Ex/SC/CHEM/PG/CORE/TH/XVI-A/2023

M. Sc. (CHEMISTRY) Examination, 2023

(4th Semester)

PAPER: XVI-A

[ANALYTICAL CHEMISTRY SPECIAL]

Time: Two Hours Full Marks: 40

(20 marks for each unit)

Use a separate answer script for each unit.

Unit: A-4161 (a & b)

1. Answer *any five* questions :

 5×2

- a) Write down the Scherrer's equation for the determination of grain size and correlate with dislocation density of defects level for a nanocomposite during PXRD analysis.
- b) What are false positive and false negative sensors? Give one example of each.
- c) Define Janus particle. How do core-shell nanoparticles differ from an ordinary system?
- d) Write the full form of common analytical tools used for characterization of materials:
 - i) STEM and (ii) DLS.
 Mention the utility of these tools in the field of material characterization.
- e) Explain the sensing properties of functionalized Aunanoparticles towards alkali metal ions.

[Turn over

f) Give one example of Gas sensing thin-film, Metcars, van der waals clusters, Magnetofluorescent materials.

2. Answer *any five* questions :

 5×2

- a) What are the most important components in an electron microscope? What is the advantage of using electron microscope over light microscope?
- b) What is the resolving power of a typical TEM instrument? How can you improve it? Explain.
- What kind of samples are typically measured in SEM? Discuss briefly. How do you prepare biological samples for SEM analysis?
- d) Explain the working principle of EDAX and EELS with their full form.
- e) Can you measure oxidation state of an element from EDAX? Explain. What are alternative options for measuring oxidation state (only electron spectroscopy or microscopy options)?
- f) How can you assign lattice planes from electron diffraction? Explain with an example.
- g) What is the basic difference between contact and non-contact mode in AFM? What are the advantages of non-contact mode over contact mode?

Unit: A-4162

- 3. In kinetic methods of analyses, an analyst prefers initial rate methods to determine analyte concentration rather than monitoring the entire reaction course. Explain. 5
- 4. Cite one example each of complementary redox reaction and non-complementary redox reaction. Which one is expected to be faster? Explain.
- 5. With a suitable enzymatic reaction scheme, discuss an acceptable method for the determination of Michaelis-Menten constant (K_M) .
- 6. Consider the following reaction scheme:

$$A + R \xrightarrow{k_A} Products$$

$$B+R \xrightarrow{k_B} Products$$

Here A and B are components of a mixture of A and B, reacting with a common reagent R with the initial condition that $[A]_0$ and $[B]_0$ both are much higher than $[R]_0$. k_A and k_B are the second-order rate constants. Show that the error in the measurements of either $[A]_0$ or $[B]_0$ will be minimum at a particular time when $[R]_0/[R]_t$ will be the base of the natural logarithm (e).