- b) Derive single point BET equation from BET equation and explain its importance.
- c) Give the examples of the cationic and nonionic surfactants with structures.
- d) Considering mass action model, determine counter ion binding for an ionic micelle.
- e) Draw the structure of a micelle.
- f) How can soap and detergent molecules behave against corona virus?
- g) Deduce the pressure of a surface film of an insoluble substance in water.

Ex/SC/CHEM/PG/CORE/TH/V/2023

M. Sc. (CHEMISTRY) EXAMINATION, 2023

(2nd Semester)

BIOCHEMISTRY AND ENVIRONMENTAL CHEMISTRY

PAPER – V

Time : Two hours

Full Marks : 40

Use a separate answer script for each Unit.

<u>UNIT – 2051 a & 2051 b</u>

1. Answer *any four* questions.

 $2\frac{1}{2} \times 4$

- a) Discuss the role of BPG in release of O₂ from mother to developing fetus.
- b) Give an outline of speciation of mercury. Why is CH_3Hg^+ more toxic than inorganic Hg^{2+} ?
- c) Discuss the structure and function of different components of nitrogenase enzyme.
- d) What is the role of ATP hydrolysis in nitrogen fixation? What is the function of leghemoglobin in nitrogenase activity?
- e) What do you mean by cooperative interaction in O₂ affinity of hemoglobin? How do you express the phenomenon by Hill equation and Hill plot?
- 2. Highlight the role of metal ions in maintaining structures of complex biomolecules. With suitable experimental evidence indicate that this is operative. What form or forms of toxicity could disrupt this?

- 3. Answer *any two* questions.
 - a) What are particle pollutants? Explain how presence of particle pollutants in the atmosphere enhances secondary pollution of a local area. Give one reason why secondary pollution is more harmful than primary. $\frac{1}{2}+2+\frac{1}{2}$
 - b) Explain formation of "Criegee intermediate" in reference to atmospheric pollution. Why are they considered important in enhancing secondary pollution? $1\frac{1}{2}+1\frac{1}{2}$
 - c) Discuss primary & secondary pollutants. Which is more harmful and why? 2+1
 - d) Discuss toxicity of mercury in a biological system.
 What are the chemical reasons that led to the disaster in "Minamata', the port city of Japan? 1+2

<u>UNIT – 2052 a</u>

- 4. Answer *any four* of the following questions. $2\frac{1}{2} \times 4$
 - a) What is β -oxidation? Write down the metabolic pathway of β -oxidation and calculate the total number of ATP produced on complete metabolism of one molecule of palmitic acid (C₁₅H₃₁COOH).

 $\frac{1}{2}$ +1+1

- b) What is urea cycle? Illustrate the metabolic reactions involved in urea cycle and comment on its importance. $\frac{1}{2}+1+1$
- c) What do you understand by the terms 'preparatory phase' and 'pay off phase' of glycolysis? How does it differ from the steps involved in gluconeogenesis? $1+1\frac{1}{2}$
- d) Derive Lineweaver-Burk equation from Michaelis-Menten equation for an enzyme catalysed single substrate reaction. How can K_M and V_{max} values be determined with this equation? What is K_M?

 $1 + 1 + \frac{1}{2}$

- e) Write down the steps for the interconversion of UDP-glucose and UDP-galactose involving UDP-glucose-4-epimerase and NAD⁺. What is Zymogen? $1\frac{1}{2}+1$
- f) Distinguish the following pairs.
 - i) Induce-fit model and Lock-Key model.
 - ii) Lyases and Ligases. $1\frac{1}{2}+1$

<u>UNIT– 2052 b</u>

- 5. Answer *any five* questions : 2×5
 - a) State the assumptions of Harkins-Jura equation for adsorption isotherm. Write down that equation also.

[Turn over