Assuming ideal behavior, calculate the molar polarization, dipole moment, and the dielectric constant of the molecule associated with the vapor at STP. $2\frac{1}{2}$

(c) What is the basis of measuring the magnetic susceptibility by Gouy balance method (no derivation is needed).

Ex/SC/CHEM/UG/CORE/TH/14/2023

B. Sc. Chemistry Examination, 2023

(5th Semester, CBCS) CHEMISTRY (CORE) PAPER: CORE/CHEM/TH/14

Time : Two Hours

Full Marks : 40

(20 marks for each unit) Use a separate answer script for each unit.

UNIT - 5141 - I

Answer all questions.

- Predict which of the complexes [V(CO)₆]⁻, [Cr(CO)₆], or [Mn(CO)₆]⁺ has the shortest C-O bond length.
- 2. Give examples of η^6 , η^7 and η^8 ligands. Give an example of a triple-decker cyclopentadienyl complex. 2
- 3. Which one of the given complexes (a) or (b) will undergo ligand substitution faster with PPh₃? Why?
 (a) V(CO)₆ (b) [V(CO)₆]⁻ 2
- 4. Determine the number of M-M bond(s) in the following complexes that obey 18 electron rule.
 (a) Fe₂(CO)₉ (b) CO₂(CO)₈ 2

[Turn over

- 5. Comment on the C-C bond length in the following complexes.
 (a) [PtCl₃(C₂H₄)]⁻ (b) [Pt(PPh₃)₂(C₂(CN)₄)]
- Boric acid has weak acidity, but in the presence of glycerol its acidity is remarkably increased. Explain. 3
- 18-Crown-6 captures K⁺ ion specifically. Explain the reasons behind it.
- The kinetics of protonic acid catalysed iodination of acetone shows first-order dependence in both [acetone] and [H⁺] but zero order in [iodine]. Explain the proposed mechanistic steps for this reaction with proper explanation of each step.

UNIT - 5142 - P

- 9. (a) Write down the normalized wave function in the mth state of a linear quantum harmonic oscillator having mass µ and force constant k. What would happen to the oscillator if m is very large?
 - (b) Determine the eigen values of \hat{l}_z and \hat{l}^2 operators for the spherical harmonics $Y_{3,-1}(\theta,\phi)$ of a rigid rotor. 1

- (c) Write down the Hamiltonian operator for the H_2 molecule. What is Born-Oppenheimer approximation? Mention its importance in molecular quantum mechanics. $1\frac{1}{2}$
- (d) Find the commutator $[\hat{l}_x, \hat{l}_z]$, where \hat{l}_x and \hat{l}_z are x and z component angular momentum operators of a rotating particle. $1\frac{1}{2}$
- 10. Answer the following questions :3x3
 - (a) Evaluate the uncertainty in position of a onedimensional quantum harmonic oscillator in the ground state.
 - (b) Derive the normalized angular function of the azimuth angle (φ) of a rigid rotor from the part of the Schrödinger equation involving φ.
 - (c) Find the ground-state electronic energy of H atom using the following radial wave function $R(r) = 2\alpha_0^{-3/2} e^{-r/\alpha_0}$, where α_0 is Bohr/s radius.
- 11. (a) Induced charge per unit area is nothing but the polarization of a molecule Justify. $1\frac{1}{2}$
 - (b) Molar polarization of a certain vapor obeys the following relation.

$$P_{m}(cm^{3}mol^{-1})=60+\frac{20.5}{T}(K)$$

[Turn over