10. Elaborate on any one of the following numerical methods:
i) Numerical integration using Extended Sympson's Rule.
ii) Numerical solution of linear simultaneous equations using Gauss-Seidel method.

B. Sc. Chemistry Examination, 2023

(6th Semester)

CHEMISTRY (DSE)

Paper: DSE/Chem/TH/04
Time : Two Hours
Full Marks : 40
UNIT : 6043-P

1. a) Find the answer of the following relational logical expression

NOT.R.AND..NOT.(IK.LE.BK)

where $\mathrm{BK}=2.0, \mathrm{IK}=4, \mathrm{R}=$. TRUE .
b) What is the difference between a FORTRAN expression and a statement?
c) The following statements contain errors. Identify those errors.
i) $\mathrm{A}+\mathrm{B}=\mathrm{C} * * 2+\mathrm{D} / \mathrm{E}$
ii) H=6.GT.4.0.AND..NOT. 7
$1+1+1$
2. Express JCB and BOULT as double and quadruple precision variables, respectively in a single FORTRAN statement.
3. Write the format statement to print the following as an output (consider $\&$ as a blank character).


```
**************************************
```

(A blank line)
27
(A blank line)
33
17.0
(A blank line)
35
15.5
$* *$
4. Write a general FORTRAN program for the evaluation of the following series.

$$
S=1-\frac{x^{2}}{2!}+\frac{x^{3}}{3!}-\ldots . .+\frac{x^{13}}{13!}
$$

5. Answer the following questions
a) Citing suitable examples, state the essential features of the computed GO TO statement.
b) Write the computational steps in the form of a flow chart for calculating the roots of a quadratic equation.
c) Write down the differences between a SUBROUTINE subprogram and a FUNCTION subprogram with an example.
$2+2+2$
6. a) Write the binary representation of 0.124 in a 8 -bit machine. Check if there is any loss of data for such representation, if so, how much in percentage?
b) Carry out the following conversions:

$$
\begin{array}{lll}
(1100.10101)_{2} & \rightarrow & \text { Decimal } \\
(11.77625)_{10} & \rightarrow & \text { Binary }
\end{array}
$$

7. Answer any two of the following questions: $\quad 2 \times 2=4$
i) State briefly the types of error occurring in a numerical calculation.
ii) Describe the difference between precision and accuracy associated with the numerical computation of a result.
iii) Describe two basic stages for finding roots of an equation.
8. Answer the following questions:
a) State how many significant digits are there in the following numbers :
(i) 705020;
(ii) 0.030260 ;
(iii) 2025.00;
(iv) 100.01020 ;
(v) 2.30050×10^{6}
b) Round off the results of the following mathematical operations up to appropriate significant digits : $1 \frac{1}{2}$
i) $0.00106 \times 16 \times 3809$;
ii) $0.00106 \times 16.00 \times 3809.0$;
iii) $5.8413+23 .+3.361$
9. Obtain the expressions of slope and intercept associated with the linear least square fit algorithm for a given set of data.
