5. a) Arrange the following compounds in order of increasing enol content (in liquid)

$$\begin{array}{ccc} \mathrm{CH_{3}COCHPhCOOEt} & \mathrm{PhCO-CH_{2}COMe} \\ \mathrm{III} & & \mathrm{IV} \end{array}$$

b) Which one of the following two carbonyl compounds will enolize and why?

- 6. a) Monochlorination of propane is less selective (product ratio 60:40) than mono-bromination of propane (97:3). Explain the observation in the light of Hammond postulate. $1\frac{1}{2}$
 - b) Arrange the following amides in increasing order of basicity. Give reasons.

c) The first ionisation constant of maleic acid (*cis*-butenedioic acid) is greater than fumaric acid (*trans*-butenedioic acid). But the second ionisation constant of fumaric acid is greater than maleic acid — Explain.

B. Sc. Chemistry Examination, 2023

(1st Year, 2nd Semester)

CHEMISTRY (CORE)

Paper: Core/Chem/Th/03

Time: Two Hours Full Marks: 40

(20 marks for each unit)

Use a separate answer script for each unit.

<u>UNIT - 2031-I</u>

- 1. Answer all questions:
 - a) Considering Born-Haber cycles for CaF and CaF₂, calculate heat of formation of each using values provided below. From the obtained heat of formation, mention why CaF is non-existant.

[
$$\Delta H_{S}^{Ca} = 121$$
 KJ/mol; $\Delta H_{IP}^{Ca^{+}} = 590$ KJ/mol;
 $\Delta H_{IP}^{Ca^{++}} = 1145$ KJ/mol; $\Delta H_{BD}^{F_{2}} = 157$ KJ/mol;
 $\Delta H_{EA}^{F} = -335$ KJ/mol; $\Delta H_{1}^{CaF} = -795$ KJ/mol;
 $\Delta H_{1}^{CaF_{2}} = -2805$ KJ/mol] $(1 \times 2) + \frac{1}{2}$

b) With the help of suitable calculations, derive the limiting condition for radius-ratio of cation to anion in a body-centred cubic lattice having coordination number four. Give an example of a compound that crystallizes in this structure.

1+ $\frac{1}{2}$

- c) Using VSEPR explain shape of ICI_2^- . $1\frac{1}{2}$
- d) Melting points of group II metal carbonates are provided in parentheses.
 BeCO₃ (54°C); MgCO₃ (540°C); CaCO₃ (825°C);
 SrCO₃ (1494°C); BaCO₃ (811°C). Comment on thermal stability of group II metal carbonates.
- e) Define i) Madelung constant, ii) Ion-pair energy. $\frac{1}{2} + \frac{1}{2}$
- f) Radius of some ions are provided below. $Li^+ = 76$ pm; $Cl^- = 181$ pm; $Br^- = 196$ pm and $I^- = 216$ pm. Predict structures of Li halides from radiusratio calculations. Why then do these Li halides form face centred cubic lattice with octahedral arrangement of ions?
- g) Using any theory of your choice, compare structures of HF, CO₂ and I₃⁻.
- 2. a) Explain Szilard-Chalmers effect. What is hot atom chemistry (HAC) in nuclear chemistry? $2+\frac{1}{2}$
 - b) What are doubly magic number nuclei? Give two examples.
 - c) One microgram of phosphorous-32 was injected into a living system for biological tracer studies. The half-life of $^{32}P_{15}$ is 14.3 days. How long will it take for the radioactivity to fall to 10% of its initial value? $1\frac{1}{2}$

4. a) Assign the indicated pair of atoms as homotopic, enantiotopic or diastereotopic and justify. (any *one*) 1

ii)
$$NO_2 = C = C MH$$

b) Identify the Pro-R and Pro-S hydrogen atoms (marked) in the following compount with explanation.

$$\frac{\text{COOH}}{\text{CH}_3\text{CH}_2}\text{C} \stackrel{\text{\tiny Cool}}{\smile} \stackrel{\text{\tiny H}_A}{\text{\tiny H}_B}$$

c) The rate of recemisation of (A) is much slower than that of (B) – explain.

$$NO_2$$
 NO_2
 NO_2
 NO_2
 NO_3
 NO_4
 NO_2
 NO_3
 NO_4
 NO_4
 NO_4
 NO_4
 NO_4
 NO_4
 NO_4

d) Which of the following compound is resolable and

why? O 1
$$COOH_{OOH} \longrightarrow C-NH$$

$$HN-C \longrightarrow H_2N \longrightarrow CH_3$$

$$(II) \longrightarrow (III)$$

$$Turn over$$

$$\begin{array}{c|c}
 & a) \text{ NMe}_3 \\
\hline
 & b) \text{ Ag}_2\text{O}, \text{ H}_2\text{O} \\
 & c) \text{ heat}
\end{array}$$

v)
$$\stackrel{\text{HOEt}_2C}{\underset{\text{H}}{\text{Me}^{\text{NN}}}}$$
C-Cl $\stackrel{\circ}{\underset{\text{OH}}{\text{OH}}}$

- b) Answer *any two* of the following questions: 2×2
 - i) Write down the product(s) formed when 3,3-dimethyl-2-butanol is heated in presence of conc. H₂SO₄. Identify the major product and justify with the plausible mechanism.
 - ii) Which member of the following pair of compounds results in higher ratio of substitution (S_N2) to elimination (E_2) when treated with NaOEt/EtOH?

$$(CH_3)_2CHBr$$
, $(CH_3)_3CBr$

iii) Hydrolysis of *tert*-butyl bromide in 90% aqueous acetone at 50°C proceeds at about the same rate as in the presence of either LiBr or LiCl, whereas benzhydryl chloride (Ph₂CHCl) is only 3 times slower in the presence of LiCl as in the presence of LiBr.

- d) Binding energy per nucleon for ²³⁸U₉₂ is about 7.5 MeV, whereas it is about 8.5 MeV for nuclei of half that mass. If ²³⁸U₉₂ nucleus were to split into two equal size nuclei, how much energy would be released in the process?
- e) Explain the basic principle of (any one):
 - i) Shell model of the nucleus
 - ii) Meson exchange theory
- f) A piece of hair from an old cave gives 4 counts per minute from one gram of carbon. How old is the hair, if for a freshly-cut hair, the number of counts per minute per gram of carbon is 15.3 ($t_{1/2}$ for 14 C=5760 years)?

UNIT - 2032-O

3. a) Predict the product(s) of the following reactions and explain with plausible mechanism. Identify the major product (Answer *any three*) 3×2

i)
$$\frac{\text{NBS, CH}_2\text{Cl}_2}{\text{hv}}$$

ii)
$$NO_2 \longrightarrow NaOMe \atop in MeOH \longrightarrow$$