B. Sc. Chemistry Examination, 2023

(1st Year, 1st Semester)

CHEMISTRY (GE)

PAPER: GE/CHEM/TH/01

Time: Two Hours Full Marks: 40

(20 marks for each unit)

Use a separate answer script for each unit.

UNIT - 101G - I

1. Answer *any two* questions :

 $2\times 2\frac{1}{2}$

a) Write the IUPAC nomenclature of the following complex compounds (*any two*):

 $[Co(NH_3)_6][CoCl_6]$, $[Ni(CO)_4]$, $Na_2[Al(OH)_4]$, $K_2[Fe(CO)_4]$

- b) How did Alfred Werner establish the geometry (shape) of hexa-coordinated ML₆ compound.
- c) Calculate CFSE of the following complex ions (*any two*): [NiCl₄]²⁻, [CoCl₄]²⁻, [CoF₆]³, [Ni(H₂O)₆]²⁺
- d) Match the following ligands with most preferred metal oxidation state(s) with justification.

Ligands	Metals	Justification
O ²⁻ , CO, H ₂ O	Cr(0)	
	Cr(III)	
	Cr(VI)	

2. Answer *any two* questions :

 $2\times 2\frac{1}{2}$

- a) Briefly explain the bonding in B_2H_6 by valence bond (VB) and molecular orbital approach.
- b) How do you prepare XeF₂ and XeF₄? Write with proper reaction conditions.
- c) Briefly explain the following properties of alkali metals when dissolved in liquid ammonia.
 - i) The dilute solutions have much lower density than the pure solvent.
 - ii) The dilute solutions are paramagnetic with susceptibility corresponding to one free electron per metal atom.

3. Answer *any two* questions:

 2×5

a) For the molecules or molecular ions in the problem, give the formula type (Example: AX₂E), the steric number (SN), the geometry with. (Example: bent), and expected bond angles. (*any three*) 5

Compound	Formula type	SN	Geometry	Bond angle(s)
(a) CIF ₃				
(b) $\left[XeF_3\right]^+$				
(c) SF ₄				
(d) IF ₅				

d) 4-Nitrofluorobenzene shows high reactivity towards nucleophilic aromatic substitution reaction with NaOMe compared to 3-nitrofluorobenzene. Explain the reason.

- e) How will you prepare benzaldehyde from toluene?
- f) Discuss the mechanism of nitration of benzene for the preparation of nitrobenzene.

- $\stackrel{\Theta}{\text{PhCH}_2} \stackrel{\Theta}{,} \stackrel{\Theta}{\bigwedge} \stackrel{\bullet}{,} \stackrel{\Theta}{\bigwedge} \stackrel{\Theta}{\to} \stackrel{\bullet}{\text{CH}_3\text{CH}_2}$
- 6. Predict the product of the following reactions: $1\frac{1}{2} \times 2$
 - a) H, OTs KCN acetone, 20 °C
 - b) OSO₂Me NaOEt 7
- 7. Predict the product of the following reactions: (any *two*) $1\frac{1}{2}\times 2$

a) MeO
$$\frac{O}{O}$$
 $\frac{H_2, Pd(OAc)_2}{CaCO_3}$?

- c) Br₂ ?
- 8. Answer any *five* of the following questions. 2×5
 - a) Discuss the mechanism of pinacol-pinacolone rearrangement.
 - b) How will you detect the presence of aromatic amine in an organic compound by the help of diazocoupling reaction?
 - c) Describe the cumene hydroperoxide method for the preparation of phenol.

- b) i) Calculate the ionization energy of H atom.
 - ii) Calculate the de Broglie wavelength of a bullet $(m = 2 \times 10^{-3} \text{ kg})$ moving with a speed of 300 m s⁻¹.
 - iii) What is the pH of pure water at 100°C? K_w at 100°C is 5.45×10^{-13} . 1+2+2
- c) i) Calculate the size of the He⁺ ion from Bohr's theory.
 - ii) Calculate the minimum uncertainty in the location of a 1 g mass moving with a speed of 1.5 m s^{-1} .
- d) i) What are the merits and demerits of Bohr's model?
 - ii) What is the minimum uncertainty in the velocity determination of an electron if we want to locate it within 0.01 Å of the first Bohr radius in a hydrogen atom? 2+3

UNIT - 101G - O

4. Arrange the following carbocations in increasing stability order with proper justification: 2

5. Arrange the following carbanions in decreasing stability order with proper justification: 2

[Turn over