Ex/SC/CHEM/UG/CORE/TH/11/2023

B. Sc. Chemistry Examination, 2023

(5th Semester, CBCS)

Chemistry (Core)

Paper: Core/Chem/Th/11
Time : Two Hours
Full Marks : 40
(20 marks for each unit)
Use a separate answer script for each unit.

UNIT - 5111-I

Answer all questions :

1. (a) For its ethylenediamine complexes of divalent first row transition metal ions order of stability is as follows :
$\mathrm{Mn}(\|)\langle\mathrm{Fe}(\|)\langle\mathrm{Co}(\|)\langle\mathrm{Ni}(\|)\langle\mathrm{Cu}(\|)\rangle \mathrm{Zn}(\|)$. Justify the reason behind the maximum stability of $\mathrm{Cu}(\|)$ and minium stability of $\mathrm{Mn}(\|)$ in the above series.$2+1$
(b) Coordination compounds having tetrahedral geometry rarely show low spin complexes. Why? 1
(c) What do you mean by z -in and z -out distortion in octahedral coordinated complexes?
(d) "The driving force of JT distortion in the octahedral system is the gain of additional CFSE." Justify or criticize the statement.
(e) In case of $\left[\mathrm{ML}_{6}\right]^{\mathrm{n}+}$ compound, show the molecular orbital energy diagram considering six ligand group orbital. Also show the relevance of the CFT approach with this MO diagram. $2+1$
2. (a) Explain why $\left[\mathrm{FeF}_{6}\right]^{3-}$ is almost colourless whereas $\left[\mathbf{C o F}_{6}\right]^{3-}$ is coloured and exhibits only a single band in the visible region of the spectrum. $1+3$
(b) Solid copper (||) acetate shows subnormal magnetic moment at room temperature-Explain. 2
(c) Beifly describe the mode of binding of O_{2} to the iron centre in one haem unit of haemoglobin. 2
(d) Discuss the removal of arsenic from human body using chelation therapy.

2

UNIT - 5112 - I

3. Answer the following questions:
(a) Calculate the energy difference between ground and first excited state of $\mathrm{Tb}^{3+}\left(\lambda=202 \mathrm{~cm}^{-1}\right)$ system by considering respective J -levels. 2
(b) Explain why the magnetic moment of Sm^{3+} is not given from the equation used for the calculation of magnetic moment of Tb^{3+}.

2
(c) Explain the "antenna effect" for the luminescence properties of rare-earth based metal-organic complex.
(d) Give two separate examples of Eu^{3+} complexes with square antiprism and tricapped trigonal prism geometries around metal ions.
(e) Write the nuclear reactions for the formation of ${ }^{241} \mathrm{Am}$ and ${ }^{239} \mathrm{Pu}$ from ${ }^{238} \mathrm{U}$.

2
4. Answer any four questions: $2 \frac{1}{2} \times 4$
(a) Discuss the formation of bis(cyclopentadienyl) titanium(III) chloride from suitable starting materials. Highlight an application of this compound. $1 \frac{1}{2}+1$
(b) Describe the structure of $\mathrm{Ti}_{8} \mathrm{C}_{12}$. How was the spatial environment around each Ti realized from a reaction concerning this molecule? $\quad 1 \frac{1}{2}+1$
(c) With suitable reactions discuss the versatile ability of vanadium compounds to show colour. What is the structure of $\mathrm{VO}_{6}{ }^{3-}$? $\quad 2+\frac{1}{2}$
(d) Write the formula and draw structures of the various isomers of $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \mathrm{C} l_{3}$ mentioning the colour of each. What is the isomerism they depict? $\quad 2+\frac{1}{2}$
(e) Draw the structure of the dichromate ion mentioning bond lengths and bond angles. How and why can the chromate ion be used as an indicator in estimation of halides?

$$
1+1 \frac{1}{2}
$$

(f) In a titration of Fe^{2+} with MnO_{4}^{-}in the presence of Cl^{-}, without an improvisation, a simple titration gives erroneous results. Why? Discuss what is done for such a case. $1+1 \frac{1}{2}$

