iii) Gold can form stable **auride ion** with appropriate cation.

Ex/SC/CHEM/PG/CORE/TH/XIII-I/2023

M. Sc. (Chemistry) Examination, 2023

(4th Semester)

PAPER: XIII-I

[INORGANIC CHEMISTRY SPECIAL]

Time : Two Hours

Full Marks : 40

(20 marks for each unit)

Use a separate answer script for each unit.

Unit: I-4131

Answer all questions.

- 1. Mention the splitting of ${}^{3}F$ state under D_{4h} Symmetry. 5
- Evaluate the symmetries of IR and Raman vibrations of *trans*-N₂F₂.
 5
- 3. What will be the state generated (including spin multiplicity) from t_{2g}^2 configuration in a strong field octahedral complex? 5
- 4. Show that in [NiCl₄]²⁻ all three transitions are electronically allowed. 5

Character table for D₄

	Е	$2C_4(z)$	$C_2(z)$	2C' ₂	2C ₂ "
A ₁	1	1	1	1	1
A ₂	1	1	1	-1	-1
B ₁	1	-1	1	1	-1
B ₂	1	-1	1	-1	1
Е	2	0	-2	0	0

[Turn over

O _h	C_{2y}					
A.	A.	C _{2v}	E	$C_2(z)$	$\sigma_{v}(xz)$	$\sigma_{v}(yz)$
Λ Ig	<u> </u>	A ₁	1	1	1	1
Transferration in the second s	A	A ₂	1	1	-1	-1
Eg	$A_1 + A_2$	D	1	- 1	1	- 1
T _{1g}	$A_2 + B_1 + B_2$	\mathbf{D}_1	1	-1	1	-1
T _{2g}	$A_1 + B_1 + B_2$	B_2		-1	-1	

Character table for T_d

T _d	E	8C ₃	3C ₂	6S ₄	$6\sigma_d$		
A ₁	1	1	1	1	1		$x^2 + y^2 + z^2$
A ₂	1	1	1	-1	-1		
E	2	-1	2	0	0		$(2z^2 - x^2 - y^2),$ $x^2 - y^2)$
T ₁	3	0	-1	1	-1	(R_x, R_y, R_z)	
T ₂	3	0	-1	-1	1	(x, y, z)	(xy, xz, yz)

Character Table of C_{2h}

Е	C ₂	i	$\sigma_{\rm h}$			
Ag	1	1	1	1	R _z	x^{2}, y^{2}, z^{2}, xy
B _g	1	-1	1	-1	R_x, R_y	xz, yz
A _u	1	1	-1	-1	Z	
B _u	1	-1	-1	1	x, y	

Unit: I-4132

- 5. Consider an octahedral complex, $[TiF_6]^{2-}$.
 - a) Determine the LGOs of the six terminal F atoms using projection operator. (Character Table may be consulted).

0	Ε	$8C_3$	$3C_2$	$6C_4$	$6C'_{2}$
(432)					
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
Е	2	-1	2	0	0
T_1	3	0	-1	1	-1
	3	0	-1	-1	1

- b) Write down the Mulliken symbol of the valence AOs of Ti atom and draw a qualitative MO energy level diagram of [TiF₆]²⁻ with clear depiction of FMOs.
- c) Predict the geometry of CH₂⁺ and BeH₂ in their ground and first excited states with the aid of appropriate Walsh diagram.
- d) Explain the following phenomena: 2×3
 - i) Non-relativistic gold would be white like silver.
 - ii) In platinum group metals, $\{M(\eta^2-H_2)\}$ description in comparison to $\{M(H)_2\}$ becomes less significant down the group.