Ex/SC/CHEM/UG/CORE/TH/14/2023
Assuming ideal behavior, calculate the molar polarization, dipole moment, and the dielectric constant of the molecule associated with the vapor at

STP.

$2 \frac{1}{2}$
(c) What is the basis of measuring the magnetic susceptibility by Gouy balance method (no derivation is needed).
B. Sc. Chemistry Examination, 2023
(5th Semester, CBCS)
CHEMISTRY (CORE)
Paper: Core/Chem/Th/14
Time : Two Hours
Full Marks : 40
(20 marks for each unit)
Use a separate answer script for each unit.

UNIT - 5141-I

Answer all questions.

1. Predict which of the complexes $\left[\mathrm{V}(\mathrm{CO})_{6}\right]^{-},\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]$, or $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{+}$has the shortest $\mathrm{C}-\mathrm{O}$ bond length.
2. Give examples of η^{6}, η^{7} and η^{8} ligands. Give an example of a triple-decker cyclopentadienyl complex. 2
3. Which one of the given complexes (a) or (b) will undergo ligand substitution faster with PPh_{3} ? Why?
(a) $\mathrm{V}(\mathrm{CO})_{6}$
(b) $\left[\mathrm{V}(\mathrm{CO})_{6}\right]^{-}$

2
4. Determine the number of $\mathrm{M}-\mathrm{M}$ bond(s) in the following complexes that obey 18 electron rule.
(a) $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$
(b) $\mathrm{CO}_{2}(\mathrm{CO})_{8}$
5. Comment on the $\mathrm{C}-\mathrm{C}$ bond length in the following complexes. 2
(a) $\left[\mathrm{PtCl}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{-}$
(b) $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{2}(\mathrm{CN})_{4}\right)\right]$
6. Boric acid has weak acidity, but in the presence of glycerol its acidity is remarkably increased. Explain.
7. 18-Crown- 6 captures K^{+}ion specifically. Explain the reasons behind it.
8. The kinetics of protonic acid catalysed iodination of acetone shows first-order dependence in both [acetone] and $\left[\mathrm{H}^{+}\right]$but zero order in [iodine]. Explain the proposed mechanistic steps for this reaction with proper explanation of each step.

UNIT-5142-P

9. (a) Write down the normalized wave function in the $\mathrm{m}^{\text {th }}$ state of a linear quantum harmonic oscillator having mass μ and force constant k. What would happen to the oscillator if m is very large?
(b) Determine the eigen values of $\hat{\mathrm{i}}_{z}$ and $\hat{\mathrm{i}}^{2}$ operators for the spherical harmonics $Y_{3,-1}(\theta, \phi)$ of a rigid rotor.
(c) Write down the Hamiltonian operator for the H_{2} molecule. What is Born-Oppenheimer approximation? Mention its importance in molecular quantum mechanics. $1 \frac{1}{2}$
(d) Find the commutator $\left[\hat{1}_{x}, \hat{l}_{z}\right]$, where $\hat{1}_{x}$ and $\hat{1}_{z}$ are x and z component angular momentum operators of a rotating particle.
10. Answer the following questions: 3×3
(a) Evaluate the uncertainty in position of a onedimensional quantum harmonic oscillator in the ground state.
(b) Derive the normalized angular function of the azimuth angle (ϕ) of a rigid rotor from the part of the Schrödinger equation involving ϕ.
(c) Find the ground-state electronic energy of H atom using the following radial wave function $\mathrm{R}(\mathrm{r})=2 \alpha_{0}^{-3 / 2} \mathrm{e}^{-\mathrm{r} / \alpha 0}$, where α_{0} is Bohr/s radius.
11. (a) Induced charge per unit area is nothing but the polarization of a molecule - Justify. $\quad 1 \frac{1}{2}$
(b) Molar polarization of a certain vapor obeys the following relation.

$$
\mathrm{P}_{\mathrm{m}}\left(\mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right)=60+\frac{20.5}{\mathrm{~T}}(\mathrm{~K})
$$

