Ex/SC/CHEM/PG/CORE/TH/XV-I/2023

M. Sc. (CHEMISTRY) EXAMINATION, 2023

(4th Semester)

PAPER: XV-I

[INORGANIC CHEMISTRY SPECIAL]

Time : Two Hours

Full Marks : 40

(20 marks for each unit)

Use a separate answer script for each unit.

Unit: I-4151

Answer *all* the questions.

- 1. a) How would you determine the structure of $P_3N_3Cl_4F_2$ by NMR spectroscopy?
 - b) [PtBrCl(PR₃)₂] (R=CH₃) exists in two isomers. How would you identify each of them using NMR spectral measurement? (I= $\frac{1}{2}$ for both ³¹P and ¹⁹⁵Pt)
 - c) Compare the ¹⁹F NMR of WF₆L (L= pyridine) and $W_2O_2F_9^-$.
 - d) Draw the nuclear quadrupole energy level diagram with nuclear spin I=5/2 in an axially symmetric and non-axially symmetric field. Identify the possible NQR transition(s).
 - e) Why do we carry out NQR studies normally on a solid crystal?
 2+2+2+3+1
- 2. a) What do you mean by recoilless nuclear transition?

What are the conditions to satisfy for the recoilless nuclear transition?

- b) The s-electron density directly controls the isomer shifts Explain.
- c) With proper explanation compare the Mössbauer spectra of deoxyhemoglobin ($\delta = 0.89$ mm/s, Quadrupolar splitting = 2.23 mm/s) and oxyhemoglobin ($\delta = 0.23$ mm/s, Quadrupolar splitting = 2.12 mm/s).
- d) What do you mean by hyperfine interaction in the ESR? How can you determine hyperfine coupling constant for H-atom if you know the frequency of two possible transitions? Discuss with schematic energy level diagram. $2\frac{1}{2}+2+2+3\frac{1}{2}$

Unit: I-4152

Answer *all* the questions.

- 3. a) What is the first act of any photochemical and photophysical process? Write down the possible mode of deactivation of the excited state?2
 - b) Show schematically where light can act as a reactant and also be obtained as a product. 2
 - c) What do you mean by Light Emission Sensitizers (LES)? Show schematically how LES function. What are the essential criteria of an ideal LES? 2

- d) [Ru(bpy)₃]²⁺ (bpy=2,2'-bipyridine) displays intense emission at room temperature while [Ru(tpy)₃]²⁺ (tpy=2,2':6',2"-terpyridine) does not. Suggest a plausible explanation for the observation.
- e) [Ru(bpy)₃](PF₆)₂ is photochemically inert in water but [Ru(bpy)₃](Cl)₂ is photochemically labile in dichloromethane at room temperature. Suggest a probable reason for the experimental finding and predict the final product that can be obtained from [Ru(bpy)₃](Cl)₂ in dicholromethane. 2
- 4. a) What are the essential criteria of any molecular species to perform as Photochemical Molecular Device? Is there any difference between photochemical molecular device and photochemical molecular machine?
 - b) Taking a suitable example, illustrate the function of molecular wire.3
 - c) Demonstrate the function of molecular plug/socket by taking advantage of supramolecular interaction.

3

d) What do you mean by "top-down" and "bottom-up" approaches for the construction of nanoscale molecular devices? What strategy would be appropriate for the fabrication of molecular device below the dimension of 100 nm?