Ex/SC/CHEM/PG/CORE/TH/XIV-I/2023

M. Sc. (CHEMISTRY) Examination, 2023

(4th Semester)

PAPER: XIV-I

[INORGANIC CHEMISTRY SPECIAL]

Time: Two Hours Full Marks: 40

(20 marks for each unit)

Use a separate answer script for each unit.

Unit: I-4141

- 1. Answer the following questions :
 - a) Calculate the paramagnetic molar susceptibility and corresponding effective magnetic moment of [Cu₂(OAc)₄(H₂O)₂] from the following data:

$$\begin{split} &\chi_{\rm D} \! \left({\rm Cu}^{2^+} \right) \! = \! -11 \! \times \! 10^{-6} \quad emu/mol, \quad \chi_{\rm D} \! \left({\rm OAc}^- \right) \! = \\ &- \! 31.5 \! \times \! 10^{-6} \; emu/mol, \; \chi_{\rm D} \! \left({\rm H}_2 {\rm O} \right) \! = \! -13 \! \times \! 10^{-6} \; emu/mol \; and \; \chi_{means} \; of \; [{\rm Cu}_2 \! \left({\rm OAc} \right)_4 \! \left({\rm H}_2 {\rm O} \right)_2] \; = \; 1.3 \! \times \! 10^{-3} \; emu/mol \; at \; 296.5 \; K. \end{split}$$

- b) $K_3[Mn(CN)_6]$ shows $\mu_{eff} \approx 0$ at very low temperature. However, with the increase in temperature, μ_{eff} gradually increases. Explain.
- c) For Ni^{2+} , the magnetic moment of a regular t_d complex is higher than that of a distorted t_d complex. Explain.

[Turn over

 6×2

- d) Explain the importance of Langevin-Curie equation.
- e) Rationalize the temperature independent paramagnetic (TIP) behaviour of low-spin Co³⁺ system.
- f) Calculate the percentage of a low-spin and high spin state of an octahedral [Fe^{III}(S₂CNR₂)₃] complex at room temperature where μ_{obs} = 4.3 B.M., $\mu_{h.s.}$ = 5.92 B.M., $\mu_{l.s.}$ =2.2 B.M.

2. Answer the following questions: 2×4

- Briefly discuss about magnetic interactions observed in $[M_2(CH_3COO)_4.2H_2O]$ (M = Cu^{2+} , Cr^{2+}) systems in the light of M-M bonding.
- b) Explain about super exchange (anti-ferromagnetic system) and double exchange (ferrimagnetic system) phenomena operated in oxide systems with suitable examples.

Unit: I-4142

- 3. Answer the following questions:
 - a) Reduction of $[Co(NH_3)_6]^{3+}$ by Cr^{2+}_{aq} is much slower than the reduction of $[Co(Cl)(NH_3)_5]^{2+}$ by Cr^{2+}_{aq} . Suggest plausible reasons.
 - b) Cr^{2+}_{aq} is a stronger reducing agent than V^{2+}_{aq} thermodynamically; yet V^{2+}_{aq} reduces many Co(III)

or Ru(III) complexes faster than Cr^{2+}_{aq} . Explain the reasons behind such observations.

- 4. Answer the following questions:
 - a) Explain why *cis*-platin is an effective anticancer drug compare to *trans*-platin.
 - b) Give examples of ruthenium and titanium based anticancer agents.
 - c) Comment on the role of copper (II) in Alzheimer's disease. How do metal chelating agents help to treat the Alzheimer's disease? 2+2
 - d) Give two examples of gold compounds used for the treatment of Arthritis.
 - e) What are the differences between Type-1 and Type-2 diabetes?