

units for the incoming data. This element is responsible for configuring allocated

storage resources. The XML tags of this element present the storage resource archi-

tecture.

Listing 3.2: Example of database element

< da t a b a s e i d =" f l a g 1 " >

<account >U009 </ account >

< con t a i n e r >U009_1234 </ con t a i n e r >

<pr imarykey name=" t ime " type =" long " / >

< a t t r i b u t e name=" Data " type =" i n t " / >

< a t t r i b u t e name=" DeviceType " type =" S t r i n g " / >

<databaseURI > h t t p : / / < machine IP >: < po r t number >/

cassandraDB / r e s t / s t o r e </ da tabaseURI >

</ da t abase >

Listing 3.2 presents an example of data storage resource configuration. In this exam-

ple, <account> tag is used to mention the name of the database space (i.e., U009),

<container> mentions the name of data tuple space (i.e., U009_1234), <attribute

name="Data" type="int"/> and<primarykey name="time" type="long"/> define the

name of the attribute (i.e., Data) and name of the primary key (i.e., time) along with

the corresponding data type (i.e., int, long). The storage system can communicate

with resources through the rest API. For performing individual data operation, there

is a specific URIwhich ismentioned as follows. <databaseURI> (i.e., http://<machine

IP>:<port number>cassandraDB/rest/store). Each resource is identified by a specific

identity value presented under <database id> tag.

2. Property Element: Cassandra is a storage resource in Listing 3.2. To configure Cas-

sandra as a storage space we need some specific information like Keyspace (presented

as account), column-family (presented as a container), attribute list (presented as an

attribute), primary key name (presented as primary key), and column data type (pre-

sented as a type) are used to configure Cassandra as a storage space. Here, Cassandra

is identified as flag 1

In the XML based storage model property element is written in <property> tag,

shown in listing 3.3. In this listing, the "number of visualized components" is an

application feature used as a resource allocation feature. In this case, storage resource

is selected based on their output representation. For example, MongoDB stores data

as a document; so, the number of visualized components is one. Cassandra stores

data in a column family way; this implies the number of visualized components is

equal to the number of columns (i.e., more than one number of component).

Listing 3.3: Example of property element

<proper ty >

Page 48 of 126

Storage Model

number o f v i s u a l i z e d component

</ proper ty >

3. Operation Element: Data storage system supports more than one type of data op-

eration (like, READ, WRITE, DELETE), and their working are different from each

other. Based on the operation type, resource configuration has to vary. This element

represents the content of the data operation type component.

Each storagemodelmentions only a single data operation component, enclosedwithin

<operation> tag.

Listing 3.4: Example of operation element

<ope r a t i on >

wr i t e

</ ope r a t i on >

4. Strategy Element: After configuring storage resources, a system must allocate them

based on certain conditions. Every resource is not capable to support any job; it has

limitations. For performing specific jobs, we need to allocate an appropriate resource.

The storage model defines this requirement using an XML element called strategy

element.

Listing 3.5 represents the example of strategy element. The instructions are put under

the "strategy" tag. There may be more than one strategy content in a single storage

model. Each strategy is identified through its id. The condition is written inside the

condition tag. What type of action is taken is based on the mentioned condition is

written in the "output" tag. In the example listing, we mentioned that if the number

of visualized components is greater than 2, the flag is set to flag1 means Cassandra is

selected as a storage resource.

Listing 3.5: Example of strategy element

< s t r a t e g y i d =" s t 1 " >

< cond i t i on >number o f v i s u a l i z e d component > 2 </ cond i t i on >

<output > s e t F l a g = f l a g 1 </ output >

</ s t r a t e g y >

3.6 Testing Platform

In this chapter, we focused on storing big data that handles the variety property. When a

single data store system is used to provide storage services to big data, and more than one

type of data is collected, the system fails to store data and provide services in an effective

manner. For handling this challenge a storage model has been proposed in which multiple

types of data can be stored in their appropriate storage resources.

Listing 3.6: Configuration of Storage Model

<?xml v e r s i o n = " 1 . 0 " encod ing ="UTF−8" s t a nd a l on e =" yes "? >

Page 49 of 126

Chapter 3

< s to r agemode l i d ="90" >

< da t a b a s e i d =" f l a g 1 " >

<account >U009 </ account >

<pr imarykey name=" t ime " type =" long " / >

< a t t r i b u t e name=" Data " type =" i n t " / >

< a t t r i b u t e name=" DeviceType " type =" S t r i n g " / >

< con t a i n e r >U009_1234 </ con t a i n e r >

<databaseURI >

h t t p : / / < machine IP >: < po r t number >/ cassandraDB / r e s t / s t o r e

</ da tabaseURI >

</ da t abase >

< da t a b a s e i d =" f l a g 2 " >

<account >U009 </ account >

< con t a i n e r >U009_1234 </ con t a i n e r >

<databaseURI >

h t t p : / / < machine IP >: < po r t number >/mongoDB / r e s t / s t o r e

</ da tabaseURI >

</ da t abase >

<proper ty >Data Type </ proper ty >

<ope r a t i on >wr i t e </ ope r a t i on >

< s t r a t e g y i d =" s t 1 " >

< cond i t i on >T</ cond i t i on >

<output > s e t F l a g = f l a g 1 </ output >

</ s t r a t e g y >

< s t r a t e g y i d =" s t 2 " >

< cond i t i on >D</ cond i t i on >

<output > s e t F l a g = f l a g 2 </ output >

</ s t r a t e g y >

</ s to ragemode l >

3.7 Resultset

We consider a use case that helps to highlight the usefulness of the proposed storage model.

In this use case, we consider a user who wants to store two types of data, document, and

text. He makes a data storage request where the incoming data type is either “D” or “T”,

where D represents document type of data and T represents text type of data. The incoming

data can appear in any sequence, like “DDTT”, or “TDDTD”.

To support such a situation, we take help of a storagemodel, which is configured in such

a way as presented in the listing 3.6. Cassandra is a storage resource for text-oriented data,

andMongoDB for document-based data. Each storage resource follows its own architecture

to store data. The data storage configuration of each storage resource is mentioned in

the storage model. This storage model defines the a condition that decides under which a

specific resource becomes active.

3.8 Discussion

The proposed storage model works in a distributed system and each storage unit is accessed

through rest APIs, Thus, they become similar to storage resources. For experimentiation,

we choose two types of data storage units as storage resources: column family-oriented

database Cassandra, and document-based database MongoDB. We use 2 × m1.large in-

Page 50 of 126

Storage Model

Figure 3.2: Applicability of a storage model

stances with 8 GB memory to support the storage resource configuration. One instance is

assigned to Cassandra and another to MongoDB.

In Figure 3.2, we present the pictorial representation of the facility of applying the stor-

age model in a storage system. We consider that the occurring data format sequence is

“DDTDDTTTDDD”. The storage model structure is already defined in the previous sub-

section. When the data type of incoming data“D” is “D”, element content of <condition>,

present in the storage model, then the storage system allocates the storage resource whose

<database id> is flag 2. In the same way, when “T” occurs <database id=flag 1> will be

true and appropriate resource is allocated.

The figure 3.2 represents the significant difference between two situations. In one, stor-

age model is properly designed and in another storage model is not properly designed in

the storage system. In the absence of a proper storage model, when “T” meets MongoDB,

it does not perform any task; when “D” meets Cassandra DB, it is in an idle position. The

presence of a storage model makes the storage system active in both situations. Also, using

this storage model, users can provide a degree of flexibility to the storage structure in the

storage system.

3.9 Conclusion

The proposed XML-based storage model helps the user to inform the storage system to

identify which storage resource should be allocated under different circumstance at run

time. Also, it mentions about storage schema structure of prevalent in different run-time

conditions. Thus, the storage system becomes more flexible and less complex. Using this

storage model, a user can create a storage system for different conditions (by means of

conditions). An user does not need to set up the storage system for handling different

types of input data. The storage model takes that decision automatically. Also, a user does

not need to change the storage system structure every time to support a new condition.

Page 51 of 126

Chapter 3

Page 52 of 126

Load Balancing in cloud platform

Chapter 4

Load Balancing in cloud platform

4.1 Introduction . 54

4.2 Background . 54

4.3 Motivation and Research Problem 55

4.4 Resources relevant for Load Balancing in the Cloud 56

4.5 DRSQ-Dynamic Resource Service Quality Based Load Balancing

Algorithm . 57

4.5.1 Algorithm . 57

4.5.2 Testing Platform . 58

4.5.3 Comparative Results . 59

4.5.4 Discussion . 59

4.6 Double Threshold Based Power Aware Honey Bee Cloud Load Bal-

ancing Algorithm (DTPAHBF) . 61

4.6.1 Algorithm . 61

4.6.2 Testing Platform . 63

4.6.3 Comparative Results . 66

4.6.4 Discussion . 68

4.7 Conclusion . 68

A MULTIMODEL CLOUD DATA STORAGE SYSTEM

HAVING AN OBJECT BASED VIEW

Page 53 of 126 Anindita Sarkar Mondal

Chapter 4

4.1 Introduction

According to the definition of cloud computing by the National Institute of Standards and

Technology (NIST) [139], it is a model where on-demand computation services can be per-

formed via internet. A shared pool of computing resources (e.g., networks, servers, storage,

applications, and services) exist to provide infrastructure-based services. This online way

of computing is accomplished by acquiring and release of resources according to the needs

of a service.

Due to the increasing demand for computing services, the load on available resources

becomes enormous. The cloud service provider can control the combination of load and

resources by distributing the load to a limited number of resources in an efficient manner.

This task is known as load balancing technology [140, 141] in the literature.

Load balancing algorithms distribute incoming job requests or network traffic among

the resources available in the resource pool. The main objective of a load balancing algo-

rithm is to enhance the system’s performance by optimizing resource utilization, response

time, throughput, and to avoid overload or under-load situation of resource [142, 140].

4.2 Background

There are two types of load balancing algorithms: static load balancing algorithm [143]

[144] and dynamic load balancing algorithm [145]. The difference between static and dy-

namic load balancing algorithms arises at the time of resource scheduling. The static load

balancing algorithm does not consider the present status of resources for resource selec-

tion, but the dynamic load balancing algorithm considers the present status of resources for

resource selection[146]. Such dynamic resource selection approach increases decision accu-

racy and improves the performance of a dynamic load balancing algorithm [147]. Static load

balancing algorithms are more stable than dynamic load balancing algorithms. Dynamic

load balancing algorithms are based on ant colony [148], honey bee [149], etc. Round robin

[150], Random [151] [152], and Threshold [153] are some examples of static load balancing

algorithm.

Due to dynamic workload in a cloud environment, some resources are underutilized

and some resources are over-utilized. To attain load balancing, we have to avoid needless

resource consumption, and try to achieve efficient resource utilization through the concept

of the live VM migration [154]. The technique of migrating VM from one host to another

physical host allows a user to remain connected so as to cause theminimum down-time. Us-

ing this live VM migration technique, the VMs from the overloaded hosts may be migrated

to under-loaded hosts. If we migrate under-loaded hosts to moderately loaded hosts, we

may fee some the hosts which can be switched off. However, such over consolidation of

VMs in a host results in degraded system performance.

Page 54 of 126

Load Balancing in cloud platform

4.3 Motivation and Research Problem

Cloud computing provides computing resources as a utility based on Service Level Agree-

ment (SLA) between users and their cloud service provider. The Amazon EC2 [27], Google

App Engine [155] and Microsoft Azure
1
are a few major cloud service providers that pro-

vide Platform, Infrastructure, and Software oriented services.

To increase the overall performance of cloud computing, one needs to distribute in-

coming load efficiently among various nodes in the cloud computing environment. For this

purpose, researchers have proposed various load balancing algorithms such as Throttled

Load Balancing Algorithm [156], Active Monitoring Load Balancing Algorithm [157], and

Round Robin [158, 159] algorithm. These algorithms are more or less effective in accom-

plishing the task task of load balancing.

Still there are some research questions which need to be .

• Can we consider role of resources available to the provider to take decisions while

balancing load?

• Can task scheduling increase the overall performance of a cloud computing platform?

• Nowadays, cloud computing platforms consume a lot of energy to run their system.

Can we reduce this energy consumption by using a suitable load balancer?

In the following, some solutions are proposed to address the research questions men-

tioned earlier.

• A novel dynamic load balancing algorithm named dynamic resource service quality-

based load-balancing algorithm is introduced. It helps a load balancer to support

diverse rate of incoming requests from the applications to the database. The load bal-

ancer selects the proper resource from the resource pool based on the provided data

service quality at the time of task scheduling to achieve this goal. To judge the service

quality, we consider the present status of specific resource metrics. These metrics in-

clude CPU clock frequency, load in the last 15 minutes, number of processes, number

of running processes, Number of CPU cores, free RAM size, free SWAP memory size,

free disk size, bytes in and bytes out. Using these metrics, the load balancer avoids

back-end resources which are already dead or in a bottleneck situation.

• An algorithm Double Threshold based Power Aware Honey Bee Foraging Load Bal-

ancing (DTPAHBFLB) has also been introduced, which is based on swarm intelligence-

based technique [160, 161]. Specifically, it is based on Honey Bee Foraging Load

Balancing algorithm [162, 163] for uniform distribution of loads within the VM’s of

cloud along with double threshold based power aware load distribution mechanism

to reduce energy consumption.

1
https://docs.microsoft.com/en-us/azure/storage/

Page 55 of 126

Chapter 4

4.4 Resources relevant for Load Balancing in the Cloud

Load balancing is a mechanism to utilize the resources efficiently to ensure the maximum

throughput as well as the minimum response time. There are three essential resources in

a cloud system: (i) network, (ii) Memory, and (iii) CPU. In the context of request-response

processing, these three resources are equally loaded and affect the system performance

equally. To improve performance metrics, one needs to balance loads of three resources. In

the following, we present a view of the load balancing mechanism based on these system

resources.

Network LoadBalancing It focuses on network traffic throughwhich users try to access

a single resource. Network load can be balanced by controlling transmission protocols

(TCP/IP) [164, 125]. There are different techniques to balance network load such as: (a)

creation of multiple sessions where each session is dedicated to serving a particular type of

job; (b) distributing network traffic in different clusters to different hosts to reduce network

load of any particular host. MicrosoftWindows Server 2008 [165] follows this technique. (c)

controlling routing, network overflow and congestion may be prevented. Ad-hoc networks

use this technique to increase throughput, decrease packet loss ratio, and end-to-end delay

[166].

Memory Load Balancing When an application uses a very significant amount of mem-

ory (RAM) compared to the capacity of the server, the server becomes overloaded. In this

situation, the server wastes considerable time by page swapping, which degrades the sys-

tem performance. Memory load balancing mechanism [167] focuses on resolving the mem-

ory overload situation by customizing hardware and software. One of the most popular

techniques, Storage virtualization [168, 169]. is used to design a memory load balancer. In

such systems, there are single storage pools (consists of hard disk, optical disk, tape, etc.)

where all are treated as single physical memory and controlled by a central console. IBM

SAN Volume Controller (SVC) [170] uses such storage virtualization technique to balance

memory load in the IBM data center.

CPU load Balancing When many clients request for one resource, and all clients go to

waiting state, this situation is known as CPU over-load. This situation occurs in the cloud

very frequently. It results in failure of the whole system due to low performance. There are

hardware (i.e., multi-core CPU implementation) and software solutions (i.e., load balancing

algorithms) for to mitigate CPU over load situations [171].

Page 56 of 126

Load Balancing in cloud platform

4.5 DRSQ-DynamicResource ServiceQualityBased Load
Balancing Algorithm

In this section, we discuss a novel load balancing algorithm where our target is to manage

task load and, side by side, provide adequate client services.

4.5.1 Algorithm

In this section, we describe a new load balancing algorithm named “Dynamic Resource

Service Quality Based Load Balancing Algorithm” (DRSQ). Back-end resource selection is

based on the service quality of the resources. Service quality is measured by considering

the request type (e.g., READ, WRITE) and the value set of resource metrics.

DRSQworks in three phases: (a) Identifying the type of application requests, (b) Config-

uration of the resource list, and (c) Identifying the most appropriate resource. The detailed

algorithm is described in Algorithm 1.

Algorithm 1 Dynamic resource service quality based load balancing algorithm

Input: Application Request (READ/WRITE) operation

Output: Backend resource which is the best to handle the request

Phase 1: Identifying the type of request
Phase 1.1: Wait for the incoming request
Phase 1.2: Register New Request
Phase 1.3: Fing the type of request which either can be READ or WRITE

Phase 2: Configuration of Resource LIST
Phase 2.1: If the operation to be performed is READ

Phase 2.1.1: Select and store a back-end resource with maximum

CLOCK_SPEED,minimum LOAD in the last 15 minutes, minimum number of processes,

minimum number of RUNNING processes, maximum Number of CPU CORES respec-

tively in a LIST

Phase 2.1.2: Append the Server name in the LIST after all the parameters are checked

Phase 2.2: If the operation to be performed is WRITE
Phase 2.2.1: Select and store a back-end resource with maximum FREE RAM, maxi-

mum FREE SWAP, maximum FREE DISK, minimum LOAD in the last 15 minutes respec-

tively in a LIST

Phase 2.2.2: Append the resource in the LIST after all parameters are checked.

Phase 3: Identifying the most appropriate resource based on LIST components
Phase 3.1: Select the resource which has maximum occurrence in LIST
Phase 3.2: Forward the request to the selected resource

Page 57 of 126

Chapter 4

4.5.2 Testing Platform

One aim of the load balancing algorithm is to control network traffic. This is also an objec-

tive of the proposed Dynamic Resource Service Quality based Load Balancing Algorithm.

Figure 4.1 describes the experimental system setup. This setup is divided into two parts:

Data Zone responsible for client requests and Cloud Zone presents the information about re-

sources and the load balancer. In this experiment, four application domains are considered

each consisting of temperature sensors. Load Balancer runs the DRSQ to select the "best"

resource for handling network traffic generated by the clients’ requests. In this experiment,

we use real temperature sensor data. In this setup, the clients’ requests are either reading

or writing.

The efficiency of DRSQ is measured by increasing and decreasing the network data

traffic. This effect is caused by varying the frequency of incoming data.

Six temperature sensors are used and each sensor’s data generation frequency rate can

be varied. In this setup (See Figure 4.1), one extreme is when each application domain

consists of a single temperature sensor, and at the other extreme, each application domain

holds two temperature sensors.

Five virtual machines and one load balancer machine are considered for the experiment.

MongoDB [93], Apache Tomcat [172] and Ganglia [173] are used to configure the machines

according to their needs as presented in figure 4.1. Ubuntu 14.04 is used as an operating

system for these machines. Ganglia plug-ins are used like Gmetad 3.6.0 in the load bal-

ancer and Gmond 3.6.0 in the resource part for collecting the resource metrics value set

corresponding to each machine. MongoDB 3.6.19 is used as a back end database to store

the incoming data. Java based web applications are run on tomcat server 8.5.28.

Figure 4.1: Diagramatic sketch of the Experiment Setup

Page 58 of 126

Load Balancing in cloud platform

Algorithm Execution Time CPU Utilization Memory Utilization

Dynamic Resource

Service Quality Based

Load Balancing Algo-

rithm

1.98 second 0.451% 6 MB

Round-Robin Load Bal-

ancing Algorithm

0.401 second 0.028% 5 MB

Table 4.1: Performance Results of Dynamic Resource Service Quality and Round-Robin

Load Balancing Algorithm

4.5.3 Comparative Results

We choose Round-Robin load balancing algorithm as the base algorithm to compare with

because it is considered to be the standard load balancing algorithm in many application

domains. We first compare the overall performance (i.e., CPU Utilization, Memory Uti-

lization, and Execution Time) between Round-Robin and DRSQ algorithms. We find that

Round-Robin algorithm performs better in all aspects, as shown in Table 4.1.

To analyze the performance behavior in streaming data, we consider five data requests

from each sensor of each application domain (Figure 4.1) which sends data requests in the

following data rates: 5KB/sec, 10 KB/sec, 15 KB/sec, 20 KB/sec, 25 KB/sec and 30 KB/sec.

In Figure 4.2, when the data frequency rate is changed, after some time, the response time

changes in DRSQ algorithm. Otherwise, it maintains a constant value.. Figure 4.3 represents

the characteristics of response times of each request under different frequency rates in a

more elaborate way. Here, we can see that, in every frequency rate only for ‘Request 1’

(Figure 4.3(a)) DRSQ algorithm takes more time than Round-Robin, and in all other requests

(Figure 4.3[(b), (c), (d), (e)]) DRSQ takes less time.

Figure 4.2: Pattern of response times for streaming data requests

4.5.4 Discussion

Dynamic Resource Service Quality algorithm selects a resource based on the monitored

status parameters collected from ganglia-generated log files. Initially, the algorithm invests

time to trigger the ganglia monitoring daemons to monitor the resources, connects with the

Page 59 of 126

Chapter 4

back-end servers, fetches the log files generated by ganglia daemons and finally parses the

desired values from the log files. When the load balancer receives the subsequent requests

after some time, it modifies the generated log file contents, analyzes the new values, and

sends the incoming requests to the selected resource. Hence, if ganglia initial setup time

can be reduced, it further reduces response time.

Figure 4.3: Characteristics of requests under different frequency rates

The Round-Robin algorithm circularly selects the resources, one after another. In such

a situation, there are significant chances that a crashed server or a heavily loaded server

is selected as many requests will be pending with it. Furthermore, all the requests may

cause a bottleneck at the back-end server, which increases the response time. Therefore,

sometimes response time is very low, and sometimes very high. For the DRSQ, there is no

chance to select a resource in overloaded condition. For this reason, except for the initial

set-up stage, response times show a more or less a very similar value.

Also, we use ‘Task Accuracy Rate’ to justify the usefulness of DRSQ Load Balancing

algorithm. For this experiment, we changed our setup, as shown in Figure 4.1 a little bit

where resource five is in dead condition. We continuously make 10,000 ‘Write’ requests

with a data bundle consisting of 1000 data records in each request. According to theworking

principle of the Round-Robin algorithm, requests will hit resource five 2,000 times, and it

fails to serve those requests. Whereas, DRSQ does not select Resource 5 at all because before

selecting a server, the load balancer checks whether the resource is in a workable state or

not. If we assume 1% packet loss occurs due to network issues, the computed accuracy

percentage for both algorithms is shown in Figure 4.4. For DRSQ, data loss occurs only due

to network issues. However, for the Round-Robin algorithm, the inaccuracy rate arises due

Page 60 of 126

Load Balancing in cloud platform

to both network faults and selection of crashed the resource.

Figure 4.4: Task accuracy rate in percentile for (a) Round-Robin and (b) Dynamic Resource

Service Quality Load Balancing Algorithm in mentioned scenario

We conclude that if we see the overall performance, the Round-Robin algorithm pro-

vides better performance for many applications but it does not provide satisfactory perfor-

mance in task accuracy or performance rate for streaming data. However, in such situations,

DRSQ provides good much better performance.

4.6 Double Threshold Based Power Aware Honey Bee
Cloud Load Balancing Algorithm (DTPAHBF)

4.6.1 Algorithm

In a cloud computing environment, there are several data stores and virtual machines.

These virtual machines have ID, CPUs, bandwidth capacity, memory, and processing power.

Cloud is decentralized to make the system scalable and to avoid a single point of failure.

The new algorithm uses the following parameters:

• The maximum number of jobs that can be allocated in VMs

• Number of currently allocated jobs in VMs

• Number of currently active VMs

• Virtual machine states list

• Lower and Upper cutoff value of modified honey bee algorithm

The new algorithm is based on an innate intelligent behavior of a honey bee swarm

called foraging behavior. A new Double Threshold-based Power-Aware Honey Bee (DT-

PAHB) Load Balancing algorithm that simulates real honey bees’ behavior is discussed as a

Page 61 of 126

Chapter 4

Figure 4.5: Flowchart of proposed double threshold based power aware honey bee (DT-

PAHBF) load balancing algorithm

solution to the problem of load balancing. The flowchart of the proposed double threshold-

based power-aware honey bee (DTPAHBF) load-balancing algorithm is shown in Figure

4.5. This honey bee-inspired load balancing is based on a dynamic approach on double

threshold values depending on the maximum number of virtual machine counts. The up-

per threshold value is 90% of the maximum count, and the lower threshold value is 20% of

the maximum count. Once the tasks are allotted to the VMs, the current load is calculated.

If the VM becomes overloaded, the task is transferred to the VM based on the currently ac-

tive VM count for the lower and upper thresholds. Suppose the currently active VM count

is less than the lower threshold value. In that case, the least loaded VM is chosen for task

allocation instead of using a modified honey bee algorithm to reduce migration time and

cost, storage cost, CPU cost, and memory cost and thus save energy. If the currently active

VM count is greater than the upper threshold value and an unallocated VM is available, we

choose that VM; otherwise, we choose the least allocated VM instead of using the modified

honey bee algorithm to save time, cost, and energy.

When currently active VM count is within the lower and upper threshold value, i.e.,

within the normal range, then a double threshold-based modified honey bee algorithm is

followed to get the optimized VM allocation of the task. The flowchart of the modified

double threshold honey bee foraging algorithm is shown in figure 4.6. In themodified honey

bee algorithm, if the number of VM allocations is within the normal range, i.e., within 20%

to 90% of the maximum allocation count, scout bees will not be sent further searching for

Page 62 of 126

Load Balancing in cloud platform

Figure 4.6: Flowchart of the modified double threshold honey bee foraging algorithm

food sources. Otherwise, it will select that VM. After the VM for task allocation is chosen,

all unallocated or idle VMs are detected and removed from the host to reduce unnecessary

energy consumption. If any host contains VMs that are all unallocated or idle, then the host

must be shut down or sent to sleep mode to reduce colossal energy consumption. An idle

VM consumes about 70% of energy over a fully utilized VM. Honey Bee forage technique

hires a sub-urbanized load balancing methodology, and task transfer is assumed to be flying

of the bee.

4.6.2 Testing Platform

Simulation Configuration

We performed a simulation experiment followed by performance analysis in the Cloud-

Analyst toolkit [174]. CloudAnalyst is designed to model resource scheduling algorithms,

cloud service brokers, and cloud data centers. VM load balancer component of the Cloud-

Analyst is used to implement the load balancing mechanism. This simulator provides a

user-friendly GUI to reduce complexities of programming. It allows parameter sweep to do

the experiments by users. This CloudAnalyst framework allows users to set the regions for

cloud-based user bases and data centers. Several other parameters can also be configured

like: the number of requests generated per user per hour, number of user bases, number

Page 63 of 126

Chapter 4

of VMs and number of CPUs, amount of storage and bandwidth of the network, and some

other significant parameters as shown in Table 4.2.

Table 4.2: Parameter Settings for CloudAnalyst Simulation

Sl No. Parameter Value

1. VM Memory 512 MB

2. Data Center OS Linux

3. Data Center VM Xen

4. Data Center Architecture x86

Based on the parameters mentioned in Table 4.2, the cloud analyst assesses a simulation

run, and the results are presented in a graphical format. In the following, we discuss some

statistical metrics based on which we have derived the simulation output and compared the

performance.

1. Average Response Time of the system

2. Average Processing Time of the Data Center

3. CPU Cost of the Virtual Machine

4. Storage Cost of the system

5. Memory Cost of the system

6. Total Data Transfer Cost

7. Energy consumption of the overall process

TheCloudAnalyst enables repeated execution simulation runs after varying parameters.

Experimental Setup

The parameters for the configuration of User Bases, Application Deployment, Data center,

and Physical Hardware details of any Data Center are defined as given in Table 4.3, Table

4.4, Table 4.5 and Table 4.6, respectively.

Table 4.3 shows that six distinct cloud regions are selected to set up users’ locations.

Four data centers handle the service request of these user bases. The data centers are located

in such a way that the first is in region 0, the second is in region 2, the third is in region 1,

and the fourth is in region 5. The number of allocated VMs is presented in data centers (DC)

like 2 VMs in DC1, 5 VMs in DC2, 10 VMs in DC3, and 4 VMs in DC4. Users select optimized

response time-based data center that runs an application implementing the proposed load

balancing algorithm. The application uses the Optimized Response Time broker policy.

Page 64 of 126

Load Balancing in cloud platform

Table 4.3: Configuration of User Bases used in the experiment

Name Region Requests
/User
/Hr.

Data
Size
/Req.
(Bytes)

Peak
Hours
Start
(GMT)

Peak
Hours
End
(GMT)

Avg.
Peak
Users

Avg.
Off
Peak
Users

UB1 2 60 100 3 9 1000 100

UB2 0 60 100 3 9 1000 100

UB3 1 60 100 3 9 1000 100

UB4 3 60 100 3 9 1000 100

UB5 4 60 100 3 9 1000 100

UB6 1 60 100 3 9 1000 100

UB7 3 60 100 3 9 1000 100

UB8 5 60 100 3 9 1000 100

UB9 4 60 100 3 9 1000 100

UB10 0 60 100 3 9 1000 100

UB11 1 60 100 3 9 1000 100

UB12 4 60 100 3 9 1000 100

UB13 5 60 100 3 9 1000 100

UB14 2 60 100 3 9 1000 100

UB15 0 60 100 3 9 1000 100

UB16 3 60 100 3 9 1000 100

Table 4.4: Configuration of Application Deployment used in experiment

Data Center # VMs Image Size Memory BW

DC1 2 10000 512 1000

DC2 5 10000 512 1000

DC3 10 10000 512 1000

DC4 4 10000 512 1000

Each data center contains different number of Virtual machines. Each virtual machine

has 512 Mb RAM and 10Mb bandwidth. Simulated hosts are equipped with Xen as a virtual

machine monitor, sits on Linux operating system, and is based on x86 architecture. The

hosts have 100GB storage, and 2 GB RAM. For others, each machine has the same number

of CPUs and speed. The grouping is done in such a way that users by a factor of 10, and

requests by a factor of 10. One hundred instructions corresponding to each user request is

executed. CPU takes nearly 45 watts, and other units take about 28 watts to process each

request. The simulation duration is set to 10 minutes. We used metrics such as response

time, processing time, CPU cost, storage cost, memory cost, data transfer cost, and energy

consumption to compare the proposed algorithm with other existing algorithms.

Table 4.5: Configuration of Data Center used in the experiment

Name Region Arch. OS VMM Cost

/VM

($/Hr)

Memory

Cost

($/s)

Storage

Cost

($/s)

Data

Trans-

fer Cost

($/GB)

Physical

HW

Units

DC1 0 x86 Linux Xen 0.1 0.005 0.01 0.1 2

DC2 2 x86 Linux Xen 0.1 0.005 0.01 0.1 5

DC3 1 x86 Linux Xen 0.1 0.005 0.01 0.1 10

DC4 5 x86 Linux Xen 0.1 0.005 0.01 0.1 4

Page 65 of 126

Chapter 4

Table 4.6: Configuration details at one Data Center (e.g., DC2) used in the experiment

Id Memory

(MB)

Storage

(MB)

Available

BW

Pro-

ces-

sors

Processor

Speed

VM Policy

0 204800 100000000 1000000 4 10000 TIME_SHARED

1 204800 100000000 1000000 4 10000 TIME_SHARED

2 204800 100000000 1000000 4 10000 TIME_SHARED

3 204800 100000000 1000000 4 10000 TIME_SHARED

4 204800 100000000 1000000 4 10000 TIME_SHARED

4.6.3 Comparative Results

Results of our experiments are displayed in Table 4.7 and Table 4.8. Corresponding graphs

are shown in Figure 4.7, 4.8, 4.9, 4.10, 4.11 and 4.12.

Table 4.7: Response Time (RT) and Processing Time (PT) considering Optimized Response

Time service broker policy

Algorithms Avg. (ms) Min (ms) Max (ms)

RR [175]

RT 148.29 37.60 381.13

PT 0.42 0.01 0.88

ESCE [176]

RT 148.46 37.60 520.10

PT 0.42 0.01 0.88

TLB [177]

RT 148.47 37.60 520.10

PT 0.43 0.01 0.86

HBF [178]

RT 148.41 37.62 367.63

PT 0.47 0.01 3.51

ACO [179]

RT 148.30 37.60 367.61

PT 0.43 0.01 0.95

DTPAHBF

RT 148.22 37.48 520.10

PT 0.46 0.01 3.51

The results in Table 4.7 shows that the proposed algorithm performed better (is more

efficient) in terms of overall response time compared to other existing algorithms using

optimized Response Time Service Broker policy. Also, it can be seen that Round Robin is

better than ESCE, TLB, HBF, and ACO algorithms. TLB, and HBF work better than ESCE

and ACO. ACO is better than ESCE, and TLB is better than the HBF algorithm.

Page 66 of 126

Load Balancing in cloud platform

Table 4.8: CPU cost, storage cost, memory cost, data transfer cost, and energy consumption

results considering Dynamic Service Broker policy

Algorithms CPU Cost

(/$)

Storage

Cost (/$)

Memory

Cost (/$)

Data

Transfer

Cost (/$)

Energy

Con-

sumption

(/Watts)

RR [175] 0.50 181.80 90.90 0.18 4.15926

ESCE

[176]

0.53 191.40 95.70 0.18 4.16402

TLB [177] 0.48 174.60 87.30 0.18 4.16447

HBF [178] 0.48 174.60 87.30 0.18 4.16347

ACO

[179]

0.50 179.40 89.70 0.18 4.15971

DTPAHBF

(Pro-

posed)

0.48 173.40 86.70 0.18 4.15798

Figure 4.7: Comparison of all algorithms

in terms of average response time

Figure 4.8: Comparison of all algorithms

in terms of average processing time

Figure 4.9: Comparison of all algorithms

in terms of total CPU cost

Figure 4.10: Comparison of all algo-

rithms in terms of total storage cost

Figure 4.11: Comparison of all algo-

rithms in terms of total memory cost

Figure 4.12: Comparison of all algo-

rithms in terms of energy consumption

per request

Page 67 of 126

Chapter 4

4.6.4 Discussion

Analyzing the generated results of the proposed algorithm in Table 4.8 it is seen that the

proposed algorithm performs better in terms of CPU, Storage, and Memory cost. Thus, it

is more efficient than other existing algorithms as far as Dynamic Service Broker policy is

concerned. This so happens because of the distribution of equal loads among all VMs. Also,

we find that the RR, TLB, HBF, and ACO algorithms are better than the ESCE because they

do not have a large computation overhead. ESCE, TLB, and HBF algorithms are better than

the RR and ACO algorithms. Similarly, ACO is better than Round Robin. The proposed

algorithm does not fair better for processing time to other existing algorithms except the

HBF algorithm as shown in Figure 4.8. In terms of energy consumption, the proposed

algorithm DTPAHBF performs better than others as mentioned in Table 4.8. Figure 4.12

shows a comparative study among RR, ESCE, TLB, HBF, ACO, DTPAHBF. TLB consumes

the maximum energy to process individual requests compared to others.

4.7 Conclusion

In this paper, we have presented a novel dynamic load balancing algorithm, DRSQ, which

balances theworkload and provides efficient application services particularly for streaming.

This algorithm selects resources based on the systemmonitored status. So, it eliminates the

possibility of selecting a resource in the dead state or bottleneck situation.

Cloud Computing has become extremely popular in spite of having several challenges,

such as multi-tenancy, virtual machine migration, etc.

All existing algorithms in the literature focus mainly on overhead reduction, migration

time reduction, performance enhancement, etc. We have proposed an algorithm in this

section that balances the workload in the cloud environment. Our proposed algorithm

DTPAHBF is inspired by the foraging principle of honey bees and a double threshold-based

power-aware mechanism. CloudSim toolkit is used for experimental purposes. The results

obtained through the CloudAnalyst simulator show that the proposed algorithmDTPAHBF

performs better than the other widely known existing algorithms, namely, RR, ESCE, TLB,

HBF, and ACO, in different aspects.

This proposed double threshold-based power-aware mechanism has notable enhance-

ments compared to other traditional load balancing algorithms in terms of average data

center processing time, overall response time, energy consumption, and total cost. Regard-

ing the data-center processing time, DTPAHBF is less efficient than RR, ESCE, TLB, and

ACO but presents better results than HBF.

Increasing cloud computing popularity, in turn increases the workload. In this section,

a taxonomy is discussed to help cloud developers by emphasizing the areas where load bal-

ance is really needed and how. Moreover, a performance parameter list has been prepared

which helps to assess any load balancing algorithm in the cloud framework.

To the cloud application developer, energy consumption by the resources is one of the

most challenging issues along with load balancing and task scheduling in the cloud envi-

Page 68 of 126

Load Balancing in cloud platform

ronment. Our load balacing algorithm aims to help developers in achieving that objective.

Page 69 of 126

Chapter 4

Page 70 of 126

Object based schema oriented cloud storage system

Chapter 5

Object based schemaoriented cloud stor-

age system

5.1 Introduction . 72

5.2 Background . 72

5.3 Research Challenges and Solutions 72

5.4 Object Storage Space . 73

5.4.1 Global Database Schema 73

5.4.2 Temporary Database . 74

5.4.3 Hierarchical Structure of The Storage Object 74

5.5 Hypergraph Data Model . 75

5.6 Architecture . 76

5.7 Query Elements . 78

5.8 Machine Configuration . 78

5.9 Testing Platform . 80

5.9.1 Query Descriptions . 84

5.9.2 Query Time . 84

5.10 Comparative Resultset . 86

5.11 Conclusion . 86

A MULTIMODEL CLOUD DATA STORAGE SYSTEM

HAVING AN OBJECT BASED VIEW

Page 71 of 126 Anindita Sarkar Mondal

Chapter 5

5.1 Introduction

In recent years, the extensive involvement of digitization in the healthcare domain has re-

sulted in the generation of a vast amount of health data. This data is not only significant

in volume but also diverse, making health data a prime example of big data. One impor-

tant issue is the speed at which the data is generated, which is much faster than the data

storage time on a disk [180, 181]. The organization of data has a significant impact on

the architecture of data storage systems, making the need for an intelligent storage system

imminent.

Due to structural differences, each dataset requires a different storage medium. In ad-

dition, all types of heterogeneous data need to be able to communicate with each other. As

a result, there is a growing need for a storage system that not only supports the storage of

multiple data types in a combined manner but also supports a uniform query structure for

these different types of datasets.

5.2 Background

There are various storage systems with distinct features available in the data storage field.

For example, some focus on data storage structure, data security, data volume, or durability

issues [182]. Traditional databases, for instance, prioritize maintaining the relationship

among datasets through their data storage structure [183]. On the other hand, NoSQL

databases place a greater emphasis on reliability, durability, and scalability overmaintaining

relationships among datasets [184, 60]. An object-oriented cloud storage system treats data

as objects and manages them through web services such as Amazon S3 [185, 186] and Swift

[109]. The selection of a storage system depends on the data unit structure used by data

service applications [127, 187].

5.3 Research Challenges and Solutions

Developing and managing the storage aspect of an object-based data storage system is

highly challenging due to the diversity of data. These days, storing data involves more

than just placing it in any data storage device. It also requires storing data in a manner that

meets the demands of applications, such as fast response times, resource capabilities, and

application context [188, 185, 125, 189]. The main question here is how to design the data

storage space to handle data diversity from the perspective of applications. Existing storage

systems either focus on handling structured data (stored in a table format) [190, 191], semi-

structured data (such as documents and graph-based structures) [98, 192], or unstructured

data (such as files, images, audio, and video) [193, 80]. Object-based storage techniques

[194] allow for the storage of multiple heterogeneous data types within a container by

applying an abstraction layer and assigning a unique key value. Several research questions

remain, such as:

Page 72 of 126

Object based schema oriented cloud storage system

• How will the storage system behave when structured and semi-structured data are

stored with unstructured data?

• How should the data storage space be designedwhenmultiple types of data are stored

together?

• Howwill the data storage system behavewhen the storage system satisfies application-

defined components?

The following techniques are examined to address the mentioned challenges:

• An architectural view of the storage object explains what components are involved

in storing data in a storage system and how they are involved.

• An algorithm that outlines the step-by-step process for storing, retrieving, and delet-

ing a dataset.

• A data model that is used to map data objects to storage devices.

• A query structure for read, write, and delete queries to handle heterogeneous datasets

through a single interface.

• A framework that outlines the architecture for a storage system that supports the

aforementioned mapping and query-related tasks.

• Justification for this storage system."

5.4 Object Storage Space

5.4.1 Global Database Schema

Algorithm 2 describes the steps for creating a global schema for the data storage system. It

is executed only once, meaning that the system initially runs this algorithm and does not

need to change it in response to dynamic user requests. This algorithm will be called after

any physical changes are made to the data storage system, such as adding or deleting a data

storage unit or updating the number or content of the local schema of existing data storage

units.

The global database schema describes the logical view of all the available data storage

units in the data storage system. It is represented as a tuple SglobalDB={data attribute (DA),

local schema (LS), data storage unit (DS)}. In the proposed data storage system, the global

view of the storage system is represented as:

f1: DA→ HV

f2: LS→ HE

f3: DS→ HHE

For the case of example 1, Global database Schema is: SglobalDB={{DeviceID, Data, time,

PatientID}, {L1,L2}, {Cassandra, MongoDB}}. It helps perform the searching job, mentioned

in part 2 of algorithm 1.

Page 73 of 126

Chapter 5

Algorithm 2 A Generalized Algorithm For Designing The Global Database Schema

Input: Database set, local schema set, data attribute set,

Output: Global view of data storage devices

Step 1: Generate the structure of each hyperVartex corresponding to each data attribute.

Step 2: Generate a single hyperedge corresponding to each data storage schema

Step 3: Generate a single hyperhyperedge corresponding to each data storage unit

Step 4: Combine all the generated hyperhyperedges for making the global view of the

data storage devices.

5.4.2 Temporary Database

The temporary schema represents the parameters needed to fulfill the users’ demands.

Conceptually a temporary schema structure is represented as a tuple Stemporary: {userID,

Attribute Name, condition}. For the case of example 1, if a user (user id=u001) requests

only the real-time data set for a particular device, the tuple of the temporary schema will

be: Stemporary={u001, {data, time},{begin time=11.9.15 00:09:45, end time=11.9.15 00:10:00}}.

Here, the condition part is optional and has no role in designing the object storage space.

This user can provide other important information.

5.4.3 Hierarchical Structure of The Storage Object

The hierarchical structure of the storage object is shown in Figure 5.1. It is not sufficient

to store data directly under the container as an object for storing structured datasets. It

is worth noting that under a single request, a user in the healthcare domain may demand

more than one type of data [195, 196]. Therefore, our focus is on combining multiple types

of data without violating the storage structure of each type of data. For these reasons, we

store data under the object throughmultiple layers. The object points tomore than one type

of database because each database can store a single type of data; for example, Cassandra

[128] cannot store documents. The key value of the object will be the combined value of

the user ID of the requesting user and the request time. Data is stored under a selected local

schema. This concept allows the user to make their request using the names of the desired

data attributes.

Figure 5.1: Multilevel view of the data container for storing different types of datasets

Page 74 of 126

Object based schema oriented cloud storage system

The object storage space’s schema determines how it stores the collected dataset in the

storage system. Conceptually schema of the object based storage space looks like:

Sobject={userID_requestTime,{{Local Schema....}, Database} }

5.5 Hypergraph Data Model

A hypervertex (HV) is used to represent an existing data attribute node that is already

present in the data storage platform. It acts as the vertex node of the hypergraph and has

six properties: userID, dataType (e.g., structured, unstructured), context (e.g., text, docu-

ment, id), attributeName, schemaName, and databaseName to describe the structure of data

attributes. In example 1, the DeviceID, Data, time, PatientID, ID, and Document attributes

of the set of local schemas act as the set of hypervertices.

A HyperEdge (HE) determines the location of an attribute within the local schema. Data

is stored through a static or dynamic schema for structured or unstructured databases. Each

hyperedge connects all hypervertices belonging to the same local schema. Conceptually it

is represented as: HG[E] =

n⋃
i=1

HEi, Here n≤ the number of local schema of all databases

and each hyperedge (HE) represents a local schema. HEi=

m⋃
i=1

HVi, Here m≤number of at-

tributes, HG[E]=edge set of hyper graphs, HE=hyperedge and HV =hypervertex. At the

same time, we update the property list of the hypervertices by adding schemaName prop-

erty having the value of local schema name. Considering example 1, we may have a hyper-

edge HE1 as mentioned in the following. HE1 ={ HV1, HV2} and the value of HV1=“Data",

HV2=“time". According to example 1, HE1 represents the local schema L1. Therefore, we

add property store=L1 in the property list of HV1 and HV2.

HyperhyperEdge (HHE) provides the information of all local schemas in the data storage

units. Each data storage unit is represented as a single hyperhyperedge. It is represented

as mentioned in the following. HHG[E]=

m⋃
i=1

HHEi where, m ≤ number of HE in HG[E],

HHEi=

n,p⋃
j=1,k=1

{HEj/HVk ∈ HEjinHHG} where HHG[E]=hyperhyperedge list of hy-

pervartex. As before, we update the structure of hypervertices by adding databaseName

property having the value of database name. By considering example 1, HHG[E]={HHE1,

HHE2}, where HHE1 represents Cassandra and HHE2 represents MongoDB. HHE1={HE1,

HE2}, where HE1 corresponds to L1 and HE2 corresponds to L2. Also, HE1 ={ HV1, HV2}

and HE2 ={ HV5, HV6}. Then, we add property databaseName=Cassandra to HV1, HV2,

HV5 and HV6.

Working procedure of hypergraph data model: The configuration procedure follows

three steps to design the storage object: (1) Configuration of the hypervertex set: This step

aims to establish the relationship between the users’ requested data parameters and the

attribute set of the global database schema. It does this by updating the hypervertex prop-

erty list; the working procedure is shown in Figure 5.2. (2) Segregation of the hypervertex

Page 75 of 126

Chapter 5

set: The attribute set of the global database schema is divided into a certain number of sets

of hypervertices. Each set represents the requested parameters of a user. The hypergraph

coloring algorithm 3 is used to accomplish this task. (3) Determining the location of the

requested parameters: This step is dedicated to finding the location of the requested data

parameters, i.e., the local schema of the database. The tasks mentioned in this step are used

to generate the final object storage space corresponding to each user’s request, as shown

in Figure 5.2.

Figure 5.2: Configuration of requested object storage space

Algorithm 3 Segregation Of Hypervertex Set According To The Each User’s Request

Input: userID set(UID[]), structure of hypervartex(HS.UID, HS.DID, HS.TYPE,

HS.CONTEXT, HS.SCHEMANAME, HS.DATABASENAME), hypervartex set(HV[]),

number of hypervertex (HN), Number of user (UN), request List of user

Output: coloured hypervertex set

1: begin
2: set K to 1

3: for all Row I in HV[] and J in UID[] do
4: Compare between HS.UID of HV[I] and UID[J]

5: Collect the equal valued vertex respect of single UID[J]

6: Set the colour of HV[I] is C[K]

7: end for
8: Set value of C[K] with C[K+1]

9: end

5.6 Architecture

The configuration procedure follows three steps to design the storage object:

1. Configuration of the hypervertex set: This step aims to establish the relationship be-

tween the users’ requested data parameters and the attribute set of the global database

Page 76 of 126

Object based schema oriented cloud storage system

Figure 5.3: Basic architecture of object based schema oriented data storage system

schema. It does this by updating the hypervertex property list; theworking procedure

is shown in Figure 5.2.

2. Segregation of the hypervertex set: The attribute set of the global database schema

is divided into a certain number of sets of hypervertices. Each set represents the

requested parameters of a user. The hypergraph coloring algorithm 3 is used to ac-

complish this task.

3. Determining the location of the requested parameters: This step is dedicated to find-

ing the location of the requested data parameters, i.e., the local schema of the database.

The tasks mentioned in this step are used to generate the final object storage space

corresponding to each user’s request, as shown in Figure 5.2.

The RSoS system communicates with different storage devices for handling different

types of datasets. Each storage device is dedicated to storing a particular type of dataset. For

example, Device 1 is responsible for managing table-type datasets, Device 2 for document-

type datasets, and Device 3 for file-type datasets. Each storage device is run by the POST

method of the RESTful web service under a unique URI. To communicate with the storage

device unit, JSON-formatted data is sent to instruct about the contents of the data object,

Page 77 of 126

Chapter 5

the account ID, and the container name. The Storage Device API Generator is responsible

for generating this input JSON format data for a particular storage device unit. It is also

responsible for calling the storage device unit instructed by the decision-maker, using the

assigned URI. At this time, URI selection is also dependent on the database operation be-

cause each storage device unit has three different URIs for three basic database operations.

5.7 Query Elements

The HTTP method of the REST API is used to support database operations. The storage

system creates a container during a database write operation and deletes a container during

a delete operation. Supported database operations are READ, WRITE, and DELETE. The

POST verb is used to draw the data service infrastructure. Table 5.1 shows the details of

the operations used to perform database operations. Each database operation has a unique

PATH value under the POST verb, and the JSON API is used to query the database.

In this protocol, two components are used, viz. URL and input object.

(a) URL: It is the path that is unique for a specific database operation. The RESTful API

service is used to communicate with the RSoS system. A single machine is set up as a

database server for the RSoS system. To communicate with this database server, the

machine’s IP and port number and server identification address are needed. The URI

of this database server is ‘http://<machine IP>:<machine port>/SchemaBasedObjectDB/rest’.

The unique path value, added to the URI, is used to specify the URL of a specific

database operation shown in this table.

(b) Input Object: Here, the JSON API is used to describe the resources with the stored

datasets, known as the Input Object. This information is used to query the storage

system. For each database operation, the schema structure (i.e., a combination of tag-

value pairs) of the JSON API varies. Some fixed tags of the JSON API are used for

all database operations, for example, ‘account’ for specifying the user’s identification

value, ‘container’ for the user-provided unique identification value, and ‘operation’

for specifying the type of operation. The ‘WRITE’ database operation is represented

by ‘Store’, ‘READ’ is represented by ‘Retrieve’, and ‘DELETE’ by ‘Delete’. Some vari-

able tags are used for specific database operations. ‘Datagroups’ for the ‘WRITE’

operation is mentioned in the input data object. ‘Condition’ for the ‘READ’ opera-

tion consists of a subpart of the data object to filter the data object that the user wants

to retrieve. For the ‘DELETE’ operation, the ‘eliminate’ tag is used to specify the data

object that the user wants to delete by referring to the attribute-values of the data

object.

5.8 Machine Configuration

The machine configuration includes the hardware and software information about the ma-

chines used to perform the experiment. For the RSoS system, fourmachines are used, where

one machine acts as a server node and three other machines act as storage device units. At

Page 78 of 126

Object based schema oriented cloud storage system

Table 5.1: Query Elements for performing database operations

Operations

Operation Name Operation Type Operation Value

WRITE

URL
h t t p : / / < machine IP >: <machine por t >

/ SchemaBasedObjectDB / r e s t / s t o r e

input object

{

" a ccount " : " U101 " ,

" o p e r a t i o n " : " S t o r e " ,

" c o n t a i n e r " : " U04_ecg_12345 " ,

" d a t ag roups " : {

" d e v i c e i d " : " k009 " ,

" s e n s o r t yp e " : " ecg " ,

" pa t i en tname " : " Sushanto " ,

" p a t i e n t i d " : " P001 "

}

}

READ

URL
h t t p : / / < machine IP >: <machine por t >

/ SchemaBasedObjectDB / r e s t / r e t r i e v e

input object

{

" a ccount " : " U101 " ,

" o p e r a t i o n " : " R e t r i e v e " ,

" c o n t a i n e r " : " U04_ecg_12345 " ,

" c o n d i t i o n " : {

" d e v i c e i d " : " k009 "

}

}

DELETE

URL
h t t p : / / < machine IP >: <machine por t >

/ SchemaBasedObjectDB / r e s t / d e l e t e

input object

{

" a ccount " : " U101 " ,

" c o n t a i n e r " : " U04_ecg_12345 " ,

" o p e r a t i o n " : " De l e t e " ,

" e l im i n a t e " : {

" d e v i c e i d " : " k009 "

}

}

the backend, the server node runs on the tomcat server. Four RESTful web services are run-

ning on top of the tomcat server. Three of them are dedicated to controlling each storage

Page 79 of 126

Chapter 5

device unit individually. One of them is used to control the storage device unit via the three

dedicated web services. All of these setups are located in Mumbai, India using the Amazon

EC2 setup. The client node of the RSoS system is located in our laboratory at the Salt Lake

campus of Jadavpur University in Kolkata, India.

The main purpose of the RSoS system is to handle different types of datasets using a

single setup. To achieve this, it utilizes the functionality of existing database units such as

MongoDB [129], Cassandra [128], and HDFS [193] as storage device units. HDFS is capable

of handling file data, MongoDB for documents, and Cassandra for table format. Each device

unit is accessed by a unique URI provided by the dedicated web service. The RSoS system

communicates with them using these URIs via the REST API. The detailed description of

the machine setup is presented in Table 5.2.

In our lab, client APIs have been used to access the storage features of Amazon S3 and

Microsoft Azure. To reduce the network latency, the nearest data center location has been

chosen as the region, such as Mumbai for Amazon S3 and South India for Microsoft Azure.

Table 5.2 provides detailed information about these client API setups and storage space

descriptions.

5.9 Testing Platform

For the experiment, a set of real healthcare data is considered from the public repository

available on the Internet. Three types of datasets of cancer patients are used as test datasets:

1. Patients’ treatment-related information [197] with descriptions about the disease de-

tails; the associated data attributes are mentioned in Table 5.4.

2. Treatment expenditure-related dataset [198] which is organized as a .JSON format for

carrying out the experiment.

3. Medical images of breast cancer patients collected from [199]. In the test dataset,

it has two attributes: PatientID and Medical Image. The ‘Medical Image’ attribute

refers to the image file as a .png format, and ‘PatientID’ acts as an image identifier by

renaming the image file name using the corresponding PatientID value.

A detailed description of the attributes of these three test datasets is presented in Table 5.4.

‘PatientID’ acts as the ID for all these types of test datasets. The three types of datasets are

designed to highlight the big data variety property in the health domain and how the RSoS

system, Amazon S3, and Microsoft Azure perform in this scenario.

For the RSoS system, our main focus is to design the storage space using a schema-

oriented object-based technique. Here, any type of data is considered a data object and

is stored in this data storage system by creating schema-database pairs, known as object

storage spaces. The detailed description of the object storage space with the storage archi-

tecture is already described in Section 5.6. Listing 5.1 represents the structure of the global

database schema of the test dataset (Table 5.4).

Page 80 of 126

Object based schema oriented cloud storage system

For Amazon S3 [8] and Microsoft Azure [17], all types of data are stored in the form of

data files. For experimental purposes, to store the non-file structured dataset, an empty file

is first created by assigning the name, same as the name of the object key for Amazon S3

and blob key for Microsoft Azure (Table 5.3), and then passing data as a data input stream.

For file-structured data, the data file contents are copied to the newly created object file. An

individual bucket in Amazon S3 or container in Microsoft Azure is created for each type of

dataset (Table 5.3).

Global Database Schema,
SglobalDB={{PatientId, Outcome, Time, Tumor size
, Image, expenditure},{Local Schema of
Cassandra(L1), Local Schema of HDFS(L2), Local
Schema of MongoDB(L3)}, {Cassandra, HDFS,
MongoDB}}

Listing 5.1: Global Database Schema and Object Storage Schema of RSoS System for exper-

imental dataset

Page 81 of 126

Chapter 5

Table 5.2: Information about Resource setup

Resource
Role

Purpose Configuration

Server

Node

To run RSoS

setup.

4 t2.micro instance of Amazon EC2 with 1 VCPU and 1 GB

memory. Ubuntu Server 14.04 LTS-64 bit run as backend

operating system. one instance is used to run the web ser-

vices and other three instances are acts as storage device

units.

Client node Used for sending

http request

to execute the

query.

32 GB RAM, 1.2 TB hard disk, 4 core processor, Ubuntu

14.04 LTS operation system

Tomcat

Server

Run as backend

server for RSoS

package.

Number of active threads 850, length of completed queue

300.

MongoDB Used for han-

dling document

type dataset.

RSoS system use RESTAPI to communicate with/accessing

all the features of mongoDB which acts as storage device

unit of RSoS system.

HDFS Used for han-

dling file type

dataset.

HDFS handled by RESTAPI and it acts as file storage device

unit of RSoS System.

Cassandra Used for han-

dling table

format dataset.

For supporting time series sensor generated data. Cassan-

dra acts as storage device unit of proposed RSoS unit. RSoS

communicates with cassandra by REST API.

Amazon S3 For performance

comparison

Amazon aws java package is used for designing client API,

Bucket region is placed in Asia Pacific (i.e., Mumbai).

Microsoft

Azure

For performance

comparison

Blob region is placed in south India. LRS (Local Redun-

dancy Storage: multiple synchronous data copy in a single

data center) redundancy technique is used. Azure-storage

java package is used.

Page 82 of 126

Object based schema oriented cloud storage system

T
a
b
l
e
5
.3
:
D
e
t
a
i
l
e
d
d
e
s
c
r
i
p
t
i
o
n
o
f
t
h
e
d
a
t
a
b
a
s
e
a
r
c
h
i
t
e
c
t
u
r
e
o
f
v
a
r
i
o
u
s
c
a
s
e
s
t
u
d
y

Te
st

D
at
as
et

D
at
a

Fo
r-

m
at

D
at
a

Ty
pe

S
o
bj
ec
t
fo
r
R
so
S
Sy

st
em

A
m
az
on

S3
M
ic
ro
so
ft
A
zu

re

P
a
t
i
e
n
t
’
s

d
i
s
e
a
s
e

i
n
-

f
o
r
m
a
t
i
o
n

T
a
b
l
e

T
e
x
t

{
P
a
t
i
e
n
t
I
d
,{
{
O
u
t
c
o
m
e
,

T
i
m
e
,
T
u
m
o
r
s
i
z
e
}
,
C
a
s
-

s
a
n
d
r
a
}
}

B
u
c
k
e
t
N
a
m
e
:
a
s
k
m
t
a
b
l
e

O
b
j
e
c
t
K
e
y
:
P
a
t
i
e
n
t
I
d
.t
x
t

C
o
n
t
a
i
n
e
r
N
a
m
e
:
a
s
k
m
t
a
b
l
e

B
l
o
b
K
e
y
:
P
a
t
i
e
n
t
I
d
.t
x
t

M
e
d
i
c
a
l

I
m
a
g
e

F
i
l
e

I
m
a
g
e

{
P
a
t
i
e
n
t
I
d
,{
{
I
m
a
g
e
}
,

H
D
F
S
}
}

B
u
c
k
e
t
N
a
m
e
:
a
s
k
m
i
m
a
g
e

O
b
j
e
c
t
K
e
y
:
P
a
t
i
e
n
t
I
d
.p
n
g

C
o
n
t
a
i
n
e
r
N
a
m
e
:
a
s
k
m
i
m
a
g
e

B
l
o
b
K
e
y
:
P
a
t
i
e
n
t
I
d
.p
n
g

T
r
e
a
t
m
e
n
t

e
x
p
e
n
d
i
-

t
u
r
e

D
o
c
u
m
e
n
t

J
S
O
N

{
P
a
t
i
e
n
t
I
d
,{
{
D
o
c
u
m
e
n
t
}
,

M
o
n
g
o
D
B
}
}

B
u
c
k
e
t
N
a
m
e
:
a
s
k
m
d
o
c
u
m
e
n
t

O
b
j
e
c
t
K
e
y
:
P
a
t
i
e
n
t
I
d
.j
s
o
n

C
o
n
t
a
i
n
e
r
N
a
m
e
:
a
s
k
m
d
o
c
u
m
e
n
t

B
l
o
b
K
e
y
:
P
a
t
i
e
n
t
I
d
.j
s
o
n

Page 83 of 126

Chapter 5

5.9.1 Query Descriptions

For the performance evaluation of the RSoS system, four database queries (Table 5.4) are

considered. These queries represent four different complex jobs in four directions:

1. Query I represents the data append operation of three different types of datasets. The

performance of the RSoS system for this query is measured on the types of datasets.

2. Query II extracts the datasets that the user needs. This job involves a single type of

data or any combination of data.

3. Query III represents an aggregate function, which is a mathematical operation that

is part of a database operation.

4. Query IV deletes a dataset from the database. In order to delete all related informa-

tion, it is necessary to survey all types of data.

Table 5.4 presents the detailed description of all queries with all the data attributes. These

jobs are used to demonstrate how the database architecture affects database performance.

Table 5.4: The description about queries

Number Query Description Data Attribute

Query I (Append

operation)

(i) Insert medical image of effected re-

gion of breast cancer patient.

(i) PatientId and Medical Image in .png format.

(ii) Insert disease details of a breast can-

cer patient.

(ii) PatientId presented in 9 numeric text value, Outcome of treat-

ment procedure [Recover(R) or non recover (N)], Treatment duration

in years, Tumor size in cm.

(iii) Insert expenditure details of cancer

patients.

(iii) PatientID, Cancer Site (types of cancer), Year of treatment dura-

tion, Sex (Male or female), Age in years, Incidence and Survival As-

sumptions, Annual Cost Increase (applied to initial and last phases),

Total Costs, Initial Year After Diagnosis Cost, Continuing Phase Cost,

Last Year of Life Cost.

Query II (read opera-

tion)

Retrieve all the information (pa-

tient details, treatment expendi-

ture, medical image) or only patient

details or treatment expenditure or

medical image of the breast cancer

patient who recover properly.

PatientId, Outcome, Treatment duration in years, Tumor size, sex, age,

Annual Cost Increase (applied to initial and last phases), Total Costs,

Initial Year After Diagnosis Cost, Continuing Phase Cost, Last Year of

Life Cost, Medical Image.

Query III (aggregate

function)

Make a summarization of total cost

of all melanoma cancer patients

Cancer Site, Total Costs

Query IV (delete op-

eration)

Deletion of all the information of

breast cancer patient where total

cost is less than 10,000.

PatientId, Treatment duration in years, Tumor size, sex, age, Annual

Cost Increase (applied to initial and last phases), Total Costs, Initial

Year After Diagnosis Cost, Continuing Phase Cost, Last Year of Life

Cost, Medical Image, Outcome.

5.9.2 Query Time

The main goal of the RSoS system is to efficiently perform database operations such as

append, read, delete, and aggregate. The experiment is conducted on various data sizes: 10,

100, 1000, and 10,000 on three types of datasets: table, document, and file. Each data size

represents a single record or object. For example, if the data size for table-type data is 10,

it represents 10 data records or objects that contain the same attribute sets. Similarly, for

Page 84 of 126

Object based schema oriented cloud storage system

the document-type dataset, if the data size is 10, it contains 10 different documents with

different or the same key-value pairs, and for file-type data, it consists of 10 different files.

Here, a table represents a structured dataset, the document represents a semi-structured

dataset, and the file represents an unstructured dataset. The generated resultset after run-

ning these queries is shown in Table 5.5.

The RSoS system executes query II by displaying the data contents of the table and doc-

ument type datasets in the console and downloading the image data (file format). Amazon

S3 and Microsoft Azure download all types of data as a file.

For query I, the execution time is calculated based on the data type. Query II extracts

information from a particular type of dataset or a combination of all types of datasets.

Table 5.5 represents the results for table, document, file, and all (a combination of table,

document, and file type datasets) respectively. The run time of query III and query IV is

not segregated based on the data type. They process the corresponding dataset of any type

and the generated results are shown in Table 5.5.

Table 5.5: The experimental resultset of four different queries

(a)Performance of Query I in HH:MM:SS
Number

of

records

Patient’s disease information (table format) Medical Image (file format) Treatment Expenditure (document

format)

RSoS S3 Azure RSoS S3 Azure RSoS S3 Azure

10 5.01 24.73 5.109 6.89 7.25 8.53 1.22 4.68 2.71

100 6.81 19.97 6.81 45.71 33.13 26.01 1.64 18.57 10.62

1000 5.35 2:41.68 1:02.39 6:29.64 3:52.71 10:02.02 3.03 2:52.58 1:10.79

10,000 19.03 32:26.99 10:41.25 9:18.85 46:20.32 1:25:41.31 30.86 27:38.28 15:33.75

(b)Performance of Query II in HH:MM:SS
Number

of

records

RSoS S3 Azure

All Table File Document All Table File Document All Table File Document

10 10.25 3.68 17.64 4.70 16.76 12.61 18.5 12.69 12.73 6.70 6.81 8.71

100 21.55 3.53 19.33 3.81 01:27.21 43.24 01:20.32 45.84 1:57.06 33.63 1:16.52 39.89

1000 2:20.39 11.25 1:42.66 5.02 28:04.52 11:38.96 12:37.30 8:50.93 1:22:34.49 17:59.31 24:11.96 20:10.54

3000 4:58.05 7.21 4:14.63 11.02 4:27:11.84 59:27.36 1:16:00.31 1:15:03.62 7:19:03.07 2:36:53.50 2:40:53.21 2:26:02.07

10,000 21:07.66 37.88 16:50.21 5:39.81 >20:00:00 9:24:08.13 10:33:38.9 10:49:38.5 >20:00:00 >20:00:00 >20:00:00 >20:00:00

(c)Performance of Query III in HH:MM:SS
Number

of

records

RSoS S3 Azure

10 0.90 6.59 6.96

100 0.91 27.25 16.58

1000 1.0 02:15.26 2:35.66

10,000 2.30 18:42.37 19:01.77

(d)Performance of Query IV in HH:MM:SS
Number

of

records

RSoS S3 Azure

10 7.64 22.24 11.40

100 7.47 24.92 10.40

1000 28.44 02:54.87 1:42.14

10,000 02:13.68 50:10.51 15:42.95

Page 85 of 126

Chapter 5

5.10 Comparative Resultset

Table 5.6: Detailed description of the data types of various case study

Test Dataset Data Format Data Type
Patient’s disease information Table Text

Medical Image File Image

Treatment expenditure Document JSON

To evaluate the performance of the RSoS system, four queries were considered which

reflect database operations in four directions as presented in Table 5.4. A test dataset was

prepared which includes three types of data: structured (i.e., table), semi-structured (i.e.,

document), and unstructured (i.e., file) as described in Table 5.6. By comparing all the fig-

ures (Figure 5.4, Figure 5.5, Figure 5.6, Figure 5.7, Figure 5.8, and Figure 5.9) in Figure 5.10,

it was found that the RSoS system performs better than Amazon S3 and Microsoft Azure

except at Figure 5.6 up to 1000 records.

5.11 Conclusion

Storage architecture plays an important role in a data storage system to provide good

data services. A novel storage architecture has been proposed here, named “Object-based

schema-oriented data storage System” (RSoS System). The RSoS System follows the account-

container-database-schema storage architecture. The main idea behind this architecture is

that data is distributed in two layers of database and schema within an object. The motiva-

tion for this storage architecture is to handle the big data variation property. Health data

has been used for experimental purposes.

The RSoS System is capable of storing three types of data: documents, tuples, and im-

ages using a single interface. To demonstrate the usefulness of the RSoS System in the

database world, a comparison has been made with the two most familiar storage architec-

tures: bucket-oriented (e.g., Amazon S3) and account-container-oriented (e.g., Microsoft

Azure). A table shows the comparative output of the execution time of running four differ-

ent queries on three data types (table, file, and document) with varying numbers of records

(e.g., 10, 100, 1000, 10,000). In this comparison, the RSoS System provides much better

performance compared to Amazon S3 and Microsoft Azure. Additionally, a comparative

result-set has been presented to show the flexible nature of the RSoS System compared to

Amazon S3 based on data type variation.

Page 86 of 126

Object based schema oriented cloud storage system

Figure 5.4: Query1 execution time on ta-

ble type dataset

Figure 5.5: Query1 execution time on

document type dataset

Figure 5.6: Query1 execution time on file

type dataset

Figure 5.7: Query2 execution time on all

type dataset

Figure 5.8: Query3 execution time Figure 5.9: Query4 execution time

Figure 5.10: Comparison of query execution times in between Amazon S3, Azure and RSoS

Page 87 of 126

Chapter 5

Page 88 of 126

Automatization of Object based schema oriented cloud storage system

Chapter 6

Automatization ofObject based schema

oriented cloud storage system

6.1 Introduction . 90

6.2 Motivation and Approach . 91

6.3 Background . 93

6.4 Classification Engine Framework 96

6.4.1 Architecture . 96

6.4.2 Workflow . 97

6.4.3 Testing Platform . 99

6.4.4 Results and Discussion . 104

6.5 Conclusion . 107

A MULTIMODEL CLOUD DATA STORAGE SYSTEM

HAVING AN OBJECT BASED VIEW

Page 89 of 126 Anindita Sarkar Mondal

Chapter 6

6.1 Introduction

Nowadays, the application areas of a cloud storage system are not limited to just digital

data deposits. Many machine learning approaches [114, 200, 201] are being implemented

in renowned cloud storage systems to make them more computationally advanced. One

important application of cloud storage systems is storage location prediction.

Health data comes from various sources, such as sensor providers, hospital managers,

account managers, and patient’s relatives, and the structure of the generated data varies

depending on the source. Over time, more information may be added to the existing data,

and the structure may become unstable as new data is added [202]. This makes the task of

predicting storage space more complex.

There are various cloud storage systems available in the literature to support health

data, including Amazon S3 [82] which provides a bucket-oriented object storage architec-

ture, Openstack Swift [109] which supports an account-container based object storage ar-

chitecture, and the Object-based schema-oriented data storage System [48] which follows

a schema-based account-container oriented object storage architecture. Some time-series

databases are also used to handle health sensor datasets, such as PhilDB [203] which uses

metadata tracking architecture to identify every time-series data type, and SciDB [204]

which follows a native array data model for handling time-series datasets. The challenge is

that health data is not just composed of time-series data or large chunks of data files; it is

a combination of different types of datasets (time-series data, graph-based data, files, etc.).

Only a schema-based architecture can provide the necessary flexibility for storing these

different types of health data. In this way, the characteristics of this schema-based storage

architecture not only support the variety of big data, but also reduce the execution time of

database operations, as shown in [48]. For this reason, we have considered the RSoS system

as a prototype design in this chapter.

The RSoS systemmay use different database models for storing various types of data, so

it is necessary to allocate separate storage space for different data types. However, manually

identifying the data types takes time and requires constant human intervention. Therefore,

it is important to automate the process of identifying the data type before sending it to its

designated storage space. Machine learning approaches can assist with this by automati-

cally predicting the storage space corresponding to each type of incoming data.

The rest of this chapter is structured as follows. The purpose of this chapter is described

in the Motivation and approach chapter (Section 6.2). Section 6.3 describes the existing

classification engines. Section 6.4 outlines the proposed classification engine framework

with the workflow model. The main focus of Section 6.4.4 is to identify the components

of the proposed classification engine, namely a feature selection algorithm and a classifier,

through an experimental comparative study. Finally, Section 6.5 concludes the chapter with

a discussion on future work.

Page 90 of 126

Automatization of Object based schema oriented cloud storage system

6.2 Motivation and Approach

To communicate with the RSoS system (Object-Based Schema-Oriented Data Storage Sys-

tem), users use three queries in the JSON format: READ, WRITE, and DELETE. Before

storing any data in the RSoS, a user must provide related information such as the account,

attribute name, attribute status (key or nonkey), and storage location (database name). This

information is maintained in a graphml.xml file using a hypergraph data model, as shown

in Listing 6.1. According to this listing, the account values are U101, U102, U103, and U104,

and the attribute names are Time, Temperature, PatientID, PatientDetails, fileextension, re-

motefiledata, and id. The storage devices are named based on the database model used in

that storage device. In this case, three database models are used: Cassandra, MongoDB, and

HadoopDFS. These storage locations can be accessed using unique and individual URIs, as

shown in Listing 6.1.

The hypergraph data model, known as the graphml.xml update, must be updated man-

ually with every little change to the data schema or with every new dataset entry. This is a

laborious and time-consuming task for humans. Therefore, in this chapter, we propose the

following to address these challenges.

• A classification engine framework to predict the probable object storage space archi-

tecture from the characteristics of the input data.

• The detailed architecture of the RSoS system associated with the proposed classifica-

tion engine framework.

• A workflow model of the classification engine framework, along with a detailed de-

scription of the involved sub-units and their internal communication.

• A comparative analysis to determine the best combination of a feature selection al-

gorithm and classifier for the designed classification engine framework.

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns/graphml"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns/graphml">
<graph edgedefault="directed" >
<node id="1" userID="U101" name="Time" status="key"/>
<node id="2" userID="U101" name="Temperature" status="nonkey"/>
<node id="3" userID=":U101:U104" name="PatientID" status="nonkey"/>
<node id="4" userID="U103" name="PatientID" status="key"/>
<node id="5" userID="U103" name="PatientDetails" status="nonkey"/>
<node id="6" userID="U102" name="fileextension" status="nonkey"/>
<node id="7" userID="U102" name="remotefiledata" status="nonkey"/>
<node id="8" userID="U102" name="id" status="key"/>
<edge source="1" target="2" HyperEdgeName="L1" HyperHyperEdgeName=
"Cassandra" URI="http://localhost:8080/cassandra/rest" />
<edge source="2" target="3" HyperEdgeName="L2" HyperHyperEdgeName=
"Cassandra" URI="http://localhost:8080/cassandra/rest" />

Page 91 of 126

Chapter 6

<edge source="3" target="1" HyperEdgeName="L3" HyperHyperEdgeName=
"Cassandra" URI="http://localhost:8080/cassandra/rest" />
<edge source="5" target="4" HyperEdgeName="L4" HyperHyperEdgeName=
"MongoDB" URI="http://localhost:8080/MongoRestServer/webresources
/rest"/>
<edge source="7" target="8" HyperEdgeName="L5" HyperHyperEdgeName=
"HadoopDFS" URI="http://localhost:8080/HadoopRestServer/webresources
/rest"/>
<edge source="6" target="7" HyperEdgeName="L6" HyperHyperEdgeName=
"HadoopDFS" URI="http://localhost:8080/HadoopRestServer/webresources
/rest"/>
<edge source="6" target="8" HyperEdgeName="L7" HyperHyperEdgeName=
"HadoopDFS" URI="http://localhost:8080/HadoopRestServer/webresources
/rest"/>
</graph>
</graphml>

Listing 6.1: Example of data contents presented in hypergraph data model

The functionality of the classification engine depends on the associated applicant [205,

206, 207, 208]. However, the purpose of the classification engine in this case is different from

that of existing ones, motivating the creation of a new classification engine framework for

the RSoS system.

The RSoS system is a cloud storage system where data is received in its own query

format. Due to the unique structure of each query for different dataset types, the datasets

generated from each query act as the input to the designed classification engine. This gen-

erated dataset holds the status values of the system sub-parts of the server corresponding to

the query. The input data looks like a two-dimensional matrix,M = [mij] ∈ Rm×n
, where

m and n represent the number of queries and the number of system sub-parts treated as fea-

tures, respectively. The training dataset includes an additional column called ‘class’ which

holds the data type value of the corresponding query with the input data. The test dataset

includes only the feature values of the input data.

To determine the most suitable and efficient machine learning technologies for this

framework, a comparative study of feature selection approaches combined with classifiers

is conducted. The feature selection algorithms applied to the training dataset are responsi-

ble for selecting the relevant features. The trained classifier then determines the class value

of the test dataset based on the selected features. For comparison purposes, three feature

selection algorithms (Lll21, Fisher score, F-Score) and three classifiers (K-NN, Neural Net-

work, SVM with three kernel functions: linear, polynomial, Radial Basis Function (RBF))

are considered.

The ultimate goal of this proposed classification engine framework is to devise a feature

selection algorithm along with a classifier to determine the proper object storage space for

the incoming data presented in the WRITE query. The experiment in this chapter is limited

to the prediction of the storage device URI as part of the object storage space, with the other

parts (e.g., attribute list) being constrained to the supporting storage device.

Page 92 of 126

Automatization of Object based schema oriented cloud storage system

6.3 Background

In this section, we discuss some well-known classification engines and describe how they

perform tasks based on the demands of the associated application. The development of a

classification engine as a machine learning technology for cloud storage systems can be

broadly categorized into two research areas: the services provided by existing classifica-

tion engines, and the machine learning approaches associated with different cloud storage

systems.

One example of a classification engine is the Varonis engine [208], which aims to clas-

sify, manage, and protect sensitive datasets from cyberattacks. To accomplish this, it mon-

itors user behavior and determines who should have access to which types of data. Addi-

tionally, it helps prevent unauthorized access to data.

The Autonomous Classification Engine (ACE) provides a framework that allows users

to optimize the classifier, classifier parameters, and reconfigure the problem by providing

feature vectors [205]. Using this framework, the authors in [209] classify beatboxing sounds

and find that the adaBoost classifier with C4.5 decision trees provides more accurate results

than other methods. A genetic algorithm is used for feature vector generation in this study.

The Advanced Classification Engine (ACE) is maintained and designed by theWebsense

security lab (Security Overview Websense ACE (Advanced Classification Engine)). It is de-

signed to provide real-time Websense gateway and cloud security services by classifying

web page contents, URL, and protocols inline based on the presence or absence of hidden

malicious messages in page data contents [206, 210]. PSIGEN also releases an ACE (Ac-

celerated Classification Engine) [211], which allows for custom classification of documents

based on user requirements.

The Autonomous Classification Engine (ACE) is a framework consisting of three classi-

fication engines: the Data Classification Engine, the Storage Classification Engine, and the

Data Placement Engine for Information Lifecycle Management (ILM) [212]. In this frame-

work, the storage location of a data item is based on its business value. The authors in [213]

proposed a classification engine that is used to identify the name of the social network plat-

form of an image. This engine is built usingK-nearest neighbor (K-NN) classification and

a decision tree mechanism.

Veritas has proposed an integrated classification engine [207] for multi-cloud data man-

agement, which is used to classify risky and sensitive data worldwide in order to meet data

protection requirements.

The Google Cloud Machine Learning Engine is a computing platform that provides

training and prediction services [201]. It allows developers to build advanced and com-

plex machine learning models and can be used in the Google Cloud Storage system for data

processing. It also automatically scales the number of server clusters to generate results

within the access time limit.

Amazon Machine Learning provides developers with services for predictive analysis by

building machine learning models [200, 214]. Using an AWS account, a user can select the

Page 93 of 126

Chapter 6

Amazon Machine Learning standard setup and select necessary data from Amazon S3 and

Redshift. After performing predictive analysis on the selected dataset, Amazon Machine

Learning generates predictive or machine learning models.

Microsoft’s AzureMachine Learning datastores provide easy data access to clients with-

out requiring hardcoded connection information, such as subscription IDs and token au-

thorization [114, 215]. When a client registers Azure storage solutions as a datastore,

Azure Machine Learning is responsible for creating and registering the necessary datas-

tores, which store all related connection information for the corresponding storage account.

Table 6.1 compares some popular smart storage solutions that use machine learning ap-

proaches to make them intelligent. Archivist [216] is a mechanism for selecting the storage

device unit from solid-state drives (SSDs), conventional hard disk drives (HDDs), and Non-

volatile RAM (NVM) for file placement. The Adaptive ResourceManagement (ARM) system

developed by [217] is another machine learning-based technology that enables object-based

storage clusters to be self-managing and self-adaptive systems.

On the other hand, AIOps (Artificial Intelligence for IT Operations) platforms designed

by Gartner [218, 219] are a combination of big data and machine learning. They can be

used to detect failure parameters of cloud object storage services at IBM, such as IBM COS

[220]. A Smart Object Storage System (SOSS) [221] is a machine-level storage system that

uses machine-level technologies to make it intelligent.

Our proposed approach in this chapter differs in twoways from the existing approaches,

as shown in Table 6.1. Here we develop a machine learning unit (called as classification en-

gine). It works as a part of the cloud storage system, unlike the discussed ones that provide

a platform where clients can build their own machine learning models using the facilities

of that storage system to make the storage system presuming services more advanced. Sec-

ondly, the objective of the proposed classification engine unit differs from the discussed

ones, and the working process and architecture vary with the demands of associated appli-

cations.

In this chapter, our main aim is to predict the storage space for the dataset presented

in the client’s write query request where multiple database models are involved. In the re-

search world, some popular recent research work uses traditional strategy rather than ma-

chine learning for handling multiple databases. Such as, PolyglotHIS [222] uses the query

mapper to divide a query into subqueries for accessing data from multiple data storage sys-

tems, which come from different database models. Data mapper [223] is used to map the

dataset to the corresponding database system by considering the data object’s relationship

with the database system. Polyglot PersistenceMediator (PPM) [224] selects the database at

run time based on tenant’s defined information, where it consists with the database schema

with the nodes values, SLA information with the functional (ACID transactions, Joins, up-

dates etc.), continuous (e.g., availability, latency, throughput etc.), and non-functional (e.g.,

scalability, elasticity, durability, replication etc.) parameters as the inputs. Wiki-Health

platform [195] considers the ontology engine is used to describe the storage systems by

referring to the semantic information of storage systems. These mentioned four research

works focus on a different direction for working with multiple database models. However,

none of the above works is focused on automatic storage space prediction using machine

Page 94 of 126

Automatization of Object based schema oriented cloud storage system

learning. The approach proposed in this work is thus novel to the best of our knowledge.

Table 6.1: Comparative analysis on systems overview of ML-based storage solutions

Name Objective Challenges Working Principle Disadvantages

Archivist

[216]

Selection

of data

placement

location

in storage

system for

reducing

file access

latency

Run-time

status and

diverse prop-

erties of both

data and stor-

age systems

ML-based mecha-

nism to optimize

access pattern pre-

diction for data

file placement at

runtime in storage

system

Data movement

cost and data

storage capacity

as negligible by

using HDD.

ARM

sys-

tem

[217]

Develop

a self-

managing

and self-

adaptive

storage

cluster

In the pres-

ence of diverse

workload pat-

terns and

resource bot-

tlenecks

ML-based system

adaptation tech-

nique to track

hotspot performance

to take correct deci-

sions for optimizing

future performance

Considers each

and every node

in the cluster

has the same

configuration.

AIOps

[219]

Design an

automated

system to

discover

failure pa-

rameters in

IBM COS

Detect, predict

and prevent

failures and

performance

slowdowns

that could

impact users

A data-driven ML-

based platform to

find out the root

cause of perfor-

mance slowdown by

data analysis

Background jobs,

load imbalance,

and resource bot-

tlenecks have not

been considered

which may affect

the system’s per-

formance.

SOSS

Sys-

tem

[221]

Design an

intelligent

storage

system to

satisfy the

changing

attribute

pattern

Object, com-

posed of

application

data and data

attribute, is

considered as

a storage unit

to accomplish

the predicting

job

Adopting the storage

system to achieve

intelligence such as

pattern recognition,

predicting object

properties, and an

adaptive cache re-

placement policy

The complex na-

ture of the stor-

age system makes

it difficult to han-

dle

RSoS

Sys-

tem

[46]

Storage

space pre-

diction for

health data

based on

its data

structure

Handling Big

Data Vari-

ety Issues of

Health Data

The ML-based

framework analyzes

the system behav-

ior corresponding

to input data and

matches the related

storage device

Background job

affects the value

of system mon-

itoring output

when an input

hits the system

Page 95 of 126

Chapter 6

6.4 Classification Engine Framework

6.4.1 Architecture

Figure 6.1: Architecture of RSoS System for Automatic Storage Space Prediction

The RSoS cloud storage platform is used to describe the framework of the desired clas-

sification engine due to its application dependency. The architecture of the designed clas-

sification engine unit associated with the RSoS system is illustrated in Figure 6.1. The clas-

sification engine framework is composed of four main components: the Server Monitoring

Unit, the Artificer, the Decision Maker, and the Computation Unit.

Server Monitoring Unit collects the information of cloud storage server (e.g., RSoS sys-

Page 96 of 126

Automatization of Object based schema oriented cloud storage system

tem) subparts (viz., load, memory, input/output, processor) when a write query hits this

system. Artificer is responsible for running the data type prediction jobs. If it finds the

storage space information of the incoming data is present in the hypergraph data model,

it stops the job. Otherwise, it continues further operations. The sub-components (viz., fea-

ture selection approach and classifier) of Decision Maker are dedicated to predicting the

data type of this arrived dataset. Computation unit collects the corresponding information

of storage space (viz., database name, storage device URI, attribute names) for this dataset

which is required to update the metadata (e.g., hypergraph data model).

The Server Monitoring Unit of the classification engine framework collects information

about the different subparts of the cloud storage server, such as the load, memory, input/out-

put, and processor, when a write query is received. The Artificer is responsible for running
data type prediction jobs. If it finds that the storage space information of the incoming data

is already present in the hypergraph data model, it stops the job. Otherwise, it continues

with further operations. The Decision Maker, which includes sub-components such as a

feature selection approach and a classifier, is used to predict the data type of the incoming

dataset. The Computation Unit collects the necessary information about the storage space,

such as the database name, storage device URI, and attribute names, that is needed to update

the metadata, such as the hypergraph data model, for this dataset.

The classification engine is connected to three components of the RSoS system: the

Client API, the Storage Device API Generator, and the Hypergraph Data Model. When

a query is received from consumers, it is passed through the Client API to the classifica-

tion engine unit. The Client API also serves as a communication medium between the RSoS

system and consumers. The classification engine then informs the Storage Device API Gen-

erator about the storage space for the dataset included in the received query. The Storage

Device API Generator converts this query into a form that can be understood by the stor-

age device and generates the corresponding storage device URI, which varies based on the

storage space value and the type of query (e.g., read, write, delete). Finally, the classification

engine updates the Hypergraph Data Model with the generated storage space information,

which is used by the classification engine to determine the storage space for similar types

of datasets in the future.

6.4.2 Workflow

The classification engine follows a workflow model presented in Figure 6.2 to predict the

object storage space of an unknown write query, taking into consideration the RSoS cloud

storage platform. At the initial stage, when the write query hits the classification engine,

two parallel tasks are performed: the Server Monitoring Unit monitors the server status,

and the Artificer checks the contents of the graphml.xml file. The graphml.xml file is the

written format of the hypergraph data model in a file structure.

The Server Monitoring Unit observes the server status value related to resource perfor-

mance metrics (e.g., memory, processor, Input/output, and load)[225] when a JSON query

hits the RSoS server. The generated server-status value set corresponding to the same query

is not the same every time, but the fluctuation value is usually negligible across different

Page 97 of 126

Chapter 6

Figure 6.2: Workflow model of proposed classification engine

queries. These characteristics help the classification engine to decide the class of the un-

known query.

The Artificer acts as an investigator to find out the object storage space of the incom-

ing write query in the graphml.xml file. If it achieves the desired aim, the classification

engine stops its tasks. Otherwise, it starts the Decision Maker activity to move forward.

The Decision Maker is the combination of two activities, the Learning Technique and the

Classifier.

The classifier communicates with a learning technique to determine the class value (i.e.,

data type) of the dataset in the unknown write query. This process involves several steps.

First, the learning technique performs its tasks offline. It trains a set of server monitoring

datasets whose class values are known and extracts a set of features for classification. Here,

we consider three class values: (1) File, (2) Sensor, and (3) Document. Second, using the

selected features, the classifier determines the class value of the receivedmonitoring dataset

in real-time."

The Computation Unit generates the object storage space for the unknown arrivedwrite

query. For generating object storage space, the object key-value, attribute names, and

database names are needed to be known. The received ‘time’ value is varied with every

incoming query. Therefore, by default, time is considered as an object key. After receiving

the write query, the computation unit can determine the attribute names. The database

name is obtained from the class value obtained from the Decision Maker. Each class value

corresponds to a database name such as ‘HadoopDFS’ for ‘File’, ‘Cassandra’ for ‘Sensor’ and

‘MongoDB’ for ‘Document’. The computation unit updates the graphml.xml file with the

Page 98 of 126

Automatization of Object based schema oriented cloud storage system

predicted object storage space information, and at the same time, it sends this information

to the Artificer.

6.4.3 Testing Platform

When a dataset hits the RSoS server, it comes as a query request. These queries are of three

types: write, read, and delete. In this experiment, we focus on the write query.

We use three types of data for the experiment: sensor, document, and file, as shown in

Table 6.3. Real health sensors send tuple-structured datasets within write queries, which

are considered as sensor type data. These data come infrequently. We consider five types

of sensors: Temperature, ECG, Pulse, Airflow, and Oxygen. Consumers, mainly health

workers, send documents or file-type datasets to the RSoS server in the write query format.

For practical simulation, we consider three consumers who send medical images (as file

type), patient photos (as file type), and patient information (as document type) individually.

Table 6.2 compares different technical parameters between the RSoS system and four

other machine learning-based storage solutions. It can be seen that none of the solutions

handle more than one type of data format or three different types of database models under

a single platform like RSoS. Additionally, two recent technological considerations, Ganglia

and RestAPI, have been used to set up the experiments by RSoS, while the others use clas-

sical technologies such as RAM, LRU, DLR, etc. Some storage solutions use benchmarks

to set up their experimental parameters to measure their task performance. In the case

of RSoS, the parameters have been chosen according to the components selected for the

classification engine unit. These factors make us reconsider the design of the experimental

components.

Table 6.2: Comparative study on technical parameters of ML-based storage solutions

Systems Data Store Used Data Consid-

ered

Technology Considered Benchmark used for experiment

Archivist

[216]

HDDs, SSDs, and

NVM

Log files, Con-

figuration files

LRU, Baseline and optimized Al-

gorithm.

Filebench Benchmark including

WebProxy, WebServer, Fileserver,

Varmail.

ARM System

[217]

Ceph [118] Data File Linux SAR utility, Ceph default,

Baseline, DLR, ARM

NSF Cloud’s Chameleon testbed,

COSBench Benchmark version

0.4.2 , sysbench CPU Benchmark

AIOps [219] IBM Cloud Ob-

ject Storage

[220], HDFS

[193]

Log file (Access

logs, Connec-

tivity logs)

Apache Spark, Elastic search,

Apache Kafka, Grafana, Slack

N. A.

SOSS System

[221]

Object Storage

System (OSS)

[226]

Application

data, attribute

data

Switch, RAM, CPU, EPROM, Disk N. A.

RSoS System Cassandra, Mon-

goDB, HDFS

File Data, Doc-

ument Data,

Sensor Data

Ganglia, RestAPI N. A.

Page 99 of 126

Chapter 6

Table 6.3: Example of query set for different users

Data

source

Example Query Structure

Sensor

Pulse

{ " c o n t a i n e r " : " U009_ecg_12348 " ,

" a ccount " : " U101 " ,

" o p e r a t i o n " : " S t o r e " ,

" d a t ag roups " : {

" p a t i e n t i d " : " a n i t a 1 2 3 " ,

" pu l s e " : " 7 4 " ,

" Time " : " Tue May 08 1 6 : 0 6 : 5 3 GMT+05 : 3 0 2 0 1 8 " } }

Temper-

ature

{ " c o n t a i n e r " : " U009_ecg_12348 " ,

" a ccount " : " U101 " ,

" o p e r a t i o n " : " S t o r e " ,

" d a t ag roups " : {

" p a t i e n t i d " : " a n i t a 1 2 3 " ,

" t empe ra tu r e " : " 3 3 . 2 " ,

" Time " : " Tue May 08 1 7 : 0 6 : 5 3 GMT+05 : 3 0 2018 " } }

Oxygen

{ " c o n t a i n e r " : " U009_ecg_12348 " ,

" a ccount " : " U101 " ,

" o p e r a t i o n " : " S t o r e " ,

" d a t ag roups " : {

" p a t i e n t i d " : " a n i t a 1 2 3 " ,

" spo2 " : " 9 9 " ,

" Time " : " Tue May 08 1 8 : 0 6 : 5 3 GMT+05 : 3 0 2018 " } }

Airflow

{ " c o n t a i n e r " : " U009_ecg_12348 " ,

" a ccount " : " U101 " ,

" o p e r a t i o n " : " S t o r e " ,

" d a t ag roups " : {

" p a t i e n t i d " : " a n i t a 1 2 3 " ,

" a i r f l ow " : " 1 2 " ,

" Time " : " Tue May 08 1 9 : 0 6 : 5 3 GMT+05 : 3 0 2018 " } }

ECG

{ " c o n t a i n e r " : " U009_ecg_12348 " ,

" a ccount " : " U101 " ,

" o p e r a t i o n " : " S t o r e " ,

" d a t ag roups " : {

" p a t i e n t i d " : " a n i t a 1 2 3 " ,

" ecg " : " 1 0 " ,

" Time " : " Tue May 08 2 0 : 0 6 : 5 3 GMT+05 : 3 0 2018 " } }

Continued on next page. . .

Page 100 of 126

Automatization of Object based schema oriented cloud storage system

Table 6.3 – Continued

Consumer1 Patient

De-

tails

{ " c o n t a i n e r " : " U009_ecg_12348 " ,

" a ccount " : " U101 " ,

" o p e r a t i o n " : " S t o r e " ,

" d a t ag roups " : {

{ " f am i l yH i s t o r y " : {

" f a t h e r " : { " h i s t o r y " : [" High b lood p r e s s u r e " ,

" D i a b e t e s "] } ,

" mother " : { " h i s t o r y " : [" D i a b e t e s " , " Asthma "] } } ,

" g e n e r a lOb s e r v a t i o n " : [" In pa in " , " Looks unwel l " ,

" Appears very t h i n "] ,

" h a b i t " : [" Smoking " , " Tobacco chewing "] ,

" med i c a lH i s t o r y " : [" High b lood p r e s s u r e " ,

" S t r oke " , " D i a b e t e s "] ,

" p a t i en tDemog r aph i c I n f o " : {

" a dd r e s s " : " xyz " ,

" age " : " 3 1 years , 25 days " ,

" ema i l " : " xyz@xyz . i n " ,

" gender " : " male " ,

" o c cupa t i on " : " b u s i n e s s " ,

" p a t i e n t _ i d " : " 6 " ,

" pa t i en t_name " : " xyz " ,

" ph " : " xyz " } , } } }

Consumer2

Patient

Med-

ical

Image

{ " account " : " U104 " ,

" o p e r a t i o n " : " S t o r e " ,

" c o n t a i n e r " : " ecg " ,

" d a t ag roups " : {

" i d " : " BenchmarkGain1 " ,

" r em o t e f i l e d a t a " : " xyz " ,

" f i l e e x t e n s i o n " : " png " , } }

RSoS Server Monitoring

Ganglia 3.6.0 [173] plug-ins are used in this scenario, in which we observe the experimental scenario for

one hour. Within this time, four sensors and three consumers randomly make write query requests. The

RSoS system runs on our local workstation during this experiment. Ganglia begins monitoring the server

status of the RSoS system in four parts (processor, memory, input/output, and load [225]) from the first query

request and stops at the last query request. Whenever Ganglia encounters a query request, it generates a

corresponding monitored value matrix. The dimension of this matrix is (query number×18), where 18 is the

number of properties that show the corresponding status values of the RSoS server node’s system subparts

(memory, input-output, load, CPU) for that query. Each query has a different set of property values, but the

property names are the same in every query. These property values act as a set of features that help the

classification engine distinguish the dataset according to its types. If we analyze the property value sets from

query to query, we may notice a minor difference.

Page 101 of 126

Chapter 6

Monitored Dataset Processing

After collecting the RSoS server monitoring dataset, we need to use it to train a classification engine to predict

the object storage space of incoming data queries. For experimental purposes, we divide the collected dataset

into two parts: a training dataset and a test dataset. Both the training and test datasets are in .csv format

and have an additional column representing the class. The class attribute indicates the type of query dataset

(document, file, or sensor). The class value is known for the training dataset, but it must be predicted for the

test dataset.

Feature Selection

Feature selection is the first step in the classification engine process. In this step, it is necessary to select

features that will effectively distinguish between different classes. These techniques are applied to the training

dataset. There are 18 property values, but not all of them are equally necessary for differentiating the classes.

Therefore, we use some feature selection algorithms to select the relevant properties.

In this experiment, we apply feature selection algorithms that select features (or properties) based on label

information. Three feature selection algorithms are used from three different subcategories: (1) Fisher score,

(2) F-Score, and (3) Lll21. Fisher score [227] is a supervised, similarity-based feature selection algorithm that

selects properties whose values are similar for the same class and dissimilar for different classes. F-Score [228]

is a supervised statistical feature selection criterion that selects properties by measuring the statistical value

of each feature individually. Lll21 [229] is a supervised, sparse learning-based feature selection algorithm that

selects properties using sparsity-induced regularization terms by making feature coefficients small or zero.

This feature selection algorithm considers the concept of multiple classes or multiple targets during feature

selection.

Dataset Classification

In the next step, our goal is to divide the collected dataset based on their data types or class values. For

the training dataset, the class values are known. There are three data types, representing three class labels:

sensor, file, and document. The classifier learns from the training dataset, which is divided into these three

classes. This knowledge is then used to predict the class value of the test dataset.

In this experiment, we consider three supervised classification algorithms: Support Vector Machine

(SVM), K-Nearest Neighbors (K-NN), and Neural Network (NN). K-NN [230] follows the “closest point search”

mechanism, which means it assigns unknown data points to the class in which the majority of their K nearest

neighbors fall. In this experiment, the value of K is 5. SVM [231] is also known as a “discriminative classifier”

because it calculates the optimal hyperplane separating the classes from the training dataset and uses this

hyperplane to determine the class of unknown data points. In this experiment, three types of SVM are used:

Linear SVM, Radial basis function (RBF) SVM, and Polynomial (Poly) SVM. The value of the regularization

parameter C is 1.0 for all three SVM types. RBF SVM and Poly SVM use a gamma value of 2.0, and Poly SVM

uses a degree value of 2.0. Neural network [232] follows the mechanism of the humanmind. It generates rules

or functionality from the training dataset using a multi-layer approach and applies these rules to determine

the class of unknown data points. In this experiment, the neural network uses three hidden layers with thirty

neurons in each layer and the ReLU activation function. The Adam weight optimization algorithm is used for

the hidden layers, and 200 epochs are used.

Page 102 of 126

Automatization of Object based schema oriented cloud storage system

Table 6.4: Comparative study on experimental parameters of ML-based storage solutions

Systems ML

Frame-

work

Used

ML Algorithm Used ML Al-

gorithm

Compared

Input Parameter Comparison

Parameters

Archivist

[216]

Offline

Classifier

Neural Network (16-

Neuron, 32-Neuron)

Naive

Bayes

Classifier

and Sup-

port Vector

Machine

Offsetw, offsetr, lengthw, lengthr,

spanw, spanr

Classifier

Accuracy,

File Access

Latency

ARM

System

[217]

Reinforce-

ment

Learning

TensorFlow Neural Net-

work

N. A. System-level performance metrics

of Ceph Storage such as state and

reward information

I/O and Net-

work Interfer-

ence (Average

read and write

response time)

AIOps

[219]

Big data

analysis

platform

Smart group By method,

Multivariate Anomaly

Detection Algorithm, Fea-

ture Isolation Technique,

Map-Reduce Programming

Model

N. A. Operation type, bucket and object

names of Access logs, HTTP return

code, start and end times of the op-

eration, and various latency statis-

tics

Anomaly

Score (Z-

Score) of the

aggregated

latency.

SOSS

System

[221]

Object

Classifier

Pattern Classification N. A. Object attribute, Access-based ob-

ject attribute (including application

assistance and existing user input),

Inter-object relationships

N. A.

RSoS

System

Classifica-

tion

Engine

K Nearest Neighbor (K-NN)

Classifier

Linear

SVM,

Poly SVM,

RBF SVM,

Neural

Network

proc_run, load_five, disk_free,

proc_total, load_one, mem_cached,

bytes_in, bytes_out, mem_free,

mem_buffers pkts_in, load_fifteen,

cpu_idle, cpu_user, cpu_nice,

cpu_system, cpu_wio, pkts_out

Classifier

Accuracy, Pre-

cision, Recall

Dataset for Prediction

After learning about classification, the next goal of the classification engine is to predict the data type of

incoming datasets. To do this, SVM, neural network, and K-NN classifiers are used. The dataset prediction

process goes through a few steps. First, the classifiers identify the class value (sensor, file, or document) of

the dataset in the incoming query request. Then, the classification engine generates the corresponding object

storage space for this query and writes the related information into the hypergraph data model if it is not

already present there.

Table 6.4 shows that different storage technologies use different machine learning approaches and pa-

rameters to improve the performance of their storage solutions. It can be seen that classification-based tech-

nologies are mainly used for this type of prediction task. The effectiveness of the RSoS system also depends

on the performance of the designed classification engine unit. Therefore, three performance parameters of

the classification engine are considered that provide a better analysis compared to other storage technologies,

since they do not take into account the performance of the individual components. Input parameters or fea-

ture set selection are important parameters for any classification task. As can be seen from the table, the RSoS

system uses many important features as input parameters compared to other storage solutions, which helps

to design the classification engine for the RSoS system. We need to choose an appropriate feature selection

algorithm and corresponding classifier for this important task. As shown in the results in the next section, it

can be seen that the Lll21 feature selection algorithm and K-NN classifier are the most suitable components

for this classification engine.

Page 103 of 126

Chapter 6

6.4.4 Results and Discussion

There are two main components needed to design the classification engine: a feature selection algorithm

and a classifier. Therefore, we compare different feature selection algorithms and classifiers to find a suitable

combination for this classification engine. The results are shown in Table 6.6.

According to the results, the input to the feature selection algorithm is the output generated by ganglia.

When the RSoS server receives a query request, it passes through ganglia, and the feature selection algorithm

selects some features from these outputs. In this case, the top 5 features are selected from 18 features. The

selected feature sets by the three mentioned feature selection algorithms are presented separately in Listing

6.9. The classifiers use these features to identify the class value of the test dataset.

Fisher score: {proc_run, load_five, disk_free, proc_total, load_one}
F-Score: {proc_run, load_five, disk_free, proc_total, load_one}
Lll21: {mem_cached, bytes_in, bytes_out, mem_free, mem_buffers}

Listing 6.9: Selected Feature-set by the specified feature selection algorithms

The results are shown in two separate tables. Table 6.5 is for the test dataset and only holds feature

values. Table 6.6 consists of the original class values and the predicted class values. The pointer column in

Table 6.5 and Table 6.6 is used to connect these two tables. If we analyze Table 6.5 and Table 6.6, we will find

that some rows are marked and some are unmarked. The input feature values of the marked data rows are

present in the training dataset.

The class column of Table 6.6 represents the original class values of the input dataset. In Table 6.6, we

present the outputs of three feature selection algorithms: Fisher Score, FScore, and Lll21, after applying 3

different SVMs (Linear SVM, Poly SVM, RBF SVM), Neural Network, and K-NN classifier as Pfisher_Linear,

Pfisher_Poly, Pfisher_RBF, Pfisher_Neural, Pfisher_K-NN, PFScore_Linear, PFScore_Poly, PFScore_RBF, PFS-

core_Neural, PFScore_K-NN, respectively. For the Lll21 feature selection algorithm, we only consider Linear

SVM, Neural Network, andK-NN classifier, which are represented as PLll21_Linear, PLll21_Neural PLll21_K-

NN, respectively.

Accuracy, precision, and recall are used to evaluate the performance of the designed classification engine

[233, 234], as shown in Table 6.7. These metrics are measured based on the predictions made on the test

data. The values of these metrics vary depending on the algorithms applied (the combination of the feature

selection algorithm and classifier). Accuracy measures the correctness of the prediction. Precision is used to

measure the positive predictive value, and recall is used to calculate the true positive rate. These two metrics

are calculated based on the class items.

The Decision Maker is the main backbone of the classification engine unit. The entire system can be

compromised by selecting the wrong components for the Decision Maker. Figure 6.3 presents the visualiza-

tion of the performance metric values, which helps to make a fair decision. The three sub-plots compare

the precision (Fig. 6.3(a)), recall (Fig. 6.3(b)), and accuracy (Fig. 6.3(c)) values between 13 feature selection

algorithms and classifier algorithms. Precision and recall are calculated based on three different data types

(Document, File, and Sensor).

The combination of the Lll21 feature selection algorithm and K-NN classifier gives a 100% accuracy rate.

The Fisher-Score feature selection algorithm gives a very low accuracy rate (13.33%) with a neural network

classifier. The combination of the Lll21 feature selection algorithm and K-NN classifier has the highest pre-

cision and recall values, at 100% for all three class items.

Page 104 of 126

Automatization of Object based schema oriented cloud storage system

T
a
b
l
e
6
.5
:
E
x
a
m
p
l
e
o
f
f
e
a
t
u
r
e
v
a
l
u
e
s
u
s
e
d
f
o
r
t
e
s
t
i
n
g
p
u
r
p
o
s
e

P
o
i
n
t
e
r

p
r
o
c

_
r
u
n

l
o
a
d

_
fi
v
e

d
i
s
k

_
f
r
e
e

m
e
m
_

c
a
c
h
e
d

p
k
t
s

_
i
n

b
y
t
e
s

_
i
n

b
y
t
e
s

_
o
u
t

m
e
m

_
f
r
e
e

l
o
a
d
_

fi
f
t
e
e
n

c
p
u

_
i
d
l
e

c
p
u

_
u
s
e
r

c
p
u

_
n
i
c
e

m
e
m
_

b
u
ff
e
r
s

c
p
u
_

s
y
s
t
e
m

c
p
u

_
w
i
o

p
r
o
c

_
t
o
t
a
l

p
k
t
s

_
o
u
t

l
o
a
d

_
o
n
e

Te
st
1

1
0.
53

86
0.
35

22
56

85
60

1.
22

19
8.
14

30
1.
85

61
14

76
0.
67

82
.2

14
0

61
73

40
2.
8

1
91

7
2.
17

0.
49

Te
st
3

0
0.
59

86
0.
37

22
48

74
80

7.
4

12
21

.0
2

93
9.
57

58
78

52
0.
67

79
.5

13
.5

2.
6

61
79

72
3.
3

1.
1

84
2

7.
97

0.
41

Te
st
5

1
0.
7

86
0.
37

22
54

53
04

0.
85

12
2.
24

22
1.
25

35
04

68
0.
69

85
.6

11
.8

0
61

85
44

2.
2

0.
3

83
5

1.
65

0.
63

Te
st
7

3
0.
91

86
0.
37

22
53

75
12

0.
72

79
.7
7

16
3.
7

30
10

44
0.
77

84
.5

11
.6

0
61

89
92

3.
3

0.
7

83
1

1.
37

1.
26

Te
st
9

1
0.
62

86
0.
37

22
45

15
76

0.
75

94
.3
3

17
6.
4

27
74

64
0.
71

86
.3

11
.4

0
61

95
00

2.
2

0.
2

83
0

1.
45

0.
28

Te
st
10

0
0.
56

86
0.
37

22
43

99
88

1.
62

33
4.
98

29
9.
58

30
85

36
0.
67

86
.4

10
.9

0
61

97
00

2.
6

0.
1

83
2

2.
27

0.
41

Te
st
11

0
0.
52

86
0.
37

22
37

89
04

1.
15

14
6.
03

27
6.
75

25
15

28
0.
62

86
.2

10
.8

0
62

04
36

2.
4

0.
6

82
9

1.
93

0.
36

Te
st
13

0
0.
45

86
0.
37

22
28

58
00

1.
55

27
7.
24

33
5.
15

28
95

80
0.
56

86
.5

10
.9

0
62

09
20

2.
4

0.
2

83
8

2.
15

0.
48

T
e
s
t
1
4

1
0
.5
6

8
6
0
.3
7

2
2
2
5
2
7
2
8

0
.6
5

8
5
.9

1
2
0
.9
5

3
0
7
4
5
6

0
.5
8

8
4
.8

1
2

0
6
2
1
1
6
0

3
.1

0
.1

8
3
1

1
.5

0
.7
1

T
e
s
t
1
5

2
0
.4
8

8
6
0
.3
7

2
2
2
4
9
1
8
4

1
.0
3

1
8
2
.8
8

2
6
1
.7
3

2
6
3
6
7
2

0
.5
5

8
6
.5

1
0
.9

0
.1

6
2
1
4
1
6

2
.5

0
.1

8
3
0

1
.7
3

0
.3
9

Te
st
17

2
0.
45

86
0.
37

22
15

29
16

0.
8

14
4.
44

20
5.
16

28
98

16
0.
51

84
.3

11
.6

0
62

18
92

3.
3

0.
7

83
2

1.
55

0.
5

T
e
s
t
1
9

1
0
.5
5

8
6
0
.3
7

2
2
1
3
2
3
4
0

0
.9
2

1
9
8
.0
4

2
1
5
.0
1

3
0
6
6
9
6

0
.5
2

8
6
.5

1
0
.8

0
6
2
2
3
8
0

2
.6

0
.1

8
3
5

1
.6
7

0
.7
1

Te
st
21

2
0.
35

92
0.
50

32
81

77
2

29
.1

41
00

4.
89

10
61

.7
21

28
66

44
0.
41

90
.7

5.
9

0
58

90
16

3.
3

0.
2

85
9

12
.6
7

0.
34

T
e
s
t
2
6

1
1
.3
4

9
2
0
.4
9

3
2
3
4
4
4
4

2
8
.6
7

3
8
3
2
4
.0
1

7
1
5
.2
5

2
1
3
7
5
2
4
0

1
.0
4

6
8
.8

1
6
.5

0
6
0
4
7
3
2

1
2
.6

2
.1

8
6
4

6
.9

1
.3
1

T
e
s
t
2
7

1
1
.3
4

9
2
0
.4
9

3
2
3
4
4
4
4

2
8
.6
7

3
8
3
2
4
.0
1

7
1
5
.2
5

2
1
3
7
5
2
4
0

1
.0
4

7
2
.2

1
4
.5

0
6
0
4
7
3
2

1
1
.4

1
.8

8
6
4

6
.9

1
.3
1

T
e
s
t
2
8

1
1
.3
4

9
2
0
.4
9

3
2
3
4
4
4
4

2
8
.6
7

3
8
3
2
4
.0
1

7
1
5
.2
5

2
1
3
7
5
2
4
0

1
.0
4

7
2
.2

1
4
.5

0
6
0
4
7
3
2

1
1
.4

1
.8

8
6
4

6
.9

1
.3
1

T
a
b
l
e
6
.6
:
C
o
m
p
a
r
a
t
i
v
e
r
e
s
u
l
t
s
e
t
s
h
o
w
s
t
h
e
t
e
s
t
o
u
t
p
u
t
o
f
f
e
a
t
u
r
e
s
e
l
e
c
t
i
o
n
a
l
g
o
r
i
t
h
m
s
w
i
t
h
c
l
a
s
-

s
i
fi
c
a
t
i
o
n
a
l
g
o
r
i
t
h
m

w
h
e
r
e
S
e
n
s
o
r
=
S
,
D
o
c
u
m
e
n
t
=
D
,
F
i
l
e
=
F

P
o
i
n
t
e
r

C
l
a
s
s

P
fi
s
h
e
r

_
L
i
n
e
a
r

P
fi
s
h
e
r

_
P
o
l
y

P
fi
s
h
e
r

_
R
B
F

P
fi
s
h
e
r

_
N
e
u
r
a
l

P
fi
s
h
e
r

_
K
-
N
N

P
F
S
c
o
r
e

_
L
i
n
e
a
r

P
F
S
c
o
r
e

_
P
o
l
y

P
F
S
c
o
r
e

_
R
B
F

P
F
S
c
o
r
e

_
N
e
u
r
a
l

P
F
S
c
o
r
e

_
K
-
N
N

P
L
l
l
2
1

_
L
i
n
e
a
r

P
L
l
l
2
1

_
N
e
u
r
a
l

P
L
l
l
2
1

_
K
-
N
N

Te
st
1

D
S

F
D

S
F

S
F

D
S

F
D

D
D

Te
st
3

D
S

D
D

S
D

D
D

D
F

D
F

D
D

Te
st
5

D
S

D
D

S
D

S
D

D
S

D
D

D
D

Te
st
7

D
D

D
D

S
D

S
D

D
S

D
D

D
D

Te
st
9

D
D

D
D

S
D

S
D

D
S

D
D

D
D

Te
st
10

D
S

D
D

S
D

D
D

D
D

D
D

D
D

Te
st
11

F
D

D
S

S
D

S
D

S
S

F
F

F
F

Te
st
13

F
F

D
F

S
F

S
D

F
F

F
F

D
F

T
e
s
t
1
4

F
S

D
S

S
D

D
D

S
S

D
F

D
F

T
e
s
t
1
5

F
S

D
S

S
F

D
D

S
S

F
D

D
F

Te
st
17

F
S

D
F

S
D

S
D

F
S

D
D

F
F

T
e
s
t
1
9

F
S

D
D

S
D

S
D

D
S

D
D

D
F

Te
st
21

S
D

F
S

F
S

S
F

S
S

S
S

S
S

T
e
s
t
2
6

S
D

S
S

F
S

F
S

S
F

S
F

D
S

T
e
s
t
2
7

S
S

S
S

S
S

S
S

S
F

S
F

S
S

T
e
s
t
2
8

S
D

S
S

S
S

D
S

S
S

S
D

S
S

Page 105 of 126

Chapter 6

Table 6.7: Performance Matrix of the Combined Feature Selection Algorithm and Classifier.

Feature Selection

Algorithm_Classifier

Accuracy

(%)

Precision

_Document

(%)

Precision

_File (%)

Precision

_Sensor

(%)

Recall

_Document

(%)

Recall

_File

(%)

Recall

_Sensor

(%)

Pfisher_LinearSVM 26.67 25 50 22.22 20 20 40

Pfisher_PolySVM 46.67 47.37 0 100 90 0 50

Pfisher_RBFSVM 70 75 75 64.28 90 30 90

Pfisher_Neural 13.33 0 0 16.67 0 0 40

Pfisher_K-NN 70 53.3 60 100 80 30 100

PFScore_LinearSVM 23.33 25 33.33 21.05 20 10 40

PFScore_PolySVM 46.67 47.36 0 100 90 0 50

PFScore_RBFSVM 70 75 75 64.28 90 30 90

PFScore_Neural 26.67 25 33.33 25 10 20 50

PFScore_K-NN 70 57.14 60 90.9 80 30 100

PLll21_LinearSVM 53.33 45.45 42.85 100 50 60 50

PLll21_Neural 63.33 52.94 50 100 90 30 70

PLll21_K-NN 100 100 100 100 100 100 100

(a) Precision values of the decision maker (b) Recall values of the decision maker

(c) Accuracy values of the decision maker

Figure 6.3: Comparative study of the performance matrix values of the components of the

decision maker

Page 106 of 126

Automatization of Object based schema oriented cloud storage system

6.5 Conclusion

In this chapter, we have proposed away to convert an object-based storage system like RSoS into an automated

system by automatically identifying the storage spaces for incoming queries. To do this, we have built a

classification engine to categorize data based on their structure format. The RSoS system stores data based

on its structure by implementing an object storage space, which is a combination of the database name, data

attribute name, and object key. The storage system can accommodate three types of data (sensor, document,

and file) on a single storage platform. The integration of this classification engine with the RSoS system

enables it to predict the corresponding object storage space for incoming querieswithoutmanual intervention.

The effectiveness of the classification engine depends on the performance of its two main components:

a feature selection approach and a classifier. Three supervised feature selection algorithms from three cate-

gories, Fisher score from similarity-based, F-score from statistical-based, and Lll21 from sparse learning-based

approaches, have been compared. Three classifiers, SVM, K-NN, and Neural Network, have been used with

the mentioned feature selection algorithms. After analyzing the results, the Lll21 feature selector combined

with the K-NN classifier provides the best performance.

Page 107 of 126

Chapter 6

Page 108 of 126

Conclusion and Future Work

Chapter 7

Conclusion and Future Work

7.1 Outcome of the thesis . 110

7.2 Future Work . 110

A MULTIMODEL CLOUD DATA STORAGE SYSTEM

HAVING AN OBJECT BASED VIEW

Page 109 of 126 Anindita Sarkar Mondal

BIBLIOGRAPHY

7.1 Outcome of the thesis

The outcomes of the thesis are as follows:

• In this thesis, we have discussed big data and their characteristics. It is shown that the health data

follows all the big data properties namely, volume, variety, velocity, veracity, and value. Handling

volume and variety properties of health data is the main theme of our research. In the thesis, we have

proposed new algorithms for big data in general. But they are validated in experiments where dataset

(sometimes real) is drawn from the health domain

• Next, we discussed management system for handling big data. In this context, we have also discussed

several cloud storage systems and database systems that can support big data from a storage perspec-

tive. A state of the art survey has been reported regarding recent storage technologies and solutions

for handling big data properties.

• We have designed a storage model for supporting big data variety property in a unified platform.

• One major outcome of this thesis is to design a novel cloud storage system named object based schema

oriented cloud storage system (RSoS System) to address big data volume and variety property. It is

already known that cloud storage systems are efficient to support the big data volume property. In

this thesis, our main concern is supporting the big data variety property. Here, it is shown that this

new system adequately addresses the big data variety issue and reduces task execution time.

• Load balancing techniques are discussed in a cloud platform and a thorough survey has been carried

out about the challenges of task distribution among the available resources and their existing solutions.

Two novel load balancing algorithms are proposed here to efficiently distribute tasks to resources. The

first algorithm is better for streaming applications. The second one is inspired the foragingmechanism

of honeybees. This algorithm is shown to be energy-efficient.

• Finally, we enhanced the capability of the proposed RSoS cloud storage system by incorporating some

machine learning techniques. The intelligence so introduced helps in deciding the appropriate object

storage space for an incoming data set.

7.2 Future Work

In the future, our target is to move forward with the proposed RSoS cloud storage system and make it a more

advanced and user-friendly storage system. For this purpose, some research areas have been selected for

further exploration. These are enumerated below.

• We want to incorporate a load balancing technique within the RSoS system so that RSoS can support

multi-tenant service requests efficiently.

• Apply machine learning techniques so that RSoS system becomes energy efficient.

Page 110 of 126

BIBLIOGRAPHY

Bibliography

[1] Chevvanthi E.Cloud storage system design.https://medium.com/@chevv/
cloud-storage-system-design-21322e2f9551. [Online; accessed
19-November-2019].

[2] YADULLAH ABIDI. A brief history of storage devices. https://www.himss.
org/resources/blending-structured-and-unstructured-
data- develop- healthcare- insights. [Online; accessed 19-April-

2021].

[3] Chelsey Farris. History of Cloud Storage. https://capacity.com/cloud-
storage/history-of-cloud-storage/. [Online; accessed 19-April-

2021].

[4] IBM. The official website of IBM cloud. https://www.ibm.com/cloud.
[Online; accessed 19-April-2021].

[5] KeithD. Foote.ABrief History of Cloud Computing.https://www.dataversity.
net/brief-history-cloud-computing/. [Online; accessed 19-April-

2021].

[6] Paul McFedries. Cloud computing: beyond the hype. Citeseer, 2012.

[7] salesforce. The official website of salesforce. https://www.salesforce.
com/in/?ir=1. [Online; accessed 19-April-2021].

[8] Amazon S3. https://aws.amazon.com/s3/.

[9] netflix. The official website of netflix. https://www.netflix.com/in/.
[Online; accessed 19-April-2021].

[10] icloud. The official website of Apple iCloud. https://www.apple.com/in/
icloud/. [Online; accessed 19-April-2021].

[11] oracle. Welcome to Oracle Cloud Infrastructure. https://docs.oracle.
com/en-us/iaas/Content/GSG/Concepts/baremetalintro.
htm. [Online; accessed 19-April-2021].

[12] BlessonVarghese.History of the cloud.https://www.bcs.org/articles-
opinion-and-research/history-of-the-cloud/. [Online; ac-
cessed 19-April-2021].

[13] Harald Schützeichel.A tribute to the inventor of Pay-as-you-go: JürgenGehr.https:
//www.sun-connect-news.org/de/articles/technology/
details/a-tribute-to-the-inventor-of-pay-as-you-go-
juergen-gehr/. [Online; accessed 19-April-2021].

[14] Nicolas Serrano, Gorka Gallardo, and Josune Hernantes. “Infrastructure as a service

and cloud technologies”. In: IEEE Software 32.2 (2015), pp. 30–36.

A MULTIMODEL CLOUD DATA STORAGE SYSTEM

HAVING AN OBJECT BASED VIEW

Page 111 of 126 Anindita Sarkar Mondal

https://medium.com/@chevv/cloud-storage-system-design-21322e2f9551
https://medium.com/@chevv/cloud-storage-system-design-21322e2f9551
https://www.himss.org/resources/blending-structured-and-unstructured-data-develop-healthcare-insights
https://www.himss.org/resources/blending-structured-and-unstructured-data-develop-healthcare-insights
https://www.himss.org/resources/blending-structured-and-unstructured-data-develop-healthcare-insights
https://capacity.com/cloud-storage/history-of-cloud-storage/
https://capacity.com/cloud-storage/history-of-cloud-storage/
https://www.ibm.com/cloud
https://www.dataversity.net/brief-history-cloud-computing/
https://www.dataversity.net/brief-history-cloud-computing/
https://www.salesforce.com/in/?ir=1
https://www.salesforce.com/in/?ir=1
https://aws.amazon.com/s3/
https://www.netflix.com/in/
https://www.apple.com/in/icloud/
https://www.apple.com/in/icloud/
https://docs.oracle.com/en-us/iaas/Content/GSG/Concepts/baremetalintro.htm
https://docs.oracle.com/en-us/iaas/Content/GSG/Concepts/baremetalintro.htm
https://docs.oracle.com/en-us/iaas/Content/GSG/Concepts/baremetalintro.htm
https://www.bcs.org/articles-opinion-and-research/history-of-the-cloud/
https://www.bcs.org/articles-opinion-and-research/history-of-the-cloud/
https://www.sun-connect-news.org/de/articles/technology/details/a-tribute-to-the-inventor-of-pay-as-you-go-juergen-gehr/
https://www.sun-connect-news.org/de/articles/technology/details/a-tribute-to-the-inventor-of-pay-as-you-go-juergen-gehr/
https://www.sun-connect-news.org/de/articles/technology/details/a-tribute-to-the-inventor-of-pay-as-you-go-juergen-gehr/
https://www.sun-connect-news.org/de/articles/technology/details/a-tribute-to-the-inventor-of-pay-as-you-go-juergen-gehr/

BIBLIOGRAPHY

[15] Rackspace.https://www.rackspace.com/cloud_hosting_products/
files. [Online; accessed 8-May-2021].

[16] Keke Gai and Annette Steenkamp. “A feasibility study of Platform-as-a-Service us-

ing cloud computing for a global service organization”. In: Journal of Information
Systems Applied Research 7.3 (2014), p. 28.

[17] Microsoft Azure. https://docs.microsoft.com/en-us/azure/
storage/storage-introduction. [Online; accessed 8-November-2020].

[18] KKM Kumar. “Software as a service for efficient cloud computing”. In: environment
7 (2014), p. 10.

[19] BlessonVarghese.History of the cloud.https://www.bcs.org/articles-
opinion-and-research/history-of-the-cloud/. [Online; ac-
cessed 19-April-2021].

[20] HOCHULYU.Challenge 2: The Story of Digital Storage Device.https://design4dotme.
wordpress.com/2012/04/03/challenge-2-the-story-of-
digital-storage-device/. [Online; accessed 19-April-2021].

[21] U.S. Department of the Interior. Cloud Service Models. https://www.doi.
gov/cloud/service. [Online; accessed 19-April-2021].

[22] Caesar Wu and Rajkumar Buyya. “Chapter 12 - Cloud Storage Basics”. In: Cloud
Data Centers and Cost Modeling. Ed. by Caesar Wu and Rajkumar Buyya. Morgan

Kaufmann, 2015, pp. 425–495. isbn: 978-0-12-801413-4. doi: https://doi.
org/10.1016/B978-0-12-801413-4.00012-X.

[23] Pierre Bijaoui and JuergenHasslauer. “Chapter 3 - Storage Technologies”. In:Design-
ing Storage for Exchange 2007 SP1. Ed. by Pierre Bijaoui and Juergen Hasslauer. Dig-

ital Press Storage Technologies. Digital Press, 2008, pp. 75–116. isbn: 978-1-55558-

308-8. doi: https://doi.org/10.1016/B978-1-55558-308-
8.00003-X. url: https://www.sciencedirect.com/science/
article/pii/B978155558308800003X.

[24] JEFF FOWLER.WHAT ISANETWORKATTACHED STORAGE? https://sandstormit.
com/what-is-a-network-attached-storage/. [Online; accessed
19-April-2021].

[25] EUGENE. Virtualization Techniques in Cloud Computing. https://www.sam-
solutions.com/blog/virtualization-techniques-in-cloud-
computing/. [Online; accessed 19-April-2021].

[26] Brandon Salmon.Understanding cloud storagemodels.https://www.infoworld.
com/article/2871290/understanding-cloud-storage-models.
html. [Online; accessed 19-April-2021].

[27] Gurudatt Kulkarni, Ramesh Sutar, and Jayant Gambhir. “Cloud computing-Infrastructure

as service-Amazon EC2”. In: International Journal of Engineering Research and Ap-
plications 2 (2012).

Page 112 of 126

https://www.rackspace.com/cloud_hosting_products/files
https://www.rackspace.com/cloud_hosting_products/files
https://docs.microsoft.com/en-us/azure/storage/storage-introduction
https://docs.microsoft.com/en-us/azure/storage/storage-introduction
https://www.bcs.org/articles-opinion-and-research/history-of-the-cloud/
https://www.bcs.org/articles-opinion-and-research/history-of-the-cloud/
https://design4dotme.wordpress.com/2012/04/03/challenge-2-the-story-of-digital-storage-device/
https://design4dotme.wordpress.com/2012/04/03/challenge-2-the-story-of-digital-storage-device/
https://design4dotme.wordpress.com/2012/04/03/challenge-2-the-story-of-digital-storage-device/
https://www.doi.gov/cloud/service
https://www.doi.gov/cloud/service
https://doi.org/https://doi.org/10.1016/B978-0-12-801413-4.00012-X
https://doi.org/https://doi.org/10.1016/B978-0-12-801413-4.00012-X
https://doi.org/https://doi.org/10.1016/B978-1-55558-308-8.00003-X
https://doi.org/https://doi.org/10.1016/B978-1-55558-308-8.00003-X
https://www.sciencedirect.com/science/article/pii/B978155558308800003X
https://www.sciencedirect.com/science/article/pii/B978155558308800003X
https://sandstormit.com/what-is-a-network-attached-storage/
https://sandstormit.com/what-is-a-network-attached-storage/
https://www.sam-solutions.com/blog/virtualization-techniques-in-cloud-computing/
https://www.sam-solutions.com/blog/virtualization-techniques-in-cloud-computing/
https://www.sam-solutions.com/blog/virtualization-techniques-in-cloud-computing/
https://www.infoworld.com/article/2871290/understanding-cloud-storage-models.html
https://www.infoworld.com/article/2871290/understanding-cloud-storage-models.html
https://www.infoworld.com/article/2871290/understanding-cloud-storage-models.html

BIBLIOGRAPHY

[28] openstack. The official website of openstack. https://www.openstack.
org/. [Online; accessed 19-April-2021].

[29] BrianCurtis.DIFFERENTTYPESOFCLOUD STORAGEMODELS EXPLAINED.https:
//www.yourtechdiet.com/blogs/cloud-storage-models/.
[Online; accessed 19-April-2021].

[30] openstack cinder. The official website of openstack cinder.https://www.openstack.
org/software/releases/mitaka/components/cinder. [Online;
accessed 19-April-2021].

[31] Himakshi Goswami.NAS vs Object Storage: what’s best for unstructured data? https:
//www.loadbalancer.org/blog/nas-vs-object-storage-
whats-the-best-solution/. [Online; accessed 19-April-2021].

[32] Dinesh.What is DAS, NAS& SAN? https://techiemaster.wordpress.
com/2016/06/12/what-is-das-nas-san/. [Online; accessed 19-

April-2021].

[33] Francis X. Diebold. “"Big Data" Dynamic Factor Models for Macroeconomic Mea-

surement and Forecasting”. In: Advances in Economics and Econometrics: Theory
and Applications, Eighth World Congress. Vol. 3. Cambridge University Press. 2003,

pp. 115–122.

[34] Doug Laney et al. “3D data management: Controlling data volume, velocity and

variety”. In: META group research note 6.70 (2001), p. 1.

[35] Tim O’reilly. What is web 2.0. 2005.

[36] Owen O’Malley. “Introduction to Hadoop”. In: Yahoo Inc (2008).

[37] Yun Yang, Wenhao Li, and Dong Yuan. Reliability assurance of big data in the cloud:
Cost-effective replication-based storage. Morgan Kaufmann, 2014.

[38] Liang Zhao et al. Cloud data management. Springer, 2014.

[39] ApacheBooster.DIFFERENTTYPESOF STORAGE | OBJECTVS FILE VS BLOCK STOR-
AGE. https://apachebooster.com/blog/different-types-
of-storage-object-vs-file-vs-block-storage/. [Online;
accessed 19-April-2021].

[40] V Spoorthy, M Mamatha, and B Santhosh Kumar. “A survey on data storage and se-

curity in cloud computing”. In: International Journal of Computer Science and Mobile
Computing 3.6 (2014), pp. 306–313.

[41] Josef Spillner, Johannes Müller, and Alexander Schill. “Creating optimal cloud stor-

age systems”. In: Future Generation Computer Systems (2013).

[42] Arjun Kumar, HoonJae Lee, and Rajeev Pratap Singh. “Efficient and secure Cloud

storage for handling big data”. In: 2012 6th International Conference on New Trends
in Information Science, Service Science and Data Mining (ISSDM2012). IEEE. 2012,
pp. 162–166.

Page 113 of 126

https://www.openstack.org/
https://www.openstack.org/
https://www.yourtechdiet.com/blogs/cloud-storage-models/
https://www.yourtechdiet.com/blogs/cloud-storage-models/
https://www.openstack.org/software/releases/mitaka/components/cinder
https://www.openstack.org/software/releases/mitaka/components/cinder
https://www.loadbalancer.org/blog/nas-vs-object-storage-whats-the-best-solution/
https://www.loadbalancer.org/blog/nas-vs-object-storage-whats-the-best-solution/
https://www.loadbalancer.org/blog/nas-vs-object-storage-whats-the-best-solution/
https://techiemaster.wordpress.com/2016/06/12/what-is-das-nas-san/
https://techiemaster.wordpress.com/2016/06/12/what-is-das-nas-san/
https://apachebooster.com/blog/different-types-of-storage-object-vs-file-vs-block-storage/
https://apachebooster.com/blog/different-types-of-storage-object-vs-file-vs-block-storage/

BIBLIOGRAPHY

[43] Martin Henze et al. “Complying with data handling requirements in cloud storage

systems”. In: IEEE Transactions on Cloud Computing (2020).

[44] Hussain AlJahdali et al. “Multi-tenancy in cloud computing”. In: 2014 IEEE 8th in-
ternational symposium on service oriented system engineering. IEEE. 2014, pp. 344–
351.

[45] Anindita Sarkar et al. “A survey of issues and solutions of health data management

systems”. In: Innovations in Systems and Software Engineering 15 (2019). doi: 10.
1007/s11334-019-00336-4.

[46] Anindita Sarkar Mondal et al. “Object based schema oriented data storage system

for supporting heterogeneous data”. In: 2016 International Conference on Advances
in Computing, Communications and Informatics (ICACCI). 2016, pp. 1025–1032.

[47] Anindita Sarkar Mondal and Samiran Chattopadhyay. “A Storage Model for Han-

dling Big Data Variety”. In: Computational Intelligence, Communications, and Busi-
ness Analytics. Springer, 2017. doi: 10.1007/978-981-10-6427-2_5.
url: https://doi.org/10.1007/978-981-10-6427-2_5.

[48] Anindita Sarkar Mondal et al. “Performance analysis of an efficient object-based

schema oriented data storage system handling health data”. In: Innovations in Sys-
tems and Software Engineering (2019), pp. 1–15.

[49] Anindita Sarkar and Samiran Chattopadhyay. “Comparative Analysis of Load Bal-

ancing Algorithms in Cloud Computing”. In: (2021).

[50] Anindita Sarkar Mondal et al. “A Double Threshold-Based Power-Aware Honey Bee

Cloud Load Balancing Algorithm”. In: SN Computer Science 2.5 (2021), pp. 1–16.

[51] Anindita Sarkar Mondal, Kshitij Pant, and Samiran Chattopadhyay. “DRSQ-A Dy-

namic Resource Service Quality Based Load Balancing Algorithm”. In: International
Conference on Computational Intelligence, Communications, and Business Analytics.
Springer. 2018, pp. 97–108.

[52] Anindita Sarkar Mondal, Anirban Mukhopadhyay, and Samiran Chattopadhyay.

“Machine learning-driven automatic storage space recommendation for object-based

cloud storage system”. In: Complex & Intelligent Systems (2021), pp. 1–17.

[53] John H Holland et al. “What is a learning classifier system?” In: International Work-
shop on Learning Classifier Systems. Springer. 1999, pp. 3–32.

[54] Douglas Laney. “3D data management: Controlling data volume, velocity and vari-

ety”. In: META group research note 6.70 (2001).

[55] James Manyika et al. Big data: The next frontier for innovation, competition, and pro-
ductivity. McKinsey Global Institute, 2011.

[56] Vinod Saratchandran. 5Ways Big Data is Changing the Healthcare Industry.https:
//www.fingent.com/blog/5-ways-big-data-is-changing-
the-healthcare-industry/. [Online; accessed 19-April-2021].

Page 114 of 126

https://doi.org/10.1007/s11334-019-00336-4
https://doi.org/10.1007/s11334-019-00336-4
https://doi.org/10.1007/978-981-10-6427-2_5
https://doi.org/10.1007/978-981-10-6427-2_5
https://www.fingent.com/blog/5-ways-big-data-is-changing-the-healthcare-industry/
https://www.fingent.com/blog/5-ways-big-data-is-changing-the-healthcare-industry/
https://www.fingent.com/blog/5-ways-big-data-is-changing-the-healthcare-industry/

BIBLIOGRAPHY

[57] HIMSS. Healthcare Information and Management Systems Society (HIMSS). https:
//candid.technology/history-of-storage-devices/. [On-
line; accessed 19-April-2021].

[58] Francesca Bugiotti and Luca Cabibbo.AnObject-DatastoreMapper SupportingNoSQL
Database Design. 2013.

[59] Luca Cabibbo. “Ondm: an object-nosql datastoremapper”. In: Faculty of Engineering,
Roma Tre University. Retrieved June 15th (2013).

[60] Francesca Bugiotti et al. A Logical Approach to NoSQL Databases. 2013.

[61] Paolo Atzeni, Francesca Bugiotti, and Luca Rossi. “Uniform access to non-relational

database systems: The SOS platform”. In: Advanced Information Systems Engineer-
ing. Springer. 2012, pp. 160–174.

[62] Olivier Curé et al. “On the Potential Integration of an Ontology-Based Data Access

Approach in NoSQL Stores”. In: Emerging Intelligent Data and Web Technologies (EI-
DWT), 2012 Third International Conference on. 2012, pp. 166–173.

[63] Olivier Curé, Myriam Lamolle, and Chan Le Duc. “Ontology based data integration

over document and column family oriented nosql”. In: arXiv preprint arXiv:1307.2603
(2013).

[64] Kiran V K and R Vijayakumar. “Ontology based data integration of NoSQL datas-

tores”. In: Industrial and Information Systems (ICIIS), 2014 9th International Confer-
ence on. IEEE. 2014, pp. 1–6.

[65] Microsoft Azure. https://docs.microsoft.com/en-us/azure/
storage/common/storage-introduction. [Online; accessed 8-May-

2021].

[66] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data processing on

large clusters”. In: Communications of the ACM 51.1 (2008), pp. 107–113.

[67] Rares Vernica, Michael J Carey, and Chen Li. “Efficient parallel set-similarity joins

using MapReduce”. In: Proceedings of the 2010 ACM SIGMOD International Confer-
ence on Management of data. ACM. 2010, pp. 495–506.

[68] Yuting Lin et al. “Llama: leveraging columnar storage for scalable join processing in

the mapreduce framework”. In: Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data. ACM. 2011, pp. 961–972.

[69] ShojiroMuro, TikoKameda, and ToshimiMinoura. “Multi-version concurrency con-

trol scheme for a database system”. In: Journal of Computer and System Sciences 29.2
(1984), pp. 207–224.

[70] Theo Härder. “Observations on optimistic concurrency control schemes”. In: Infor-
mation Systems 9.2 (1984), pp. 111–120.

[71] Bogdan Nicolae. “BlobSeer: Towards efficient data storage management for large-

scale, distributed systems”. PhD thesis. Université Rennes 1, 2010.

Page 115 of 126

https://candid.technology/history-of-storage-devices/
https://candid.technology/history-of-storage-devices/
https://docs.microsoft.com/en-us/azure/storage/common/storage-introduction
https://docs.microsoft.com/en-us/azure/storage/common/storage-introduction

BIBLIOGRAPHY

[72] Hsiang-Tsung Kung and John T Robinson. “On optimistic methods for concurrency

control”. In: ACM Transactions on Database Systems (TODS) 6.2 (1981), pp. 213–226.

[73] Viet-Trung Tran et al. “DStore: An in-memory document-oriented store”. In: (2012).

[74] CouchDB. http://couchdb.apache.org/.

[75] Konstantin Shvachko et al. “The hadoop distributed file system”. In: 2010 IEEE 26th
symposium on mass storage systems and technologies (MSST). IEEE. 2010.

[76] VoltDB. https://voltdb.com/.

[77] Carlo Batini et al. “Methodologies for data quality assessment and improvement”.

In: ACM Computing Surveys (CSUR) 41.3 (2009), p. 16.

[78] Giuseppe DeCandia et al. “Dynamo: amazon’s highly available key-value store”. In:

ACM SIGOPS Operating Systems Review. Vol. 41. 6. ACM. 2007, pp. 205–220.

[79] Ronald C Taylor. “An overview of the Hadoop/MapReduce/HBase framework and

its current applications in bioinformatics”. In: BMC bioinformatics 11.12 (2010).

[80] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The Google file system”.

In: ACM SIGOPS operating systems review. Vol. 37. 5. ACM. 2003, pp. 29–43.

[81] Brian F Cooper et al. “PNUTS: Yahoo!’s hosted data serving platform”. In: Proceed-
ings of the VLDB Endowment 1.2 (2008), pp. 1277–1288.

[82] Mayur R. Palankar et al. “Amazon S3 for Science Grids: A Viable Solution?” In: Pro-
ceedings of the 2008 International Workshop on Data-aware Distributed Computing.
New York, NY, USA, 2008.

[83] Judith S Bowman, Sandra L Emerson, and Marcy Darnovsky. The practical SQL
handbook: using structured query language. Addison-Wesley Reading, Mass., 1996.

[84] Serge Abiteboul. “Querying semi-structured data”. In: International Conference on
Database Theory. Springer. 1997, pp. 1–18.

[85] Robert Blumberg and Shaku Atre. “The problem with unstructured data”. In: Dm
Review 13.42-49 (2003), p. 62.

[86] DC Tsichritzis and Frederick H. Lochovsky. “Hierarchical data-base management:

A survey”. In: ACM Computing Surveys (CSUR) 8.1 (1976), pp. 105–123.

[87] James Rumbaugh et al. Object-oriented modeling and design. Vol. 1991. 1. Prentice-
hall Englewood Cliffs, NJ, 1991.

[88] Nishtha Jatana et al. “A survey and comparison of relational and non-relational

database”. In: International Journal of Engineering Research & Technology 1.6 (2012),

pp. 1–5.

[89] Salahaldin Juba, Achim Vannahme, and Andrey Volkov. Learning PostgreSQL. Packt
Publishing Ltd, 2015.

[90] Changlin He. “Survey onNoSQL database technology”. In: Journal of Applied Science
and Engineering Innovation Vol 2.2 (2015), pp. 50–54.

Page 116 of 126

http://couchdb.apache.org/
https://voltdb.com/

BIBLIOGRAPHY

[91] ABMMoniruzzaman and SyedAkhterHossain. “Nosql database: New era of databases

for big data analytics-classification, characteristics and comparison”. In: arXiv preprint
arXiv:1307.0191 (2013).

[92] Josiah L Carlson. Redis in action. Manning, 2013.

[93] David Hows, Peter Membrey, and Eelco Plugge. MongoDB Basics. Apress, 2014.

[94] Peter Membrey et al. The definitive guide to MongoDB: the noSQL database for cloud
and desktop computing. Springer, 2010.

[95] Kyle Banker. MongoDB in action. Manning, 2012.

[96] Claudio Tesoriero. Getting started with OrientDB. Packt Publishing Ltd, 2013.

[97] Mahesh Lal. Neo4j graph data modeling. Packt Publishing Ltd, 2015.

[98] Neo4j. Website of Neo4j. https://neo4j.com/. [Online; accessed 19-May-

2021]. 2021.

[99] Chengzhang Peng and Zejun Jiang. “Building a cloud storage service system”. In:

Procedia Environmental Sciences 10 (2011), pp. 691–696.

[100] Dejun Wang. “An efficient cloud storage model for heterogeneous cloud infrastruc-

tures”. In: Procedia engineering 23 (2011), pp. 510–515.

[101] Arkaitz Ruiz-Alvarez andMarty Humphrey. “An automated approach to cloud stor-

age service selection”. In: Proceedings of the 2nd international workshop on Scientific
cloud computing. ACM. 2011, pp. 39–48.

[102] Gaurav Kulkarni et al. “Cloud storage architecture”. In: 7th International Confer-
ence on Telecommunication Systems, Services, and Applications (TSSA’12). IEEE. 2012,
pp. 76–81.

[103] Yang Li, Li Guo, and Yike Guo. “CACSS: Towards a Generic Cloud Storage Service.”

In: CLOSER. 2012.

[104] Xiaojing Jia. “Google cloud computing platform technology architecture and the

impact of its cost”. In: 2010 Second World Congress on Software Engineering. Vol. 2.
IEEE. 2010, pp. 17–20.

[105] Ekaba Bisong. “An Overview of Google Cloud Platform Services”. In: Building Ma-
chine Learning and Deep Learning Models on Google Cloud Platform (2019), pp. 7–

10.

[106] Google Cloud Storage. https://cloud.google.com/storage/. [Online;
accessed 8-May-2021].

[107] Joe Arnold. Openstack swift: Using, administering, and developing for swift object
storage. O’Reilly Media, Inc., 2014.

[108] Prosunjit Biswas, Farhan Patwa, and Ravi Sandhu. “Content level access control for

openstack swift storage”. In: Proceedings of the 5th ACM Conference on Data and
Application Security and Privacy. ACM. 2015, pp. 123–126.

Page 117 of 126

https://neo4j.com/
https://cloud.google.com/storage/

BIBLIOGRAPHY

[109] Openstack Swift.https://www.swiftstack.com/docs/introduction/
openstack_swift.html. [Online; accessed 19-May-2021].

[110] Rackspace Object Storage.https://developer.rackspace.com/docs/
user-guides/infrastructure/cloud-config/storage/cloud-
files-product-concepts/object-storage/. [Online; accessed 8-

May-2021].

[111] Rackspace Products. https://www.rackspace.com/cloud_hosting_
products/files.. [Online; accessed 8-May-2021].

[112] Rackspace Architecture. https://support.rackspace.com/how-to/
rackspace-open-cloud-reference-architecture/. [Online; ac-
cessed 8-May-2021].

[113] Rackspace CDN. https://www.rackspace.com/en-in/cloud/cdn-
content-delivery-network. [Online; accessed 8-May-2021].

[114] Scott Klein. “Azure Data Factory”. In: IoT Solutions in Microsoft’s Azure IoT Suite:
Data Acquisition and Analysis in the Real World. Apress, 2017, pp. 105–122.

[115] Brad Calder et al. “Windows Azure Storage: a highly available cloud storage service

with strong consistency”. In: Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles. ACM. 2011, pp. 143–157.

[116] Sogand Shirinbab, Lars Lundberg, and David Erman. “Performance Evaluation of

Distributed Storage Systems for Cloud Computing.” In: IJ Comput. Appl. 20.4 (2013),
pp. 195–207.

[117] Bastiaan Stougie et al. Distributed object storage system. US Patent 8,386,840. 2013.

[118] Sage A Weil. “Ceph: reliable, scalable, and high-performance distributed storage”.

PhD thesis. UNIVERSITY OF CALIFORNIA SANTA CRUZ, 2007.

[119] Sage AWeil et al. “Rados: a scalable, reliable storage service for petabyte-scale stor-

age clusters”. In: Proceedings of the 2nd international workshop on Petascale data stor-
age: held in conjunction with Supercomputing’07. ACM. 2007, pp. 35–44.

[120] Kazutaka Morita. “Sheepdog: Distributed storage system for qemu/kvm”. In: LCA
2010 DS&R miniconf (2010).

[121] Paulo Maciel et al. “Performance evaluation of sheepdog distributed storage sys-

tem”. In: 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC).
IEEE. 2014, pp. 3370–3375.

[122] Saurav Haloi. Apache zookeeper essentials. Packt Publishing Ltd, 2015.

[123] Stephen Kaisler et al. “Big Data: Issues and Challenges Moving Forward”. In: 46th
Hawaii International Conference on System Sciences (HICSS’13). 2013.

[124] Gaurav Kulkarni et al. “Cloud storage architecture”. In: Telecommunication Systems,
Services, and Applications (TSSA), 2012 7th International Conference on. IEEE. 2012,
pp. 76–81.

Page 118 of 126

https://www.swiftstack.com/docs/introduction/openstack_swift.html
https://www.swiftstack.com/docs/introduction/openstack_swift.html
https://developer.rackspace.com/docs/user-guides/infrastructure/cloud-config/storage/cloud-files-product-concepts/object-storage/
https://developer.rackspace.com/docs/user-guides/infrastructure/cloud-config/storage/cloud-files-product-concepts/object-storage/
https://developer.rackspace.com/docs/user-guides/infrastructure/cloud-config/storage/cloud-files-product-concepts/object-storage/
https://www.rackspace.com/cloud_hosting_products/files.
https://www.rackspace.com/cloud_hosting_products/files.
https://support.rackspace.com/how-to/rackspace-open-cloud-reference-architecture/
https://support.rackspace.com/how-to/rackspace-open-cloud-reference-architecture/
https://www.rackspace.com/en-in/cloud/cdn-content-delivery-network
https://www.rackspace.com/en-in/cloud/cdn-content-delivery-network

BIBLIOGRAPHY

[125] Michael Armbrust et al. “A view of cloud computing”. In: Communications of the
ACM 53.4 (2010), pp. 50–58.

[126] Arkaitz Ruiz-Alvarez andMarty Humphrey. “An automated approach to cloud stor-

age service selection”. In: Proceedings of the 2nd international workshop on Scientific
cloud computing. ACM. 2011, pp. 39–48.

[127] Seiichi Yamamoto et al. “Materialized View as a Service for Large-Scale House Log

in Smart City”. In: Cloud Computing Technology and Science (CloudCom), 2013 IEEE
5th International Conference on. Vol. 2. IEEE. 2013, pp. 311–316.

[128] Cassandra. http://cassandra.apache.org/.

[129] MongoDB. https://www.mongodb.org/.

[130] Miranda Zhang et al. “An ontology-based system for Cloud infrastructure services’

discovery”. In: 8th international conference on collaborative computing: networking,
applications and worksharing (CollaborateCom). IEEE. 2012, pp. 524–530.

[131] Kewen Wu, Julita Vassileva, and Yuxiang Zhao. “Understanding users’ intention

to switch personal cloud storage services: Evidence from the Chinese market”. In:

Computers in Human Behavior 68 (2017), pp. 300–314.

[132] Srimanyu Timmaraju, Vadlamani Ravi, and GR Gangadharan. “Ranking of Cloud

Services Using Opinion Mining and Multi-Attribute Decision Making: Ranking of

Cloud Services Using OpinionMining andMADM”. In:Handbook of Research on Ad-
vanced Data Mining Techniques and Applications for Business Intelligence. IGI Global,
2017, pp. 379–396.

[133] Leland P Sidwell. System for modifying JCL parameters to optimize data storage al-
locations. 2000.

[134] Arkaitz Ruiz-Alvarez and Marty Humphrey. “A model and decision procedure for

data storage in cloud computing”. In: 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid’12). IEEE. 2012, pp. 572–579.

[135] P. R. Panda et al. “Data and Memory Optimization Techniques for Embedded Sys-

tems”. In: ACM Transactions Des. Autom. Electron. Syst. (2001).

[136] Kohei Takahashi et al. “Design and implementation of service api for large-scale

house log in smart city cloud”. In: 4th IEEE International Conference on Cloud Com-
puting Technology and Science Proceedings. IEEE. 2012, pp. 815–820.

[137] Gaurav Mathur et al. “Capsule: An Energy-optimized Object Storage System for

Memory-constrained Sensor Devices”. In: ACM, 2006.

[138] Venkat NGudivada, Ricardo Baeza-Yates, and Vijay V Raghavan. “Big data: promises

and problems”. In: IEEE Computer Journal 3 (2015), pp. 20–23.

[139] Peter Groves et al. “The ’big data’ revolution in healthcare”. In:McKinsey Quarterly
(2013).

Page 119 of 126

http://cassandra.apache.org/
https://www.mongodb.org/

BIBLIOGRAPHY

[140] Rajwinder Kaur and Pawan Luthra. “Load balancing in cloud computing”. In: Pro-
ceedings of international conference on recent trends in information, telecommunica-
tion and computing, ITC. Citeseer. 2012.

[141] Monika Lagwal and Neha Bhardwaj. “Load balancing in cloud computing using ge-

netic algorithm”. In: 2017 International Conference on Intelligent Computing and Con-
trol Systems (ICICCS). IEEE. 2017, pp. 560–565.

[142] Mayanka Katyal and Atul Mishra. “A Comparative Study of Load Balancing Algo-

rithms in Cloud Computing Environment”. In: CoRR abs/1403.6918 (2014).

[143] Supriya P Belkar and Vidya Handur. “Comparative Study of Static Load Balanc-

ing Algorithms in Distributed System Using CloudSim”. In: International Journal of
Advanced Research in Basic Engineering Sciences and Technology (IJARBEST) (2017),
pp. 26–30.

[144] Asser N. Tantawi and Don Towsley. “Optimal Static Load Balancing in Distributed

Computer Systems”. In: J. ACM (), pp. 445–465.

[145] Ming Wang and Jianfeng Guan. “An adaptive dynamic feedback load balancing al-

gorithm based on QoS in distributed file system”. In: Journal of Communications and
Information Networks (2017), pp. 30–40.

[146] Sandeep Sharma, Sarabjit Singh, and Meenakshi Sharma. “Performance analysis of

load balancing algorithms”. In:World Academy of Science, Engineering and Technol-
ogy (2008), pp. 269–272.

[147] Li Zhou et al. “Optimize block-level cloud storage system with load-balance strat-

egy”. In: Parallel and Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW), 2012 IEEE 26th International. IEEE. 2012, pp. 2162–2167.

[148] Kumar Nishant et al. “Load Balancing of Nodes in Cloud Using Ant Colony Opti-

mization”. In: 2012 UKSim 14th International Conference on Computer Modelling and
Simulation. 2012, pp. 3–8.

[149] Anureet Kaur and Bikrampal Kaur. “Load balancing in tasks using honey bee be-

havior algorithm in cloud computing”. In:Wireless Networks and Embedded Systems
(WECON), 2016 5th International Conference on. IEEE. 2016, pp. 1–5.

[150] Sukrati Jain and Ashendra K. Saxena. “A survey of load balancing challenges in

cloud environment”. In: 2016 International Conference System Modeling Advance-
ment in Research Trends (SMART). 2016, pp. 291–293.

[151] Ali M. Alakeel. “A Guide to dynamic Load balancing in Distributed Computer Sys-

tems”. In: International Journal of Computer Science and Network Security (IJCSNS
(2010), pp. 153–160.

[152] Neeraj Rathore. “Dynamic Threshold Based Load Balancing Algorithms”. In: Wire-
less Personal Communications (2016), pp. 151–185.

Page 120 of 126

BIBLIOGRAPHY

[153] Hendra Rahmawan and Yudi Satria Gondokaryono. “The simulation of static load

balancing algorithms”. In: 2009 International Conference on Electrical Engineering
and Informatics. 2009, pp. 640–645.

[154] P. Getzi Jeba Leelipushpam and J. Sharmila. “Live VMmigration techniques in cloud

environment — a survey”. In: IEEE Conference on Information & Communication
Technologies. IEEE. 2013, pp. 408–413.

[155] Alexander Zahariev. “Google app engine”. In:Helsinki University of Technology (2009),
pp. 1–5.

[156] Shridhar G Domanal and G Ram Mohana Reddy. “Load balancing in cloud com-

putingusing modified throttled algorithm”. In: 2013 IEEE International Conference
on Cloud Computing in Emerging Markets (CCEM). IEEE. 2013, pp. 1–5.

[157] Ankit Kumar and Mala Kalra. “Load balancing in cloud data center using modified

active monitoring load balancer”. In: 2016 International Conference on Advances in
Computing, Communication, & Automation (ICACCA)(Spring). IEEE. 2016, pp. 1–5.

[158] Ajay Gulati and Ranjeev K Chopra. “Dynamic round robin for load balancing in a

cloud computing”. In: IJCSMC 2 (2013).

[159] Dr Nusrat Pasha, Amit Agarwal, and Ravi Rastogi. “Round robin approach for VM

load balancing algorithm in cloud computing environment”. In: International Jour-
nal 4 (2014).

[160] Gamal F. Elhady and Medhat A. Tawfeek. “A comparative study into swarm in-

telligence algorithms for dynamic tasks scheduling in cloud computing”. In: IEEE
Seventh International Conference on Intelligent Computing and Information Systems
(ICICIS). 2015, pp. 362–369.

[161] Simon Garnier, Jacques Gautrais, and Guy Theraulaz. “The biological principles of

swarm intelligence”. In: Swarm intelligence 1.1 (2007), pp. 3–31.

[162] Dušan Teodorović. “Bee Colony Optimization (BCO)”. In: Innovations in Swarm In-
telligence. Springer, 2009, pp. 39–60.

[163] Dervis Karaboga and Bahriye Akay. “A comparative study of artificial bee colony

algorithm”. In: Applied mathematics and computation 214.1 (2009), pp. 108–132.

[164] Partha P Dutta, Nino Vidovic, and Dalibor F Vrsalovic. System and method for net-
work load balancing. 2003.

[165] Mark Long. Microsoft windows server 2008. Virtual Training Company, Inc., 2008.

[166] Jaspreet Singh and CS Rai. “An efficient load balancing method for ad hoc net-

works”. In: International Journal of Communication Systems (2018).

[167] Krishnamurthy Bhaskar et al. Memory load balancing. US Patent 7,865,037. 2011.

[168] Aameek Singh, Madhukar Korupolu, and Dushmanta Mohapatra. “Server-storage

virtualization: integration and load balancing in data centers”. In: Proceedings of the
2008 ACM/IEEE conference on Supercomputing. IEEE Press. 2008, p. 53.

Page 121 of 126

BIBLIOGRAPHY

[169] Wayne Karpoff and Brian Lake. Storage virtualization system andmethods. US Patent
7,577,817. 2009.

[170] Shannon Meier. IBM Systems Virtualization: Servers, Storage, and Software. 2008.

[171] M. Shoaib Jameel, Muruganant Marimuthu, and Tejbanta Chingtham. “Deploying

CPU Load Balancing in the Linux Cluster Using Non-Repetitive CPU Selection”. In:

International Journal of Computer and Electrical Engineering 1 (2009).

[172] Vivek Chopra, Sing Li, and Jeff Genender. Professional apache tomcat 6. John Wiley

& Sons, 2007.

[173] Matthew L Massie, Brent N Chun, and David E Culler. “The ganglia distributed

monitoring system: design, implementation, and experience”. In: Parallel Computing
30 (2004).

[174] BhathiyaWickremasinghe and Rajkumar Buyya. “CloudAnalyst: ACloudSim-based

tool for modelling and analysis of large scale cloud computing environments”. In:

DISTRIBUTED COMPUTING PROJECT, CSSE DEPT., UNIVERSITY OF MELBOURNE
(2009), pp. 433–659.

[175] E. L. Hahne. “Round-robin scheduling for max-min fairness in data networks.” In:

IEEE J Sel Areas Commun. 9.7 (1991), pp. 1024–1039.

[176] Tangang et al. “Comparative analysis and simulation of load balancing scheduling

algorithm based on cloud resource.” In: Proceedings of international conference on
computer science and information technology. Springer, 2014.

[177] V. Tyagi and T. Kumar. “ORT broker policy: reduce cost and response time using

throttled load balancing algorithm.” In: Proc Comput Sci. 48 (2015), 217–221.

[178] Sudha Senthilkuma et al. “Honey-Bee Foraging Algorithm for Load Balancing in

Cloud Computing Optimization”. In: IJESC 7.12 (2017).

[179] K. Nishant. “Load Balancing of Nodes in Cloud Using Ant Colony Optimization.”

In: 14th International Conference on Computer Modeling and Simulation. IEEE, 2012.

[180] R Agarwal et al. “The role of information systems in healthcare: Current research

and road ahead”. In: Information Systems Research 22 (2011), pp. 419–428.

[181] Peter Groves et al. “The ’big data’ revolution in healthcare: Accelerating value and

innovation”. In: (2016).

[182] Divyakant Agrawal, Sudipto Das, and Amr El Abbadi. “Big data and cloud comput-

ing: current state and future opportunities”. In: Proceedings of the 14th international
conference on extending database technology. 2011, pp. 530–533.

[183] Krishna Kulkarni, NelsonMattos, and Roberta Cochrane. “Active Database Features

in SQL3”. In: Active Rules in Database Systems. Springer New York, 1999, pp. 197–

219.

[184] JingHan et al. “Survey onNoSQL database”. In: Pervasive computing and applications
(ICPCA), 2011 6th international conference on. IEEE. 2011.

Page 122 of 126

BIBLIOGRAPHY

[185] Mike Mesnier, Gregory R Ganger, and Erik Riedel. “Object-based storage”. In: IEEE
Communications Magazine 41.8 (2003), pp. 84–90.

[186] Stanley Benjamin Zdonik and David Maier. Readings in object-oriented database sys-
tems. Morgan Kaufmann, 1990.

[187] Zohreh Goli-Malekabadi, Morteza Sargolzaei-Javan, and Mohammad Kazem Ak-

bari. “An effective model for store and retrieve big health data in cloud computing”.

In: Computer Methods and Programs in Biomedicine 132 (2016).

[188] Anthony JG Hey and Anne E Trefethen. “The data deluge: An e-science perspec-

tive”. In: (2003).

[189] Yang Li, Li Guo, and Yike Guo. “An efficient and performance-aware big data stor-

age system”. In: International Conference on Cloud Computing and Services Science.
Springer. 2012, pp. 102–116.

[190] Bruce Momjian. PostgreSQL: introduction and concepts. Addison-Wesley New York,

2001.

[191] Paul DuBois. MySQL. Pearson Education, 2008.

[192] J Chris Anderson, Jan Lehnardt, and Noah Slater. CouchDB: the definitive guide.
"O’Reilly Media, Inc.", 2010.

[193] Dhruba Borthakur. “HDFS architecture guide”. In: Hadoop Apache Project 53 (2008).

[194] M. Mesnier, G. R. Ganger, and E. Riedel. “Object-based storage”. In: IEEE Communi-
cations Magazine 41 (2003).

[195] Yang Li et al. “Building a cloud-based platform for personal health sensor data man-

agement”. In: Biomedical and Health Informatics (BHI), 2014 IEEE-EMBS International
Conference on. IEEE. 2014, pp. 223–226.

[196] Hortonworks. http://hortonworks.com/blog/heterogeneous-
storage-policies-hdp-2-2/.

[197] UCI Cancer Dataset.https://archive.ics.uci.edu/ml/datasets/
Breast+Cancer+Wisconsin+Prognostic.

[198] Cancer Cost Dataset. https://costprojections.cancer.gov/.

[199] Cancer Cost Dataset. http://cancer.digitalslidearchive.net/.

[200] Ralf Herbrich. “Machine Learning at Amazon.” In: WSDM. 2017, p. 535.

[201] Ekaba Bisong. “Google Cloud Machine Learning Engine (Cloud MLE)”. In: Building
Machine Learning and Deep Learning Models on Google Cloud Platform. Springer,

2019, pp. 545–579.

[202] Paul KJ Han, William MP Klein, and Neeraj K Arora. “Varieties of uncertainty in

health care: a conceptual taxonomy”. In:Medical DecisionMaking 31.6 (2011), pp. 828–
838.

Page 123 of 126

http://hortonworks.com/blog/heterogeneous-storage-policies-hdp-2-2/
http://hortonworks.com/blog/heterogeneous-storage-policies-hdp-2-2/
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+Prognostic
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+Prognostic
https://costprojections.cancer.gov/
http://cancer.digitalslidearchive.net/

BIBLIOGRAPHY

[203] Andrew MacDonald. “PhilDB: The time series database with built-in change log-

ging”. In: PeerJ Computer Science 2 (2016), e52.

[204] Michael Stonebraker et al. “SciDB: A Database Management System for Applica-

tions with Complex Analytics”. In: IEEE Annals of the History of Computing 15.03

(2013), pp. 54–62.

[205] Cory McKay et al. “ACE: A Framework for Optimizing Music Classification.” In:

ISMIR. 2005, pp. 42–49.

[206] websense.Advanced analysis using real-time classification.https://www.websense.
com/content/support/library/web/hosted/bsky_help/
content_analysis.aspx. [Online; accessed 19-November-2019].

[207] Veritas. Veritas Introduces New Classification Engine for Intelligent Data Management
Across its Portfolio. https://www.veritas.com/news-releases/
2017- 07- 25- veritas- introduces- new- classification-
engine-for-intelligent-data\protect\@normalcr\relax-
management-across-its-portfolio. [Online; accessed 19-November-

2019]. 2019.

[208] Varonis. Varonis, DATA CLASSIFICATION ENGINE. https://www.varonis.
com/products/data-classification-engine/. [Online; accessed
19-November-2019].

[209] Elliot Sinyor et al. “Beatbox classification using ACE”. In: Proceedings of the Inter-
national Conference on Music Information Retrieval. Citeseer. 2005.

[210] forcepoint. Forcepoint Advanced Classification Engine (ACE). https://www.
forcepoint.com/product/add-on/advanced-classification-
engine-ace?utm_source=Websense&utm_medium=Redirect&
utm_content=websense-advanced-classification-engine%
3Fcmpid%3Dslblog]. [Online; accessed 19-November-2019].

[211] PSIGEN. PSIGEN Releases Accelerated Classification Engine. https : / / www .
psigen.com/?s=Accelerated+Classification+Engine. [On-
line; accessed 19-November-2019].

[212] Gauri Shah et al. “Ace: Classification for information lifecycle management”. In:

NASA Mass Storage Systems and Technologies (2006).

[213] Oliver Giudice et al. “A classification engine for image ballistics of social data”. In:

International Conference on Image Analysis and Processing. Springer. 2017, pp. 625–
636.

[214] Mehdi Bahrami and Mukesh Singhal. “The role of cloud computing architecture

in big data”. In: Information granularity, big data, and computational intelligence.
Springer, 2015, pp. 275–295.

[215] Eli Collins. “Big Data in the Public Cloud”. In: IEEE Cloud Computing 1.2 (2014),

pp. 13–15.

Page 124 of 126

https://www.websense.com/content/support/library/web/hosted/bsky_help/content_analysis.aspx
https://www.websense.com/content/support/library/web/hosted/bsky_help/content_analysis.aspx
https://www.websense.com/content/support/library/web/hosted/bsky_help/content_analysis.aspx
https://www.veritas.com/news-releases/2017-07-25-veritas-introduces-new-classification-engine-for-intelligent-data\protect \@normalcr \relax -management-across-its-portfolio
https://www.veritas.com/news-releases/2017-07-25-veritas-introduces-new-classification-engine-for-intelligent-data\protect \@normalcr \relax -management-across-its-portfolio
https://www.veritas.com/news-releases/2017-07-25-veritas-introduces-new-classification-engine-for-intelligent-data\protect \@normalcr \relax -management-across-its-portfolio
https://www.veritas.com/news-releases/2017-07-25-veritas-introduces-new-classification-engine-for-intelligent-data\protect \@normalcr \relax -management-across-its-portfolio
https://www.varonis.com/products/data-classification-engine/
https://www.varonis.com/products/data-classification-engine/
https://www.forcepoint.com/product/add-on/advanced-classification-engine-ace?utm_source=Websense&utm_medium=Redirect&utm_content=websense-advanced-classification-engine%3Fcmpid%3Dslblog]
https://www.forcepoint.com/product/add-on/advanced-classification-engine-ace?utm_source=Websense&utm_medium=Redirect&utm_content=websense-advanced-classification-engine%3Fcmpid%3Dslblog]
https://www.forcepoint.com/product/add-on/advanced-classification-engine-ace?utm_source=Websense&utm_medium=Redirect&utm_content=websense-advanced-classification-engine%3Fcmpid%3Dslblog]
https://www.forcepoint.com/product/add-on/advanced-classification-engine-ace?utm_source=Websense&utm_medium=Redirect&utm_content=websense-advanced-classification-engine%3Fcmpid%3Dslblog]
https://www.forcepoint.com/product/add-on/advanced-classification-engine-ace?utm_source=Websense&utm_medium=Redirect&utm_content=websense-advanced-classification-engine%3Fcmpid%3Dslblog]
https://www.psigen.com/?s=Accelerated+Classification+Engine
https://www.psigen.com/?s=Accelerated+Classification+Engine

BIBLIOGRAPHY

[216] Jinting Ren et al. “Archivist: A Machine Learning Assisted Data Placement Mech-

anism for Hybrid Storage Systems”. In: 2019 IEEE 37th International Conference on
Computer Design (ICCD). IEEE. 2019, pp. 676–679.

[217] Ridwan Rashid Noel, Rohit Mehra, and Palden Lama. “Towards self-managing cloud

storagewith reinforcement learning”. In: 2019 IEEE International Conference on Cloud
Engineering (IC2E). IEEE. 2019, pp. 34–44.

[218] Gartner.AIOps (Artificial Intelligence for IT Operations).https://www.gartner.
com/en/information-technology/glossary/aiops-artificial-
intelligence-operations. [Online; accessed 29-June-2020]. 2020.

[219] Anna Levin et al. “AIOps for a Cloud Object Storage Service”. In: 2019 IEEE Interna-
tional Congress on Big Data (BigDataCongress). IEEE. 2019, pp. 165–169.

[220] IBM. IBMCloud Object Storage.https://www.ibm.com/cloud/object-
storage. [Online; accessed 29-June-2020]. 2020.

[221] Ling-Fang Zeng, Dan Feng, and Ling jun Qin. “SOSS: smart object-based storage

system”. In: Proceedings of 2004 International Conference on Machine Learning and
Cybernetics (IEEE Cat. No. 04EX826). Vol. 5. IEEE. 2004, pp. 3263–3266.

[222] Karamjit Kaur and Rinkle Rani. “Managing data in healthcare information systems:

many models, one solution”. In: Computer 48.3 (2015), pp. 52–59.

[223] Kishan Trivedi, Sambhav Shah, and Kriti Srivastava. “An Efficient E-Commerce De-

sign by Implementing a Novel Data Mapper for Polyglot Persistence”. In: Advanced
Computing Technologies and Applications. Springer, 2020, pp. 149–156.

[224] Michael Schaarschmidt, Felix Gessert, andNorbert Ritter. “Towards automated poly-

glot persistence”. In: Datenbanksysteme für Business, Technologie und Web (BTW
2015) (2015).

[225] Anindita Sarkar, Kshitij Pant, and Samiran Chattopadhyay. “DRSQ-A Dynamic Re-

source Service Quality Based Load Balancing Algorithm”. In: International Confer-
ence on Computational Intelligence, Communications, and Business Analytics. Springer.
2018, pp. 97–108.

[226] Ling-Fang Zeng et al. “Object replication and migration policy based on OSS”. In:

2005 International Conference on Machine Learning and Cybernetics. Vol. 1. IEEE.
2005, pp. 45–49.

[227] JasonWeston et al. “Feature selection for SVMs”. In: Advances in neural information
processing systems. 2001, pp. 668–674.

[228] Yi-Wei Chen and Chih-Jen Lin. “Combining SVMs with various feature selection

strategies”. In: Feature extraction. Springer, 2006, pp. 315–324.

[229] Jun Liu, Shuiwang Ji, and Jieping Ye. “Multi-task feature learning via efficient l 2,

1-norm minimization”. In: Proceedings of the twenty-fifth conference on uncertainty
in artificial intelligence. AUAI Press. 2009, pp. 339–348.

Page 125 of 126

https://www.gartner.com/en/information-technology/glossary/aiops-artificial-intelligence-operations
https://www.gartner.com/en/information-technology/glossary/aiops-artificial-intelligence-operations
https://www.gartner.com/en/information-technology/glossary/aiops-artificial-intelligence-operations
https://www.ibm.com/cloud/object-storage
https://www.ibm.com/cloud/object-storage

BIBLIOGRAPHY

[230] Padraig Cunningham and Sarah Jane Delany. “k-Nearest neighbour classifiers”. In:

Multiple Classifier Systems 34.8 (2007), pp. 1–17.

[231] Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2001.

[232] Donald F Specht. “A general regression neural network”. In: IEEE transactions on
neural networks 2.6 (1991), pp. 568–576.

[233] Marina Sokolova and Guy Lapalme. “A systematic analysis of performance mea-

sures for classification tasks”. In: Information processing & management 45.4 (2009),
pp. 427–437.

[234] Nathalie Japkowicz. “Why questionmachine learning evaluationmethods”. In:AAAI
workshop on evaluation methods for machine learning. 2006, pp. 6–11.

Page 126 of 126

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Context
	Thesis Territory
	Research Questions of the Thesis
	Aims and Objective
	Contribution
	Thesis Organization

	Background Study
	Big Data
	Health Data
	Big Data Management System
	Data Service Pathway
	Visualization
	Issues and Solutions

	Evolution of Storage Systems
	SQL Data Model
	NoSQL Data Model
	Cloud Storage Systems
	Comparative Study

	Storage Model
	Introduction
	Research Challenges and Solutions
	Background
	Modelling Components
	Modeling Elements
	Testing Platform
	Resultset
	Discussion
	Conclusion

	Load Balancing in cloud platform
	Introduction
	Background
	Motivation and Research Problem
	Resources relevant for Load Balancing in the Cloud
	DRSQ-Dynamic Resource Service Quality Based Load Balancing Algorithm
	Algorithm
	Testing Platform
	Comparative Results
	Discussion

	Double Threshold Based Power Aware Honey Bee Cloud Load Balancing Algorithm (DTPAHBF)
	Algorithm
	Testing Platform
	Comparative Results
	Discussion

	Conclusion

	Object based schema oriented cloud storage system
	Introduction
	Background
	Research Challenges and Solutions
	Object Storage Space
	Global Database Schema
	Temporary Database
	Hierarchical Structure of The Storage Object

	Hypergraph Data Model
	Architecture
	Query Elements
	Machine Configuration
	Testing Platform
	Query Descriptions
	Query Time

	Comparative Resultset
	Conclusion

	Automatization of Object based schema oriented cloud storage system
	Introduction
	Motivation and Approach
	Background
	Classification Engine Framework
	Architecture
	Workflow
	Testing Platform
	Results and Discussion

	Conclusion

	Conclusion and Future Work
	Outcome of the thesis
	Future Work

	Bibliography

