Ex/SC/CHEM/PG/CORE/TH/I/2023

M. Sc. Chemistry Examination, 2023

(1st Semester, CBCS)

PAPER: I

[THEORETICAL CHEMISTRY]

Time: Two Hours Full Marks: 40

(20 marks for each Unit)

Use a separate answer script for each Unit.

UNIT - 1011

- 1. a) Define a hermitian operator. Show that a projection operator of the type $|\phi\rangle\langle\phi|$ is hermitian.
 - b) Construct the first excited singlet state wave function of He atom in terms of spin orbitals which satisfy Pauli Exclusion Principle. Assuming spin orthonormality and no spin-orbit interaction, evaluate its energy in terms of two-electron integrals.
 - c) Prove that the quantum averages: $\langle l_x \rangle$ and $\langle l_y \rangle$ vanish for spherical harmonics $\{Y_{l,m_l}\}$ as orthonormal basis functions.
 - d) Using ladder operators for the spin of an electron, construct Pauli spin matrix representations of \hat{s}_x and \hat{s}_y operators.

- e) The wave function of $3d_{z^2}$ orbital of H atom is given as $\psi_{3d_{z^2}} = Ar^2e^{-\frac{r}{3}}(3\cos^2\theta 1)$, where A is a constant. Find the point at which the probability density of the $3d_{z^2}$ orbital will be highest. 2+3+2+2+3
- 2. a) If the Hamiltonian of a one-dimensional quantum system is not time dependent, the wave function $\psi(x,t)$ remains stationary Justify.
 - b) i) Write down the trial variational wave function for H_2^+ in the ground state. After the variational treatment one gets bonding and antibonding orbitals. Write down these molecular orbitals and energies in terms of Coulomb, Resonance, and overlap integrals.
 - ii) Assuming overlap integral value of 0.5 a.u. at equilibrium bond distance, show that there is an accumulation of electron density in between two atoms of H_2^+ for the bonding molecular orbital. 2+2

UNIT - 1012

3. Construct the character table of C_4 with proper explanation (Area 1 and Area II only). Use this character table to construct the π -MOs of C_4H_4 . Find the energy of

these MOs applying Huckel's approximation. 4+4+4

4. Write a reducible representation for the motional degrees of freedom of NCl_3 molecule (Point group, C_{3v}). Decompose the representation using reduction formula. The character table of C_{3v} point group is given below. 4

C_{3v}	Е	$2C_3$	$3\sigma_{\rm v}$
A_1	1	1	1
A_2	1	1	-1
Е	2	-1	0

- 5. Show that any group of order 4 is an Abelian group. 2
- 6. Identify the point groups for following molecular species (any two):

2

- i) Cis- $[Co(NH_3)_4F_2]^+$
- ii) $C_3H_3^+$
- iii) SF₄
- iv) Staggered form of ferrocene