i)
$$\frac{\text{PdCl}_2(\text{CH}_3\text{CN})_2, \text{ THF}}{\text{then Et}_3\text{N}}$$

Ex/SC/CHEM/PG/CORE/TH/X-AO-1/2023

M. Sc. Chemistry Examination, 2023

(3rd Semester, CBCS)

PAPER: X-AO-1

[Analytical Chemistry (A1) + Organic Chemistry (O1)]

Time: Two Hours Full Marks: 40

(20 marks for each Unit)

Use a separate answer script for each Unit.

UNIT - 310A-1a & 1b

Answer Q.no. 1 and either Q.no. 3.

- 1. (a) The decomposition of zinc oxalate dihydrate (F.W. = 189) was shown by TGA and DTA to occur in two stages with a loss of mass of 19% at 200°C and a total loss of 57% at 400°C. Comment and conclude on the observation? How could we identify both gaseous and solid product?
 - (b) Describe the steps involved in structure determination from power data.
 - (c) Mention two differences between crystalline solids and amorphous solids.
 - (d) Discuss the working principle of power X-Ray Diffractometer.
 - (e) Discuss the applications (any four) of differential scanning calorimetry (DSC). 2+2+2+2
- 2. (a) What are microscopic and macroscopic techniques used for different sample analysis?

[Turn over

- (b) What is SAED pattern during TEM analysis? How will it help to justify the purity of the materials?
- (c) Morphology of the gas sensing material SnO₂ changes during fabrication with the change of precursors. Justify why it happens.
- (d) What is electron-beam damage? How can you avoid such damaging during FE-SEM analysis?
- (e) Why does peak shift take place in PXRD analysis of Fe₂O₃ samples when Pd nanoparticles are doped in it?

UNIT: 310 - 01

- 3. Answer any *one* from (a) and (b): along with (c) and (d).
 - (a) 'Aerobic oxidation of alcohol using separately Cu[I or II] triflet-TEMPO and Fe(NO₃)₃.9H₂O-TEMPO are complementary to each other'— establish this complementarity using at least two examples. Also discuss the corresponding oxidative mechanistic pathways.
 - (b) Mechanistically show the basic difference between Cu-promoted Click reaction and strain promoted Click reaction. With suitable examples of substrate pairs and reagent/condition in each case discuss with mechanism of both of these.
 - (c) Starting with suitable multicomponent reaction (MCR) partners and condition, and also using one-pot MCR synthesize an α-aminoacyl amide. Also depict the corresponding mechanistic pathway.
 Mention one limitation of this reaction.

(d) Write the structure of the product (exclusive/major) with proper stereo/regio chemical outcome and mention the major product as applicable for the following reactions and also mention the name of the rearrangement/reaction involved.

- 4. (a) Discuss the synthesis of Eschenmoser's salt starting from trimethyl amine. Give an example of the reaction with Eschenmoser's salt and explain with mechanism.

 1+1
 - (b) Predict the product(s) with proper stereochemistry mentioning the major compound with plausible mechanistic justification of the following reactions.
 Answer any *four*.

[Turn over