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Abstract

Human immunodeficiency virus type-1 (HIV-1) is a deadly pathogen that infects CD4+T cells,

one type of immune cell. A gradual decline of CD4+T cells in blood plasma is a signature of

HIV-1 infection. HIV infection causes AIDS (Acquired Immunodeficiency Syndrome) when

the CD4+T cells count drops to 200 cells per µl from its normal value of 1000 cells per µl. The

immune system cannot function properly in a reduced level of CD4+T cells. As a result, an

HIV-infected individual becomes susceptible to various opportunistic infections. Basic HIV-

1 in-host models consider dissemination of infection through cell-free mode, where the free

plasma virus infects the healthy CD4+T cells. Recent in vitro studies, however, show that

infection can spread from one infected cell to another uninfected cell. This cell-to-cell viral

spread through virological synapses is the predominant mode of HIV-1 infection. Antiretroviral

therapy significantly reduces the viral load and increases the CD4+T cell count, thus preventing

the onset of AIDS and increasing the life span of HIV-1 infected patients.

Previous studies on HIV-1 infection with mono or multi-blockers consider the mode of

infection through a single pathway, which is the cell-free mode. So, the question is, what

would be the control strategy in cell-to-cell transmission mode? To the best of our knowledge,

no work has considered such controls in a multi-pathways HIV-1 infection model. Therefore,

the main objective of this thesis is to gain insights into the effect of single and multi-blockers

drugs on the dynamics of an HIV-1 infection model in the presence of both cell-to-cell and

cell-free infection modes.

Most models of HIV-1 infection assume that the transmission process follows a mass action
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or bilinear law. This law says that the infection rate at any time is proportional to the product of

viral and host cell numbers. But, the mass action law has some unrealistic properties, e.g., the

number of newly infected CD4+T cells produced by a single virus may be unbounded. Some

authors have used a saturated infection rate to prevent this unboundedness of the contact rate.

In the case of HIV, the process between the first effective contact of a virus/ infected cell with a

healthy CD4+T cell and the latter becoming productively infectious is not instantaneous. After

entering a virus into the healthy cell, many intracellular mechanisms occur to make the cell

productively infectious. The time required for transforming a healthy cell into an infectious cell

is known as the intercellular delay. We considered a multi-pathways in-host HIV-1 infection

model with saturated infection rates and intracellular delay using three controls to explore the

viremia.

HIV-1 mathematical models usually consider the interaction between the host cells (i.e.,

CD4+T) and plasma free-virus. However, the activated CD8+T of CTL cells can kill the in-

fected host cells and thus reduce the production of the free virus through the infected cell lysis.

It is to be mentioned that the activation of CTL is not instantaneous. It takes some time for stim-

ulation by our immune cells. It is of utmost importance to know how far different antiretroviral

therapies can control viremia in the presence of delay. We, therefore, studied a multi-pathways

HIV-1 infection model with CTL delay in the presence of treatments. The main objective is to

explore how immune response delay affects the plasma viral load in the presence and absence

of the blockers and to determine the optimal dose.

We analyzed our considered models in all cases under two cases: (i) the controls are con-

stant or (ii) the controls are time-dependent. We prove that the proposed model’s unique solu-

tions exist and are bounded. We demonstrate the local and global stabilities of the disease-free

and infected steady states in the constant control case. It is shown for the delay-induced model

that there exists some critical value (τ∗) of the delay parameter below which the system is stable

and above which it is unstable. The stability switching occurs through a Hopf bifurcation. In

the time-dependent control, we define a suitable optimal control problem. An objective func-

tion is characterized based on maximizing the healthy CD4+T cell counts and minimizing the

count of infected CD4+T cells along with other systemic costs of drug therapy. We derived the
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necessary conditions for optimal infection control by applying Pontryagin’s minimum princi-

ple. It is analytically shown that an optimal control triplet exists that maximizes the objective

functional. Using extensive simulation results, we have demonstrated the effect of different

control measures with mono-drug and multi-drug therapies with different delays. It is shown

that removing the infection is not possible, and the infected cells persist in all three mono-drug

protocols using any mono-drug treatment. However, virus counts go below the detection level

of a protease inhibitor but infected CD4+T cells persist. This, however, does not happen in

the case of an RTI inhibitor or synapse-forming inhibitor. Infected CD4+T cells persist, but

the non-zero virus count may be possible due to cell-to-cell infection dissemination and pro-

tease inhibitor use. Such a result has not been shown in any previous study. In the case of a

multi-drug therapy, we observed that infection could be removed in all options which contain

the protease inhibitor. Our study deciphers that immune response delay significantly affects the

system dynamics. If CTL’s response is quicker, then CD4+T cell count may remain stable but

fails to do so if response time increases.

The Covid-19 pandemic has put the world under immeasurable stress. Initially, no spe-

cific drug or vaccine was used to prevent the coronavirus infection. Therefore, in the absence

of a vaccine or specific drug, we proposed a mathematical Covid-19 epidemic control model

using the repurposing drugs and non-pharmaceutical interventions. A case study with the In-

dian Covid-19 epidemic data is presented to visualize and illustrate the effects of lockdown,

maintaining personal hygiene & safe distancing, and repurposing drugs. It is shown that In-

dia significantly improved the overall Covid-19 epidemic burden through the combined use of

NPIs and repurposing drugs.
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1
Introduction

1.1 Disease

According to Oxford English Dictionary, the disease is “any particular abnormality which af-
fects the structure or function of all or parts of an organism negatively, and that is not due to any
immediate external injury”. Diseases are often referred to as medical conditions that are asso-
ciated with specific signs and symptoms. Disease can affect people not only physically but also
mentally as being diagnosed and living with a disease can change the outlook of the affected
person. The study of disease is called pathology, which includes the study of etiology. Diseases
are of two types: infectious or communicable or transmissible disease and non-communicable
or non-transmissible disease. A non-communicable disease is a medical condition or disease
which is not transmissible. It cannot spread directly from one person to person. In humans, the
examples of non-communicable disease are heart disease and cancer.

An infection can be defined as the invasion of the body tissues of an organism by disease-
causing agents, their multiplication, and the host tissue’s response to the infectious agents and
the toxins they produce. It is an illness (i.e., characteristic medical signs and/or symptoms of
diseases) originating from an infection, presence and growth of pathogenic biological agents
in an individual host organism. A wide range of pathogens, specifically bacteria and viruses
cause infections. The agents of infectious diseases are:

• Viruses and related agents such as viroids (e.g. HIV, Rhinovirus, Lyssaviruses such as
Rabies virus, Ebolavirus and Severe acute respiratory syndrome coronavirus 2 etc.),

1



2 Chapter 1. Introduction

• Bacteria (e.g. Mycobacterium tuberculosis, Staphylococcus aureus, Escherichia coli,
Clostridium botulinum, and Salmonella spp. etc.),

• Fungi (e.g. candida, aspergillus, Cryptococcus etc.),

• Prions,

• Parasites (e.g. malaria, toxoplasma, babesia etc.),

• Arthropods (e.g. ticks, mites, fleas, and lice etc.).

1.2 Epidemiology

Epidemiology is the study and analysis of the distribution and determinants of health and dis-
ease states in specific populations. Epidemiology means "the study of what is in people" and is
derived from the Greek words ’epi’ meaning on or upon, ’demo’ meaning people, and ’logos’
meaning study. It deals with design, collection, statistical analysis and interpretation of data.
Epidemiology has helped develop methodology that is applied to disease prevention, clinical
research, health promotion and health service researches. Hence, epidemiology is described as
the basic science of public health. The objective of epidemiology is (i) to identify the cause
and risk factors in disease, (ii) to seek the disease community where they occur, (iii) to study
the natural history of the disease, (iv) to evaluate the existing and new preventive methods, and
(v) to develop public health policy.

1.3 Disease Dynamics

In the modern era, epidemiology has become an important subject. The relationship between
mathematics and epidemiology is rising day after day. Epidemiology provides an innovative
and excellent branch for mathematicians, while for epidemiologists, mathematical modeling
provides a momentous research tool in studying disease evolution. In other words, mathemati-
cal models can project how diseases progress to show the probable outcome of an epidemic and
help inform public health interventions. Using basic assumptions or aggregated statistics along
with mathematics, the models try to find parameters of various diseases and use those param-
eters to calculate the effects of different interventions. The modeling can provide information
on which intervention(s) to avoid and which to try or may predict future growth patterns, etc.
John Graunt was the first scientist to study the infectious model to quantify the causes of death
in his book "Natural and Political Observations made upon the Bills of Mortality" in 1662.
Daniel Bernoulli proposed a smallpox model to understand the dynamics in 1760, and many
authors consider it the first epidemiological mathematical model. In the early 20th century,
William Hamer and Ronald Ross applied the law of mass action to explain epidemic behavior.
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Figure 1.1: Scientific process to connect real world problem with mathematics.

Between 1927 and 1933, Kermack and McKendrick had a major influence on the development
of mathematical epidemiology models through the theoretical paperwork of their infectious
disease models. Most basic theories were developed at that time, but theoretical progress has
been steady since then. To expatiate the transmission of several diseases, mathematical models
are increasingly being used. These models are compartmental and may be quite simple, but
they are really important to study and gain knowledge about the underlying aspects of infec-
tious diseases and to assess the potential impact of control programs on reducing morbidity and
mortality.

1.4 Mathematical Modelling

Mathematical modeling is a process by which a real-world problem can be described in the
language of mathematics. The concept of modeling is used in all fields such as engineering,
physics, chemistry, etc. Mathematical modeling helps us to (i) understand the transmission
of disease dynamics, (ii) predict the near future disease status, and (iii) determine the effec-
tive control strategies. In general, the mathematical models applied to the epidemiology of
infectious diseases can be classified into two types: (1) The deterministic models considering
nonrandom rate flows in a population stratified in compartments; and (2) The stochastic models
that consider probabilities in the movements between the compartments of the model, such as
the probability of a susceptible individual being infected and the probability of transmitting the
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disease in the population addressed by a mathematical system [1].

1.5 Brief Notes on AIDS and Its Etiologic Agent HIV

The history of the HIV and AIDS epidemic began with illness, fear, and death as the world
faced new and unknown viruses at that time. But, technological advances have made it possible
for people living with HIV to live longer and healthier lives with treatment. It is believed that
HIV originated in Kinshasa (Democratic Republic of Congo) around 1920 when HIV crossed
species from chimpanzees to humans. Until the 1980s, no one knew how many people were in-
fected with HIV or AIDS. At that time HIV was unknown and transmission was not followed by
noticeable signs or symptoms. By 1980, HIV may have already spread to five continents (North
America, South America, Europe, Africa, and Australia). In this period, between 100,000 and
300,000 people could have already been infected [2]. In September 1981, the CDC (Center for
Disease Control) used the term AIDS (acquired immune deficiency syndrome) for the first time
[3] and the very next year, AIDS was defined as “a disease at least moderately predictive of a
defect in cell-mediated immunity occurring in a person with no known cause for diminished
resistance to that disease”. In 1981, cases of a rare lung infection called Pneumocystis carinii
pneumonia (PCP) were found in five young, previously healthy gay men in Los Angeles [4].
At the same time, there were reports of a group of men in New York and California with an un-
usually aggressive cancer named Kaposi’s Sarcoma [5]. Both of these diseases were seen only
in patients with severe impairment of their immune system [6] which was caused due to the
reduction of the helper T lymphocytes or CD4+T lymphocytes. CD4 (cluster of differentiation
4) is a glycoprotein found on the surface of immune cells such as T helper cells, monocytes,
macrophages, and dendritic cells. In December 1981, the first cases of PCP were reported in
people who inject drugs [7]. By the end of the year, there were 270 reported cases of severe
immune deficiency among gay men and 121 of them had died [8]. In June 1982, a group of
cases among gay men in Southern California suggested that the cause of the immune deficiency
was sexual and the syndrome was initially called gay-related immune deficiency (or GRID) [9].
Later that month, the disease was reported in hemophiliacs and Haitians leading many to be-
lieve it had originated in Haiti [3, 10]. AIDS cases were also being reported in several European
countries [11]. In January 1983, AIDS was reported among the female partners of men who
had the disease suggesting it could be passed on via heterosexual sex [3]. By the end of the
year, the number of AIDS cases in the USA had risen to 3,064 and 1,292 people among them
had died [9].

In 1986, the International Committee on Taxonomy of Viruses gave the AIDS virus a sep-
arate name, Human Immunodeficiency Virus or HIV [12]. There are two types of HIV: HIV-1
and HIV-2. HIV-1 is more virulent and more infective than HIV-2 [13], and is the cause of
the majority of HIV infections globally. The lower infectivity of HIV-2, compared to HIV-1,
implies that fewer of those exposed to HIV-2 will be infected per exposure. Due to its relatively
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poor capacity for transmission, HIV-2 is largely confined to West Africa [14].

1.5.1 Structure of HIV

Human Immunodeficiency Virus (HIV-1, HIV-2) are the member of the genus Lentivirus, part
of the family Retroviridae on the basis of their genetic, biological and morphological character-
istics [15]. The structure of HIV virion roughly spherical with a diameter about 120 nanometre
[16]. A schematic diagram of HIV virus is given in Fig. 1.2. The virus is surrounded by the
viral envelope, that is composed of the lipid bilayer taken from the membrane of a human host
cell when the newly formed virus particle buds from the cell. The viral envelope is made up of
72 knobs containing trimers or tetramers of the envelope glycoproteins gp41, gp120 and gp140
[17]. A matrix composed of the viral protein p17 surrounds the capsid ensuring the integrity
of the virion particle [18]. Capsid is formed by 2,000 copies of the viral protein, named p24.
The viral capsid contains two identical copies of positive single-stranded RNA along with viral
enzymes (Reverse Transcriptase, Integrase, ribonuclease and Protease) and the nucleocapsid
proteins p7 [18]. The RNA genome consists of at least seven structural landmarks (LTR, TAR,
RRE, PE, SLIP, CRS, and INS), and nine genes (gag, pol, and env, tat, rev, nef, vif, vpr, vpu,
and sometimes a tenth tev, which is a fusion of tat, env and rev), encoding 19 proteins. Three of
these genes, gag, pol, and env, contain information needed to make the structural proteins for
new virus particles [18]. For example, env codes for a protein called gp160 that is cut in two
by a cellular protease to form gp120 and gp41. The six remaining genes, tat, rev, nef, vif, vpr,
and vpu (or vpx in the case of HIV-2), are regulatory genes for proteins that control the ability
of HIV to infect cells, produce new copies of virus (replicate), or cause disease [18].

Figure 1.2: Structure of HIV virus. Picture courtesy:
https://en.wikipedia.org/wiki/HIV
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1.5.2 Replication Cycle of HIV in Human Body

HIV virus has no independent existence without infecting and replicating in human living
cells. HIV especially infects varieties of immune cells such as macrophages, dendritic cells
and CD4+T lymphocytes, which constitute a quarter of the white blood cell count and also
microglial cells, a type of neuroglia located in the brain and spinal cord. After entering the
cells, HIV goes through several steps to replicate itself and create new virus particles and it is
the so-called HIV life cycle. It is important to know the steps of the HIV life cycle so that the
drugs used to control HIV infection can interrupt this replication cycle. A schematic diagram
of HIV replication cycle is given in Fig. 1.3.

Figure 1.3: The HIV replication cycle. Picture courtesy:
https://en.wikipedia.org/wiki/HIV

Step I: Entry to the cell is initiated by the interaction of the trimeric envelope complex (gp160
spike) on the HIV viral envelope and both CD4 receptor and a chemokine co-receptor (usually
CCR5 or CXCR4) on the target cell surface [19, 20]. The gp160 spike contains HIV viral
envelope glycoprotein (gp120) binding domains for both CD4 and chemokine receptors [19,
20]. Now, there are three important processes. In the first two processes, HIV viral envelope
glycoprotein (gp120) binds to the CD4 receptor and chemokine co-receptor (usually CCR5
or CXCR4) by virological synapses, facilitating efficient cell-to-cell spreading of HIV-1 [21].
The third and final process in this step is fusion. In fusion, the HIV RNA and various enzymes,
including reverse transcriptase, integrase and protease enter the cell [19].

Step II: Replication and transcription. HIV is a single-stranded RNA virus. This RNA
genome needs to be converted into double stranded DNA in order to be integrated into the host
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cell DNA. After the viral capsid enters the cell, an enzyme called reverse transcriptase releases
the positive-sense single-stranded RNA genome from the attached viral proteins and copies it
into a complementary DNA (cDNA) molecule [22] and the precess is termed as reverse tran-
scription. Without reverse transcription, the viral genome cannot be incorporated into the host
cell and thus cannot be replicated to form new copies of virions [23]. The reverse transcription
process is extremely error-prone, and the resulting mutations may cause drug resistance or al-
low the virus to evade the body’s immune system. Then, the cDNA and its complement together
form a double-stranded viral DNA that is then transported into the cell nucleus. Subsequently,
through the viral enzyme integrase, the viral DNA is integrated into the host cell’s genome [22]
and this process is called an integration. The integrated DNA is also called provirus. Once the
integration process begins, the host cell is known as an infected cell because the proviral DNA
remains permanently within the target cell in either a productive or latent state. After integra-
tion, cell may turn to an activated state which brings transcription of integrated proviral DNA
into messenger RNA (mRNA). After the transcription process, the viral mRNA is migrated
from the cell nucleus to the cell cytoplasm, where building blocks for a new virus are synthe-
sized. In the cytoplasm, viral mRNA is translated to produce viral proteins by viral protease
enzyme. The structural proteins required for new mature viral particles which are produced
during this translation process.

Step III: Assembly and release. This is the final step of viral cycle and is accomplished by
two processes, namely, assembly and release. In the first process, assembly functional viral
proteins and viral RNA (mRNA) at the host cell’s plasma membrane. Then by budding the
viral RNA (mRNA) together with related proteins forms new HIV-1 virions in the host cell’s
plasma membrane and hence new HIV-1 virions are released from the cell surface so that can
proceed to infect other healthy cells.

1.5.3 The Stages of HIV Infection

There are three main stages of HIV infection are (i) acute HIV infection, (ii) chronic HIV in-
fection, and (iii) acquired immunodeficiency syndrome (AIDS). A schematic diagram of stages
of HIV infection in human body is given in Fig. 1.4.

Stage I: Acute HIV infection or primary HIV infection is the first stage of HIV infection and
usually develops within 2 to 4 weeks after HIV infection. During the acute stage of infec-
tion, HIV grows rapidly and spreads throughout the body. The virus attacks and destroys the
infection-fighting CD4 cells (CD4+ T lymphocytes) of the immune system. At this stage, the
level of HIV in the blood is very high. Within 2 to 4 weeks after HIV infection, many individu-
als develop a flu-like or mononucleosis-like illness, while others have no significant symptoms
[24]. The most common symptoms that occur in 40–90% of cases include fever, large tender
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Figure 1.4: Clinical course of HIV infection. Picture courtesy:
https://en.wikipedia.org/wiki/HIV

lymph nodes, throat inflammation, a rash, headache, tiredness, and/or sores of the mouth and
genitals. The duration of the symptoms varies but is usually one or two weeks [25], though, for
the nonspecific character, these symptoms are not often recognized as signs of HIV infection.

Stage II: Chronic HIV infection. The initial symptoms are followed by a stage called clinical
latency or asymptomatic HIV, or chronic HIV. Without treatment, this second stage of HIV
infection can last from about three years to over 20 years (on average, about eight years) [26].
While typically there are few or no symptoms at first, near the end of this stage many people
experience fever, weight loss, gastrointestinal problems, and muscle pain [27]. Between 50%
and 70% of people also develop persistent generalized lymphadenopathy, characterized by un-
explained, non-painful enlargement of more than one group of lymph nodes (other than in the
groin) for over three to six months [28]. Most HIV-1 infected individuals have a detectable
viral load and in the absence of treatment will eventually progress to AIDS.

Stage III: Acquired immunodeficiency syndrome (AIDS). AIDS is the final, most severe
stage of HIV infection. Because HIV has severely damaged the immune system, the body
cannot fight off opportunistic infections. Opportunistic infections are infections and infection-
related cancers that occur more frequently or are more severe in people with weakened immune
systems than in people with healthy immune systems. AIDS condition can be characterized by
HIV infection with either a CD4+T cell count below 200 cells per µl or the occurrence of
specific diseases associated with HIV infection [28]. The people with AIDS frequently have
systemic symptoms such as prolonged fevers, sweats (particularly at night), swollen lymph
nodes, chills, weakness, and unintended weight loss. Diarrhea is another common symptom,
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present in about 90% of people with AIDS [29]. People with AIDS have an increased risk of de-
veloping various viral-induced cancers, including Kaposi’s sarcoma, Burkitt’s lymphoma, pri-
mary central nervous system lymphoma, and cervical cancer [30]. People can also be affected
by diverse psychiatric and neurological symptoms independent of opportunistic infections and
cancers [31].

1.5.4 Growth of Worldwide HIV/AIDS Epidemic

After initiation in 1981, HIV/AIDS has become one of the world’s most serious health and
development challenges. Various organization have been built up to monitor and prevent the
spread of HIV/AIDS worldwide. Over the past twenty years, UNICEF (United Nations In-
ternational Children’s Emergency Fund) has been the leading voice for children in the global
AIDS response. The WHO Department of HIV/AIDS is another organization, monitoring the
HIV/AIDS epidemic efficiently on a global scale. However, The Joint United Nations Pro-
gramme on HIV and AIDS, or UNAIDS is the main advocate for accelerated, comprehensive
and coordinated global action on the HIV/AIDS epidemic.

According to UNAIDS global report [32] in 2021, 38.4 million [33.9 million–43.8 million]
people globally were living with HIV. There are 1.5 million [1.1 million–2.0 million] people
became newly infected with HIV and 650000 [510000–860000] people died from AIDS-related
illnesses in 2021. Since the start of the epidemic, there are 84.2 million [64.0 million–113.0
million] people have become infected with HIV and 40.1 million [33.6 million–48.6million]
people have died from AIDS-related illnesses. The prime aim of UNAIDS is ending the
HIV/AIDS epidemic by 2030.

1.5.4.1 HIV/AIDS Epidemic in India

In 1986, the first known cases of HIV in India was diagnosed amongst six female sex workers
in Chennai, Tamil Nadu [33]. In 1992, the India government set up the National AIDS Control
Organisation (NACO) to oversee policies and prevention and control programmes relating to
HIV and AIDS and the National AIDS Control Programme (NACP) for HIV prevention.

According to NACO annual report published in 2019 [34], there were an estimated 23.49
lakh (17.98 lakh – 30.98 lakh) people living with HIV/AIDS in 2019, with an adult (15–49
years) HIV prevalence of 0.22% (0.17–0.29%). This includes around 79 thousand children liv-
ing with HIV accounting for 3.4% of the total people living with HIV/AIDS estimates. There
were 9.94 lakh women living with HIV (15+ years) constituting around 44% of the total esti-
mated 15+ years of people living with HIV/AIDS. There were 69.22 thousand (37.03 thousand
– 121.50 thousand) new HIV infections in 2019, which has declined by 37% since 2010 and
by 86% since attaining the peak in 1997. There were 58.96 thousand (33.61 thousand – 102.16
thousand) AIDS-related deaths in the year 2019, which has declined by 66% since 2010 and by
78% since attaining its peak in 2005. HIV incidence was estimated at 0.05 per 1,000 uninfected
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populations in 2019. Around 20.52 thousand pregnant women were estimated to be in need of
Prevention of Mother-to-Child Transmission of HIV.

1.5.5 Treatment of HIV/AIDS

There is currently no cure, nor an effective HIV vaccine for treating of HIV/AIDS infection.
There are several classes of antiretroviral agents that act on different stages of the HIV life-
cycle. The use of multiple drugs that act on different viral targets is known as highly active
antiretroviral therapy (HAART). HAART decreases the patient’s total burden of HIV, maintains
function of the immune system, and prevents opportunistic infections that often lead to death
[35]. The World Health Organization (WHO) recommend offering antiretroviral treatment to
all patients with HIV [36]. Because of the complexity of selecting and following a regimen, the
potential for side effects, and the importance of taking medications regularly to prevent viral
resistance.

There are six classes of drugs, which are usually used in combination, to treat HIV infection.
Antiretroviral (ARV) drugs are broadly classified by the phase of the HIV life-cycle that the
drug inhibits.
• Entry inhibitors or fusion inhibitors interfere with binding, fusion and entry of HIV-

1 to the host cell by blocking one of several targets. Maraviroc and enfuvirtide are the two
available agents in this class.
•Nucleoside reverse-transcriptase inhibitors (NRTI) and nucleotide reverse-transcriptase

inhibitors (NtRTI) are nucleoside and nucleotide analogues which inhibit reverse transcrip-
tion. Examples of NRTIs include zidovudine, abacavir, lamivudine, emtricitabine, and of NtR-
TIs – tenofovir and adefovir.
• Non-nucleoside reverse-transcriptase inhibitors (NNRTI) inhibit reverse transcriptase

by binding to an allosteric site of the enzyme; NNRTIs act as non-competitive inhibitors of re-
verse transcriptase. Nevirapine and efavirenz, etravirine, rilpivirine are the examples of NNR-
TIs drugs.
• Integrase inhibitors (also known as integrase nuclear strand transfer inhibitors or IN-

STIs) inhibit the viral enzyme integrase, which is responsible for integration of viral DNA
into the DNA of the infected cell. The clinically approved integrase inhibitors are raltegravir,
elvitegravir, dolutegravir, bictegravir, and cabotegravir.
• Protease inhibitors block the viral protease enzyme necessary to produce mature virions

upon budding from the host membrane. Particularly, these drugs prevent the cleavage of gag
and gag/pol precursor proteins. Virus particles produced in the presence of protease inhibitors
are defective and mostly non-infectious. Examples of HIV protease inhibitors are lopinavir,
indinavir, nelfinavir, amprenavir and ritonavir. Darunavir and atazanavir are recommended as
first line therapy choices.
•Highly active antiretroviral therapy (HAART) include two nucleoside reverse-transcriptase
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inhibitors (NRTI) as a "backbone" along with one non-nucleoside reverse-transcriptase in-
hibitor (NNRTI), protease inhibitor (PI) or integrase inhibitors (also known as integrase nuclear
strand transfer inhibitors or INSTIs) as a "base" [36].

1.6 A Brief Introduction to COVID-19 Pandemic

The novel virus was first identified from an ongoing outbreak in Wuhan, China, in December
2019 [37]. Attempts to contain it there failed, allowing the virus to spread to other areas of
China and later worldwide. During the initial outbreak in Wuhan, the virus and disease were
commonly referred to as coronavirus, Wuhan coronavirus [38, 39]. In January 2020, the World
Health Organization (WHO) recommended "2019 novel coronavirus" (2019-nCoV) [40] as the
provisional name for the virus and also declared the outbreak a public health emergency of
international concern, and a pandemic on 11 March 2020. On 11 February 2020, the Interna-
tional Committee on Taxonomy of Viruses adopted the official name "severe acute respiratory
syndrome coronavirus 2" (SARS-CoV-2) [41].

1.6.1 Structure of SARS-CoV-2 Virion

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is a strain of coron-
avirus, a member of genus betacoronavirus, part of the family coronaviridae on the basis of
genetic and biological characteristics [42]. A schematic diagram of SARS-CoV-2 virion is
given in Fig. 1.5. SARS-CoV-2 virion is 60–140 nanometres (2.4×10−6−5.5×10−6) in di-
ameter [43, 44]. SARS-CoV-2 is composed of four structural proteins, known as the S (spike),
E (envelope), M (membrane), and N (nucleocapsid) proteins. Since, SARS-CoV-2 is a linear,
positive-sense, single-stranded RNA genome [45], the N protein holds the RNA genome, and
the S, E, and M proteins together create the viral envelope [46]. S proteins are glycoproteins,
and type I membrane proteins [47] and also have two functional parts, says, S1 and S2 [45].
The function of spike proteins is to attach and fuse with the membrane of a host cell [46];
specifically, its S1 subunit catalyzes attachment, the S2 subunit fusion [48].

1.6.2 Transmission and Symptoms of COVID-19

COVID-19 is mainly transmitted when people breathe in air contaminated by droplets/aerosols
and small airborne particles containing the virus. Infected people release these particles when
they breathe, talk, cough, sneeze, or sing [49, 50]. The more physically close people are the
greater chance of infection. However, the infection can occur over longer distances, particularly
indoors [49, 51].

Symptoms of COVID-19 are variable, ranging from mild symptoms to severe illness [52].
Common symptoms include headache, loss of smell and taste, nasal congestion and runny nose,
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Figure 1.5: Structure of SARS-CoV-2 virion. Picture courtesy:
https://en.wikipedia.org/wiki/COVID-19

cough, muscle pain, sore throat, fever, diarrhea, and breathing difficulties [53]. People with the
same infection may have different symptoms, and their symptoms may change over time. There
are three types of common clusters of symptoms have been identified: (i) respiratory symptom
cluster with cough, sputum, shortness of breath, and fever, (ii) a musculoskeletal symptom clus-
ter with muscle and joint pain, headache, and fatigue, and (iii) a cluster of digestive symptoms
with abdominal pain, vomiting, and diarrhea [54]. Symptoms of COVID-19 are depicted in
Fig. 1.6.

1.6.3 Diagnosis and Treatment of COVID-19

On the basis of COVID-19 symptoms, provisionally diagnosed to confirm using reverse tran-
scription polymerase chain reaction (RT-PCR) or other nucleic acid (NAT) testing of infected
secretions and both tests detect the presence of viral RNA fragments [55].

COVID-19 is transmitted by breathing and infected people release these virus when they
breathe, talk, cough, sneeze, or sing. This virus is remarkable because our immune system is
unable to fight it and it has amazing human-to-human transmission capacity. So, to prevent
COVID-19, Centers for Disease Control and Prevention (CDC) and World Health Organiza-
tion (WHO) advise to use face-mask, keep social distancing, avoid crowded indoor spaces,
hand-washing and hygiene, surface cleaning, healthy diet and lifestyle etc. These primary
interventions are called non-pharmaceutical interventions. And also, almost all governments
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Figure 1.6: Symptoms of COVID-19. Picture courtesy:
https://en.wikipedia.org/wiki/COVID-19

worldwide have implemented lockdown to reduce covid-19 infection.
For the first two years of the pandemic, no specific and effective pharmaceutical treat-

ment or cure was available [56]. In 2021, the European Medicines Agency’s (EMA) Com-
mittee for Medicinal Products for Human Use (CHMP) approved the oral antiviral protease
inhibitor, nirmatrelvir/ritonavir (marketed as Paxlovid) or remdesivir, to treat adult patients
[57]. But, these drugs have also failed to reduce covid-19 infection. In 2020, the first COVID-
19 vaccines were developed and made available to the public with emergency use approval
[58]. Initially, most COVID-19 vaccines were two-dose vaccines, with the sole exception be-
ing the single-dose Janssen COVID-19 vaccine [58]. However, immunity from the vaccines
has been found to wane over time, requiring people to get booster doses of the vaccine to
maintain immunity against COVID-19 [58]. The COVID-19 vaccines are widely credited for
their role in reducing the spread of COVID-19 and reducing the severity and death caused by
COVID-19, although some people have still managed to get the virus even after vaccination
[58–60]. Now the current CoronaVac, Covaxin, Convidecia, Janssen, Medigen, Moderna, No-
vavax, Oxford–AstraZeneca, Pfizer–BioNTech, Sinopharm BIBP, Sputnik V COVID-19 vac-
cines are available over the worldwide. However, we can see that COVID-19 vaccines are not
sufficient to eradicate the pandemic. So we must follow non-pharmaceutical interventions as
well as take a booster dose.
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1.6.4 Impact of The COVID-19 Pandemic

The pandemic has disrupted the world in many ways and continues to do so. We do not know
when or how many years it will take to overcome that obstacle. This pandemic has especially
disrupted the social and economic system around the world and resulted in the largest global
recession since the Great Depression. So, many well-reputed-small industries or companies
have closed down and as a result, many workers have become jobless. Not only that, existing
many industries or companies have laid off their employees. So most of the people are finan-
cially exhausted in one way or another, in the world. During the lockdown, the disruption of the
supply chain led to widespread supply shortages, including food shortages. Most importantly,
the pandemic has affected our education. For lockdown, in many geographic locations, educa-
tional institutions were partially or fully closed. Although, few institutions have taken online
classes. However, due to the closure of most of the educational institutions, the education of
students has suffered greatly and will continue to do so in the future. The public areas were
partially or fully closed, and many events were canceled or postponed for lockdown. The pan-
demic also raised very important issues of racial and geographic discrimination, health equity,
and the balance between public health needs and individual rights. Social media and mass me-
dia circulate the misinformation and that intensifies political tensions. Pollution has dropped
unprecedentedly due to the global lockdown.

1.6.5 The Global Prevalence of The COVID-19 Pandemic

COVID-19 pandemic is an ongoing outbreak. It has spread worldwide. According to WHO
on 26 August 2022, there have been 59,68,73,121 confirmed cases of COVID-19 worldwide,
including 64,59,684 deaths since the start of the pandemic. And till 23 August 2022, a total
of 12,44,94,43,718 vaccine doses have been administered worldwide. The United States of
America has the highest number of infections and deaths from Covid-19. India is next in line
for Covid-19 infections.

1.6.6 COVID-19 Pandemic in India

The first case of COVID-19 infection was found in Kerala, India [61]. Now, according to the
Ministry of Health and Family Welfare (MoHFW), Government of India on 26 August 2022,
the number of confirmed cases of COVID-19 turns to 4,43,89,176 including 5,27,556 deaths
since the start of the pandemic. As of 15 August 2022, a total of 2,08,53,87,344 vaccine doses
have been administered. So far, the Indian Government is advising people to wear face masks,
maintain social distancing, and follow a healthy lifestyle and hygiene rules.
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1.7 Basic Mathematical Tools

In this section, we present some basic definitions, theorems and mathematical tools that
have been used throughout this thesis.

Definition 1.1 (Dynamical System) Dynamical system is an evolution rule that defines a tra-

jectory as a function of a single parameter (time) on a set of states (the phase space).

Definition 1.2 (Deterministic System) A dynamical system is called deterministic if for each

state in the phase space there is a unique consequent, i.e., the evolution rule of deterministic

dynamical system is a function taking a given state to a unique subsequent state.

In deterministic systems, for each time t, the evolution rule is a mapping from the phase

space to the phase space given by

φ(p, t)≡ φt(p) : M −→M,

where t ∈ R is the continuous time variable, M is the phase space, p(t) = φt(p0) denotes the

position of the system at time t that started at p0. Moreover, we assume that t ≥ 0 and at t = 0,

φt(x0) = p0.

Definition 1.3 (Orbits or Trajectories) The sequence of states that follow from or lead to a

given initial state is called an orbit or a trajectory. The positive or forward orbit is defined as

the following set of subsequent states

Γ
+
p ≡ {φt(p) : t ≥ 0}.

Similarly, the negative or backward orbit is the set of sequences of states that lead, according

to the evolution rule, to the initial state. If the function φt is injective then the negative orbit is

given by the set

Γ
−
p ≡ {φt(p) : t ≤ 0}.

Otherwise, it is possible that several prior points could lead to the same p.

Summing up, the full orbit of a point p is given by Γp = Γ+
p ∪Γ−p .

Definition 1.4 (Invariant Set) A set Λ is said to be invariant under an evolution rule φt if

φt(Λ) = Λ, for all t.

Thus, for each p ∈ Λ, φt(p) ∈ Λ, for any t. Therefore, for each point p in an invariant set Λ,

the entire orbit of p will be contained in Λ. Moreover, a set Λ is said to be forward invariant if

φt(Λ)⊂ Λ for all t > 0.
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Definition 1.5 (Autonomous System of Differential Equations) A system of differential equa-

tions of the form

ṗ = f (p)

where p ∈ Rn and vector field f : E(⊂ Rn) −→ Rn is said to be autonomous if f does not

depend on t explicitly. Unless stated otherwise, we will assume

f ∈C1(E) = {Set of all continuously differentiable functions on E}.

Definition 1.6 (Initial Value Problem) An autonomous system of differential equations is called

an initial value problem if it satisfies the initial condition

p(t0) = p0.

Therefore, an initial value problem for an autonomous system of differential equations is ex-

pressed by {
ṗ = f (p),

p(t0) = p0.
(1.1)

Definition 1.7 (Lipschitz Function) Let E be an open subset of Rn. A function f : E → Rn is

Lipschitz if for all p, q ∈ E there is a real constant K > 0 such that

| f (p)− f (q)| ≤ K|p−q|.

Theorem 1.8 (Picard-Lindelöf Existence and Uniqueness [62]) Suppose that for p0 ∈ Rn

there is real number b > 0 such that there is a closed ball Bb(p0) and f : Bb(p0)→ Rn is

Lipschitz with constant K. Then the initial value problem (1.1) has a unique solution p(t) for

t ∈ [t0−a, t0 +a] provided that

a =
b
M

where M = max
p∈Bb(p0)

| f (p)|.

Definition 1.9 (Equilibrium Solutions) An equilibrium solution (steady state solution or fixed

point or critical point) of the system (1.1) is a constant solution p̄ satisfying

f (p̄) = 0.

Definition 1.10 (Linearization) For the system (1.1), we assume f ∈C1(E) and p̄ is an equi-

librium point. Then the linearization of ṗ = f (p) at the equilibrium p̄ ∈ E is the system of

differential equations

q̇ = D f (p̄)q,

where
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q(t) = p(t)− p̄ and D f (p̄) =



∂ f1
∂ p1

∂ f1
∂ p2

... ∂ f1
∂ pn

∂ f2
∂ p1

∂ f2
∂ p2

... ∂ f2
∂ pn

. . . .

. . . .

. . . .
∂ fn
∂ p1

∂ fn
∂ p2

... ∂ fn
∂ pn


p=p̄

.

The matrix D f (p) is called the Jacobian matrix or variational matrix of f at p̄.

Definition 1.11 (Generalized Eigenspaces) The equilibrium solutions of system (1.1) are clas-

sified by their generalized eigenspaces according to the sign of the real part of the eigenvalues

of the variational matrix D f (p) evaluated at the equilibrium solution. Let, σn, n ∈ N be the

eigenvalues associated with the equilibrium p̄ of the system (1.1). Then

• Eu = Unstable eigenspace spanned by the eigenvectors of the eigenvalues σn with Re(σn)>

0.

• Ec = Center eigenspace spanned by the eigenvectors of the eigenvalues σn with Re(σn) =

0.

• Es = Stable eigenspace spanned by the eigenvectors of the eigenvalues σn with Re(σn)<

0.

Therefore, the complete eigenspace E with respect to the equilibrium p̄ is given by the following

direct sum:

E = Eu⊕Ec⊕Es.

Definition 1.12 (Hyperbolic Equilibrium) An equilibrium p̄ of system (1.1) is hyperbolic if

none of the eigenvalues of D f (p̄) is zero or purely imaginary. In this case Ec is empty. Hyper-

bolic equilibrium can be categorized into following three classes.

1. Sink. An equilibrium p̄ of system (1.1) is a sink if all of the eigenvalues of D f (p̄) have

negative real parts. In this case, E = Es and the equilibrium is called stable. Sink can be

classified as stable node or stable focus.

• Stable Node: If the eigenvalues are negative real then the sink is called a stable

node.

• Stable Focus: If the eigenvalues are complex conjugates with negative real part

then it is called a stable focus.

2. Source. An equilibrium p̄ of system (1.1) is a source if all of the eigenvalues of D f (p̄)

have positive real parts. In this case, E = Eu and the equilibrium is called unstable.

Source can be classified as unstable node or unstable focus.
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• Unstable Node: If the eigenvalues are real and positive then a source is called an

unstable node.

• Unstable Focus: If the eigenvalues are complex conjugates with positive real part

then it is called an unstable focus.

3. Saddle: An equilibrium p̄ of system (1.1) is saddle if it is hyperbolic but not a sink or a

source. Here, E = Es⊕Eu. A saddle point is also an unstable equilibrium.

Definition 1.13 (Non hyperbolic Equilibrium) An equilibrium p̄ of system (1.1) is non hyper-

bolic or degenerate if at least one of the eigenvalues of D f (p̄) have zero real part. In this case

Ec is non empty.

• Center: It is a non hyperbolic equilibrium where eigenvalues are complex conjugates

with zero real part.

Definition 1.14 (Local Stability) An equilibrium solution p̄ of (1.1) is said to be locally stable

if for each ε > 0 there exists a δ > 0 such that every solution p(t) of (1.1) with initial condition

p(t0) = p0 and ||p0− p̄|| < δ ⇒ ||p(t)− p̄|| < ε for all t ≥ t0, where ||.|| is the Euclidean

norm. If the equilibrium solution is not locally stable it is said to be unstable.

Definition 1.15 (Local Asymptotic Stability) An equilibrium solution p̄ of (1.1) is said to be

locally asymptotically stable if it is locally stable and if there exists a σ > 0 such that ||p0−
p̄||< σ ⇒ limt→∞ ||p(t)− p̄||= 0.

Definition 1.16 (Instability) An equilibrium solution p̄ of (1.1) is called unstable if it is not

stable.

Theorem 1.17 (Hartman-Grobman Theorem [63] )If p̄ is a hyperbolic equilibrium point of

the system (1.1), then there is a homeomorphism h (i.e., h is a continuous, injective mapping

with a continuous inverse) defined on some neighborhood Ωp̄ in Rn, locally taking orbits of the

nonlinear system ṗ = f (p), p ∈ Rn to those of the linear system q̇ = D f (p̄)q, q ∈ Rn, where

q= p− p̄. The mapping h preserves the sense of orbits and can also be chosen so as to preserve

parameterization by time.

If the mapping h is a homeomorphism, then stability (or lack of it) for the linear system

implies local asymptotic stability of the nonlinear system (or lack of it).

Theorem 1.18 (Routh-Hurwitz Criteria [64]) Given the polynomial,

P(σ) = σ
n +a1σ

n−1 + ...+an−1σ +an, (1.2)

where the coefficients ai are real constants, i = 1,2, ...,n. n Hurwitz matrices are defined by

using the coefficients of P(σ) as
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Hk =



a1 1 0 0 ... 0
a3 a2 a1 1 ... 0
a5 a4 a3 a2 ... 0
. . . . ... .

. . . . ... .

. . . . ... .

0 0 0 0 ... ak


, k = 1,2, ...,n,

where ak = 0 if k > n. All the roots of the polynomial P(σ) will have negative real part if and

only if the determinants of all k Hurwitz matrices are positive, i.e., det(Hk)> 0, k = 1,2, ...,n.
Following are the Routh-Hurwitz criteria for n = 2 and 3.

• n = 2 : a1 > 0, a2 > 0.

• n = 3 : a1 > 0, a3 > 0, a1a2−a3 > 0.

Theorem 1.19 (Local Stability Using Routh-Hurwitz Criteria) Let p̄ be an equilibrium of the

system (1.1) and the characteristic equation of the variational matrix D f (p̄), given by (1.2),

satisfies the Routh-Hurwith criteria, i.e., det(Hk)> 0, k = 1,2, ...,n. Then the equilibrium p̄ is

locally asymptotically stable.

Definition 1.20 (Global Asymptotic Stability) An equilibrium solution p̄ of (1.1) is said to be

globally asymptotically stable if it is locally asymptotically stable and if ||p0− p̄||< ∞ implies

limt→∞ ||p(t)− p̄||= 0.

Definition 1.21 (Positive Definite Function) Let E be an open subset of Rn containing the

equilibrium p̄ of system (1.1). A real-valued C1(E) function V , V : E→R, is said to be positive

definite [64] on the set E if the following two conditions hold:

(i) V (p̄) = 0,

(ii) V (p)> 0 for all p ∈ E with p 6= p̄.

The function V is said to be negative definite if −V is positive definite.

Theorem 1.22 (Lyapunov Stability Theorem [64]) Let p̄ be an equilibrium of the system (1.1)

and V be a positive definite C1 function given by V : E → R, where E is an open subset of Rn

containing the equilibrium p̄.

1. If dV
dt ≤ 0 for all p ∈ E \{ p̄} then p̄ is said to be locally stable. V , in this case, is called

a ‘weak Lyapunov function’.

2. If dV
dt < 0 for all p ∈ E \ {p̄} then p̄ is said to be locally asymptotically stable. In this

case, V is called a ‘strict Lyapunov function’.
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3. If dV
dt > 0 for all p ∈ E \{p̄} then p̄ is unstable.

Theorem 1.23 (LaSalle’s Invariance Principle [65]) Let p̄ be an equilibrium of system (1.1)

and L be a weak Lyapunov function given by L : E→R, where E is an open, forward invariant

subset of Rn containing the equilibrium p̄. Let Z =
{

p ∈ E : dL
dt = 0

}
be the set where L is not

decreasing. If p̄ is the largest forward invariant subset of Z then it attracts every point in E and

eventually becomes globally stable in E.

Definition 1.24 (Periodic Solution) A solution ψ(p, t) of (1.1) is called a periodic solution if

there exists a positive number T such that

ψ(p0, t +T ) = ψ(p0, t) for all t and

ψ(p0, t + s) 6= ψ(p0, t) for all 0 < s < T.

It is obvious that if ψ(p0, t) has a period T then such solutions has period 2T, 3T, ... If T

is the smallest, we call this solution ψ(p, t) as T− periodic.

Theorem 1.25 (Bendixson’s Criteria [64]) Consider the system (1.1) in R2. Suppose D is a

simply connected open subset of R2. If divergence of f , ∇. f = Σ2
n=1

∂ fn
∂ pn

is not identically zero

and does not change sign in D, then there are no periodic orbits of the autonomous system (1.1)

in D.

Theorem 1.26 (Dulac’s Criteria [64]) Consider the system (1.1) in R2. Suppose D is a simply

connected open subset of R2 and B(p,q) is a real valued C1 function in D. If divergence of

B f , ∇.(B f ) = Σ2
n=1

∂ (B fn)
∂ pn

is not identically zero and does not change sign in D then there is no

periodic orbit of the autonomous system (1.1) in D.

Theorem 1.27 (Hopf Bifurcation Theorem [64]) Consider an autonomous system of ordinary

differential equations

ṗ = f (p,ξ ), p ∈ Rn, ξ ∈ R, and f is continuously differentiable. (1.3)

Suppose, the system (1.3) has an equilibrium p̄(ξ ). Moreover, the Jacobian matrix D f (p̄(ξ ),ξ )

has one pair of complex eigenvalues

σ1,2(ξ ) = A(ξ )± iB(ξ )

such that for some ξ = ξ ∗ it becomes purely imaginary, i.e.,

A(ξ ∗) = 0 and B(ξ ∗) 6= 0.
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Then the eigenvalues will cross the imaginary axis with nonzero speed if (transversality condi-

tion)
dA(ξ )

dξ

∣∣∣∣
ξ=ξ ∗

6= 0.

The system of differential equations (1.3) will undergo a Hopf bifurcation around p̄(ξ ) for

ξ = ξ ∗ and will possess a periodic solution with approximate period T = 2π

B(ξ ∗) as ξ crosses

ξ ∗.

1.8 A Brief Notes on Optimal Control Theory

Optimal control (OC) is the process of determining control and state trajectories for a dynamic
system over a period of time in order to optimize an objective functional or a cost functional
or a performance index [66]. For example, the dynamical system might be a spacecraft with
controls corresponding to rocket thrusters, and the objective might be to reach the moon with
minimum fuel expenditure or the dynamical system could be a nation’s economy, with the
objective to minimize unemployment; the controls, in this case, could be fiscal and monetary
policy or what percentage of the population should be vaccinated as time evolves in a given
epidemic model to minimize the number infected and the cost implementing the vaccination
strategy.

Historically, OC is an extension of the calculus of variations. In the seventeenth century,
the first formal results of the calculus of variations were obtained. Johann Bernoulli chal-
lenged other famous contemporary mathematicians - such as Newton, Leibniz, Jacob Bernoulli,
L’Hôpital, and von Tschirnhaus - with the Brachistochrone problem: “Given two points A and
B in a vertical plane, what is the curve traced out by a point acted on only by gravity, which
starts at A and reaches B in the shortest time?”

The generalization of the calculus of variations to optimal control theory was strongly in-
spired by military applications and has developed rapidly since 1950. The Russian mathemati-
cian Lev S. Pontryagin (1908-1988) and his co-workers (V. G. Boltyanskii, R. V. Gamkrelidz,
and E. F. Misshchenko) achieved the ultimate breakthrough with the formulation and demon-
stration of the Pontryagin Maximum Principle [67]. Now, this principle plays an important role
in research with suitable conditions for optimization problems with differential equations as
constraints.

Today, the OC theory is extensive and with several approaches. One can adjust controls
in a system to achieve a goal, where the underlying system can include: ordinary differential
equations, partial differential equations, discrete equations, stochastic differential equations,
integro-difference equations, and a combination of discrete and continuous systems. In this
work, we apply the OC theory to ordinary differential equations with a fixed time.
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1.9 Basic Mathematical Tools for Optimal Control Problem

A typical optimal control problem requires a objective functional or cost functional or perfor-
mance index J(x(t),u(t)), a set of state variables (x(t)∈X), a set of control variables (u(t)∈U)

in a time t, with t0≤ t ≤ t f . The main goal is finding a piecewise continuous control u(t) and the
associated piecewise differentiable state variable x(t) to maximize a given objective function.
Before defining the basic optimal control problem, we first state some definitions.

Definition 1.28 (Piecewise Continuous) let I ⊆ R be an interval (finite or infinite). A finite-

valued function k : I → R is said to be piecewise continuous if it is continuous at each t ∈ I,

with the possible exception of at most a finite number of t, and if k is equal to either its left or

right limit at every t ∈ I.

Definition 1.29 (Piecewise Differentiable) let I ⊆ R be an interval (finite or infinite). Let a

finite-valued function k : I→R be continuous on I and differentiable at all but some finite points

of I. Further, if k′ is continuous wherever it is defined. Then, k is a piecewise differentiable

function.

Definition 1.30 (Continuously Differentiable) let I ⊆ R be an interval (finite or infinite). A

finite-valued function k : I→ R is said to be continuously differentiable if k′ exists and is con-

tinuous on I.

Definition 1.31 (Concave) let I = [a,b] ⊆ R be an finite interval. A finite-valued function

k : I→ R is said to be concave on I if

αk(t1)+(1−α)k(t2)≤ k(αt1 +(1−α)t2)

for all 0≤ α ≤ 1 and for any a≤ t1, t2 ≤ b.

A function k is said to be convex on [a,b] if it satisfies the reverse inequality, or equivalently, if
−k is concave.

Definition 1.32 (Basic optimal control problem in Lagrangian form) An optimal control

problem is in the form

max
u

J(x(t),u(t)) =
∫ t f

t0
f (t,x(t),u(t))dt (1.4)

subject to

ẋ(t) = g(t,x(t),u(t)),

x(t0) = x0,

and x(t f ) could be free, which means that the value of x(t f ) is unrestricted.
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For our purpose, f and g will always be continuously differentiable functions in all three ar-
guments. We assume that the control set U is Lebesgue measurable function. Thus, as the
control(s) will always be piecewise continuous, the associated states will always be piecewise
continuous.

We focus on finding the maximum of a function. However, we can switch back and fourth
between maximization and minimization by simply negating the cost functional:

min{J}=−max{−J}.

1.9.1 Pontryagin’s Maximum Principle

The necessary first-order conditions to find the optimal control were developed by Pontryagin
and his co-workers. This result is considered one of the most important results of Mathematics
in the 20th century.

Pontryagin introduced the idea of adjoint functions to append the differential equation to
the objective functional. Adjoint functions have a similar purpose as Lagrange multipliers
in multivariate calculus, which append constraints to the function of several variables to be
maximized or minimized.

Definition 1.33 (Hamiltonion) Let us consider the optimal control problem defined in (1.4).
The function

H(t,x(t),u(t),λ (t)) = f (t,x(t),u(t))+λ (t)g(t,x(t),u(t)) (1.5)

is called Hamiltonian function and λ is the adjoint variable.

Now we state Pontryagin Maximum Principle Theorem:

Theorem 1.34 Pontryagin Maximum Principle If u∗(t) and x∗(t) are optimal for problem

(1.4), then there exists a piecewise differentiable adjoint variable λ (t) such that

H(t,x∗(t),u(t),λ (t))≤ H(t,x∗(t),u∗(t),λ (t))

for all controls u at each time, where H is the Hamiltonian previously defined and

λ
′(t) =−∂H(t,x∗(t),u∗(t),λ (t))

∂x
λ (t f ) = 0.

Proof The proof of this theorem is quite technical and we opted to omit it. The original
Pontryagin’s text [67] or Clarke’s book [68] are good references to find the proof.

Remark 1.35 The last condition λ (t f ) = 0, called the transversality condition, is only used

when the optimal control problem does not have terminal value in the state variable, i.e., x(t f )

is free.
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This principle converted the problem of finding a control which maximizes the objective func-
tional subject to the state ODE and initial condition into the problem of optimizing the Hamil-
tonian pointwise. As consequence, with this adjoint equation and Hamiltonion, we have

∂H
∂u

= 0 at u = u∗ (1.6)

for each t. Therefore, the Hamiltonian has a critical point: usually this condition is called
optimality condition. Thus, to find the necessary conditions, we do not need to calculate the
integral in the objective functional, but only use the Hamiltonian.

The following is an outline of how this principle can be applied to solve the simplest prob-
lems:

i. Form the Hamiltonian for the problem.

ii. Write the adjoint differential equation, transversality boundary condition, and the opti-
mality condition. Observe that there are three unknowns: u∗, x∗ and λ .

iii. Try to eliminate u∗ by using optimality equation ∂H
∂u = 0, i.e., solve for u∗ in terms of x∗

and λ .

iv. Solve the two differential equations for x∗ and λ with two boundary conditions, substi-
tuting u∗ in the differential equations with the expression for the optimal control from the
previous step.

v. After finding the optimal state and adjoint, solve for the optimal control.

Here we present a simple example to illustrate this principle.

Example 1.36 [69]

Consider the optimal control problem:

min
x,u

J(x(t),u(t)) =
∫ 2

0
(x+

1
2

u2)dt

subject to

ẋ(t) = x+u,

x(0) =
1
2

e2−1,

x(2) is free.
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The Hamiltonian can be written as:

H(t,x,u,λ ) = x+
1
2

u2 +λ (x+u) (1.7)

Using Theorem 1.34, the equation of adjoint λ is given by the negative with partial derivative
of H (1.7) with respect to x, i.e.,

λ
′(t) =−∂H

∂x
⇔ λ

′(t) =−1−λ .

Since x(2) is free, transversality condition of adjoint variable λ is λ (2) = 0. Now we solve the
equation

λ
′(t) =−1−λ =⇒ λ

′(t)+λ =−1.

Therefore integrating factor is I.F.= e
∫

1dt = et . Now multiplying I.F. both side and integrating,
we get

λ (t)et =−et +C =⇒ λ (t) =−1+Ce−t ,

where C is a arbitrary intrigating constant. Now applying transversality condition λ (2) = 0, we
have

λ (2) =−1+Ce−2 =⇒ 0 =−1+Ce−2 =⇒ C = e2.

Therefore
λ (t) =−1+ e2−t .

We differentiate hamiltonian H (1.7) partially with respect to u and find the critical value u= u∗

for which H is minimized. Mathematically,

∂H
∂u

= 0⇔ u+λ = 0.

It is called an optimality condition and the critical value of u is given by

u∗ =−λ .

Substituting the solution of λ , the optimality condition leads to

u∗ =−λ ⇔ u∗ = 1− e2−t .
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One can solve the state variable x with the same way of λ , and the associated state is

x∗ =
1
2

e2−t−1.

Remark 1.37 If the Hamiltonian is linear in the control variable u, it can be difficult to cal-

culate u∗ from the optimality equation, since ∂H
∂u would not contain u. Specific ways of solving

these kind of problems can be found in [70].

Up to this we have showed only the necessary conditions to solve basic optimal control prob-
lems. Now, it is important to study some conditions that can guarantee the existence of a finite
objective functional value at the optimal control and state variables, based on [70–73]. The
following theorem is for sufficient condition:

Theorem 1.38 Consider the optimal control problem:

max
u

J(x(t),u(t)) =
∫ t f

t0
f (t,x(t),u(t))dt

subject to

ẋ(t) = g(t,x(t),u(t)),

x(t0) = x0.

Suppose that f (t,x,u) and g(t,x,u) are both continuously differentiable functions in their three

arguments and concave in x and u. Suppose u∗ is a control with associated state x∗, and λ a

piecewise differentiable function, such that u∗, x∗ and λ together are satisfied on t0 ≤ t ≤ t f :

fu +λgu = 0,

λ
′ =−( fx +λgx),

λ (t f ) = 0,

λ (t)≥ 0.

Then for all controls u, we have

J(u∗)≥ J(u).

Proof The proof of this theorem is available in [70]. This theorem is not strong enough to
guarantee that J(u∗) is finite. Such results require some conditions on f and/or g. Here is an
example of an existence result from [71].

Theorem 1.39 Let the set of controls for the system (1.4) be Lebesgue integrable functions

(instead of just piecewise continuous functions) on t0 ≤ t ≤ t f in R. Suppose that f (t,x,u) is
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convex in u, and there exists constants C4 and C1,C2,C3 > 0 and β > 1 such that

g(t,x,u) = α(t,x)+β (t,x)u,

|g(t,x,u)| ≤C1(1+ |x|+ |u|),

|g(t,x1,u)−g(t,x,u)| ≤C2|x1− x|(1+ |u|),

f (t,x,u)≥C3|u|β −C4,

for all t with t0 ≤ t ≤ t f , x,x1,u in R. Then there exists an optimal control u∗ maximizing J(u),

with J(u∗) finite.

Proof The proof of this theorem is available on [71]. For a minimization problem, g would
have a concave property and the inequality on f would be reverse.

Note that the necessary conditions developed to this point deal with piecewise continuous
optimal controls, while this existence theorem guarantees an optimal control which is only
Lebesgue integrable. This disconnection can be improved by extending the necessary condi-
tions to Lebesgue integrable functions [70, 73], but we did not set forth this idea in the thesis.
See the existence of optimal control results in [74].

1.9.2 Optimal Control with Bounded Controls

Definition 1.40 (optimal control with bounded control) An optimal control with bounded con-

trol can be written in the form

max
u

J(x(t),u(t)) =
∫ t f

t0
f (t,x(t),u(t))dt (1.8)

subject to

ẋ(t) = g(t,x(t),u(t)),

x(t0) = x0,

a≤u(t)≤ b,

where a,b are real fixed constants and a < b.

To solve the optimal control problems with bounds on the control, we must develop alternative
necessary conditions.

Proposition 1.41 (necessary conditions). If u∗ and x∗ are optimal for problem (1.8), then there

exists a piecewise differentiable adjoint variable λ (t) such that

H(t,x∗(t),u(t),λ (t))≤ H(t,x∗(t),u∗(t),λ (t))
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for all controls u at each time t, where H is the Hamiltonian previously defined and

λ
′(t) =−∂H(t,x∗(t),u∗(t),λ (t))

∂x
(adjoint condition),

λ (t f ) = 0 (transversality condition).

By an adaptation of the Pontryagin Maximum Principle, the optimal control must satisfy (opti-

mality condition):

u∗ =



a if
∂H
∂u

< 0,

a≤ ũ≤ b if
∂H
∂u

= 0,

b if
∂H
∂u

> 0,

(1.9)

i.e., the maximization is over all admissible controls, and ũ is obtained by the expression ∂H
∂u =

0. In particular, the optimal control u∗ maximizes H pointwise with respect to a≤ u(t)≤ b.

Proof The proof of this result can be found in [72]. If we have a minimization problem, then
u∗ is instead chosen to minimize H pointwise. This has the effect of reversing < and > in the
first and third lines of optimality condition (1.9).

Remark 1.42 In order to numerically solve a problem with the addition of bounds of the con-

trol, we can write in a compact way the optimal control ũ obtained without truncation, bounded

by a and b:

u∗(t) = min(a,max(b, ũ)).

Not all optimal control problems can be solved analytically. Most epidemiological issues are
complicated to solve analytically, so it is necessary to employ numerical methods. There are
many numerical methods to solve optimal control problems, some of which are the Shooting
method and Multiple shooting method (can be found in [75]). In addition, a very well-known
method, the forward-backwards sweep method, can be found in the book by Lenhart and Work-
man [70].

1.10 Literature review and motivation

Human immunodeficiency virus type-1 (HIV-1) is a deadly pathogen which infects CD4+T
cells, one type of immune cells. The gradual depletion of CD4+T cells in blood plasma is the
signature of HIV-1 infection. AIDS (Acquired Immunodeficiency Syndrome) develops when
the CD4+T cells count drops to 200 cells/µl from its average value of 1000 cells/µl [76]. In
reduced levels of CD4+T cells, the immune system cannot act appropriately. As a result, an
HIV-infected individual becomes susceptible to different opportunistic infections.

Perelson [77] first proposed a simple mathematical model for the interactions between the
human immune system and HIV in 1989. In this paper, the author formulated a general model



1.10. Literature review and motivation 29

of a large number of ordinary differential equations and many parameters that could potentially
be responsible for many of the immunological consequences of HIV infection. For simplicity,
the author modified the general model into a four-compartmental model consisting of free HIV,
uninfected, latently infected, and productively infected CD4+T cells. The author exhibits some
surprising features of AIDS: the long latent period, the almost complete absence of free virus
particles, the low frequency of infected CD4+T cells, and the gradual decline of CD4+T cells
during the disease. In 1993, Perelson et al. [78] extended the model of Perelson’s model
[77] and proved some of the model’s behaviour mathematically. In the last decade of the 20th
century, several models (for example, [79–96]) of HIV infection have been developed using
Perelson et al. [78] model concept to understand HIV dynamics, disease progression, diversity
of viral load, and the interaction of the human immune system with HIV.

Transmission of HIV-1 within a host may be possible through two modes, viz. cell-free
mode and cell-to-cell mode [97–99]. In cell-free transmission mode, free plasma virus infect
the healthy CD4+T cells, whereas infection spreads from one infected cell to another unin-
fected cell in case of cell-to-cell transmission mode. Several models (for example, [77–96])
incorporated only cell-free transmission mode. In the case of cell-to-cell transmission mode,
the infection spreads from one infected cell to another uninfected cell [97–100]. Here transfer
of virus particles may occur through different mechanisms, viz. virological synapses, filopodia
and nanotubes. However, more than 90% dissemination of infection in cell-to-cell transmis-
sion mode occurs through virological synapse formation [97]. In this mechanism, the virus
can evade some biophysical processes, and barriers compare to cell-free mode [101]. A tight
junction (virological synapse) is created between an infected cell and an uninfected cell, and
the virus material is directly transferred to an uninfected host. Neutralizing antibodies have
limited effect in this binding process [100]. After entering into the uninfected cell, the basic
steps of the virus life cycle are followed [102].

Cell-free infection may be a favourable way of virus dissemination at the initial stage of
infection [103] or when antibody-mediated immune responses are less active or in the absence
of antiviral drug therapy. In contrast, cell-to-cell infection mode may be a more competent way
of viral transmission at a relatively later stage of infection when antibody-mediated immune re-
sponses are significantly strong or in the presence of antiviral drug therapy [104]. Recent exper-
imental results show that cell-to-cell viral spread through virological synapses is significantly
more efficient and faster than cell-free mode [97, 98, 100]. In vitro experiments demonstrate
that cell-to-cell dissemination of infection may be 100-fold more efficient than the cell-free
infection mode [101, 104–106]. It is, therefore, essential to incorporate both the dissemination
modes of viral infection while discussing the mathematical model of HIV-1 infection within a
host body.

Antiretroviral therapy has significantly reduced the viral load and increased the CD4+T
cell count, thus preventing the onset of AIDS and increasing the life span of HIV-1 infected
patients. Although significant improvement in managing viremia using antiretroviral drug
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therapies is possible, complete resolution of HIV-1 infection from the host body is yet to be
achieved. Mainly two types of drugs are used to suppress HIV-1 infection in a host [95]. Re-
verse transcriptase inhibitors (RTI) block the synthesis of viral DNA from HIV-1 RNA and
thereby reduces viral infectivity. On the other hand, protease inhibitors (PI) are used to inhibit
the proper cleavage of viral polyprotein inside the infected cell and thereby reduce the number
of functionally effective viral production. Different models have been proposed and studied,
taking into the effect of drug therapies [88, 90, 107–113]. These models consider the spread of
infection through a single pathway, the cell-free mode. In a recent study, Ahmed et al. [114]
applied two controls RTIs and PIs on a four-dimensional HIV model incorporating cell-free
mode only. Numerically, they observed that early initiation of treatment had a profound im-
pact on improving the quality of life. Danane and Allali [115] studied a five-dimensional HIV
model incorporating cell-free mode with RTIs and PIs controls. They demonstrated that with
the two optimal treatments, the number of healthy CD4+T cells increased remarkably while
the number of latently infected CD4+T cells and infected CD4+T cells decreased significantly.
Moreover, it has also been observed that with the control strategy, the viral load is reduced
considerably compared to the model without control which can improve the patient’s quality
of life. Also, they observed that the drug therapy should be administrated without any stops
during the infection. Ngina et al. [116] applied three controls, viz. RTIs, PIs, and FIs (fusion
inhibitors) on a seven-dimensional HIV model considering cell-free mode. It is shown that
multi-drug therapy is always more beneficial in controlling disease progression compared to
mono-drug therapy. It is also suggested, so far as mono-drug treatment is concerned, that PI is
possibly the best drug and FI is the worst drug to control viral load and infected CD4+T cells.
In another study, Rahmoun et al. [117] studied a three-dimensional HIV model taking cell-free
mode with three controls, viz., RTIs, PIs, and IL-2 (interleukin-2). It is shown that combination
therapy is essential for keeping the virus count under a detectable level and healthy cell counts
at an acceptable level. It is also demonstrated that IL-2 treatment is not an efficient controller
even when it significantly boosts healthy cell proliferation.

Previous studies [88, 90, 107–113, 116–119] on HIV-1 infection control models with mono
or multi-blockers consider the mode of infection through a single pathway, which is the cell-
free mode. So the question is, what would be the control strategy in the presence of cell-to-cell
transmission mode also? To the best of our knowledge, no work has considered such controls
in a multi-pathways HIV-1 infection model. Therefore, one of the objectives of this thesis is to
gain insights into the effect of the single and multi-blockers drugs on the dynamics of an HIV-1
infection model in the presence of both cell-to-cell and cell-free infection modes.

It is reported that cell-to-cell spread allows HIV-1 to overcome barriers to infection [101,
102, 120]. There is evidence that antiretroviral drugs like tenofovir (TFV), efavirenz (EFV) and
zidovudine (AZT) show reduced effectiveness in inhibiting cell-to-cell transmission [102, 121,
122]. Sigal et al. [123] demonstrated that the cell-to-cell spread of HIV permits ongoing repli-
cation despite antiretroviral therapy. Akbari and Asheghi [124] applied two controls, viz. RTIs
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and PIs on a five-dimensional HIV model considering both transmission modes. They numer-
ically demonstrated that the density of infected cells increased before treatment and decreased
after treatment. It is also suggested that the optimal dosage of drugs effectively controls AIDS
better and minimizes the side effects of the drugs. Liu et al. [125] studied a four-dimensional
HIV model incorporating cell-free and cell-to-cell mode with two control RTIs and PIs. They
have used PIs to prevent producing new viruses from infected CD4+T cells and applied PIs
with some constant multiplication to inhibit cell-to-cell transmission. They have defined two
types of objective functionals according to linear and quadratic control. Their numerical re-
sults exhibited that the control effects are similar for both objective functionals, and both can
increase the uninfected CD4+T cell counts and reduce the concentration of free virus particles.
Qin et al. [127] applied RTIs inhibitor in both transmission modes in a four-dimensional HIV
model. Their numerical result showed a decrement in the viral load and an increment in the
level of uninfected CD4+T cells. Furthermore, Guo and Qiu [128] applied a combination of
RTIs and PIs inhibitors in a cell-free transmission mode only in a four-dimensional HIV model
considering CTL immune response. In this model, they assume drug efficacy as a constant.
Their theoretical and numerical results exhibit that CTL immune response is an important fac-
tor and should not be ignored in HIV infection. Observations of these studies suggest that
existing antiretroviral drugs may be efficient in controlling cell-free transmission but unable
to inhibit the dissemination of infection through cell-to-cell mode. A recent study by Hubner
et al. [97] suggests that future control strategies through drug therapy and vaccination should
focus on blocking cell-to-cell dissemination of infection.

HIV-1 mathematical models usually consider the interaction between the host cells (i.e.,
CD4+T) and plasma free-virus. However, the activated CD8+T of CTL cells can kill the in-
fected host cells and thus reduce the production of the free virus through the infected cell lysis.
Some studies have considered the role of CTL on the HIV models with multi-mode dissemi-
nation of infection [129–132]. It is to be mentioned that the activation of CTL is not instanta-
neous. It takes some time for stimulation by our immune cells. Xu and Zhou [133] studied a
delay-induced HIV model with two modes of infection transmission. It is of utmost importance
to know how far different antiretroviral therapies can control viremia in the presence of delay.
We, therefore, want to study a multi-pathways HIV-1 infection model with CTL delay in the
presence of treatments. The main objective is to explore how immune response delay affects
the plasma viral load in the presence and absence of the blockers and to determine the optimal
dose.

The world has been passing through an extraordinary crisis period since late December 2019
due to an extraordinary pathogen Covid-19 [134]. The coronavirus spreads when an individual
inhales the droplets containing virus [135]. Such contaminated droplets are produced during
sneezing and coughing by an infected individual. Study shows that these droplets usually can-
not travel more than 2 meters from its source and it is therefore advised to maintain a distance
of six feet between two individuals to avoid an infection [136]. The number of suspended
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droplets, however, can be reduced through practice of good cough and sneeze etiquette, which
reduces the transmission probability of infection from an infective to a susceptible. Using of
face musk is one of the most effective nonpharmaceutical measures that protect individuals
from inhaling of virus-carrying droplets and restricts transmission [137, 138]. An individual
may also be infected if one touches a contaminated surface and then touches his/her mouth,
nose and eyes [139]. However, the most effective way to reduce large-scale contamination
and community transmission is the lockdown [140]. To prevent human-to-human transmission
of the coronavirus through contact, many countries have implemented nationwide or region-
wide lockdown by closing academic institutions, offices, restaurants, community halls, social
gathering and all modes of transportation. This mechanism has been proved to be effective
in containing the transmission but unable to eradicate the disease in the absence of a vaccine
[141].

In the absence of specific drugs and vaccines, some repurposing drugs were effectively used
to save the lives of many severely infected covid patients [142]. Existing drugs like dexametha-
sone, favipiravir and remdesivir are some of such drugs which have been proven to be useful
in treating covid-19 patients. Dexamethasone is a corticosteroid used for multiple problems
like arthritis, asthma, intestinal disorder etc. The WHO and the NIH (National Institute of
Health) have recently approved its use for the treatment of acute Covid-19 patients. It has been
shown through randomized clinical trials that the immunosuppressant dexamethasone can save
the lives of critically ill (on ventilation) Covid-19 patients and can reduce the mortality rate by
one-third [143, 144]. An RNA polymerase inhibitor remdesivir, a drug used for Ebola virus in-
fection, has shown the prophylactic and therapeutic efficacy for patients with severe Covid-19
[145, 146]. In vitro and in vivo experiments confirmed the efficacy of the nucleotide prodrug
remdesivir against coronaviruses [147]. Both the European Union [148] and the USA [149]
governments have approved its use in the treatment of COVID-19. Another important treat-
ment study that can give life to many seriously ill Covid-19 patients is convalescent plasma
or immunoglobulins therapy [150]. This passive immunization therapy has the potentiality to
improve the survival rate of covid patients [151]. Use of such repurposing drugs along with the
non-pharmaceutical intervention strategies may be the best possible way for fighting against the
ongoing pandemic in the absence of any vaccine and specific drug for this novel coronavirus.

Numerous mathematical models on the Covid-19 pandemic have appeared to forecast the
epidemic’s future. These models reasonably address the epidemic burden of an affected country
to guide the policymakers and the healthcare providers on preparedness. Fitting the data of
China, Italy and France with a SIRD model, Fanelli and Piazza [152] showed that the kinetic
parameter representing the recovery rate remains the same for many countries. Still, the death
rates of the respective countries are different. A higher dimensional transmission model was
proposed in [153] to study the Covid-19 epidemic in Wuhan. In Chatterjee et al. [154], a simple
SEIR compartmental model was simulated with Monte Carlo (MC) simulation technique to
measure the effect of NPIs. An epidemic model was used to investigate the dynamics of SARS-
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CoV-2 with multiple transmission pathways by Yang and Wang [155]. They infer from the
analytical and numerical results that the infection will remain endemic for a long time. A
regression model for Covid-19 was used to estimate the final size and its peak time for China,
South Korea, and the rest of the World [156]. In [157], a simple SIR model was used to estimate
various epidemic parameters by fitting the epidemic data of the Republic of Korea. Nonlinear
incidence was used in an epidemic model to show that lockdown can cause significant delay to
attain the epidemic peak but is unable to eradicate the disease [158]. A simple iteration model,
which uses only daily values of confirmed cases, was considered to forecast the covid positive
cases for the United States, Slovenia, Iran, and Germany [159]. Pal et al. [160] explained
the Covid-19 transmission dynamics during the unlock phase and the significance of testing
with the help of a mathematical model. By simulating an SEIR model, Fang et al. [161]
studied the impact of different control measures in spreading coronavirus. A computational
model was used in [162] to assess the effect of face musk in the disease spreading of Covid-19.
It is shown that the universal use of face masks and other non-pharmaceutical practices can
significantly inhibit disease progression. None of these studies has considered the effect of
repurposing drugs for fighting SARS-CoV-2 in the absence of a vaccine or specific drug. One
of the objectives of this thesis is to demonstrate through mathematical modelling and analysis
how and to what extent the NPIs and repurposing drugs can improve the overall Covid-19
epidemic burden.

1.11 Overview

Basic HIV-1 in-host models consider dissemination of infection through cell-free mode, where
the infection spreads from free plasma virus to an uninfected CD4+T cell. Recent in vitro
studies, however, demonstrate that cell-to-cell viral spread through virological synapses is the
predominant mode of HIV-1 infection. The gradual depletion of CD4+T cells in the blood
plasma is the signature of HIV-1 disease. Different blockers are used to prevent the lack of
CD4+T cells by blocking the spread of infection and virus replication.

In Chapter 2, we study the effect of three blockers on a hypothetical HIV-1 infected subject
when administered individually or in combination. For this, an HIV model that considers both
the cell-free and cell-to-cell modes of spread of infection is analyzed with three controls. In
the first phase of this study, we consider all three controls as constant and prove the local
as well as global stabilities of the disease-free and infected steady states. We consider the
controls time-dependent in the second phase and define a suitable optimal control problem.
An objective function is characterized based on maximizing the healthy CD4+T cell counts
and minimizing the count of infected CD4+T cells along with other systemic costs of drug
therapy. Using Pontryagin’s Maximum Principle, we give the necessary conditions for optimal
control. We investigate and compare the effect of different mono- and multi-drug therapies
through numerical simulations. In the case of mono blockers, the results show that the drug
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which blocks cell-to-cell dissemination of infection is a better option for treating an HIV-1
infected individual. In the case of multi-blockers, a combined medicine that contains cell-to-
cell blockers and protease inhibitors controls the infection efficiently.

In Chapter 3, we study optimal control in a multi-pathways in-host HIV-1 infection model
with saturated infection rates and intracellular delay using three controls. The controls may be
constant or time-dependent. In the case of constant controls, we proved that the infection-free
equilibrium of the system is locally and globally asymptotically stable with some parametric
condition. The stability of the infected equilibrium may be lost through Hopf bifurcation if the
intracellular delay is longer. We define a suitable objective function in the time-dependent con-
trols to maximize the cell counts of healthy CD4+T cells minimizing unhealthy CD4+T cells.
We then derive the optimality conditions of our delay-induced control problem. Numerically
we observe and compare the results of different type of time dependent control therapies. In
the case of mono-drug therapy, no blocker can remove the infection for any delay, as infected
CD4+ T cells always persist. In the case of multi-drug therapy, the infection can remove by
multi-drug therapies for all delays, except the combination of RTI and PI inhibitors. The result
shows that a multi-drug therapy scheme that contains u2 and u1 blockers is a better option for
treating HIV-1 infection. The result shows that a multi-drug therapy scheme that contains u2

and u3 blockers is a better option for treating HIV-1 infection. The result also indicates that
the treatment duration depends on delay, i.e., if the delay is shorter, then the treatment period
is also shorter.

In Chapter 4, we study a multi-pathways in-host HIV-1 infection model in the presence of
immune response delay and three controls. The controls may be constant or time-dependent. In
the case of constant controls, it is shown that the infection-free equilibrium of the system is lo-
cally and globally asymptotically stable when the basic reproduction number is less than unity.
The stability of the infected equilibrium may be lost through Hopf bifurcation if the immune
response delay is longer. We define a suitable objective function in the time-dependent controls
to maximize the cell counts of healthy CD4+T cells and CTLs. We then derive the optimality
conditions of our delay-induced control problem. We examine and compare the effect of mono
and multi-drug therapies through numerical simulations. We demonstrate that removing infec-
tion is not possible using any mono-drug treatment. It is demonstrated that the blocker that
inhibits synapse formation during cell-to-cell disease transmission should be used while using
multi-drug therapy to clear the infection. However, this control is not an efficient blocker in
the mono-drug treatment protocol. Our study reveals that if CTL’s response is quicker, CD4+T
cell count may remain stable but becomes unstable if response time increases.

The Covid-19 pandemic has put the world under immeasurable stress. There is no specific
drug or vaccine that can cure the infection or protect people from the infection of coronavirus.
Therefore, it is prudent to use the existing resources and control strategies optimally to contain
the virus spread and provide the best possible treatments to the infected individuals. Repurpos-
ing drugs and non-pharmaceutical intervention strategies may be the right way to fight against
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the ongoing pandemic. This work aims to demonstrate through mathematical modelling and
analysis how and to what extent such control strategies can improve the overall Covid-19 epi-
demic burden. For this, in Chapter 5, we have proposed a simplified but realistic epidemic
model considering five disjoint classes through which a covid-infected individual has to be
passed. We have also considered three control parameters to incorporate the effect of lockdown,
maintaining personal hygiene & safe distancing, and using repurposing drugs. The criteria for
disease elimination & persistence were established through the basic reproduction number. A
case study with the Indian Covid-19 epidemic data is presented to visualize and illustrate the
effects of lockdown, maintaining personal hygiene & safe distancing, and repurposing drugs. It
is shown that India can significantly improve the overall Covid-19 epidemic burden through the
combined use of NPIs and repurposing drugs. However, containment of spreading is difficult
without serious community participation.

The thesis ends with the future direction.





2
Optimal control in a multi-pathways HIV-1

infection model: A comparison between
mono-drug and multi-drug therapies1

2.1 The model

HIV-1 infection can be transmitted through cell-free mode, where a free plasma virus infects a
susceptible CD4+T cell, or through cell-to-cell transmission mode, where the infection spreads
from one infected cell to another cell [97–99]. Basic HIV-1 within-host infection model consid-
ers only the cell-free transmission mode [78, 80, 81, 83–86, 89, 90, 92–96]). At the initial stage
of infection or when antibody-mediated immune responses are less active or in the absence of
antiviral drug therapy, spreading of infection mostly occurs through the cell-free mode [103].
On the other hand, cell-to-cell infection spreading occurs at the later stage of infection when
the antibody-mediated immune responses are significantly strong or in the presence of antiviral
drug therapy [104]. Different experimental observations support that cell-to-cell dissemination
of infection may be more efficient than cell-free mode [101, 104–106]. So, to better understand
the disease dynamics, both the dissemination modes of viral infection should be incorporated
in the model formulation of HIV-1 infection.

If x(t) be the density (number of cells per cubic millimeter) of uninfected CD4+T cells in

1The bulk of this chapter has been published in International Journal of Control,
DOI:10.1080/00207179.2019.1690694, (2019).
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the blood plasma at an arbitrary time t then its demography can be represented by

ẋ = f1(x),

where f1 is a C1 function such that f1(x)> 0 for 0 < x < x̃, f1(x̃) = 0, f
′
1(x̃)< 0 and f1(x)< 0

when x > x̃. If y(t) and v(t) be the concentrations of productively infected CD4+T cells and
virus particles in the peripheral blood at time t then the infection rate at time t through cell-free
mode and cell-to-cell mode can be expressed by f2(x,v) and f3(x,y), respectively. If α is the
lysis rate of infected cells, µ is the natural death rate of CD4+T cells, c is the production rate
of new virus particles per cell lysis and γ be the virus clearance rate, then the rate equations for
x, y and v can be represented by the following coupled nonlinear differential equations:

ẋ = f1(x)− f2(x,v)− f3(x,y),

ẏ = f2(x,v)+ f3(x,y)− (α +µ)y,

v̇ = cαy− γv,

(2.1)

where f2, f3 are C1 functions.

Here we introduce three controls to the multi pathways HIV-1 infection model (2.1). One
control u1(t) is introduced to reduce the transmission of infection through cell-free mode. This
control is mainly reverse transcriptase inhibitors (RTIs). A second control u2(t) is introduced
to block cell-to-cell infection that targets the factors required for synapse formation, a predom-
inant mode of transmission of infection through cell-to-cell mode, under the assumption that
such a drug exists. The third control u3(t) is applied to prevent HIV-1 protease from cleaving
the HIV-1 polyprotein into functional units (PIs). With these three controls, the multi-pathways
HIV-1 infection model (2.1) reads

ẋ(t) = f1(x)− (1−u1(t)) f2(x,v)− (1−u2(t)) f3(x,y),

ẏ(t) = (1−u1(t)) f2(x,v)+(1−u2(t)) f3(x,y)− (α +µ)y(t),

v̇(t) = (1−u3(t))cαy(t)− γv(t).

(2.2)

A typical form of the function f1 is f1(x) = s− µx [163, 164], where s is the constant input
of CD4+T cells from thymus, µ is its natural death rate. Sometimes additional proliferation
of CD4+T cells is considered due to antigenic infection and f1 is represented as f1(x) = s−
µx+rx(1−x/K), where r and K are, respectively, the proliferation rate of CD4+T cells and its
maximum attainable value [93, 94]. Here we consider the form f1 = s−µx because additional
cell proliferation is unlikely to occur in presence of drug therapies. Different forms of incidence
functions f2 and f3 have been considered in the literatures. For example, saturated infection rate
of the form f2(x,v) =

β1xv
1+v has been considered in [165] and [166] to prevent the unboundedness

of the contact rate. On the other hand, [89] considered the saturation effect on x population as
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f2(x,v) =
β1xv
a+x and a generalized Hill-type function f2(x,v) =

β1xnv
an+xn was considered in [130,

167, 168]. We here consider the frequently used mass action form for both the incidence
functions f2 and f3. According to this law, the incidence or disease transmission functions have
the forms f2(x,v) = β1xv [82, 87, 163, 164, 169–171] and f3(x,y) = β2xy [99, 131, 133, 172,
173], where β1 and β2 are, respectively, the cell-free and cell-to-cell transmission coefficients.
Under these assumptions, also considering f1(x) = s−µx, and the model (2.2) takes the form

ẋ(t) = s−µx(t)− (1−u1(t))β1x(t)v(t)− (1−u2(t))β2x(t)y(t),

ẏ(t) = (1−u1(t))β1x(t)v(t)+(1−u2(t))β2x(t)y(t)− (α +µ)y(t),

v̇(t) = (1−u3(t))cαy(t)− γv(t).

(2.3)

with initial conditions

x(0) = x0 > 0, y(0) = y0 ≥ 0, v(0) = v0 ≥ 0. (2.4)

All parameters are nonnegative. Table 2.1 describes the system parameters and their reported
range. System (2.3) will be optimized with respect to the control parameters u1,u2 and u3. To
the best of our knowledge, no work has been done earlier by considering the effect of drug
therapy in a multi-pathways HIV-1 infection model.

Table 2.1: Parameter description and their values with references.

Parameter Description Reported range References Default value

s Constant production 0-10 cells mm−3 [93, 174] 10

rate of CD4+T cells

µ Death rate of 0.0014-0.03 day−1 [175, 176] 0.01

susceptible CD4+T cells

β1 Cell-free disease 0.000025-0.5 [91, 93] 0.0001

transmission coefficient mm−3 virion day−1

β2 Cell-to-cell disease 0.00001-0.7 [99] 0.0003

transmission coefficient mm−3 infected cells day−1

α Lysis death rate 0.2-0.5 day−1 [84, 91] 0.29

of infected CD4+T cells

c Virus production rate 10-2500 virions cell−1 [93, 174] variable

of infected CD4+T cells

γ Removal rate of virus 2-3 day−1 [82, 91, 175] 3

A large class of in-host HIV-1 infection models [92, 177] and the references therein) can
be deduced from (2.3) for u1(t) = u3(t) = 0 and β2 = 0. In fact, all basic target cell-limited
models, where lack of CD4+T cells is assumed to be responsible for the decrement of virus
cell count after its initial blip, assume cell-free dissemination of infection via mass-action law.
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The model (2.3) was analyzed by [131] when u1(t) = u2(t) = u3(t) = 0 and µ = 0. Effect of
drug therapy when β2 = 0 in model (2.3) was considered in [109]. This work is therefore a
generalization of many previous works.

The rest of this chapter is arranged in the following sequence. In Section 2.2, we present
some basic results. Section 2.3 is devoted to analyze the dynamics when controls are constant.
We also perform here sensitivity analysis of system parameters. Some simulation results are
also presented to validate the analytical findings. Section 2.4 deals with the optimal control
of the system when controls are time dependent. We give the existence and uniqueness of the
optimal control triplet. Extensive numerical computations of the model with time dependent
controls are also presented. Comparison of different control schemes are presented here. The
chapter ends with a discussion in Section 2.5.

2.2 Basic results

2.2.1 Positivity and boundedness of the solutions

Lemma 2.1 For the initial condition (2.4), solutions of system (2.3) are positively invariant

provided u1(t) = 1 and u2(t) = 1 do not hold simultaneously and u3(t) ∈ [0,1). Moreover, all

solutions are uniformly bounded in Γ, where

Γ =

{
(x(t),y(t),v(t)) ∈ R3

+ | 0 < x(t)≤ x̃, 0≤ y(t)≤ s
ϑ
, 0≤ v(t)≤ 2cαs

(α +µ)ϑ

}
,

and ϑ = min
{

µ, (α+µ)
2 ,γ

}
, x̃ = s/µ .

Proof First we show that x(t) is positive ∀ t ≥ 0. If not, let t1 > 0 be the first time when
x(t1) = 0. From (2.4), we have x(t) > 0 when t = 0. Therefore, x(t) > 0 for all t ∈ [0, t1).
Putting t = t1 in the first equation of (2.3), we get ẋ(t1) = s > 0. It means that x(t) is increasing
at t = t1. So there exists ψ > 0, sufficiently small, such that ∀t ∈ (t1−ψ, t1), x(t) < 0. This
contradicts our assumption. Hence x(t)> 0 for all t and

x(t) = x0e−
∫ t

0(α+µ)(ρ1)dρ1 +
∫ t

0
se−

∫ t
ρ1
(α+µ)(θ)dθ dρ1,

where (α +µ)(t) = µ +(1−u1(t))β1v(t)+(1−u2(t))β2y(t).

To show the positivity of y(t) and v(t) for all t > 0, we assume that there exists t2 > 0
such that min{y(t2),v(t2)} = 0 for the first time. If y(t2) = 0, then y(t) > 0 for all 0 ≤ t < t2,
whereas v(t) > 0 for all 0 ≤ t ≤ t2. At t = t2, we have ẏ(t2) = (1− u1(t2))β1x(t2)v(t2) > 0
⇒ y(t) is increasing at t = t2. Following the positivity of x(t), we again lead to a contradiction.
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Therefore, y(t)> 0 for all t and

y(t) =y0e−(α+µ)t +
∫ t

0
[(1−u1(ρ2))β1x(ρ2)v(ρ2)

+(1−u2(ρ2))β2x(ρ2)y(ρ2)]e−(α+µ)(t−ρ2)dρ2.

Following similar arguments, we can prove that v(t)> 0 for all t and

v(t) = v0e−γt +
∫ t

0
[(1−u3(ρ3))cαy(ρ3)e−γ(t−ρ3)dρ3.

Hence, all solutions of (2.3) are positively invariant.
Now we show that all solutions of (2.3) are bounded. From the first equation of (2.3), by

standard comparison theorem [178], one gets

ẋ(t)≤ s−µx(t)⇒ lim
t→∞

x(t)≤ s
µ
= x̃. (2.5)

Thus, x(t) is bounded for all t ≥ 0.
Define

W (t) = x(t)+ y(t)+
(α +µ)

2cα
v(t).

Differentiating W (t) along the solutions of (2.3), one obtains

Ẇ (t) = ẋ(t)+ ẏ(t)+
(α +µ)

2cα
v̇(t)

= s−µx(t)− (α +µ)y(t)+(1−u3(t))
(α +µ)

2
y(t)− γ(α +µ)

2cα
v(t)

≤ s−µx(t)− (α +µ)

2
y(t)− γ(α +µ)

2cα
v(t)≤ s−ϑW (t),

where ϑ = min
{

µ, (α+µ)
2 ,γ

}
. Therefore, following a standard comparison theorem [178],

lim
t→∞

W (t)≤ s
ϑ
.

Hence, limt→∞ y(t) ≤ s
ϑ

and limt→∞ v(t) ≤ 2cαs
(α+µ)ϑ . Therefore, all solutions of (2.3) are uni-

formly bounded in Γ =

{
(x(t),y(t),v(t)) ∈ R3

+ | 0 < x(t)≤ x̃, 0≤ y(t)≤ s
ϑ
,

0≤ v(t)≤ 2cαs
(α+µ)ϑ

}
.

2.3 Analysis of the model with fixed controls

Control parameters ui, i = 1,2,3 may be constant or time dependent. We, therefore, analyze
the model in two steps. Here we first consider that the control parameters are constant.
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Figure 2.1: Latin Hypercube Sampling-Partial Ranked Correlation Coefficients sensitivity anal-
ysis for system (2.3) with p < 0.00001. Parameters are varied in their reported range (see Table
2.1 without control.

2.3.1 Sensitivity analysis of parameters

Parameters play an important role in model dynamics and some parameters may be very sen-
sitive compare to other. We apply Latin Hypercube Sampling Method (LHS) [179] to find
most sensitive parameters of our system, which are monotonically related to the system out-
put. There are seven parameters in our model and these parameters are used for Partial Ranked
Correlation Coefficients (PRCC) analysis (see Fig. 2.1). Length of the bar against a parameter
shows its effect on the system. Fig. 2.1 indicates that the parameters c, β2, β1, α are most
sensitive and have strong effects in the growth of system population with PRCCs significant to
0.00001 level (p-values < 0.00001). Among these parameters, c is the most sensitive parameter
and we therefore analyze our system with respect to c.

2.3.2 Basic reproduction number

We first define two basic reproduction numbers corresponding to two modes of infection. This
basic reproduction number plays significant role and considered to be an important threshold
quantity for the elimination of infection. In the absence of infection, the equilibrium level of
CD4+T cells is given by x̃ = s

µ
. One can evaluate the basic reproduction number by calculating

the next generation matrix [180]. The Jacobian matrix of the system (2.3) in absence of cell-to-
cell transmission (when β2 = 0) at (x̃,0,0), where x̃ = s

µ
is the equilibrium density of healthy



2.3. Analysis of the model with fixed controls 43

CD4+T cells in absence of infection, is represented by

J11 =

 −µ 0 −(1−u1)β1x̃

0 −(α +µ) (1−u1)β1x̃

0 (1−u3)cα −γ

 .

The submatrix of J11 associated with the infectious compartments can be split as

J12 =

(
−(α +µ) (1−u1)β1x̃

(1−u3)cα −γ

)
=

(
0 (1−u1)β1x̃

0 0

)
−

(
(α +µ) 0
−(1−u3)cα γ

)
= F1−V1.

The next generation matrix is then given by

F1V−1
1 =

1
γ(α +µ)

(
(1−u1)(1−u3)cαβ1x̃ (1−u1)β1x̃(α +µ)

0 0

)
.

The basic reproduction number for virus-to-cell transmission, R01, is the spectral radius of the
matrix F1V−1

1 [180] and is defined by

R01 =
β1(1−u1)x̃cα(1−u3)

(α +µ)γ
.

Note that β1(1− u1) is the effective infection rate corresponding to cell-free infection mode;
x̃ is the equilibrium value of CD4+T cells in the absence of all kinds of infection; 1

(α+µ) is
the average life span of the infected CD4+T cells; cα(1−u3) is the number of virus produced
from the cell lysis of an infected cell and 1

γ
is the average life span of virus. Therefore, the total

number of newly infected CD4+T cells produced by one infected cell in its life period through
cell-free infection mode is R01.

Similarly, one can define the corresponding basic reproduction number for cell-to-cell infection
mode by

R02 =
β2(1−u2)x̃
(α +µ)

.

The Jacobian matrix in the case of both modes of transmission evaluated at the infection-free
equilibrium x̃ = ( s

µ
,0,0) is

J21 =

 −µ −(1−u2)β2x̃ −(1−u1)β1x̃

0 (1−u2)β2x̃− (α +µ) (1−u1)β1x̃

0 (1−u3)cα −γ

 . (2.6)
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The submatrix of J21 associated with the infectious compartments can be split as

J22 =

(
(1−u2)β2x̃− (α +µ) (1−u1)β1x̃

(1−u3)cα −γ

)

=

(
(1−u2)β2x̃ (1−u1)β1x̃

0 0

)
−

(
(α +µ) 0
−(1−u3)cα γ

)
= F−V.

The next generation matrix is then given by

FV−1 =
1

γ(α +µ)

(
[(1−u2)β2γ +(1−u1)(1−u3)cαβ1]x̃ (1−u1)β1x̃(α +µ)

0 0

)
.

The ensemble basic reproductive number, R0, is the spectral radius of FV−1 and is determined
by

R0 =
[(1−u2)β2γ +(1−u1)(1−u3)cαβ1]x̃

γ(α +µ)
= R01 +R02.

Thus, the basic reproduction number of the system is the sum of the basic reproduction number
of two modes of infection process.

2.3.3 Existence and stability of the equilibria

Equilibrium points are the biologically feasible solutions of the following simultaneous equa-
tions:

s−µx(t)− (1−u1)β1x(t)v(t)− (1−u2)β2x(t)y(t) = 0,

(1−u1)β1x(t)v(t)+(1−u2)β2x(t)y(t)− (α +µ)y(t) = 0,

(1−u3)cαy(t)− γv(t) = 0.

The equilibrium density x̃ of the infection-free equilibrium E1(x̃,0,0) is determined to be x̃= s
µ

.
Note that it always exists. The infected equilibrium E∗ is (x∗,y∗,v∗), where x∗ = x̃

R0
, y∗ =

µx∗

(α+µ)(R0−1) and v∗ = (1−u3)cαy∗
γ

. This equilibrium exists if R0 > 1, u1 = u2 = 1 do not hold
simultaneously and u3 ∈ [0,1). Because, if u1 = u2 = 1 then y(t)→ 0 as t → ∞; and if u3 = 1
then v(t) → 0 as t→ ∞. In both the cases, E∗ does not exist. Note that

R0 > 1 
 [(1−u2)β2γ +(1−u1)(1−u3)cαβ1]x̃ > γ(α +µ)


 (1−u1)(1−u3)cαβ1x̃ > γ[(α +µ)− (1−u2)β2x̃]


 c >
γ[(α +µ)− (1−u2)β2x̃]
(1−u1)(1−u3)αβ1x̃

= c∗,

(2.7)
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where c∗ is the critical value of c at R0 = 1. Therefore, all populations exist when c > c∗, u1 = 1
& u2 = 1 do not hold simultaneously and u3 ∈ [0,1). We then have the following lemma.

Lemma 2.2 The system (2.3) has two equilibrium points.

(I) The infection-free equilibrium E1 = (x̃,0,0) always exists with x̃ = s
µ

.

(II) The infected equilibrium E∗ = (x∗,y∗,v∗) exists when

(i) c > c∗,

(ii) u1 = 1 and u2 = 1 does not hold simultaneously, and

(iii) u3 ∈ [0,1),

with equilibrium densities x∗ = x̃
R0
, y∗ = µx∗

(α+µ)(R0−1), v∗ = (1−u3)cαy∗
γ

.

We now prove the stability of two equilibrium points with respect to the virus replication factor
c.

Theorem 2.3 The infection-free steady state E1 is locally and globally asymptotically stable if

c < c∗.

Proof The variational matrix at E1 reads as

V (E1) =

 m11 m12 m13

0 m22 m23

0 m32 m33

 ,

where m11 = −µ, m12 = −(1− u2)β2x̃, m13 = −(1− u1)β1x̃, m22 = (1− u2)β2x̃− (α +

µ), m23 = (1− u1)β1x̃, m32 = (1− u3)cα, m33 = −γ . It is to be recalled that V (E1) is the
matrix described in (2.6).
The characteristic equation associated with this matrix is

(ξ −m11)[ξ
2− (m22 +m33)ξ +(m22m33−m23m32)] = 0. (2.8)

Clearly, one characteristic root is ξ1 = m11 =−µ(< 0). Other two roots will have negative real
parts if and only if (m22 +m33) is negative and (m22m33−m23m32) is positive. Observe that
m22 +m33 = (1−u2)β2x̃− (α +µ)− γ . Following (2.7),

c < c∗⇒ (1−u1)(1−u3)cαβ1x̃
γ

< (α +µ)− (1−u2)β2x̃

⇒ (1−u2)β2x̃− γ− (α +µ)<−
[
(1−u1)(1−u3)cαβ1x̃

γ
+ γ

]
< 0.
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This proves that m22 +m33 < 0 if c < c∗. Moreover,

m22m33−m23m32 = (α +µ)γ− x̃[(1−u1)(1−u3)cαβ1 +(1−u2)β2γ]

= (1−u1)(1−u3)αβ1x̃[c∗− c].

This shows that m22m33−m23m32 > 0 if and only if c < c∗. Thus, all roots of Eqn. (2.8) will
have negative real parts if R0 < 1, implying that the infection-free equilibrium E1 is locally
asymptotically stable. It is to be noted that if E1 is locally asymptotically stable then E∗ fails
to exist.
To prove the global stability, we define a Lyapunov function as

U1(t) = x(t)− x̃− x̃ ln
(

x(t)
x̃

)
+ y(t)+

x̃β1(1−u1)

γ
v(t).

So, U1(t)> 0 for all positive values of x(t), y(t), v(t), and U1(t) = 0 only at E1. Differentiating
U1(t) along the solutions of (2.3), and using s = µ x̃, we have

U̇1(t) =
(

1− x̃
x(t)

)
ẋ(t)+ ẏ(t)+

x̃β1(1−u1)

γ
v̇(t)

=

(
1− x̃

x(t)

)
[s−µx(t)− (1−u1)β1x(t)v(t)− (1−u2)β2x(t)y(t)]

+ [(1−u1)β1x(t)v(t)+(1−u2)β2x(t)y(t)− (α +µ)y(t)]

+
x̃β1(1−u1)

γ
[(1−u3)cαy(t)− γv(t)]

=µ x̃
(

2− x̃
x(t)
− x(t)

x̃

)
− (1−u1)(1−u3)αβ1x̃y(t)

γ
[c∗− c].

As A.M (Arithmetic mean) ≥ G.M (Geometric mean), we get U̇1(t) ≤ 0 if c < c∗. Let G1 =

{(x(t),y(t),v(t)) ∈ R3
+ : U̇1 = 0} and S1 be the largest invariant set in G1. Then by LaSalle’s

invariance principle [65], all non-negative solutions converge to S1. Moreover, U̇1 = 0 if and
only if x(t) = x̃ and y(t) = 0. Therefore, invariance of S1 yields S1 = {E1} and every solution
in Γ tends to E1 when c < c∗. Thus, E1 is globally asymptotically stable if c < c∗.

Theorem 2.4 The infected steady state E∗ is locally and globally asymptotically stable when-

ever it exists.

Proof The variational matrix at E∗ is computed as

V (E∗) =

 n11 n12 n13

n21 n22 n23

0 n32 n33

 ,
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where

n11 =−µ− (1−u1)β1v∗− (1−u2)β2y∗ =− s
x∗ , n12 =−(1−u2)β2x∗,

n13 =−(1−u1)β1x∗, n21 = (1−u1)β1v∗+(1−u2)β2y∗ = (α+µ)y∗
x∗ ,

n22 = (1−u2)β2x∗− (α +µ) =− (1−u1)β1x∗v∗
y∗ , n23 = (1−u1)β1x∗,

n32 = (1−u3)cα, n33 =−γ.

(2.9)

The characteristic equation is given by

ξ
3 +X1ξ

2 +X2ξ +X3 = 0,

where

X1 =−(n11 +n22 +n33),

X2 = n11(n22 +n33)+(n22n33−n23n32)−n12n21,

X3 =−[n11(n22n33−n23n32)−n12n21n33 +n13n21n32].

Noting that n22n33 − n23n32 = (α + µ)γ − [(1− u1)(1− u3)cαβ1 + (1− u2)β2γ]x∗ = (α +

µ)γ− (α +µ)γ = 0, the quantities X2 and X3 simplifies to X2 = n11(n22 +n33)−n12n21, X3 =

n12n21n33−n13n21n32. According to Routh-Hurwitz criteria, E∗ will be locally asymptotically
stable if and only if X1 > 0, X3 > 0 and X1X2−X3 > 0. From (2.9), one can easily see that
X1 > 0 and X3 > 0. Simple computation gives

X1X2−X3 = (−n2
11n22−n2

11n33−n2
22n11−n2

33n11 +n11n12n21 +n22n12n21

−n11n22n33)+ [n13n21n32−n11n22n33].
(2.10)

One can easily verify that all terms of (2.10) in the first bracket are positive. Also,

n13n21n32−n11n22n33 =−(1−u1)(1−u3)β1cα(α +µ)y∗

−
(

s(1−u2)β2−
s(α +µ)

x∗

)
γ

=
s(α +µ)γ

x∗
− s(1−u2)β2γ

− (1−u1)(1−u3)β1cα(α +µ)

(
s−µx∗

(α +µ)

)
=

s(α +µ)γ

x∗
− s[(1−u2)β2γ +(1−u1)(1−u3)β1cα]

+ (1−u1)(1−u3)β1cαµx∗ = (1−u1)(1−u3)β1cαµx∗(> 0).

Thus, following Routh-Hurwitz criterion, E∗ is locally asymptotically stable whenever it exists.
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For global stability, Lyapunov function is defined as

U2(t) =
∫ x

x∗

(
1− x∗

x(t)

)
dx+

∫ y

y∗

(
1− y∗

y(t)

)
dy+

β1(1−u1)x∗

γ

∫ v

v∗

(
1− v∗

v(t)

)
dv.

Note that U2(t) > 0 for all positive values of x(t), y(t), v(t) and U2(t) = 0 only when x =

x∗,y = y∗,v = v∗. The derivative of U2(t) along the solutions of (2.3) is

U̇2(t) =
(

1− x∗

x(t)

)
ẋ(t)+

(
1− y∗

y(t)

)
ẏ(t)+

β1(1−u1)x∗

γ

(
1− v∗

v(t)

)
v̇(t),

=W1(t)+W2(t)+W3(t).

Define N(x(t)) = s−µx(t). Then

W1(t) =
(

1− x∗

x(t)

)
ẋ(t)

=

(
1− x∗

x(t)

)
[N(x(t))−β1(1−u1)x(t)v(t)−β2(1−u2)x(t)y(t)]

=

(
1− x∗

x(t)

)
[N(x(t))−N(x∗)]+

(
1− x∗

x(t)

)
N(x∗)− x(t)[β1(1−u1)v(t)

+β2(1−u2)y(t)]+ x∗[β1(1−u1)v(t)+β2(1−u2)y(t)]

=

(
1− x∗

x(t)

)
[N(x(t))−N(x∗)]+ x∗[β1(1−u1)v∗+β2(1−u2)y∗]

− x∗2

x(t)
[β1(1−u1)v∗+β2(1−u2)y∗]− x(t)[β1(1−u1)v(t)

+β2(1−u2)y(t)]+ x∗[β1(1−u1)v(t)+β2(1−u2)y(t)],

W2(t) =
(

1− y∗

y(t)

)
ẏ(t)

=

(
1− y∗

y(t)

)
[β1(1−u1)x(t)v(t)+β2(1−u2)x(t)y(t)− (α +µ)y(t)]

=(1−u1)β1x(t)v(t)+(1−u2)β2x(t)y(t)− (α +µ)y(t)

−β1(1−u1)
x(t)v(t)y∗

y(t)
− (1−u2)β2x(t)y∗+β1(1−u1)x∗v∗+β2(1−u2)x∗y∗,
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W3(t) =
β1(1−u1)x∗

γ

(
1− v∗

v(t)

)
v̇(t)

=
β1(1−u1)x∗

γ

(
1− v∗

v(t)

)
[(1−u3)cαy(t)− γv(t)]

=
β1(1−u1)(1−u3)cαx∗y(t)

γ
− β1(1−u1)(1−u3)cαx∗y(t)v∗

γv(t)

+β1(1−u1)v∗x∗−β1(1−u1)v(t)x∗

=β1(1−u1)v∗x∗−β1(1−u1)v(t)x∗− (1−u2)β2x∗y(t)

− [β1(1−u1)x∗v∗]
cα(1−u3)y(t)

γv(t)
+(α +µ)y(t)

=β1(1−u1)v∗x∗−β1(1−u1)v(t)x∗− (1−u2)β2x∗y(t)

− (1−u1)β1
x∗v∗2y(t)

v(t)y∗
+(α +µ)y(t).

Summing up, we have

U̇2(t) =
(

1− x∗

x(t)

)
[N(x(t))−N(x∗)]+β2(1−u2)

(
2− x∗

x(t)
− x(t)

x∗

)
x∗y∗

+β1(1−u1)x∗v∗
(

3− x∗

x(t)
− x(t)v(t)y∗

x∗v∗y(t)
− y(t)v∗

y∗v(t)

)
.

Observe that
(

1− x∗
x(t)

)
[N(x(t))−N(x∗)] = −µ (x(t)−x∗)2

x(t) < 0 and
(

2− x∗
x(t) −

x(t)
x∗

)
< 0 and(

3− x∗
x(t) −

x(t)v(t)y∗

x∗v∗y(t) −
y(t)v∗

y∗v(t)

)
< 0 follows readily from the inequality A.M ≥ G.M. Therefore,

U̇2(t) ≤ 0. Let G2 = {(x(t),y(t),v(t)) ∈ R3
+ : U̇2(t) = 0} and S2 be the largest invariant set

in G2. Then by LaSalle’s invariance principle [65], all non-negative solutions converge to S2.
Moreover, U̇2(t) = 0 if and only if x(t) = x∗ and y(t)v∗ = y∗v(t). Therefore, invariance of S2

yields S2 = {(x(t),y(t),v(t)) ∈ R3
+ : x = x∗,y(t)v∗ = y∗v(t)}. Now any such point of S2 must

satisfy ẋ(t) = 0 ⇒ [s− µx∗]− x∗v(t)
v∗ (β1(1− u1)v∗+ β2(1− u2)y∗) = (s− µx∗)

(
1− v(t)

v∗

)
=

0 ⇒ v(t) = v∗. This gives y(t) = y∗ and S2 = {E∗}. Thus the largest invariant set in G2 is {E∗}
and E∗ is globally asymptotically stable. This completes the proof.

Remark 2.5 We have proved the stability of the two equilibrium points E1 and E∗ with respect

to the virus replication factor c, which measures the number of new virus produced by a single

infected CD4+T cell due to lysis. Thus, for the existence and stability of the interior equilibrium

E∗, the production of new virus due to cell lysis must exceed some lower threshold value c∗,

otherwise the system will be stable with respect to infection-free equilibrium.

2.3.4 Numerical simulations

Here we present simulation results to substantiate our analytical findings considering the pa-
rameter values of Table 2.1 . We fix the values of control parameters as u1 = u2 = u3 = 0.5.
In vitro experiments claim that cell-to-cell dissemination of infection may be 100 times higher
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Figure 2.2: Time evolution of system (2.3) with fixed controls and different initial points. Here
u1 = u2 = u3 = 0.5, c = 50 and other parameters are as in the Table 2.1. These figures show
that the disease-free equilibrium is globally asymptotically stable.

than that of the cell-free mode [101, 104, 105]. We, however, consider β2 is only three times
higher than β1. For these parameter values, the critical value of c is computed as c∗ = 62.069.
For c = 50 (< c∗), we note that R0 = 0.9028 (< 1) and the infection-free equilibrium E1 be-
comes globally asymptotically stable (Fig.2.2), following Theorem 2.3. On the other hand,
following Theorem 2.4, E∗ is globally asymptotically stable (Fig.2.3) for c = 75 > c∗, where
R0 = 1.1042 (> 1).

In Fig. 2.4, we represent the contour plot of the basic reproduction number R0 as a function
of two controls u1 and u3 for different fixed values of the third control u2. The area below
each curve represents the stability region of E∗, while the area above each curve represents the
stability region of E1 for some given value of u2. Fig. 2.4 shows that any non-zero value of
u2 may remove infection by using suitable control regimens of u1 and u3. For example, if we
select u1 = 0.5 and u2 = 0.4 then to remove infection, value of the other control u3 should be
more than 0.669.

2.4 Analysis of the model with time-dependent controls

In the previous section, we have presented analysis of multi-pathways HIV-1 infection model
with constant controls. The study will be more worthy if the controls are considered to be
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Figure 2.3: Solutions starting with different initial values converge to the infected equilibrium
E∗, indicating its global stability. Here c = 75 and other parameters are as in Fig. 2.2.
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Figure 2.4: Contour plot of R0 as a function of two controls u1 and u3 for different fixed values
of u2. Parameters are as in Table 2.1 with c = 75.
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time-dependent. We assume here that all three controls vary with time. We also consider the
cost of antiretroviral drugs and their side effects. CD4+T cells count decreases as the HIV-1
infection progresses. We, therefore, seek to maximize the number of uninfected CD4+T cells
through controls and at the same time minimize the number of infected CD4+T cells because
cell-to-cell infection increases with the number of infected cells. Also, the number of cell-free
virus (released by bursting of infected cell) increases with the number of infected cells, thereby
increasing the cell-free infection.
We define our objective functional subject to the state equations (2.3) as

J(u1,u2,u3) =
∫ t f

0
[K1x(t)−{K2y(t)+A1u2

1(t)+A2u2
2(t)+A3u2

3(t)}] dt. (2.11)

The first term on the right side of (2.11) represents the benefit of susceptible CD4+T cells and
other terms contributes deleterious effects. For instance, the second term signifies the harmful
effect of infected CD4+T cells. It is well known that the antiretroviral drugs have significant
side effects. This deleterious effects of drugs are reflected by u2

1,u
2
2 and u2

3. Here K1, K2 are the
weight constants associated with susceptible and infected CD4+T cells [181]. A1, A2, A3 are
positive weight constants used to balance the size of the terms [88, 112, 182, 183]. Our target
is to find the optimal treatment regimens that maximizes the healthy CD4+T cells, minimizes
the infected CD4+T cells and deleterious effect of three inhibitory drugs. Thus our objective is
to find a triplet of optimal controls (û1, û2, û3) such that

J(û1, û2, û3) = max
(u1,u2,u3)∈Ω

J(u1,u2,u3),

where Ω = {(u1(t),u2(t),u3(t)) : ui(t), i = 1,2,3, is measurable and 0≤ ui(t)≤ 1, ∀t ∈ [0, t f ]}
is the control set and t f is the final time where control stops.

2.4.1 Existence of an optimal control triplet

Theorem 2.6 There exists an optimal control triplet (û1, û2, û3) in Ω associated with the time-

dependent control problem (2.3) that maximizes the objective functional J(u1,u2,u3).

Proof To prove this theorem, we use an existence result from [71]. To apply this result, one
has to satisfy the following hypothesis:

(H1) The set of controls and the corresponding state variables is nonempty.

(H2) The control set Ω is convex and closed.

(H3) The right hand side of the state system is continuous, bounded above by a sum of the
bounded control and state, and can be written as a linear function of ui with coefficients
depending on the state and time.
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(H4) The integrand of the objective functional is concave on Ω.

(H5) There exist constants C1, C2 > 0 and B > 1 such that the integrand of the objective
functional is bounded above by C2−C1(|u1(t)|2 + |u2(t)|2 + |u3(t)|2)B/2.

Following [184], (H1) is satisfied for the control system (2.3) for bounded coefficients. (H2)

holds readily from the definition of the control set Ω. As the controlled system is linear in
u1, u2 and u3, the right hand side of (2.3) satisfies (H3) as the solutions are bounded. The
integrand of the objective functional is concave on the admissible control set Ω. Hence (H4) is
satisfied. Again,

K1x(t)− [K2y(t)+A1u2
1(t)+A2u2

2(t)+A3u2
3(t)]

≤ K1x(t)− [A1u2
1(t)+A2u2

2(t)+A3u2
3(t)]

≤C2−C1(|u1(t)|2 + |u2(t)|2 + |u3(t)|2)B/2,

where C2 depends on the upper bound of x(t) given in (2.5), B> 1 and C1 > 0 as A1, A2, A3 > 0.
Summing up all these results, we conclude that there exists an optimal control triplate. Hence
the theorem.

2.4.2 Optimality system

To derive the necessary conditions for the optimal control triplet (û1, û2, û3), we use Pontrya-
gin’s Maximum principle [185]. We first define the Lagrangian of the optimal control problem
(2.11) subject to the system of differential equations (2.3) as follows:

L = K1x(t)− [K2y(t)+A1u2
1(t)+A2u2

2(t)+A3u2
3(t)].

To maximize the Lagrangian, we construct the Hamiltonian

H(x,y,v;u1,u2,u3;λ1,λ2,λ3) = L+λ1(t)ẋ+λ2(t)ẏ+λ3(t)v̇

=

(
K1x(t)− [K2y(t)+A1u2

1(t)+A2u2
2(t)+A3u2

3(t)]
)

+λ1(t)
(

s−µx(t)− (1−u1(t))β1x(t)v(t)− (1−u2(t))β2x(t)y(t)
)

+λ2(t)
(
(1−u1(t))β1x(t)v(t)+(1−u2(t))β2x(t)y(t)− (α +µ)y(t)

)
+λ3(t)

(
(1−u3(t))cαy(t)− γv(t)

)
,

where λi (i= 1,2,3) are co-state or adjoint variables satisfies the following canonical equations:

λ̇1(t) =−
∂H
∂x

, λ̇2(t) =−
∂H
∂y

, λ̇3(t) =−
∂H
∂v

.
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Following Pontryagin’s Maximum principle [185], we have the following theorem.

Theorem 2.7 If û1, û2, û3 are optimal controls of (2.11) subject to the system of differential

equations (2.3) and x̂, ŷ, v̂ are the corresponding optimal state variables, then there exists co-

state or adjoint variables λi (i = 1,2,3) such that the following conditions are satisfied along

with the control system (2.3):

(i) Co-state equations:

λ̇1(t) = λ1(t)
[
µ +(1−u1(t))β1v(t)+(1−u2(t))β2y(t)

]
−λ2(t)

[
(1−u1(t))β1v(t)+(1−u2(t))β2y(t)

]
−K1,

λ̇2(t) = λ1(t)
[
(1−u2(t))β2x(t)

]
−λ2(t)

[
(1−u2(t))β2x(t)− (α +µ)

]
−λ3(t)

[
1−u3(t)

]
cα +K2,

λ̇3(t) = λ1(t)
[
(1−u1(t))β1x(t)

]
−λ2(t)

[
(1−u1(t))β1x(t)

]
+ γλ3(t);

(2.12)

(ii) Optimality conditions:

H(x̂, ŷ, v̂; û1, û2, û3;λ1,λ2,λ3) = max
0≤ui≤1 , i=1,2,3

H(x̂, ŷ, v̂;u1,u2,u3;λ1,λ2,λ3),

which implies

∂H
∂u1

∣∣
u1=û1

= 0⇒ û1 =
(λ1−λ2)β1x̂v̂

2A1
,

∂H
∂u2

∣∣
u2=û2

= 0⇒ û2 =
(λ1−λ2)β2x̂ŷ

2A2
,

∂H
∂u3

∣∣
u3=û3

= 0⇒ û3 =
−λ3cα ŷ

2A3
;

(2.13)

(iii) Transversality conditions:

λi(t f ) = 0, i = 1,2,3. (2.14)

The optimal system consists of the control system (2.3) coupled with the co-state equations
given by (2.12) with initial conditions (2.4) and transversality conditions (2.14) together with
the optimal control triplet given by (2.13).
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Hence we obtain the following optimal system:

ẋ(t) = s−µx(t)− (1−u1(t))β1x(t)v(t)− (1−u2(t))β2x(t)y(t),

ẏ(t) = (1−u1(t))β1x(t)v(t)+(1−u2(t))β2x(t)y(t)− (α +µ)y(t),

v̇(t) = (1−u3(t))cαy(t)− γv(t),

λ̇1(t) = λ1(t)
[
µ +(1−u1(t))β1v(t)+(1−u2(t))β2y(t)

]
−λ2(t)

[
(1−u1(t))β1v(t)+(1−u2(t))β2y(t)

]
−K1,

λ̇2(t) = λ1(t)
[
(1−u2(t))β2x(t)

]
−λ2(t)

[
(1−u2(t))β2x(t)− (α +µ)

]
−λ3(t)

[
1−u3(t)

]
cα +K2,

λ̇3(t) = λ1(t)
[
(1−u1(t))β1x(t)

]
−λ2(t)

[
(1−u1(t))β1x(t)

]
+ γλ3(t),

x(0) = x0 > 0, y(0) = y0 ≥ 0, v(0) = v0 ≥ 0,
λi(t f ) = 0, i = 1,2,3,

where

u1 = min
{

1,max
{

(λ1−λ2)β1xv
2A1

,0
}}

,

u2 = min
{

1,max
{

(λ1−λ2)β2xy
2A2

,0
}}

,

u3 = min
{

1,max
{
−λ3cαy

2A3
,0
}}

.

(2.15)

2.4.3 Uniqueness of optimal system

Theorem 2.8 Solution of the optimal system (2.15) is unique for sufficiently small t f .

Proof If possible, let (x,y,v,λ1,λ2,λ3) and (x̄, ȳ, v̄, λ̄1, λ̄2, λ̄3) be two solutions of the optimality
system (2.15). Let ψ = e−λ tθ and ψ ′ = e−λ tθ ′, where

ψ =

(
x(t),y(t),v(t),λ1(t),λ2(t),λ3(t)

)T

, θ =

(
X(t),Y (t),V (t),a1(t),a2(t),a3(t)

)T

,

ψ
′ =

(
x̄(t), ȳ(t), v̄(t), λ̄1(t), λ̄2(t), λ̄3(t)

)T

, θ
′ =

(
X̄(t),Ȳ (t),V̄ (t), ā1(t), ā2(t), ā3(t)

)T

,

and λ has to be chosen suitably. Moreover, we have

u1 = min

{
1,max

{
(a1−a2)β1XVeλ t

2A1
,0

}}
, ū1 = min

{
1,max

{
(ā1− ā2)β1X̄V̄ eλ t

2A1
,0

}}
,

u2 = min

{
1,max

{
(a1−a2)β2XYeλ t

2A2
,0

}}
, ū2 = min

{
1,max

{
(ā1− ā2)β2X̄Ȳ eλ t

2A2
,0

}}
,

u3 = min
{

1,max
{
−a3cαY

2A3
,0
}}

, ū3 = min
{

1,max
{
− ā3cαȲ

2A3
,0
}}

.
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From the first equation of (2.15), we obtain

Ẋ(t)+λX(t) = se−λ t−µX(t)− (1−u1(t))β1X(t)V (t)eλ t− (1−u2(t))β2X(t)Y (t)eλ t ,

˙̄X(t)+λ X̄(t) = se−λ t−µX̄(t)− (1− ū1(t))β1X̄(t)V̄ (t)eλ t− (1− ū2(t))β2X̄(t)Ȳ (t)eλ t .

Subtracting and integrating for t = 0 to t = t f , we have

[X(t f )− X̄(t f )]
2

2
+(λ +µ)

∫ t f

0
[X(t)− X̄(t)]2dt

=−β1

∫ t f

0
eλ t [(1−u1(t))X(t)V (t)− (1− ū1)X̄(t)V̄ (t)](X(t)− X̄(t)) dt

−β2

∫ t f

0
eλ t [(1−u2(t))X(t)Y (t)− (1− ū2)X̄(t)Ȳ (t)](X(t)− X̄(t)) dt.

(2.16)

Observe that ∫ t f

0
[(1−u1(t))X(t)V (t)− (1− ū1(t))X̄(t)V̄ (t)](X(t)− X̄(t))dt

=
∫ t f

0
[(ū1(t)−u1(t))(X(t)− X̄(t))X(t)V (t)+(1− ū1(t))[(X(t)

− X̄(t))2V (t)+ X̄(t)(V (t)−V̄ (t))(X(t)− X̄(t))]]dt

≤ Q1

∫ t f

0
[(u1(t)− ū1(t))2 +(X(t)− X̄(t))2 +(V (t)−V̄ (t))2]dt,

(2.17)

where Q1 is determined from the bounds of u1(t), ū1(t),X(t), X̄(t),V (t),V̄ (t).
Similarly, ∫ t f

0
[(1−u2(t))X(t)Y (t)− (1− ū2(t))X̄(t)Ȳ (t)](X(t)− X̄(t))dt

≤ Q2

∫ t f

0
[(u2(t)− ū2(t))2 +(X(t)− X̄(t))2 +(Y (t)− Ȳ (t))2]dt,

(2.18)

where Q2 is determined from the bounds of u2(t), ū2(t),X(t), X̄(t),Y (t),Ȳ (t).
Again,

∫ t f

0
(u1(t)− ū1(t))2dt ≤ Q3

β 2
1 e2λ t f

4A2
1

∫ t f

0
[(a1(t)−a2(t))X(t)V (t)

− (ā1(t)− ā2(t))X̄(t)V̄ (t)]2dt ≤ Q3
β 2

1 e2λ t f

4A2
1

∫ t f

0
[(X(t)− X̄(t))2

+(V (t)−V̄ (t))2 +(a1(t)− ā1(t))2 +(a2(t)− ā2(t))2]dt,

(2.19)

where Q3 depends on the bounds of a1(t), ā1(t),a2(t), ā2(t),X(t), X̄(t),V (t),V̄ (t).
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Similarly,

∫ t f

0
(u2(t)− ū2(t))2dt ≤ Q4

β 2
2 e2λ t f

4A2
2

∫ t f

0
[(X(t)− X̄(t))2 +(Y (t)− Ȳ (t))2

+(a1(t)− ā1(t))2 +(a2(t)− ā2(t))2]dt,

(2.20)

where Q4 depends on the bounds of a1(t), ā1(t),a2(t), ā2(t),X(t), X̄(t),Y (t),Ȳ (t) and

∫ t f

0
(u3(t)− ū3(t))2dt ≤ Q5

c2α2

4A2
3

∫ t f

0
[a3(t)Y (t)− ā3(t)Ȳ (t)]2dt

≤ Q5
c2α2

4A2
3

∫ t f

0
[(Y (t)− Ȳ (t))2 +(a3(t)− ā3(t))2]dt,

(2.21)

where Q5 depends on the bounds of Y (t),Ȳ (t),a3(t), ā3(t).
Using (2.17), (2.18), (2.19), (2.20) in (2.16), one can obtain

[X(t f )− X̄(t f )]
2

2
+(λ +µ)

∫ t f

0
[X(t)− X̄(t)]2dt

≤ R1e3λ t f

∫ t f

0
[(X(t)− X̄(t))2 +(Y (t)− Ȳ (t))2 +(V (t)−V̄ (t))2

+(a1(t)− ā1(t))2 +(a2(t)− ā2(t))2]dt,

(2.22)

where R1 depends on Q1, Q2, Q3, Q4, β 2
1

4A2
1

and β 2
2

4A2
2
.

By a similar process, we obtain

[Y (t f )− Ȳ (t f )]
2

2
+(λ +(α +µ))

∫ t f

0
[Y (t)− Ȳ (t)]2dt

≤ R2e3λ t f

∫ t f

0
[(X(t)− X̄(t))2 +(Y (t)− Ȳ (t))2 +(V (t)−V̄ (t))2

+(a1(t)− ā1(t))2 +(a2(t)− ā2(t))2]dt.

(2.23)

[V (t f )−V̄ (t f )]
2

2
+(λ + γ)

∫ t f

0
[V (t)−V̄ (t)]2dt

≤ R3

∫ t f

0
[(Y (t)− Ȳ (t))2 +(V (t)−V̄ (t))2 +(a3(t)− ā3(t))2]dt.

(2.24)

[a1(0)− ā1(0)]2

2
+(λ +µ)

∫ t f

0
[a1(t)− ā1(t)]2dt

≤ R4e3λ t f

∫ t f

0
[(X(t)− X̄(t))2 +(Y (t)− Ȳ (t))2 +(V (t)−V̄ (t))2

+(a1(t)− ā1(t))2 +(a2(t)− ā2(t))2]dt.

(2.25)
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[a2(0)− ā2(0)]2

2
+(λ +(α +µ))

∫ t f

0
[a2(t)− ā2(t)]2dt

≤ R5e3λ t f

∫ t f

0
[(X(t)− X̄(t))2 +(Y (t)− Ȳ (t))2 +(a1(t)− ā1(t))2

+(a2(t)− ā2(t))2 +(a3(t)− ā3(t))2]dt.

(2.26)

[a3(0)− ā3(0)]2

2
+(λ + γ)

∫ t f

0
[a3(t)− ā3(t)]2dt

≤ R6e3λ t f

∫ t f

0
[(X(t)− X̄(t))2 +(a1(t)− ā1(t))2

+(a2(t)− ā2(t))2 +(a3(t)− ā3(t))2]dt.

(2.27)

Here Ri (i = 1,2,3,4,5,6) depends on the coefficients and bounds of the state variables as well
as co-state variables. From (2.22) − (2.27), we get[

(λ +µ)−
6

∑
i=1, i 6=3

Rie3λ t f

]∫ t f

0
[X(t)− X̄(t)]2dt +

[
(λ +(α +µ))

−
5

∑
i=1, i 6=3

Rie3λ t f −R3

]∫ t f

0
[Y (t)− Ȳ (t)]2dt +

[
(λ + γ)−

4

∑
i=1, i6=3

Rie3λ t f

−R3

]∫ t f

0
[V (t)−V̄ (t)]2dt +

[
(λ +µ)−

6

∑
i=1, i 6=3

Rie3λ t f

]∫ t f

0
[a1(t)− ā1(t)]2dt

+

[
(λ +(α +µ))−

6

∑
i=1, i 6=3

Rie3λ t f

]∫ t f

0
[a2(t)− ā2(t)]2dt

+

[
(λ + γ)− (R3 +R5e3λ t f +R6e3λ t f

]∫ t f

0
[a3(t)− ā3(t)]2dt ≤ 0.

(2.28)

It can be easily seen that the coefficients of the integrals on the left hand side of (2.28) can
be made non-negative by selecting λ sufficiently large and t f sufficiently small. For instance,
if we set λ > ∑

6
i=1, i 6=3 Ri− µ and select t f <

1
3λ

ln λ+µ

∑
6
i=1, i6=3 Ri

, then the coefficient λ + µ −

∑
6
i=1, 6=3 Rie3λ t f of the integral

∫ t f
0 [X(t)− X̄(t)]2dt becomes non-negative. We can choose λ and

t f for each of the rest integrals in a similar manner. We then select maximum value of different
λ and minimum value of different t f . Corresponding to this maximum λ and minimum t f ,
coefficients of all integrals of (2.28) will be non-negative. This gives X(t) = X̄(t), Y (t) = Ȳ (t),
V (t) = V̄ (t), a1(t) = ā1(t), a2(t) = ā2(t), a3(t) = ā3(t). Therefore, x(t) = x̄(t), y(t) = ȳ(t),
v(t) = v̄(t) and λ1(t) = λ̄1(t), λ2(t) = λ̄2(t), λ3(t) = λ̄3(t) and thus two solutions of (2.15) are
identical. Hence, for sufficiently small t f , solution of (2.15) is unique. Thus the theorem is
proven.

2.4.4 Numerical simulations

In this section, we numerically solve the optimal systems (2.3) and (2.11) with the same set of
parameters given in Table 2.1. State equations are solved with the help of fourth order Runge-
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Kutta forward method and adjoint equations (co-state variables) are solved by fourth order
Runge-Kutta backward method. For the uniqueness of the optimal solution, length of the time
interval [0, t f ] should be small [70, 112]. Here we consider treatment period for 50 days and
therefore t f is set 50 in each simulation. As the weight parameters K1, K2 are associated with
CD4+T cells, we assign same weight value to them. Assuming the same deleterious effects of
all three inhibitors, the same weights for A1,A2,A3 are considered unless stated otherwise. The
initial value of the state variables are chosen as x(0) = 500, y(0) = 100, v(0) = 100 [116]. To
observe the efficacy of different inhibitors with mono-drug or multi-drug therapy protocols, we
examine the following control settings:
A) Mono-drug therapy

(i) Only the blocker which reduces cell-free infection is administered, i.e. u1 6= 0, u2 = 0 =

u3.

(ii) Only the blocker which reduces cell-to-cell infection is administered, i.e. u1 = 0, u2 6=
0, u3 = 0.

(iii) Only the blocker which reduces production of new virus particles is administered, i.e.
u1 = 0 = u2, u3 6= 0.

B) Multi-drug therapy

(i) One blocker is administered to reduce the cell-free infection and the second blocker is
administered to reduce cell-to-cell infection, i.e. u1 6= 0,u2 6= 0,u3 = 0.

(ii) One blocker is administered to reduce the cell-to-cell infection and the other blocker is
administered to reduce the production of new virus particles, i.e. u1 = 0,u2 6= 0,u3 6= 0.

(iii) One blocker is administered to reduce the cell-free infection and another blocker is ad-
ministered to reduce the production of new virus particles, i.e. u1 6= 0,u2 = 0,u3 6= 0.

(iv) All three blockers are administered simultaneously, i.e. u1 6= 0,u2 6= 0,u3 6= 0.

In each case, we compare the effect of different control measures with the result of no
control. A comparison among the strategies A(i), A(ii) and A(iii) is presented in Fig. 2.5. It
shows that when we apply PI drug only (the case u1 = u2 = 0, u3 6= 0) to block the production of
new virus particles, a significant increase in susceptible CD4+T cells population and a decrease
in infected CD4+T cells as well as in virus population is observed (see third column of Fig.
2.5). Note that PI drug is in its upper bound up to 39 days and then sharply drops to zero
at the end of treatment period. It is noticeable that the virus load goes to an undetectable
level immediately after applying the control but revert sharply after 40 days of treatment point.
In the case of no control, all cell counts decrease slowly. Note that the changing rates of
susceptible and infected CD4+T become significantly slower through out the stipulated time in
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Figure 2.5: Comparison of different mono-drug therapies under case (A) with no therapy. First
row shows the variation in susceptible CD4+T cell population for cases A(i) to A(iii). Second
and third rows show the same for infected CD4+T cell and virus count, respectively. Here solid
line indicates the case of single control only and dotted line represents the case of no control.
Fourth row represents the optimal controls under cases A(i) to A(iii). Parameters are as in Table
2.1 with c = 75. Here K1 = 1 = K2 and A1 = A2 = A3 = 5.
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the presence of other two mono-drug therapies, though the overall trend remains unaltered. In
mono-drug therapy, controls u1 and u2 are at its maximal value until they drop to zero at 42 and
45 days, respectively (see Figs. 2.5 i,ii in the last row). It says that all mono-blockers should be
administered for a longer time with high dose. Out of these three mono-drug therapy protocols,
the blocker which reduces cell-to-cell dissemination of infection gives better control (Fig. 2.5
ii) compare to other two. Here increment in the susceptible CD4+T cells count is very high and
reduction of infected CD4+T cells and virus count is significantly low compare to other two
mono-drug therapies.

When two blockers are used then it is observed that both the multi-drug therapy protocols
B(i) and B(ii), which contain the blocker that inhibits cell-to-cell spread of infection, perform
equally good (Figs. 2.6 (i), 2.7 (ii)). In both cases, susceptible CD4+T cells count is signifi-
cantly high, but infected CD4+T cells & virus count remain low, indicating better control by
these inhibitors. However, the drug protocol B(iii) is relatively less effective in controlling HIV
infection. A multi-drug that contains all three blockers shows slightly better control compare
to the controls B(i) and B(ii) (Fig. 2.7). Considering the cost and other deleterious effects of
antiretroviral drugs, the multi-drug therapy protocols B(i) and B(ii) would be a better option to
treat HIV infected patients compare to the protocol B(iv). If we look at the control variables of
corresponding protocols B(i) and B(ii) presented in the fourth row of Fig. 2.6, one can easily
notice that the multi-drug therapy protocol B(ii) is better than B(i). This is because the drug PI
(corresponding to control u3) is gradually reduced from day 19th of its application, whereas in
the former case, the drug RTI (corresponding to control u1) is gradually reduced from 30th day
of its application to achieve similar blood profile.

Weight constants play important role in optimal control dynamics [186]. With this view,
we demonstrated the effect of weight constants on the system dynamics in case of multi-drug
therapy B(iv). Since the weight constants K1, K2 are associated with the same cells, we vary
them simultaneously with same weights, keeping other parameters fixed. Fig. 2.8 shows that
healthy CD4+T cells count increases with the increasing weight constant but both the counts
for infected CD4+T cells and virus decrease with the increasing value of weight constant. Thus,
plasma profiles of host cells and virus particles become better as the weight increases. In Fig.
2.9, we show the effect of other weight parameters A1,A2,A3 on the system while K1, K2 remain
fixed. It shows that healthy CD4+T cells count decreases with increasing weight constants. On
the other hand, cells count of infected CD4+T cells and virus increase with increasing value
of weight constants. So, plasma profiles become worsen with increasing value of the weight
constants.

2.5 Discussion

We first proved that the solutions of our system remain positive for all future time when started
with positive initial value and are uniformly bounded. Using next generation matrix, we have
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Figure 2.6: Comparison of different multi-drug therapies under case (B) with no therapy. First
row shows the variation in susceptible CD4+T cell population for cases B(i) to B(iii). Second
and third rows show the same for infected CD4+T cell population and virus count, respectively.
Solid line represents the case of two controls and dotted line indicates the case of no control.
Fourth row represents the corresponding optimal controls under cases B(i) to B(iii). Parameters
are as in Fig. 2.5.
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Figure 2.7: This figure shows the variation in susceptible CD4+T cell, infected CD4+T cell and
virus population in the presence of all three inhibitors (case B(iv)). Here solid line represents
the case of three controls and dotted line indicates the case of no control. Second row represents
the control profile under the case B(iv). Parameters are in Fig. 2.5.
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Figure 2.8: Effect of weight parameters K1, K2 on the system populations with control scheme
B(iv). These figures shows that susceptible CD4+T cells increase with increasing weight con-
stant. However, infected CD4+T cells and virus counts decrease with increasing weight con-
stant. Parameters are as in Fig. 2.5 and A1 = A2 = A3 = 5.
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Figure 2.9: Effect of weight parameters A1, A2, A3 on the system populations with control
scheme B(iv). These figures shows that healthy CD4+T cells decreases, while infected CD4+T
cells and virus counts increase with increasing values of th weight parameters. Rest of the
parameters are as in Fig. 2.5 with K1 = K2 = 1.

determined two basic reproduction numbers, one for virus-to-cell transmission and the other
for cell-to-cell transmission, when the controls are constant. The basic reproduction number
(of the entire system) in presence of both transmission modes is found to be the sum of these
two. Basic reproduction number is an important parameter in disease models and determines
whether a disease will be established or eliminated from the system. We have proved that the
infection-free steady state is locally and globally asymptotically stable when the basic repro-
duction number of the system is less than unity, or alternatively, when the virus replication
factor is not too high (c < c∗). The infected steady state, on the other hand, is locally and glob-
ally asymptotically stable if the basic reproduction number is greater than unity, alternatively,
the virus replication factor is sufficiently high (c > c∗). When the controls are not constant
but time-dependent then the infection-free equilibrium does not arise, but we derive a set of
necessary conditions for optimal control of the infection by applying Pontryagin’s Maximum
Principle. Our objective in such a case was to find the optimal treatment regimens that max-
imizes the uninfected CD4+T cells count but minimizes infected CD4+T cells count and the
deleterious effect of antiretroviral drugs. We analytically show that there exists an optimal con-
trol triplet associated with the time-dependent controls that maximize the objective function.
Numerically we investigated and compared the CD4+T cells count and virus load under mono-
or multi-drugs therapy protocols. Though the drug therapy for HIV is for life, we have pre-
sented here a 50-days treatment schedule to check the efficacy of the new possible drug that
blocks the cell-to-cell spread of infection. The treatment regime, however, can be extended as
per the requirement. The results show that cell-to-cell mono blocker gives better control than
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the other two mono blocker controls. In case of multi blockers, any combined drug that blocks
cell-to-cell infection may be a better option for treating HIV infection. It is observed that the
multi-drug therapy protocols B(i) and B(ii) are equally good to increase healthy CD4+T cells
count and to keep low virus load. Interestingly, both of these control profiles contain cell-to-cell
blocker. However, looking at the optimal control profiles of B(i) and B(ii) and keeping in mind
the cost of antiviral drugs along with its deleterious effects, the multi-drug therapy protocols
B(ii) that contains PI and cell-to-cell inhibitors is better than B(i) because PI (u3 control) has
to be applied at higher dose for lesser period compare to RTI (u1 control) to achieve optimal-
ity. Thus, our study reveals that a drug which blocks cell-to-cell dissemination of infection
could be a novel therapeutic target in controlling HIV-1 infection and supports the observation
that future control strategies of in-host HIV-1 infection through drug therapy should focus on
blocking cell-to-cell dissemination of infection [97]. Obviously, there are avenues for further
improvement in the model. One can modify this multi-pathways and multi-drugs model by
incorporating the effect of cytotoxic T lyphocytes (CTL). Delay is an integral part of differ-
ent physiological activities. For example, response of our immune system is not instantaneous
rather involves immune response delay. One can consider such delay-induced system and then
study the effect of different drug therapies.





3
Optimal control in a multi-pathways in-host

HIV infection model with saturated
incidence, intracellular delay and
self-proliferation of the host cells

3.1 Introduction

In developing mathematical models for disease dynamics, it is imperative to express the disease
transmission term mathematically. Most models of HIV-1 infection assume that the transmis-
sion process follows a mass action or bilinear law [91, 131, 172, 176, 187]. This law says that
the infection rate at any time is proportional to the product of viral and host cell numbers [188].
In our previous model (2.3), we assumed the transmission process in both modes of infection
follows a mass action law. In particular, we expressed the cell-free mode and cell-to-cell mode
of transmissions as f2(x,v) = β1x(t)v(t) and f3(x,y) = β2x(t)y(t), where β1 and β2 are the
respective transmission coefficients, and x(t),y(t), v(t) are the concentrations of susceptible
CD4+T cells, productively infective CD4+T cells and virus particles at any time t. But, the
mass action law has some unrealistic properties, e.g., the number of newly infected CD4+T
cells produced by a single virus depends on x and becomes very high when x is large [189]. To
prevent this unboundedness of the contact rate, some authors [165, 166] used saturated infec-
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tion rate f2(x,v) =
β1xv
1+v . On the other hand, [89] considered the saturation effect on x population

as f2(x,v) =
β1xv
a+x with a as the half-saturation constant to understand the failure of CD8+T cells

vaccination against Simian/Human Immunodeficiency Virus. A generalized Hill-type function
f2(x,v) =

β1xnv
an+xn was considered in [130, 167, 168] to observe the dynamics of HIV-1 infection

models. Most authors [99, 131, 133, 172, 173] used the mass action form to represent the of
cell-to-cell incidence function f3(x,y) = β2xy.

Time delay is crucial for realistic representation of biological phenomena [190]. In the epi-
demic model, the intracellular delay is an obvious event to be considered to make the epidemic
model more realistic. In the case of HIV, the process between the first effective contact of a
virus/ infected cell with a healthy CD4+T cell and the latter becoming productively infectious
is not instantaneous. After entering a virus into the healthy cell, many intracellular mechanisms
occur to make the cell productively infectious. The time required for transforming a healthy
cell into an infectious cell is known as the intercellular delay. Various HIV-1 infection models
have been studied considering such an intracellular delay [91, 94, 130–132, 165–167, 170–
172, 191, 192].

CD4+T cell is the main target of HIV. The cell count gradually decreases due to the infec-
tion. In the presence of HIV antigen, CD4+T cells proliferate and try to maintain homeostasis.
Such proliferation was not considered in the in-host HIV model studied in the previous chap-
ter. In this chapter, we modify our previously studied model from three points of view. First,
we consider saturated type incidence functions f2(x,v) =

β1xv
a+v , f3(x,y) =

β1xy
b+y , where a and b

are respective half-saturation constants. Secondly, we consider the proliferation of susceptible
CD4+T cells in its rate equation. Third, the intracellular delay is considered in the infection
transmission terms. With these modifications, the model system (2.3) becomes

ẋ(t) = s−µx(t)+ rx(t)
(

1− x(t)+ y(t)
K

)
− (1−u1(t))

β1x(t)v(t)
a+ v(t)

− (1−u2(t))
β2x(t)y(t)
b+ y(t)

,

ẏ(t) = (1−u1(t))
β1x(t− τ)v(t− τ)

a+ v(t− τ)
+(1−u2(t))

β2x(t− τ)y(t− τ)

b+ y(t− τ)

− (α +µ)y(t),

v̇(t) = (1−u3(t))cαy(t)− γv(t).

(3.1)

with initial conditions

x(θ) = φ1(θ)> 0,y(θ) = φ2(θ)> 0,v(θ) = φ3(θ)> 0,θ ∈ [−τ,0],where

φ = (φ1,φ2,φ3) ∈ R3
+with φi(θ)≥ 0 (θ ∈ [−τ,0], i = 1,2,3)

and φ2(0)> 0,φ3(0)> 0.

(3.2)

Here r is the intrinsic growth rate of the susceptible CD4+T cell, and K is the carrying capacity.
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The three controls u1, u2 and u3 bear the same meaning as before. All parameters are positive
due to the biological demands. The objective is to find the effect of saturated incidence and
intracellular delay in the dynamics of the in-host HIV model with controls.

This chapter is arranged in the following sequence. In Section 3.2, we present some pre-
liminary results. In section 3.3, we analyze the dynamics when controls are constant. Some
simulation results are also presented here to validate the analytical findings. Section 3.4 deals
with the optimal control of the system when controls are time-dependent. We give the exis-
tence and uniqueness of the optimal control triplet. A comparison of different control schemes
is presented in numerical simulations. The chapter ends with a discussion in Section 3.5.

3.2 Preliminaries

Let M =C([−τ,0],R3
+) be the Banach Space of continuous real-valued functions mapping from

[−τ,0] to R3
+ with sup-norm ‖φ‖= sup−τ≤θ≤0{|φ(θ)|}, where φ = (φ1,φ2,φ3)∈R3

+. Follow-
ing fundamental theory of functional differential equations [193], for any φ ∈C([−τ,0],R3

+),
there exists a unique solution

Ω(t,φ) = (x(t,φ),y(t,φ),v(t,φ))

of the system (3.1) with initial conditions (3.2).

Lemma 3.1 Let Ω(t,φ) = (x(t),y(t),v(t)) be solutions of system (3.1) with initial conditions

(3.2). Then the solutions are positively invariant provided u1 = 1,u2 = 1 do not hold simulta-

neously and u3 ∈ [0,1). The solutions are uniformly bounded on the region

Σ =

{
Ω(t,φ) ∈ R3

+ | 0 < x(t)≤ x0,0≤ y(t)≤ 2(s+rx0)
µ

,

0≤ v(t)≤ 2cα(s+rx0)
γµ

}
(3.3)

with x0 =
K
2r [(r−µ)+

√
(r−µ)2 + 4rs

K ], µK > s and r > µ .

Proof First we show that x(t) is positive for all t ≥ 0. If not, there exists a time t1 > 0 such
that x(t) > 0 for all t ∈ [0, t1) and x(t1) = 0. Now put t = t1 in the first equation of (3.1), then
we get ẋ(t1) = s. This implies that x(t) is increasing at t = t1. Therefore, there exists t̃ > 0,
sufficiently small, such that for all t ∈ (t1− t̃, t1) ⊂ [0, t1), x(t) < 0, which is a contradiction.
Hence x(t)> 0, for all t ≥ 0. From the second equation of (3.1), we get

ẏ(t)≥ (1−u2(t))
β2x(t− τ)y(t− τ)

b+ y(t− τ)
− (α +µ)y(t)

=⇒ y(t)≥ y(0)e−(α+µ)t +
∫ t

0
(1−u2(m))

β2x(m− τ)y(m− τ)

b+ y(m− τ)
e−(α+µ)(t−m)dm.



70
Chapter 3. Optimal control in a multi-pathways in-host HIV infection model with

saturated incidence, intracellular delay and self-proliferation of the host cells

From the third equation of (3.1), one obtains

v(t) = v(0)e−γt +
∫ t

0
(1−u3(m))cαy(m)e−γ(t−m)dm.

Applying (3.2), we have y(t)≥ 0 and v(t)≥ 0, for all t ≥ 0. Therefore, all solutions of(3.1) are
positively invariant.

Now, we show that all solutions of (3.1) are bounded. First equation of (3.1) can be ex-
pressed as

ẋ≤− 1
K
[rx2−K(r−µ)x− sK]. (3.4)

Assuming the condition r > µ , we define a function f (x) = rx2−K(r−µ)x− sK. Therefore,

the equation f (x)= 0 has two roots, say, x0 and x̃, where x0 =
K
2r [(r−µ)+

√
(r−µ)2 + 4rs

K ]> 0

and x̃ = K
2r [(r−µ)−

√
(r−µ)2 + 4rs

K ]< 0. We also assume that µK > s, so that CD4+T cells
count decreases if it ever reaches K [194]. Hence, (3.4) can be written as

ẋ≤− r
K
(x− x0)(x− x̃)

x(t)≤ x0− x̃e−
x0−x̃

K t+c1

1− e−
x0−x̃

K t+c1
,

where the constant c1 can be determined by the initial conditions (3.2) and hence

lim
t→∞

sup x(t)≤ x0. (3.5)

To find the upper boundary region, we define

D(t) = x(t)+ x(t− τ)+ y(t).

At t = 0, D(0) = x(0)+ x(−τ)+ y(0) and from the initial conditions (3.2), we have D(0) =
φ1(θ)+φ1(θ)+φ2(θ) > 0, where θ ∈ [−τ,0]. Hence, D(t) > 0 for all t ≥ 0. Differentiating
D(t) with respect to t, we get

Ḋ(t) =ẋ(t)+ ẋ(t− τ)+ ẏ(t)

=s−µx(t)+ rx(t)
(

1− x(t)+ y(t)
K

)
− (1−u1(t))

β1x(t)v(t)
a+ v(t)

− (1−u2(t))
β2x(t)y(t)
b+ y(t)

+ s−µx(t− τ)+ rx(t− τ)
(

1− x(t− τ)+ y(t− τ)

K

)
− (1−u1(t− τ))

β1x(t− τ)v(t− τ)

a+ v(t− τ)
− (1−u2(t− τ))

β2x(t− τ)y(t− τ)

b+ y(t− τ)
+(1−u1(t))

β1x(t− τ)v(t− τ)

a+ v(t− τ)
+(1−u2(t))

β2x(t− τ)y(t− τ)

b+ y(t− τ)
− (α +µ)y(t)

≤ 2s−µ[x(t)+ x(t− τ)+ y(t)]+ r[x(t)+ x(t− τ)].
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From (3.5), one then have
Ḋ(t)≤ 2(s+ rx0)−µD(t).

Therefore,

lim
t→∞

supD(t)≤ 2(s+ rx0)

µ
.

We then immediately have limsupt→∞ y(t) ≤ 2(s+rx0)
µ

and from the third equation of (3.1), we

then obtain limsupt→∞ v(t)≤ 2cα(s+rx0)
γµ

. Hence the lemma is proven.

3.3 Model analysis for fixed controls

Controls parameters ui, i = 1,2,3, may be either constant or time-dependent. To analyze the
model, we first consider ui as constant and in the subsequent section, we consider ui as time-
dependent.

Lemma 3.2 The system (3.1) has two equilibrium points.

1. The infection-free equilibrium point E1 = (x0,0,0) always exists with x0 = K
2r

[
(r− µ) +√

(r−µ)2 + 4rs
K

]
.

2. The infected equilibrium point E∗ = (x∗,y∗,v∗) exists if

(i) either β2 < β ∗2 with c > c∗(β2), or β2 > β ∗2 with c > 0,

(ii) u1 = 1 and u2 = 1 do not hold simultaneously and u3 ∈ [0,1).

Here β ∗2 = b(α+µ)
(1−u2)x0

, c∗(β2) =
(1−u2)

(1−u1)(1−u3)
aγ

bαβ1
(β ∗2 −β2), v∗ = Ay∗, y∗ = s−µx∗+rx∗(1− x∗

K )
rx∗
K +(α+µ)

and x∗

is the positive real root of the quartic equation

f (x) = M1x4 +M2x3 +M3x2 +M4x+M5 = 0, (3.6)

where

A = (1−u3)
cα

γ
, B = A[(1−u1)β1 +(1−u2)β2], C = (α +µ)(a+bA),

D = 1
abγ(α+µ)

(
(1−u1)(1−u3)β1bcα +(1−u2)aβ2γ

)
x0,M1 =− r2

K2

(
B+(α +µ)A

)
,

M2 =
ab(α+µ)r2D

x0K2 + 2Ar(α+µ)(r−µ)
K + Br

K (r−α−2µ)+ Cr2

K2 , M3 =
ab(α+µ)r

K

(2(α+µ)D
x0

− r
K

)
+B
( rs

K +(α +µ)(r−µ)
)
− Cr

K (r−α−2µ)−A(α +µ)
(
(r−µ)2− 2rs

K

)
,

M4 = ab(α +µ)2(2(α+µ)D
x0

− 2r
K

)
+Bs(α +µ)−C

( rs
K +(α +µ)(r−µ)

)
−2As(α +µ)(r−µ),M5 =−

(
ab(α +µ)3 + s(α +µ)(C+As2)

)
.
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Proof The equilibrium points are the biologically feasible solutions of

s−µx(t)+ rx(t)
(

1− x(t)+ y(t)
K

)
− (1−u1(t))

β1x(t)v(t)
a+ v(t)

− (1−u2(t))
β2x(t)y(t)
b+ y(t)

= 0,

(1−u1(t))
β1x(t− τ)v(t− τ)

a+ v(t− τ)
+(1−u2(t))

β2x(t− τ)y(t− τ)

b+ y(t− τ)
− (α +µ)y(t) = 0,

(1−u3(t))cαy(t)− γv(t) = 0.

The equilibrium density of the infection-free equilibrium point E1 is
x0 =

K
2r

[
(r−µ)+

√
(r−µ)2 + 4rs

K

]
, which is the positive root of

s−µx(t)+ rx(t)
(

1− x(t)
K

)
= 0.

It always exists without any conditions. The infected equilibrium point E∗ = (x∗,y∗,v∗), where

v∗ = (1−u3)
cα

γ
y∗, y∗ = s−µx∗+rx∗(1− x∗

K )
rx∗
K +(α+µ)

and x∗ is the positive real root of the quartic equation
(3.6). Observe that, if u1 = 1 and u2 = 1 are both simultaneously hold, then y→ 0 as t→∞; also
if u3 = 1 then v→ 0 as t→∞. Therefore, infected equilibrium E∗ does not exists for condition
(ii) of the Lemma 3.2. Let the equation (3.6) has at least one positive real root, say, x∗, then E∗

exists if y∗ > 0. In this case, y∗ > 0 if s−µx∗+ rx∗(1− x∗
K )> 0⇒ r/Kx∗2− (r−µ)x∗− s < 0.

Since x0 > 0 and x̃ < 0 be two roots of the equation r/Kx∗2− (r−µ)x∗− s = 0, then

r/Kx∗2− (r−µ)x∗− s < 0⇒ (x∗− x0)(x∗− x̃)< 0⇒ x∗ < x0 as x∗− x̃ > 0.

Therefore, y∗ exists if and only if x∗ < x0 and hence, E∗ exists if 0 < x∗ < x0. Again, from the
second equation of the system (3.1), we have

(1−u1)(1−u3)
β1cα

γ

x∗

a+ v∗
+(1−u2)β2

x∗

b+ y∗
− (α +µ) = 0.

It is obvious that 1
a+v∗ ≤

1
a and 1

b+y∗ ≤
1
b , where a,b 6= 0. As x∗ < x0, the above expression

becomes

(1−u1)(1−u3)
β1cα

γa
x0 +(1−u2)

β2

b
x0− (α +µ)> 0.

It gives
c > c∗(β2),

where
c∗(β2) =

(1−u2)γa
(1−u1)(1−u3)β1bα

(β ∗2 −β2)

and
β
∗
2 =

b(α +µ)

(1−u2)x0
.
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Thus, whenever β2 < β ∗2 hold then E∗ exists if c > c∗(β2). However, if β2 > β ∗2 then E∗ exists
for any c > 0. This completes the proof.

3.3.1 Stability analysis

We linearize the system (3.1) about an arbitrary equilibrium point Ē(x̄, ȳ, z̄) and the linearized
system can be represented in the matrix form

dX
dt

= Y X(t)+ZX(t− τ), (3.7)

where

Y =

m11 m12 m13

0 m22 0
0 m32 m33

 , Z =

 0 0 0
n21 n22 n23

0 0 0

 , X(t) =
(

x(t) y(t) v(t)
)T

and
m11 =−µ + r(1− (2x̄+ ȳ)/K)− (1−u1)

β1v̄
(a+v̄) − (1−u2)

β2ȳ
(b+ȳ) , m12 =−rx̄/K

− (1−u2)
β2bx̄

(b+ȳ)2 ,m13 =−(1−u1)
β1ax̄

(b+v̄)2 , m22 =−(α +µ),

m32 = (1−u3)cα,m33 =−γ,n21 = (1−u1)
β1v̄

(a+v̄) +(1−u2)
β2ȳ

(b+ȳ) ,

n22 = (1−u2)
β2bx̄

(b+ȳ)2 ,n23 = (1−u1)
β1ax̄

(b+v̄)2 .

(3.8)

The characteristic equation is then given by

|Y +Ze−λτ −λ I|= 0,

and can be expressed as

Φ(λ ,τ) = λ
3 +M1λ

2 +M2λ +M3 +(N1λ
2 +N2λ +N3)e−λτ = 0, (3.9)

where
M1 =−(m11 +m22 +m33), M2 = m11m22 +m22m33 +m33m11, M3 =−m11m22m33,

N1 =−n22,N2 = n22(m11 +m33)−m12n21−m32n23, N3 = n21(m12m33−m13m32)

−m11(m33n22−m32n23).

Theorem 3.3 In the absence of delay, the disease-free steady state E1(x0,0,0) is locally asymp-

totically stable if β2 < β ∗2 and c < c∗(β2), where

β
∗
2 =

b(α +µ)

(1−u2)x0
, c∗(β2) =

(1−u2)γa
(1−u1)(1−u3)β1αb

(β ∗2 −β2).
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Proof The entries mi j and ni j, i, j = 1,2,3, corresponding to the equilibrium E1 are

Pi j = mi j, Qi j = ni j, i, j = 1,2,3.

For τ = 0, the characteristic equation (3.9) corresponding to E1 can be written as

Φ(λ ,0) = (λ −P11)[λ
2− (P22 +P33 +Q22)λ +{P33(P22 +Q22)−P32Q23}] = 0. (3.10)

One root of (3.10) is given by λ = P11 = −µ + r(1− 2x0/K) = −( s
x0
+ rx0

K ) < 0. The other
two roots will have negative real parts if P22 +P33 +Q22 < 0 and P33(P22 +Q22)−P32Q23 > 0.
From (3.8), we have

P22 +P33 +Q22 =−
{
(α +µ)− (1−u2)x0

b
β2

}
− γ < 0, if β2 < β

∗
2 , where

β
∗
2 =

b(α +µ)

(1−u2)x0
,and

P33(P22 +Q22)−P32Q23 = γ

{
(α +µ)− (1−u2)x0

b
β2

}
− (1−u1)(1−u3)

β1αx0

a
c > 0

if β2 < β
∗
2 and c < c∗(β2), where c∗(β2) =

(1−u2)γa
(1−u1)(1−u3)β1αb

(β ∗2 −β2).

Therefore, E1 is locally asymptotically stable in the absence of delay if β2 < β ∗2 and c <

c∗(β2).

Theorem 3.4 The disease-free steady state E1 is globally asymptotically stable for any τ > 0
if β2 < β ∗2 and c < c∗(β2), where β ∗2 = b(α+µ)

(1−u2)x0
and c∗(β2) =

(1−u2)γa
(1−u1)(1−u3)β1αb(β

∗
2 −β2).

Proof To prove the global stability, we define the following Lyapunov function

H(t) =y(t)+
(1−u1)β1x0

γa
v(t)+(1−u2)β2

∫ t

t−τ

x(m)y(m)

b+ y(m)
dm+

(1−u1)β1x0

a

∫ t

t−τ

v(m)dm.

(3.11)

Clearly, H(t)> 0 for x(t,y(t),v(t))> 0 and H(t) = 0 if and only if y(t) = v(t) = 0.



3.3. Model analysis for fixed controls 75

The derivative of H(t) along the solutions of (3.1) is

Ḣ(t) =ẏ(t)+
(1−u1)β1x0

γa
v̇(t)+(1−u2)β2

x(t)y(t)
b+ y(t)

− (1−u2)β2
x(t− τ)y(t− τ)

b+ y(t− τ)

+
(1−u1)β1x0

a
v(t)− (1−u1)β1x0

a
v(t− τ)

=(1−u1)
β1x(t− τ)v(t− τ)

a+ v(t− τ)
+(1−u2)

β2x(t− τ)y(t− τ)

b+ y(t− τ)
− (α +µ)y(t)

+
(1−u1)(1−u3)cαβ1x0

γa
y(t)− (1−u1)β1x0

a
v(t)+(1−u2)β2

x(t)y(t)
b+ y(t)

− (1−u2)β2
x(t− τ)y(t− τ)

b+ y(t− τ)
+

(1−u1)β1x0

a
v(t)− (1−u1)β1x0

a
v(t− τ)

=

[
(1−u1)(1−u3)cαβ1x0

γa
+(1−u2)β2

x(t)
b+ y(t)

− (α +µ)

]
y(t)

+(1−u1)β1

[
x(t− τ)

a+ v(t− τ)
− x0

a

]
v(t− τ).

(3.12)

From (3.5), we have limt→∞ supx(t)≤ x0 and hence x(t− τ)≤ x0. Therefore,

(1−u1)β1

[
x(t− τ)

a+ v(t− τ)
− x0

a

]
v(t− τ)≤ 0.

As all solutions of (3.1) are positive and 1
b+y(t) ≤

1
b , one can write

[
(1−u1)(1−u3)cαβ1x0

γa
+(1−u2)β2

x(t)
b+ y(t)

− (α +µ)

]
y(t)≤[

(1−u1)(1−u3)cαβ1x0

γa
+(1−u2)

β2x0

b
− (α +µ)

]
y(t)≤ 0,

provided β2 < β ∗2 with c < c∗(β2). Under this restriction, Eq. (3.12) gives

Ḣ(t)≤ 0.

On the contrary, if β2 > β ∗2 then c∗(β2)< 0. So, to make Ḣ(t)≤ 0, c must be negative, which
is impossible. Therefore, Ḣ(t)≤ 0 whenever β2 < β ∗2 with c < c∗(β2).

Now, let A = {(x(t),y(t),v(t)) ∈ M : Ḣ(t) = 0} and T be the largest invariant set in A.
By La Salle’s invariance principle [65], all nonnegative solutions convergence to T . Again,
Ḣ(t) = 0 if and only if x(t) = x0,y(t) = v(t) = 0. Therefore, the largest invariance set of A

is T = {E1} and every solutions in Σ goes to E1 when β2 < β ∗2 and c < c∗(β2). Hence E1 is
globally asymptotically stable whenever β2 < β ∗2 and c < c∗(β2).

Theorem 3.5 Assume the conditions of Lemma 3.2 hold. In the absence of delay, the infected

steady state E∗ is locally asymptotically stable if S1 > 0, S2 > 0 and S1S2−S3 > 0 and unstable

if at least one of them is negative, where Si (i = 1,2,3) are defined below.
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Proof First we define the entries of the Jacobian matrix for E∗ as

Ji j = mi j, Ki j = ni j, i, j = 1,2,3.

In the absence of delay, the characteristic equation (3.9) can be written as

Φ(λ ,0) = λ
3 +S1λ

2 +S2λ +S3 = 0, (3.13)

where

S1 = M1 +N1 =−(J11 + J22 + J33 +K22),

S2 = M2 +N2 = J11J22 + J22J33 + J33J11 + J11K22 + J33K22− J12K21− J32K23,

S3 = M3 +N3 =−J11J22J33 + J12J33K21− J13J32K21− J11J33K22 + J11J32K23,

S1S2−S3 =−J2
11[J22 + J33 +K22]− J2

22[J11 + J33]− J2
33[J11 + J22 +K22]

−K2
22[J11 + J33]−2J11J22J33−2K22[J11J22 + J22J33 + J11J33]

+ J12K21[J11 + J22 +K22]+ J32K23[J22 + J33 +K22]+ J13J32K21.

By Routh-Hurwitz criterion, E∗ is locally asymptotically stable if S1 > 0, S2 > 0 and S1S2−
S3 > 0 and unstable if at least one of them is negative.

Theorem 3.6 Assume that the conditions of Lemma 3.2 and Lemma 3.5 are satisfied. (i) If

(3.17) has no positive roots, then E∗ is stable for all τ ≥ 0. (ii) If (3.17) has k positive root,

k = 1,2,3, then there exists k critical values τ∗j , 1≤ j≤ k; j ∈N, of τ such that E∗ will change

its stability and Hopf bifurcation will occur at these critical values.

Proof For Hopf bifurcation, we investigate whether the characteristic equation (3.9) has a pair
of purely imaginary roots λ = ±iω , ω ∈ R+−{0} for some parametric conditions. For this,
we put λ = iω in (3.9) and obtain

α1cos(ωτ)+α2sin(ωτ)−α3 + i(α2cos(ωτ)−α1sin(ωτ)−α4) = 0,

where

α1 = N3−N1ω
2, α2 = N2ω, α3 = M1ω

2−M3, α4 = ω
3−M2ω. (3.14)

Separating real and imaginary parts, we have{
α1cos(ωτ)+α2sin(ωτ) = α3,

α2cos(ωτ)−α1sin(ωτ) = α4.
(3.15)

After some manipulations, we obtain

H(ω1) = ω
6 +F1ω

4 +F2ω
2 +F3 = 0, (3.16)
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where F1 = M2
1 −2M2−N2

1 , F2 = M2
2 +2N1N3−2M1M3−N2

2 , F3 = M2
3 −N2

3 .
Setting y = ω2, Eq. (3.16) reads

H(y) = y3 +F1y2 +F2y+F3 = 0. (3.17)

The cubic equation (3.17) can have maximum three positive roots. If this equation has no
positive roots, then there will be no switching of stability.

Now suppose (3.17) has k positive roots, k = 1,2,3, given by y = y j, 1 ≤ j ≤ k; j ∈ N.
Corresponding to these k positive roots, one have k positive values of ω , say ω = ω∗j =

√y j,
1≤ j ≤ k; j ∈N. Therefore, for each ω∗j , the Eq. (3.9) will have a pair of imaginary roots λ =

±iω∗j , and switching of stability might occur through a Hopf bifurcation at τ = τ∗j , 1≤ j ≤ k;
j ∈ N, where

τ
∗
j =

1
ω∗j

arccos
(

α1α3 +α2α4

α2
1 +α2

2

)
, 1≤ j ≤ k; j ∈ N, k = 1,2,3. (3.18)

Here α1,α2,α3,α4 are calculated from (3.14) with ω = ω∗j .
To show that the transversality condition is also satisfied, we differentiate Eq. (3.9) with

respect to τ to obtain

[3λ
2 +2M1λ +M2 + e−λτ(2N1 +N2)− τe−λτ(N1λ

2 +N2λ +N3)]
dλ

dτ

−λe−λτ(N1λ
2 +N2λ +N3) = 0.

=⇒ (
dλ

dτ
)−1 =

3λ 2 +2M1λ +M2 + e−λτ(2N1λ +N2)

λe−λτ(N1λ 2 +N2λ +N3)
− τ

λ

=⇒ (
dλ

dτ
)−1 =

3λ 2 +2M1λ +M2

−λ (λ 3 +M1λ 2 +M2λ +M3)
+

2N1λ +N2

λ (N1λ 2 +N2λ +N3)
− τ

λ

From (3.15), we have α2
1 +α2

2 = α2
3 +α2

4 . Using this relation and (3.14), the value of (dλ

dτ
)−1

at τ = τ∗j , λ = iω∗j is given by

[(
dλ

dτ

)−1
]

λ=iω∗j , τ=τ∗j

=

(
(M2−3ω∗2j )+2iM1ω∗j

)(
−α4− iα3

)
α2

1 +α2
2

+

(
N2 +2iN1ω∗j

)(
−α2− iα1

)
α2

1 +α2
2

.
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Substituting ω∗j =
√y j, we have[

Re
(

dλ

dτ

)−1
]

λ=iω∗j , τ=τ∗j

=
3y2

j +F1y j +F2

α2
1 +α2

2

=
H ′(ω∗2j )

(N3−N1ω∗2j )2 +N2
2 ω∗2j

6= 0, if H ′(ω∗2j ) 6= 0,

1≤ j ≤ k; j ∈ N, k = 1,2,3.

Thus, the transversality condition of Hopf bifurcation at τ = τ∗j is verified. The direction of
Hopf bifurcation depends on the signs of the transversality condition. If the sign of the transver-
sality condition is positive, then the stability of E∗ switches from stable to unstable through a
Hopf bifurcation in the forward direction. Conversely, the negative transversality condition in-
dicates that the stability of E∗ changes from unstable to stable through a Hopf bifurcation in
the backward direction.

Table 3.1: Parameter descriptions and their values with references

Parameter Description Range of parameters References Default values

s Constant input rate of CD4+T cells 0-10 cells mm−3 day−1 [91, 93, 174, 175] 10
µ Death rate of susceptible CD4+T cells 0.07-0.1 day−1 [175, 176] 0.01
β1 Cell-free disease transmission coefficient 0.000025-0.5 virons [91, 93] 0.4

mm−3 day−1

β2 Cell-to-cell disease transmission coefficient 0.00001-0.7 mm−3 [99] varies
infected cells day−1

r Proliferation rate of CD4+T cells 0.03-3 day−1 [91, 93] 2
K Carrying capacity of CD4+T cells 600-1600 cells mm−3 [91, 94] 1100
α Lysis death rate of infected CD4+T cells 0.2−0.5 day−1 [84, 91] 0.3
c Virus replication factor 10-2500 virions cell−1 [93, 174] varies
γ Removal rate of virus 2-3 day−1 [82, 91, 175] 3
a Half-saturation constant 1
b Half-saturation constant 1
τ intracellular delay Estimated from analytical result varies

3.3.2 Numerical results

Here we present various numerical results of the system with the help of ODE45 and DDE23 of
MATLAB R2015a, considering the parameter values of Table 3.1. The control parameters are
considered as constant (u1 = u2 = u3 = 0.5) for all numerical results. We calculate the critical
value of β2 as β ∗2 == 5.6389× 10−4. The critical value c∗(β2) of c can be calculated for any
given value of β2. Considering β2 = 0.0005 < β ∗2 , we get c∗(β2) = 0.0032. From Lemma 3.4,
E1 is globally asymptotically stable if β2 < β ∗2 with c = 0.003 < c∗(β2) for all delay τ ≥ 0.
Such global behaviour of the system is presented in Fig. 3.1.

To discuss the stability of E∗, we first investigate the existence of infected steady state
E∗ of the system (3.1). First condition of Lemma 3.2 states that E∗ exists if either β2 < β ∗2
with c > c∗(β2), or β2 > β ∗2 with c > 0. The considered parameter set satisfies the stability
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Figure 3.1: Time evolutions of the system (3.1) in the absence or presence of delay for c =
0.003 < c∗(β2) = 0.0032 and β2 = 0.0005 < β ∗2 = 5.6389×10−4. Here u1 = u2 = u3 = 0.5 and
other parameters are in the Table 3.1. Figures (i) and (ii) show that E1 is globally asymptotically
stable for all delay τ ≥ 0.

Figure 3.2: Left figure: This figure shows that the function f (x) has a unique root for each
value of β2 > β ∗2 for fixed value of c = 100, implying the existence of a unique positive root of
the equation (3.6) for each value of β2. Right figure: The time evolution of the system in the
absence of delay for β2 = 0.5 > β ∗2 = 5.6389×10−4 and c = 100 > 0 > c∗(β2). It shows that
E∗ is locally asymptotically stable. Other parameters are as in Fig. 3.1
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Figure 3.3: Bifurcation diagram of the infected CD4+T cell population with respect to the
intracellular delay τ . It demonstrates that y population switches its stability from stable to
unstable at the Hopf bifurcation value τ = τ∗ = 8.1589. Here c = 100 and β2 = 0.5. Other
parameters are as in Fig. 3.1

Figure 3.4: Upper row: The infected steady state E∗ is stable for τ = 8(< τ∗). Lower row: The
infected steady state E∗ is unstable when τ = 8.5(> τ∗), where τ∗ = 8.1589. Here c = 100 and
β2 = 0.5. Other parameters are as in Fig. 3.1
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condition of E∗ with the existence condition β2 > β ∗2 . We took c = 100, β = 0.5 along with
the other parameters as in the Table 3.1 for the simulations. The left diagram of Fig 3.2 shows
that the function f (x) (see (3.6)) crosses the horizontal line exactly once for each value of β2,
confirming the existence of a unique positive root x = x∗ of equation (3.6). Consequently, for
unique x∗, we get a unique y∗ and v∗. Hence a unique E∗ exists for each β2 > β ∗2 and any c > 0.
In this case, the non-delayed system satisfies the stability condition for the parameter values
in Table 3.1. In particular, for c = 100 and β2 = 0.5, Fig. 3.2 (right figure) shows that the
non-delayed system is locally asymptotically stable. However, for the delay-induced system,
we find a critical value τ = τ∗ = 8.1589 for the same set of parameter values. This indicates
a Hopf bifurcation at τ = τ∗ = 8.1589, where the delay-induced system changes its stability.
The system is stable for τ < τ∗ and unstable for τ > τ∗ (see Fig. 3.3). The time evolutions
presented in Fig. 3.4 show the stable and unstable behaviour of the system for two particular
values of τ (τ = 8 (< τ∗) and τ = 8.5 (> τ∗)).

3.4 The Optimal Control problem

In this section, we consider that the controls ui (i = 1,2,3,) are time-dependent. The host cells
CD4+T are white blood cells and fight against the infection. The HIV-1 virus kills these cells,
causing a gradual depletion of CD4+T cells. Therefore, one of our objectives is to maximize
the number of healthy CD4+T cells. The number of infected CD4+T cells increases through
infection, which, in turn, increases the free virus particles and the cell-to-cell infection rate. So,
our other target is to minimize the number of infected CD4+T cells and free virus using the
control mechanisms. Therefore, we define the objective functional subject to the state (3.1) as:

J(u1,u2,u3) =
∫ t f

0

(
A1x(t)− (A2y(t)+A3v(t)+

B1u2
1(t)

2
+

B2u2
2(t)

2
+

B3u2
3(t)

2
)

)
dt.

(3.19)
In the integrand, the first positive term represents the benefit, and a negative sign represents the
ensembled negative effects. Here Ai > 0, i = 1,2,3, are the weight constants which balance the
size of the terms x(t) and y(t), respectively; B1,B2 and B3 are positive weight constants which
are employed to balance the deleterious side effects of the respective controls u1, u2 and u3;
and t f is the terminal time.

Thus, our object is to find the optimal control triplet (û1, û2, û3)

J(û1, û2, û3) = max
(u1,u2,u3)∈Θ

J(u1,u2,u3), (3.20)

where, Θ = {(u1(t),u2(t),u3(t)) : ui is measurable, 0≤ ui(t)≤ 1, t ∈ [0, t f ], i= 1,2,3, t f is the final time}.
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3.4.1 Existence of an optimal control triplet

Theorem 3.7 There exists an optimal control triplet (û1, û2, û3) ∈Θ with time-dependent con-

trol problem (3.1) that maximizes the objective functional J(u1,u2,u3), i.e., J(û1, û2, û3) =

max(u1,u2,u3)∈Ξ J(u1,u2,u3).

Proof To prove this Lemma, we use an existence result in Flaming and Rishel [71]. To apply
this result, we check the following properties:

(a1) The set of controls and corresponding state variables is nonempty.

(a2) The control set Θ is convex and closed.

(a3) The right hand side of the state system is continuous, bounded above by a sum of the
bounded control and state, and can be written as a linear function of ui with coefficients
depending on the state and time.

(a4) The integrand of the objective functional is concave on Θ .

(a5) There exists constants c1, c2 > 0 and b > 1 such that the integrand of the objective func-
tional is bounded above by c2− c1(|u1(t)|2 + |u2(t)|2 + |u3(t)|2)b/2.

In order to verify these properties, we use a result from Lukes [184] for the existence of so-
lutions of (3.1) with bounded coefficients and (a1) is satisfied. By the definition of Θ , (a2) is
satisfied. As our control system is linear in u1,u2 and u3, the right-hand side of (3.1) satisfies
(a3) as the solutions are bounded. The integrand of the objective functional is concave for the
control set Θ and hence a4 is satisfied. For the last condition

A1x− (A2y+A3v+
B1u1

2

2
+

B2u2
2

2
+

B3u3
2

2
)≤ A1x− (

B1u1
2

2
+

B2u2
2

2
+

B3u3
2

2
)

≤ c2− c1(|u1|2 + |u2|2 + |u3|2)
b
2 ,

where c2 depends on the upper bound of x, b > 1 and c1 > 0 as B1,B2,B3 > 0. Hence, we
conclude that there exists an optimal control triplet.

3.4.2 Optimality system

Pontryagin’s minimum principle [195] and state delay provides necessary conditions for an op-
timal control triplet (û1, û2, û3). This principle converts (3.1), (3.19) and (3.20) into a problem
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which maximizes Hamiltonian, H,

H(t;x,y,v;xτ ,yτ ,vτ ;u1,u2,u3;λ1,λ2,λ3) =

(
A2y(t)+A3v(t)+

B1u1
2(t)

2
+

B2u2
2(t)

2

+
B3u3

2(t)
2

−A1x(t)
)
+λ1

(
s−µx(t)+ rx(t)

(
1− x(t)+ y(t)

K

)
− (1−u1(t))

β1x(t)v(t)
a+ v(t)

− (1−u2(t))
β2x(t)y(t)
b+ y(t)

)
+λ2

(
(1−u1(t))

β1x(t− τ)v(t− τ)

a+ v(t− τ)

+(1−u2(t))
β2x(t− τ)y(t− τ)

b+ y(t− τ)
− (α +µ)y(t)

)
+λ3

(
(1−u3(t))cαy(t)−µv(t)

)
,

(3.21)

where λi, i = 1,2,3 are co-state or adjoint variables. Applying Pontryagin’s minimum principle
with state delay [195], we obtain the following Lemma.

Theorem 3.8 Suppose (û1, û2, û3) is an optimal control triplet of (3.19) subject to the system

(3.1) and (x̂, ŷ, v̂) is the corresponding optimal solutions of (3.1), then there exists co-state or

adjoint variables λi,(i = 1,2,3) such that the following conditions are satisfied with the system

(3.1):

i. co-state equation:

λ̇1(t) = A1 +λ1(t)
(

µ +(1−u1(t))
β1v(t)

a+ v(t)
+(1−u2(t))

β2y(t)
b+ y(t)

− r(1

− 2x(t)+ y(t)
K

)

)
−χ[0,t f−τ]λ2(t + τ)

(
(1−u1(t + τ))

β1v(t)
a+ v(t)

+(1−u2(t + τ))
β2y(t)

b+ y(t)

)
,

λ̇2(t) =−A2 +λ1(t)
(

rx(t)
K

+(1−u2(t))
β2bx(t)

(b+ y(t))2

)
+λ2(t)(α +µ)

−λ3(t)(1−u3(t))cα−χ[0,t f−τ]λ2(t + τ)(1−u2(t + τ))
β2bx(t)

(b+ y(t))2 ,

λ̇3(t) =−A3 +λ1(t)(1−u1(t))
β1ax(t)

(a+ v(t))2 +λ3(t)γ

−χ[0,t f−τ]λ2(t + τ)(1−u1(t + τ))
β1ax(t)

(a+ v(t))2 ,

(3.22)

with transversality conditions λi(t f ) = 0, i = 1,2,3.

ii. optimality conditions:

H(x̂, ŷ, v̂; û1, û2, û3;λ1,λ2,λ3) = H(x̂, ŷ, v̂;u1,u2,u3;λ1,λ2,λ3),
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which implies

û1(t) =min
{

1,max{0,
λ2(t)

β1x̂(t−τ)v̂(t−τ)
a+v̂(t−τ) −λ1(t)

β1x̂(t)v̂(t)
a+v̂(t)

B1
}
}
,

û2(t) =min
{

1,max{0,
λ2(t)

β2x̂(t−τ)ŷ(t−τ)
b+ŷ(t−τ) −λ1(t)

β2x̂(t)ŷ(t)
b+ŷ(t)

B2
}
}
,

û3(t) =min
{

1,max{0, λ3(t)cα ŷ(t)
B3

}
}
.

(3.23)

Proof By Pontryagin’s minimum principle with state delay [195], the co-state equations and
its transversality conditions can be obtained by

λ̇1(t) =−
∂H(t)

∂x
−χ[0,t f−τ]

∂H(t + τ)

∂xτ

, λ1(t f ) = 0,

λ̇2(t) =−
∂H(t)

∂y
−χ[0,t f−τ]

∂H(t + τ)

∂yτ

, λ2(t f ) = 0,

λ̇3(t) =−
∂H(t)

∂v
−χ[0,t f−τ]

∂H(t + τ)

∂vτ

, λ3(t f ) = 0,

(3.24)

where χ[0,t f−τ] is the characteristic function defined as

χ[0,t f−τ] =

{
1 if t ∈ [0, t f − τ]

0, otherwise.

The optimal control triplet û1, û2 and û3 can be solved from the optimality conditions

∂H(t)
∂u1

= 0, at u1(t) = û1(t);
∂H(t)
∂u2

= 0, at u2(t) = û2(t);

∂H(t)
∂u3

= 0, at u3(t) = û3(t).
(3.25)
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On then obtain the following optimal system

ẋ(t) = s−µx(t)+ rx(t)
(

1− x(t)+y(t)
K

)
− (1−u1(t))

β1x(t)v(t)
a+v(t)

− (1−u2(t))
β2x(t)y(t)

b+y(t) ,

ẏ(t) = (1−u1(t))
β1x(t−τ)v(t−τ)

a+v(t−τ) +(1−u2(t))
β2x(t−τ)y(t−τ)

b+y(t−τ) − (α +µ)y(t),

v̇(t) = (1−u3(t))cαy(t)− γv(t),

λ̇1(t) = A1 +λ1(t)
(

µ +(1−u1(t))
β1v(t)
a+v(t) +(1−u2(t))

β2y(t)
b+y(t) − r(1

− 2x(t)+y(t)
K )

)
−χ[0,t f−τ]λ2(t + τ)

(
(1−u1(t + τ)) β1v(t)

a+v(t)

+(1−u2(t + τ)) β2y(t)
b+y(t)

)
,

λ̇2(t) =−A2 +λ1(t)
(

rx(t)
K +(1−u2(t))

β2bx(t)
(b+y(t))2

)
+λ2(t)(α +µ)

−λ3(t)(1−u3(t))cα−χ[0,t f−τ]λ2(t + τ)(1−u2(t + τ)) β2bx(t)
(b+y(t))2 ,

λ̇3(t) =−A3 +λ1(t)(1−u1(t))
β1ax(t)

(a+v(t))2 +λ3(t)γ

−χ[0,t f−τ]λ2(t + τ)(1−u1(t + τ)) β1ax(t)
(a+v(t))2 ,

x(0) = x0 > 0, y(0) = y0 ≥ 0, v(0) = v0 ≥ 0,
λi(t f ) = 0, i = 1,2,3,

where

û1(t) = min
{

1,max{0,
λ2(t)

β1 x̂(t−τ)v̂(t−τ)
a+v̂(t−τ)

−λ1(t)
β1 x̂(t)v̂(t)

a+v̂(t)
B1

}
}
,

û2(t) = min
{

1,max{0,
λ2(t)

β2 x̂(t−τ)ŷ(t−τ)
b+ŷ(t−τ)

−λ1(t)
β2 x̂(t)ŷ(t)

b+ŷ(t)
B2

}
}
,

û3(t) = min
{

1,max{0, λ3(t)cα ŷ(t)
B3

}
}
.

(3.26)

3.4.3 Numerical results

We solve the optimal system (3.26) numerically using combination of forward and backward
difference approximation method [196] in MATLAB R2015a. The initial values of the state
variables are considered as x(0) = 500,y(0) = 100,v(0) = 100 [116]. Since A1 and A2 are the
weight parameters associated with CD4+T cells, we give the same weight value for these pa-
rameters. It is assumed that the allotted drugs/inhibitors’ harmful effects are the same, allowing
us to take the same weight value of the parameters B1,B2 and B3. We consider both the mono-
drug and multi-drug therapies and observe which therapy gives better control to viremia in the
presence of intracellular delay τ .
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Figure 3.5: Time evolutions of susceptible CD4+T cells (x), infected CD4+T cells (y), and
virus particles (v) for different mono-drug therapies in the presence of different delay τ . First
two columns represent, respectively, the time variations corresponding u1 blocker (u1 6= 0,u2 =
u3 = 0) and u2 blocker (u2 6= 0,u1 = u3 = 0) for τ = 1.5. Third column indicate the same with
u3 blocker (u3 6= 0,u1 = u2 = 0) for τ = 4. Here A1 = A2 = A3 = 10, B1 = B2 = B3 = 0.1.
Other parameter values are as in Fig. 3.4.

3.4.3.1 Mono-drug therapy

Here we present the computational results to compare the efficacy of different inhibitors with
mono-drug therapy protocol in the presence of different delays. The first two columns of Fig.
3.5 show that the healthy CD4+T cell, infected CD4+T cell and free virus counts become
stable in a short time (about 60 days) when the mono-drug therapies (u1 6= 0,u2 = 0 = u3)

or (u2 6= 0,u1 = 0 = u3) are administered with τ = 1.5 but fluctuate if the length of delay is
increased to τ = 2.5 days (see the first two columns of Fig. 3.6). However, the mono-drug
therapy (u3 6= 0,u1 = 0 = u2) can tolerate longer delay. All populations remain stable even
when the length of the delay is 4 day (see the third column of Fig. 3.5). Though the free virus
counts, in this case, go very low, the infected CD4+T cell count is higher. If the length of
the delay is further increased (say τ = 4.5), then the system becomes unstable with sustained
oscillations (see the third column of Fig. 3.6).

3.4.3.2 Multi-drug therapy

As in the previous chapter, we apply different multi-drug therapies: (i) u1 6= 0,u2 6= 0,u3 =

0, (ii) u1 = 0,u2 6= 0,u3 6= 0, (iii) u1 6= 0,u2 = 0,u3 6= 0 and (iv) u1 6= 0,u2 6= 0,u3 6= 0 to
observe the viremia. The comparison results of all four multi-drug therapies are presented in
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Figure 3.6: Time evolutions of susceptible CD4+T cells (x), infected CD4+T cells (y), and
virus particles (v) for different mono-drug therapies in the presence of different delay τ . First
two columns decipher the time variations corresponding to u1 blocker (u1 6= 0,u2 = u3 = 0) and
u2 blocker (u2 6= 0,u1 = u3 = 0) for τ = 2.5. Third column represent the same with u3 blocker
(u3 6= 0,u1 = u2 = 0) for τ = 4.5. Parameter values are as in Fig. 3.5

Fig. 3.7. It shows that both the infected CD4+T cell and the virus particle go to extinction in
all cases except the third protocol, where u1 6= 0,u2 = 0,u3 6= 0. In this latter case, the virus
particle becomes extinct, but the infected CD4+T cells persist, indicating that this multi-drug
combination is ineffective in controlling the viremia. If we look at the control profiles of multi-
drug therapies (i), (ii) and (iv) of Fig. 3.7, considering the cost and other deleterious side effects
of antiretroviral drugs, multi-drug therapies (u1 6= 0,u2 6= 0,u3 = 0), (u1 = 0,u2 6= 0,u3 6= 0)
would be better for removing HIV-1 infection compared to the (u1 6= 0,u2 6= 0,u3 6= 0) multi-
drug therapy. The corresponding control variables are presented in the last row. It indicates
that the multi-drug therapy (u2 6= 0,u3 6= 0,u1 = 0) has a better profile compared to the therapy
(u1 6= 0,u2 6= 0,u3 = 0) because in the former case the inhibitor u2 is no longer require after
23 days for controlling the infection, whereas in the former case both the controls are required
to apply throughout the treatment period. The last control (u1 6= 0,u2 6= 0,u3 6= 0) is slightly
better than the second control but its cost would be high as it considers all three inhibitors.

3.5 Discussion

We considered a multi-pathways in-host HIV-1 infection model with saturated infection rates
and intracellular delay using three controls in this chapter. We analyzed it under two cases: the
controls are constant or time-dependent. This study is an extension of our previous study pre-
sented in the last chapter. We considered here a saturated type incidence rate instead of a bilin-
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Figure 3.7: Upper row: Changes in the counts of susceptible CD4+T cells (x), infected CD4+T
cells (y), and virus particles (v) for different multi-drug therapies with τ = 5. Lower row: The
corresponding optimal controls. The parameters are as in Fig. 3.5

ear type and incorporated the proliferation of susceptible CD4+T cells. Further, an intracellular
delay was considered in the infection transmission terms to make the model biologically more
realistic. In the case of constant controls, we proved that the infection-free equilibrium of the
system is locally and globally asymptotically stable for any delay if the parameters satisfy the
restrictions β2 < β ∗2 . The delay may, however, affect the stability of the infected equilibrium
through Hopf bifurcation. The infected equilibrium is locally asymptotically stable if the in-
tracellular delay is shorter than some critical value. The stability, however, is lost if the delay
becomes longer. In the case of time-dependent controls, we define a suitable objective func-
tional to maximize the cell counts of healthy CD4+T cells and minimize the infected CD4+T
cells and the virus particles. We derived the optimality conditions of our delay-induced control
problem. We numerically observed and compared the results of different time-dependent con-
trol therapies. In the case of mono-drug treatment, no blocker can remove the infection for any
delay, as infected CD4+ T cells always remain present in the system. Interestingly, the mono-
blocker, where u3 6= 0 but u1 = 0 = u2, can send the virus level to an undetectable stage, but
the infected cells persist through cell-to-cell transmission. In the case of multi-drug therapy,
the infection can be removed by all multi-drug therapies for any delay, except the combination
of RTI and PI inhibitors. The result shows that a multi-drug therapy scheme that contains u2

and u3 blockers is a better option for treating HIV-1 infection. The result also indicates that
the treatment duration depends on delay, i.e., if the delay is shorter, then the treatment period
is also shorter.



4
Optimal drug therapy in a multi-pathways

HIV-1 infection model with immune
response delays1

4.1 The Model

A basic HIV in-host infection model considers the interaction between the host cells (CD4+T)
and virus particles without considering the role of cytotoxic T lymphocytes (CTL) or CD8+T
cells, which on activated by CD4+T cells, kills the infected cells directly. Basic models also do
not consider the infection spreading through cell-to-cell mode. Recently, some mathematical
models have extended the basic model by considering the multi-mode dissemination of disease
[129–132]. Acknowledging the controlling role of CTL cells, Lai and Zou [187] considered a
four-dimensional multi-pathways in-host model. Since immune activation is not instantaneous
but mediated by some time lag. Xu and Zhou [133] modified the model of Lai and Zou [187]

1The bulk of this chapter has been published in Trends in Biomathematics ed. By R. P. Mondaini, Springer
Verlag, (2022). (Accepted).
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taking into consideration the CTL activation delay and analyzed the model

ẋ(t) = s−dx(t)+ rx(t)
(

1− x(t)+αy(t)
K

)
−β1x(t)v(t)−β2x(t)y(t),

ẏ(t) = β1x(t)v(t)+β2x(t)y(t)−σy(t)−d1y(t)z(t),

v̇(t) = cσy(t)−d2v(t),

ż(t) = py(t− τ)−d3z(t).

(4.1)

Here x(t),y(t),v(t) and z(t) represent, respectively, the concentrations of susceptible CD4+T
cells (target cells), productively infected CD4+T cells, free plasma virus and CTL cells at time
t. Target cells are infected by free virus particle as well as infectious CD4+T cells following
mass action law with rate constants β1 and β2, respectively. The time required for the activation
of CTL cells is represented by τ . Here s is the constant input rate, d is the death rate, r (> d)

is the proliferation rate, K is the maximum density of CD4+T cells, and α is a limitation
coefficient of infected cells. The parameters d1,d2, and d3 represent, respectively, the killing
rate of infected cells by CTL, clearance rate of virus particles, and clearance rate of CTL. The
virus replication factor is represented by c, and p is the production rate of CTL. The model 4.1
was analyzed by Xu and Zou [133].

It is to be mentioned that an infected cell may die naturally or through cell-lysis [91, 197].
In model (4.1), both types of death have been represented by a single term σy(t) and the
production rate of new virus particles has been represented by cσy(t), where c is the number of
new viruses produced per cell lysis. This may cause an overestimation of free virus in the blood
plasma because the free virus can be created only through cell lysis, whereas no virus protein
can be released during normal cell death. Taking care of this fact, we split the total death rate
(σ) of the infected cells into two parts: natural death, d, and death due to cell lysis, µ , (i.e.,
σ = d +µ). Here all parameters are non-negative. We now introduce three blockers to reduce
viremia. A control u1(t) ∈ [0,1] is applied to reduce the transmission of infection through cell-
free mode. This control is mainly reverse transcriptase inhibitor (RTI) drugs that block the
synthesis of viral DNA from HIV-1 RNA, thereby reducing viral infectivity. A second control
u2(t) ∈ [0,1] is used to block the cellular mechanisms required for synapse formation, the
primary mechanism of cell-to-cell transmission of HIV. We call it a synapse-forming inhibitor
(SI). The third control u3(t) ∈ [0,1] is applied to prevent HIV-1 protease from cleaving the
HIV-1 polyprotein into functional units, popularly known as protease inhibitor (PI). Introducing
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these modifications, the model (4.1) reads

ẋ(t) = s−dx(t)+ rx(t)
(

1− x(t)+αy(t)
K

)
− (1−u1(t))β1x(t)v(t)

− (1−u2(t))β2x(t)y(t),

ẏ(t) = (1−u1(t))β1x(t)v(t)+(1−u2(t))β2x(t)y(t)− (d +µ)y(t)−d1y(t)z(t),

v̇(t) = (1−u3(t))cµy(t)−d2v(t),

ż(t) = py(t− τ)−d3z(t).

(4.2)

The initial conditions are taken as

x(θ) = φ1(θ)> 0,y(θ) = φ2(θ)> 0,v(θ) = φ3(θ)> 0,z(θ) = φ4(θ)> 0,θ ∈ [−τ,0],

where φ = (φ1,φ2,φ3,φ4) ∈C =C([−τ,0],R4
+) with

φi(θ)≥ 0 (θ ∈ [−τ,0], i = 1,2,3,4),(φ1(0),φ2(0),φ3(0),φ4(0)) ∈C.

(4.3)

The objectives are to (i) observe how far these blockers can control the viremia, (ii) know
whether multi-drug therapy is beneficial over mono-drug therapy, considering toxicities of the
antiviral drugs, (iii) explore how immune response delay affect the plasma viral load in the
presence and absence of the blockers and (iv) have insights about the optimal dose of the
blockers.

The chapter is arranged in the following sequence. In Section 4.2, we present some pre-
liminary results. Section 4.3 represents the system analysis and its simulations when controls
are constant. Section 4.4 deals with the optimal management of the system when controls are
time-dependent. A comparison of different control schemes is presented here. The chapter
ends with a discussion in Section 4.5.

4.2 Preliminary results

4.2.1 Existence and uniqueness of solution

Let N =C([−τ,0],R4
+) be the Banach space of continuous real-valued functions from [−τ,0] to R4

+

with sup-norm ‖φ‖ = sup−τ≤θ≤0{|φ1(θ)|, |φ2(θ)|, |φ3(θ)|, |φ4(θ)|}. Following fundamental
theory of functional differential equations [198], for any φ ∈ N and initial conditions (4.3), the
system (4.2) has a unique solution

Ω(t,φ) = (x(t,φ),y(t,φ),v(t,φ),z(t,φ)).

One can easily prove the following lemma from [133].
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Lemma 4.1 Let Ω(t,φ) = (x(t),y(t),v(t),z(t)) be a solution of the system (4.2) with initial

conditions (4.3). Then the solution is positively invariant provided u1(t) = u2(t) = 1 does not

hold simultaneously and u3(t) ∈ [0,1). The solution is uniformly bounded on the region

Θ =

{
Ω(t,φ) ∈ R4

+ | 0 < x(t)≤ x0,0≤ y(t)≤ M
δ
,0≤ v(t)≤ (1−u3)cd1M

δd2
,

0≤ z(t)≤ pM
δd4

}
, (4.4)

where x0 =
K
2r [(r−d)+

√
(r−d)2 + 4rs

K ] , δ = min{d,(d +µ)}, M = s+ rK
4 . Moreover, there

exists Ψ0 > 0 such that liminf
t→∞

x(t)> Ψ0, i.e., x(t) is uniformly bounded away from zero.

4.3 Model analysis with fixed controls

Control parameters ui, i = 1,2,3, may be either constant or time-dependent. Here we analyze
the model treating control parameters as constant and in the next section the controls are con-
sidered as time-dependent.

4.3.1 Basic reproduction number

A threshold quantity, R0, called the basic reproduction number, is used to determine whether an
infection will spread over time or it will be washed out. It is considered to be an essential thresh-
old quantity for the elimination of infection. Typically, R0 is defined by the expected number
of secondary cases produced by an infected cell in a completely susceptible host population
[199]. Using the next-generation matrix [180], one can easily prove the following proposition.

Lemma 4.2 If R0 be the basic reproduction number of the system (4.2) and R01,R02 are the re-

spective basic reproduction numbers corresponding to the cell-free infection mode (i.e., β2 = 0)

and cell-to-cell infection mode (i.e., β1 = 0) then R0 = R01 +R02, where

R0 =
[(1−u1)(1−u3)cµβ1+(1−u2)β2d2]x0

d2(d+µ) , R01 =
(1−u1)(1−u3)cµβ1x0

d2(d+µ) , R02 =
(1−u2)β2d2x0

d2(d+µ) and x0 =
K
2r [(r−

d)+
√

(r−d)2 + 4rs
K ] is the equilibrium density of CD4+T cells in infection-free state.

Proof The basic reproduction number is determined using the next generation matrix [180].
The Jacobian matrix J11 of the system (4.2) at (x0,0,0,0) is

J11 =


−d + r(1− 2x0

K ) −rαx0
K − (1−u2)β2x0 −(1−u1)β1x0 0

0 (1−u2)β2x0− (d +µ) (1−u1)β1x0 0
0 (1−u3)cµ −d2 0
0 p 0 −d3

 .
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The sub-matrix of J11 associated with the infectious compartments can be written as

J12 =

(
(1−u2)β2x0− (d +µ) (1−u1)β1x0

(1−u3)cµ −d2

)

=

(
(1−u2)β2x0 (1−u1)β1x0

0 0

)
−

(
(d +µ) 0

−(1−u3)cµ d2

)
= F−V.

Then the next generation matrix [180] is defined as

FV−1 =
1

d2(d +µ)

(
(1−u1)(1−u3)cµβ1x0 +(1−u2)d2β2x0 (1−u1)(d +µ)β100

0 0

)
.

The basic reproduction number R0 is then obtained from the spectral radius [180] of the matrix
FV−1 as

R0 =
[(1−u1)(1−u3)cµβ1 +(1−u2)β2d2]x0

d2(d +µ)

= (1−u1)β1x0
1

(d +µ)
(1−u3)cµ

1
d2

+(1−u2)β2x0
1

(d +µ)
. (4.5)

In the expression of R0, the terms (1−u1)β1 and (1−u2)β2 indicate, respectively, the effective
infection rate corresponding to the cell-free and cell-to-cell infection modes; x0 is the equilib-
rium value of CD4+T cells in the absence of infection; 1

(d+µ) is the average life span of infected
CD4+T cells; (1−u3)cµ is the number of virus produced from the infected CD4+T cells and
1
d2

is the average life span of virus.
For cell-free infection mode (i.e., β2 = 0), J11 can be rewritten as

J21 =


−d + r(1− 2x0

K ) −rαx0
K −(1−u1)β1x0 0

0 −(d +µ) (1−u1)β1x0 0
0 (1−u3)cµ −d2 0
0 p 0 −d3

 .

The sub-matrix of J21 associated with the infectious compartments can be written as

J22 =

(
−d1 (1−u1)β1x0

(1−u3)Nd1 −d2

)

=

(
0 (1−u1)β1x0

0 0

)
−

(
(d +µ) 0

−(1−u3)cµ d2

)
= F1−V1.
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One can then similarly compute the basic reproduction number in the case of cell-free infection
mode as

R01 =
(1−u1)(1−u3)cµβ1x0

d2(d +µ)
= (1−u1)β1x0

1
(d +µ)

(1−u3)cµ
1
d2

.

Similarly, the basic reproduction number R02 corresponding to the cell-to-cell infection mode
(i.e., β1 = 0) is

R02 =
(1−u2)d2β2x0

d2(d +µ)
.

Thus, the basic reproduction number of the system is the sum of the basic reproduction numbers
of two subsystems and is given by R0 = R01 +R02.

4.3.2 Equilibria of the system

It is easy to see that the system (4.2) has two equilibrium points. A disease-free equilibrium
point E0 = (x0,0,0,0), where x0 =

K
2r [(r− d)+

√
(r−d)2 + 4rs

K ] and an infected equilibrium

point E∗ = (x∗,y∗,v∗,z∗), where x∗ = 1
2A(−2B+

√
B2−4As), y∗ = d3(d+µ)

d1 p (x∗R0
x0
− 1), v∗ =

(1−u3)cµy∗
d2

, z∗ = py∗
d3

. Here x∗ is the positive root of the quadratic equation

Ax∗2−Bx∗− s = 0, (4.6)

where A = r
K (1+

αd3(d+µ)R0
d1 px0

)+
d3(d+µ)2R2

0
d1 px02 (> 0) and B = (r−d)+ rαd3(d+µ)

d1K p + d3(d+µ)2R0
d1 px0

(>

0). As A > 0,B > 0, Eqn. (4.6) always has a unique positive root. Note that y∗ exists if and only
if R0 >

x0
x∗ . Susceptible CD4+T cells attains its maximum value x0 in the absence of infection,

giving x0 > x∗. Hence, a sufficient condition for the existence of y∗ is R0 > 1. If y∗ exists, then
v∗ exists if 0≤ u3 < 1. Thus, there exists a unique infected equilibrium point E∗ if

(i) R0 > 1,

(ii) u1 = 1 = u2 does not hold simultaneously and

(iii) u3 ∈ [0,1).

4.3.3 Stability of the equilibrium points

Consider the perturbations

X(t) = x(t)− x̄, Y (t) = y(t)− ȳ, V (t) = v(t)− v̄, Z(t) = z(t)− z̄,
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where (x̄, ȳ, v̄, z̄) is any arbitrary equilibrium point of the system (4.2). Then the linearzied
system in the matrix form reads

dQ
dt

= MQ(t)+NQ(t− τ),

where

M =


a11 a12 a13 0
a21 a22 a23 a24

0 a32 a33 0
0 0 0 a44

 , N =


0 0 0 0
0 0 0 0
0 0 0 0
0 b42 0 0

 , Q(t) =
(

X(t) Y (t) V (t) Z(t)
)T

,

and the entries of the matrices M and N are
a11 =−d + r

(
1− 2x̄+α ȳ

K

)
− (1−u1)β1v̄− (1−u2)β2ȳ, a12 =− rα x̄

K − (1−u2)β2x̄,

a13 =−(1−u1)β1x̄,a21 = (1−u1)β1v̄+(1−u2)β2ȳ,

a22 = (1−u2)β2x̄− (d +µ)−d1z̄,a23 = (1−u1)β1x̄, a24 =−d1ȳ,

a32 = (1−u2)cµ, a33 =−d2, a44 =−d3, b42 = p.

The corresponding characteristic equation is given by

Φ(λ ,τ) = det

(
λ I−M− e−λτN

)
= 0. (4.7)

We have the following theorem for the stability of the infection-free equilibrium point.

Theorem 4.3 The infection-free equilibrium point E0 is locally and globally asymptotically

stable for all delay τ ≥ 0 if R0 < 1.

Proof The characteristic equation in this case becomes

(λ +
s
x0

+
rx0

K
)(λ +d3)

(
λ

2 +(d2 +(d +µ)− (1−u2)β2x0)λ +d2(d +µ)(1−R0)

)
= 0.

(4.8)
This equation has two negative real roots, λ1 = −( s

x0
+ rx0

K ) and λ2 = −d3. The other two are
the roots of the equation

λ
2 +(d2 +(d +µ)− (1−u2)β2x0)λ +d2(d +µ)(1−R0) = 0. (4.9)

Thus, if R0 < 1 then both roots of the equation (4.9) have negative real parts, implying that E0

is locally asymptotically stable.

To prove the global stability of the disease-free equilibrium E0, we use Fluctuation Lemma
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[200]. The following result is true for a continuous and bounded function f (t):

f ∞ = limsup
t→∞

f (t), f∞ = liminf
t→∞

f (t).

Since the solutions x = x(t), y = y(t), v = v(t) and z = z(t) of the system (4.2) are continuous
and bounded,

0 < x∞ ≤ x∞ < ∞, 0≤ y∞ ≤ y∞ < ∞, 0≤ v∞ ≤ v∞ < ∞, 0≤ z∞ ≤ z∞ < ∞.

From Lemma 4.1, x = x(t) is bounded in (0,x0], for all t ≥ 0. From Fluctuation Lemma [200],
the last three equations of (4.2) can then be written as

(d +µ)y∞ ≤ (1−u1)β1x0v∞ +(1−u2)β2x0y∞,

d2v∞ ≤ (1−u3)cµy∞, (4.10)

d3z∞ ≤ py∞.

First two inequalities of (4.10) lead to

y∞(1−R0)≤ 0, where R0 is defined in (4.5). (4.11)

Now, suppose R0 < 1, which is the local stability condition of E0, then the inequality (4.11)
gives y∞ ≤ 0. Since y∞ is the supremum of y(t), then y∞ is nonnegative. Therefore, the possible
value of y∞ is y∞ = 0 provided R0 < 1, and hence limsupt→∞ y(t) = 0. If y∞ = 0 and as v(t),z(t)

are nonnegative, from the last two inequalities of (4.10), we obtain v∞ = 0 and z∞ = 0. There-
fore, limsupt→∞ v(t) = 0 and limsupt→∞ z(t) = 0. Following the Fluctuation Lemma [200], the
first equation of system (4.2) yields

s−dx∞ + rx∞

(
1− x∞ +αy

K

)
− (1−u1)β1x∞v− (1−u2)β2x∞y = 0. (4.12)

From Lemma 4.1, all solutions are nonnegative and if R0 < 1, then limsupt→∞ y(t) = 0 and
henceforth limsupt→∞ v(t) = 0, limsupt→∞ z(t) = 0. Therefore, if R0 < 1, the solution of y(t)

should be y(t) = 0 and hence v(t) = 0, z(t) = 0. The equation (4.12) then becomes

s−dx∞ + rx∞

(
1− x∞

K

)
= 0

(x∞− xn)(x0− x∞) = 0.

This equation has two roots, x0 =
K
2r [(r−d)+

√
(r−d)2 + 4rs

K ] > 0, which is the equilibrium

density of CD4+T cells in the infection-free state, and xn =
K
2r [(r−d)−

√
(r−d)2 + 4rs

K ] (< 0).
Hence theorem is proven.

Below we prove the stability of the infected equilibrium point in two cases.
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Theorem 4.4 If E∗ exists and τ = 0, then the infected steady state E∗ is locally asymptotically

stable if and only if a1 > 0, (a3+b1)> 0, (a4+b2)> 0, a1(a2+b0)(a3+b1)− (a3+b1)
2−

a2
1(a4 +b2)> 0, where ai > 0,b j > 0, i = 1,2,3,4, j = 0,1,2, are given below.

Proof The characteristic equation (4.7) at E∗ is given by

Φ(λ ,τ) = λ
4 +a1λ

3 +a2λ
2 +a3λ +a4 +(b0λ

2 +b1λ +b2)e−λτ = 0, (4.13)

where

a1 = ( s
x∗ +

rx∗
K )+d2 +d3 +

(1−u1)(1−u3)cµβ1x∗
d2

,

a2 = ( s
x∗ +

rx∗
K )(d2 +d3 +

(1−u1)(1−u3)cµβ1x∗
d2

)+d3(d2 +
(1−u1)(1−u3)cµβ1x∗

d2
)

+ (d+µ)y∗R0
x0

( rαx∗
K +(1−u2)β2x∗),

a3 = d3(
s

x∗ +
rx∗
K )(d2 +

(1−u1)(1−u3)cµβ1x∗
d2

)+ (d+µ)y∗R0
x0

[(1−u1)(1−u3)cµβ1x∗

+(d2 +d3)(
rαx∗

K +(1−u2)β2x∗)],

a4 =
d3(d+µ)y∗R0

x0
[d2rαx∗

K + d2(d+µ)x∗R0
x0

], b0 = d1 py∗, b1 = d1 py∗(d2 +
s

x∗ +
rx∗
K ),

b2 = d1d2 py∗( s
x∗ +

rx∗
K ).

Note that ai,b j, i = 1,2,3,4, j = 0,1,2 are all positive. At τ = 0, the characteristic equation
(4.13) then becomes

Φ(λ ,0) = λ
4 +a1λ

3 +(a2 +b0)λ
2 +(a3 +b1)λ +(a4 +b2) = 0,

According to Routh-Hurwitz criteria, E∗ will be locally asymptotically stable if and only if the
conditions mentioned in the theorem hold.

Theorem 4.5 Assume that E∗ is stable in the absence of delay and the conditions given in

the Theorem (4.4) are satisfied. If (4.17) has at least one positive root following one of the

conditions specified in (4.19), then there exists a critical value τ = τ∗, where τ∗ is defined in

(4.20), for which E∗ is locally asymptotically stable if τ ∈ [0,τ∗) and unstable for τ > τ∗. The

switching of stability occurs through a Hopf bifurcation at τ = τ∗.

Proof For τ > 0, we first investigate whether the equation (4.13) has a pair of purely imaginary
roots of the form λ = ±iω∗, ω∗ ∈ R+−{0} for some parametric conditions. In such a case,
putting λ = iω∗ in (4.13), one gets

(iω∗)4 +a1(iω∗)3 +a2(iω∗)2 +a3(iω∗)+a4 +(b0(iω∗)2 +b1(ω
∗)+b2)e−(iω

∗)τ = 0.

Separating real and imaginary parts, we have{
S1 = S3 cos(ω∗τ)−S4 sin(ω∗τ),
S2 = S3 sin(ω∗τ)+S4 cos(ω∗τ),

(4.14)
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where,

S1 = (ω∗)4−a2(ω
∗)2 +a4, S2 = a1(ω

∗)3−a3ω
∗,

S3 = b0(ω
∗)2−b2, S4 = b1ω

∗.
(4.15)

Summing up the squares of the equations in (4.14), we get

S2
1 +S2

2 = S2
3 +S2

4 (4.16)

Let z = (ω∗)2. Then (4.16) becomes

H(z) = z4 +A1z3 +A2z2 +A3z+A4 = 0, (4.17)

where A1 = a2
1−2a2, A2 = a2

2+2a4−2a1a3−b2
0, A3 = a2

3−2a2a4−b2
1+2b0b2, A4 = a2

4−b2
2.

Therefore, Φ(λ ,τ) = 0 has a purely imaginary root iω∗ if H(z) = 0 has a positive real root.
Differentiation of (4.17) yields

H ′(z) = 4z3 +3A1z2 +2A2z+A3.

Let y = z+ A1
4 , so that H ′(z) = 0 becomes

y3 +n1y2 +n2 = 0,

where n1 =
A2
2 −

3A2
1

16 , n2 =
A3

1
32 −

A1A2
8 + A3

4 . Define, Γ = (n2
2 )

2 +(n1
3 )

3, ρ = −1+i
√

3
2 . We then

get [133]

y1 = (−n2

2
+
√

Γ )1/3 +(−n2

2
−
√

Γ )1/3,

y2 = (−n2

2
+
√

Γ )1/3
ρ +(−n2

2
−
√

Γ )1/3
ρ

2,

y3 = (−n2

2
+
√

Γ )1/3
ρ

2 +(−n2

2
−
√

Γ )1/3
ρ,

zl = yl−
A1

4
, l = 1,2,3.

(4.18)

Following [201], the existence of positive roots of the equation H(z) = 0 can then be asserted
as

(i) If A4 < 0, then H(z) has at least one positive root.

(ii) If A4 ≥ 0 and Γ ≥ 0, then H(z) = 0 has positive roots iff

z1 > 0 and H(z1)< 0.

(iii) If A4 > 0 and Γ < 0, then H(z) = 0 has positive roots

iff there exists at least onez∗ ∈ {z1,z2,z3}such that z∗ > 0 and H(z∗)≤ 0.

(4.19)
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Without loss of generality, we assume that H(z) = 0 has four positive roots, say z∗k ,k = 1,2,3,4.
Let ω∗k =

√
z∗k . From (4.14), one then finds

cos(ω∗k τ
∗) = H1 =

S1S3 +S2S4

S2
3 +S2

4
,

sin(ω∗k τ
∗) = H2 =

S1S3−S2S4

S2
3 +S2

4
.

Here S1,S2,S3,S4 are calculated form (4.15) with ω∗ = ω∗k . Define

τ
(k)
j =


1

ω∗k
[arccos(H1)+2π j], H2 ≥ 0,

1
ω∗k

[2π− arcsin(H1)+2π j], H2 < 0,

where, k = 1,2,3,4, j = 0,1,2,3, ..., and

τ
∗ = min

1≤k≤4, j≥0
τ
(k)
j . (4.20)

Let ω̃∗k be the value of ω∗k (k = 1,2,3,4) for which τ∗ is obtained. Hence ω̃∗k =
√

z0.
To show that the transversality condition of Hopf bifurcation at τ = τ∗ is also hold, we

differentiate the characteristic equation (4.13) with respect to τ to obtain

(4λ
3+3a1λ

2+2a2λ +a3)
dλ

dτ
+(2b0λ +b1)e−λτ dλ

dτ
−e−λτ(b0λ

2+b1λ +b2)(λ +τ
dλ

dτ
) = 0.

One then finds(
dλ

dτ

)−1

=
4λ 3 +3a1λ 2 +2a2λ +a3

−λ (b0λ 2 +b1λ +b2)
+

2b0λ +b1

λ (b0λ 2 +b1λ +b2)
− τ

λ

=
4λ 3 +3a1λ 2 +2a2λ +a3

−λ (λ 4 +a1λ 3 +a2λ 2 +a3λ +a4)
+

2b0λ +b1

λ (b0λ 2 +b1λ +b2)
− τ

λ
.

Using (4.16), the value of
(

dλ

dτ

)−1

at τ = τ∗ and λ = iω̃0 reads

[(
dλ

dτ

)−1
]

λ=iω̂∗k , τ=τ∗

=
N1N2 +N4N5

ω̂∗k N3
+

iτ∗

ω̂∗k
,

where N1 =
(

4ω̂∗3k −2a2ω̂∗k

)
+i
(

a3−3a1ω̂∗2k

)
, N2 =

(
ω̂∗4k −a2ω̂∗2k +a4

)
+i
(

a1ω̂∗3k −a3ω̂∗k

)
, N3 =(

b2−b0ω̂∗2k

)2
+
(

b1ω̂∗k

)2
, N4 = 2b0ω̂∗k − ib1, N5 =

(
b2−b0ω̂∗2k

)
− ib1ω̂∗k .
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Substituting ω̂∗k =
√

ẑ∗k , we then have[
Re
(dλ

dτ

)−1
]

λ=iω̂∗k , τ=τ∗

=
4ẑ∗3k +3A1ẑ∗2k +2A2ẑ∗k +A3

N3

=
H ′(ẑ∗k)

N3
6= 0, if H ′(ẑ∗k) 6= 0,

where H(z) is defined in (4.17) .

Therefore, the sign of

[
Re
(

dλ

dτ

)−1
]

λ=iω0, τ=τ∗

is same as H ′(z0). The direction of Hopf bi-

furcation depends on the sign of the transversality condition. If the value of the transversality
condition is positive, then the stability of E∗ will change from a stable to an unstable state
through a Hopf bifurcation in the forward direction. In contrast, its negative value implies
the change from an unstable state to a stable equilibrium through a Hopf bifurcation in the
backward direction.

Table 4.1: Parameter descriptions and their values with references

Parameter Description Range of parameters Default values References

s Constant input rate of CD4+T cells 0-10 cells mm−3 day−1 10 [91, 93, 175, 197]
d Death rate of susceptible CD4+T cells 0.07-0.1 day−1 0.01 [133, 175, 197]
β1 Cell-free disease transmission coefficient 0.000025-0.5 virons 0.00025 [91, 93, 133, 197]

mm−3 day−1

β2 Cell-to-cell disease transmission coefficient 0.00001-0.7 mm−3 varies
infected cells day−1

r Proliferation rate of CD4+T cells 0.03-3 day−1 0.1 [91, 93, 133, 197]
K Maximum density of CD4+T cells 1500 mm−3 1500 [91, 133, 197]

where proliferation stops
α Limitation coefficient of infected cells ≥ 1 1.2 [133, 187]

imposed on the proliferation of CD4+T cells
d1 Killing rate of infected cells by CTL 0.812 day−1 0.812 [133, 202]
d2 Clearance rate of virus particles 2.4-3 day−1 2.4 [91, 133, 197]
d3 Clearance rate of CTL 1.618 day−1 1.618 [133, 202]
c Virus replication factor 10-2500 virions cell−1 varies [93, 174]
p Production rate of CTL 0.05 day−1 0.05 [133, 203]
µ Lysis death rate of infected CD4+T cells 0.2-0.5 day−1 0.4 [91, 197]

4.3.4 Simulation results

System (4.2) in the absence of delay and control has thirteen parameters. So the question is
which parameters are essential and should be selected for further investigation. For this, we
have performed a sensitivity analysis (see Fig.4.1) of the system parameters (see Table 4.1)
using the Latin Hypercube sampling method. It shows that c and β2 are the most sensitive
parameters. So, we fix other parameter values and consider c and β2 as the variable parameters
for further study.

In Fig. 4.2, we have drawn the stability region of the disease-free equilibrium E0 and the
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Figure 4.1: Sensitivity analysis of the parameters (see Table 4.1) following Latin hypercube
sampling-partial ranked correlation coefficients (p < 0.00001). Here u1 = u2 = u3 = 0.

Figure 4.2: Stability region of the disease-free equilibrium E0 and the existence region of the
endemic equilibrium E∗ in c−β2 plane. Parameters are s = 10,d = 0.02,β1 = 0.00025,r =
0.03,K = 1500,α = 1.2,µ = 0.4,d1 = 0.812,d2 = 3,d3 = 1.618, p = 0.05 andu1 = u2 = u3 =
0.5.
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Figure 4.3: Upper row: Time evolutions of the non-delayed system show that the disease-
free equilibrium E0 is stable when parameters are selected from the lower region of Fig. 4.2
with c = 4,β2 = 0.0001. Lower row: Figures show that the non-delayed system is locally
asymptotically stable for c = 75,β2 = 0.001. Other parameters are as in Fig. 4.2.

existence region of the infected equilibrium E∗ in c−β2 parameter plane when other parameters
remain fixed with u1 = u2 = u3 = 0.5. Time evolutions of the system (4.2) with constant
controls (Fig. 4.3 (upper row)) show that the disease-free equilibrium E0 is stable when the
parameters are selected from the lower region of Fig. 4.2 (c= 4,β2 = 0.0001). In fact, the delay
has no effect on the stability of E0. The disease-free equilibrium is globally asymptotically
stable for all τ ≥ 0 (figures not given). If c = 75,β2 = 0.001 then the parameter values satisfy
the stability conditions of the non-delayed system. Fig. 4.3 (lower row) shows that the non-
delayed system is locally asymptotically stable. Figure 4.4 is the bifurcation diagram of the
infected population with respect to the delay parameter, τ . It shows that the system is stable
for τ < τ∗, unstable for τ > τ∗, and a Hopf bifurcation occurs at τ = τ∗ = 5.1051 days. Time
evolutions of the system populations for two particular values of τ (τ = 5 and τ = 5.2) represent
the stable and unstable behaviour of the system (see Fig. 4.5).

4.4 The Optimal Control Problem

In the previous section, we discussed the effect of constant control. Here we assume that
the control parameters are time-dependent. Our objective here is to maximize the number of
healthy CD4+T cells, CTLs, and minimize the number of infected CD4+T cells and virus
particles using three controls. At the same time, we want to reduce the deleterious side effects
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Figure 4.4: Bifurcation diagram of the infected CD4+T cell population with respect to the
delay, τ . The y population is stable for τ < τ∗ and unstable for τ > τ∗, where τ∗ = 5.1051
days. Here u1 = u2 = u3 = 0.5, c = 75,β2 = 0.001 and other parameters are as in Fig. 4.2.

Figure 4.5: Upper row: The infected equilibrium E∗ is stable when τ = 5(< τ∗). Lower
row: The infected equilibrium E∗ is unstable when τ = 5.2(> τ∗), where τ∗ = 5.1051. Here
u1 = u2 = u3 = 0.5 and c = 75,β2 = 0.001. Other parameters are as in Fig. 4.4.
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of the drugs. For this, we define the objective functional

J(u1,u2,u3) =
∫ t f

0

(
A1x(t)+A2z(t)−

(
A3y(t)+A4v(t)+

B1u2
1(t)

2

+
B2u2

2(t)
2

+
B3u2

3(t)
2

))
dt

(4.21)

subject to the states (4.2). In the integrand, the first two terms represent the benefit and the next
two terms indicate the deleterious effects. Here Ai > 0, i = 1,2,3,4, are the weight constants,
which balance the size of the terms x(t),z(t),y(t) and v(t). Three square terms are the respective
cost of u1(t),u2(t) and u3(t), and B1,B2 and B3 are the weight parameters employed relative
to the cost implication of the controls u1, u2 and u3. Here t f is the final time, where treatment
stops. Therefore, our object is to find the optimal control triplet (û1, û2, û3) such that

J(û1, û2, û3) = max
(u1,u2,u3)∈Ξ

J(u1,u2,u3), (4.22)

where, Ξ = {(u1(t),u2(t),u3(t)) : ui measurable,0≤ ui(t)≤ 1, t ∈ [0, t f ], i = 1,2,3}.

4.4.1 Existence of an optimal control triplet

Theorem 4.6 There exists an optimal control triplet (û1, û2, û3) ∈ Ξ with time dependent con-

trol problem (4.2) that maximizes the objective functional J(u1,u2,u3), i.e., J(û1, û2, û3) =

max(u1,u2,u3)∈Ξ J(u1,u2,u3).

Proof We use an existence result of Flaming and Rishel [71]. To apply this result, we check
the following properties:

(a1) The set of controls and the corresponding state variables is nonempty.

(a2) The control set Ξ is convex and closed.

(a3) The right hand side of the state system is continuous, bounded above by a sum of the
bounded control and state, and can be written as a linear function of ui with coefficients
depending on the state and time.

(a4) The integrand of the objective functional is concave on Ξ .

(a5) There exists constants c1, c2 > 0 and b > 1 such that the integrand of the objective func-
tional is bounded above by c2− c1(|u1(t)|2 + |u2(t)|2 + |u3(t)|2)b/2.

In order to verify these properties, we use a result from Lukes [184] for the existence of so-
lutions of (4.2) with bounded coefficients and (a1) is satisfied. By the definition of Ξ , (a2) is
satisfied. As our control system is linear in u1,u2 and u3, the right-hand side of (4.2) satisfies
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(a3) as the solutions are bounded. The integrand of the objective functional is concave for the
control set Ξ and hence a4 is satisfied. For the last condition

A1x+A2z−
(

A3y+A4v+
B1u2

1

2
+

B2u2
2

2
+

B3u2
3

2

)
≤ A1x+A2z− (

B1u1
2

2
+

B2u2
2

2
+

B3u3
2

2
)

≤ c2− c1(|u1|2 + |u2|2 + |u3|2)
b
2 ,

where c2 depends on the upper bound of x and z, b > 1 and c1 > 0 as B1,B2,B3 > 0. Hence, we
conclude that there exists an optimal control triplet.

Pontryagin’s minimum principle [195] and the state delay provides a necessary condition
for an optimal control triplet (û1, û2, û3). This principle converts (4.2), (4.21) and (4.22) into a
problem which maximizes the Hamiltonian (H)

H(t;x,y,v,z;yτ ;u1,u2,u3;λ1,λ2,λ3,λ4) = A3y(t)+A4v(t)+
B1u1

2(t)
2

+
B2u2

2(t)
2

+
B3u3

2(t)
2

−A1x(t)−A2z(t)+λ1ẋ(t)+λ2ẏ(t)+λ3v̇(t)+λ4ż(t),
(4.23)

where λi, i = 1,2,3,4, are the co-state or adjoint variables. Applying Pontryagin’s minimum
principle with state delay [195], we obtain the following Proposition.

Theorem 4.7 Suppose (û1, û2, û3) is an optimal control triplet of (4.21) subject to the system

(4.2) and (x̂, ŷ, v̂, ẑ) is the corresponding optimal solutions of (4.2), then there exists co-state

or adjoint variables λi,(i = 1,2,3,4) such that the following conditions are satisfied with the

delay-induced controlled system (4.2).

i. Co-state equations:

λ̇1(t) = A1 +λ1(t)
(

d +(1− û1(t))β1v̂(t)+(1− û2(t))β2ŷ(t)

− r(1− 2x̂(t)+α ŷ(t)
K

)

)
−λ2(t)

(
(1− û1(t))β1v̂(t)+(1− û2(t))β2ŷ(t)

)
,

λ̇2(t) =−A3 +λ1(t)
(

rα x̂(t)
K

+(1− û2(t))β2x̂(t)
)

−λ2(t)
(
(1− û2(t))β2x̂(t)− (d +µ)−d1ẑ(t)

)
−λ3(t)(1− û3(t))cµ−χ[0,t f−τ]pλ4(t + τ),

λ̇3(t) =−A4 +λ1(t)(1− û1(t))β1x̂(t)−λ2(t)(1− x̂1(t))β1x̂(t)+λ3(t)d2,

λ̇4(t) = A2 +λ2(t)d1ŷ(t)+λ4(t)d3,

(4.24)
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with the transversality conditions λi(t f ) = 0, i = 1,2,3,4, and χ[0,t f−τ] is the character-

istic function [204, 205] defined by

χ[0,t f−τ] =

{
1 if t ∈ [0, t f − τ],

0 otherwise.

ii. Optimality conditions:

H(x̂, ŷ, v̂, ẑ; û1, û2, û3;λ1,λ2,λ3,λ4) = H(x̂, ŷ, v̂, ẑ;u1,u2,u3;λ1,λ2,λ3,λ4),

which implies

û1(t) =min
{

1,max{0, (λ2(t)−λ1(t))β1x̂(t)v̂(t)
B1

}
}
,

û2(t) =min
{

1,max{0, (λ2(t)−λ1(t))β2x̂(t)ŷ(t)
B2

}
}
,

û3(t) =min
{

1,max{0, λ3(t)cµ ŷ(t)
B3

}
}
.

(4.25)

Proof By Pontryagin’s minimum principle with state delay [195], the co-state equations and
its transversality conditions can be solved by

λ̇1(t) =−
∂H(t)

∂x
, λ1(t f ) = 0,

λ̇2(t) =−
∂H(t)

∂y
−χ[0,t f−τ]

∂H(t + τ)

∂yτ

, λ2(t f ) = 0,

λ̇3(t) =−
∂H(t)

∂v
, λ3(t f ) = 0,

λ̇4(t) =−
∂H(t)

∂ z
, λ4(t f ) = 0.

(4.26)

The optimal control triplet û1, û2 and û3 are solved from the optimality conditions

∂H(t)
∂u1

= 0, at u1(t) = û1(t);
∂H(t)
∂u2

= 0, at u2(t) = û2(t);

∂H(t)
∂u3

= 0, at u3(t) = û3(t)
(4.27)

and we get

∂H(t)
∂u1

= B1u1(t)+(λ1(t)−λ2(t))β1x(t)v(t) = 0,
∂H(t)
∂u2

= B2u2(t)+(λ1(t)

−λ2(t))β2x(t)y(t) = 0,
∂H(t)
∂u3

= B3u3(t)−λ3(t)cµy(t) = 0.
(4.28)
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We calculate û1(t), û2(t) and û3(t) from the bounds of Ξ in the form of (4.25).

Therefore, the optimal system associated with the system (4.2) is represented by

dx̂
dt = s−dx̂(t)+ rx̂(t)(1− x̂(t)+α ŷ(t)

K )− (1− û1(t))β1x̂(t)v̂(t)

− (1− û2(t))β2x̂(t)ŷ(t),
dŷ
dt = (1− û1(t))β1x̂(t)v̂(t)+(1− û2(t))β2x̂(t)ŷ(t)− (d +µ)ŷ(t)−d1ŷ(t)ẑ(t),
dv̂
dt = (1− û3(t))cµ ŷ(t)−d2v̂(t),
dẑ
dt = pŷ(t− τ)−d3ẑ(t),
dλ1
dt =−A1 +λ1(t)

(
d +(1− û1(t))β1v̂(t)+(1− û2(t))β2ŷ(t)

− r(1− 2x̂(t)+α ŷ(t)
K )

)
−λ2(t)

(
(1− û1(t))β1v̂(t)+(1− û2(t))β2ŷ(t)

)
,

dλ2
dt = A3 +λ1(t)

(
rα x̂(t)

K +(1− û2(t))β2x̂(t)
)
−λ2(t)

(
(1− û2(t))β2x̂(t)

− (d +µ)−d1ẑ(t)
)
−λ3(t)(1− û3(t))cµ− pλ4(t),

dλ3
dt = A4 +λ1(t)(1− û1(t))β1x̂(t)−λ2(t)(1− û1(t))β1x̂(t)+λ3(t)d2,

dλ4
dt = −A2 +λ2(t)d1ŷ(t)+λ4(t)d3,

x(0) = x0 > 0, y(0) = y0 > 0, v(0) = v0 > 0, z(0) = z0 > 0,
λi(t f ) = 0, i = 1,2,3,4,
where

û1(t) = min
{

1,max{0, (λ2(t)−λ1(t))β1x̂(t)v̂(t)
B1

}
}
,

û2(t) = min
{

1,max{0, (λ2(t)−λ1(t))β2x̂(t)ŷ(t)
B2

}
}
,

û3(t) = min
{

1,max{0,−λ3(t)cµ ŷ(t)
B3

}
}
.

(4.29)

4.4.2 Simulation results

Here we solve the optimal systems (4.29) numerically by combination of forward and backward
difference approximation methods [196]. The treatment period is continued for 300 days and
therefore the time interval is considered as [0, t f ], where t f = 300. The initial values of the
state variables are taken as x(0) = 500,y(0) = 100,v(0) = 100 and z(0) = 10 [116]. Since
the weight parameters A1 and A3 are associated with the CD4+T cells, we assign the same
values for them. Considering the same harmful effects of all the inhibitors, the same value for
the weight parameters B1,B2,B3 are considered. Other parameter values remain as in Table
4.1. We consider both the mono-drug and multi-drug therapies and compare their efficacies in
controlling viremia under different delays.
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4.4.2.1 Mono-drug therapy

Figure 4.6 represents various outcomes of mono-drug therapies for the system (4.29) with τ =

1. The first column of this figure shows the counts of various immune cells and plasma viruses
when the inhibitor u1 is only administered (the case (u1 6= 0,u2 = 0,u3 = 0)). The last row
of this figure gives the respective control profile. These figures show that no inhibitor can
completely remove the infection, and infected cells persist in all three cases. However, in the
case of blocker u3, virus counts go below the detection level, though it exists in the other two
cases, but infected CD4+T cells (y) persist. It happens due to the cell-to-cell dissemination of
infection. Observe that healthy CD4+T cells count is relatively low in the mono-drug therapy
(u1 = 0,u2 6= 0,u3 = 0) compared to other two cases. Thus, u2 is the worst mono-drug therapy.
The respective control profiles indicate that all the controls should be applied with full efficacy
for the entire treatment period, except for some occasional reduction in the u1 control. This
analysis shows that the mono-drug therapy with the blocker u3 is relatively a better performer
because its application can reduce the free virus particles, thereby reducing the chances of cell-
free infection.

Figure 4.7 shows the time evolutions of the optimal system (4.29) for τ = 2 days. These
figures show that plasma concentrations of CD4+T cells, CTls and virus particles oscillate in
the case of (u1 6= 0,u2 = 0,u3 = 0) and (u1 = 0,u2 6= 0,u3 = 0), but they are stable in the
case of mono-drug therapy (u1 = 0,u2 = 0,u3 6= 0) with higher value of susceptible CD4+T
cells and lower value of infected CD4+T cell counts. The free virus particles count (v) also
remains below the detectable level in the latter case. The control profile (last row) also shows
a significant difference for u3 inhibitor compared to the other two controls, where oscillations
are predominant. Similar simulation results are presented when the delay is further increased to
τ = 2.5 > τ∗, where τ∗ = 2.37 days. These figures show that plasma concentrations of CD4+T
cells, CTls, and virus particles oscillate in all three control strategies. The control profile also
oscillates in each case. Thus, a large immune activation delay causes significant changes in
the plasma counts and the control profile. Therefore, no mono-drug therapy is capable of
controlling the viremia in an HIV-1 infected individual if immune response delay is high.

4.4.2.2 Multi-drug therapy

In the case of a multi-drug therapy, we observed that infection can be removed (i.e., where y =

0) in three options. The multi-drug option (u1 6= 0,u2 = 0,u3 6= 0) cannot eliminate infection,
implying that it is the worst combination, but in the other three cases, both the infected cells and
virus particles are eliminated. It is to be noted that the control u2 should be used while using
multi-drug therapy to eliminate the infection. However, the control u2 was not an efficient
blocker when administered alone. Control profiles are all most same for three cases except the
one (u1 6= 0,u2 = 0,u3 6= 0), where the infection persists. Considering the cost of drugs and its
side effects, any of the multi-drug therapies (u1 6= 0,u2 6= 0,u3 = 0) or (u1 = 0,u2 6= 0,u3 6= 0)
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Figure 4.6: The time variations of susceptible CD4+T cells, infected CD4+T cells, virus parti-
cles and CTLs due to different mono-drug therapy with τ = 1 day. The last row represents the
optimal controls corresponding to each mono-drug therapy. Here τ = 1 and other parameters
are s = 10,d = 0.02,β1 = 0.00025,r = 0.03,K = 1500,α = 1.2,µ = 0.4,d11 = 0.812,d22 =
3,d3 = 1.618; p = 0.05;c = 75,β2 = 0.002,A1 = A3 = 5,A2 = A4 = 2 and B1 = B3 = B3 = 0.1.
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Figure 4.7: The time variations of susceptible CD4+T cells, infected CD4+T cells, virus parti-
cles and CTLs due to different mono-drug therapies with τ = 2 days. The last row represents
the control profiles corresponding to each mono-drug therapy. Here τ = 2 and other parameters
are as in Fig. 4.6.
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Figure 4.8: Concentrations of susceptible CD4+T cells, infected CD4+T cells, virus particles
and CTLs with respect to time under different mono-drug therapies with τ = 2.5 days. The last
row represents the control profiles corresponding to each mono-drug therapy. Here τ = 2.5 and
other parameters are as in Fig. 4.6.
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Figure 4.9: The time variations of susceptible CD4+T cells, infected CD4+T cells, virus parti-
cles and CTLs due to different mono-drug therapies with τ = 2.5 days. The last row represents
the control profiles corresponding to each mono-drug therapy. Here τ = 2.5 and other parame-
ters are as in Fig. 4.6.
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may be used instead of (u1 6= 0,u2 6= 0,u3 6= 0).

4.5 Discussion

Recent experimental studies show that cell-to-cell disease transmission mode is a more efficient
and faster mode of disease transmission than the cell-free mode in the case of in-host HIV-1
infection [97, 98, 101]. This paper has studied a multi-pathways HIV-1 infection model with
immune activation delay. The model is further modified with three different blockers that may
be used in controlling the viremia. An RTI control (u1(t)) is used to inhibit the synthesis of
viral DNA from HIV-1 RNA to inhibit the viral infectivity. A synapse-forming inhibitor (u2(t))
is used to block the cellular mechanisms required for synapse formation. The third control, a
protease inhibitor (u3(t)) is applied to stop the process of free virus formation. We first prove
that solutions of our system remain positive for all future time assuming positive initial values.
It is also shown that the solutions are uniformly bounded. The analytical results are presented
in two phases. In the first phase, we assume that the considered controls are time-independent
constant controls. In the second phase, we relaxed this assumption and considered the controls
as time-dependent. Applying the next-generation matrix, we calculated the basic reproduction
number (R0) of the system with constant controls and showed the disease-free equilibrium is
locally and globally asymptotically stable if R0 < 1. The infected steady state, if it exists, is
locally asymptotically stable under some parametric restrictions. Delay may, however, cause in-
stability in the system. There exists some critical value (τ∗) of the delay parameter below which
the system is stable and above which it is unstable. The stability switching occurs through a
Hopf bifurcation.

If the controls are time-dependent variables, then we defined an objective functional to
maximize the healthy CD4+T cells & CTL cells and minimize the infected CD4+T cells &
virus particles. We derived the necessary conditions for optimal infection control by applying
Pontryagin’s minimum principle. It is analytically shown that an optimal control triplet exists
that maximizes the objective functional. We have demonstrated the effect of different control
measures with mono-drug and multi-drug therapies with different delays using extensive sim-
ulation results. It is shown that removing infection is not possible, and the infected cells persist
in all three mono-drug protocols, using any mono-drug therapy. However, in the case of blocker
u3, virus counts (v) go below the detection level, but infected CD4+T cells (y) persist. This,
however, does not happen in the other two controls, where both the infected cells and virus
particles survive. Infected CD4+T cells persist, but the non-zero virus count may be possible
due to the presence of cell-to-cell dissemination of infection and the use of blocker u3. Such
a result has not been shown in any previous study. It is observable that CD4+T cells count in
this case is low compared to the other two cases. Thus, u2 is the worst mono-drug therapy, and
u3 is better. However, when immune response delay increases, then plasma concentrations of
CD4+T cells, CTls, and virus particles oscillate in all three mono-control strategies, showing
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uncontrolled behavior. The control profile also oscillates in each case. In the case of a multi-
drug therapy, we observed that infection could be removed in three options, where control u2

is present. The multi-drug option (u1 6= 0,u3 6= 0,u2 = 0), where u2 is absent, is the worst one.
Our study thus shows that immune response delay significantly affects the system dynamics.
If CTL’s response is quicker, then CD4+T cells count may remain stable but fails to do so if
response time increases.
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Mitigating the transmission of infection and

death due to SARS-CoV-2 through
non-pharmaceutical interventions and

repurposing drugs1

5.1 Introduction

Susceptible individuals get an infection from COVID-19 infected individuals through direct
contact or inhaling the droplets caused due to coughing and sneezing by an infected person
or through objects in the immediate environment around the infected person. Though some
vaccines are under use, the non-pharmaceutical interventions (NPIs) like individual hygiene,
cough etiquette, safe distancing, and lockdown (partial or total) are still the easiest ways to
contain this highly contagious disease. Such NPIs have been proven effective in slowing down
community transmission and reducing the epidemic load.

Mathematical models and computation techniques may play an important role in under-
standing this epidemic and may help a lot in policymaking. In fact, policymakers have been
increasingly relying on mathematical projections and taking various important decisions to curb
the disease in more systematic and effective ways.

1The bulk of this chapter has been published in ISA Transactions, doi.org/10.1016/j.isatra.2020.09.015, (2020).
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In this chapter, we have proposed a minimal epidemic model to capture the dynamics of
observed data of detecting, recovered and death cases of any Covid-19 affected country. The
model is then extended to include three control strategies to mitigate the transmission of Covid-
19 and to reduce its related deaths. Human-to-human transmission of infection depends mainly
on two things: the number of per capita daily contacts between susceptible and infectives, and
the probability of disease transmission per effective contact [206]. As mentioned before, per
capita daily contacts may be significantly reduced through lockdown, while the probability of
virus transmission can be reduced by using face masks and other good hygiene practices. We,
therefore, used these nonpharmaceutical interventions as two control measures. The third con-
trol is used to reduce the death rate of severely infected Covid-19 patients using repurposing
drugs. The proposed epidemic model is then analyzed to determine the criteria for persistence
and extinction of the disease. It is shown that repurposing drugs is very useful in saving lives
and increasing the recovery rate. Through a case study, it is shown that India can significantly
improve the overall Covid-19 epidemic burden through the combined use of NPIs and repur-
posing drugs and it is true for any other country. India can save lives of 4794 corona infected
patients in the next one month (August 28 to September 26) if the repurposing drug has efficacy
0.3.

The rest of the chapter is organized as follows. In Section 5.2, we present the mathematical
model to be analyzed. Different mathematical results that determine the dynamics of the system
are given in Section 5.3. A case study with Indian Covid-19 epidemic data is presented in
Section 5.4. Various results are demonstrated there in relation to the proposed model. The
paper ends with a discussion in Section 5.5.

5.2 Model construction

We consider five compartments, viz. susceptible (S), latent (E), home isolated (Ih), hospital-
ized (Ic) and recovered (R) classes, to classify the human population of a coronavirus-affected
country based on their health status. Thus, N(t) = S(t)+E(t)+ Ih(t)+ Ic(t)+R(t) represents
the total population of the country at any time t. As SARS-CoV-2 is a novel virus, every indi-
vidual is assumed to be susceptible to this virus. After getting an infection, an individual joins
the latent class, E. Latent individuals are detected through real-time polymerase chain reaction
(RT-PCR) test and advised for home isolation. Some infected individuals under home isolation
state (Ih) may develop complicacy and are shifted to hospital for necessary treatment. Such
critically infected individuals are denoted by Ic. Critically ill Covid-19 patients join the class
R after recovery or succumb to infection. It is further assumed that individuals join S class
through birth at a rate G. The average per capita daily contacts of an infected individual is as-
sumed to be n and the probability of disease transmission through contact between an infected
individual and a susceptible individual is p. A common practice while writing the incidence
term is to express the product of n and p as a single term, called the disease transmission coef-
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ficient or the force of infection [206]. We, however, express it explicitly because different NPIs
affect differently on these parameters. Individuals of E class are identified as covid positive at
a rate of δ and immediately join Ih class. A proportion ω of Ih class develops complicacy and
are transferred to Ic class for the treatment. The parameters v1, v2 and m1,m2 are the recovery
and death rates of Ih and Ic classes, respectively. There are reports that covid patients die in
transit due to lack of hospital beds, unavailability of ambulance [207–209] . We, therefore,
assume that some individuals of Ih class may also succumb to infection before they are shifted
to Ic class. It is, however, true that most of the members in mildly infected class (Ih) recover
from the infection. Therefore, it would be justified to assume that ν1 >> ν2 and m1 << m2.
The natural death rate of susceptible individuals is assumed to be σ , giving 1

σ
as the average

life expectancy of the common people, and considered in all compartments. We also consider
a death class V to represent the virulence of the disease (Covid-19 related death). Note that the
individuals of the death class are not included to represent the total population. The dimension
of the proposed model was kept low, though this simplified representation reflects the usual
coronavirus infection management protocol followed in many countries including India. With
these assumptions, we propose the following model for Covid-19 epidemic:

dS
dt

= G−σS− npSIh

N
− npSIc

N
,

dE
dt

=
npSIh

N
+

npSIc

N
,−δE−σE,

dIh

dt
= δE− (ω + v1 +m1 +σ)Ih,

dIc

dt
= ωIh− (v2 +m2 +σ)Ic,

dR
dt

= v1Ih + v2Ic−σR,

dV
dt

= m1Ih +m2Ic.

(5.1)

Those who are critically ill are assumed, for simplicity, to be unable to spread the infection
further. This assumption may be too strict but simplifies the model to

dS
dt

= G−σS− npSIh

N
,

dE
dt

=
npSIh

N
−δE−σE,

dIh

dt
= δE− (ω + v1 +m1 +σ)Ih,

dIc

dt
= ωIh− (v2 +m2 +σ)Ic,

dR
dt

= v1Ih + v2Ic−σR,

dV
dt

= m1Ih +m2Ic.

(5.2)
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Figure 5.1: Schematic diagram of the disease progression mechanism considered in the system
(5.2).

A schematic representation of the system (5.2) is given in Fig. 5.1.

Table 5.1: Variables and parameter with their definitions

Variable Description Default value

S(t) Susceptible human population at time t -

E(t) Latent individuals at time t -

Ih(t) Home isolated infected individuals at time t -

Ic(t) Hospitalized infected individuals at time t -

R(t) Recovered individuals at time t -

V (t) Virulence class individuals at time t -

Parameter Description Default value

G Constant input of susceptible individuals through birth To be estimated

σ Natural death rate To be estimated

n Average per capita daily contact To be estimated

p Probability of disease transmission per contact To be estimated

δ Leaving rate from E class To be estimated

ω Transfer rate from Ih class to Ic class To be estimated

ν1 Recovery rate of Ih class To be estimated

m1 Death rate of Ih class To be estimated

ν2 Recovery rate of Ic class To be estimated

m2 Death rate of Ic class To be estimated

ui Control parameter 0 to 1

(i = 1,2,3)
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We now introduce three constant controls ui (i = 1,2,3), 0≤ ui ≤ 1 to the above epidemic
model. The control u1 is introduced to reduce the daily number of contacts due to lockdown
(complete or partial). A second control u2 is introduced to diminish the probability of trans-
mission due to using a face mask and maintaining social distance, individual hygiene, cough
etiquette, etc. Thus, (1−u1) and (1−u2) are the effective daily number of contacts and trans-
mission probability in the presence of the control measures u1 and u2. The third and most
interesting control u3 is applied to reduce the death rate and increase the recovery rate by using
various repurposing drugs and convalescent plasma therapy. As the effect of the application
of repurposing drugs, a fraction of infected people, who earlier succumbed to infection, now
recovers and joins R class; while the remaining fraction is the member of the disease-related
death class, V . In fact, without the repurposing drugs, infected individuals will die at a rate m2

and there will be no extra recovery or a reduction in the death class. Introducing these controls,
the system (5.2) reads

dS
dt

= G−σS− {n(1−u1)}{p(1−u2)}SIh

N
,

dE
dt

=
{n(1−u1)}{p(1−u2)}SIh

N
−δE−σE,

dIh

dt
= δE− (ω + v1 +m1 +σ)Ih,

dIc

dt
= ωIh− [v2 +m2{u3 +(1−u3)}+σ ]Ic,

dR
dt

= v1Ih + v2Ic +m2u3Ic−σR,

dV
dt

= m1Ih +m2(1−u3)Ic.

(5.3)

The models (5.2) and (5.3) will be analyzed with the initial conditions

S(0) = S0 > 0, E(0) = E0 ≥ 0, Ih(0) = Ih0 ≥ 0,

Ic(0) = Ic0 ≥ 0, R(0) = R0 ≥ 0, V (0) =V0 ≥ 0.
(5.4)

It is to be noted that different sub-cases may be deduced from the model (5.3) depending on
the mitigation measures. For example, an epidemic model of Covid-19 can be deduced for the
pre-lockdown period, when there was no control measure, by setting u1 = u2 = u3 = 0. The
model (5.3) has to be modified with u3 = 0 if repurposing drugs are not used. A subsystem
can be deduced with u1 = 0 but u2,u3 6= 0 if there is no lockdown but individual hygiene care
and repurposing drugs are present. In the presence of all types of control measures, the vari-
ables u1,u2,u3 will have non-zero values. This model, therefore, can capture various lockdown
and unlock stages applied in relation to Covid-19 pandemic as well as the recently approved
treatment strategy with repurposing drugs.
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5.3 Mathematical results

We here present the analysis technique of the model and give the stability results of different
equilibrium points of the system. First, from biological view point, we show that all solutions
of the system (5.3) are positive and bounded.

5.3.1 Positivity and boundedness of the solutions

In the sequel, we will use the following well known lemma [210].

Lemma 5.1 Consider a system Ẋ = F(X), where F(X) = [F1(X),F2(X), ...,Fn(X)], X ∈ Rn
+,

with initial condition X(0) = X0 ∈ Rn
+. If for Xi = 0, i = 1,2, ...,n, Fi(X)|Xi=0 ≥ 0, then any

solution of Ẋ = F(X) with given initial condition, say, X(t) = X(t;X0) will remain positive, i.e.,

X(t) ∈ Rn
+, ∀t > 0.

Lemma 5.2 For initial condition (5.4), solutions of the system (5.3) are positively invariant

provided ui(t) ∈ [0,1). Moreover, all solutions are uniformly bounded in Γ, where

Γ =

(S(t),E(t), Ih(t), Ic(t),R(t)) ∈ R5
+ |

0 < S(t)+E(t)+ Ih(t)+ Ic(t)+R(t)≤ G
σ

 . (5.5)

Proof Define X(t) = (S(t),E(t), Ih(t), Ic(t),R(t)). It can be easily seen from (5.3) that(
dS
dt

)
X=0

= G > 0,
(

dE
dt

)
X=0

=

(
dIh

dt

)
X=0

=

(
dIc

dt

)
X=0

=

(
dR
dt

)
X=0

= 0.

Lemma 5.1 then gives that all solutions of the system (5.3) starting with the initial condition
(5.4) are positive. Again,

dS
dt
|S=0 = G > 0,

dE
dt
|E=0 =

n(1−u1)p(1−u2)SIh

N
> 0,

dIh

dt
|Ih=0 = δE > 0,

dIc

dt
|Ic=0 = ωIh > 0,

dR
dt
|R=0 = v1Ih + v2Ic +m2u3Ic > 0.

Thus, following [211] , R5
+ is invariant. Therefore, all solutions of the system (5.3) with initial

condition (5.4) are positively invariant. To show the boundedness of the solutions of (5.3), we
define

W (t) = S(t)+E(t)+ Ih(t)+ Ic(t)+R(t).
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Then we have

dW (t)
dt

+σW (t)≤ G− (1−u3)m2Ic ≤ G

⇒ lim
t→∞

W (t) = lim
t→∞

[S(t)+E(t)+ Ih(t)+ Ic(t)+R(t)]≤ G
σ
.

Hence all the solutions of the system (5.3) are positively invariant and ultimately bounded in
the region Γ defined in (5.5).

5.3.2 Basic reproduction number

The basic reproduction number (R0) is one of the most important metrics in epidemic theory.
It quantifies the condition of disease progression or extinction in a population. More precisely,
a disease will grow over time if R0 > 1, otherwise it will die out. Here we evaluate the basic
reproduction number of the system (5.3) with the help of next-generation matrix [212]. One
can see that the population settles at S = G

σ
in the absence of infection. The infection subsystem

of (5.3), which describes the production of new infections and changes in the state capable of
creating new infections, is given by

dE
dt

=
n(1−u1)p(1−u2)SIh

N
−δE−σE,

dIh

dt
= δE− (ω + v1 +m1 +δ )Ih,

dIc

dt
= ωIh− [v2 +m2 +σ ]Ic,

(5.6)

The transmission matrix and transition matrix associated with this infection subsystem (5.6) in
a completely susceptible scenario (when S = G

σ
) are given by T and Σ, respectively, where

T =

 0 n(1−u1)p(1−u2) 0
0 0 0
0 0 0



and Σ =

 −(σ +δ ) 0 0
δ −(ω + v1 +m1 +σ) 0
0 ω −(v2 +m2 +σ)

 .

Then the spectral radius of the matrix−T Σ−1 gives the basic reproduction number of the system
(5.3) and is defined by

R0 = ρ(−T Σ
−1) =

n(1−u1)p(1−u2)δ

(δ +σ)(ω + v1 +m1 +σ)
, (5.7)
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whenever ui ∈ [0,1), i = 1,2. It is straightforward to see that the value of R0 is higher when
there is no control. It is to be noted that whenever u1 = 1 or u2 = 1 then the incidence term
becomes zero and all subsequent state variables tend to zero as time becomes large, implying
that the system becomes infection-free. Therefore, there is no question of the basic reproduction
number if ui = 1, i = 1,2.

5.3.3 Existence and stability of the equilibria

To determine the asymptotic behavior of the system (5.3), we find that it has two equilibrium
points: (i) the disease-free equilibrium, E1(S̄,0,0,0,0), where S̄ = G

σ
, and (ii) the endemic

equilibrium E∗(S∗,E∗, I∗h , I
∗
c ,R
∗). The equilibrium components of E∗ can be computed as

S∗ =
G

σ +φ∗
, E∗ =

Gφ∗

(σ +δ )(σ +φ∗)
, I∗u =

δGφ∗

k1(σ +δ )(σ +φ∗)
,

I∗c =
ωGφ∗

k1k2(σ +δ )(σ +φ∗)
, R∗ =

v1I∗u + v2I∗d +m2u3I∗d
σ

,

where
φ
∗ =

n(1−u1)p(1−u2)I∗u
N∗

, (5.8)

N∗ = S∗+E∗+ I∗h + I∗c +R∗, k1 = ω + v1 +m1 +σ and k2 = v2 +m2 +σ .
Then the Eq. (5.8) can be reexpressed as[

G+
δG

k1(σ +δ )
+

ωG
k1k2(σ +δ )

+
v1δG

k1σ(σ +δ )
+

ωG(v2 +m2u3)

σk1k2(σ +δ )

]
φ
∗

=

[
n(1−u1)p(1−u2)δ

(ω + v1 +m1 +σ)(σ +δ )
−1
]

G

=(R0−1)G,

where R0 is given by (5.7) with ui ∈ [0,1), i = 1, 2. Clearly, there exists a unique interior
equilibrium E∗ of the system (5.3) whenever R0 > 1.

We give below the stability results of these equilibrium points.

Theorem 5.3 The disease-free equilibrium E1 of the system (5.3) is globally asymptotically

stable if R0 ≤ 1.

Proof Consider the Lyapunov function

U1 =
δ

(σ +δ )(ω + v1 +m1 +σ)
E +

1
ω + v1 +m1 +σ

Ih.
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Differentiation of U1 along the solutions of (5.3) gives

U̇1 =
δ

(σ +δ )(ω + v1 +m1 +σ)
Ė +

1
ω + v1 +m1 +σ

İh

=
δ

(σ +δ )(ω + v1 +m1 +σ)

[
n(1−u1)p(1−u2)SIh

N
−δE−σE

]
+

1
ω + v1 +m1 +σ

[δE− (ω + v1 +m1 +δ )Ih].

Noting that S(t)≤ S(t)+E(t)+ Ih(t)+ Ic(t)+R(t) = N(t) for all t ≥ 0,

U̇1 ≤
δ

(σ +δ )(ω + v1 +m1 +σ)
[n(1−u1)p(1−u2)Ih−δE−σE]

+
1

ω + v1 +m1 +σ
[δE− (ω + v1 +m1 +δ )Ih]

≤ [R0−1]Ih.

Thus, U̇1≤ 0 if R0≤ 1. The equality sign occurrs at the disease free equilibrium, E1. Therefore,
using LaSalle’s invariance principle [65], one obtains (E(t), Ih(t))→ 0 as t → ∞. It gives that
limsupt→∞ Ih(t) = 0. Therefore, for any sufficiently small ε > 0, there exists a positive constant
M > 0 such that limsupt→∞ Ih(t)≤ ε for all t > M. From (5.3), one can have for t > M,

dIc

dt
≤ ωε− [v2 +m2 +σ ]Ic⇒ limsup

t→∞

Ic(t)≤
ωε

v2 +m2 +σ
.

Letting ε → 0, we obtain limsupt→∞ Ic(t) ≤ 0. Again, using the fact that liminft→∞ Ih(t) = 0,
one gets liminft→∞ Ic(t) ≥ 0. Thus, we finally get limt→∞ Ic(t) = 0. In a similar manner, one
can show that limt→∞ R(t) = 0 and limt→∞ S(t) = G

σ
. Therefore, all solutions of the system (5.3)

with initial conditions in Γ eventually converge to the disease-free equilibrium E1 if R0 ≤ 1.
Hence the theorem is proven.

Theorem 5.4 The endemic equilibrium E∗ of the system (5.3) is locally asymptotically stable

whenever it exists, i.e., if R0 > 1.

Proof The proof is based on the line of [213]. The variational matrix of the system (5.3)
evaluated at E1 is given by

A′ =


−σ 0 −n(1−u1)p(1−u2) 0 0
0 −(δ +σ) n(1−u1)p(1−u2) 0 0
0 δ −(ω + v1 +m1 +σ) 0 0
0 0 ω −(v2 +m2u3 +σ) 0
0 0 v1 v2 +θm2u3 −σ

 .

We consider the average per capita daily contacts of an undetected infectious individual, n,
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as the bifurcating parameter and apply the central manifold theorem to determine the local
stability of E∗. The critical value n = n∗ for which R0 = 1 holds is

n∗ =
(δ +σ)(ω + v1 +m1 +σ)

pδ (1−u1)(1−u2)
, ui ∈ [0,1), i = 1,2.

Now let at n = n∗, the Jacobian matrix JE1|n=n∗ has a right eigenvector u = (x1,x2,x3,x4,x5)
T

corresponding to the zero eigenvalue, where

x1 =−
σ +δ

σ
x2, x2 = x2, x3 =

x2δ

ω + v1 +m1 +σ
,x4 =

ωx2

(ω + v1 +m1 +σ)(v2 +m2 +σ)
,

x5 =
x2δ

(ω + v1 +m1 +σ)σ

[
v1 +

{
v2 +m2u3

v2 +m2 +σ

}]
.

Similarly, a left eigenvector corresponding to the zero eigenvalue of the Jacobian matrix JE1 |n=n∗

is w = (w1,w2,w3,w4,w5), where

w1 = 0, w2 = w2, w3 =
(σ +δ )w2

δ
, w4 = w5 = 0.

With the transformations S = y1,E = y2, Ih = y3, Ic = y4,R = y5, the system (5.3) can be ex-
pressed as

dyi

dt
= gi(yi),

where gi ∈ C2(R5×R), i = 1, ..,5. Then the second order partial derivatives of gi at E1 are
evaluated as

∂ 2g2

∂y3∂y2
=−n(1−u1)p(1−u2)σ

G
,

∂ 2g2

∂y4∂y2
= 0,

∂ 2g2

∂y3∂y3
=−2n(1−u1)p(1−u2)σ

G
,

∂ 2g2

∂y4∂y3
=−n(1−u1)p(1−u2)σ

G
,

∂ 2g2

∂y3∂y4
=−n(1−u1)p(1−u2)σ

G
,

∂ 2g2

∂y4∂y4
= 0,

∂ 2g2

∂y3∂y5
=−n(1−u1)p(1−u2)σ

G
,

∂ 2g2

∂y4∂y5
= 0.

The signs of the quantities α and β evaluated at n = n∗ determine the local stability of the
system [213], where

α = Σ
5
k,m,n=1wkxmxn

∂ 2gk(0,0)
∂ym∂yn

and β = Σ
5
k,i=1wkxi

∂ 2gk(0,0)
∂yi∂n

.

Following the Remark 1 of Theorem 4.1 given in [213], a transcritical bifurcation will occur
at R0 = 1 if α < 0 and β > 0 at n = n∗. Substituting all the values of the second order partial
derivative evaluate at E1 with n = n∗, we then have

α =−w2n(1−u1)p(1−u2)σ

G
[x2

3 + x2x3 +2x3x4 + x3x5]< 0
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and
β = w2x3 p(1−u1)(1−u2)> 0,

implying a transcritical bifurcation at R0 = 1. Thus, whenever the endemic equilibrium exists,
i.e., when R0 > 1, it becomes locally asymptotically stable. Hence the theorem is proven.

5.4 Simulation results: Indian case study

India is the third worst-hit country of the world by the Covid-19 pandemic with a tally of
33,84,576 confirmed cases and 61,695 casualties as of August 27, 2020 (https://covid19india.org).
The first confirmed case in the country was reported on January 30 when a student, who re-
turned to home state Kerela from Wuhan, was tested positive. India observed 68 days nation-
wide lockdown starting from March 25 to May 31, 2020, to restrict the transmission of the coro-
navirus. Though this lockdown allowed the healthcare providers to take necessary preparations
for combating the coronavirus by improving the health care infrastructures, India remained un-
successful to prevent the spread of infection. Phase wise unlocking process in India started
from June 1 [214]. During the first phase of unlocking (June 1-30), religious places, hotels
and restaurants were allowed to reopen maintaining the self-distancing protocol. The second
phase started from July 1 and to be continued till July 31. During this period more activities
in a calibrated manner were allowed. People’s daily life, however, was not normal [215]. Reg-
ular domestic and international flights, local transportation, both short-and long-distance train
services remain cancelled. All educational institutions, shopping malls, community halls are
completely closed since March 25. Night curfew has been continuing since the first day of
unlocking.

5.4.1 Data collection

The data for India was collected from the online freely available repository Covid19India.Org
(https://www.covid19india.org/). In this website, day-wise data, as well as the cumulative data
of corona cases in India and its all states/ union territories are given. We here considered the
time series data of confirmed, recovered and deceased cases of India for the study period 1st

March to 27th August 2020, but did not consider the state-wise data.

5.4.2 Parameter estimations and curve fitting

Study period data was divided into three time windows: 1st March to 24th March (before lock-
down period), 25th March to 31st May (lockdown period) and 1st June to 27th August (unlock
period). The value of the constant input G to the susceptible class through birth is assumed
to be equal to the per day new birth 77575 [216]. It is to be mentioned that no immigration
or emigration was considered due to international travel restriction. Average life expectancy



126
Chapter 5. Mitigating the transmission of infection and death due to SARS-CoV-2

through non-pharmaceutical interventions and repurposing drugs

of an Indian is 66.8 years [216], giving the value σ = 1
365×66.8 = 4.1× 10−5. During param-

eter estimation, it was taken into account that ν1 >> ν2 and m1 << m2. The leaving rate of
E class is measured by the parameter δ , which is a test-dependent parameter. Covid test in
India increased significantly during the later stage compared to the early stage of the epidemic.
Accordingly, the value of δ should be lower in the pre-lockdown stage and higher in the post-
lockdown period. Further, the effective daily contact n(1− u1) should be the lowest during
the complete lockdown period. On the contrary, the probability (p) of disease transmission
per contact is expected to be the highest at the initial stage of the epidemic because people
were less aware of the importance of individual hygiene in the disease transmission. In the
subsequent time, people became more concern about the infection and therefore the effective
probability (p(1−u2)) decreased. The population of India as of January 1, 2020 is considered
as the initial value of susceptible population (S(0)), which is 1387297452 [216]. The controls
were assumed to be zero during the pre-lockdown period and only two controls (u1,u2) were
assumed to have non-zero values in the lockdown period as well as unlock period. Therefore,
the third control was not used during the study period, but it was used for future prediction. The
solution curve of the model system (5.3) was then fitted with the actual data. In this process,
the fminsearch optimization toolbox of Matlab and nonlinear least-square technique were used
[217]. We implemented the fminsearch optimization technique in the way described in [218]
and have taken the nonlinear least-square method for MATLAB from mathworks repository
[219]. The parameter values that best fit the epidemic data with the solution of the controlled
system for different time periods are given in Table 5.2.

Table 5.2: Estimated parameter values for India

Time period n Effective p Effective δ ω ν1 ν2 m1 m2 u1 u2

daily contact probability
n(1−u1) p(1−u2)

1st March- 2.2199 2.2199 0.3070 0.3070 0.4038 0.3505 0.0134 0.0011 0.00001 0.00571 0 0
24th March

25th March- 3.0875 2.1612 0.3070 0.2763 0.4438 0.3415 0.1554 0.0043 0.00001 0.00145 0.3 0.1
31th May

1st June- 3.7599 3.1959 0.3003 0.1952 0.6238 0.4205 0.1374 0.0058 0.00001 0.0002 0.15 0.35
27th August

In Fig. 5.2, we have presented the curve fitting of the model for the before lockdown period
(1st March to 24th March). It can be observed that fitting is relatively poor for the recovered and
deceased classes. The main reason is that there were many inaccuracies in the initial data. In
many cases, there were under-reporting of the actual facts, and comorbidities among COVID-
19 deaths were also excluded. Such problems related to data, however, resolved later on by the
health authority.

In Fig. 5.4, the actual data between 25th March to 31st May (lockdown period) and the data
of the simulated results of the controlled system (5.3) with fixed values of u1 = 0.3, u2 = 0.1
and u3 = 0 are shown. A similar figure for the time period 1st June to 27th August (unlock
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Figure 5.2: Actual cumulative values (red colour) of confirmed, recovered and death cases in
India for the study period March 1 to March 24, 2020 (pre-lockdown period) are fitted by the
solution (green colour) of the system (5.3) with u1 = u2 = u3 = 0.

Figure 5.3: Actual cumulative values (red colour) of confirmed, recovered and death cases in
India for the study period 1st June to 27th August, 2020 (unlock period) are fitted by the solution
(green colour) of the system (5.3) with fixed controls u1 = 0.15, u2 = 0.35 and u3 = 0.

period) with fixed control u1 = 0.15, u2 = 0.35 and u3 = 0 are presented. These curves show
good fitting of actual and simulated data.

5.4.3 Effect of repurposing drugs

Here we explore the effect of repurposing drugs in treating covid-19 patients. Clinical results
show that at least one-third of critically ill covid patients can survive by administrating the
repurposing drug dexamethasone [143, 144]. Different countries have given approval of such
life-saving drugs. The Government of India gave approval of using flavipiravir on July 23 [220]
for the treatment of Covid-19 patients. Some states of India are supposed to get the first batch
of coronavirus drug remdesivir for the use of covid patients very soon [221]. In addition, the
life of some covid patients can be saved by applying convalescent plasma therapy also [150].
We here used three different values of the control parameter u3 with the parameter values of
the unlock period and demonstrated how repurposing drugs can reduce the epidemic burden. In
Fig. 5.5, the green colour curve represents the cumulative values of the confirmed, recovered
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Figure 5.4: Actual cumulative data (red colour) of confirmed, recovered and death cases in India
for the study period March 25 to May 31, 2020 (lockdown period) are fitted by the solution
(green colour) of the system (5.3) with fixed controls u1 = 0.3, u2 = 0.1 and u3 = 0.

and death cases in the next one month if the repurposing drugs are not used. The other three
curves in these figures represent similar cumulative numbers if these drugs are used. The right
figure shows that the number of deaths after one month will be 97243 if no repurposing drug
is used (i.e., u3 = 0). This number would be 92449 if the repurposing drugs are used with
controlling efficacy u3 = 0.3. Thus, 4794 deaths can be avoided in the next one month (August
28 to September 26, 2020) when u3 takes value 0.3. This number will be 2353 and 7303
corresponding to the drug efficacies u3 = 0.2 and u3 = 0.4, respectively.

5.5 Discussion

In this work, we have proposed a mathematical model that divides the population of a covid-
infected country into five disjoint classes depending on the health status of its subjects and then
compared the outcomes of different controlling strategies as well as various treatment options
currently available. Use of repurposing drugs in the mathematical model to study the Covid-19
epidemic burden is unique and has not been considered in earlier studies.

Basic reproduction of an epidemic model usually delineates the stability and existence of a
disease-free state from its endemic state. More precisely, if the basic reproduction number R0

is greater than unity then an epidemic can grow, epidemic dies out in the opposite case. We de-
termined the basic reproduction number of our system by next-generation matrix and it showed
that the classical properties of the basic reproduction number remained intact for Covid-19 epi-
demic. In the case of India, the basic reproduction number significantly reduced during the
lockdown period, however, it remained almost the same during the unlock period (Fig. 5.6(a)).
To contain the epidemic, the value of R0 has to be brought down below 1 through NPIs in the
absence of vaccine. It is worth mentioning that the value of the nonpharmaceutical control
parameters must be significantly high in this case. Fig. 5.6(b) shows that any combination of
the control parameters u1 and u2 that lies above the curve R0 = 1 for the unlock parameters can
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Figure 5.5: Predicted cumulative Covid-19 confirmed, recovered and death cases in India for
the next one month (August 28 to September 26, 2020) for different values of the control
u3. Here 180 days implies August 27, 2020, and 210 days implies September 26, 2020. The
predicted results with u3 = 0 is represented by the green dashed line in each figure. The red,
brown and blue colours represent the same for u3 = 0.2, u3 = 0.3 and u3 = 0.4, respectively.
The cumulative number of deaths as of September 26 when u3 = 0 are 97,243 and the same for
u3 = 0.3 are 92.449, implying 4,794 fewer deaths in one month. Parameters are as in Table 5.2
(unlock period).

Figure 5.6: (a) Variation in the basic reproduction number, R0, of the Covid-19 epidemic in
India for the study period March 1 to August 27, 2020. It shows that R0 decreases from its
value 1.8723 as of March 24 to 1.1180 as of August 27. March 24 is the lockdown starting date
and May 31 is the lockdown ending date for India. The daily positive cases will decline from
its current value once R0 goes below the dashed line R0 = 1. (b) The curve R0 = 1 separates the
infection-free state (R0 < 1) from the endemic state (R0 > 1) in the plane of control parameters
u1, u2. The present estimated values of u1 and u2 are marked with a red dot. Parameters are as
in the Table 5.2 with unlock case.
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Figure 5.7: Percentage change in the projected numbers of positive, recovered and death cases
as of September 26 due to the use of repurposing drug therapy with different control efficacies.
The change is calculated with their corresponding values of August 27. It shows that the use
of repurposing drugs will reduce the projected deaths by 2.39%, 4.93% and 7.51% when u3
takes values 0.2, 0.3 and 0.4, respectively. Similar changes may be observed in the cumulative
infected cases (Ih+Ic). An increase in the recovery class (R) is also observed and the percentage
change is indicated by a positive sign.

eliminate SARS-CoV-2 virus from the system. India tried hard to prevent the transmission of
coronavirus by implementing NPIs. People have become more aware of this deadly virus and
following the statutory instructions more sincerely than before. Some state governments even
have imposed punitive measures for flouting covid controlling norms [222–224]. Community
involvement may certainly help to push the point (u1,u2) = (0.15,0.35) in the region R0 > 1 to
the region R0 < 1, resulting in the elimination of infection.

Some repurposing drugs have brought new hopes for critically ill Covid-19 patients. It can
significantly reduce the covid related deaths and increase the recovery number. Our simula-
tion results show that recovery can be increased by 6.57%, and death & positive cases can be
reduced, respectively, by 7.51% & 7.98% (corresponding to the control parameter u3 = 0.4)
within a month by using repurposing drugs. This study shows that containment of coronavirus
by NPIs only is a hard task for India but definitely not impossible. The use of repurposing drugs
is very successful in saving lives and reducing the number of infectives. The combined use of
NPIs and repurposing drugs may significantly improve the overall Covid-19 epidemic burden.
It is to be mentioned that we have used fixed control in our study, one can, however, consider
these controls as time-varying in finding optimal control strategies to reach out to the target. In
this case, the objective should be to minimize the number of individuals to all infection-related
classes, the decease related deaths and the related cost. To get rid of this Covid-19 pandemic,
we have to be united and fight together to eliminate the infection from each corner of the world
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until an effective vaccine appears and peoples are immunized. We have to keep in mind that the
disease started spreading from a market of Wuhan and eventually spread throughout the globe.
In combating the global epidemics, collaboration among industry, academia, and public health
entities are essential [225].





6
Conclusions and future directions

A mathematical model is critical to understanding the host-pathogen interactions. In this thesis,
we theoretically studied the effect of different control mechanisms of infection spreading of
the Human Immunodeficiency Virus within the host body and the dissemination SARS-CoV-2
virus in a community. In the case of the within-host HIV-1 model, we considered three blockers
on a hypothetical HIV-1 infected subject and then studied its effect when administered either
individually or in combination. We first considered a three-dimensional HIV-1 model where
the infection spreads through cell-free and cell-to-cell modes. Three controls, viz. the reverse
transcriptase inhibitor (RTI), synapse forming inhibitor (SFI) and protease inhibitor (PI), were
incorporated to reduce the transmission of infection through various mechanisms. The applied
controls were assumed to be either constant or time-dependent.

In the case of constant control, we proved the local and global stabilities of the disease-
free and infected steady states. We have defined a suitable optimal control problem in the
case of time-dependent control. An objective function is characterized based on maximizing
the healthy CD4+T cell count and minimizing the count of infected CD4+T cells along with
other systemic costs of drug therapy. Using Pontryagin’s Maximum Principle, we gave a set of
necessary conditions for optimal control. We investigated and compared the effect of different
mono-and multi-drug therapies through numerical simulations. In the case of mono blockers,
the results show that the drug which blocks cell-to-cell dissemination of infection is a better
option for treating an HIV-1 infected individual. On the other hand, in the case of multi-
blockers, a combined drug that contains cell-to-cell blockers and protease inhibitors controls
the infection efficiently.

133
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Delay is an inherent part of cellular and biochemical mechanisms. The immune cell CD8+T

is activated by the antigen-presenting cells, and the activated CD8+T cells then kill the infected
CD4+T cells to protect against further infection. However, the activation and subsequent killing
of infected CD4+T cells are not instantaneous. We considered such immune activation delay in
an HIV-1 infection model and studied the role of different blockers. It is shown that the stability
of the infected equilibrium may be lost through Hopf bifurcation if the immune response delay
is longer. We defined a suitable objective function in the time-dependent controls to maximize
the cell counts of healthy CD4+T cells and CTLs and derive the optimality of our delay-induced
control problem. We demonstrated that removing infection is not possible using any mono-drug
therapy. It is also shown that the SFI blocker that inhibits synapse formation during cell-to-
cell disease transmission should be used while using multi-drug therapy to clear the infection.
However, this SFI control is not an efficient blocker in the mono-drug treatment protocol. Our
study reveals that if CTL’s response is quicker, CD4+T cell count may remain stable but become
unstable if response time increases.

Mathematical models are vital in understanding the progress of an epidemic. Using differ-
ent mathematical results, one can project the epidemic burden for a shorter period and estimate
the effect of various control measures. Different non-pharmaceutical interventions are effec-
tive in preventing the SARS-CoV-2 virus spread, while some repurposing drugs may reduce
the death rate of severely infected Covid-19 patients. It is particularly beneficial when there is
no specific drug or vaccine to curb the spread of the novel coronavirus. We proposed and stud-
ied a five-compartment epidemic model incorporating the effect of repurposing drugs along
with non-pharmaceutical intervention strategies. It is shown that the disease elimination &
persistence are dependent on the basic reproduction number of the epidemic model. A case
study with the Indian Covid-19 epidemic data was presented to visualize and illustrate the ef-
fects of such controls. We demonstrated that India significantly improved the overall Covid-19
epidemic burden by using NPIs and repurposing drugs.

It is worth mentioning that there are many avenues for improving the models considered
in this thesis. Epidemic models contain several rate parameters. These parameters are usually
assumed to be constant. However, the parameters, like the force of infection, recovery rate,
and virus reproduction rate per cell lysis, are not constant but fluctuate around their average
value. One should consider a noise-induced system to capture the inherent randomness of
this biological phenomenon. In this case, the considered rate parameter of the deterministic
system is replaced by its average value plus an error term. The error term is represented by
multiplicative white noise. One can then incorporate the effect of different inhibitors and find
the optimal dose of the inhibitors.

Earlier COVID models did not consider the effect of vaccination. Consequently, such mod-
els can no longer be used to determine the course of the epidemic in the presence of covid
vaccine. Studies show that vaccine-induced immunity is significantly reduced after six to eight
months post-vaccination, and the vaccinated people are subject to reinfection. Theoretical stud-
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ies to understand the course of the coronavirus performed by analyzing the deterministic models
are insufficient to reflect the random fluctuations observed in the positive case count, infection
time, recovery time, etc. There is uncertainty regarding the rate of immunity loss among the
vaccinated population. Therefore, considering such uncertainties/fluctuations in the SARS-
CoV-2 epidemic models with vaccine-induced immunity loss is essential. One can then find
the optimal vaccination rate to control the epidemic.





References

[1] AL Costa, MA Pires, RL Resque, and SSMS Almeida. Mathematical modeling of the
infec-tious diseases: key concepts and applications. Journal of Infectious Diseases and

Epidemiology, 7:209, 2021.

[2] Michael S Gottlieb. Current topics in AIDS, volume 2. John Wiley & Sons Incorporated,
1990.

[3] Centers for Disease Control (CDC et al. Immunodeficiency among female sexual part-
ners of males with acquired immune deficiency syndrome (aids)-new york. MMWR.

Morbidity and Mortality Weekly Report, 31(52):697–698, 1983.

[4] Centers for Disease Control (CDC et al. Pneumocystis carinii pneumonia among persons
with hemophilia a. MMWR. Morbidity and Mortality Weekly Report, 31(27):365–367,
1982.

[5] KennethB Hymes, JeffreyB Greene, Aaron Marcus, DanielC William, Tony Cheung,
NeilS Prose, Harold Ballard, and LindaJ Laubenstein. Kaposi’s sarcoma in homosexual
men—a report of eight cases. The Lancet, 318(8247):598–600, 1981.

[6] Michael S Gottlieb, Robert Schroff, Howard M Schanker, Joel D Weisman, Peng Thim
Fan, Robert A Wolf, and Andrew Saxon. Pneumocystis carinii pneumonia and mucosal
candidiasis in previously healthy homosexual men: evidence of a new acquired cellular
immunodeficiency. New England Journal of Medicine, 305(24):1425–1431, 1981.

[7] Centers for Disease Control et al. Kaposi’s sarcoma and pneumocystis pneumonia
among homosexual men-new york city and california. MMWR, 30:305–308, 1981.

[8] Henry Masur, Mary Ann Michelis, Jeffrey B Greene, Ida Onorato, Robert A
Vande Stouwe, Robert S Holzman, Gary Wormser, Lee Brettman, Michael Lange,
Henry W Murray, et al. An outbreak of community-acquired pneumocystis carinii pneu-
monia: initial manifestation of cellular immune dysfunction. New England Journal of

Medicine, 305(24):1431–1438, 1981.

137



138 References

[9] AIDS Gov. "a timeline of aids," washington, dc: Us department of health and human
services, 2011.

[10] Centers for Disease Control (CDC et al. Opportunistic infections and kaposi’s sarcoma
among haitians in the united states. MMWR. Morbidity and Mortality Weekly Report,
31(26):353–361, 1982.

[11] JJRCAC Vilaseca, JM Arnau, R Bacardi, C Mieras, A Serrano, and C Navarro. Kaposi’s
sarcoma and toxoplasma gondii brain abscess in a spanish homosexual. The Lancet,
319(8271):572, 1982.

[12] John Coffin, Ashley Haase, Jay A Levy, Luc Montagnier, Steven Oroszlan, Natalie Te-
ich, Howard Temin, Kumao Toyoshima, Harold Varmus, Peter Vogt, et al. Human im-
munodeficiency viruses. Science, 232(4751):697–697, 1986.

[13] Peter B Gilbert, Ian W McKeague, Geoffrey Eisen, Christopher Mullins, Aissatou
Guéye-NDiaye, Souleymane Mboup, and Phyllis J Kanki. Comparison of hiv-1 and
hiv-2 infectivity from a prospective cohort study in senegal. Statistics in Medicine,
22(4):573–593, 2003.

[14] Jacqueline D Reeves and Robert W Doms. Human immunodeficiency virus type 2.
Journal of General Virology, 83(6):1253–1265, 2002.

[15] JM Coffin and JA Levy. Structure and classification of retroviruses. the retroviridae.
Plenum Press, NY, 1992.

[16] Susan L McGovern, Emilia Caselli, Nikolaus Grigorieff, and Brian K Shoichet. A com-
mon mechanism underlying promiscuous inhibitors from virtual and high-throughput
screening. Journal of Medicinal Chemistry, 45(8):1712–1722, 2002.

[17] Patricia L Earl, Robert W Doms, and Bernard Moss. Oligomeric structure of the hu-
man immunodeficiency virus type 1 envelope glycoprotein. Proceedings of the National

Academy of Sciences, 87(2):648–652, 1990.

[18] Brian Thomas Foley, Bette Tina Marie Korber, Thomas Kenneth Leitner, Cristian Ape-
trei, Beatrice Hahn, Ilene Mizrachi, James Mullins, Andrew Rambaut, and Steven
Wolinsky. Hiv sequence compendium 2018. Technical report, Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), 2018.

[19] David C Chan and Peter S Kim. Hiv entry and its inhibition. Cell, 93(5):681–684, 1998.

[20] Richard Wyatt and Joseph Sodroski. The hiv-1 envelope glycoproteins: fusogens, anti-
gens, and immunogens. Science, 280(5371):1884–1888, 1998.



References 139

[21] James Arthos, Claudia Cicala, Elena Martinelli, Katilyn Macleod, Donald Van Ryk,
Danlan Wei, Zhen Xiao, Timothy D Veenstra, Thomas P Conrad, Richard A Lempicki,
et al. Hiv-1 envelope protein binds to and signals through integrin α4β7, the gut mucosal
homing receptor for peripheral t cells. Nature Immunology, 9(3):301–309, 2008.

[22] Yong-Hui Zheng, Nika Lovsin, and B Matija Peterlin. Newly identified host factors
modulate hiv replication. Immunology Letters, 97(2):225–234, 2005.

[23] Anthony S Fauci and H Clifford Lane. Human immunodeficiency virus (hiv) disease:
Aids and related disorders. Harrisons Principles of Internal Medicine, 2:1852–1912,
2001.

[24] James O Kahn and Bruce D Walker. Acute human immunodeficiency virus type 1 infec-
tion. New England Journal of Medicine, 339(1):33–39, 1998.

[25] Eric S Daar, Susan Little, Jacqui Pitt, Joanne Santangelo, Pauline Ho, Nina Harawa,
Peter Kerndt, Janis V Giorgi, Jiexin Bai, Paula Gaut, et al. Diagnosis of primary hiv-1
infection. Annals of Internal Medicine, 134(1):25–29, 2001.

[26] Ruth L Berkelman, William L Heyward, Jeanette K Stehr-Green, and James W Curran.
Epidemiology of human immunodeficiency virus infection and acquired immunodefi-
ciency syndrome. The American Journal of Medicine, 86(6):761–770, 1989.

[27] HIV What Are. Aids?: hiv. gov; 2017 [cited 2018 10/09]. Avail-able from: https://www.

hiv. gov/hiv-basics/overview/about-hiv-and-aids/what-are-hiv-and-aids.

[28] Bennett Mandell. Dolan (2010). hiv/aids. retrieved from www. wikipedia com on 16th
july 2016 hospital, tanzania. MPH Thesis submitted to the.

[29] Karol Sestak. Chronic diarrhea and aids: insights into studies with non-human primates.
Current HIV Research, 3(3):199–205, 2005.

[30] Martin Vogel, Carolynne Schwarze-Zander, Jan-Christian Wasmuth, Ulrich Spengler,
Tilman Sauerbruch, and Jürgen Kurt Rockstroh. The treatment of patients with hiv.
Deutsches Ärzteblatt International, 107(28-29):507, 2010.

[31] ED Murray, EA Buttner, and BH Price. Depression and psychosis in neurological prac-
tice. Daroff R, Fenichel G, Jankovic J, Mazziotta J. Bradley’s Neurology in Clinical

Practice.(6th ed.). Philadelphia, PA: Elsevier/Saunders, 2012.

[32] Joint United Nations Programme on HIV/AIDS et al. Global hiv & aids statistics—fact
sheet. UNAIDS: Geneva, Switzerland, 2021.

[33] Geeta Pandey. The woman who discovered india’s first hiv cases. BBC News, 30, 2016.



140 References

[34] National Aids Control Organisation. Annual report:hiv facts & figures. http://naco.
gov.in/surveillance-epidemiology-0, 2019.

[35] Richard D Moore and Richard E Chaisson. Natural history of hiv infection in the_era of
combination antiretroviral therapy. AIDS, 13(14):1933–1942, 1999.

[36] World Health Organization. Consolidated guidelines on HIV prevention, testing, treat-

ment, service delivery and monitoring: recommendations for a public health approach.
World Health Organization, 2021.

[37] Jeremy Page, Drew Hinshaw, and Betsy McKay. In hunt for covid-19 origin, patient
zero points to second wuhan market–the man with the first confirmed infection of the
new coronavirus told the who team that his parents had shopped there. The Wall Street

Journal, 2021.

[38] Donald G McNeil Jr. Wuhan coronavirus looks increasingly like a pandemic, experts
say. The New York Times. Cited February, 4, 2020.

[39] Dan Fox. What you need to know about the wuhan coronavirus. Nature, 10, 2020.

[40] World Health Organization et al. Novel coronavirus (2019-ncov): situation report, 11.
2020.

[41] World Health Organization et al. Naming the coronavirus disease (covid-19) and the
virus that causes it. Brazilian Journal of Implantology and Health Sciences, 2(3), 2020.

[42] The species severe acute respiratory syndrome-related coronavirus: classifying 2019-
ncov and naming it sars-cov-2. Nature Microbiology, 5(4):536–544, 2020.

[43] Na Zhu, Dingyu Zhang, Wenling Wang, Xingwang Li, Bo Yang, Jingdong Song, Xiang
Zhao, Baoying Huang, Weifeng Shi, Roujian Lu, et al. A novel coronavirus from patients
with pneumonia in china, 2019. New England Journal of Medicine, 2020.

[44] Nanshan Chen, Min Zhou, Xuan Dong, Jieming Qu, Fengyun Gong, Yang Han, Yang
Qiu, Jingli Wang, Ying Liu, Yuan Wei, et al. Epidemiological and clinical characteristics
of 99 cases of 2019 novel coronavirus pneumonia in wuhan, china: a descriptive study.
The Lancet, 395(10223):507–513, 2020.

[45] Philip V’kovski, Annika Kratzel, Silvio Steiner, Hanspeter Stalder, and Volker Thiel.
Coronavirus biology and replication: implications for sars-cov-2. Nature Reviews Mi-

crobiology, 19(3):155–170, 2021.

[46] Canrong Wu, Yang Liu, Yueying Yang, Peng Zhang, Wu Zhong, Yali Wang, Qiqi Wang,
Yang Xu, Mingxue Li, Xingzhou Li, et al. Analysis of therapeutic targets for sars-cov-2

http://naco.gov.in/surveillance-epidemiology-0
http://naco.gov.in/surveillance-epidemiology-0


References 141

and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica

B, 10(5):766–788, 2020.

[47] Cody B Jackson, Michael Farzan, Bing Chen, and Hyeryun Choe. Mechanisms of sars-
cov-2 entry into cells. Nature reviews Molecular Cell Biology, 23(1):3–20, 2022.

[48] Jeffrey K Aronson. Coronaviruses–a general introduction. Centre for Evidence-Based

Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford,
2020.

[49] Chia C Wang, Kimberly A Prather, Josué Sznitman, Jose L Jimenez, Seema S Lak-
dawala, Zeynep Tufekci, and Linsey C Marr. Airborne transmission of respiratory
viruses. Science, 373(6558):eabd9149, 2021.

[50] Trisha Greenhalgh, Jose L Jimenez, Kimberly A Prather, Zeynep Tufekci, David Fisman,
and Robert Schooley. Ten scientific reasons in support of airborne transmission of sars-
cov-2. The Lancet, 397(10285):1603–1605, 2021.

[51] Shelly L Miller, William W Nazaroff, Jose L Jimenez, Atze Boerstra, Giorgio Buonanno,
Stephanie J Dancer, Jarek Kurnitski, Linsey C Marr, Lidia Morawska, and Catherine
Noakes. Transmission of sars-cov-2 by inhalation of respiratory aerosol in the skagit
valley chorale superspreading event. Indoor AIR, 31(2):314–323, 2021.

[52] CDC Coronavirus. symptoms of coronavirus. centers for disease control and prevention.
2020, 2021.

[53] CDC. Coronavirus disease 2019 (covid-19)–symptoms. centers for disease control and
prevention. 2020.

[54] JHU CSSE. Covid19/csse_covid_19_data/csse_covid_19_time_series at master·
cssegisanddata. COVID-19· GitHub, 2019.

[55] World Health Organization et al. Laboratory testing for coronavirus disease 2019 (covid-
19) in suspected human cases: interim guidance, 2 march 2020. Technical report, World
Health Organization, 2020.

[56] Reed AC Siemieniuk, Jessica J Bartoszko, Long Ge, Dena Zeraatkar, Ariel Izcovich,
Elena Kum, Hector Pardo-Hernandez, Anila Qasim, Juan Pablo Díaz Martinez, Bram
Rochwerg, et al. Drug treatments for covid-19: living systematic review and network
meta-analysis. BMJ, 370, 2020.

[57] Yvette N Lamb. Nirmatrelvir plus ritonavir: first approval. Drugs, pages 1–7, 2022.

[58] Kara Rogers. Covid-19 vaccine. http://www.britannica.com/science/

COVID-19-vaccine, 11 May 2022.

http://www.britannica.com/science/COVID-19-vaccine
http://www.britannica.com/science/COVID-19-vaccine


142 References

[59] Dan Vergano. Covid-19 vaccines work way better than we had ever expected. scientists
are still figuring out why. BuzzFeed News, 2021.

[60] Smriti Mallapaty, Ewen Callaway, Max Kozlov, Heidi Ledford, John Pickrell, Richard
Van Noorden, et al. How covid vaccines shaped 2021 in eight powerful charts. Nature,
600(7890):580–583, 2021.

[61] MA Andrews, Binu Areekal, KR Rajesh, Jijith Krishnan, R Suryakala, Biju Krishnan,
CP Muraly, and PV Santhosh. First confirmed case of covid-19 infection in india: A
case report. The Indian journal of Medical Research, 151(5):490, 2020.

[62] Shepley L Ross. Differential equations. John Wiley & Sons, 2007.

[63] Lawrence Perko. Differential equations and dynamical systems, volume 7. Springer
Science & Business Media, 2013.

[64] Linda JS Allen. Introduction to mathematical biology. Pearson/Prentice Hall, 2007.

[65] Joseph P La Salle. The stability of dynamical systems. SIAM, 1976.

[66] I Michael Ross. A primer on Pontryagin’s principle in optimal control. Collegiate
Publishers, 2015.

[67] VG Boltyanskiy, RV Gamkrelidze, YEF MISHCHENKO, and LS Pontryagin. Mathe-
matical theory of optimal processes. 1962.

[68] Frank H Clarke. Optimization and Nonsmooth Analysis. SIAM, 1990.

[69] Rachael Miller Neilan and Suzanne Lenhart. An introduction to optimal control with
an application in disease modeling. In Modeling Paradigms and Analysis of Disease

Trasmission Models, pages 67–81, 2010.

[70] Suzanne Lenhart and John T Workman. Optimal control applied to biological models.
Chapman and Hall/CRC, 2007.

[71] Wendell H Fleming and Raymond W Rishel. Deterministic and stochastic optimal con-

trol, volume 1. Springer Science & Business Media, 2012.

[72] Morton I Kamien and Nancy Lou Schwartz. Dynamic optimization: the calculus of vari-

ations and optimal control in economics and management. courier corporation, 2012.

[73] Jack Macki and Aaron Strauss. Introduction to optimal control theory. Springer Science
& Business Media, 2012.

[74] AoF Filippov. On certain questions in the theory of optimal control. Journal of the

Society for Industrial and Applied Mathematics, Series A: Control, 1(1):76–84, 1962.



References 143

[75] JT Betts. Practical methods for optimal control using nonlinear programming, ser. Ad-

vances in Design and Control. Philadelphia, PA: Society for Industrial and Applied

Mathematics (SIAM), 3, 2001.

[76] Dominik Wodarz and David N Levy. Human immunodeficiency virus evolution towards
reduced replicative fitness in vivo and the development of aids. Proceedings of the Royal

Society B: Biological Sciences, 274(1624):2481–2491, 2007.

[77] Alan S Perelson. Modeling the interaction of the immune system with hiv. In Math-

ematical and statistical approaches to AIDS epidemiology, pages 350–370. Springer,
1989.

[78] Alan S Perelson, Denise E Kirschner, and Rob De Boer. Dynamics of hiv infection of
cd4+ t cells. Mathematical Biosciences, 114(1):81–125, 1993.

[79] David D Ho, Avidan U Neumann, Alan S Perelson, Wen Chen, John M Leonard, and
Martin Markowitz. Rapid turnover of plasma virions and cd4 lymphocytes in hiv-1
infection. Nature, 373(6510):123–126, 1995.

[80] Xiping Wei, Sajal K Ghosh, Maria E Taylor, Victoria A Johnson, Emilio A Emini,
Paul Deutsch, Jeffrey D Lifson, Sebastian Bonhoeffer, Martin A Nowak, Beatrice H
Hahn, et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature,
373(6510):117–122, 1995.

[81] D Kirschner, A Perelson, et al. A model for the immune system response to hiv:
Azt treatment studies. Mathematical Population Dynamics: Analysis of Heterogeneity,
1:295–310, 1995.

[82] Alan S Perelson, Avidan U Neumann, Martin Markowitz, John M Leonard, and David D
Ho. Hiv-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral
generation time. Science, 271(5255):1582–1586, 1996.

[83] Martin A Nowak and Charles RM Bangham. Population dynamics of immune responses
to persistent viruses. Science, 272(5258):74–79, 1996.

[84] Denise Kirschner and Glenn F Webb. A model for treatment strategy in the chemother-
apy of aids. Bulletin of Mathematical Biology, 58(2):367–390, 1996.

[85] Denise E Kirschner and GF Webb. Understanding drug resistance for monotherapy
treatment of hiv infection. Bulletin of Mathematical Biology, 59(4):763–785, 1997.

[86] Sebastian Bonhoeffer, John M Coffin, and Martin A Nowak. Human immunodeficiency
virus drug therapy and virus load. Journal of Virology, 71(4):3275–3278, 1997.



144 References

[87] Sebastian Bonhoeffer, Robert M May, George M Shaw, and Martin A Nowak. Virus
dynamics and drug therapy. Proceedings of the National Academy of Sciences,
94(13):6971–6976, 1997.

[88] Denise Kirschner, Suzanne Lenhart, and Steve Serbin. Optimal control of the chemother-
apy of hiv. Journal of Mathematical Biology, 35(7):775–792, 1997.

[89] Rob J De Boer and Alan S Perelson. Target cell limited and immune control models of
hiv infection: a comparison. Journal of Theoretical Biology, 190(3):201–214, 1998.

[90] Alan S Perelson and Patrick W Nelson. Mathematical analysis of hiv-1 dynamics in
vivo. SIAM Review, 41(1):3–44, 1999.

[91] Rebecca V Culshaw and Shigui Ruan. A delay-differential equation model of hiv infec-
tion of cd4+ t-cells. Mathematical Biosciences, 165(1):27–39, 2000.

[92] Alan S Perelson. Modelling viral and immune system dynamics. Nature Reviews Im-

munology, 2(1):28–36, 2002.

[93] Hal L Smith and Patrick De Leenheer. Virus dynamics: a global analysis. SIAM Journal

on Applied Mathematics, 63(4):1313–1327, 2003.

[94] Liancheng Wang and Michael Y Li. Mathematical analysis of the global dynamics of a
model for hiv infection of cd4+ t cells. Mathematical Biosciences, 200(1):44–57, 2006.

[95] Alan S Perelson and Ruy M Ribeiro. Modeling the within-host dynamics of hiv infec-
tion. BMC Biology, 11(1):1–10, 2013.

[96] Muhammad Sohaib et al. Mathematical modeling and numerical simulation of hiv in-
fection model. Results in Applied Mathematics, 7:100118, 2020.

[97] Wolfgang Hübner, Gregory P McNerney, Ping Chen, Benjamin M Dale, Ronald E Gor-
don, Frank YS Chuang, Xiao-Dong Li, David M Asmuth, Thomas Huser, and Ben-
jamin K Chen. Quantitative 3d video microscopy of hiv transfer across t cell virological
synapses. Science, 323(5922):1743–1747, 2009.

[98] Peng Zhong, Luis M Agosto, James B Munro, and Walther Mothes. Cell-to-cell trans-
mission of viruses. Current Opinion in Virology, 3(1):44–50, 2013.

[99] Shingo Iwami, Junko S Takeuchi, Shinji Nakaoka, Fabrizio Mammano, François Clavel,
Hisashi Inaba, Tomoko Kobayashi, Naoko Misawa, Kazuyuki Aihara, Yoshio Koy-
anagi, et al. Cell-to-cell infection by hiv contributes over half of virus infection. Elife,
4:e08150, 2015.



References 145

[100] Peng Zhong, Luis M Agosto, Anna Ilinskaya, Batsukh Dorjbal, Rosaline Truong, David
Derse, Pradeep D Uchil, Gisela Heidecker, and Walther Mothes. Cell-to-cell transmis-
sion can overcome multiple donor and target cell barriers imposed on cell-free hiv. PloS

One, 8(1):e53138, 2013.

[101] Ping Chen, Wolfgang Hübner, Matthew A Spinelli, and Benjamin K Chen. Predominant
mode of human immunodeficiency virus transfer between t cells is mediated by sus-
tained env-dependent neutralization-resistant virological synapses. Journal of Virology,
81(22):12582–12595, 2007.

[102] Luis M Agosto, Peng Zhong, James Munro, and Walther Mothes. Highly active
antiretroviral therapies are effective against hiv-1 cell-to-cell transmission. PLoS

Pathogens, 10(2):e1003982, 2014.

[103] Armando Del Portillo, Joseph Tripodi, Vesna Najfeld, Dominik Wodarz, David N Levy,
and Benjamin K Chen. Multiploid inheritance of hiv-1 during cell-to-cell infection.
Journal of Virology, 85(14):7169–7176, 2011.

[104] Marion Sourisseau, Nathalie Sol-Foulon, Françoise Porrot, Fabien Blanchet, and Olivier
Schwartz. Inefficient human immunodeficiency virus replication in mobile lymphocytes.
Journal of Virology, 81(2):1000–1012, 2007.

[105] DS Dimitrov, RL Willey, H Sato, L-Ji Chang, R Blumenthal, and MA Martin. Quanti-
tation of human immunodeficiency virus type 1 infection kinetics. Journal of Virology,
67(4):2182–2190, 1993.

[106] Hironori Sato, Jan Orensteint, Dimiter Dimitrov, and Malcolm Martin. Cell-to-cell
spread of hiv-1 occurs within minutes and may not involve the participation of virus
particles. Virology, 186(2):712–724, 1992.

[107] Martin A Nowak, Sebastian Bonhoeffer, George M Shaw, and Robert M May. Anti-
viral drug treatment: dynamics of resistance in free virus and infected cell populations.
Journal of Theoretical Biology, 184(2):203–217, 1997.

[108] Yinggao Zhou, Yiting Liang, and Jianhong Wu. An optimal strategy for hiv multitherapy.
Journal of Computational and Applied Mathematics, 263:326–337, 2014.

[109] Libin Rong and Alan S Perelson. Modeling hiv persistence, the latent reservoir, and viral
blips. Journal of Theoretical Biology, 260(2):308–331, 2009.

[110] Jose Orellana. Optimal control for hiv multitherapy enhancement. 2009.

[111] K Renee Fister, Suzanne Lenhart, and Joseph Scott McNally. Optimizing chemotherapy
in an hiv model. 1998.



146 References

[112] Hem Raj Joshi. Optimal control of an hiv immunology model. Optimal Control Appli-

cations and Methods, 23(4):199–213, 2002.

[113] Dominik Wodarz and Martin A Nowak. Mathematical models of hiv pathogenesis and
treatment. BioEssays, 24(12):1178–1187, 2002.

[114] Shohel Ahmed, Sumaiya Rahman, and Md Kamrujjaman. Optimal treatment strategies
to control acute hiv infection. Infectious Disease Modelling, 6:1202–1219, 2021.

[115] Jaouad Danane and Karam Allali. Optimal control of an hiv model with ctl cells and
latently infected cells. Numerical Algebra, Control & Optimization, 10(2):207, 2020.

[116] Purity Ngina, Rachel Waema Mbogo, and Livingstone S Luboobi. Modelling optimal
control of in-host hiv dynamics using different control strategies. Computational and

Mathematical Methods in Medicine, 2018, 2018.

[117] Amel Rahmoun, Bedreddine Ainseba, and Djamila Benmerzouk. Optimal control ap-
plied on an hiv-1 within-host model. Mathematical Methods in the Applied Sciences,
39(8):2118–2135, 2016.

[118] Karam Allali, Sanaa Harroudi, and Delfim FM Torres. Analysis and optimal con-
trol of an intracellular delayed hiv model with ctl immune response. arXiv preprint

arXiv:1801.10048, 2018.

[119] Amine Hamdache, Smahane Saadi, and Ilias Elmouki. Free terminal time optimal con-
trol problem for the treatment of hiv infection. An International Journal of Optimization

and Control: Theories & Applications (IJOCTA), 6(1):33–51, 2016.

[120] JM Carr, H Hocking, Peng Li, and CJ Burrell. Rapid and efficient cell-to-cell transmis-
sion of human immunodeficiency virus infection from monocyte-derived macrophages
to peripheral blood lymphocytes. Virology, 265(2):319–329, 1999.

[121] Christopher JA Duncan, Rebecca A Russell, and Quentin J Sattentau. High multiplic-
ity hiv-1 cell-to-cell transmission from macrophages to cd4+ t cells limits antiretroviral
efficacy. AIDS (London, England), 27(14):2201, 2013.

[122] Marc Permanyer, Ester Ballana, Alba Ruiz, Roger Badia, Eva Riveira-Munoz, Encarna
Gonzalo, Bonaventura Clotet, and José A Esté. Antiretroviral agents effectively block
hiv replication after cell-to-cell transfer. Journal of Virology, 86(16):8773–8780, 2012.

[123] Alex Sigal, Jocelyn T Kim, Alejandro B Balazs, Erez Dekel, Avi Mayo, Ron Milo,
and David Baltimore. Cell-to-cell spread of hiv permits ongoing replication despite
antiretroviral therapy. Nature, 477(7362):95–98, 2011.



References 147

[124] Najmeh Akbari and Rasoul Asheghi. Optimal control of an hiv infection model with
logistic growth, celluar and homural immune response, cure rate and cell-to-cell spread.
Boundary Value Problems, 2022(1):1–12, 2022.

[125] Yu Liu, Xiaolin Lin, and Jianquan Li. Analysis and control of a delayed hiv infec-
tion model with cell-to-cell transmission and cytotoxic t lymphocyte immune response.
Mathematical Methods in the Applied Sciences, 44(7):5767–5786, 2021.

[126] Suxia Zhang, Fei Li, and Xiaxia Xu. Dynamics and control strategy for a delayed viral
infection model. Journal of Biological Dynamics, 16(1):44–63, 2022.

[127] Chunyang Qin, Xia Wang, and Libin Rong. An age-structured model of hiv latent in-
fection with two transmission routes: analysis and optimal control. Complexity, 2020,
2020.

[128] Ting Guo and Zhipeng Qiu. The effects of ctl immune response on hiv infection model
with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathemat-

ical Biosciences and Engineering, 16(6):6822–6841, 2019.

[129] Chenwei Song, Rui Xu, and Ning Bai. Dynamics of a within-host virus infection model
with multiple pathways: Stability switch and global stability. International Journal of

Bifurcation and Chaos, 31(13):2150195, 2021.

[130] Debadatta Adak and Nandadulal Bairagi. Analysis and computation of multi-pathways
and multi-delays hiv-1 infection model. Applied Mathematical Modelling, 54:517–536,
2018.

[131] Xiulan Lai and Xingfu Zou. Modeling hiv-1 virus dynamics with both virus-to-cell in-
fection and cell-to-cell transmission. SIAM Journal on Applied Mathematics, 74(3):898–
917, 2014.

[132] Yu Yang, Lan Zou, and Shigui Ruan. Global dynamics of a delayed within-host viral
infection model with both virus-to-cell and cell-to-cell transmissions. Mathematical

Biosciences, 270:183–191, 2015.

[133] Jinhu Xu and Yicang Zhou. Bifurcation analysis of hiv-1 infection model with cell-to-
cell transmission and immune response delay. Mathematical Biosciences & Engineering,
13(2):343, 2016.

[134] Albert W Wu, Cheryl Connors, and George S Everly Jr. Covid-19: peer support and
crisis communication strategies to promote institutional resilience, 2020.

[135] World Health Organization. Novel coronavirus global research and innovation
forum: Towards a research roadmap. https://www.who.int/blueprint/

https://www.who.int/blueprint/priority-diseases/key-action/Overview_of_SoA_and_outline key_knowledge_gaps.pdf?ua=1
https://www.who.int/blueprint/priority-diseases/key-action/Overview_of_SoA_and_outline key_knowledge_gaps.pdf?ua=1


148 References

priority-diseases/key-action/Overview_of_SoA_and_outlinekey_

knowledge_gaps.pdf?ua=1, 2019.

[136] Leonardo Setti, Fabrizio Passarini, Gianluigi De Gennaro, Pierluigi Barbieri,
Maria Grazia Perrone, Massimo Borelli, Jolanda Palmisani, Alessia Di Gilio, Prisco
Piscitelli, and Alessandro Miani. Airborne transmission route of covid-19: why 2 me-
ters/6 feet of inter-personal distance could not be enough, 2020.

[137] Derek K Chu, Elie A Akl, Stephanie Duda, Karla Solo, Sally Yaacoub, Holger J Schüne-
mann, Amena El-harakeh, Antonio Bognanni, Tamara Lotfi, Mark Loeb, et al. Physi-
cal distancing, face masks, and eye protection to prevent person-to-person transmis-
sion of sars-cov-2 and covid-19: a systematic review and meta-analysis. The Lancet,
395(10242):1973–1987, 2020.

[138] Jeremy Howard, Austin Huang, Zhiyuan Li, Zeynep Tufekci, Vladimir Zdimal, Helene-
Mari van der Westhuizen, Arne von Delft, Amy Price, Lex Fridman, Lei-Han Tang, et al.
Face masks against covid-19: an evidence review. 2020.

[139] Kanta Subbarao and Siddhartha Mahanty. Respiratory virus infections: understanding
covid-19. Immunity, 52(6):905–909, 2020.

[140] Annelies Wilder-Smith, Calvin J Chiew, and Vernon J Lee. Can we contain the covid-
19 outbreak with the same measures as for sars? The Lancet Infectious Diseases,
20(5):e102–e107, 2020.

[141] Sara Momtazmanesh, Hans D Ochs, Lucina Q Uddin, Matjaz Perc, John M Routes,
Duarte Nuno Vieira, Waleed Al-Herz, Safa Baris, Carolina Prando, Laszlo Rosivall,
et al. All together to fight covid-19. The American Journal of Tropical Medicine and

Hygiene, 102(6):1181, 2020.

[142] Mrudula Phadke and Sujata Saunik. Covid-19 treatment by repurposing drugs until the
vaccine is in sight. Drug Development Research, 81(5):541–543, 2020.

[143] World health Organization. Dexamethasone and covid-19. https://www.who.int/

news-room/q-a-detail/q-a-dexamethasone-and-covid-19.

[144] National Institutes of Health. Dexamethasone: Coronavirus disease covid-19. covid-19
treat guidel 2020. retrieved 12 july 2020.

[145] Jonathan Grein, Norio Ohmagari, Daniel Shin, George Diaz, Erika Asperges, Antonella
Castagna, Torsten Feldt, Gary Green, Margaret L Green, François-Xavier Lescure, et al.
Compassionate use of remdesivir for patients with severe covid-19. New England Jour-

nal of Medicine, 382(24):2327–2336, 2020.

https://www.who.int/blueprint/priority-diseases/key-action/Overview_of_SoA_and_outline key_knowledge_gaps.pdf?ua=1
https://www.who.int/blueprint/priority-diseases/key-action/Overview_of_SoA_and_outline key_knowledge_gaps.pdf?ua=1
https://www.who.int/blueprint/priority-diseases/key-action/Overview_of_SoA_and_outline key_knowledge_gaps.pdf?ua=1
https://www.who.int/news-room/q-a-detail/q-a-dexamethasone-and-covid-19
https://www.who.int/news-room/q-a-detail/q-a-dexamethasone-and-covid-19


References 149

[146] Jason D Goldman, David CB Lye, David S Hui, Kristen M Marks, Raffaele Bruno, Rocio
Montejano, Christoph D Spinner, Massimo Galli, Mi-Young Ahn, Ronald G Nahass,
et al. Remdesivir for 5 or 10 days in patients with severe covid-19. New England

Journal of Medicine, 383(19):1827–1837, 2020.

[147] Brandi N Williamson, Friederike Feldmann, Benjamin Schwarz, Kimberly Meade-
White, Danielle P Porter, Jonathan Schulz, Neeltje Van Doremalen, Ian Leighton,
Claude Kwe Yinda, Lizzette Pérez-Pérez, et al. Clinical benefit of remdesivir in rhe-
sus macaques infected with sars-cov-2. Nature, 585(7824):273–276, 2020.

[148] First COVID-19 treatment recommended for eu authorisation (press release). European
medicines agency (ema); 2020, retrieved 25 june 2020.

[149] Trump administration secures new supplies of remdesivir for the united states” (press
release). United states department of health & human services (hhs); 2020, retrieved 3
july 2020.

[150] Long Chen, Jing Xiong, Lei Bao, and Yuan Shi. Convalescent plasma as a potential
therapy for covid-19. The Lancet Infectious Diseases, 20(4):398–400, 2020.

[151] Anne Catherine Cunningham, Hui Poh Goh, and David Koh. Treatment of covid-19: old
tricks for new challenges, 2020.

[152] Duccio Fanelli and Francesco Piazza. Analysis and forecast of covid-19 spreading in
china, italy and france. Chaos, Solitons & Fractals, 134:109761, 2020.

[153] Faïçal Ndaïrou, Iván Area, Juan J Nieto, and Delfim FM Torres. Mathematical modeling
of covid-19 transmission dynamics with a case study of wuhan. Chaos, Solitons &

Fractals, 135:109846, 2020.

[154] Kaustuv Chatterjee, Kaushik Chatterjee, Arun Kumar, and Subramanian Shankar.
Healthcare impact of covid-19 epidemic in india: A stochastic mathematical model.
Medical Journal Armed Forces India, 76(2):147–155, 2020.

[155] Chayu Yang and Jin Wang. A mathematical model for the novel coronavirus epidemic
in wuhan, china. Mathematical Biosciences and Engineering: MBE, 17(3):2708, 2020.

[156] Milan Batista. Estimation of the final size of the second phase of coronavirus epidemic
by the logistic model. medrxiv, 2020.

[157] Igor Nesteruk. Estimations of the coronavirus epidemic dynamics in south korea with
the use of sir model. Preprint.] ResearchGate, 2020.



150 References

[158] Abhijit Paul, Samrat Chatterjee, and Nandadulal Bairagi. Prediction on covid-19 epi-
demic for different countries: Focusing on south asia under various precautionary mea-
sures. Medrxiv, 2020.
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