Ex/SC/CHEM/UG/CORE/TH/13/2023

B. Sc. Chemistry Examination, 2023

(5th Semester, CBCS)

CHEMISTRY (CORE)

Paper: Core/Chem/Th/13

Time: Two Hours Full Marks: 40

(20 marks for each unit)
Use a separate answer script for each unit.

UNIT - 5131 - P

- 1. Freundlich adsorption isotherm may be treated as truncated Langmuir isotherm Justify or criticise. 3
- 2. How can you determine area of the head group of a fatty acid? $2\frac{1}{2}$
- 3. Explain why bays are formed at the junction of a river and a sea. $2\frac{1}{2}$
- 4. What is electro-osmosis?
- 5. Define oligomer with an example. 2
- 6. Show the polymer formed by the reaction of the following monomers. Is the resulting polymer linear or

[Turn over

2

branched/cross-linked?

$$(NH_2)_2$$
-CH-CH₂-CH- $(NH_2)_2$ + HOOC-CH₂-CH₂-
CH- $(COOH)_2 \rightarrow$?

- 7. Discuss about cationic polymerization. 2
- 8. (i) Discuss about a simplified representation of the process of synthesis of nanoparticles.
 - (ii) Bare nanoparticles cannot exist explain. 2+1

UNIT - 5132 - P

Attempt any four questions.

- 9. (a) Write down the relationship between *Chemical* and *electrochemical potential* of Zn²⁺ ions at electrodesolution interface. What are the units of them in IUPAC?
 - (b) Why KCl or NH₄NO₃ salt is used in salt-bridge? 3+2
- 10. Write down the respective half cell reactions and cell reaction of the following cell.

$$Zn(s) | ZnCl_2(aq) | Hg_2Cl_2(s) | Hg(l) | Pt(s)$$

- (i) What is the role of Pt here?
- (ii) Is this cell 'a cell without transference'? Give reason/s in support of your answer. 3+2

- 11. Represent the galvanic cell for the cell reaction : $Fe^{3+}(aq) + Ag(s) = Fe^{2+}(aq) + Ag^{+}(aq)$. The *equilibrium constant* for the reaction is 0.531 at 298 K. Calculate $E^{0}_{Ag+(aq)/Ag(s)}$ when $E^{0}_{Fe^{3+}(aq)/Fe^{2+}(aq)} = -0.0441$ V at 298 K.
- 12. What would be the value of $E^{0}_{Fe^{3}+(aq)/Fe}$ at 298 K When $E^{0}_{Fe^{3}+(aq)/Fe^{2}+(aq)}$ 0.771 V and $E^{0}_{Fe^{2}+(aq)/Fe} = 0.441$ V at 298 K.
- 13. The standard reduction potential for the electrodes Cu²⁺/Cu and Ni²⁺/Ni are + 0.3336 V and 0.240 V respectively at 298 K. Construct the galvanic cell and identify anode & cathode. Calculate its standard emf at 298 K.
- 14. Write brief notes on primary & secondary reference electrodes with suitable examples. 5