Ex/SC/CHEM/UG/CORE/TH/03/2023
5. a) Arrange the following compounds in order of increasing enol content (in liquid)
$\mathrm{MeCOCH}_{2} \mathrm{COOEt}$ I

$\mathrm{CH}_{3} \mathrm{COCHPhCOOEt}$

III
IV
b) Which one of the following two carbonyl compounds will enolize and why?

1

6. a) Monochlorination of propane is less selective (product ratio 60:40) than mono-bromination of propane (97:3). Explain the observation in the light of Hammond postulate.
b) Arrange the following amides in increasing order of basicity. Give reasons.

1

(I)

(II) and

Me
c) The first ionisation constant of maleic acid (cisbutenedioic acid) is greater than fumaric acid (transbutenedioic acid). But the second ionisation constant of fumaric acid is greater than maleic acid Explain.

B. Sc. Chemistry Examination, 2023

(1st Year, 2nd Semester)
CHEMISTRY (CORE)
Paper: Core/Сhem/Th/03
Time : Two Hours
Full Marks : 40
(20 marks for each unit)
Use a separate answer script for each unit.

UNIT - 2031-I

1. Answer all questions:
a) Considering Born-Haber cycles for CaF and CaF_{2}, calculate heat of formation of each using values provided below. From the obtained heat of formation, mention why CaF is non-existant.

$$
\begin{aligned}
& \text { [} \Delta \mathrm{H}_{\mathrm{S}}^{\mathrm{Ca}}=121 \mathrm{KJ} / \mathrm{mol} ; \quad \Delta \mathrm{H}_{\mathrm{IP}}^{\mathrm{Ca}^{+}}=590 \quad \mathrm{KJ} / \mathrm{mol} \text {; } \\
& \Delta \mathrm{H}_{\mathrm{IP}}^{\mathrm{Ca}^{+}}=1145 \mathrm{KJ} / \mathrm{mol} ; \quad \Delta \mathrm{H}_{\mathrm{BD}}^{\mathrm{F}_{2}}=157 \mathrm{KJ} / \mathrm{mol} ; \\
& \Delta \mathrm{H}_{\mathrm{EA}}^{\mathrm{F}}=-335 \mathrm{KJ} / \mathrm{mol} ; \quad \Delta \mathrm{H}_{1}^{\mathrm{CaF}}=-795 \mathrm{KJ} / \mathrm{mol} ; \\
& \left.\Delta \mathrm{H}_{1}^{\mathrm{CaF}_{2}}=-2805 \mathrm{KJ} / \mathrm{mol}\right] \quad(1 \times 2)+\frac{1}{2}
\end{aligned}
$$

b) With the help of suitable calculations, derive the limiting condition for radius-ratio of cation to anion in a body-centred cubic lattice having coordination number four. Give an example of a compound that crystallizes in this structure. $1+\frac{1}{2}$
c) Using VSEPR explain shape of $\mathrm{ICI}_{2}{ }^{-}$. $1 \frac{1}{2}$
d) Melting points of group II metal carbonates are provided in parentheses.
$\mathrm{BeCO}_{3}\left(54^{\circ} \mathrm{C}\right) ; \mathrm{MgCO}_{3}\left(540^{\circ} \mathrm{C}\right) ; \mathrm{CaCO}_{3}\left(825^{\circ} \mathrm{C}\right)$; $\mathrm{SrCO}_{3}\left(1494^{\circ} \mathrm{C}\right) ; \mathrm{BaCO}_{3}\left(811^{\circ} \mathrm{C}\right)$. Comment on thermal stability of group II metal carbonates. 1
e) Define i) Madelung constant, ii) Ion-pair energy.

$$
\frac{1}{2}+\frac{1}{2}
$$

f) Radius of some ions are provided below.
$\mathrm{Li}^{+}=76 \mathrm{pm} ; \mathrm{Cl}^{-}=181 \mathrm{pm} ; \mathrm{Br}^{-}=196 \mathrm{pm}$ and $\mathrm{I}^{-}=$ 216 pm . Predict structures of Li halides from radiusratio calculations. Why then do these Li halides form face centred cubic lattice with octahedral arrangement of ions? $\frac{1}{2}+1$
g) Using any theory of your choice, compare structures of $\mathrm{HF}, \mathrm{CO}_{2}$ and $\mathrm{I}_{3}{ }^{-}$.

1
2. a) Explain Szilard-Chalmers effect. What is hot atom chemistry (HAC) in nuclear chemistry? $\quad 2+\frac{1}{2}$
b) What are doubly magic number nuclei? Give two examples.
c) One microgram of phosphorous-32 was injected into a living system for biological tracer studies. The half-life of ${ }^{32} \mathrm{P}_{15}$ is 14.3 days. How long will it take for the radioactivity to fall to 10% of its initial value?
$1 \frac{1}{2}$
4. a) Assign the indicated pair of atoms as homotopic, enantiotopic or diastereotopic and justify. (any one) 1
i)

ii)

b) Identify the Pro- R and Pro- S hydrogen atoms (marked) in the following compount with explanation.

1

c) The rate of recemisation of (\mathbf{A}) is much slower than that of (\mathbf{B}) - explain.

1

(A)

(B)
d) Which of the following compound is resolable and

(I)

(II)

$$
1
$$

iv)

v)

b) Answer any two of the following questions:
2×2
i) Write down the product(s) formed when 3,3-dimethyl-2-butanol is heated in presence of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$. Identify the major product and justify with the plausible mechanism.
ii) Which member of the following pair of compounds results in higher ratio of substitution $\left(\mathrm{S}_{\mathrm{N}} 2\right)$ to elimination $\left(\mathrm{E}_{2}\right)$ when treated with $\mathrm{NaOEt} / \mathrm{EtOH}$?
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHBr}$, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$
iii) Hydrolysis of tert-butyl bromide in 90% aqueous acetone at $50^{\circ} \mathrm{C}$ proceeds at about the same rate as in the presence of either LiBr or LiCl , whereas benzhydryl chloride $\left(\mathrm{Ph}_{2} \mathrm{CHCl}\right)$ is only 3 times slower in the presence of LiCl as in the presence of LiBr .
d) Binding energy per nucleon for ${ }^{238} \mathrm{U}_{92}$ is about 7.5 MeV , whereas it is about 8.5 MeV for nuclei of half that mass. If ${ }^{238} \mathrm{U}_{92}$ nucleus were to split into two equal size nuclei, how much energy would be released in the process?
e) Explain the basic principle of (any one):
i) Shell model of the nucleus
ii) Meson exchange theory
f) A piece of hair from an old cave gives 4 counts per minute from one gram of carbon. How old is the hair, if for a freshly-cut hair, the number of counts per minute per gram of carbon is $15.3\left(\mathrm{t}_{1 / 2}\right.$ for ${ }^{14} \mathrm{C}=5760$ years)?

2

UNIT - 2032-O

3. a) Predict the product(s) of the following reactions and explain with plausible mechanism. Identify the major product (Answer any three)
i)

ii)

iii)

