(c) X-ray powder diffraction angles from Y crystal were observed at $20.26^{\circ}, 29.30^{\circ}, 36.82^{\circ}, 43.82^{\circ}, 50.70^{\circ}$, $58.80^{\circ}, 66.30^{\circ}$ and other angles using radiation of wavelength $1.54 \AA$. Considering the density of Y to be $10.24 \mathrm{~g} \mathrm{~cm}^{-3}$ find the atomic weight of Y.

B. Sc. Chemistry Examination, 2023

(3rd Semester, CBCS)
CHEMISTRY (CORE)
Paper: Core/Chem/Th/07
Time : Two Hours
Full Marks : 40
(20 marks for each unit)
Use a separate answer script for each unit.

UNIT - 3071-P

1. With a given minimum expenditure of work, the greater is the amount of heat extracted from the colder reservoir, the better is the refrigerator-Justify.
2. For a closed system, the thermodynamic condition for a change to be spontaneous when carried out at constant volume and temperature and capable of only $P-V$ work is that $\Delta A<0$.
3. Derive the expression of the internal pressure of a gaseous system from the relevant fundamental equation of thermodynamics. Prove that the internal pressure exists for a van der Waals gas. $1 \frac{1}{2}+1 \frac{1}{2}$
4. What happens to the melting point of ice on increasing the pressure? Justify your answer through derivation of the appropriate equation for fusion equilibrium.
[Turn over
5. Starting from the necessary thermodynamic proof of Le Chatelier's principle, show what will happen to the advancement ξ of a gas phase reaction at equilibrium and at constant temperature if the volume of reaction is positive.
6. Assuming the relation
$\ln \mathrm{K}_{\mathrm{P}}=-1.04-\frac{1088}{\mathrm{~T}}+\frac{1.51 \times 10^{5}}{\mathrm{~T}^{2}}$ valid for a particular reaction, calculate the changes in standard free energy and standard enthalpy of the reaction at 400 K .

UNIT - 3072-P

7. Answer any two questions :
(a) Arrive Wien's displacement law from the Planck's equation of black-body radiation.
(b) Examine whether the operator $\left(d^{2} / d x^{2}\right)$ is Hermitian or not. 3
(c) Explain Bohr correspondence principle considering the particle in 1-D box model.

3
8. Answer any two questions:
(a) For particle of mass m moving freely in a 1-D box of length l with infinite potential energy walls calculate the average value of energy considering the trial function $\psi=x(1-x)$. Compare this energy with the true gound state energy of the system. $3+1$
(b) Given $\left[\hat{\mathrm{X}}, \hat{\mathrm{p}}_{\mathrm{x}}\right]=\mathrm{i} \hbar$ evaluate $\hat{\mathrm{A}} \&[\hat{\mathrm{X}}, \hat{\mathrm{A}}]$ where $\left[\hat{X}, \hat{\mathrm{p}}_{\mathrm{x}}{ }^{2}\right]=\hat{\mathrm{A}}$.
(c) (i) Show that 'zero point energy' of a freely moving particle in a one dimensional box is a consequence of Heisenberg's uncertainly principle. (i) Find the Compton wavelength of proton. 3+1
9. Answer any two questions :
(a) NaBr and RbBr have the same crystal structure. Xray diffraction, however, indicates RbBr to be a simple cubic while the other is face-centred cubic lattices: Explain.

3
(b) For a cubic lattice show that the interplanar distance
$\left(d_{h k l}\right)$ is given by $d_{h k l}=\frac{a}{\sqrt{h^{2}+k^{2}+l^{2}}} a=$ unit cell length.

3

