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Abstract

The proper functioning of the cellular mechanisms that underlie the makeup of living systems
is governed by the intricate interactions between the proteins, which are frequently perturbed in
disease conditions. The advancement of high-throughput technologies has led to an unprece-
dented wealth of quantitative data to trace these perturbations. It is of utmost importance to
identify the key set of proteins responsible for modulating these perturbations to obtain the po-
tential targets in a disease. Notably, systematic efforts to detect these core sets of proteins have
spurred the expeditious growth of network biology, providing a framework ideal for describ-
ing disease characteristics and predicting prospective therapeutic targets. In addition, compre-
hending how these spatially and temporally dispersed perturbations culminate in imperative
biological processes is crucial to understanding cellular homeostasis and, by extension, dis-
ease pathogenesis. One such cardinal biological process is autophagy, which remains at the
crossroads of numerous other biological processes and pathways. Autophagy plays a crucial
role in maintaining cellular homeostasis by degrading unwanted materials like damaged mi-
tochondria and misfolded proteins. However, the contribution of autophagy toward a healthy
cell environment is not limited to the cleaning process. It also assists in protein synthesis when
the system lacks the amino acids’ inflow from the extracellular environment due to diet con-
sumption. Reduction in the autophagy process is associated with diseases like cancer, diabetes,
non-alcoholic steatohepatitis, etc., while uncontrolled autophagy may facilitate cell death. In
many diseases, therefore, Autophagy is seen to act as Janus.

Nevertheless, despite decades of prominent research focus, it is still a puzzle with various

Xvii



missing pieces due to its complex mechanism in numerous biological processes and diseases.
This necessitates the integration of systems biology into the autophagy scenario, which can in-
vestigate a system both in pieces and as a whole. The veracity of these investigations hinges on
their capacity to capture effective system dynamics. The development of a purely theoretical
algorithm may find crucial nodes in the network by resolving all spatiotemporal scales, often
at a cost that ignores the effect on the clinical characteristics of a disease. At the same time,
their findings may not allow for generalisation. Conversly, an algorithm that investigates only
the primary network properties, or clinical characteristics, is limited by the inability to look at
the in-depth association between proteins. Therefore, an unmet need exists for a systematic
framework that bridges protein perturbations, large-scale theoretical simulations, autophagy,
and clinical characteristics of a disease to learn effective disease pathophysiology. Addressing
these piers, in this thesis, we have incorporated mathematical modelling and network biol-
ogy approaches to develop computational frameworks to investigate the protein perturbations
in diseases with an accentuation on the autophagy process. We first developed a framework
for identifying autophagy-related targets in diabetic retinopathy by forming algorithmic alloys
between disease and autophagic proteins. Investigating the perturbations of proteins at both
the gene and metabolic levels and using network controllability, we developed a methodology
to identify potential targets in NASH. In the same disease, we next incorporated a guilt-by-
association methodology, machine learning, constrained network controllability, and metabolic
analysis to identify another set of potential targets. Intriguingly, we noted that a subset of
the targets identified by both frameworks was either autophagy-related or was surrounded by
autophagy-related proteins, suggesting an autophagy-mediated mode of operation for these tar-
gets. Finally, we formulated a mathematical model to investigate the mechanistic understand-
ing of the autophagy process, where we addressed the interplay between DNA damage and
Autophagy. Overall, the study discussed in this thesis suggests some potential targets and ther-
apeutic interventions which are either directly or indirectly autophagy-related. On one hand,
the frameworks used in this study exploited a quintessential biological process by using an
extensive clinical dataset and mathematical modelling, while, on the other hand, the protein

perturbations at the gene and metabolic levels were investigated to identify potential therapeu-
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tic targets. The proposed methodologies in this thesis are general and can be applied to study
any potential disease. We believe that learning the disease dynamics with these frameworks
will provide potent novel modalities for accurately targeting diseases and, thereby will assist in

the advancement of the drug-discovery process.
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Introduction

1.1 Autophagy

"Frenemy"- a friend who may turn into a potential enemy. This is how a cell might introduce
autophagy to its compartments and cellular constituents. This crosstalk is necessary because
the process of autophagy, which is otherwise helpful, may turn into Thanatos if the situations
inside the cell or its immediate neighbourhood go berserk [1].

Autophagy refers to the process of self-eating. The term derives from the Greek word "Auto",
which means self and "phagy", which means death. However, just as we cannot say Mozart was
only a musician or Da Vinci was only a painter, enclosing autophagy to this simple definition
does not justify its role. But how and why does autophagy need to play a role in the cells? Let

us first go through what if it doesn’t.
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More than 200 years of biochemical research have gathered a pile of data to address every
minute detail of the formation of proteins and their functions. Interestingly, like autophagy,
the name protein also comes from the Greek word "Proteios", which means "first or foremost".
The name unequivocally justifies their importance. They are the building blocks of the cell
and carries out the necessary task to maintain the structure, and functions of the tissues and
organs of the body. Proteins need to assemble themselves with a sequence of amino acids to
perform their function. This process, known as the central dogma of molecular biology, starts
with the transcription and ends with the translation of proteins. As soon as the protein attains
its structure, it starts performing its assigned function whenever the need occurs. But what
happens if a protein does not acquire its necessary amino acid sequence? Does such a situa-
tion even exist? The answer is yes. Every 1 in 7 proteins does not get to perform its function
due to the incorrect occurrence of amino acid sequence, occurring due to factors like muta-
tions, ribosomal error, temperature and pH etc. Such proteins are termed misfolded proteins,
and they remain in the cytoplasm, idle. This leads to two types of problems inside the cell.
Firstly, shortage of proteins to do a specific task. For instance, if the proteins responsible for
metabolising sugar continuously misfold, the cell will grow slowly due to the lack of energy.
Another problem is the contortion of the misfolded proteins into shapes unfavourable for the
cellular environment. Both these problems lead to multiple diseases. Cystic Fibrosis, Marfan
syndrome, and Tay-Sachs disease are among the diseases caused by the first scenario, while
Huntington’s, Parkinson and Alzheimer’s disease are to be named among the diseases caused
by the second.

However, it is not only the proteins, which, despite being essential, may act harmful when not
folded properly. Another type of such essential to lethal transition is shown by mitochondria,
the powerhouse of the cell. Initially identified and declared as an elementary organism by Alt-
man in 1890 (however, he named them bioblasts), mitochondria finally got their name from
Carl Benda in 1898, which is acquired from two Greek words, “mitos” (thread) and “chon-
dros” (granule). It plays a multifaceted role in cell biology due to its involvement with energy
production, apoptosis activation, calcium homeostasis, phospholipid synthesis, and multiple

metabolic pathways such as fatty acid activation, gluconeogenesis etc. However, due to the
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mutation in nuclear or mitochondrial DNA, mitochondria lose their function and pave the way
to various clinically heterogeneous diseases, which primarily affect oxidative phosphorylation
resulting in a decrease in ATP production. Damaged mitochondria can release an excessive
amount of reactive oxygen species (ROS) to the cytosol, increasing inflammation. Some such
diseases include Leigh’s syndrome, deafness, diabetes etc. Can a cell overcome these hiccups?
It, of course, can not survive without these important molecular/ organelles. Therefore elimi-
nating them at the early stage is beyond a fact to consider. So what is the mechanism by which
cells keep these hiccups at bay and keep on performing their functions? The answer is simple,
if anything goes berserk, eat it, and that is where the cellular housekeeping process autophagy
comes in.

As already mentioned, cells experience a frequent appearance of unwanted constituents in the
cytoplasm. Necessitating the need for their removal, cells initiate a series of signalling events
which trigger the process of autophagy. Autophagy then takes this debris to the lysosome,
where they are degraded, and different forms of amino acids are released, which are again used
by the body in the construction of proteins and other cellular functions. In other words, when
the toxicity has veiled the pool of intracellular tranquillity, autophagy activates, and, after a
cascade of events, the cells gladly discover the debris outstretched at the lysosome, being ready
to be turned into nutrients.

However, although easy it sounds, autophagy is a complex biological process which needs the
synergetic association of numerous proteins for successful completion. It is divided into three
parts, i) macroautophagy, ii) microautophagy, and iii) chaperone-mediated autophagy. While
the three of them morphologically differ, the motive of the three types are the same, they differ
in how they degrade the intracellular debris. For instance, in macrophagy, a double membrane
structure called autophagosome is formed, which engulfs and carries the cargo to the lyso-
some. This structure is not required in microautophagy, and the cytoplasm directly fuses with
the lysosome. Chaperone-mediated autophagy, on the other hand, can act only on a certain type
of protein and directly takes them to the lysosome for degradation. By the term autophagy, we
will be referring to this form only.

Since we now know its importance and about whom we should be talking, let’s go back a few
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decades and take a brief snap at the history of autophagy.

1.1.1 History of autophagy research

Autophagy was a constant buzz in cell biology even before it was discovered. In the 1860s,
there was a concept of having a self-nourishment system in the human body, which allows the
individual to survive by eating itself when a nutrient deficiency occurs [2]. In 1859, in a French
journal titled “Des Seances de I academic de Science” (Session of the academy of sciences),
an impactful article containing the term “autophagie” was published by French physiologist
M. Anselmier. Addressing this, on the 14th of March, 1860, an article was published in the
New York Times under the section “Scientific Gossip in Paris” where they used the phrase
“cannibalism reduced to a civilized and humanitary institution” to summarise the work pub-
lished by M. Anselmier. In paris, the impact of the article of Anselemier led to the inclusion of
the word autophagie in the dictionary “NOUVEAU DICTIONNAIRE DE MEDECINE ET DE
CHIRURGIE PRATIQUES” [2].

However, autophagy, as we know it today, was first defined by de Duve in 1963, which in-
volved serendipity, and some observations gleaned from experiments of many scientists. In
1955, a renowned Belgian cytochemist, Christian de Duve, while studying the effect of insulin
on rat liver cells, discovered the presence of a novel organelle, which he named “lysosome”,
referring to its “lytic” nature [3]. Soon this became a topic of discussion, and electron micro-
scopic studies were employed to assess their role further. These studies revealed the fusion of
phagosomes and lysosomes to degrade foreign materials. Following this, in 1957, the experi-
ment by S. Clark et al. [4] and Novikoff et al.[5] observed some irregular-shaped membrane
structures with mitochondria, ribosomes and ER. These structures were found to increase with
increasing stress and chemical treatments. Not many days later, the existence of autophago-
some was brought to light by the experiment of A U Arstila and B F Trump [6]. Riding on
these facts, de Duve presented a report at the Ciba Foundation Lysosome Symposium held in
London in 1963 [7]. Entitled "The concept of Lysosomes’, the report delineated endocytosis
and exocytosis and determined the functions of lysosomes on heterophagy and autophagy. The

concept of autophagy was proposed for the first time, which was described as the degradation
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of cytoplasm and organelles via autophagosomes. Digging it deeper, de Duve and Wattiaux
published a review in 1966, where they predicted the function of autophagy and stated that
through fragmentation and self-digestion, cells use autophagy when there is nutrient deficiency
or self-cleaning of dead cells is required. In 1976 Christian de Duve, due to his discovery of
lysosome and peroxidases, was awarded the Nobel prize for Physiology or Medicine.

Since its discovery, the process of autophagy has passed through numerous glorious years
where it even found a noble prize given to two of its investigators. Below, the timeline of au-
tophagy is provided, followed by a detailed description of the events that complete autophagic
flux.

Autophagic research can be divided into two parts. From its discovery to 1992, the first part
can be termed the "pre-ATG" era. The years 1992-till now form the "post-ATG" era. Before
the advent of ATG, autophagy was typically explored using biochemical, cellular physiologi-
cal, and ultrastructural methods. In this era, in the 1960-the 80s, researchers investigated the
association of protein turnover in lysosomes. For instance, U. Pfeifer et al. investigated the au-
tophagic turnover of long-lived proteins and revealed the association between circadian rhythm
and autophagy [8, 9]. They observed that autophagy is inhibited by feeding while induced by
fasting between meals, underpinning the fact that this process is strongly modulated by nutrient
conditions. Their study also revealed that the liver loses 30-40% of proteins due to degradation
during a starvation period of 48 hours. Two crucial findings in this era were the inhibition of
autophagy by amino acids [10] and insulin [11]. The latter established the hormone as a legiti-
mate physiological inhibitor of autophagic degradation and also served as a tool for calculating
the average lifetime of the autophagic vesicles based on their rate of demise. Another notable
feat was achieved by Seglen et al. [12] when they reported that 3-methyladenine could specif-
ically inhibit autophagy without affecting protein synthesis or intracellular ATP levels. This
has become a classic autophagy inhibitor since then. Again, certain types of proteins can be
directly sequestered from the cytosol to the lysosomal membrane for destruction without the
aid of autophagosomes. This type of autophagy, as already mentioned, is called Chaperone-
mediated autophagy and was discovered by J. Fred Dice [13]. In this era, however, the genes

and proteins specifically associated with autophagic processes remained unidentified.
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A quantum leap in autophagy research came from a yeast genetic screen performed by Yoshi-
nori Ohsumi, marking the start of the post-ATG era. In 1992, Ohsumi et al. discovered that nu-
tritional shortage triggered an autophagic breakdown in Saccharomyces Cerevisiae [14]. This
discovery substantially benefited autophagy research. However, the phenotypes as well as the
physiological roles of the autophagy-deficient mutants were yet to be understood at that time.
In 1993, Ohsumi and Tsukada discovered Apgl, the first autophagy-deficient mutant, by using
light microscopic selection to acquire mutants, which, under nitrogen starvation conditions, fail
to accumulate autophagic bodies [15]. Although this mutant thrived properly in a nutrient-rich
environment, it perished after prolonged nitrogen deprivation. Using this phenotype as a pre-
liminary screen, they discovered approximately one hundred autophagy-deficient mutants, and
their genetic analysis showed fifteen complementation groups, leading to the discovery of sev-
eral autophagy-related genes, coined as APG. Within a span of a few years, various autophagy-
related genes were discovered by employing independent yeast genetic screens, which elon-
gated the list of Ohsumi’s APGs. For instance, Michael Thumm et al. isolated six autophagy-
deficient aut mutants in 1994 by employing antibody staining to identify colonies with impaired
cytoplasmic enzyme degradation [16]. Due to its comparable membrane properties, the Cyto-
plasm to Vacuole Targeting (Cvt) pathway has been explored extensively as a model for selec-
tive autophagy [17]. In 1995, D. Klionsky and his group isolated several Cvt mutants defective
in this pathway, which were shown to be predominantly allelic to APG mutants [18]. Various
other labs also worked on this domain in different species of Yeast [19-22]. For example, in
Pichia pastoris, William A. Dunn et al. [21] showed that glucose-induced microautophagy
needs the alpha-subunit of phosphofructokinase, while Suresh Subramani et al.[20] investi-
gated the Peroxisome Degradation by Microautophagy. There was a high overlapping between
the autophagy-related genes identified in these studies. However, ascribing mutants their own
names created a confusing circumstance. For example, APG1, PAZ1, AUT3, GSA10, CVT10,
and PDD7 all refer to the Saccharomyces cerevisiae gene now known as ATG1. To mitiigate
this, later in 2003, all these genes were brought under the term “autophagy-related genes”
(ATGs) [23]. Amidst this buzz of APGs, in 1994, Rapamycin silently entered autophagic re-

search when Meijer et al. discovered that Rapamycin attenuated the inhibitory impact of amino
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acids on autophagic proteolysis [24]. This was indeed a crucial discovery as the mammalian
target of Rapamycin (mTOR) was later found to play a quintessential role in autophagy.

The ATG proteins work in several functional units. Numerous studies looking into these rela-
tionships have discovered multiple conjugate systems. In 1998, the first such system, the Atgl12
conjugation, was discovered by Ohsumi et al. [25] which was followed by the Atg8 conjuga-
tion system by the same group in 2000 [26].

In the interim, autophagy translational research was also taking shape. Marking as the first
instance, in 1999, Beth Levine et al. described the involvement of beclinl [27] in cancer. They
stated that it has a reduced expression in breast cancer and can inhibit tumorigenesis. In the
following years, numerous other studies have reported the translational landscape of autophagy,
and its role in diseases like Crohn’s disease [28], Aging [29], neurological diseases [30] etc.
were identified. These studies were assisted by the discoveries like Atg14-PI3K complex [31],
the role of TFEB in autophagy [32] etc. The timeline of crucial events of autophagy is shown

in Figure 1.1.

1.1.2 Bird’s eye view to the process of autophagy

Due to the importance it carries, the process of autophagy remains at the crossroads of multiple
biological pathways and processes. As a result, autophagy is orchestrated by the synergistic
association of a large number of proteins. Each of these steps is modulated by some spe-
cific set of proteins. The core autophagic genes, ATGs, are involved throughout this process.
Based on their functions, they can be placed in five multifunctional modules. In yeast, these
modules are shown in Table 1.1. Except for red algae, these core molecules are conserved
across all the species. Autophagy is a multistep process that includes five sequential stages.
These are 1) initiation, ii) double-membrane nucleation, iii) phagophore elongation, iv) cargo
sequestration, and v) degradation. The initiation of autophagy is dependent on the protein
mTOR. It is comprised of two functionally and structurally distinct conserved protein com-
plexes, mTORCI and mTORC2. Nevertheless, only the former is susceptible to Rapamycin
[33] and serves an unquestionably vital function in autophagy. Although mTORC?2 inhibition

was also reported to induce autophagy under fasting conditions, this is predominantly medi-
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Table 1.1: Distribution of the autophagy related genes (ATGs) accorss five disticnt modules
in yeast.

Module ATGs

Atg8- Atg3-5, Atg7-8, AtglO,

phosphatidylethanoamine Atgl2, Atgl6

and Atg5-Atgl2 conjugation

system

Atgl kinase complex Atgl, Atgl3, Atgl7, Atg29,
Atg31

PI3K complex Atg6, Atgld, Atg38, Vpsls,
Vps34

Atg2-Atg18 complex Atg2, Atgl8

Atg9 vesicles Atg9

ated via FoxO3 [34, 35]. Nutrient abundance or growth factor signalling prompts the lysosome
translocation of mMTORC1, where it activates and initiates growth-promoting processes while
suppressing autophagy. It accomplishes this by inhibiting the autophagy initiation complex
[36] and the nuclear translocation of the TFEB, which regulates the transcription levels of a
plethora of lysosomal and autophagy genes [32]. In contrast, starvation disassociates mMTORC1
from lysosomes, resulting in the induction of autophagy [36]. However, after prolonged starva-
tion, mM"TORC1 becomes reactivated, and forms proto-lysosomal tubules and vesicles that even-
tually mature into functioning lysosomes [37]. In other words, autophagy walks the tightrope
between mTORCI and lysosomes for a steady autophagic flux.

Initiation of autophagy necessitates the ULK1 complex composed of FIP200, ATG13 and
ATG101, which is positively regulated by AMPK and negatively regulated by mTOR [38]. Fol-
lowing autophagy induction, the ULK1 complex translocates to autophagy initiation sites and
regulates the recruitment of the vacuolar protein sorting 34 (VPS34) complex composed of the
VPS34, beclinl, VPS15 and ATG14-like (ATG14L). This complex is responsible for produc-
ing the phospholipid phosphatidylinositol 3-phosphate (PI3P) at the autophagosome forming
site called the phagophore [39]. Multiple autophagy proteins have been found to bind beclinl
to activate or inhibit the beclin1/PI3KIII complex. For instance, AMBRA1 binds directly to
beclinl and enhances its interaction with VPS34, resulting in higher activation of VPS34 and
the production of autophagosomes [40]. The autophagy process encounters its final obstacle at

the fusing of autophagosomes and lysosomes, where a significant energy barrier must be over-
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Figure 1.2: The schematic diagram of autophagy. The primary regulators of autophagy are
AMPK and mTOR, with the former serving as an inducer and the latter as an inhibitor. The
process is completed in five steps and the the core autophagic genes, ATGs play vital role in
different stages by forming into several complexes.

come. This fusion mechanism is tightly regulated by either STX17-SNAP29-VAMP7/VAMP8
[41] or STX7-SNAP29-YKT6 SNARE complex [36]. Again during fusion, the two vesicles
must be kept close for which HOPS complex, PLEKHM115, and EPGS5 simultaneously inter-
act with proteins present on the autophagosomal and autolysosomal membrane. PLEKHM115
binds with Arl8b*° and RAB7%° on the lysosome and LC3 on the autophagosome, EPGS5 binds
to RAB7%° and LC3[42], and the HOPS complex interacts with lysosomal Arl8b**° [43] and
autophagosomal Qa-SNARE STX17 [44]. Once the autolysosome forms, the inner autophago-
somal membrane degrades, and more than 60 lysosomal hydrolases work simultaneously to

digest the confined material [45]. The molecular mechanism of autophagy is shown in Figure

1.2.

1.1.3 Autophagy research in numbers: how much have we dug?

We obtained articles from PubMed that matched the search word "autophag*" within the Ti-
tle/Abstract field. A few publications discussed the term "autophagia" rather than autophagy/autophagosome
and were therefore excluded. We collected 69405 items in the end !. In accordance with

Mizhushima et al.[46], we classified these publications into three time periods: 1965 to 1975,

! At the time of compiling the thesis.
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Figure 1.3: The fast emerging study field of autophagy. a) The number of publications in
autophagy as per the PubMed records. b) The number of publications on autophagy in three
different periods. It can be seen there has been a humongous rise in autophagy research in the
last few years.

1975 to 2000, and 2001 to the present. In the first period, an average of 15.20 articles were pub-
lished, followed by an average of 165.7 articles in the second period, and a whopping 7665.5
articles since 2001, establishing the fact that in recent years, there has been a meteoric rise in
the number of articles published about autophagy. The number of publications in autophagy

per year is shown in Figure 1.3.

1.1.4 Autophagy and diseases: despondency or hope?

The enormous number of publications on autophagy meant that it has been plotted, pieced,
and ploughed into the landscape of translational science to find its impact on multiple diseases.
Despite that, whether autophagy is despondency or hope is still unclear for many diseases. The
crucial role of autophagy in diseases can be attributed to multiple facts. For instance, this is
a quintessential process to maintain cellular homeostasis, which it accomplishes by aiding the
breakdown of long-lived or misfolded proteins, damaged organelles, and protein aggregates.
Again, autophagy’s ability to orchestrate various stress responses is another crowning achieve-
ment that keeps it at the crossroads of multiple diseases and disorders Figure 1.4. This complex
and paradoxical role of autophagy in regulating the course of the disease has been the subject
of extensive research. Autophagy acts as a Janus in cancer by playing a role both in tumour
suppressor and activator. The assessment of the ultimate fate of tumour cells by autophagy
relies on the type, stage, and genetic context of cancer. Autophagy provides a cytoprotective

impact by eliminating unwanted materials, thereby minimising the genomic damage leading to
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abnormal mutations and cancer. However, when cancer advances, the stress-suppressing fea-
tures of autophagy are co-opted by tumour cells to satisfy the increased metabolic demands
required for tumour survival and rapid growth. Autophagy-related proteins are associated with
preventing cancer cell growth in various cancers, including the colon, gastric, breast, lung
and prostate cancer [47-50]. However, autophagy also helps in tumorigenesis by promoting
the proliferation of cancer-cell and tumour growth [51, 52]. Abnormal lipid metabolism and
the excessive accumulation of triglycerides stored in lipid droplets trigger the non-alcoholic
fatty liver disease, which may eventually lead to non-alcoholic steatohepatitis (NASH) [53].
In vitro and in vivo studies have revealed that autophagy plays a protective role in NASH by
selective degradation of these lipid droplets [54]. Hence, the autophagy pathway can be a po-
tential target in treating NASH. In various neurodegenerative diseases, including Parkinson’s
disease, Alzheimer’s disease, and Amyotrophic lateral sclerosis [55], misfolded protein accu-
mulation is considered a pathological hallmark. Since the accumulation of misfolded proteins
is directly affected by a decrease in the neuronal autophagy level, autophagy is considered a
target pathway in neurodegenerative diseases. The importance of autophagy can be mapped
to insulin resistance and type 2 diabetes, as it plays an indispensable role in the physiology of
beta cells. Autophagy takes part in the regulation of insulin homeostasis and is necessary for
normal beta cell homeostasis [56, 57]. The disrupted autophagic activity has been reported in
the beta cells of type 2 diabetes mellitus (T2DM) patients [58]. Metformin has been widely
used in type 2 diabetes clinical therapy and protects pancreas beta cells from injury through
autophagy activation by the AMP-activated protein kinase (AMPK) pathway [59]. Due to its
crucial role in cellular housekeeping, autophagy also plays a role in anti-ageing mechanisms
[60]. It also plays an essential role in cell remodeling during development [61] and in cellular
defense against pathogens [1].

Nevertheless, despite playing a protective role in various diseases, uncontrolled autophagy may
lead to excessive degradation of the cellular constituents and may cause cell death [62-64].
Hence, although important, the autophagy process needs to be strictly monitored for the smooth

functioning of the cellular homeostasis [65, 66].
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1.1.5 Autophagy as a therapeutic target: cancer as an example

In light of the aforementioned facts, pharmaceutical methods to upregulate or inhibit this sys-
tem are currently garnering substantial interest. As a physiological process, autophagy main-
tains the health of cells and inhibits carcinogenesis, but it can also contribute to the treatment
of numerous diseases by delivering nutrients or initiating cell death. Therefore, the strategy to
target autophagy with pharmaceutical intervention must be cautious and thoroughly supported
by preclinical facts pertaining to autophagy’s function and state. The majority of cells treated
with chemotherapy induce autophagy. This autophagy activation is a last-ditch effort by tu-
mour cells to survive. Various studies have reported that inhibiting autophagy sensitises cancer
cells to anti-cancer drugs. In ER-positive breast cancer cells, for example, the genetic deletion
of AtgS, Atg7, or beclinl reverses tamoxifen resistance [67]. The efficacy of chemotherapy
in HER2-positive breast cancer cells can also be enhanced by combining inhibitor 3-MA, and
trastuzumab [68]. However, currently, CQ/HCQ, which inhibits the autophagosome-lysosome
fusion by disrupting lysosomal acidification, is the only FDA-approved autophagy inhibitor for
clinical trials [69, 70]. A list of autophagy modulators which are currently in clinical stages for

targeting cancer is shown in Table 1.2.

Table 1.2: Cancer-targeting autophagy modulators currently in clinical trials.

.. . Mechanism/target of .
Clinical trials Current state | Type of cancer Identifier

chemotherapy drugs

Sirolimus or

vorinostat mTOR and HDAC Advanced solid
Completed NCT01266057
with HCQ inhibitor tumors
(Phase I)
Vorinostat with
o ) Advanced solid
HCQ HDAC inhibitor Ongoing NCT01023737
tumors

(Phase I)
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Table 1.2 continued from previous page
o ) Mechanism/target of )
Clinical trials Current state | Type of cancer Identifier
chemotherapy drugs
Gemcitabine/
Nucleoside analog/
abraxane Pancreatic
antimicrotubule Completed NCT01506973
with HCQ adenocarcinoma
agent
(Phase I/1I)
Paclitaxel, Microtubule
carboplatin and disrupting agents/
Non-small lung
bevacizumab inhibitor of Completed NCT01649947
cancer
with DNA synthesis/
HCQ (Phase II) VEGF-A inhibitor
Folinic acid/
FOLFOX and thymidylate
bevacizumab synthase inhibitor/
Completed | Colorectal cancer | NCT01206530
with HCQ inhibition of DNA
(Phase 1/11) synthesis/VEGFA
inhibitor
Vorinostat with
HDAC inhibitor/ Refractory
HCQ versus
Multi kinase Completed | metastatic NCT02316340
regorafenib
inhibitor colorectal cancer
(Phase II)
Advanced p53
MLN9708 and Proteasome inhibitor/
Completed mutant NCT02042989
vorinostat (Phase I) HDAC inhibitor
malignancies
Temsirolimus
Refractory solid
with HCQ Cell cycle arrest Completed NCTO00909831

(Phase I)

tumors
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Table 1.2 continued from previous page

o ) Mechanism/target of )
Clinical trials Current state | Type of cancer Identifier
chemotherapy drugs
o Breast ductal
CQ (Phase I/II) Lysosomal inhibitor | Completed NCT01023477
carcinoma
RADOO1 with
Renal cell
HCQ mTOR inhibitor Completed NCTO01510119
carcinoma
(Phase I/1I)
Navitoclax and
abiraterone Bcl2 inhibitor/
Refractory
acetate with or Androgen Completed NCTO1828476
prostate cancer
without HCQ synthesis inhibitor
(Phase II)
Sunitinib malate
Receptor tyrosine Advanced solid
with HCQ Completed NCT00813423
kinase inhibitor tumors
(Phase I)
CQ (Phase II) Lysosomal inhibitor | Completed Breast cancer NCT02333890
Sorafenib with Refractory or
Multi kinase
HCQ Completed relapsed solid NCT01634893
inhibitor
(Phase I) tumors
Dabrafenib and BRAF inhibitor/
Advanced BRAF
trametinib with MEK Completed NCT02257424
mutant melanoma
HCQ (Phase I/IT) | inhibitor
Velcade and
Proteasome Refractory or
cyclophosphamide
inhibitor/ DNA Completed | relapsed multiple | NCT01438177
with CQ

(Phase II)

replication inhibitor

myeloma




16 Chapter 1. Introduction
Table 1.2 continued from previous page
o ) Mechanism/target of )
Clinical trials Current state | Type of cancer Identifier
chemotherapy drugs
DNA replication
Cisplatin and
inhibitor/ Stage 4 Small cell
etoposide with Completed NCT00969306
topoisomerase lung cancer
CQ (Phase I)
inhibitor
Advanced solid
MK?2206 with tumors (Prostate,
Akt inhibitor Completed NCT01480154
HCQ (Phase I) melanoma or
kidney cancer)
Enzalutamide
with metformin Anti-androgen Completed Prostate cancer NCT02339168
hydrochloride
Gemcitabine and
Nucleoside analog/
abraxane
Antimicrotubule Completed Pancreatic cancer | NCT01978184
with or without
agent

HCQ (Phase II)

1.1.6 The need for a helping hand

The question arises whether the rising techniques and technological advancements for mon-

itoring autophagy are sufficient to reveal its potential. Can it address all the ifs and buts in

drug discovery? Also, what does the practicality indicate about investigating the effect of each

protein involved in this process?

The answer is no. Due to the kaleidoscopic nature of autophagy, this process needs to be

investigated through various methods. Many of these may not be feasible in the first place

from the experimental perspective. Addressing the crossover between intracellular mechanisms

and tissue-level phenotypes is one example, as it necessitates the computation of the probable
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Figure 1.4: Autophagy-related diseases. These diseases can be categorised into two parts:
organ-specific (shown in the inner circle) and multisystemic (shown in the outer circle). This
figure shows the autophagy-disease interplay. The association with most human diseases, in-
cluding varieties of cancer and immune disorders, has proved that autophagy is a quintessential
process, and its manipulation can be targeted as a therapeutic strategy.

system-level impacts of the behaviours of large sets of individual genes or proteins. This ne-
cessitates the integration of an approach that, through its sophisticated tools and methods, can
integrate quantitative technologies and extensive experimental measures to reveal the intra-
cellular heterogeneity as well as the rapid adaptation of the cellular environment in response
to stimuli that eventuate on timescales that cannot be described by evolutionary processes or
clonal selection and this is where systems biology enters the autophagy scenario. With its po-
tential to analyse a system both as a whole and in parts, systems biology unveils the curtains of

the autophagy mechanism and helps it conquer the pesky ladder in the chasm of uncertainties.

1.2 Systems biology: The key to identify the wolves in the
sheep’s clothing

Comprehending at a systems level has always been a perennial theme in biological science.

This comprehension extends beyond the assembly of genes and proteins. According to Hiroaki
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Kitano [71], the interconnections between proteins and genes are just static road maps, and
obtaining a complete inventory of them is equivalent to getting the parts of an aeroplane. They
are necessary but cannot explain the system’s fundamental complexity. For that part, it is an un-
met need to examine how individual components interact during a process. These interactions
are not random. There exist directions to avoid dejections, variations in interaction partners
for task specificity, and flexibility to function within the cell, among cells and even between
organisms. Biological systems are governed by specific rules, and systems biology acts as a
hatchet to unveil these underlying principles [72]. Though Mihajlo Mesarovic is often credited
with coining the term "systems biology" in 1968 [73, 74], many others believe that Ludwig
von Bertalanffy, the "father of general systems theory," actually coined the word in the 1920s.
Some of the crucial inventions aiding systems biology research are shown in Figure 1.5.

Every system possesses a hierarchical structure, and a systematic study of it helps to find how
components are organised, viz., what lies in the core, and what remains on the periphery of the
system. Again, these structures are interlinked together, where each lower level in the hierarchy
creates the level immediately above (for example, cell to tissue, tissue to organ, organ to the
organ system and so on) by means of some linkages. Systems biology is nothing but the study
of both these structures and their linkages. By analysing systems, "layer by layer," systems
biology allows for understanding why and how an event occurs, inevitably leading to *what if’
type questions and enabling predictions [75]. In other words, systems biology can grasp all the
components of a biological system and, through quantification of these components and their
relationships, it endeavours to provide a comprehensive model of the system. Two crucial pil-
lars of systems biology are mathematical modelling an network analysis. The former looks into
the association of a small number of proteins and the effect of their crosstalk on the systems
dynamics while the latter investigates the entire system as a whole. Figure 1.6 summarises

systems biology, while the next section describes the two pillars in detail.
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Figure 1.5: Crucial inventions in systems biology.
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Figure 1.6: An illustration of the systems biology approaches. ML-based approaches can be
used directly in the transcriptomic data of patients. The dataset can also be used to understand
the metabolic alterations in the disease. By identifying differentially expressed genes and using
various databases, protein-protein interaction network analysis can be carried out to identify the
crucial proteins. These proteins can further be taken under the grasp of mathematical modelling
studies to get more insight into the biological system. The structure-based drug-designing
approach can also be applied to get more insight into these crucial proteins.
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1.2.1 Mathematical modelling
1.2.1.1 Significance of mathematical models in studying biological systems

Biological systems are complex, and a mathematical model acts as a reflector of this complex-
ity. The complexity of a biological system appears due to many reasons. One of them is the
underlying hierarchy of the system that ranges from cells to the organism level. Each of the
different hierarchy levels is dynamic. Even if they imitate regular and predictable behaviour,
abrupt major and stochastic shifts may arise anytime, even for minute changes in the cellular
environment. These uncertainties lead to complexities that are difficult to capture in experimen-
tal studies. Even if they do, it is challenging to grasp routes and patterns of the actual evolution
of complexity. For example, to identify the functional role of a gene, scientists perform knock-
out experiments [76]. However, such experiments overemphasise the role and importance of a
single gene and are not ideal for understanding the complex nature of the system. Mathematical
models study these complexities of a system and portray an abstraction of reality. These models
study the crucial genes/proteins capable of driving the system and the underlying dynamics of
the association between the genes/proteins. These models have the audacity to identify crucial
parameters capable of deciding the system’s fate, which can be further proven by experimental
validation.

The mathematical modelling is based on four crucial pillars where the first pillar is a literature
survey of the system. The second pillar is the construction of the model, where the relationship
between the model variables will be established using model parameters. This step is followed
by the analysis of the model, and the last pillar is the validation part where the result of the
model will be validated either by literature or by an experimental approach. If the model fails
to deliver the appropriate output, the necessary changes will be implemented in the model until
the desired outcome appears. Mathematical models are perfect examples of complexity and
simplicity as they are ornamented with a set of equations, which are complex enough to repli-
cate the properties of the system and concurrently simple enough to grab up the underlying
phenomena of the system. Theoretically, these models can drive a system anywhere, but it has
to follow some constraints in systems biology. For example, a negative concentration of a pro-

tein will make no sense, so as a species’ negative population. Similarly, there must always be
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an upper bound, be it the concentration of a protein inside a cell or the population of a species.
But, although restricted to biological constraints, a mathematical model can help to find out the
crucial parameters responsible for deciding the fate of the system. In other words, for a specific
cellular process full of many regulatory patterns, mathematical modelling paves the way to pick

the right one.

1.2.1.2 Different type of mathematical models

Differential equations are extensively employed to represent biological systems due to their
effectiveness at capturing non-linear behaviour and illustrating interactions between several
variables. Among the various models available to investigate biological processes, ordinary
differential equations-based models are the most commonly used. These equations are of the

form
@
dt

and they describe how individual variables x; vary over time, A; are the model parameters de-
scribing different rate constants. When explicit dependence of the dependent variables on the
independent variable is absent, the system is called autonomous. The functions, along with the
parameters, beautifully portray the dynamics of the state variables. Such models usually de-
scribe the change in the dynamics of a variable (proteins/cells etc.) without considering factors
like the noise, transversal and longitudinal diffusion of the model variables, etc.

Another type of mathematical model, called the delay differential equations (DDE) model, is
used in representing biological phenomena. Time delay is an inherent property and occurs
naturally in biological systems. The time delays in these models represent the duration of
hidden processes between two major processes. The time between the infection of a cell by
some pathogens and the subsequent production of new pathogens can be taken as an exam-
ple. Another example is a susceptible population which requires a consistent period of time,
termed the latent period of infection, to become infectious after coming into touch with an in-
fected individual. This phenomenon is even reflected in the central dogma of biology, which
states that the production of functional proteins is the result of a series of complex processes

involving transcription, translation, and post-translational modifications. Due to the sequential
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nature of protein synthesis, there is a delay between when RNA polymerase binds to promoter
DNA and when fully functional proteins appear. Such phenomena are captured using the delay

differential equation models. A typical delay differential equation is of the form

dX

o =F(t,X(t—711),.... Xt —1));Ti=1:n>0,

where 7;,i = 1 : n are time delays. They are measurable and may be constant. Sometimes, the
initial or boundary conditions may not be sufficient to predict the future state of a system. For
such a scenario, it is indispensable to know how the system behaved in the early stages, and
hence, delay differential equations play a vital role in understanding a biological system where
the current state of some variables depends on the past states.

Both ODE and DDE are deterministic methods to map a biological system of equations. But, a
biological system is always exposed to uncertainty that is not entirely understood. An approach
to model such systems is by adding stochastic influence or noise. It is another inherent property
of biological systems. Since biochemical kinetics at the single-cell level is inherently stochas-
tic, stochastic models are required to adequately reflect the numerous sources of heterogeneity
required for the realistic modelling of biological systems. Such models, however, are far more
computationally intensive than deterministic models and significantly more difficult to fit into
experimental data. Some stochastic behaviour examples are hormonal oscillations, respiration,
blood pressure variations, cellular metabolism, etc. The general form of a stochastic differential

equation (SDE) can be expressed as
dxt = f(f,xt)dl + G(t,x,)dw,,
or with the equivalent integral form

t t
Xp = Xy, -l-/ f(s,x5)ds + [ G(s,x5)dws,
Io

To

with an initial value, x;,. Here, f : [to,1] x R? — RY,G : [t9,1] TITR? — R¥*™ and {w;},¢};, | de-

note an m-dimensional Wiener process (Brownian motion). R4 and R¥™ are d-dimensional
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and d x m-dimensional Euclidian space, respectively.

Agent-based modelling (ABM) is an alternative approach that relies on a predefined logical
programming language. In ABM, the system consists of interacting autonomous decision-
making bodies known as agents. ODE modelling presupposes a homogeneous environment,
while ABM is capable of simulating a transient and spatial evolution of a system in that each
participant in the model is represented as an individual agent per its laws. One of the funda-
mental aspects of ABM is the occurrence of complex behaviour from a set of simple rules. It
simulates the interactions between multiple independent agents and evaluates their effect on the
overall system. It captures the emerging phenomena of a complex system from the perspective
of its constituent components, making ABM a bottom-up approach [77]. The benefits of ABM
include their flexibility, the natural way of description of the system, and the capability of cap-
turing the emergent phenomena due to the interactions of individual entities [77]. Agent-based
modelling facilitates both discrete and continuum mathematical modelling approaches. The
study of tumour cell density, nutrient distribution, etc., comes within the radar of the continuum
modelling approach, whereas cellular automation is a representation of discrete mathematical
modelling. Agent-based models have been used extensively to explain biological phenomena in
various biological systems. For example, a three-dimensional agent-based Voronoi-Delaunay
hybrid model was developed by Schaller, and Meyer-Hermann [78], where reaction-diffusion
equations depicted the spatiotemporal distribution of oxygen and glucose. Their study was an
effort to test the hypothesized functional dependence of the absorption rates of glucose and oxy-
gen, and to determine suitable mechanisms for necrosis induction. Another agent-based model
was built by Engelberg et al. [79], where different spaces for tumour cells, oxygen, nutrient,
and toxic inhibitors were considered. The goal of the study was to create a model consisting of
separate cells that fairly represent the behaviour of an in vitro multicellular tumour spheroid.
Biological processes involve complex mechanisms with many pathways and molecules that
change over time and space, and in the understanding of such systems, ABM would play a vital
role. These models can also help with the mathematical portraiture of biological phenomena
like the spatial and temporal requirement of autophagy-related protein to bacteria. However,

ABM has certain drawbacks. For instance, it demands more details to be provided about the
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system of interest, which may not always be reported in the literature. Another disadvantage of
ABM is that it is more computationally expensive than partial differential equations (PDE) or
ordinary differential equations.

Petri net is the creation of Carl Adam Petri in his doctoral dissertation [80]. It is constructed
using two types of nodes, viz. places, depicted as circles, and transitions, represented as narrow
black rectangles. In systems biology, places refer to chemical species such as metabolites, pro-
teins, enzymes, DNA, RNA, etc., and transitions refer to chemical reactions such as activation,
inhibition, phosphorylation, etc. Nodes are connected by arcs, which may only be directed
from place to transition (input arcs) or transition to place (output arcs). A Petri net is always
bipartite. The stoichiometry of a reaction is indicated by the weight of the arc. Although ini-
tially designed to model only discrete processes, improvements have been made in Petri nets to
deal with a continuous process [81, 82] . Literature has witnessed many applications of Petri
nets to different biochemical systems. For example, Koch et al. [83] built a Metabolic Petri net
(where the places represent metabolites and the transitions represent the biochemical reactions
between metabolites) consisting of 17 places and 27 transitions that qualitatively modelled the
carbon metabolism in the potato tuber. Using this Petri net model as an example, the author
has provided a method for model validation of metabolic networks using Petri net. Signal
transduction pathways are commonly modelled with a set of ordinary differential equations,
but unknown parameter estimation is a problem inherent in ODE modelling. To deal with this
problem, Sackmann et al. [84] implemented the Petri net theory to model and analyse signal
transduction pathways. The authors put forward a systematic model validation method for sig-
nal transduction pathways that depends only on the network structure. This method is then
illustrated using the mating pheromone response pathway in Saccharomyces cerevisiae. Petri
net is advantageous in the absence of quantitative data. So, in a field like autophagy, where a
lot of pathways are involved, the Petri net model would play a vital role. However, it has the
limitation that it will not capture the mechanism that one can obtain with the help of differential

equation-based models.
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1.2.1.3 Tools and packages

Different tools and packages have been built across multiple platforms (MATLAB, Python,
R, etc.) to support mathematical modeling [85-91]. A structural diagram editor, Cell Designer
[92], has also been developed to draw gene-regulatory and biochemical networks to make math-
ematical modelling a feasible approach in systems biology. CellML is an XML-based language
designed to describe mathematical models in a machine-independent form suitable for sharing

between different authors and archiving in a model repository [93].

1.2.1.4 Mathematical Preliminaries

In this section, some of the mathematical-modelling related prelliminaries are discussed.

Equilibria of Ordinary Differential Equation

Let us consider a system of differential equations,

x=f(x);xeR". (1.1)
Here,
xeR
f:(flvfzv ---- 7fn>T

and, fi = fi(x1,X%2, ..., Xn).

1. The initial value problem,
x = f(x) with x(0) = 0, has a unique solution if the partial derivatives of fi, f2,....., fu

are C! functions.

2. A point x, € R is an equilibrium point of (1.1) if

x=f(%)=0.
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3. Jacobian Matrix: The Jacobian matrix, named after its developer, Carl Gustav Jacob
Jacobi, contains all the partial derivatives of the first order of a vector-valued function.
The Jacobian matrix of f at the equilibrium point %, is the matrix of partial derivatives of
‘f” evaluated at x. It is given by:

dfi(%) dfi(x) df1(%)
ox1 ox, ox,

O =190 af® 3 fu(X)
e an P

or, simply, componentwise, it can be written as,

J,','()f) = agl—)fjc_)

Stability of Equilibrium Points

Let x(¢) be any solution of the equation 1.1. Then, %(¢) is stable if solutions starting near to ()
at a given time remain close to x(¢) for all times. It is asymptotically stable if nearby solutions
converge to X(¢) as t — oo. A solution which is not stable is said to be unstable [94].

Equilibrium points of a dynamical system can be categorised based onf the eigenvalues of the
Jacobian matrix. If none of the eigenvalues of the Jacobian matrix has zero real part, then
the equilibrium point is hyperbolic. If all eigenvalues have negative real parts, the equilibrium

point is stable. If at least one has a positive real part, the equilibrium is an unstable node.

Sensitivity analysis

Sensitivity analysis (SA) refers to a wide range of mathematical methods to measure the ex-
tent to which model output variance may be attributable to model inputs [95]. Because the
output behaviour of high-dimensional systems is frequently controlled by a small number of
parameters, SA provides a method for isolating these parameters so that they can be the focus
of subsequent studies. SA can be implemented both locally and globally. The former is the

straightforward approach, in which each parameter is varied independently while the others
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remain constant. This method has the disadvantage that it cannot examine the effect of the
variation of all parameters simultaneously. These methods are informative in conditions where
there does not exist much uncertainty in model inputs or if the interactions between the inputs
are very few [96].

Global sensitivity analysis (GSA) methods take into account the variations in model outputs
when input parameters are permitted to fluctuate simultaneously within specified ranges [95].
These methods are computationally expensive but provide more information than the local
SA. Two of the most commonly used GSA methods are the Partial Rank Correlation Coeffi-
cient (PRCC) and the Extended Fourier Amplitude Sensitivity Test (EFAST). The former is a
sampling-based while the latter is a variance-based method. In particular, PRCCs offer a mea-
sure of monotonicity following the removal of the linear effects of all variables but one. In
comparison, eFAST yields fractional variance measurements attributable to individual as well
as groups of variables [95]. Ideally, both these measures should be calculated for a comprehen-

sive and insightful study.

1.2.1.5 Limitations of mathematical modeling

Despite being an excellent approach to study biological system dynamics, mathematical mod-
elling possesses certain limitations and difficulties. These limitations must be taken into ac-
count in capturing the characteristics of a certain biological process with the help of mathe-
matical modelling. Equations in a mathematical model contain parameters, and mathematical
models are driven by these parameters. These parameters can be determined by experimental
studies. However, many parameters still remain unknown because either the relevant experi-
mental data is not available or the parameter values obtained in the literature are not from the
system addressed by the model. For example, in a lung cancer model, the rate of degradation
of beclinl is a parameter, but in literature, this parameter value is reported in pancreatic can-
cer. Another difficulty in mathematical modelling is the different functioning times of various
components of a pathway. For example, genetic regulatory processes are caused by metabolic
reactions, but while the time taken by metabolic reactions is in seconds or minutes, the regu-

latory processes could occur for several hours or days. A mathematical model of a biological
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system should always be abided by biological constraints. The findings of the model need to be
validated according to the objectives of the model. Hence, a qualitative or quantitative associa-
tion of model output and biological data is very much necessary. But quantitative experimental
data on the time course of interaction between model variables is often very limited. Biological
systems possess hierarchical layers (cells-tissue-organs etc.). To understand a system, it is nec-
essary to understand the dynamics of each layer. However, it is hard to model the entire system
as a whole as the model formulated would be non-computable. Hence, modelling is limited to
studying the system in parts that necessitate the emergence of system biology approaches like

network analysis, which can study the entire system as a whole.

1.2.2 Network biology

Biological systems can be portrayed as networks, and these networks depict the physical and
spatial organisation of the organism. Systems biology employs a pragmatic approach to eluci-
date the emergent properties of such networks with the aim of quantitative explanation and to
foresee the biological processes occurring at molecular, cellular, tissue, organ, and whole-body
level. It focuses on a holistic analysis of biological networks of various processes and quests for
the understanding of the extent to which the intermodular connectivity modulates a biological
process.

Network analysis investigates the entire system as a whole. It is like a snapshot of the entire
system at a particular time, where we can see all the nodes and their interactors. In systems
biology, there are various types of the network depending on the nodes studied, such as protein-
protein interaction (PPI) network, where nodes are proteins, and the edges are the interaction
between them; metabolic network, where the nodes are metabolites and the edges are the reac-
tions between them; gene regulatory networks, where nodes are genes and edges are the phys-
ical and/or regulatory relationships between the genes; ecological networks, where species are
nodes and edges are the interactions which can be either trophic or symbiotic. In this thesis, we

are mainly focused on PPI networks.
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1.2.2.1 Protein-protein interaction network

Inter- and intracellular mechanism coordination is dependent on molecular interactions. In
endorsing homeostasis, these interaction events are strictly controlled within a dynamic, in-
terconnected terrain of molecular pathways that authorise cells to execute complex processes.
Defects in these molecular pathways can lead to abnormal signalling and cellular malfunction.
PPIs drive a significant portion of this subcellular communication, and hence, a comprehensive
understanding of the PPI network is an unmet need for a better understanding of the molecular
level alterations occurring due to the progression of disease or invasion of a pathogen.

In a PPI network, two proteins are connected by an edge if an association exists between the
proteins, This association can be functional (activation/inhibition) or physical (direct binding).
The former is an example of a directional network, while the latter represent an undirected
network. The directionality captures the regulatory effect exerted by the source protein on the
target protein. Identifying key proteins in an undirected network may lead to various false-
positive results. For instance, when the mode of interactions for drug-disease relationships is
absent, we cannot determine if a drug heals a disease or produces one as a side effect [97].
Irrespective of its size, a PPI network always possesses a small set of core nodes, which can
modulate the fate of a biological system. Distinguishing these key proteins has proven to be a
daunting task, further exacerbated by the intricacy of understanding how such proteins interact
synergistically. In the conventional approach, defining such drivers relies only on the topol-
ogy of the PPI networks and not on their context-specificity. Methods akin to this have the
drawback that only the topological properties of PPI networks alone do not capture the whole
landscape of the signalling complexity. Therefore, the derived driver proteins may not be suffi-
cient to illuminate the complexity of the mechanism of disease progression. Identifying a target
necessitates causal inferences about interacting partners, which must be augmented in specific
contexts with knowledge about pathways, localisations, diseases, and biological processes. Nu-
merous databases containing the multiple information of proteins have been created to fulfil the
need for the aggregation of PPI data for a more informed insight into the mechanisms of cells

and diseases. A comparison of these databases is shown in Figure 1.7.
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Figure 1.7: The attribute-database heat map. The absence or presence of an attribute in a
database is represented by cyan, and violet colours, respectively.

1.2.3 Network biology glossary
Adjacency matrix:

Adjacency matrix defines the wiring diagram of a network. Let G = (V,E) is a network with n
nodes where V is the vertex set and E is the edge set. Then, the adjacency matrix A;; is defined
by

1, if1iand j are connected.

a; j=

0, otherwise.
For an unweighted undirected network, the adjacency matrix is symmetric, while in general,
for an unweighted directed network, it is asymmetric. A directed graph gives a symmetric

adjacency matrix if all the edges are bidirectional. In a weighted graph, the adjacency matrix

values can be replaced by the weights of the corresponding edges.
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Density:

The density p of a network G = (V, E)is defined as the fraction of total number of edges to total
possible edges in the network. Mathematically,
|E]

p= nn—1)’
2

where n is the total number of nodes in the network.

Distance:

In a network, the distance between two nodes is the number of edges in the shortest path

connecting them.

Diameter:

The diameter of a network is defined as the length of the "longest shortest path" between any
pair of vertices. Therefore, it corresponds to the highest of all entries in the graph distance

matrix.

Network module:

Modules are characterised by groupings of individual nodes that are strongly connected within
and sparsely connected between [98]. Detecting modules is crucial for network exploitation
since such substructures frequently correlate to essential functions. Elements of module M
exhibit identical behaviour towards elements outside of M [99]. Thus, a module can be reduced

to a single element without losing information about its neighbourhood and connectedness [99].

Components:

Networks may be both connected and disconnected. The former means that every node has at
least one path to reach all the other nodes in the network. Otherwise, the network is referred
to as disconnected. A disconnected network is comprised of numerous disjointly connected

components, the largest of which is referred to as the huge component. In the former, every
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node possesses at least one path to reach all the remaining nodes in the network. Otherwise,
the network is called a disconnected network. A disconnected network consists of many dis-
joint connected components, and the largest among them is called the giant component. The

robustness of a network is measured in terms of the size of the giant component.

Centrality measures:

Centrality measures identifies the most important nodes in a network. Since, the word ‘impor-
tant’ is vague, it gives rise to many methods which have been used to find the important nodes
of the system in their own way. Some of these methods include degree centrality, betweenness
centrality, radiality, clustering coefficient, etc. Numerous novel algorithms have also been de-
veloped to find important nodes in a network. To better understand the core set of the nodes in
a network, multiple centrality measures need to be used because a few nodes, which are central
in one measure, may not be central in another analysis. Nodes central in multiple measures

have a genuine capability to control the fate of a system.

Degree Centrality:

The calculation of degree centrality is one of the simplest. A node’s degree centrality corre-
sponds to its number of edges. The higher the degree, the more central the node is. In a graph

G = (V,E), where |V| = n # 0, the degree of a node v; is defined as,

n
deg(vi) = Z aij,
=1

where

1, ifiand j are connected.
aij =

0, otherwise.
The nodes with the highest degree are termed hubs. A PPI network possesses a small number of
hubs and many poorly connected nodes. Numerous studies have demonstrated that the removal
of a hub protein is more fatal than the deletion of a non-hub protein, a phenomenon called the

centrality-lethality rule.
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For an undirected number, degree is just the number of edges a node has. However, in a directed
network, the degree of a node is the sum of the indegree and outdegree. The former measures
the number of incoming edges to a node while the later measures the number of edges going

awat from it, i.e., indeg(vi) = Yi_ Aij , outdeg(v;) = X | Ajj.

Betweenness centrality:

It evaluates the extent to which a vertex lies on the paths connecting other vertices. Mathemat-

ically, betweenness centrality (BC) of node v is given by,

BC(v) = Z psr(v);s,v,t ev,

sEVFEL Pst

where V is the vertex set, py(v) is the number of shortest path between ‘s’ and ‘v’ that passes
through ‘v’ while py, is the total number of shortest path between ’s’ and ‘t’.

Betweenness centrality ignores a node’s degree. Instead, it investigates how much a node falls
between other nodes. Therefore, a node with a low degree can acquire a high betweenness
value. The largest to smallest possible betweenness value ratio in a network with n nodes is,

n>—n+1
2n—1
For a large network, this value reduces to 7 However, the betweenness centrality values in a

network is often normalized by dividing it by the total number of node pairs (n?), i.e.,

B =Ly Pl

n’ SHEVEL Pst
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Closeness centrality:

This centrality measure evaluates how close a node to other nodes in a network. For a node i’

it is defined as
n

=1

~
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where n is the total number of nodes in the network.

Despite being a natural centrality measure, it faces various obstacles. Frequently, the difference
between the closeness values of two nodes can only be determined by observing the trailing
digits. Also, the ratio between the largest and smallest closeness values in a typical network
is five or less. Therefore, it is challenging to differentiate between the central and non-central

nodes in the network.

Clustering coefficient:

The clustering coefficient (CC) measures a node’s cliquishness or local connectivity. For exam-
ple, let node ‘i’ is connected to two other nodes, ’j* and ’k’. Then, these three nodes will form
a tuple. If ‘;j” and ‘K’ also interact, then the three nodes will create a triangle. The clustering
coefficient for a node ‘i’ is defined as the ratio of observed triangles to all the possible triangles

involving ‘7’ i.e.
number of triangles involving i

CC(i) =
(0 number of possible triangles involving i

Y Y AAjAi

. ZikAT, ]

— CC(i) = -2 :
(Y Ai)*-Y (4))?
2 JZi

where A;; is the adjacency matrix. It can be seen that 0 < CC(i) < 1.

Bridging centrality:

In a graph, a bridge node is a node that connects densely connected components. The bridging
centrality of a node is determined by multiplying its betweenness centrality (BC) and bridging
coefficient (CB). CB(v) measures how well ‘v’ is positioned between the high-degree nodes
and is defined as,
cp(y = 0
Lien() a0

where d(v) is the degree of v, and N(v)={neighbors of node v}. Thus, the bridging centrality
B(v) for node v is defined by:

B(v) = BC(v) x CB(v)
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Network controllability:

It evaluates the capacity of a single node to control a directed network. The control theory anal-
ysis gives the minimum number of nodes required to control the network. The time-invariant

dynamics of a network of N nodes at a time can be expressed as [100],

d
Y Ax(t) + Bult). (1.2)
dt

Here, x(1) = (x1,X0, cvveeeene ,xy)T is the state vector of N nodes at time t, Ay is the adjacency

matrix, Byxy,(M < N) contains the nodes that are controlled by an outside controller, and
u(t) = (uy(t),...,up(t))? is a time-dependent input vector which controls the network. The
same signal u;(¢) is capable of driving multiple nodes in the network. Identifying the minimal
sets of nodes that can drive the network when steered by different signals is crucial to control
the network. These nodes are termed driver nodes in the literature [100-102]. According to
the controllability rank condition of Kalman [103], the system described by the equation 1.2 is

controllable if the augmented matrix

Cnxvm = (B,AB,A%B, ........... AN=1R),

has full rank, i.e., rank(C) = N. Let G = (V,E), (V| # 0), be a directed graph, i.e., Ve =
(i,j) € E, 3 adirection from ‘i’ to ‘j°. Here ‘i’ is refereed as parent node, and ‘j’ as the child
node. M C N is called a matching set if 7 e1,er (e1 # ex) € M such that e; and e; share
a common parent or child node. In a graph, a matching set of highest cardinality is called a
maximum matching. If, e; = (i, j) € M then ‘j’ is called a matching node and the rest are called
unmatched. Liu et al. [100] termed these unmatched nodes "driver nodes" and showed that
they are sufficient to control the network. Nevertheless, the cardinality of multiple matching
sets can be the same; consequently, a network can permit more than one maximal matching

set. Consequently, detecting driven nodes is not unique, and several solutions may coexist.
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Using this concept, the network nodes can be further categorised into critical, intermittent,
and redundant categories [104]. The critical category contains the nodes appearing as driver
nodes in all the matching sets, intermittent driver nodes appear in some but not all the matching
sets, while the redundant category contains nodes that are not driver nodes. Numerous studies
have been undertaken in an attempt to comprehend these driver nodes. Khazanchi et al. [105]
compared driver nodes of four different PPI networks. They found that the driver nodes tend
to be transcription factors and are enriched in first-degree neighbours of hubs. In addition,
they demonstrated that the hubs are the lethal proteins in the network and that it is, therefore,
preferable not to disturb the lethal hubs but rather the proteins close to the hubs. Badhwar et
al. [106] used network controllability in the neuronal network of C. elegans. They found that
driver neurons of C. elegans, were motor neurons located in the ventral nerve cord. Wu et
al. [107] developed a methodology to identify the driver nodes in a network. The study was
concerned with the states of disease biomolecules and biomolecules that cause adverse effects.
Their goal was to make the states of disease-causing biomolecules healthy while minimising the
state alterations of biomolecules that cause adverse effects. They discovered that the identified
potential therapeutic targets are targets of approved medications or are consistent with previous
research results, demonstrating the viability of the method.

Again, each node in the network can be divided into an indispensable (I), dispensable, and
neutral node category, if its deletion, respectively, increases, decreases, or causes no impact on
the minimal number of driver nodes required to control the network. These nodes are the most
fragile nodes in the network [102] and are prone to mutations and are often targeted by viruses

and drugs [101, 102].

Degree Distribution:

The degree distribution, P(k), is the probability that a node has precisely k links. It is calculated

by dividing the number of nodes with degree k by the total number of nodes in the network.
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Scale-free networks:

The notion that the vast majority or even every real-world network are scale-free is widely
spread throughout scientific domains and network classes. A network is termed scale-free if
the fraction of nodes with degree k obeys a power-law distribution, i.e., P(k) ~ k~7 where 7 is
called degree exponent, and it determines numerous properties of a system. For instance, for
2 < v < 3, a hierarchy of hubs is seen, while if ¥ > 3, hubs are irrelevant in the network. Scale-
free networks exhibit a high level of resilience against random node failures, but are vulnerable

to the failures of hubs.

Influential spreaders:

In several disciplines, a spreading process is a common and spontaneous event [108]. Influen-
tial spreaders (IS) in a complex network operate as maximisers or controllers of a spreading
process. To increase the flow of information, for instance, an IS operates as a maximiser [109],
whereas as a controller, they can manage epidemics or reduce bogus news in a social system
[110]. Identifying these spreaders is usually divided into two categories, individual or multi-
ple. The former ranks the nodes in the network according to their influence, while the latter
identifies the minimum number of nodes to achieve maximum collective influence. Centrality
measures like degree, betweenness, closeness, eigenvalue, etc. come in the first category, while

Voterank [111], optimal percolation method [112], etc., come in the second category.

Coreness:

It is a methodical approach to determining a protein’s local and global significance. It indicates
whether the protein is associated with a densely connected region of the network or with its
periphery. Additionally, it demonstrates how influential a node is at disseminating information

throughout a network.

Co-expression analysis:

For a comprehensive understanding of the complicated interconnections in biological pro-

cesses, approaches that can grasp the relationships between the genes involved are unmet needs.
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To overcome this challenge, biological networks have been employed as a framework for rep-
resenting and analysing gene-gene association. There are numerous ways accessible to sys-
tematically comprehend these relationships. Among them, one of the crucial methods is Gene
Co-expression analysis. It is also a method for determining the roles of unidentified genes and
their correlations with diseases. In such a network, the nodes represent the genes, and edges
represent their correlation strength. Despite the fact that the underlying concept is a thorough
understanding of the synergistic interaction between genes, the conclusion of such an analysis
can vary depending on the context. For instance, after constricting the coexpression matrix,
one may identify the genes that show similar expressions in a set of samples, or, using a guilt-
by-association method, co-expression analysis can help to determine the function of unknown
genes. The correlation strength between the genes across the conditions may vary. The genes
which show a higher correlation in one condition (say IPearson correlation coecientl > (0.7) may
show a lower correlation in another condition (say |Pearson correlation coecientl <0.3). Dif-
ferential co-expression analysis addresses these facts and tries to find crucial genes across the
conditions. This analysis relies on the premise that genes whose behaviour changes in relation
to a substantial number of neighbours across conditions are more apt to be prospective targets

or biomarkers.

1.2.4 Tools and software

Many packages across various platforms have also been used to perform the network-based
study. We have enlisted a few useful and most used packages in Table 1.3. Proper visualisation
of data is crucial for understanding the biological network. Frequently, the sheer quantity and
variability of data pose a difficulty for visualisation. Many network visualisation tools and soft-
ware are available in literature [113-120], most of which translate data onto two-dimensional
graphs to depict their relationships. However, when thousands of nodes and connections must
be evaluated and shown, the user-friendliness of many of these technologies reaches its limit.
Four of the most widely used visualisation and analysis software are Cytoscape [121], Gephi
[122], Tulip [123], and Pajek [124]. However, due to its user-friendliness and incorporation

of numerous plugins, Cytoscape has established itself as the big Banyan tree in the realm of
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network visualisations. Table 1.4 contains some useful Cytoscape plugins used in network

analysis, visualisations, and enrichment analysis.

Table 1.3: Various useful packages and software for the network biological studies.

Sr. Package/software | Platform Description Ref.

No.

It is a powerful R package that facilitates
the manipulation,cleaning, and

1 dplyr R summarizing unstructured data. It comes [125]
with many functions that perform widely

used data manipulation operations.

2 ggplot2 R An excellent data visualization package. [126]

The Bioconductor project is a collaborative
effort to create computational biology and

3 Bioconductor R bioinformatics extensible packages and [127]
software. It uses the R programming platform

and is open source and open development.

An R package to perform machine learning
4 mlr R [128]

tasks.

This R package is used for the analysis of
5 limma R [129]

gene expression data.

WCGNA is a popular R analytical package
6 WGCNA R to constructs a gene co-expression network [130]

and identify modules.
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Table 1.3 continued from previous page

Sr. Package/software | Platform Description Ref.

No.

This open-source R package incorporates
easy and user-friendly functions to capture
all genomic data or data for selected
proteomes, genomes, coding sequences,

7 biomaRt R and annotation files contained in the [131]
databases hosted by the National Center
for Biotechnology Information (NCBI)
and European Bioinformatics Institute

(EMBL-EBI)

DESeq2 is a widely used method for
8 DESeq2 R differential expression analysis of count [132]

data.

CFinder is a stand-alone application that
locates overlapping groups of densel

9 CFinder - PPIRE &T0tP Y [133]
interconnected nodes in a network with

the aid of the clique percolation method

This is a useful web-based and mobile
software application to perform gene
) enrichment analysis and is facilitated
10 Enrichr - [134]
by various interactive visualization

approaches to display enrichment

results.

PyPathway is free and open-source

python package that performs functional
11 PyPathway Python [135]
enrichment analysis, network modelling,

and network visualization.
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Table 1.3 continued from previous page

Sr.

No.

Package/software

Platform Description

Ref.

12

Cytoscape

This software is designed for the
visualisation of large-scale networks.
Along with basic network analysis
measures, this app comes with various
plugins which are useful for finding
clusters and modules, pathway enrichment,

etc.

[121]

14

Metascape

It is a web portal that provides functional
enrichment,interactome analysis and gene

annotation.

[136]

15

PIANO

It is an R package to perform gene set

analysis.

[137]

16

DiffCoEx

A method to identify gene co expression

differences between multiple conditions.

[138]

17

ComBat

A package for correcting batch effects

in datasets with a known batch covariate.

[139]

18

BioNetStat

A tool for comparison of two or more

networks simultaneously.

[140]

19

CentiServer

Web-
based

portal

It can perform centrality analysis.
Currently, it can perform 403 different

types of centrality analysis.

[141]

20

DAVID

A web-server that can perform functional

enrichment, gene ID-conversion etc.

[142]
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Table 1.3 continued from previous page

Sr. Package/software | Platform Description Ref.
No.
R,
It can perform rank-based gene set
21 GSEA Soft- [143]
enrichment.
ware

1.3 Omics technologies

The addition of the term "omics" to a molecular term denotes a thorough, or global, exami-
nation of a collection of molecules. The emergence of omics technologies such as genomics,
epigenomics, transcriptomics, proteomics, metabolomics, microbiomics, etc., have embraced
new possibilities to study a biological system to an extraordinary detailed level. Genomics is the
study of the genome of an organism, epigenomics aims at exploring global epigenetic changes
that offer crucial insights into mechanisms and function of gene regulation across several genes
in a cell or organism. Transcriptomics relies on the qualitative and quantitative genome-wide
study of RNA levels, while proteomics facilitates the study of the whole proteome of an organ-
ism [158]. Mass spectrometry-based proteomics is an indispensable approach to delineating
protein expression, protein-protein interactions, subcellular localisation, and post-translational
modifications. Similarly, metabolomics is the large-scale study of metabolites within cells,
biofluids, tissues, or organisms [159]. The study of the microorganism in a given community
comes under the focus of microbiomics [158]. Throughout the times, new dimensions have
been added to omics, such as lipidomics, nutrigenomics, etc. The advent of these technologies
has opened up new avenues for studying biological systems at an unprecedented level of de-
tail. In such studies, the characteristics and quantity of a specific type of molecule in samples
are quantified, and the patterns and/or relationships between the sample attributes are investi-
gated( [160]. Omics techniques yield massive amounts of multidimensional data that can be
analysed using new informatics methodologies and traditional statistical methods. While sys-

tems theories, such as network analysis and machine learning, are well-suited for analysing
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Table 1.4: List of useful Cytoscape plugins. All these plugins are freely available at the
Cytoscape app store (https://apps.cytoscape.org/).

Sr. No | Plugin Description References
1 BiNGO Quantifies GO terms that have been overrep- | [144]
resented in the network and portrays them as
a network of relevant GO terms.

2 Mosaic and Cerebral These two are visualization plugins for | [145, 146]
Cytoscape and can compartmentalize the
genes/proteins in a network according to their
subcellular localization.

3 PathLinker This package reconstructs signaling pathways | [147]
from protein interaction networks.

4 CytoNCA Perform centrality analysis of weighted and | [148]
unweighted networks.

5 ClueGO It helps to create and visualize a functionally | [149]
grouped network of terms/pathways.

6 GeneMANIA Uses public databases to import interaction | [150]

networks from a list of genes with their an-
notations and putative functions.

7 BiNoM It helps to access and analyze pathways. [151]

8 PiNGO Helps to locate candidate genes in a network | [152]
that are linked with user-defined target GO
terms.

9 MCODE Create clusters in a given network based on | [153]
the topology to identify densely connected re-
gions.

10 ConsensusPathDBplugin | Retrieves interaction evidence for a given pair | [154]
of genes or proteins

11 AgilentLiteratureSearch Curates scientific literature to find publica- | [155]

tions associated with the search term and to
create an interaction network based on the
search result.

12 jActiveModules Detects clusters where nodes show significant | [156]
changes in expression levels.
13 cytoHubba By using various topological algorithms, this | [157]

Cytoscape plugin can predict and find impor-
tant nodes and subnetworks in a given net-
work.




1.3. Omics technologies 45

these data, they must be used with a working knowledge of the relevant biological and com-
putational theories. Systems biology addresses the issues raised by the complex organisation
of biological processes by applying these methodologies to omics data. Integrating different
network-based and artificial intelligence-based approaches to omics data contributes to identi-
fying helpful markers of disease progression. For instance, numerous research has used blood
transcriptome data to develop classification models capable of discriminating between samples
from TB patients and controls within the cohort [161-163]. Burel et al. identified a CD4 T
cell immune signature of LTBI by combined cell population transcriptomics and single-cell
protein-profiling techniques [164]. The model provided novel insights into the phenotype of
TB-specific CD4 T cells. Taking blood serum from individuals with active and latent TB, Cao
et al. identified three potential serum biomarkers that can distinguish between these two types
of TB [165]. In many cohort studies, it has been reported that the plasma proteomes are differ-
ent in LTBI, TB, and HC cohorts and hence can be used as indicators to differentiate the three
types of individuals. Based on this, Sun et al. performed a label-free quantitative proteomics
analysis to identify plasma biomarkers that can discriminate pulmonary TB from active TB
[166]. Personalised medicine addresses the notion that "we are all alike, yet unique." It is a
fairy beacon of hope and clarity that burns brightly and shines jubilantly on getting patients on
the appropriate medication, and that too in a shorter time. It is a notion that has the potential to
change medical interventions by offering effective, individualised therapy methods based on an
individual’s genetic, epigenomic, and proteomic profile while taking into account the patient’s
unique circumstances. In other words, such technologies built a specific molecular window
that allows peeping through the discrepancies between the genomic profiles of diseased and
healthy individuals. However, this field is still in its infantry and requires the integration of

more sophisticated tools and methods.
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1.4 Tracing the footsteps of autophagy in computational bi-
ology”

The advent of systems biology is opportune for drug development. As the time and cost re-
quired to bring new pharmaceuticals to market continue to increase, it is crucial to expedite ef-
forts to identify the most promising candidates as quickly as feasible. This necessitates a deeper
comprehension of disease-related pathways to appropriately assess medication specificity or
detect and identify unintended or undesirable effects. In addition to addressing progressively
more complex, multivariate forms of the disease in target populations, the field of drug dis-
covery faces the additional challenge of confounding underlying mechanisms. As the ultimate
objective of pharmacotherapy is to modulate cellular biochemical function to induce physi-
ological change or assure repair, the cell provides a preliminary level of systems abstraction
for drug development. Even though cellular components are frequently functionally defined in
isolation, they execute their intracellular and intercellular roles within a complex network of
interactions. In these contexts, mathematical modelling studies also do not stay behind. The
large-scale studies have the limitation that they can not take into account the system’s situa-
tional changes, which include stochasticity, inherent delay, etc. These models can portray an
abstraction of reality and theoretically take the system from any state to any desired state. That
is why, together or individually, mathematical modelling and network biology can improve
drug development endeavours, new target identification, and delimitation of off-target effects,
ideally leading to preventative strategies and empowering individualised solutions. The process
of autophagy, as previously mentioned, is a quintessential biological process which has been
proven to be the cause or effect of a myriad of diseases. With the in vivo and in vitro studies of
autophagy which have explored many novel discoveries, systems biology, with the potential of
decrypting the system’s complexity both as a whole and in part, has significantly emerged and
made tremendous contributions to the field of autophagy. For example, using network biology

processes, the core proteins in the autophagy process in a disease can be identified. Mathe-

2The bulk of this section is taken verbatim from the published article: Sarmah, Dipanka Tanu, Nandadulal
Bairagi, and Samrat Chatterjee. '"Tracing the footsteps of autophagy in computational biology." Briefings in
Bioinformatics 22.4 (2021): bbaa286.
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matical modelling can be done on this set of proteins to may identify potential parameters that
otherwise could not be explained by network analysis alone. This methodology is shown in

Figure 1.8.
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Figure 1.8: The journey of proteins from being inside the system to the arms of mathe-
matical modeling. The palate (A) shows the processing of data. The raw gene expression data
to study a particular disease is first corrected, including steps like dealing with the null values
and the outliers. The data is then normalized, and the differentially expressed genes (DEG) are
calculated. The palate (B) shows the autophagy specific study of the disease. The autophagic
genes are first obtained from an autophagy database from where the differentially expressed
autophagy genes are selected. Using PPI databases, a PPI network of the DEGs (which may be
entirely autophagic DEGs or a mixture of autophagic and not-autophagic DEGs) is constructed.
In the figure, the green color denotes the autophagic, and the orange color represents the non-
autophagic genes. Implementing machine learning approaches, graph theoretical approaches,
or enrichment analysis (pathway analysis, disease analysis, or gene ontology analysis), the sig-
nificant modules or target proteins from the network are extracted. In the first case, the proteins
driving the module can further be identified. Finally, the implementation of mathematical mod-
eling approaches can explore the dynamics and underlying mechanism of the target proteins or
the module.

Addressing this associations, in this section, we have encapsulated the overview of au-
tophagy in computational biology explored via mathematical modeling and network analysis
along with comprehensive insights about these approaches and their applications in the explo-
ration of the autophagy process at various levels (molecules, cells, tissues). We have delineated
several well-established methods such as mathematical models based on different types of dif-

ferential equations, Petri net, agent-based models, enrichment analysis, and centrality analysis
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to capture the dynamical behavior or the collective influencers in the network. Further, we have
enlisted the available autophagic databases and the related resources and their feature selection
and epitomized some conventional software and tools used for visualization and analysis in

computational biology.

1.4.1 Mathematical modeling for autophagy

The process of autophagy consists of 5 steps, and all these stages are easily observable [167].
Different steps in the autophagy pathway may exert a different effect on the system. How-
ever, the biochemical reactions in autophagy are mostly nonlinear, i.e., a minute change in any
of its stages will not necessarily exert a proportional effect throughout the system. Mathe-
matical modelling endorses simplified abstractions and approximations to identify the steps of
autophagy that are responsible for a particular behaviour in the system. Moreover, the constant
shift in the behaviour of the system exerts randomness in the autophagy process. Mathematical
modelling of autophagy keeps track of these factors and allows the researchers to investigate
the dynamics of the system following any environmental conditions that may arise due to var-
ious external or internal perturbations or signals. Autophagy is a bridge between cell survival
and cell death. Depending on certain extracellular or intracellular signalling, the process of
autophagy may decide cell fate. At the single-cell level, these events may be mutually exclu-
sive, indicating that cell death and cell survival events are different attractors of the system.
Mathematical modelling can be done to understand the crosstalk between these two events
using attractors, fixed points, and limit cycle concepts. Cell types differ in their response to
autophagy stimuli. Addressing this cell-to-cell variability, various therapies have targeted au-
tophagy manipulation in cancer therapy [67-69]. Mathematical modelling can help in planning
and predicting the parameters that [168, 169] could be targeted and its outcome on the cell pop-
ulation. For example, autophagy helps in tumour cell survival under various stress conditions
[170]. On the contrary, increased autophagy may lead to excessive cellular degradation and,
thus, may initiate cell death [50]. A mathematical model can perfectly utilise these conditions
to identify the biological parameters that increase the autophagy process in disease conditions

so that the tumour cell gets less benefit from the basal level of autophagy and cell death initi-
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ates. Thus, mathematical modelling can be used in a very effective way to decipher the process
of autophagy and its role in various diseases or conditions. We have discussed below some
of the modelling work done in the autophagy process to get an idea of the applicability of

mathematical modelling in understanding the autophagy process.

1.4.1.1 Differential equations based models for autophagy

In 1975, Deter et al. [171] formulated the first mathematical model to delineate glucagon-
induced autophagy in rat liver. This primitive study was based on experimental observa-
tions, collision theory and chemical kinetics and mainly focused on studying the population
of telolysosomes, autophagosomes and autolysosomes in rat liver. Thereafter, various studies
on autophagy have incorporated different types of mathematical models, viz. ODE, DDE, and
SDE. The widely used ODE-based models are the simplest to study the process of autophagy.
These models are entrenched in the assertion that the system considered is well-mixed and there
are sufficient numbers of components so that their numbers can be considered as continuous
quantities. Understanding the steady-state, stability, and other qualitative behaviour of a model
will unveil the system’s underlying mechanism. For example, response to cellular starvation is
an intrinsic property of autophagy and was mathematically addressed by Jin et al. [172]. They
classified the cells into normal phase and autophagic phase, and by taking nutrition as the third
variable, a logistic type (three-dimensional) model of the yeast cell population was constructed
and analysed. The model considered in this example has one unstable trivial equilibrium point
when the nutrient concentration in the input flux and nutrient loss rate by output flux is constant
and a locally asymptotically stable positive equilibrium point when the system is considered
without autophagy. The model analysis concluded that an efficient autophagy level might be
adequate to sustain a population during a long duration of starvation. However, the author did
not incorporate any molecular regulation in their study. A hybrid model consisting of cell pop-
ulation dynamics and molecular regulation could have provided a better insight into cell fate
regulation by autophagy. Addressing this issue, the same group later developed a hybrid model
[173] to understand the molecular regulation and population dynamics of yeast by incorporat-

ing molecular level interactions, the amino acid exchange between cells, and cell behaviour.
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ODE models are also built to predict optimal drug schedules to control autophagy. Shirin et
al. [174] formulated a nonlinear ODE model to predict optimal drug schedules to control au-
tophagy. Focussing on four autophagosome production influencers and their specific inhibitors,
the model figured out various drug pairs that are more effective when taken together. Mathe-
matical models can qualitatively estimate the protein levels capable of deregulating homeosta-
sis, like Ouzounoglou et al. [175] formulated a model to understand the dynamics of Alpha-
synuclein (ASYN) in Parkinson’s disease.

Autophagy and apoptosis pathways are closely regulated, and some proteins, which regulate
autophagy, can also regulate apoptosis [176, 177]. Hence, proper knowledge of autophagy
and apoptosis interconnections may help stop or promote fatal cell decisions. Kapuy et al.
[178] studied beclinl-mediated autophagy and caspases-mediated apoptosis by forming an
ODE model. The model was built to address the B-cell lymphoma 2 (BCL2)-Beclinl-caspases
minimal network. They have also considered the effect of stress on autophagy by taking it as
a bifurcation input. Based on the observation, it was suggested that the autophagy apoptosis
transition is adjudicated by a bistable switch and, depending upon the intensity and duration
of stress levels, sequential activation of cellular response can be initiated by a combination of
BCL2-dependent regulation and feedback loops between Beclinl and caspases. Various other
models have also been built on understanding the autophagy-apoptosis interplay [179, 180].
A key feature of autophagy is that it also plays a role in unfolded protein response (UPR).
Cyto-protective or cyto-destructive UPR gets activated by anti-oestrogens or other drug ther-
apies. Autophagy assists in the cyto-protective role of UPR, while the cyto-destructive role
contributes to apoptosis [181]. Addressing these, a mathematical model of autophagy, apop-
tosis, and UPR was proposed to understand the interactions that accomplish anti-oestrogen
resistance and the effects of GRP78 on both sensitive and resistant breast cancer cells [181].
The model provides a clear picture of interactions of autophagy, apoptosis, and UPR to pro-
duce both sensitivity and resistance to antioestrogen therapy under various conditions. The
time delay associated with any biological process is not facilitated by ODE-based models. This
is mainly addressed by DDE. These models address the time lags between biological processes

and thus offer a better portrayal of biological systems. Time lag plays a vital role in autophagy,
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as in many biological processes. Various studies have implemented DDE-based mathemati-
cal modelling to understand the hidden mechanisms in the autophagy process. For example,
in autophagy, the formation of autolysosome follows autophagosome formation indicating a
time delay. Han et al. [182] formulated an eight-dimensional (8D) model using the delay to
study the behaviour of both resident (normal) and abnormal proteins along with the formation
of autophagosomes and autolysosomes, the intracellular concentration of Adenosine triphos-
phate (ATP), and amino acids. The study showed that intracellular levels of autophagosomes
and autolysosomes display an oscillatory behaviour. The same group later formed another
mathematical model to explore the role of autophagy in the protein/organelle quality control
when exposed to different physiological perturbations [183] and further extended their study to
Alzheimer’s disease [184]. ODE-based models do not consider the effect of noise, which is an
inherent property in many dynamical systems. This property is addressed by the SDE models,
as done by Martin et al. [182], who studied autophagy vesicle dynamics in a single cell. They
used live-cell fluorescent microscopy to measure the synthesis and lysosomal turnover of au-
tophagic vesicles (AV). The data was used to build a 4-dimensional ODE model, followed by
a 23-dimensional SDE model for the accurate prediction of autophagic vesicle dynamics in a
cell. The SDE model has implemented a sequence of biochemical and physiological steps in
the autophagic pathway from PtdIns3KC3 activation through LC3 conjugation that comprises
the nucleation of the phagophore, maturation of the autophagic vesicle and lysosomal degra-
dation. The mechanistic model was a better portrayal of the autophagy dynamics in a cell.
For example, correlating with the experimental data, the SDE model captured a time lag in the
production of AV in response to treatment initiation, but no such behaviour could be achieved
with the deterministic model. The SDE model was also capable of accurately predicting that an
80% decrease in ATGY content would result in a corresponding reduction in vesicle synthesis
rate. It also stated the correlation between AV size and LC3 levels across single cells. The
study can be taken as an example to quote that although ODE models are less complicated and

can portray biological behaviour, SDE models are a better illustrator of biological phenomena.
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1.4.1.2 Agent-based models for autophagy

The applications of agent-based models to study autophagy are very few. The creation, move-
ment, fusion, and deterioration of autophagy pathway vesicles are dynamic both temporally
and spatially. To delineate the spatio-temporal aspects of autophagy regulation and its dynamic
behaviour, Borlin et al. [185] have constructed an agent-based model using the NetLogo ABM
platform. The first agent is the phagophore, which grows and matures to form the second agent
autophagosome, which then fuses with the third agent lysosome to generate the last agent au-
tolysosome. The newly formed autolysosomes can then either fuse with lysosomes, autophago-
somes, or other autolysosomes to grow. They inferred spontaneous motion for phagophores and
autolysosomes to simulate organelle movements, while autophagosomes and lysosomes travel
directly towards or directly away from the nucleus to replicate their active transport along the
cytoskeleton, at a pace that is independent of its size. The key parameters of the model were
fitted with an iterative method using a genetic algorithm and a predefined fitness function. The
model, integrated with high-resolution fluorescence microscopy data, could successfully repro-

duce the short-term and long-term behaviour and cell-to-cell variability.

1.4.1.3 Petri net

Minimal literature is available on the use of Petri net in the study of autophagy. Jennifer et al.
[186] studied the Salmonella xenophagy in epithelial cells by designing a Petri net model. The
model includes all biochemically proven and published processes of Salmonella xenophagy
in epithelial cells and comprises 61 places (proteins/ macromolecular complexes/ organisms/
signals) and 184 arcs. The model consists of 16 T-invariants describing biological subpath-
ways in steady-state and represents the fundamental dynamics of the system. The author has
implemented in silico knockouts of specific proteins to investigate the model behavior and the

corresponding biological effect.
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1.4.2 Network biology based approach for autophagy
1.4.2.1 Omics and autophagy

The integrated method of the omics strategies and network biology enable a better understand-
ing of the autophagy process. There are studies that incorporate a large-scale multi-omics
approach to study the broad framework of autophagy and its association with other biological
processes. These studies have deciphered the role of autophagy in host-pathogen interactions,
tumor growth, various cancers, nervous systems etc. [187, 188]. Considering that "omics"-
based studies are a pivotal area of current research to provide a more systematic view of bio-

logical processes, these approaches have driven our insights into the regulation of autophagy.

1.4.2.2 Network analysis for autophagy

Throughout the decades, the advancement of high-performing data collection technology has
resulted in a large number of autophagy-related data. Network analysis approaches have been
implemented in these data to delineate the association of autophagy with various diseases and
biological processes. Network analysis also helps uncover the organizing principles of diseases
and identifies the potential targets accountable for the disease pathogenesis.

Network analysis is well supported by autophagic databases, which play a crucial role in de-
lineating the role of autophagy in various diseases. Various studies have been done by the
implementation of the specific autophagic information obtained from these databases [188—
190]. Lin et al. [190] carried out a comprehensive study of autophagy-related genes (ATG)
and associated noncoding RNAs and transcription factors to investigate the association of au-
tophagy with digestive system tumours (DST). The Cancer Genome Atlas database was used
to get the digestive tumour transcription details. The autophagy genes were extracted from
the Human autophagy modulator database. The study, facilitated by WGCNA, crosstalk con-
nection, pivot analysis, and functional analysis, revealed that the autophagic genes control the
pathogenesis of digestive system tumours and highlighted the potential role of autophagy in the
treatment of DST. Wang et al. [188] constructed a disease autophagy network where disease

genes were taken from online mendelian inheritance in man (OMIM) [191] and autophagic
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genes were extracted from the human autophagy database (http://www.autophagy.lu/), the au-
tophagy database [192], and the autophagy regulatory network database [193]. The autophagy
genes were observed to act as a bridge between diseases and were found to be topologically
important in the disease-autophagy network.

Network-based studies often facilitate the identification of hubs and modules. Modularity is an
essential property of a network. It refers to the organization of nodes in clusters. Module-based
analyses can contribute to a deeper understanding of biological systems. Hub proteins are
also crucial in maintaining the global network structure. A study carried out by Durocher and
co-researchers [194] elucidates the gene network in the peripheral blood transcriptome associ-
ated with human intracerebral haemorrhage. Using the WGCNA package in R, they identified
the hubs and the modules in the network, and used ingenuity pathway analysis (IPA) and the
DAVID Bioinformatics Database [195] to find the associated pathways and processes. Various
studies [196-198] have performed a network-based analysis on autophagy by using the dataset
obtained from the Gene Expression Omnibus (GEO) repository [199]. After following the pre-
liminary analysis, the WGCNA package in R has been used to identify significant modules and
hubs in the network [197, 198, 200, 201]. Although network analysis approaches have been
applied extensively to study autophagy, methods like network stability, control theory, perco-
lation, etc., are yet to be integrated to study the autophagy process. Given the importance of
these methods, their implications will surely help identify novel targets and pathways related
to autophagy. The lack of sufficient temporal data to understand a disease progression has also
limited the network-based study of autophagy processes. Nonetheless, with time the data is
growing, and we believe in the coming years, we will have enough data to make better and

more accurate predictions.

1.4.3 Artificial Intelligence (AI) associated research of autophagy

As in many other biological processes, Al-based approaches have also been incorporated into
the field of autophagy. In a recent study, Zhaoyue et al. [202] applied machine learning (ML)
techniques to classify renal cell carcinoma (RCC) subtypes using autophagy proteins. The

expression data of the key autophagy proteins in renal cell carcinoma was measured by im-
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munohistochemical images. The data was then normalised with mean and standard deviation.
K-Nearest Neighbor (KNN) algorithm was applied to the normalised data for classification.
Their study identified the basal level of autophagy as a potential measurement for discrimina-
tion of renal cell carcinoma. In an early work by Janos and co-researchers [203], an image
analysis pipeline was developed using the support vector machine (SVM) for the determination
of novel selective pharmacological inducers of autophagy in human cancer cell lines. A variety
of software incorporating a broad range of machine learning algorithms has been developed
recently. For example, Serrano et al. [204] have used the software Scikit-learn [205] to study
the effect of mRNA alterations of some autophagic genes, one proapoptotic gene, and one anti-
apoptotic gene in HIV-infected patients effectively treated with combined antiretroviral therapy
(cART).

In the past two decades, the pharmacological modulation of autophagy has gathered a great
deal of attraction. The process of autophagy gets manipulated by various modulators. ML-
based methods can be blended to study the mechanism of actions of these autophagy mod-
ulators to gain knowledge on various factors that include side effects, drug repurposing, and
development of novel polypharmacological strategies [206]. Al approaches are powerful tools
that associate important molecular changes with an observed phenomenon. However, these
approaches remain silent on the underlying mechanism for such observations. To capture the

possible mechanism, we need to take help from differential equation-based models.

1.4.4 Databases with the information related to autophagy

Biological databases play a central role in systems biological studies. They offer the oppor-
tunity to access a wide variety of biologically relevant data, which include protein-protein
interaction information, disease-protein association information, microarray, next-generation
sequencing, protein localization, post-translational modification, the structural details of a pro-
tein or compound, and pathways associated with proteins, etc. However, databases containing
exclusively autophagic information are very few. In Table 1.5, we have enlisted eleven most
used databases in autophagy. These databases contain various information like disease associ-

ations, pathways, the specific effect on autophagy, etc. In Figure 1.9, we have compared the
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Figure 1.9: Comparison of some of the well-explored autophagy databases in literature.
The columns contain the name of the databases, and features are placed in the row. The orange
colour means that the particular feature is present in the database, and the blue colour means
it is absent. Here, the agent feature includes drugs, chemicals, and small molecules. Only
autophagy-related proteins are considered for the ARN database.

features of these databases.
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Table 1.5: Some of the most used databases in autophagy. The features of these databases
are shown in Figure 1.9.

Srno | Name Full form URL Ref.

1 HAMDb Human Autophagy | http://hamdb.scbdd.com [207]
Modulator Database

2 ARN Autophagy Regula- | http://autophagyregulation.org/ [193]

tory Network

3 Autophagy Autophagy database | http://www.tanpaku.org/autophagy [192]
database
4 ncRDeathDB The noncoding RNA | http://www.rna-society.org/ncrdeathdb | [208]

(ncRNA)-associated

cell death database

5 ACDB Autophagic ~ com- | http://www.acdbliulab.com [209]

pound database

6 THANATOS Autophagy, Necro- | http://thanatos.biocuckoo.org [210]
sis, Apoptosis Or-

chestratorS database

7 HADb Human Autophagy | http://www.autophagy.lu/ -
Database
8 AutophagySMDB| Autophagy  Small | http://www.autophagysmdb.org [211]

Molecule Database

9 ATD Autophagy To Dis- | http://auto2disease.nwsuaflmz.com [212]
ease
10 iLIR In silico identifica- | https://ilir.warwick.ac.uk [213]

tion of functional

LC3 Interacting

Region Motifs
database
11 ATdb Autophagy and Tu- | http://www.bigzju.com/ATdb [214]

mor Database
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HAMDB contained the most autophagic proteins among these databases. To grasp how
these proteins function, it is necessary to comprehend their relationship with one another. In
other words, we must construct and analyse the network of their interactions. We first extracted
551 autophagy-related genes from the HAMDB database to create the autophagy interactome.
We used STRING [215] and SIGNOR [216] databases for information regarding their interac-
tions. The former compiles information regarding both predicted and experimental evidence,
while the latter details the functional interactions between proteins. As STRING also facilitates
text mining, a confidence score of 900 was used to build the network. In both of these networks,
the edges containing at least one autophagic protein were considered. We discovered that the
STRING network had more autophagic proteins than the Signor network. This indicates that
the functional information between these proteins has not yet been curated to its fullest extent.
This also caused the STRING network to be more interactive than its counterpart Figure 1.10.

The networks are shown in Figure 1.11 and 1.12.
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Figure 1.10: Number of autophagic proteins and interactions in STRING and Signor
database. A) Number of proteins. B) Number of interactions.
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Figure 1.11: Autophagy interactome constructed using SIGNOR. Here, the nodes are sized
and colored according to their degree.
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Figure 1.12: Autophagy interactome constructed using STRING. Here, the nodes are sized

and colored according to their degree.
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Table 1.6: Top 20 hub proteins in the autophagy network constructed using the Signor
database.

Name Average Shortest | Betweenness | Closeness Clustering In- | Neighborhood | Out- Total
Path Length Centrality Centrality Coefficient | degree | Connectivity | degree | Degree
GSK3B 3.175408426 | 42.34641026 | 0.314920119 | 0.006864989 51 11.88695652 286 337
TP53 3.75322442 66.04662936 | 0.266437572 | 0.006352802 | 234 10.37762238 87 321
AKT1 3.00171969 66.69242166 | 0.333142366 | 0.004135649 83 9.102564103 219 302

MAPK14 3.073086844 39.38906864 | 0.325405708 | 0.005689001 71 10.12389381 177 248
ATM 3.190885641 28.60482708 | 0.313392617 | 0.010526316 26 10.80263158 173 199
EGFR 3.999140155 36.27201305 | 0.250053752 | 0.005709877 81 8.802469136 98 179

MAPKS 3.627687016 17.79660553 | 0.275657739 | 0.008544087 44 11.42857143 128 172

CTNNBI 4.349957008 21.16809061 | 0.22988733 | 0.005487122 | 126 9.305263158 27 153
ABLI 3.492691316 38.6789882 | 0.286312161 | 0.006438632 28 8.183098592 117 145

PRKCD 3.427343078 11.05973485 | 0.291771199 | 0.005456349 11 10.71875 131 142
GNAI3 1 0.570726378 1 0 123 1.266666667 4 127
MTOR 3.695614789 22.24446747 | 0.270590973 | 0.016098485 28 13.75757576 94 122
MYC 4.37661221 33.00901004 | 0.22848723 | 0.006894791 58 8.752808989 63 121
IKBKB 4.558899398 8.241234062 | 0.219351188 | 0.011396011 52 11.18518519 61 113
AKT2 3.270851247 11.91587683 | 0.30573081 | 0.015942029 23 20.06521739 81 104
PRKAA1 3.689595873 10.31743343 | 0.271032393 | 0.005737705 7 10.04918033 96 103
MAPT 0 0 0 0.026190476 | 100 17.42857143 0 100
BAD 4.731728289 9.64888711 | 0.211339269 | 0.014112903 86 21.53125 7 93
FOXO0O3 6.000859845 1.874892418 | 0.166642785 | 0.022177419 74 20.53125 11 85
SMAD2 6.13155632 3.183732833 | 0.163090731 | 0.005882353 71 7.171428571 6 83

To find the topologically strong proteins in both the networks, we opt for some basic cen-
trality measures: average shortest path, betweenness, closeness, clustering co-efficient, and
degree centrality. We identified the top 20 hubs in the network which are provided in Table
1.6-1.7. TP53, CTNNBI1, and GNAI3 were common hubs in both networks, echoing the fact

that they are the three most significant proteins in the autophagy interactome.

1.4.5 One single process and various computational approaches: which

door to choose?

The Mathematical modelling and network analysis approaches can grasp the underlying dy-
namics and topology of any biological system. We have summarised the applications of math-
ematical and computational biology tools to study autophagy with differential environmental
conditions (Figure 1.13). Nevertheless, the complexity and the choice of the approach can vary
from system to system, depending on the perspective of the study. From initiation to degrada-
tion, the process of autophagy comes under the influence of many proteins and stresses. Taking
a few or all of them together, a mathematical model helps to understand how the dynamics of

these sets of proteins influence the progression of autophagy by taking a deterministic approach.
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Table 1.7: Top 20 hub proteins in the autophagy network constructed using the STRING

database.
Name Average Shortest | Betweenness | Closeness Clustering Degree Neighborhood
Path Length Centrality Centrality Coefficient Connectivity
UBB 2.276239 0.19432585 | 0.439321209 | 0.011478494 | 1129 20.6705
APP 2.676824 0.048394323 | 0.373577096 | 0.034493657 | 563 27.20426
EP300 2.49169 0.062551069 | 0.401334074 | 0.017183758 | 478 23.84728
TP53 2487227 0.068664942 | 0.402054201 | 0.019924693 | 470 27.72553
PIK3R1 2.614651 0.025442495 | 0.382460271 | 0.033349735 | 469 30.9403
PIK3CA 2.578024 0.028200107 | 0.387893983 | 0.0345009 466 32.34979
HSPAS 2.626039 0.069486163 | 0.380801688 | 0.018712542 | 425 19.45412
AGT 2.897199 0.012404202 | 0.345160948 | 0.051182874 | 406 29.46305
UBR4 2.878424 0.019843949 | 0.347412318 | 0.040383248 | 368 22.30978
CTNNBI1 2.594183 0.039263504 | 0.385477843 | 0.01886428 353 28.94618
HRAS 2.542167 0.026544531 | 0.393365216 | 0.03498178 340 35.70882
ATG7 2.822099 0.011061642 | 0.354346166 | 0.049386736 | 333 27.88889
AGTRI1 2.697599 0.015938434 | 0.370699983 | 0.058679467 | 320 36.5875
HSP90AAL1 2.551554 0.047490903 | 0.391917973 | 0.020623413 | 313 32.76038
TRIM21 2.981533 0.006950559 | 0.335397956 | 0.048301725 | 306 23.62745
PIK3R2 2.862881 0.007819009 | 0.3492985 | 0.047188163 | 303 29.63366
CXCLI12 2.895199 0.006840072 | 0.345399458 | 0.067518125 | 299 33.8796
GNAI3 2.852878 0.015238235 | 0.35052325 | 0.065789769 | 299 32.16388
RNF7 3.031856 0.002052966 | 0.329830973 | 0.053284523 | 298 23.26174
FBXL.20 3.032318 0.002001357 | 0.329780755 | 0.054306468 | 295 23.4678

These models can predict cellular fate through autophagy by using a suitable set of parameters
and a core set of autophagy modulators. They can also be used to study the randomness in the
process of autophagy occurring due to the variability of the stress and frequent changes in the
cell’s energy requirements. Agent-based models can range from continuous to discrete based
on the requirement. Petri nets facilitate both the qualitative and quantitative models and hence
can be used to model the involvement of autophagy in cellular biochemical reactions.

On the other hand, network biology can be used to identify crucial autophagy-related proteins
responsible for the progression of diseases. Different sets of targets will be obtained for the
same disease owing to the method applied, which will further require biological validation. For
example, if the intention is to select only the most connected proteins, the proper method will
be to measure the degree centrality. But, if the goal is to find the proteins that can disperse infor-
mation very effectively, closeness centrality would be the best approach to consider. Contrary
to the analysis of the topology of the system by network analysis, enrichment analysis focuses
on extracting the pathways, localisation, and functions of the proteins present in the disease

network. These pathways can then further be studied by constructing an autophagy-specific
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Figure 1.13: Application of mathematical and computational biology tools to study
autophagy in different environmental conditions. Abbreviations: DEBM-Differential
equation-based mathematical models; ABM-Agent-based model; PN- Petri net; NA- Network
analysis; ML- Machine learning.

PPI network to detect influential proteins in that pathway.

1.5 Scope and objectives of the thesis

Proteins being the dominant molecules that carry out cellular functions and mediate numer-
ous pathways and processes, understanding their perturbations in disease is an unmet need.
Again, identifying crucial autophagic targets and regulatory mechanisms is essential for de-
signing effective therapeutic strategies for diseases such as diabetes, cancer, and nonalcoholic
steatohepatitis (NASH), as these diseases are significantly regulated by autophagy. One of the
severe complications of diabetes is diabetic retinopathy. Autophagy has been demonstrated to
play a dual role in this disease. In the early phase, it aids in the reduction of cellular stress.
However, in the latter stage, when the stress is severe, it aids in cell death. Nevertheless, the
essential autophagy-related genes that can prevent the onset or progression of the disease have

not yet been found. It is crucial to identify these proteins since the mechanisms that drive dis-
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ease development also affect autophagy.

Multifactorial diseases like NAFLD are modulated by perturbations at both the gene and the
metabolite levels. Although numerous studies have been conducted, both in silico and experi-
mental, studies that address perturbations at both these levels are very scarce. In addition, from
a computational standpoint, NASH lacks a comprehensive method that simultaneously studies
the molecular perturbations in NASH and determines whether genes with classification and
controllability power can be a possible target.

Similarly, cancer and autophagy have always been a topic of discussion. Beclinl is a quintessen-
tial protein in autophagosome formation and plays a crucial role in multiple autophagy-related
proteins, including cancer. But, none of the proposed therapeutic methods has addressed the
dynamics between DNA damage, pS3 and beclinl.

To address these challenges, the broad objectives of the thesis can be stated as follows,

1. Investigation of the autophagic protein perturbations in disease using network biology

approaches.

2. Investigation of the whole system protein perturbations in disease using network biology

approaches.

3. To develop a mathematical model to get a mechanistic insight of some autophagic genes

in cell proliferation and cell death

1.6 Thesis layout

The specific aim of this thesis involves a comprehensive analysis of the protein perturbations
in diseases with an emphasis on the association of autophagy. For this purpose, mathematical
modelling, clinical data and various PPI, as well as disease databases, are used in this study.
Overall, this thesis is organised into six chapters containing the information explained below:

Chapter 1: This chapter addresses the “What’s, Why’s, and How’s” of autophagy. Following
this, it addresses how mathematical modelling and systems biology-based applications are used

to uncover the underlying mechanism of this process in multiple diseases. This chapter also
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provides the history of autophagy and systems biology and various tools and databases used to
study them, together or alone.

Chapter 2: The autophagy process is associated with diabetic retinopathy. However, the
autophagy-related proteins targeting which can prevent or initiate the disease are yet to be
identified. Addressing this, this chapter describes a multi-layer relatedness (MLR) approach
to determine the relatedness of autophagic and Diabetic retinopathic (DR) proteins by incor-
porating both expression and prior-knowledge-based similarities. The goal of this study is
fourfold: 1) identification of the topologically significant novel disease-related candidate au-
tophagic proteins (CAP) in a PPI network constructed using prior knowledge-based informa-
tion, 2) evaluation of the significance of these proteins in a gene co-expression network, and 3)
in a differentially-expressed gene (DEG) network and 4) investigating the proximity of CAPs
to the known disease-related proteins in the DEG network. The proteins identified through our
methodology can influence the DR interactome in various layers of heterogeneity of clinical
manifestations. In short, in this chapter, we have used the autophagy-DR protein interaction
network to identify autophagy-related targets in diabetic retinopathy

Chapter 3: Addressing the perturbations in Non-alcoholic steatohepatitis (NASH) at both the
gene and metabolic level, in this chapter, we have used a de novo methodology to identify the
potential targets in NASH. We constructed a PPI network containing differentially expressed
genes and significant metabolic genes associated with NASH. We applied the structural control-
lability in this network and identified three indispensable proteins capable of initiating a disease
to a healthy transition in NASH. Interestingly, we observed one of the three identified targets
to be autophagy-related, which echoes the predominance of autophagy in the NASH paradigm.
However, to get a global view of the role of protein perturbation in a disease progression, we
need to understand the importance of the relation of a protein with the known disease genes.
In the next chapter, we captured the significance of proteins in terms of their proximity to the
disease genes.

Chapter 4: A major challenge in the computational way of solving the conundrum of a disease
system is to track down the effect of the potential recovery options on different layers of molec-

ular understanding. The proteins identified from the PPI networks may not play a crucial role in
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the metabolic level. The metabolic networks identify crucial reactions and the genes involved in
them. However, such a network cannot provide information about how the gene products, i.e.,
proteins, will behave in conjunction. Also, the information about forming clusters, spreaders,
role in information processing, etc., cannot be told from metabolic network analysis. Machine
learning (ML) classifies proteins and can identify the nodes with the best predictive capabil-
ity in the network. However, this approach alone can say nothing about metabolic adaptation,
which is imperative for cell homeostasis following a physiological change. But, integrating
with the ML approach in a study, the network analysis methods can be used to get more in-
depth knowledge of the disease systems. Addressing all these, in this chapter, we applied a
random walk restart multilayer approach to identify the proteins which remain in close prox-
imity with the disease proteins, possess the classification capability, can control the network
and eventually can alter the metabolic landscape. Here also, we found that the potential tar-
gets obtained using this methodology could affect the autophagy process. Though this network
analysis gives us a global scenario of proteins and their effects on disease as a whole, it is an
unmet need to understand how their modulation affects the disease dynamics, which demands
the application of mathematical modelling-based studies.

Chapter 5: Finally, we have applied a mathematical model-based study to get mechanistic in-
sight into some autophagic genes in cell proliferation and cell death. Reducing metabolic stress
and increasing nutrient availability through the breakdown of cellular organelles and unfolded
proteins are two ways autophagy fosters cancer growth and progression. This process is asso-
ciated with DNA damage, a critical factor in cancer initiation. The guardian of the genome,
pS3, plays a crucial role in the repair of DNA and induces apoptosis if the damaged DNA can
not be repaired. Hence, when p53 loses this ability, abnormal cell growth and, thereby, cancer
initiates. Addressing these facts, this chapter describes a seven-dimensional non-autonomous
ODE model to investigate the complex interplay between DNA damage, p53, autophagy, and
lung cancer. The study aims to highlight the potential factors or parameters and propose that
autophagic cell death mediated by perturbation of these parameters over a specified range is the
way forward in lung cancer research.

Chapter 6: This chapter concludes the thesis by providing a brief summary of the work, its
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contribution to the discipline of autophagy, and future directions.






Identification of critical autophagy-related
proteins in diabetic retinopathy: A

multi-dimensional computational study’

2.1 Introduction

Diabetes mellitus (DM) is a global epidemic that is associated with a high rate of morbidity,
affecting over 415 million adults worldwide, and this number is only expected to rise to 642
million by 2040 [217]. It is a complex disease that causes both acute and chronic micro-and

macrovascular complications. Patients with diabetes frequently develop ophthalmic complica-

I'The bulk of this chapter has been communicated for possible publication.
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tions such as corneal dysplasia, glaucoma, iris neovascularisation, cataracts, and neuropathies.
However, the most prevalent and potentially lethal of these complications is diabetic retinopa-
thy (DR). It occurs when damaged blood vessels in the retina allow fluid to leak into the macula,
the area of the eye responsible for sharp central vision, resulting in blurred vision and eventual
blindness [218]. Like many other slow-progressive diseases, DR patients remain asymptomatic
at the early stages of the disease. However, once the disease reaches an advanced stage, various
symptoms begin to appear that include microaneurysms, venous loops, and venous bleeding,
dot and blot hemorrhages, flame-shaped hemorrhages, retinal edema, hard exudates, macular
edema, etc. [219]. Blood pressure control and glycemia intervention can reduce the develop-
ment risk and progression of DR at an early stage [220]. However, the underlying molecular
mechanisms of DR are still not precise [221]. As the global burden of DR continues to increase
year after year, it has become an unmet necessity to unravel the mystery and capture critical
genes capable of regulating this nefarious disease.

As with many other diseases, DR is also susceptible to cellular degradation facilitated by au-
tophagy. Autophagy has been shown in the literature to play a dual role in the initiation and
development of DR [222]. During the early stage of the disease it protects the cells by in-
hibiting ER stress. However, under conditions of extreme stress, autophagy loses its protective
function and contributes to the death of pericytes, an abnormality that may lead to DR [223].
Furthermore, autophagic dysfunction is implicated in the etiology of DR as an early occurrence
[224]. Under hypoxic conditions, autophagy promotes angiogenesis in the retinal pigment ep-
ithelium (RPE) cells by increasing the amount of vascular endothelial growth factor (VEGF)
[225]. By mediating the protective functions of retinal ganglion cells, autophagy can attenu-
ate neurodegeneration in DR [226]. Thus, recognizing the molecular and pathophysiological
aspects behind this autophagic process may aid in developing prophylactic or therapeutic ap-
proaches for DR, necessitating a computational analysis of the DR-autophagy interactome to
identify the most significant molecules involved in this crosstalk.

There is a dearth of computational studies on DR. Gopalakrishnan et al. [227] studied the
topology of DR proteins. However, his study was focused on the five previously experimentally

identified DR genes and hence lacked a detailed insight into the entire interactome. Wang et al.
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[228] studied the impact of Chinese medicine Taohang Siwu against DR, where they conducted
a protein-protein interaction (PPI) network analysis by combining the targets of Taohang Siwu
with the DR-related genes. Safei et al. [229] performed the protein-protein interaction (PPI)
network analysis to monitor the protein alterations in rats following laser treatment. However,
none of them focused on the involvement of autophagy in the disease. Recently, some compu-
tational work was performed to study the association of autophagy with DR. Gao et al. [230]
performed a microarray analysis by isolating the total RNAs obtained from the retinas of di-
abetic mice. They identified four proteins, Bcl2, Gabarapl2, Atg4c, and Atgl6L1, associated
with the cell death pathways. Finally, through the gqRT-PCR analysis, they found Atgl6L1 to
be significantly upregulated and concluded it to be a novel biomarker of DR. In another study,
Wang et al. [231] identified 23 potential DR autophagy-related genes using a PPI network.
They concluded that the downregulation of MAPK3 plays an important role in developing DR
by regulating autophagy.

The computational analysis of a biological system requires a thorough grasp of the relatedness
between the genes or their products. This relatedness can be investigated in three major ways:
A) The prior knowledge-based investigation. Here, a PPI network is constructed using the in-
formation extracted from various databases. B) The expression-based similarities between the
genes. It is commonly used to evaluate the conditional relatedness of the coexpression level
between a pair of genes under a given situation. C) Combining these two aspects, a hybrid type
of investigation can also be defined, which, based on statistical measures such as fold change,
p-value, false discovery rate, etc., first extracts the genes that are significantly expressed on a
certain condition, and then use the PPI databases to construct a network. Although type ‘A’
identifies the crucial proteins, they are extracted based on global relatedness and do not con-
sider their expression values. The robustness of such information also needs to be improved
[232]. Type ‘B’ covers these expectations, but genes with similar co-expression may not always
have related functions [233]. Again, because these associations are based on specific data, they
may not always be global. Type ‘C’, or the hybrid measure, covers both perspectives but may
suffer from various aspects such as quantitative cut-off or the inherent noise in the data. To gain

a complete understanding of a disease, these three types of investigations should be conducted
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simultaneously to identify the set of proteins capable of driving the system without being influ-
enced by global relatedness, expression similarity, or biasedness of certain quantitative cut-off
criteria.

The computational studies in DR are limited to understanding only one of the above three
perspectives. DR is associated with hyperglycemia, oxidative stress, hypoxia, endoplasmic
reticulum (ER) stress, and nutrient starvation, all of which are associated with autophagic flux
activation. However, the computational effort has been made so far to investigate the DR-
autophagy association are very few. Hence, it won’t be an embellishment to assert that there
remains a lack of holistic study of DR that covers a broad spectrum of disease severity. Again,
understanding the molecular and pathogenic mechanisms underpinning the autophagic process
may help develop DR prevention or treatment strategies. Therefore, in this study, to uncover
novel autophagy-related proteins involved in disease pathogenesis, we have employed a multi-
layer relatedness (MLR) approach. The objective of MLR is to determine the relatedness of
autophagic and DR genes by incorporating both expression and prior-knowledge-based sim-
ilarities. The goal of this study is fourfold: 1) identification of the topologically significant
novel disease-related candidate autophagic proteins (CAP) in a PPI network constructed using
prior knowledge-based information, 2) evaluation of the significance of these proteins in a gene
co-expression network, and 3) in a differentially-expressed gene (DEG) network and 4) inves-
tigating the proximity of CAPs to the known disease-related proteins in the DEG network. The
proteins identified through our methodology can influence the DR interactome in various layers

of heterogeneity of clinical manifestations.

2.2 Methodology

The method developed in this paper can be divided into four categories. i) The construction of
the prior knowledge-base network and identification of candidate autophagic proteins (CAPs).
i1) Evaluating the importance of the CAPs in a gene co-expression network. iii) Evaluating
the importance of the CAPs in a differentially expressed gene (DEG) based PPI network. iv)

Using a network propagation theory to identify the disease-associated genes. The methodology
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integration of clinical data to study the gene co-expression and differentially expressed gene
network.

is shown in Figure 2.1.

2.2.1 Extracting disease and autophagy-related genes

The DR related genes (DRGs) are extracted from the DisGeNET [234] database. Among the
autophagy databases available in the literature, HAMDB [207] was found to be more informa-
tion enriched [66], and hence all the autophagy-related genes (ARGs) are collected using this

database.

2.2.2 Protein-protein interaction network construction

The DRGs and ARGs are converted to proteins using the UniProt database [235] and are here-

after referred to as DR-related proteins (DRPs) and autophagy-related proteins (ARPs), respec-
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tively. To construct a PPI network of the selected proteins, we took the help of the Search Tool
for Retrieval of Interacting Genes/Proteins (STRING) database [215]. The resulting protein-
protein interaction (PPI) network contains interactions between proteins on both a physical and
functional level. Each of the interactions in STRING is assigned a confidence score. The higher
the score, the more probable the proteins will interact. We took the highest confidence score of
900 to construct a highly significant network.

We first constructed a network by taking the ARPs and the DRPs. However, the network
was found to be disintegrated into different disconnected components. To circumvent this, we
need to identify a set of minimal nodes to connect these components. To ensure unbiasedness,
we used all the first neighborhoods of the ARPs, and DRPs and created one giant connected
network. Few other studies have also reported the use of first neighbours to construct a PPI

network [236, 237].

2.2.3 Methods for the analysis of PPI networks

To identify the core set of nodes in the network, we took the help of three classical centrality
measures: degree, betweenness, and closeness. The degree centrality measures the connectivity
of the proteins in the PPI network. The proteins with higher connectivity (usually those with
a degree twice the average degree) are known as hub proteins. The betweenness centrality
measures how much information passes through a specific node in the network. The proteins
with a high level of betweenness are termed bottlenecks. On the other hand, closeness centrality
quantifies how close a node is to other nodes in the network. The top 5% scoring proteins
(TSPs) were chosen for each of the three centralities, and the common proteins between them
were extracted. These TSPs are topologically significant and serve as the network’s backbone.
Next, from the TSPs, we identify the autophagic proteins (henceforth referred to as candidate
autophagic proteins, CAPs that were not previously identified as DR-associated in DisGeNET

[234]. Mathematically, these CAPs can be represented as

CAP = ARPN (TSP\ DRP). (2.1)
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Coreness is a global property of a network and examines the capability of a node to belong to a
highly connected cluster. It also tells how much influential a node is in terms of the propagation
of information throughout the network. To identify the influential spreaders in the network, we
opt for the k-core decomposition method. Let G(V, E) is an undirected and unweighted graph
where V is the vertex set, and E is the set of the edges. A subset G, of G| is defined as k-core
of Gy, if it is a maximal subgraph of Gy, in which all nodes have degree at least k. The k-
core analysis enables the detection of interesting structural properties that are not captured by
many other network topological measures. The central cores contain more strongly connected

vertices and have many distinct paths connecting them [238].

2.2.4 C(linical data

From the Gene Expression Omnibus (GEO) [239] database, we selected the dataset GSE146615
[240] which contains the information on lymphoblastoid cell lines of seven healthy, seven dia-
betic individuals without DR, and eight diabetic individuals with DR. The dataset was quantile
normalized and contained three biological replicates per individual and treatment while three

individuals had five biological replicates.

2.2.5 Data pre-processing

The probe to gene mapping was done using the [llumina HumanHT-12 V4.0 expression bead-
chip platform. If a gene had any null values across the samples, it was removed from the study.
We next used the ‘filloutliers’ function in MATLAB to detect outliers by the ‘median’ value of
the gene across the samples and replaced them using the nearest value of the gene across the

samples.

2.2.6 Weighted Gene co-expression network analysis (WGCNA)

To investigate the relatedness of the crtitical genes in DR, we opt for a gene co-expression
analysis using WGCNA [130] which identifies the critical modules in the network. Modules

are defined as groupings of genes that share similar expression patterns and are frequently
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functionally connected and co-regulated. It is conceivable that such coordinated gene activities
contribute significantly to the complexity of biological processes and pathways. Among the

three set of cohorts, we considered the healthy group and the diabetic individuals with DR

group.

2.2.6.1 Parameters in WGCNA

Here, in our analysis using WGCNA, we have used maxBlockSize of 20,000, minModuleSize
of 30, and mergeCutHeight of 0.3. We have considered the disease status as clinical trait in-
formation. Here, if a sample comes from a healthy individual, it receives a score of 0, and if it
comes from a diseased individual, it receives a score of 1. The module-trait associations were
estimated by assessing the influence between the module signature and the phenotype (clin-
ical traits), allowing for easy identification of highly correlated modules with the phenotype.
Finally, for each module, a PPI network is constructed using the STRING database, and the

influential nodes are identified by measuring the topological properties.

2.2.7 Identification and analysis of differentially expressed genes

The co-expression analysis identifies genes that show a coordinated expression patterns across
the group of samples. However, such networks typically do not convey causal information
or distinguish between regulatory and regulated genes [241]. To mitigate this, we opt to find
differentially expressed genes (DEGs) in the dataset GSE146615. For this, we first removed
all the genes which possessed any null value across the samples, and the remaining genes were
then carried out for further analysis. Finally, we have taken the log fold change cut-off of +1

to identify the DEGs in the network.
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2.3 Results

2.3.1 Prior knowledge-base investigation of the DR-autophagy interac-

tome

We identified 645 DRGs from DisGeNET and 551 ARGs from HAMdb. The UniProt mapping
of these genes has reduced these numbers to 573 DRPs and 482 ARPs, respectively. The
network consisting of these proteins and their immediate neighbors had 7856 proteins and
583928 interactions (Figure 2.2). The topological properties of the top ten hubs are shown
in (Figure 2.3A). Among these ten hubs, UBB and APP were ARPs. The top 10 biological
processes associated with the proteins in the network are shown in (Figure 2.3B). The top 5%
of nodes (rounded to 393 nodes) in each of the degree, betweenness, and closeness centrality
categories were extracted, and 104 TSPs were identified (refer to Section 2.2.3). The overlap

between the ARPs, DRPs, and the TSPs are shown in Figure 2.3C.

2.3.2 Candidate autophagic proteins (CAPs) control the network

Using equation (2.1), we identified 11 CAPs among the TSPs: APP, ATG7, GNAI3, HDACI,
HSP90AAT1, HSPAS, KRAS, PIK3R1, TP53, UBB, and UBR4. Investigating their topological
significance, we found that UBB is the third most connected node in the network while APP,
PIK3R1, and TP53 are ranked among the top fifty hubs in the network. Similarly, all the CAPs
were bottlenecks in the network, with UBB and TP53 being ranked fifth and seventh, respec-
tively. UBB was ranked fifth in the closeness category, while five other proteins, HSP90OAA1,
HSPAS, KRAS, PIK3R1, and TP53, were ranked among the top fifty. These findings imply
that CAPs play a critical role in regulating the DR interactome.

We found that three CAPs, ATG7, UBB, and UBR4, were present in the innermost cores, while
the rest were present in the top ten innermost cores. This indicates that these nodes can dissem-
inate information to a wider portion of the network. The topological properties of the CAPs
are shown in Figure 2.5A, while the enriched biological processes are shown in Figure 2.5B.
These proteins are enriched with cell death-related pathways, autophagy-related pathways, pro-

tein phosphorylation and modification, and cytokine-related pathways. All these processes are
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Figure 2.2: The DR-autophagy interactome. Here the nodes are sized and colored according
to their degree.
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The enrichment analysis is done using Enrichr [242]. (C) The UpSet plot of the overlap between
ARPs, DRPs, and the top 5% proteins in the degree, betweenness, and closness centralities. It
can be seen that the ARPs were enriched in each of the categories.
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found to play a crucial role in DR [175, 243, 244]. Clustering analysis facilitates the elevation
of network nodes to a more comprehensive level by subdividing them into a smaller number
of clusters. We used the Molecular Complex Detection (MCODE) [153] plugin in Cytoscape
[121] to perform clustering analysis. The selection parameters for the MCODE analysis were
set as follows: MCODE scores >5, degree cut-off = 2, node-score cut off = 0.2 and k-core = 2.
From the obtained clusters, we took a MCODE cut-off of 10 and found 27 significant clusters.
APP, ATG7, GNAI3, UBB and UBR4 were found in the topmost cluster. HSPA8 and PIK3R1
were present in the 2nd cluster, HSP9OAAT1 on the 5th cluster, KRAS and TP53 on the 8th
cluster and HDAC on the 12th cluster. The top 20 mcode clusters are shown in Figure 2.4.

It is worth noting that the specificity of the CAPs is fourfold: (i) they are derived from a
network containing the disease and autophagic proteins, (ii) they are among the topologically
strong proteins in the network, (iii) they were not previously reported to be associated with
DR, and (iv) their enriched pathways are also reported to play a role in disease physiology. We
believe that all these CAPs, or at least some of them, will also play a critical role in a gene-gene
association network that is constructed on the basis of expression similarities. To validate this,

we took a clinical dataset from GEO and proceed to gene co-expression analysis.

2.3.3 Co-expression network analysis

The expression values of 18972 protein-coding genes across the 15 samples of the dataset
GSE146615 were taken to WGCNA for co-expression analysis. All the samples were found
to be well clustered, and no outliers were detected (Figure 2.6A). In this study, the power of
B = 12 was selected as the soft-thresholding parameter to ensure a scale-free network (Figure
2.6B). We have constructed a signed co-expression network, and using the average linkage
hierarchical clustering, a total of twelve modules were identified (Figure 2.6C). Except for
the grey, each colour represents a gene module. The grey color indicates genes that are not
module-assignable. Correlations between these co-expression modules and clinical traits were
quantified using the correlations between module eigengenes and clinical traits. The groups
of correlated eigengenes are identified using the eigengene dendrogram and heatmap (Figure

2.6D). The associations between the modules and the clinical trait were quantified using the
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correlation between the eigengenes and the clinical traits (Figure 2.6E).

The results indicated that the brown module strongly correlates with disease status whereas the
turquoise module has a strong negative correlation. Mild positive correlations were seen with
the tan and red modules, while black and purple modules showed mild negative correlations
with disease. The expression of the eigengenes across the samples (Figure 2.6F) demonstrates
that the genes in the brown module are significantly over-expressed, while the genes in the
turquoise module are significantly down-regulated in the DR conditions. All the other modules
showed a highly heterogeneous behavior in the eigengene expression throughout the samples.
Among the thirteen modules, five (including the grey) contained at least one CAPs. To see the
impact of these CAPs, we constructed a PPI network of these modules by mapping each of
them to Nggg. Because a module network may encode a pathway or a protein complex, these
unique networks are beneficial. Interestingly, in all of the modules, the CAPs were among the
hubs and bottlenecks (Figure 2.6G). This justifies that they are among the critical proteins in
the co-expression modules and hence, are worthwhile to be further evaluated. An example of

one such module is shown in Figure 2.6(H).
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2.3.4 Differentially expressed genes (DEG) network analysis

The differential gene expression analysis of the dataset GSE146115 revealed 6457 up-and 1115
down-regulated genes. We found that two of our CAPs, PIK3R1, and APP, were respectively
up and down-regulated in the dataset Figure 2.7A-B. To investigate the alterations at the gene
level, the KEGG enrichment analysis using the package clusterProfiler [245] was performed
(Figure 2.7C). The analysis revealed that the PI3K-AKT pathway was the most enriched path-
way, followed by neuroactive ligand-pathway interaction. Recent investigations have discov-
ered that the PI3K/Akt/mTOR proteins are highly expressed in the retinal tissue of diabetic rats
[246], justifying the predominant enrichment of the DEGs in this pathway. The prominence of
neuroactive ligand-pathway interaction pathway on the enriched list suggests that neuroprotec-
tive factors may be depleted, and retinal neurodegeneration may occur during diabetes.

To construct an undirected PPI network, we mapped the DEGs to the Nggg network. How-
ever, the constructed network was found to consist of many separate components. We used
the STRING database to connect them and extract the fewest possible nodes. These additional
nodes are referred to as mediators. We found that 417 mediators were required to connect the
DEG network (Figure 2.7D). Notably, we found that two of our CAPs, TP53 and HSP90AAL,
function as mediator proteins. This indicates that, despite their relatively low levels of expres-
sion, these proteins are critical for propagating information throughout the network. The final
network contained 4466 nodes and 107832 edges (Figure 2.7E). Interestingly, all four CAPs
were found to be hubs and bottlenecks in the network. The topological properties of the CAPs

are provided in the Table 2.1.

Table 2.1: Topological properties of the CAPs.

CAP Betweenness | Closeness Degree
TP53 0.051276521 | 0.360080645 | 388
APP 0.016289037 | 0.338206332 | 464
HSP90AA1 | 0.026229137 | 0.367247903 | 256
PIK3R1 0.019253502 | 0.349866792 | 392




2.3.

Results

85

A

Fold Change

Figure 2.7: Construction of the DEG network. (A) The numbers of CAPs among the DEGs.
(B) Expression values of the two CAPs. C) The KEGG pathway enrichment of the DEGs. (D)
Total nodes and the number of mediators in the network. (E) The DEG network. Here, the
nodes are colored according to their modularity index. The large labeled nodes are the four

Upregulated Downregulated

ACP

PIK3R1

, |
0

APP

Autophagic Candidate Proteins

4500
4000
3500
3000
2500
2000
1500
1000

500

Mediator Total
Proteins

CAPs present in the network.

C

Neuroactive ligand-receptor interaction -

PI3K-Akt signaling pathway -

Human papillomavirus infection+
MAPK signaling pathway -

Calcium signaling pathway -

Ras signaling pathway-

Human cytomegalovirus infection -
CcAMP signaling pathway -

Human T-cell leukemia virus 1 infection
Lipid and atherosclerosis -

Rap1 signaling pathway -
Epstein—-Barr virus infection+
Chemokine signaling pathway -
Tuberculosis -

Axon guidance -

Adrenergic signaling in cardiomyocytes -
Insulin signaling pathway +
Dopaminergic synapse -

FoxO signaling pathway -

Relaxin signaling pathway -

AMPK signaling pathway 4
Aldosterone synthesis and secretion -
Th1 and Th2 cell differentiation-
GABAergic synapse-

Synaptic vesicle cycle-

0.01 0.02 0.03
GeneRatio

0.04



Chapter 2. Identification of critical autophagy-related proteins in diabetic retinopathy: A
86 multi-dimensional computational study

Further, to see which proteins these CAPs interact with, we opt for a first neighborhood
analysis. The most interactors were found for APP, followed by PIK3R1 and TP53. On the
other hand, PIK3R1 had the highest density of disease genes in its first neighborhood, whereas
TP53 had the least percentage (Figure 2.8A). The presence of the most number of disease
genes in the PIK3R1 interactome may be a result of its interaction with the PI3K/AKT pathway,
which is critical for the progression of DR. The overlap between the neighbors of these proteins
are shown in a UpSet plot (Figure 2.8B). As can be seen, these proteins have no common
neighbors. A pairwise analysis revealed that APP and PIK3R1 shared the most neighbors,
whereas APP and HSP90OAA1 had no common neighbors. The interactors of these four proteins
are shown in Figure 2.8C-F. To establish the relationship of the network proteins with the
disease proteins, we opt for the random walk with restart (RWR) algorithm. The seed nodes
for the analysis are identified using the equation, S = DRP NV, where V is the set of DEGs in
the network. Each node in the network was assigned a score denoting its possibility of being a
novel DR protein using the RWR algorithm. The higher the score, the more likely the protein
is DR-related. We found that PIK3R1 is the top-ranked protein in the list while TP53 obtained
the third rank. The remaining two proteins APP and HSPO9OAA1 were ranked at 21% and 24"
positions. Thus, these CAPs are deemed to be in close proximity with the disease-related

proteins in DR.

2.3.5 Discussion

Diabetic retinopathy (DR) prevalence has reached epidemic proportions [247]. It is a slowly
progressive disease that arises from the complications of diabetes and in the last two decades,
has become a global burden [221]. Unfortunately, currently available treatments for DR are
invasive, less effective, and focus primarily on the chronic stages of the disease, with a slight
improvement in vision repair [218]. The literature review established that the factors associated
with DR, such as hyperglycemia, hypoxia, oxidative stress, ER stress, and nutrient deprivation,
are all strongly related to the activation of autophagic flux. However, the critical autophagic
genes required for the initiation and development of DR remain unknown.

This study developed a multi-level relatedness approach to find the novel autophagy-related
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Figure 2.8: First neighborhood analysis of the CAPs in the DEG network. (A) The number
of interactors of each CAPs. (B) The UpSet plot of the overlap between the neighbors of these
CAPs. (C-F) The first neighborhood network of the CAPs.
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proteins capable of regulating the DR interactome. We embraced a topological viewpoint to
measure the vitality of the nodes in the network, which mainly included the degree, between-
ness, closeness, and coreness of the nodes. We also performed a random walk restart analysis
to explore the functional association of identified novel proteins with the already known DR
proteins. MLR is a novel technique for determining the influence of biological molecules
(genes or their progeny, proteins in our study) across many biological layers. Identifying cru-
cial proteins in a network constructed from prior knowledge base information aids MLR in
capturing the global relatedness of proteins. We used the high confidence network of STRING
database to perform this analysis. The hub proteins in this network were found to be associated
with development and progression of DR. For example, the suppression of cytokines, which
are the key regulators of inflammations, have been shown to protect retinal capillaries from
pathological alterations in animal models [248]. In the retinas of diabetic animals and patients,
several physiologic and molecular alterations compatible with the role of inflammation have
been observed. In animal models of diabetes, it has been demonstrated that inhibiting these
inflammatory changes affects the development of retinal abnormalities [249]. While such re-
latedness may not always translate into significant biological activity, it can be aggregated with
biological data in a high-throughput manner to do integrated analysis, such as creating the tar-
get landscape of the disease. Hence, this global influence is then converged to a clinical dataset
to quantify the relevance of these proteins depending on their expression-based similarity. This
relevance is quantified on two levels: first, at the gene level, using WGCNA, which enables a
better understanding of which regulators may be driving transcriptional profiles during disease
progression. The second level includes the investigation of this relevance in a network con-
structed using the DEGs in the clinical dataset. Leveraging this pipeline, we finally identified
four proteins, TP53, HSAP90AA1, APP, and PIK3R1. However, APP was placed in the grey
module in the co-expression analysis. We, therefore, focus on the remaining three CAPs and
their associations with DR.

These three proteins are connected with several crucial proteins that regulate multiple char-
acteristics of DR development. For example, TP53 interacts with CDK, which prevents angio-

genesis by triggering cell cycle arrest and apoptosis [250]. HMGBI is another interactor of



2.3. Results 89

TP53 that mediates diabetes-induced damage in retinal pericytes [251] and Muller cells [252].
Similarly, PIK3R1 interacts with JAK1, whose inhibition ameliorates the blood-retinal barrier
dysfunction [253]. We extracted the first neighbourhood of the three CAPs from Nggg and per-
formed enrichment analysis using Enrichr [242]. We found several ways these proteins could
regulate the DR interactome exist. Il-1f play a significant role in DR as it expedites apoptosis
of retinal capillary cells through activation of NF-kB [254]. The neighbourhoods of the three
CAPs, TP53 and PIK3R1 are enriched with the IL-1f signalling pathway. There are mounting
evidences that diabetic retinopathy is highly associated with the alterations in the Wnt-signaling
pathways [255]. Enrichment of the biological process in the TP53 neighbourhood highlights
their importance in DR pathogenesis. In all neighborhoods, we found that cytokine modula-
tion is an enriched process. The literature has mentioned that the concentrations of various
cytokines increase with the DR severity. The role of angiogenesis and its key mediator, VEGF,
has been the most researched aspect of DR. Several anti-VEGF therapies have been proposed
in DR. The neighbourhood of two CAPs, HSP9OAA1 and PIK3R1, are found to be enriched
with the VEGF signalling pathway, echoing their importance. Thus, we conclude that these
proteins play a crucial role in the DR, and their modulation will affect the disease pathology.
Their relation with DR-associated processes is summarized in Table 2.2.

Nevertheless, the association of proteins with essential pathways does not always fully jus-
tify the protein-disease association. In order to gain a complete understanding, it is necessary
to examine their association with disease hallmarks. In DR, such characteristics include an-
giogenesis, death of retinal pigment epithelial cells, pericyte cells etc. Angiogenesis is mainly
mediated by the vascular epithelial growth factor, VEGF. Its concentration is reported to be
significantly correlated with the DR severity. Therefore, evaluation of VEGF expression has
become a common method for determining angiogenesis and, by extension, the influence of
a protein in DR. The primary function of RPE cells is to maintain retinal homeostasis by a
series of secretory factors [267]. The loss of RPE cells has been implicated in the pathogen-
esis of DR [268]. Pericytes are essential components of the retina, and its microvasculature
[269]. They have crucial roles in angiogenesis, vascular remodelling, regression, stabilization,

and the formation and maintenance of the blood-brain barrier (BBB) and blood-retinal barrier
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Table 2.2: Association of the CAPs with DR. The biological process enrichment of the neigh-
bourhood of the CAPs is performed using Enrichr [242], and the DR-associated significant pro-
cesses are selected based on their p-value <0.005. The literature evidence for DR-associated
processes are given in the last column.

CAP Process P-value | Reference
I1-1 Signalling Pathway 3.50E-17 | [254]
Wnt Signalling Pathway 1.56E-16 | [255]
Cytokine Mediated Pathway 2.54E-12 | [244]
Histone Modification 1.74E-07 | [256]
Response To Oxidative Stress 3.82E-06 | [257]
TP53 Positive Regulation Of Blood Ves- | 0.001219 | [258]
sel Endothelial Cell Migration
Response To Insulin 0.001386 | [259]
Nik/NF-kB Signaling 1.29E-20 | [260]
Cellular Response To Hypoxia 3.56E-21 | [259]
Vascular Endothelial Growth Factor | 7.66E-18 | [261]
Receptor Signaling Pathway
Regulation Of Apoptotic Process 2.11E-09 | [262]
Cytokine-Mediated Signaling Path- | 1.00E-07 | [244]
way
HSPO0AAL Positive Regulation Of Blood Ves- | 6.30E-07 | [258]
sel Endothelial Cell Migration
Response To Insulin 1.73E-05 | [259]
Response To Reactive Oxygen | 3.91E-05 | [263]
Species
Regulation Of Canonical Wnt Sig- | 0.001288 | [255]
naling Pathway
Regulation Of Nik/NF-xB Signal- | 0.001789 | [260]
ing
Cytokine-Mediated Signaling Path- | 1.56E-21 | [244]
way
Inflammatory Response 1.39E-13
Vascular Endothelial Growth Factor | 2.22E-12 | [261]
Receptor Signaling Pathway
Insulin Receptor Signaling Pathway | 1.34E-10 | [259]
PIK3R1 Positive Regulation Of Angiogene- | 2.26E-07 | [264]
sis
Regulation Of Nik/NF-kB Signal- | 1.21E-06 | [260]
ing
Cellular Response To Interleukin-6 | 7.20E-06
Response To Insulin 1.93E-05 | [259]
Response To IL-1 2.25E-05 | [254]
IL-12-Mediated Signaling Pathway | 8.70E-05 | [265]
Cellular Response To Lectin 9.79E-04 | [266]
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Table 2.3: Experimental evidence from available literature.

gene name | DR hallmark in vitro reference
Retinal pigment epithe- | High glucose induces | [270]
TP53 lial cell p33 level in RPE cells

and induces cell death.
Knockdown of TP53 | [271]
Inhibits RPE Apoptosis
Pericyte cell Increased O- | [272]
GlcNAcylation of
pS3 leads to pericyte
loss and microvascular
dysfunction
Angiogenesis pS3 rapidly induces | [273]
VEGF transcription
upon hypoxia exposure.
HSP90AA1 | Angiogenesis HSP90AA1 correlates | [274]
with the upregulation of
proteins in the VEGF
pathway.

(BRB). Their demise results in the regression of the retinal microvasculature, which results in
fluid leakage, leukocyte adherence to the vasculature, and hypoxia in the injured area. This
eventually paves the way for DR. Various studies have shown the loss of ratinal ganglion cells
following the progression of diabetes. Two of our proposed targets, TP53 and HSP90OAAI,
were experimentally observed to be associated with the DR hallmarks. These associations
are shown in Table 2.3. Thus, these experimental observation collected from literature brings
credibility to the results, which experimental biologist can explore further in understanding DR

progression and prevention.

2.4 Conclusion

In this study, we have addressed the crosstalk between autophagy and DR through a multilayer
relatedness approach. The analysis leads to the identification of three novel autophagy-related
proteins, which can modulate the progression and pathogenesis of DR. The specificity of these
proteins are six-fold. i) They are autophagy-related proteins, ii) not reported to be associ-
ated with DR, iii) topologically sound in the autophagy-DR interactome, iv) they are present

in crucial modules in the co-expression analysis, v) important proteins in the DEG network,
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and vi) possess a high-functional association with the DR associated proteins. To summarize,
these proteins are critical to regulate the DR interactome and shed light on previously unknown

aspects of the disease.



De novo analysis of a protein-protein

interaction network reveals potential targets

in NASH!

In Chapter 2, our study on understanding protein perturbation was limited to addressing the
interplay of autophagy and disease proteins. However, since we are focussed on only the
autophagy perspective, some of the crucial information about the progression of the disease
remain incarcerated within the perturbations of proteins which were not associated with au-
tophagy. Therefore, for a comprehensive understanding, it is an unmet need to study all the

perturbations inside a disease system. Addressing this, in this chapter, we have tried to identify

I'The bulk of this chapter has been communicated for possible publication.
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potential targets in non-alcoholic steatohepatitis by investigating the disease perturbations at
both the protein and metabolic levels. Intriguingly, here also we found that one of the identified

targets is autophagy-related, which underlies the importance of this quintessential process.

3.1 Introduction

Non-alcoholic fatty liver disease (NAFLD) is an umbrella term for a spectrum of liver diseases
defined by the aggregation of triglycerides in the liver, without other causes such as medica-
tions and excessive alcohol intake, or certain heritable conditions [275]. There is currently no
commonly agreed criterion of significant alcohol use at which fatty liver disease can be deemed
alcohol-related; nevertheless, threshold amounts of 10-20 g of alcohol per day for women and
20-40 g per day for males have been documented [276-278]. It is strongly associated with
metabolic comorbidities, including obesity, hyperlipidemia, type 2 diabetes and metabolic syn-
drome. Unabated, its prevalence, estimated at 25% [279], is predicted to increase as a result
of the significant global surge in factors such as obesity, ageing, T2DM, etc. The initial stage
of the disease is the non-alcoholic fatty liver (NAFL), distinguished by steatosis of the liver,
encompassing more than 5% of parenchyma, with no signs of hepatocyte damage [280]. Non-
alcoholic steatohepatitis (NASH), characterised by steatosis, lobular inflammation, and hep-
atocellular ballooning, is the second stage of this continuum. If not appropriately treated, it
may lead to cirrhosis and hepatocellular carcinoma. It is a slowly progressive disease and often
remains clinically discerned, leading to late detections, thereby curbing the therapeutic options
and contributing to poor outcomes. Although it is known that the accumulation of lipids is the
key to steatosis, the molecular mechanism that governs the transition from steatosis to NASH
is yet to be elucidated. Furthermore, despite decades of research, no drug has been approved
by the FDA, and liver biopsy remains the gold standard for diagnosing NASH. An overview
of NASH is shown in Figure 3.1. The multicenter Nonalcoholic Clinical Research Network
(CRN) developed a scoring tool for the histological features of NAFLD (the NAFLD activity
score, NAS) to measure the morphological changes during therapeutic trials [281]. The three

primary characteristics of NAFLD, steatosis, hepatocellular ballooning, and lobular inflamma-
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tion, are assessed in this scoring system. The former and the latter score ranges from 0-3,
while the middle ranges from 0-2. Based on the assessment of these scores, each patient gets a
score. A liver condition is called Not-NASH or NAFL if 1 < NAS < 3 and NASH if NAS > 5.
However, this scoring system does not consider fibrosis accumulation. Addressing this, an-
other scoring method, called steatosis, activity (hepatocellular ballong+ lobular inflammation),
fibrosis (SAF), was developed [282]. In this scoring system, steatosis ranges from 0-3, while
activity, as well as fibrosis score, ranges from 0-4.

NASH is a consequence of various metabolic alterations [285] in which excess triglyceride
(TG) synthesis is seen through the de novo lipogenesis process [286]. Also, its progression is
associated with distinct metabolic network-level changes, most notably, disruption in the mito-
chondrial metabolism, de-novo lipogenesis, and gluconeogenesis [287]. Besides the metabolic
alterations, pathways like inflammation, fibrosis, apoptosis, etc., also contribute to the disease
progression,. In other words, the quest to identify plausible potential targets should consider
both the protein and metabolic level alterations. In this context, protein-protein interaction
(PPI) network analysis can be applied to identify a core set of proteins that are capable of gov-
erning the disease system and can identify the potential targets that influence all the aforemen-
tioned pathways. PPI network serves as the basis for the signalling circuitry of an organism,
which governs cellular response to external and genetic inputs. Understanding this architecture
may enhance the prediction of gene function and the cellular response to numerous diseases
and disorders.

Irrespective of its size, a PPI network always possesses a small set of core nodes, which can
modulate the fate of a biological system. Distinguishing these proteins has proven to be daunt-
ing, further exacerbated by the intricacy of understanding how such proteins interact synergis-
tically. In literature, numerous methods exist that have tried to extract the core set of proteins
from the network. These methods vary from basic or simplest to more advanced or complex
architectures. However, in NASH, most of the works using the PPI network mainly focus on
identifying only the hub genes from the differentially expressed genes (DEG) network con-
structed from various transcriptomic data [288-295]. Karbalaei et al. [296] tried to identify

the common proteins between inflammatory bowel disease and NASH by using a systems bi-
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Figure 3.1: Overview of the current understanding of NAFLD and the factors involved
with progression and pathogenesis of NASH. NAFLD is a progressive disease that com-
mences with simple steatosis (non-alcoholic fatty liver, NAFL) and can advance to non-
alcoholic steatohepatitis (NASH), which is characterised by steatosis, inflammation, and fi-
brosis. NASH can develop into cirrhosis and, in some instances, hepatocellular cancer (HCC).
Obesity, T2DM, high-fat diet, etc., play a crucial role in the progression of NAFLD. Currently,
no drug is approved for NASH, and physical activity, controlled diet etc., are recommended
for possible disease reversibility. Liver biopsy despite having some drawbacks, remains the
gold standard for diagnosing NASH at the moment. NAFL is characterised by the buildup of
triglycerides in hepatocytes via de novo lipogenesis. This process is driven by the absorption
of glucose and free fatty acids (FFAs) and their integration into lipid-synthesis pathways. De-
velopment of NASH is also aided by multiple stress like Endoplasmic reticulum (ER) stress,
ROS formation, mitochondrial damage, etc. The origins of these stresses are multifaceted. For
instance, increased fructose absorption or accumulation of ER cholesterol leads to de novo lipo-
genesis, which results in the accumulation of saturated fatty acids (SFA). In addition, fructose
can activate hepatic immune cells via gut-derived inflammatory mediators. Consequently, it
can cause liver inflammation and cell death. This sets off a series of events, such as the release
of ATP, chemokines, and extracellular vesicles, which reinforce inflammatory processes and
the formation of fibrosis. This figure is modified from [283] and [284].
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ology perspective. They first extracted the disease-associated genes from DisGeNET, and the
common genes were used to construct a PPI network, where they identified the hubs and bot-
tlenecks and termed them as the key proteins in both diseases. Asadzadeh-Aghdaee et al. [289]
constructed a PPI network of NASH by using the ‘disease search’ plugin of the string database
in Cytoscape [121]. Based on three parameters, disease score, hub, and bottleneck, they iden-
tified the top 10 proteins in the network. These proteins were further searched for association
with crucial biological processes and pathways, and finally, five key proteins were identified.
Jiang et al. [291] used a clinical dataset GSE89632 which contained information on 19 NASH,
20 NAFL, and 24 healthy control (HC). Focussing on the NASH and HC, they constructed a
PPI network of the DEGs using the STRING database. The hubs in the network were identi-
fied, and their immune infiltration analysis was further performed. Ye et al. [292] merged three
clinical microarray datasets, GSE48452, GSE63067, and GSE89632 and identified the DEGs.
A PPI network of these DEGs was then constructed, and the hub proteins were identified. Feng
et al. [290] used multiple clinical datasets, and the common DEGs among them were used to
construct a PPI network where they identified the hub genes and carried out their survivability
analysis on a hepatocellular carcinoma dataset [297-301]. To explore the potential mechanism
of GANLU powder (GLP) in the treatment of NASH, Gao et al. [299] constructed and identi-
fied the hub proteins in a PPI network of the targets of GLP and the nash-related targets. The
study was further assisted by molecular docking analysis, where they investigated the capabil-
ity of direct interaction of the hubs with the bioactive compounds of GLP and based on this,
they claimed that GLP might treat NASH by regulating AKT1. However, all these studies are
quite one-dimensional. Most of these studies are constructed in a very small network; hence,
the global overview of the system is missing. Moreover, identifying only the hubs (very few
studies have additionally considered the betweenness or closeness) does not necessarily justify
the key proteins in the disease system.

Among several methods, a reliable perspective of studying such networks is the implications
of control theory, which investigates how to manipulate a dynamical system’s behaviour. One
of the ultimate objectives of analysing a network is to regulate its behaviour or state. Obtain-

ing the capability to control biological networks’ behaviour entails altering the phenotypes of
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biological systems as needed, which is crucial for treating diseases or any unwanted cellular
abnormalities. In the 1960s, Kalman developed the concepts of controllability that are now the
foundations of modern control theory. Each node in the network has its own state variable (for
instance, concentrations of proteins at a certain time). Due to the complex interaction between
proteins, the state of one node can affect another, which in turn can modify the state of an-
other protein, and so on. Controllability quantifies the ability to manoeuvre a network’s state
space by controlling a minimal number of nodes. Recent years have witnessed the emergence
of control theory as a mathematical framework for exploring complicated dynamic networks.
However, no study has been undertaken on network controllability in NASH.
The fundamental disadvantage of only PPI-based studies is that they do not account for changes
in metabolic flux level and, as a result, are unable to investigate perturbations in essential
metabolic pathways that drive the progression of the disease. However, the efficient analy-
sis of the PPI network can provide novel candidates for metabolic channelling. Again, the
core set of proteins, which can be the potential drug targets, should be capable of reversing
the disease-associated gene signatures. An established approach to check this endeavour is
using the connectivity map database (CMap), a large-scale perturbagens network that contains
the transcriptomic profiles of numerous cultivated cell lines treated with various chemical and
genetic reagents [302]. It is a platform that helps to get the functional relationships between
genes, perturbagens, and diseases. The query tool of CMap takes the list of upregulated and
downregulated genes and provides a connectivity score to perturbagens, mainly based on the
similarity between the query gene set and reference gene set. This score ranges from -100 to
+100. The higher the positive score, the higher the correlation between the query set and the
reference set of genes. Similarly, a negative score means that the induction of that particular
perturbagen causes an opposite gene expression profile to the query gene set. An overview of
CMap is shown in Figure 3.2.

Hence, to better understand the feasibility of the targets, their role in the disease system
should be adequately investigated, which brings the collaborative effort of the context-specific
molecular networks into the scenario. Probing these context-specific networks is probably the

only way to make sense of the cellular anomalies during disease progression. However, like
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Figure 3.2: The Mechanistic understanding of CMap. CMap’s reference database comprises
gene-expression profiles acquired from treating human cultured cells with a large range of
perturbagens. The query tool of CMap takes the top 150 upregulated and downregulated DEGs.
Hence, from the transcriptomic data, the DEGs need to be identified. After obtaining the query
signature, pattern-matching algorithms provide a score to every reference profile based on the
direction and magnitude of enrichment with the query signature. Perturbagens are then ranked
by the “connectivity score (S)” calculated using the Kolmogorov-Smirnov statistic. In general,
a perturbagen is termed an inducer if S > 0 and an inhibitor if S < 0.
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several other diseases, NASH is yet to come under the grasp of such collaborative studies.

Taking all these as our motivation, we endeavour to study NASH at both the protein and
metabolic levels to identify a set of potential therapeutic targets. By taking a clinical dataset on
NAFLD, we simultaneously investigate the gene and the metabolic level alterations to find the
crucial genes that can initiate reversibility towards control. We further integrated these genes
into a directional PPI network of the DEGs and applied control theory analysis to get the most
fragile nodes in the interactome. The finally identified proteins are capable of inducing reverse
gene expression, metabolic transformation towards control, and also affect network control-
lability. We then analysed their knockdown gene expression profile to tailor their effect on

steatosis, inflammation, fibrosis, and cell death, the four clinical traits of NAFLD.

3.2 Materials and Methods

3.2.1 Data acquisition and pre-processing

To get the patient-specific transcriptomic data, we used the keywords: ‘Non-alcoholic’ and
‘Human’ in the Gene Expression Omnibus (GEO) database [239]. We further filtered out
the datasets based on the following exclusion criterion, 1) The datasets that contained sam-
ples of other diseases (such as HCC, HIV) or were infected with viruses (such as HBV, etc.)
or were treated with interventions (such as dietary intervention) were eliminated. ii) All in-
vitro models were eliminated. iii) Also eliminated are datasets that lack adequate stage cat-
egorisation descriptions. iv) From the remaining datasets, we chose only those containing
RNA-Seq data. This is owing to the fact that RNA-Seq data distinguishes more differentially
regulated transcripts, splice variants, and noncoding transcripts, hence shedding more light
on numerous biomedical and biological topics. Finally, we received the datasets GSE130970
and GSE126848. The latter dataset was chosen based on its sample size. The control group
of GSE126848 comprises 14 healthy normal-weight subjects with body mass index (BMI)
18.5-25 kg/m?* and 12 overweight subjects with BMI 30 — 40 kg/m? [303]. They recruited
31 NAFLD patients, and the severity of the disease was measured using steatosis, activity, and

fibrosis (SAF) score [282], which resulted in 15 NAFL and 16 NASH patients. We used the
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‘calculateTPM’ package of R to normalise (TPM) the data of GSE126848. After normalisa-
tion, outliers of the dataset were replaced using the ‘filloutliers’ function in MATLAB, which
detects the outliers and replaces them with the median one. This function defines outliers as
elements more than three scaled median absolute deviations (MAD) from the median. We also

excluded the genes with missing values in at least one sample.

3.2.2 Identifying DEGs in the clinical dataset

DEGs are expressed in all samples, and their behaviour varies in tandem with the categories.
To identify them, a two-sample t-test was performed to calculate the p-values for two different
clinical groups using the ‘mattest’ function in MATLAB. The ‘mafdr’ function was applied to
evaluate the Benjamini, and Hochberg FDR adjusted p-values. Finally, DEGs were calculated
using the cutoff values for FDR adjusted p-value < 0.05 and | log(fold change) 1>1.2 [304].
The identified genes were further mapped to the UniProt [235], and only the reviewed proteins

were selected. All the analyses are carried out with respect to control.

3.2.3 Gene set enrichment analysis of the DEGs

We used the log fold change values of gene expression from each clinical group to perform the
gene set enrichment analysis (GSEA) [143]. This analysis was carried out in R using the ‘fgsea’
package [305]. For geneset/pathway annotation, we used the KEGG [306] and Reactome [307]
subcategories from the “Canonical pathways” category of MSigDB (version 7.4.1) database

[308].

3.2.4 Identifying possible candidate proteins using CMap

The query tool of CMap takes the list of up-and down-regulated genes and provides a connec-
tivity score (ranges from -100 to +100) to perturbagens, mainly based on the similarity between
the query gene set and the reference gene set. The higher the positive score, the higher is the
correlation between the query set and the reference set of genes. Similarly, a negative score

means that the induction of that particular perturbagen causes an opposite gene expression pro-
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file to the query gene set. We hypothesized that the perturbagens with a negative connectivity
score might possess a potential role in abrupting the propagation of disease. For this purpose,
we selected the perturbagens with a connectivity score < -90. To generate a list of potential
candidate proteins (Cp), we considered only the gene knockdown among the three forms of

perturbagens available in the CMap database.

3.2.5 Construction of the directed PPI network (DPN)

A crucial attribute of a PPI network is directionality [101, 102]. In a PPI network, it refers to
the functional relationships between the proteins, which captures the regulatory effect exerted
by the source protein on the target protein. The identification of key proteins in an undirected
network may lead to various false-positive results [309]. For instance, when the mode of inter-
actions for drug-disease relationships is absent, we cannot determine if a drug heals a disease or
produces one as a side effect [97]. We have extracted the human interactome information from
the STRING [215] and the SIGNOR 2.0 [216]. We selected only the functional (inhibition and
activation) relationships from the former and filter out the interactions where the directionality

is applicable. We also extract the directional network provided by Arunachalam et al. [310].

3.2.6 Construction of the DPN for each category

For each category, the nodes of the network consisted of three groups. The first and second
groups consisted of the category-specific DEGs and C), respectively. The third group consists
of the metabolic genes having positive TS scores (metabolic candidate genes, MCGs) obtained
from the in silico single gene knockdown analysis. These nodes are then projected to the DPN
to construct a directional network. However, each of these networks consisted of many disjoint
components. To connect them, we took the help of the DPN and found a minimum number
of nodes to connect the components for each category. These nodes are termed mediators.

However, some components were still disconnected and were then removed from the study.
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3.2.7 Identification of the influential nodes in the network

Irrespective of its size, the fate of a network always hinges on a small set of nodes. To identify
these nodes in our study, we have opted for network controllability analysis. For details please

refer to Chapter 1, Section 1.2.3.

3.2.8 Gene knockdown profile extraction using the CMap database

We extracted the LINCS L1000 dataset from the CMap database. The LINCS L1000 dataset
consists of five separate levels of dataset ranging from original, processed, to z-score data.
The level 1 dataset contains raw fluorescent intensity values from Luminex 1000 platform,
the level 2 dataset provides the gene expression values for the 978 landmark genes obtained
after deconvolution. The level 3 dataset includes the normalised gene expression values of
the landmark genes and 11,350 additional genes which are estimated using the normalized
expression values of the landmark genes. The level 4 dataset contains Z-scores for each gene
based on the Level 3 data with respect to the entire plate population. In general, the L.1000
experiments are carried out in 3 or more biological replicates. The level 5 data of the LINCS
database contains the consensus replicate signature by applying the moderated z-score (MODZ.)
procedure. Here, we have opted for the level 5 dataset in our study as it is more robust (39),
and biological discovery is more likely to be achieved using this level of data. It contains
the consensus replicate signature by applying the MODZ procedure. We selected the HEPG2
cell line, the consensus gene signature of treated genes, and their untreated control vectors
and obtained 3341 treated and corresponding 533 control conditions for 12328 genes. The Z
difference score for each gene is then measured using the equation

—zl

control’

zi. . =7

= Dhreatea i=1:3341,/=1:533. 3.1)

Here, ZZ. if is the Z difference score for treated condition i and control condition j.

Ztirme 4 18 the Z score of a gene corresponding to treated condition i.

Z; ontrol 18 the Z score of a gene corresponding to control condition j.

We then identified the up-and downregulated genes for which ZZ. 2 1.5 or Zé'fl'. i < —1.5
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satisfies at least 60% of the control conditions, respectively.

3.3 Results

3.3.1 Molecular alterations associated with NAFLD

The selected dataset, GSE126848, included RNA-Seq liver biopsy data of the 15 NAFL, 16
NASH, and 26 control individuals. The dataset is first Transcripts Per Million (TPM) nor-
malised. Differential gene expression analysis on this dataset revealed 5468 and 5672 DEGs
in the NAFL and NASH categories, respectively (Figure 3.3A). Again, being two consecutive
stages of the NAFLD spectrum, we found an overlap between the DEGs of these two cate-
gories (Figure 3.3B). A significant number of metabolic genes were also found to be perturbed

in these two stages (Figure 3.3C).

3.3.2 Functional enrichment of the differentially expressed genes

To find the up-and downregulated pathways in both the categories, we performed GSEA on
the DEGs (Figure 3.3D). We found that the collagen-associated pathways, autophagy, apop-
tosis pathways, oxidative phosphorylation, DNA damage, and hypoxia-related pathways were
upregulated in both groups. Collagen deposition, increased cholesterol biosynthesis, and apop-
tosis of liver cells are linchpins of the NAFLD progression. The upregulation of these indicates
the deterioration of the liver in individuals. Hypoxia enhances cellular lipid deposition and
upregulates genes involved in lipogenesis, lipid uptake, and lipid droplet formation, according
to several in vitro and in vivo studies [311, 312]. Similarly, some DNA damage checkpoint
proteins are found to promote apoptosis and fibrosis in NAFLD [313]. The upregulation of the
base excision repair pathway indicates elevated DNA repair activity, a feat often found to cor-
relate with fatty liver [312]. The increase in inflammation can be observed by the upregulation
of the interleukin-1 signalling and oxidative phosphorylation pathway [314, 315]. However,
quite uncharacteristically, we found various inflammation-related pathways among the down-
regulated pathways. However, this may be due to the reason that none of the NAFL and NASH

individuals was seen to have a high inflammation score [303]. Other than that, we have seen the
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downregulation of carbohydrate metabolism and insulin signalling, both correlate with disease
progression in NAFLD. On the other hand, metabolic flux level analysis by integrating the gene
expression data on iHepatocytes2322 [316] followed by flux variability analysis (FVA) also re-
vealed the alterations in various crucial metabolic reactions [317]. These include carbohydrate

metabolism, fatty acid oxidation, fatty acid activation, desaturation, and beta-oxidation etc.

3.3.3 Candidate genes capable of metabolic transformation or reverse

gene expression

The disease-associated alterations were further used to determine potential recovery options
that can revert the system back towards a healthy state. At the metabolic stage, we have sys-
tematically carried out a 90% gene knockdown to sort the metabolic genes capable of reversing
the disease flux state towards the control and identified 93 genes in the NASH and 114 genes in
NAFL category [317]. These genes, hereafter referred to as metabolic candidate genes (MCGQG),
are therefore selected for further evaluation.

At the gene level, we have used the Connectivity Map database (CMap) [302] to obtain the
set of genes whose knockdown may result in a reverse gene expression profile of the DEGs.
CMap is a large-scale drug perturbation network piloted by the transcriptomic profiles of va-
rieties of cultivated cell lines treated with various chemical compounds. Here, for the HEPG2
cell line, we considered the genes whose knockdown results in a connectivity score of -90 or
less when queried with our topmost (top 150 up-and downregulated) DEGs. These genes might
be crucial in the NAFLD landscape because their knockdown demonstrates reversal effects on
gene expression in NAFLD. These are termed candidate proteins (C)), and their numbers in
each category are shown in Figure 3.4A. As can be observed, C), are largely distinct across the
two groups. The ten common C,, were found to take part in endothelial cell migration, protein
modification, fatty acid biosynthesis, etc. Overall, the C,, for both categories is enriched with
cell death-related processes. While the NAFL group was enriched with autophagy-related pro-
cesses, the NASH group was found to be enriched in cytokine-mediated signalling pathways
(Figure 3.4B-C). The variability observed in molecular alterations at the gene, and metabolic

level reflects that organising principles are fundamental to a given biological scale. However,
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Figure 3.4: Connectivity map (CMap) analysis. A) Venn diagram representations of the
common proteins in the connectivity map analysis. B-C) Top ten biological processes enriched
with the candidate genes for NAFL and NASH group, respectively.

the investigations at these individual levels were insufficient to shed light on the delinquent
proteins that clandestinely influence the crucial biological pathways and processes. Thus, such
studies fail to capture the global influence of any perturbed protein to get the actual efficacy
of the proposed target. To overcome this, we extend our individual-level analysis to a collab-
orative study to identify the proteins capable of disease regulation at both the metabolic and

protein levels.

3.3.4 Construction and analysis of a PPI network bridging metabolic with

genomic level identified crucial proteins

The intricate interactions of proteins regulate the changes in both the transcriptomic and metabolic
networks. Understanding these interactions enables decoding the complicated association be-
tween proteins and disease-related abnormalities. To fully realise this potential, however, the
interactions between the proteins must be directed as the orientation of a PPI network gives
more insight into the signalling pathways, disease progression, drug development, and treat-
ment combinations, to name but a few important applications [318].

The constructed directional PPI network (DPN) contained 8673 nodes and 60546 edges. The
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average degree of the network was 13.9620. the highest degree, indegree, and outdegree of the
network were 506, 250, and 377, respectively. This network is shown in Figure 3.5.

In the next step, we collected the DEGs, Cp, and the MCGs for both the NAFL and NASH
groups and integrated them into the DPN. Not surprisingly, each consisted of one giant compo-
nent and many small disconnected components. On the other hand, being a part of the network
is futile unless it is linked to the giant component. This is due to the fact that a disconnected
component would be unable to participate in the system’s information dissemination. We,
therefore, identified the minimum number of nodes required to connect the components and
finally obtained a connected directional network for NAFL and NASH (Figures 3.6A-B) with
different sizes and orders (Figures 3.6C-D). Both of them obey the power law of the degree
distribution, indicating the scale-free nature of the network. The network centrality properties
like betweenness, closeness, clustering coefficient, indegree, outdegree, and the total degree of
both networks are calculated. The degree centrality ranking of the proteins for the two net-
works was found to be almost identical (Pearson correlation coefficient: 0.9923), and the top
two proteins for both networks were TP53 and 14-3-3 protein zeta/delta. The histogram plot
of the degree-rank differences of the proteins has revealed that only 19 proteins had a larger
rank in the NASH network as compared to the NAFL network, while the rank of 14 proteins
remained the same (Figure 3.6E). With a few exceptions, the betweenness rank follows the
same trend as degree ranks (Pearson correlation coefficient: 0.9266). As with degree centrality,
the top two proteins in this category were also TP53 and 14-3-3 protein zeta/delta. The rank
correlations for clustering and closeness centrality within these two networks were 0.8440 and
0.9043, respectively.

We then used structural controllability theory [100] to identify the minimum number of driver
nodes capable of controlling the whole network. The nodes were then graded into indispens-
able (I), dispensable, and neutral categories based on the number of driver nodes. We found
that 45% and 44% of nodes are drivers and 18.67% and 20.59% are indispensable, respec-
tively, in the NAFL and NASH categories (Figure 3.6F). The degree distribution plots of these
categories show that the indispensable nodes and the neutral nodes tend to be the hubs while

the dispensable nodes are low-degree nodes in the network (Figure3.7). We use the equation
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Figure 3.5: The constructed directional network. It is constructed using STRING (version
11.0) [215] , SIGNOR 2.0 [216], and the directional network provided by Arunachalam et al.
[310]. We selected only the functional (inhibition and activation) relationships from the former
and filtered out the interactions where the directionality is applicable.
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ICp = INCp to find the set of indispensable candidate proteins (IC)) in the network, where
I = set of indispensable proteins and C,, = set of candidate proteins. IC), contains 15 and 29
proteins in the NAFL and NASH categories, respectively (Figure 3.6G). These are the most
crucial proteins in the network because they not only generate reverse gene expression pro-
files but also influence network controllability [101]. By investigating the involvement of these
proteins in NASH, we discovered that they are critical in the development of the disease. For
example, the IC,, obtained in the NASH category are enriched in the insulin resistance pathway
(PPP1CC, PRKAA2, AKT1, and FOXO1), in the apoptosis pathway (CASP3, AKT1, CYCS,
and RIPK1), glucagon signalling pathway (PRKAA2, AKT1, and FOXO1) and Toll-like recep-
tor signalling pathway (AKT1, IL12A, and RIPK1). Insulin resistance is a necessary condition
for the development of NASH [319]; apoptosis leads to death of the hepatocellular cells [320];

the glucagon pathway, on the other hand, regulates lipid metabolism [321].

3.3.5 Potential therapeutic targets in NAFLD

Diseases are driven by the perturbations in gene expressions, which tailor a cascade of events
that has a direct influence on the proteins and metabolic fluxes. Although IC), contains more
significant proteins than the others in the network, an aura of eeriness surrounds their prospec-
tive roles as targets in their respective categories. This can be mitigated by performing an
in silico knockdown and quantifying this effect in terms of the transformation from the dis-
ease state to the healthy one. For this, we extracted the gene knockdown expression data of
the HEPG2 cell line from the CMap database and revealed the up-and down-regulated genes
following the knockdown of each C, using a Z-score difference cutoff of 1.5. These profiles
were then used to capture the metabolic flux level transition from the disease state to the target
state. Next, using the metabolic transformation algorithm, we identified the IC,s with positive
transformation score (TS) [317] and were deemed as potential targets because they can induce
reverse gene expression to the DEGs, affect the controllability of the network, and revert the
disease flux state towards control.

The three obtained targets for NASH were BAG6, CYCS, and CASP3. We portrayed the signif-

icance of these targets in the NASH landscape through their interactors in the NASH network.
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Figure 3.6: Protein-protein interaction network analysis. A-B) The PPI network of the
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histogram plot shows the degree rank difference between the common proteins in the NAFL
and NASH network. F) The abundance of driver nodes (DN), indispensable (IP), dispensable
(DisP), and neutral (NP) nodes in the two networks. G) Indispensable candidate proteins (IC))
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Among these three proteins, CASP3 has the maximum number of interactors, followed by
BAG6 and CYCS (Figure 3.8A). The PPI networks of these proteins are provided in Figure
3.8C-E. Topological analysis of these targets in the NASH network has revealed that CASP3
was the more topologically enriched protein with a relatively higher rank than the other two
in all the previously mentioned centrality measures. Its interactors include genes that play a
critical role in the pathogenesis of NASH. For instance, CFLAR inhibits JNK phosphorylation,
thereby ameliorating the clinical characteristics of NASH [322]. Another crucial interactor is
TNFR1, whose inhibition is reported as a promising perspective for NAFLD treatment [323].
Similarly, TRAF6 in the BAG6 and TP53 in the CYCS interactome can be named among many
crucial genes in the NAFLD landscape [324, 325]. Although CYCS was found to have a low
rank in all the centralities, TP53, the node with the highest degree and betweenness centrality in
the network, is an immediate neighbour of CYCS. This suggests that through TP53, CYCS can
exert its influence on the other proteins in the network. The results gathered from various clin-
ical studies have shown that NAFLD activation affects the immune system, leading to immune
infiltration. NASH has a chronic inflammatory phenotype and has been demonstrated to be
related to numerous immune cells. Interestingly, we found that 26.25%, 15.38%, and 11.76%
interactors of CASP3, BAG6, and CYCS, respectively, are immune-related genes. This sug-
gests that the identified targets are also associated with immune cell infiltration.

Coreness is a methodical approach to determining a protein’s local and global significance.
It indicates whether the protein is associated with a densely connected region of the network
or with its periphery. Additionally, it demonstrates how influential a node is in disseminating
information throughout a network. Its biological importance has been established in various
investigations [326, 327]. We have used the k-core decomposition algorithm [12] to measure
the coreness of a node in the network. It subdivides the network into multiple layers where
the outside layers indicate the network’s periphery, while the inner layers with larger k values
reflect the network’s densely connected core. The k-core analysis of the NASH PPI network
revealed that it consists of 8 cores, and the three targets of NASH, CASP3, BAG6, and CYCS,
are placed in 7', 4'" and 6" core respectively. The higher coreness indicates that although the

possible target proteins are not hubs in the NASH PPI network, they are capable of spreading
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the transcription signal to other associated proteins.

The first neighbourhood analysis of these targets in the NASH network showed that they do
not share a common first neighbour. It means that there does not exist one single drug or
compound whose implement can affect all these three targets simultaneously. However, at an
individual level, BAG6 and CASP3 are connected by ATN1 and CDKN1A; and CASP3 and
CYCS are connected by BID and CASP9 (Figure 3.8F). Nevertheless, all three targets have
less connectivity (i.e., total degree, Table 3.1, particularly BAG6 and CYCS in the NASH
network, implying that targeting them will have very little off-target effects [328]. The biolog-
ical processes associated with the proteins of each network are shown in Figure 3.8F-H. The

topological properties of all the potential targets are provided in Table 3.1.
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Figure 3.8: The potential targets in NAFL and NASH. A) The targets in the NASH category
and their number of interactors in the network. B-D) The interactors of the three targets of
NASH in the network. E) Venn diagram of the interactors of the targets. F-H) The top 10
enriched biological processes of BAG6, CYCS, and CASP3, respectively.
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3.3.6 Capturing the effects of the potential targets on the disease-associated

perturbed pathways

Often, silencing a gene causes havoc in the genome, resulting in perturbations in the expres-
sion levels of specific genes. This is because these proteins share several similar pathways,
processes, and functions. Thus, an interpretation of the pathways and ontological properties of
these genes aids in the comprehension of the mechanistic understanding of the knocked-down
gene. To accomplish this, we retrieved such profiles following the knockdown of each potential
target and evaluated their effect on NASH (Figure 3.9A). The numbers of affected genes fol-
lowing the knockdown of the potential targets for both categories are shown in Figure 3.9B-C.
The knockdown of CASP3 and PLAU affected the most number of genes in the NASH and
NAFL categories, respectively. The knockdown profiles of these targets revealed that silencing
CYCS and CAPS3 improves inflammation, fibrosis, and apoptotic pathways, whereas silencing
BAG®6 ameliorates the latter two (Table 3.2). Further, using GSMM, we evaluated their knock-
down effect on the metabolic landscape and found that our proposed targets can revert 66%
of the altered reactions found in fatty acid oxidation pathways [317]. The knockdown effect
of the NAFL targets is provided in Table 3.3. Here also, we found that the knockdown of the
NAFL targets can increase the flux rates of the reactions involved in mitochondrial fatty acid

beta-oxidation, echoing their significance in the metabolic level.

3.4 Discussion

Diseases are nothing but aberrations to the normal interplay between proteins. These aberra-
tions rise due to their perturbations following the progression of a disease. To gain a compre-
hensive grasp on the underlying mechanism of the progression of a disease and thereby identify
the potential targets, it is an unmet need to capture and analyse these perturbations.

In this chapter, we have developed a methodology focused on capturing these perturbations in
both the gene and metabolic levels. The former aids in the identification of genes whose expres-

sion significantly changes following disease progression, while the latter helps identify altered
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Figure 3.9: Mechanistic understanding of the potential targets.A) The schematic diagram
for exploring the potential targets. The process starts with extracting the gene knockdown
profile of each target from the CMap database and ends with identifying changes in the disease-
specific traits such as hepatic cell death, inflammation, and fibrosis. B-C) The bar plot of the
numbers of affected genes following the knockdown of the potential targets in the NAFL and
NASH groups, respectively. The total number of affected genes is shown at the top of each bar.
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Table 3.2: The potential targets in NASH and their therapeutic effect. At the metabolic
level, their knockdown was found to revert 66% of the altered reactions found in fatty acid
oxidation pathways.

Targets | Fibrosis Inflammation | Cell death
Downregulates FN1 Downreeulates
BAG6 | and DAGI, and Not found TNERSED]
upregulates MMPI. ’
Inhibiting CASP3
Downregulates FN1 protects against
Downregulates
CASP3 | and upregulates S100A4 hepatocellular
WIFI1. ' damage and cell
death [329].
CYCS release from
Decreases mitochondria
Downregulates expression to the cytosol is a
CYCS . . .
Galectinl. of cytokine key process in the
IL32. initiation

of apoptosis [330].

metabolites and reactions. The methodology is general and can be applied to any disease. We
have applied this methodology to NASH to identify potential targets in this multifactorial dis-
ease.

NASH is a progressive multifactorial disease, which initiates from a benign NAFL and may
move to severe cirrhosis and liver failure [275]. It is currently the leading cause of liver trans-
plants worldwide, and unabated, the numbers will continue to climb. However, despite decades
of research, the molecular mechanism driving NASH has not been unravelled, making the dis-
ease exceedingly challenging to treat. Consequently, seeking potential therapeutic targets for
NASH has become a top priority.

Proteins govern the biological processes, pathways, and molecular functions inside the cell.
They work in conjunction with other proteins to accomplish various cellular processes. The
causal PPI networks hold an upper hand against the physical interactions as these networks
provide the additional dimension of directionality and thus help gain knowledge about the in-
formation flow in the network. On the other hand, metabolic networks can explore variations
in the metabolism that emerge across the whole histological range of disease, examining the
changes that occur as benign to severe stages progress. Thus, there is a high demand for identi-

fying an ideal target, which not only regulates the disease interactome and generates a reverse



Chapter 3. De novo analysis of a protein-protein interaction network reveals potential

120

targets in NASH

Table 3.3: The potential targets in NAFL and their mechanistic understanding. In the
metabolic level, we found that the knockdown of the NAFL targets can increase the flux rates
of the reactions involved in mitochondrial fatty acid beta-oxidation.

Targets Inflammation Cell death Fibrosis
ACVRI1 Downregulates | Downregulates C3. Not found
SPON2  and
C3.
BMP4 Upregulates Upregulates transcription | Not found
transcrip- factor FOXO4 and down-
tion factor | regulates C3.
FOX0O4 and
downregulates
C3.
CASP3 Downregulates | CASP3 inhibition protects | Downregulates
S100A4. against hepatocellular | FN1 and upregu-
damage and cell death | lates WIFI.
[329].
FGFR3 Downregulates | Upregulates HMOX2. Downregulates
SPON2  and HIF1A and
VEGFA, and VEGFA.
upregulates
HMOX2.
GABPBI1 Downregulates | Downregulates C3. Downregulates
C3. FN1, PLOD3,
COL1A1, and
LAMBI.
PLAU Not found Not found Not found
PPPICC Not found Not found Downregulates
galectinl and
CCN2.
VDACI1 Downregulates | Downregulates keratin 8. | Upregulates
PREP. COX-2 and
downregulates
NMEI.
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gene expression profile but is also capable of exerting a significant influence on the altered
metabolic pathways under diseased conditions.

In this context, the collaborative study of metabolic and PPI networks opens a door to cap-
ture the effects of disease progression in multiple layers and offers more realistic solutions to
understand the disease mechanism. Here, we have developed a pipeline that can be used to
identify targets in any in silico studies through a better understanding of disease mechanisms.
The pipeline finds the significant elements of the genomic and metabolic level alterations and,
based on the former, identifies the candidate proteins (Cp), which can initiate a reverse gene
expression profile. To demonstrate our hypothesis that these proteins may contain potential
targets, we constructed a PPI network with nodes consisting of DEGs, Cp, and metabolic genes
with a positive transformation score (TS). The control theory algorithm identified the driver
nodes from the network that eventually resulted in indispensable nodes, which are the most
fragile nodes in the network [102]. These nodes are prone to mutations and are often targeted
by viruses and drugs [101, 102]. We identified the indispensable candidate proteins (ICp), the
common nodes between the Cp and the indispensable proteins (I), and checked their knock-
down effects on the disease-specific GSMMs. The calculated TS values were then used to get
a quantitative marker of their effectiveness. Finally, ICp with positive TS scores were deemed
as potential targets because they can induce reverse gene expression to the DEGs, affect the
controllability of the network, and revert the disease flux state towards the control.

Like many other diseases, NASH is also driven by certain characteristics such as deranged
lipid accumulation (steatosis), hepatic cell death, inflammation, and fibrosis [331]. The poten-
tial targets of NASH, regardless of the method by which they are found, should be capable of
positively affecting these traits. We have identified three potential targets for NASH, CASP3,
BAG6, and CYCS. CASP3 is a member of the caspases family, which are critical mediators
of the inflammatory response and apoptosis, and contribute significantly to cellular and organ-
ismal homeostasis [332]. Genetically modified mice with loss of CASP3 activity are found
to be resistant to diet-induced NASH [329]. The analysis of the knockdown gene expression
profile of CASP3 revealed that its inhibition could exert a four-dimensional effect on NASH by

modulating all the aforementioned traits. First, its knockdown effect on hepatic steatosis can
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be seen from the increased fluxes for the altered (down-regulated) reactions involved in fatty
acid activation and mitochondrial beta-oxidation pathways. Secondly, its knockdown downreg-
ulates a fibrogenic gene, FN1, which plays a crucial role during liver fibrosis [333]. Also, by
upregulating WIF1, which is an inhibitor of the Wnt/[3-catenin signaling pathway, a therapeutic
target for treating liver fibrosis [334], the CASP3 knockdown can again regulate fibrosis devel-
opment. Thirdly, its knockdown can regulate the inflammatory process by downregulating the
inflammation inducer SI00A4. The role of CASP3 as a hepatic cell death inducer, on the other
hand, is very well explored [329]. These facts hence support that CASP3 could be an attractive
therapeutic target for NASH treatment.

CYCS is a small soluble heme protein found abundantly in the inner mitochondrial membrane.
The release of CYCS from mitochondria to the cytosol is a critical process in initiating the
intrinsic and extrinsic pathways of apoptosis [330]. Also, its translocation into the extracellular
space induces inflammation [335]. Its role in NASH is, however, yet to be properly explored.
We found that, like CASP3 and BAG6, CYCS knockdown can affect the crucial reactions in
the lipid accumulation process. Its silencing downregulates 11.32, a NAFLD-related hepatic
cytokine, modulating the hepatic inflammation process. Tailoring CYCS to hepatic fibrosis,
we found that its knockdown downregulated Galectin 1, which can ameliorate fibrosis by in-
ducing apoptosis to HSCs [336]. Thus, like CASP3, CYCS knockdown also possesses a four-
dimensional effect on the development and progression of NASH.

BAG6 (BAT3/Scythe) is a ubiquitin-like protein involved in a myriad of non-related physio-
logical and pathological processes, including apoptosis, antigen presentation, immunological
pathways, and T-cell response. It is cleaved in the cytosol by CASP3 in response to intrinsic
or extrinsic apoptosis, yielding a C-terminal fragment of BAG®6 that induces apoptosis [337].
Again, the exosomal BAG6 activates the NK cells while the soluble BAG6 inhibits the NK cell
cytotoxicity [337]. However, its role in NASH is yet to be explored. We linked its knockdown
effects to the traits mentioned above to investigate BAG6 as a potential candidate for NASH re-
covery. Increased extracellular matrix deposition, such as collagen types I and III, plays a role
in hepatic fibrosis [338]. Collagens are primarily synthesised by hepatic stellate cells (HSCs).

MMP1, an upregulated gene upon BAG6 silencing, can attenuate hepatic fibrosis via collagen
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type I and III breakdowns. Additionally, it has been shown that its gene delivery produces
fewer HSCs [338]. Also, the knockdown of BAG6 downregulated the fibrogenic gene FN1.
Thus, by the modulation of MMP1 and FN1, BAG6 knockdown attenuates hepatic fibrosis. Its
knockdown also downregulated an apoptotic gene, TNFRSF21 and hence played a role in hep-
atic cell death. Finally, we observed that, like CASP3, its knockdown also increases the fluxes
of the altered reactions involved in fatty acid activation and mitochondrial beta-oxidation path-
ways. These facts showed that BAG6 knockdown exerts a three-dimensional beneficial effect
on NASH and could be considered a potential therapeutic target.

On the otherhand, NAFL is characterised by the buildup of hepatic lipids in excess quantities.
This unregulated accumulation further increases lipotoxicity, which stimulates inflammation,
hepatocyte death, and fibrosis, paving the way for the development of NASH. We discovered
that eliminating each of the possible NAFL targets improved hepatic steatosis. Some of them,
including CASP3, VDACI1, GABPBI1, and FGFR3, were seen to ameliorate inflammation, hep-
atic cell death, and liver fibrosis. ACVR1 and BMP4 were seen to improve inflammation and
hepatic cell death, while PPP1CC only improve the fibrosis process. As a result, targeting these
proteins might prevent the transition from NAFL to the NASH stage.

Interestingly, by peering through the identified targets, we noticed the dominance of autophagy
in NASH. Among the three potential targets, BAG6 is found to be an autophagy-related pro-
tein. It is essential for basal autophagy in mice embryos and for basal and starvation-induced
autophagy in wild-type and BAG6 -/- mouse embryonic fibroblasts. Its absence reduces au-
tophagosomes in cells and thereby reduces the autophagic flux, echoing its essentiality in form-
ing autophagosomes. It is shown to modulate autophagy by affecting the intracellular locali-
sation of EP300 [339]. Moreover, the cleaved N-terminal BAG6 (located in cytosol) interacts

with both the LC3B-I and the unprocessed form of LC3B to suppress autophagy [340].

3.5 Conclusion

Our strategy of leveraging and interconnecting the context-specific molecular networks is the

first of its kind to study NASH, where we identified three potential targets to control NASH
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and eight targets to control NAFL. These potential targets exert their effects at both the gene
and metabolic levels and reverse disease-associated gene signatures. We have shown that the
knockdown of these potential therapeutic targets affects several critical metabolic reactions
involved in steatohepatitis, and genes involved in inflammation and fibrosis development. This
proposed methodology lays out a pragmatic framework for identifying potential therapeutic
targets with a higher probability of success. It will save tremendous resources and time during
the drug discovery process and be used as a general pipeline to identify targets in any in silico

studies.



A data-driven multilayer approach for
1dentification of potential therapeutic targets

in non-alcoholic steatohepatitis'

An intriguing fact about proteins is that the proteins associated with a disease always remain in
close proximity, and only a few of them gets identified as pathogenic. However, the crosstalk
between all these proteins, irrespective of whether they are identified as pathogenic or not,
governs the development and progression of diseases. There are many diseases in which var-
ious potential target proteins are identified in vitro or in vivo and are taken to clinical phases.

Still, none of them eventually crosses all the clinical trial phases. Therefore, it won’t be an

I'The bulk of this chapter has been communicated for possible publication.
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embellishment to assert that the existing disease proteins fail to capture the actual mechanism
governing the disease progression. In this chapter, using NASH as an example, we have devel-
oped an approach that integrates whole-system protein perturbation, finds proteins that remain

in close proximity to known disease proteins and then identify potential targets among them.

4.1 Introduction

A major challenge in the computational way of solving the conundrum of a disease system is
to track down the effect of the protein perturbations on different layers of molecular under-
standing. The proteins identified from the protein-protein interaction (PPI) networks may not
play a crucial role in metabolic level. The metabolic networks identify crucial reactions and the
genes involved in them. However, such a network cannot provide information about how the
gene products, i.e., proteins, will behave in conjunction. Also, the information about forming
clusters, spreaders, role in information processing, etc., cannot be told from metabolic network
analysis. Machine learning (ML), on the other hand, classifies proteins and can identify the
nodes with the best predictive capability in the network. However, this approach alone can
say nothing about metabolic adaptation, which is imperative for cell homeostasis following a
physiological change. But, integrating with the ML approach in a study, the network analysis
methods can be used to get more in-depth knowledge of the disease systems. Various studies
have used machine-learning algorithm to investigate the classification capabilities of the hubs
or other topologically strong proteins obtained from PPI analysis to identify important subset
among them [341, 342]. Thus, an approach combining these three methods would identify
proteins that are topologically important, have a strong predictive capability, and are able to
influence metabolites which are crucial in the progression of NASH. In other words, a joint
effort of these three approaches would enhance the probability of getting more viable disease
targets.

The computational efforts in NASH, are primarily focussed on only one of the above three
methods. The metabolic level investigations have considerably contributed to a deeper under-

standing of the condition, whereas the PPI-based research impede a thorough analysis of the
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system (as mentioned in Chapter 4). In the metabolic level, one of the pioner work was done
by Mardinglo et al. [316]. They developed a liver-specific genome scale metabolic model
(GSMM) iHepatocytes2322, and used it to investigate the transcriptomic data obtained from
NAFLD indivudals. According to their findings, the development of treatment strategies based
on the augmentation of endogenous serine and AKG levels may cure the fundamental aetiology
of NASH. In a subsequent investigation, it was demonstrated that plasma levels of serine and
glycine are decreased in NASH patients, indicating a serine shortage in these patients [343].
ML-based studies are used to uncover non-invasive biomarkers and generate diagnostic scores
to differentiate NAFL from NASH [344, 345]. For instance, Amaro et al. [341] developed an
ML-based approach to liver histology assessment that characterises disease heterogeneity and
severity and quantifies the treatment response in NASH. Perakakis et al. [346] used a vari-
ety of ML algorithms to find unique combinations of glycans, lipids, and hormonal variables
to accurately diagnose the presence of NASH, NAFL, or normal status. However, because
these studies [346, 347] are limited to biomarker detection, the aptness of machine learning to
discover targets remains less explored.

With the advent of large-scale PPI networks, the application of graph-theory-based methods
for their analysis, in an effort to glean insights into the information they carry about cellular
function. These techniques take advantage of the propensity for functionally-related proteins
to reside in the same network neighbourhood. Specifically, network-based guilt-by-association
techniques have been utilised extensively to uncover new disease-associated genes. Random
walk with restart (RWR), which was initially developed for internet search engines, is an effec-
tive guilt-by-association method [348]. It simulates the behaviour of an internet user, who, de-
pending on his needs, can navigate between web pages using the accessible hyperlinks. There-
fore, a few pages will be accessed more frequently than the rest during his internet session.
RWR is a state-of-the-art method in computational biology to identify candidate disease genes
/proteins. Here, a set of nodes, most preferably a set of disease nodes, are taken as seed(s), and
the remaining nodes in the network are then ranked according to their proximity to these seed
nodes.

In this study, we have developed a novel systematic approach that could be used to predict
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potential therapeutic targets that can control the disease PPI network and metabolic landscape.
The methodology starts with RWR, followed by a combination of classification approaches to
identify candidate proteins that classify the disease condition and hence are hypothesised to
be strongly associated with the disease. By analysing their controlling capability, the driver
proteins are then identified. Finally, these driver proteins are used to investigate the altered
metabolic landscape observed in NASH and identify possible targets for the development of
effective NASH therapy regimens with likely minimum adverse effects. We have termed this
multi-layer approach as a random walk restart multilayer approach (RWRMLA) and applied
this to identify potential targets for NASH. The methodology used in this study is shown in

Figure 4.1.

4.2 Materials and Methods

4.2.1 Construction of the undirected liver-specific protein-protein inter-

action network

We first constructed an undirected PPI network using the STRING database [215], which had
19385 nodes and 11938498 interactions. In this network, we kept only those interactions whose
confidence score was greater than or equal to 900. The network contains 11749 proteins and
245760 interactions. The network was made liver-specific by integrating it with the nodes
reported to be expressed in the liver as per the human protein atlas [349]. This liver-specific

network (hereafter referred to as Nogp) had 10,118 proteins and 2,09,828 interactions.

4.2.2 Random walk restart algorithm

Random walk with restart (RWR) algorithm [348] simulates a walker’s passage from its current
nodes to its neighbours in a network starting at several given seed nodes. It quantifies the

proximity of a node to a set of seed nodes in a graph. The algorithm can be expressed as,

Pyt = (1—r)MP + Py, 4.1
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Here, P, is the vector of the initial probability distribution where only the seeds have values
other than zero, the vector of the initial probability distribution where only the seeds have
values other than zero. F; is a vector whose ‘i’ element represents the likelihood of getting
the random walker at node ‘1’ at step ‘. M is the normalised adjacency matrix, ‘r’ is the
global restart parameter. After multiple iterations, the difference between the vectors P, and
P, becomes negligible and the elements in these vectors represent a proximity measure from
every graph node to the seed(s). We have implemented RWR by taking the disease proteins
as seeds and all the remaining nodes in the network as candidates. Each candidate node was

assigned a score based on their proximity to the seed nodes. Proteins with a score greater than

0.00005 [350] were selected for further analysis.

4.2.3 Screening method to select RWRPs

To exclude the proteins that may arise due to topological biasedness, a filtering method as
proposed in [351] was used. Here, 1000 sets were randomly produced, denoted by S1, 95, ....,
and S1000, €ach with the same disease protein size. Using each of these S; as a seed set, the RWR
algorithm generates 1000 candidate sets (one for each S;). The permutation false discovery rate
was then calculated for each candidate protein ‘p’ as follows:

YN fi
_ &=l J!
~ 1000

FDR(p)

where f; = 1 if the score of p is larger than the score computed by taking the disease proteins
as seed nodes, or f; = 0, otherwise. A candidate protein with a large permutation FDR is more

likely to be a universal protein and less likely to be NASH-associated.

4.2.4 Data acquisition and pre-processing

To get the patient-specific transcriptomic data, we used the keywords: ‘Non-alcoholic’ and
‘Human’ in the Gene Expression Omnibus (GEO) database [239]. We further filtered out the
datasets based on the following exclusion criterion, i) The datasets that contained samples of

other diseases (such as HCC, HIV) or were infected with viruses (such as HBYV, etc.) or were
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Table 4.1: The comparison of two clinical datasets used in this study.

Dataset Data Type | NASH definition | Normal individual | NASH individual
GSE162694 | RNA-Seq | NAS 32 40
GSE126848 | RNA-Seq | SAF score 26 16

treated with interventions (such as dietary intervention) were eliminated. i1) All in vitro mod-
els were eliminated. iii) Also eliminated are datasets that lack adequate stage categorisation
descriptions. iv) From the remaining datasets, we chose only those containing RNA-Seq data.
This is owing to the fact that RNA-Seq data distinguishes more differentially regulated tran-
scripts, splice variants, and noncoding transcripts, hence shedding more light on numerous
biomedical and biological topics. Finally, based on the sample size, we selected the datasets,
GSE162694 [352] and GSE126848 [303]. A comparison of this two datasets is provided in
Table 4.1. Two steps of data processing are performed in our study. In the first step, the genes
with a raw count less than ten were removed using the FilterbyExpr function from the edgeR
package [353, 354]. In the next step, the data was normalised using the trimmed mean of M

values (TMM) method [355].

4.2.5 Selection of optimal feature from ML algorithm

There are numerous classification algorithms in machine learning, and each is biased toward
its own objective function. So, redundant entities were removed using an ensemble strategy in
six widely known algorithms: SVM, perceptron, decision tree, XGBoost, random forest and
logistic regression. The recursive feature elimination (RFE) method has been used to identify
the important features, which was initially implemented for SVM [356] and later has been
implemented for other algorithms like random forest etc [357]. This method establishes a
classification model utilizing all available features, ranks them by importance, and abandons the
least important ones among them. The process of elimination goes on till the minimum number
of features has been selected for maximum accuracy. This recursive process of eliminating the
features is performed for 10-fold cross-validation for obtaining the reduced set. RFE has been

used as a wrapper in all of these six algorithms to obtain minimum features in each algorithm.
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4.2.6 Classification of the reduced RWR proteins

To build the machine learning (ML) models for assessing the classification capability, the RNA-
Seq dataset GSE162694 [352] has been used where the gene represents the input features to
be utilised in the algorithms. The SVM, perceptron, decision tree, XGBoost, random forest
and logistic regression algorithms were compared to check the maximum possible prediction
strength. For robust projection of results, a repeated 10-fold stratified cross-validation strategy
has been incorporated [358]. The stratified k-fold cross-validation strategy randomly splits the
disease and non-disease samples into k-equally proportioned subsets. Each time one subset
was used as the testing dataset, and the rest of them were used as the training dataset. To
further strengthen the ML models, a grid-based hyperparameter parameter search has been
performed with cross-validation. The identified optimal parameters have been used to tune the
ML algorithm for final prediction. The results of this binary classification problem also include

accuracy, F1-score, precision, and recall along with AUROC.

4.2.7 Construction of the directional DEG network

To construct a directional network, the functional human PPI interactome is extracted from the
SIGNOR database [216] and further filtered on the following criteria: i) both the interactors
must be proteins, ii) the source protein should either upregulate or downregulate the target
protein. Duplicated edges are then removed, and the final network (hereafter referred to as
Nirectional) thereby obtained was found to contain 4594 proteins and 11310 interactions. The
DEGs and the RWRPCCs are next mapped to Nyjrecrionai, @and a subnetwork is constructed.
The network thus constructed was found to be disconnected. Hence, Ny;recrionar Was used to
obtain the minimum number of nodes which are required to connect the disconnected DEGs.
These additional nodes are termed mediators. Some proteins, even after performing this step,

remained disconnected and therefore removed from the network.
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4.2.8 Prediction of gene knockdown effect in the metabolic network through

genome-scale metabolic modelling

The gene knockdown profile of each gene was integrated in a functional genome-scale metabolic
model (GSMM) for hepatocytes, iHepatocytes2322 [316], to capture the knockdown effect in
transforming the disease state back to the healthy state. To do so, the following preprocessing
steps were performed: (1) Determining the baseline flux distribution of the disease (source)
state (V™). To obtain the disease-specific GSMM, the average expression values of each
metabolic gene was integrated into the iHepatocytes2322 by applying the E-Flux method [359].
Additionally, a fasting condition was imposed as the liver biopsy samples were normally taken
at the fasting state. During the fasting conditions, the liver uptakes gluconeogenic substrates
(like lactate, glycerol, etc.), non-esterified fatty acids and amino acids. It produces glucose,
very-low-density lipoprotein (VLDL), ketone bodies, and plasma proteins [343]. Hence, we
selected lactate, glycerol, fatty acids, amino acids as input variables and glucose, VLDL, ke-
tone bodies as output variables in the model. We also allowed the uptake of oxygen, phosphate,
minerals, and the secretion of urea, HyO, CO,. The ‘gpSampler’ function implemented in the
CobraToolbox 3.0 [360] was used for uniform sampling, and the mean of the different flux
distributions was considered as V"¢/.

(2) Analyzing the gene expression data of disease (source) and control (target) data to deter-
mine the changed and unchanged reactions of the model. A detailed Boolean gene-to-reaction
mapping was employed to map the differentially expressed metabolic genes to reactions, repre-
senting the model’s changed reactions under the disease state [361]. The average gene expres-
sion data of disease samples was used as a baseline and employed 2-fold up-or down-regulation
on the expression values of the previously obtained up-and down-regulated genes, respectively,
to predict the probable knockdown effect of each gene in disease situations (refer to Chap-
ter 3, Section 3.2.8). This newly obtained probable knockdown specific gene expression data
was integrated into the iHepatocytes2322 using the E-Flux method, and the corresponding flux
state V" was predicted by applying the algorithm: Minimization of Metabolic Adjustment
(MOMA) ([362]). MOMA basically minimises the Euclidean distance between the disease-

specific flux distribution V"¢/ and the knockdown flux distribution V"¢ Finally, a transforma-
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tion score (TS) was assigned for each of the knockdown genes, similar to the scoring method

proposed in the metabolic transformation algorithm (MTA) algorithm, using the relation,

ref res ref res
ZieRsuccess |‘/l - ‘/l ’ - ZiGRunsuccess |‘/l - ‘/l ’

TS = ref res
Yier, [Vi " =V

The changed relations are classified into two groups, success (Rgyccess) and unsuccess (Rynsuceess )
based on the transition of flux rates in the right direction, and the group (R) represents the un-

changed reactions.

4.3 Results

4.3.1 Novel NASH-related proteins identified through the RWR algorithm

The proteins associated with a disease always remain in a close proximity, and only a few
among them would have been previously identified as pathogenic [365]. Crosstalk between
these proteins governs the development and progression of diseases. As no drugs have been
approved for NASH, it won’t be an embellishment to assert that the existing disease proteins
fail to capture the actual mechanism governing the disease progression, necessitating the need
to identify novel NASH-related proteins. To uncover them, we have used the random walk with
restart (RWR) [348], which is capable of identifying novel proteins associated with disease de-
velopment.

For this purpose, using the STRING database [366], a high-confidence undirected PPI network
(with confidence score > 900) containing 11,749 proteins and 2,45,760 interactions was first
constructed. This general network was further filtered and made liver-specific by retaining only
the nodes which are reported to be expressed in the liver as per the human protein atlas [349].
This liver-specific network (hereafter referred to as Nygg) had 10,118 proteins and 2,09,828 in-
teractions (Figure 4.2A). The final step before applying RWR requires a set of seed nodes in
the form of NASH associated protein from the network. To get them, the DisGeNET database
[367] was queried using the keyword ‘Nonalcoholic Steatohepatitis’, and 434 genes were ex-

tracted. These genes were mapped to the Ngog network, and 336 proteins were obtained, which
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Figure 4.2: Random walk with restart analysis. A) The undirected liver-specific human PPI
network, Nygp, contains 10,118 proteins and 2,09,828 interactions. The nodes with the same
modularity are given the same colour while the node size corresponds to its degree. B) Venn
diagram representation of the proteins in the Nygy and disease proteins. C) Permutation-FDR
values of the proteins obtained from RWR. Here, an FDR cut-off value of 0.05 is used to
select the 330 RWRPs shown in blue colour. D) GO-enrichment analysis of the RWRPs. The
enrichment analysis is performed using Enrichr [363]. E) The number of drugs reported against
these proteins as per the DGIdb [364]. Here, only the proteins which are associated with more

than ten drugs are shown.
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are referred to as ‘disease proteins’ (Figure 4.2B).

The RWR algorithm was applied to the network Nogg with the ‘disease proteins’ as seeds and a
score is assigned to each candidate node based on its proximity to the seed nodes. The proteins
with a score greater than 0.00005 [350] were selected for further analysis. However, some of
these proteins may only appear due to their higher topological significance. This structural bi-
asedness is addressed by evaluating the relevance of each protein using a screening procedure
[351] (refer to the Section 4.2.3), which results in 330 proteins (hereafter referred to as random

walk restart proteins, RWRPs) (Figure 4.2C).

4.3.2 Topological significance of the RWRPs

We found that the average shortest path lengths of 340 RWRPs are less than the characteristic
path length (4.0421) in the network. This tells that these proteins can rapidly spread information
throughout the network. Again, 27 RWRPs appeared as hubs (degrees twice the average de-
gree), suggesting that they can alter the stability of the disease network. The tendency of a node
to form clusters is a crucial property in a network. Among the RWRPs, 129 possessed a higher
clustering value than the average clustering value (0.4062) in the network. Finally, the investi-
gation of the neighbourhood centrality revealed that 164 RWRPs have a greater neighbourhood
centrality value than the average (50.7573), suggesting that these proteins are associated with
high degree nodes in the network. The topological significance of these proteins is shown in

Figure 4.3.

4.3.3 Functional enrichment of the RWRPs

The enrichment analysis elucidates the biological processes that must be explored to identify
new therapeutic alternatives for disease [368]. The enriched biological processes (Figure 4.2D)
associated with these RWRPs are cholesterol metabolism, sterol metabolic process, inflamma-
tory response, cytokine-mediated signalling pathway etc., indicates that the RWRPs might play
a significant role in the deterioration of healthy liver and the development of NASH. Next, they
were mapped to the DGIdb database [364] and found that 135 (40.91%) of them were already

in the clinical stages for different diseases (Figure 4.2). Among them, 51 are associated with
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Neighborhood centrality of the RWRPs. The blue colour denotes that the RWRPs in this region
are topologically significant.

more than ten drugs. This indicates that the RWRPs can also serve as a rapid and comprehen-
sive strategy for identifying drug repurposing opportunities against NASH. Considering all this
facts, it is reasonable to anticipate that the RWRP family is replete with potential targets for
NASH.

However, the present study is keener in exploring and filtering these RWRPs further to iden-
tify targets that are better probable and robust. One such character to filter these RWRPs is its

capability to distinguish disease.

4.3.4 Capturing RWRPs that are capable of disease classification

To delve into the classification capability of the RWRPs, a clinical dataset GSE162694 [352]
was investigated, which includes RNA-Seq data of liver biopsy samples from 32 control and 40
NASH individuals. Following data filtration, 306 out of the 330 RWRPs were mapped with this
dataset. The recursive feature elimination [356] technique is then applied as a wrapper with six
prediction algorithms (SVM, perceptron, decision tree, XGBoost, random forest and logistic
regression) using ten-fold cross-validation to obtain the best features for each classifier. The

resulting feature sets from the algorithms were almost disjoint with a small overlap (Figure
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4.4A). To select the optimal feature subset, the union of all the important features was taken
for building the final feature set [369]. The new feature pool gives a more robust set of 199
features (hereafter referred to as RWRPCCs) and might enhance the predictive performance.
Next, the collective predictability of these RWRPCCs was assessed to classify the clinical phe-
notype of control and NASH. The predictive performance was obtained in terms of accuracy,
Fl-score, area under the ROC curve (AUROC), Precision, and recall with repeated ten-fold
cross-validation associated with the six algorithms . For the testing dataset, the obtained AU-
ROC value for RWRPCCs ranged from 0.7 to 0.93 (Figure 4.4B), while the same for the 306
RWRPs ranged from 0.7 to 0.91 (Figure 4.4C). Whereas, on the training dataset, the obtained
range for RWRPCCs is 0.89 to 1 (Figure 4.5A) and for the 306 RWRPs is 0.9 to 1 (Figure
4.5B). Hence, the RWRPCCs showed a better classification capability than all the 306 RWRPs
on the testing dataset. These RWRPCCs pushed the average AUROC value beyond 0.9 for four
algorithms, namely SVM, KNN, decision tree, and logistic regression, while the remaining two
algorithms exhibited a minor increase in AUROC value on the test dataset. The AUROC value
above 0.9 was only achieved for all features in the random forest (0.91) and XGBoost (0.90).
This suggests that the RWRPCCs successfully capture the inherent pattern in the expression
data, which are exclusive to specific clinical labels.

The above classification value reports the maximum possible strength to distinguish the two
clinical groups. However, these values were obtained using the default parameters of the ML
algorithms and could be further enhanced by tuning hyperparameters like leaf size, number of
estimators, solver etc. (Table 4.2). Using grid search with cross-validation, the optimal pa-
rameters set was obtained that had been further used to enhance the classification performance.
The finely tuned models show the improved range of AUROC from 0.87 to 1 on the training
dataset (Figure 4.5C) and 0.71 to 0.94 on the test dataset (Figure 4.4D). Along with enhancing
the overall score range, it also improved AUROC in most of the prediction algorithms by >
1% except SVM. So, the currently obtained models have the highest performance with a lesser

possibility of overfitting.
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Table 4.2: Hyperparameters available in SKLearn library, python and their tuned value
used in the study.

Criterion Gini
Max_depth 1
1 Decision Tree
Min_samples_leaf 1
Min_samples_split 2
Max_features sqrt
2 Random Forest
N_estimators 1000
Metric Manhattan
3 | KNeighborsClassifier N_neighbors 7
Weights Distance
4 SVM Kernel Linear
Learning_rate 0.1
Max_depth 7
5 XGBClassifier
N_estimators 100
Subsample 0.5
C 100
Penalty L2
6 | LogisticRegression
Solver Lbfgs
Max_iter 1000

So, the filtered list of proteins (RWRPCCs) are not only have the potential to be targetted
but also have the ability to distinguish the disease. The accuracy was further confirmed with
an independent clinical dataset, GSE126848 [303] (Figure 4.6). Now such proteins to be re-
ally considered for drug target should be capable of regulating the protein perturbations caused
by the disease progression. This was investigated through the controllability paradigm of the
RWRPCC:s in the differentially expressed gene (DEG) network of NASH in the following sec-

tion.
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Figure 4.6: Classification capability of the RWRPCCs in GSE126848. A) Model evaluation
metrics of each algorithm in the train set using 199 RWRPCC. B) Model evaluation metrics of
each algorithm in the test set using all 199 RWRPCC.

4.3.5 Controllability paradigm of RWRPCC:s in the differentially expressed

gene (DEG) network

To identify the DEGs in the dataset GSE162694, we considered a fold change cut-off of 1.2
[370] and a false discovery rate (FDR) adjusted p-value cut-off of 0.05 [371]. We obtained
3451 up-and 1838 down-regulated genes denoting the perturbed protein profile in disease state.
To be considered a target, a protein must be capable of affecting these perturbations. Network
controllability is an effective method for identifying such proteins since it determines the small-
est number of driver nodes necessary to control the complete network. To apply this algorithm
we constructed a directional PPI network by integrating RWRPCCs and the DEGs to the func-
tional human PPI interactome obtained from the SIGNOR database [216]. This directional PPI
network (Figure 4.7, referred to as the DEG network since the majority of the nodes are DEGs)
contained 575 DEGs and 50 RWRPCC:s. To identify the RWRPCCs with control capability, the
algorithm proposed by Guo et al. [372] was applied. It uses two predefined information, a set
of target nodes and a set of constrained control nodes. Here, the RWRPCCs were taken as the
control set, while the remaining DEGs of the network were taken as the target set. This process
was repeated 1000 times, and the proteins which appeared at all the repetitions were consid-
ered as final driver proteins. Thus, the constrained controllability analysis finally identified 18
RWRPCCs that have the ability to control the DEG network. The fold change in gene expres-
sion of the driver RWRPCCs are shown in Figure 4.8B. The first neighbourhood PPI network

of these proteins was abundant with various proteins which play a role in the development and
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progression of NASH (Figure 4.8C). For example, SIRTS increases the expression of G6PD,
which is reported to increase oxidative and inflammatory response in adipose tissues of obese
animals [373]. It also activates NFE2L2, which is shown to play a dual role in the NASH land-
scape [374]. ZEBI inhibits FBP1, which deficiency is reported to disrupt the liver metabolism
[375] and can cause fatty liver disease [376].

Thus, the network controllability method identified the proteins capable of changing the
system’s state. Given that the effects of these proteins are quantified in the DEG network,
it won’t be an embellishment to assert that they have the ability to regulate the perturbations
caused by disease progression. Now, as a final evaluation of these short-listed proteins as

potential targets, we set out to examine their effect on the metabolic landscape.

4.3.6 Effects of the driver RWRPCC:s on the disease-associated metabolic

landscape

NASH is a consequence of various metabolic alterations in which excess triglyceride (TG)
synthesis and accumulations are seen. Hence, it demands further exploration of the identified
driver RWRPCCs on the NASH metabolic state. GSMM is the widely used in silico method
for understanding the disease-associated metabolic alterations [316, 370] and are also capable
of identifying drug targets [361, 377]. Here, the DEGs were mapped into the liver-specific
GSMM, iHepatocytes2322 [316], and obtained 1285 and 1556 reactions associated with the
up-and down-regulated genes, respectively. To capture the effect of the identified 18 driver
RWRPCCs on the NASH metabolic state, the gene knockdown profiles of 3341 genes from
the CMap database [378] were extracted, and the genes that were up-and down-regulated in
response to the knockdown were identified (refer to Chapter 4, Section 3.2.8). Among these
driver RWRPCCs, only 13 were found to be present in the CMap database. Amidst them,
knockdown of PRKARIA affected the most number of genes, followed by ETS1 (Figure 4.9A-
B).

These profiles were then utilised to quantify the potentiality of transforming the NASH
state into a healthy one. Based on the network perturbations, the transformation score (TS), as

proposed by Yizhak et al. [361], was calculated for each of the 13 driver RWRPCCs. Basically,
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TS reflects to which extent a metabolic network perturbation may transform the disease state
into a healthy flux state. A positive value indicates that the amount of successful changes in the
flux state is more than the unsuccessful ones, and vice versa. Thus, RWRPCCs with positive
TS were selected and finally obtained four potential targets: ETS1, LEF1, ZEB1, and PAKI.
Next, the number of successfully transformed DEG-associated reactions were captured for all
of these potential targets (Figure 4.9C). For example, the knockdown profile of PRKARIA
shows the highest effect on the DEG-associated reactions, followed by ETS1. The knockdown
of the former can transform 88.63% (1139 reactions) and 15.61% (243 reactions) of the up-and
down-regulated genes-associated reactions towards healthy ones, whereas knockdown of ETS1
shows the transformation of 85.21% and 15.55% reactions, respectively.

As per DGIdb, except for ZEBI, all three remaining proteins are clinically actionable
[379]. Investigating their reported drugs in DRUGBANK [380], we found LEF1 is a tar-
get of Etacrynic acid [381], and PAKI is a target of Fostamatinib [382]. No information
on ETS1 and ZEB1 was found in the DRUGBANK database. For PAK1, one compound
(CHEMBL3609372) is reported in CHEMBL [383] and three compounds (CID: 136590564,
CID: 137125241, and CID: 138115195) in the PubChem database [384]. Any such information
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for ETS1 in the aforementioned databases was not found. However, Jie et al. [385] have re-
ported four novel small molecule inhibitors of ETS1. Again, investigating the literature, ZEB1
was found to be inhibited by Salinomycin [386]. Among these four potential targets, only ETS1
was found to be associated with hepatic fibrosis, as reported in the GWAS catalogue (study ac-
cession number GCST004938). To further see the association of these four potential targets
with NASH, a co-expression analysis in NASH using the dataset GSE162694 was performed.
All these four targets were found to be co-expressed with genes that govern various NASH-
associated pathways. As an example, the co-expression partners of ETS1 that are associated
with NASH-related pathways and processes are shown in (Figure 4.9D). The neighbours of this
protein in the Nggg network also showed such abundance (Figure 4.9E). Here, the redox related
genes are taken from [387], fatty acid metabolism-related genes from the Virtual Metabolic Hu-
man database [388], autophagy-related genes from HAMDB [207], and ARN database [193],

and the immune-related genes from [389].

4.3.7 ETSI1 and autophagy

To find the affect of ETS1 on autophgay, we performed three separate analysis. We first look
into its neighborhood in the Nggy network and identified the abundance of autophagy protein in
it. The same exercise is repeated for the DEG network. We also identified the numbers of up-
and down regulated autophagy-related genes following the knockdown of ETS1. The result is
shown in Figure 4.10. It is seen that the 25% of the ETS1 neighborhood are autophagy-related
proteins. This justifies that the function of ETS1 highly affect autophagy process. Figure 4.11
shows the neighborhood network and the effected genes.

Moreover, the knockdown of ETS1 is shown to increase autophagy in literature [390]. In
their study, Zhang et al. had reported that, following the silencing of ETS1, the mRNA level of

ATGS5 and LC3II in pancreatic cancer cell lines increases as compared to the control.
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Figure 4.9: Potential target identification in NASH. A-B) The numbers of up-and down-
regulated metabolic genes following the knockdown of the driver RWRP, respectively. For
both the figures, the number above the bar is the abundance of metabolic genes. C) The num-
ber of up-and-downregulated reactions following the knockdown of each driver RWRPCC. D)
The co-expression partners of ETS1 and their association with various pathways. E) The 2
neighbourhood of ETS1 in the Nygy network. It can be seen that these proteins are abundant
with various NASH-related pathways and processes.
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Figure 4.10: Association of ETS1 and autophagy. A) The figure shows the percentage of
autophagy-related proteins in the neighborhood of ETS1 in the Nggp and DEG network. B) The
number (in %) of affected autophagic genes following the knockdown of ETSI1.

4.4 Discussion

The present work and method contribute in measuring and controlling the alterations at different
molecular levels. It also provides a systematic approach that will produce a minimum number
of false positives.

Our methodology, the RWR multilayer approach (RWRMLA), identify the proteins that not
only have the classification capability but also are capable of controlling the disease network.
The identified proteins are the most crucial in the network and must be controlled if a transition
from disease to a healthy system is sought. Finally, RWRMLA investigates the importance
of these proteins in the metabolic landscape. Performing an in silico knockdown, it measures
whether silencing a driver protein will initiate a disease to healthy transition or not. Since
diseases result from aberrations at both protein and metabolic levels, the driver proteins that
can show such behaviour will be termed as potential targets in a disease.

NASH is the inflammatory subtype of NAFLD and may lead to liver cirrhosis if not treated
properly [391]. It is caused by complex interactions between metabolic and stress pathways
in hepatocytes [392], triggered by chronically elevated lipid levels [393], and inflammatory

processes mediated by multiple immune cell populations [283], collectively resulting in the
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Figure 4.11: Association of ETS1 and autophagy. A) The neighborhood of ETS1 in the Ny
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genes following the knockdown of ETSI.

histological appearance of active steatohepatitis. Despite being studied for decades, no treat-
ment for NASH has been developed.

We applied our methodology to identify new potential drug targets for NASH. To start,
RWR is applied to a liver-specific PPI network, and a set of novel candidate proteins in NASH
was identified. To eliminate any possible topological bias, this list was filtered using a screening
process and obtained 330 proteins. The 330 proteins were further filtered using ML in a clinical
dataset GSE162694, where 199 highly disease-associated proteins were identified. The disease
associativity is defined based on their classification capability. The highest AUROC value
achieved in this dataset was 0.93. The accuracy was further confirmed with an independent
clinical dataset, GSE126848 [303] (Figure 4.6). Next, using network controllability, 22 driver
proteins among these proteins were retrieved. Finally, GSMM was applied to investigate their
ability to initiate a disease to a healthy transition and identified ETS1, PAK1, LEF1, and ZEB1
as potential targets. The four reasons to believe these proteins work as a target in NASH
are: 1) they are novel proteins associated with the known disease proteins, ii) they possess

classification capability, iv) they can control the DEG network, and v) their silencing can initiate
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a disease to healthy transition in NASH.

To substantiate our claim on the identified proteins as targets, we seek literature support
and found that various studies have identified ETS1 as a promising target candidate [394-396].
It is a transcription factor and plays a role in regulating differentiation, proliferation, apopto-
sis, angiogenesis, migration, and cell metabolism. Its interacting partners, both at the protein
and gene levels, are highly enriched with NASH-associated processes and pathways such as
redox metabolism, immune pathway, autophagy and apoptosis, WNT-signalling pathway, de-
velopment of steatosis, etc. The other target, LEF1, is also a transcription factor and acts as a
mediator of the canonical Wnt signalling pathway by activating the Wnt-responsive genes in
association with B-catenin [397]. Therefore, this protein can contribute to the development of
fibrosis and activation of hepatic stellate cells (HSC), both of which are responsible for NASH
development. Its first neighbours in the PPI network consisted of immune-related, autophagic,
and apoptotic proteins. For instance, LEF1 is shown to upregulate MYC, whose overexpression
activates HSC and promotes liver fibrosis [398]. It also upregulates CCND1, which is involved
in both lipogenesis and gluconeogenesis in the liver [399]. The third target, ZEB1, is also a
transcription factor which is shown to regulate the expression of its target genes by epigenetic
mechanisms. Although it is widely reported for liver cancer, it can also play a crucial role in
the development of NASH by inhibiting crucial proteins like FBP1 [400], whose loss is shown
to disrupt liver metabolism [375]. Finally, PAK1 is a protein kinase and found to be associated
with various NASH-associated proteins. For instance, it upregulates ELF3 [401], CTNNB1
[402], and PLK1 [403], which are reported to promote liver fibrosis [404]. These facts support
that the identified targets might ameliorate NASH and initiate a disease to healthy transition
and thus needs further experimental exploration.

RWRMLA allows itself to be adjusted in several ways to reduce its constraints and chal-
lenges and augment its accuracy and adaptability to a larger range of diseases. The first is
fewer samples in the clinical dataset to perform ML-based analysis. The same, however, can
be circumvented by performing the analysis in two or more different clinical datasets for the
robustness of the analysis. The second limitation occurs in terms of the extraction of functional

relationships between proteins. Signor [216] is an excellent database for extracting such in-
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formation, but contains only 6584 proteins. However, this number can be improved through
an extensive curation of literature and using various PPI direction prediction algorithms. The
third limitation occurs in terms of getting the gene knockdown information. The only excellent
source to obtain the same is the CMap database. However, it contains the information of only a
few cell lines and a limited number of genes. Despite these limitations, this methodology lays
forth a pragmatic framework for finding possible therapeutic targets with a greater probability
of success and will save a substantial amount of time and resources during the drug discovery

process.

4.5 Conclusion

Given the absence of effective therapeutic alternatives for NASH, it is not exaggerated to as-
sert that the known disease proteins do not sufficiently represent the true mechanism of disease
progression. For this purpose, we developed and applied a methodology RWRMLA on NASH,
and identified four proteins as potential therapeutic candidates. RWRMLA is an efficacious
generic methodology that can be applied to any metabolic disease to identify potential targets.
Nevertheless, despite the fact that the proposed target proteins are implicated in potentially sig-
nificant disease pathways, their efficacy must be confirmed by follow-up studies and assessed

by experimental investigation.



The interplay between DNA damage and
autophagy in lung cancer: A mathematical

study!

The previous chapters used protein perturbations to identify large-scale data and potential tar-
gets. In all these chapters, we have seen the capability of autophagy to mitigate the progression
and development of a disease. However, although these three studies have shown the signifi-
cance of autophagy, they can not shed details on the mechanistic understanding of autophagy.
For this purpose, in this chapter, we have developed a mathematical model to get mechanistic

insight into some autophagic genes in cell proliferation and cell death in lung cancer.

I'The bulk of this chapter has been published in Biosystems, 206 (2021) p.104443.
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5.1 Introduction

Lung cancer is the global leader in cancer-related mortality in the population, with the second
and fourth highest diagnoses among men and women, respectively [405]. While exposure to
smoking is considered a major etiologic factor, non-smokers have also been diagnosed with
lung cancer [406]. One of the challenges of lung cancer is its late detection. Therefore, the
search for a more efficacious diagnosis and treatment of lung cancer has become obligatory.
Various new methods, drugs, and pathways have been discovered to tackle lung cancer [407—
409]. Although enormous advances have been seen in the diagnosis and treatment of lung
cancer, several limitations have yet to be addressed, e.g., KRAS-mutated lung cancer shows no
response to treatments targeting oncogenic mutations [410]. Resistance to molecular-targeted
drugs and mechanisms has also been reported in the literature [410].

DNA damage leads to various diseases, including cancer, and often results from UV rays,
oxidative stress, ionising radiation, and various genotoxic attacks. To protect DNA from such
epochal events, the body maintains a strong cellular mechanism that acts as a saviour of DNA,
and p53 plays an unequivocal role in this process. Due to its ability to repair DNA damage
during stress, p53 is known as a protector of the genome. Under stress conditions, pS3 activates
and initiates cell cycle arrest, allowing the cell to correct potential defects. In addition to being
an important presence in stress and nutritional response networks, the diverse activities of p53
are important in tumour suppression, metabolism, development, ageing, and neurodegeneration
[411].

Autophagy is an evolutionary conserved lysosomal degradation process to maintain cellular
homeostasis. There are three main types of autophagy, viz. macroautophagy, microautophagy,
and chaperone-mediated autophagy. Here, by autophagy, we will be referring to macroau-
tophagy, the autophagic process in which substrates are sequestered within autophagosomes.
This essential process is found at basal levels in most of the cells. It plays a crucial role in
controlling cellular homeostasis and therefore is consistently boosted in stress situations for the
adaptation and survival of cells. It engulfs unnecessary or misfolded proteins and organelles
inside the cell during stress. However, despite being a quintessential process, autophagy must

be strictly controlled [14, 66] as the excessive degradation of cytosolic components may lead
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to autophagic cell death. Both proliferation and deterioration of autophagy have been found to
be associated with the pathogenesis of cancer [412, 413].

In comparison to the experimental work on autophagy that has been published, mathemati-
cal work on autophagy is relatively scarce. Kapuy et al. [178] studied the autophagy apoptosis
interplay using a simplified mathematical model and revealed the underneath bistable nature.
Martin et al. [182] presented a computational model of autophagic vesicle dynamics in sin-
gle cells, Jennifer et al. [186] formulated a Petri net model for xenophagy, while Borlin et al.
[185] formulated an agent-based model to understand the spatiotemporal autophagy dynamics.
Mathematical models also need to be developed to investigate autophagy’s role in determining
cell fate in lung cancer. To the best of our knowledge, no mathematical work has been done
elucidating the pS3-autophagy association and beclin1-induced cell death following DNA dam-
age, although autophagy is triggered after DNA damage as it is associated with DNA damage
response pathways [414]. Again, no study has been done on beclinl-induced cell death follow-
ing DNA damage. This association of p53 and autophagic cell death is vital as the former acts
whenever any threat comes to DNA [415, 416]. In contrast, the latter may act as a saviour of
tissue homeostasis by getting rid of the culprit cell.

Following severe DNA damage, pS3 is known to induce apoptosis by activating its down-
stream apoptotic regulators. However, the ability of p53 to induce apoptosis gets compromised
in all cancers, including the lung, allowing the cancer cells to grow and proliferate. This neces-
sitates the need for an alternative pathway to mitigate the progression of cancer. In this paper,
we have formulated a seven-dimensional non-autonomous ODE model to investigate the com-
plex interplay between DNA damage, pS3, autophagy, and lung cancer. We aim to highlight the
potential factors or parameters and propose that autophagic cell death mediated by perturbation
of these parameters over a specified range is the way forward in lung cancer research. We have
shown that if the ability of p53 to repair DNA damage gets compromised and can no more
suppress cancer, the cancer growth can be mitigated by the modulation of beclinl-mediated

autophagic cell death, and AMPK and BCL2 play vital roles in this restoration.
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5.2 Model description

5.2.1 Biological background

To capture the role of autophagy and p53, we considered a circuit with p53, MDM2, MDMX,
AMPK, mTOR, BCL2, and beclinl (Figure 5.1). Following any exposure to DNA damage,
cellular p53 accumulates to promote the DNA repair process to reduce the risk of breeding mu-
tations [415, 416]. To maintain the low level of p53 in the absence of stress, p53 and MDM2, a
principal cellular antagonist of p53, form a negative feedback loop where p53 induces MDM?2
expression, which for its part, encourages pS3 degradation and quells the cellular activity of p53
[417-419]. The primary inhibition of pS3 by MDM2 is by the proteasome-mediated degrada-
tion of p53 through the E3 ubiquitination ligase activity [416]. It also shuts p53 out to the
cytoplasm from the nucleus [417], binds to p53 to prevent it from interacting with transcrip-
tional co-activators pS3 [420], and blocks its interaction as well as interacts with other nuclear
corepressors to inhibit the activity of p53 [421]. In comparison, p53 regulates the expression
of MDM2 by binding to its promoter [422]. The p53-MDM?2 interaction is boosted by another
pS3 regulator, MDMX. MDM2 possesses an exceedingly low half-life and thus remains largely
ineffective in down-regulating p53 in the absence of MDMX. MDMX enables MDM?2 protein
stable enough to function at its full potential for p53 degradation [423]. MDMX binds to p53
in its transactivation domain and inhibits the transcriptional activity of p53 [424]. Like MDM?2,
MDMX also gets positively regulated by p53 [425]. Furthermore, following DNA damage,
MDMX is degraded by MDM?2 due to the post-translational modifications of MDMX so that
p53 can respond accordingly [425]. However, although there exist other pathways that affect
the p5S3-MDM?2 interaction, to keep the model simple, we did not consider them explicitly. Be-
clinl is a quintessential protein in the process of autophagy. It comes to the autophagy scenario
during the initiation stage, where it takes part in the formation of the isolation membrane, which
engulfs the cytoplasmic material to form the autophagosome [426]. It acts as a bottleneck pro-
tein in the autophagy network and hence remains at the crossroads of many autophagy-related
genes, some in favour of and some against the autophagy process, while many acts as dual

regulators. Among our model variables, AMPK comes in the first, mTOR, and BCL2 in the
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Figure 5.1: Schematic diagram of the activation-inhibition mechanisms of P53-induced
autophagy. Here the green and red arrows represent activation and inhibition, respectively.

second, while p53 belongs to the third category. AMPK is the nutrient and energy sensor which
catches the perturbation in the AMP: ATP, or ADP: ATP ratio and decides whether the system
has sufficient energy (based on ATP concentration) or not and if not, it initiates the autophagy
acceleration [427]. AMPK portrays a dual positive role for beclinl. It increases beclinl activity
by phosphorylation of beclinl directly at the Thr388 site [427] and by negatively regulating the
activity of mTOR, a negative regulator of autophagy [428]. In vivo studies have reported that
the inhibition of mTOR increases beclinl activity, indicating the negative regulation of beclinl
by mTOR [429]. Another negative regulator of autophagy is the ER-localized BCL2, which
interacts with beclinl to form beclinl: BCL2 complex and inhibits beclinl activity [430]. Be-
clinl should be released from this association for the initiation of autophagosome formation,
which brings p53 into the autophagy scenario. pS3 reduces the autophagy level by inhibiting
AMPK [431], and by transcriptionally downregulating BCL2 expression, plays a positive role

in autophagy [432].

5.2.2 Model formation

With the above biological background, we proposed the non-autonomous model (5.1), where
the concentrations of p53, MDM2, MDMX, AMPK, mTOR, BCL?2 and beclinl are denoted by
Y1, Y2, Y3, Y4, V5, Y6 and y7, respectively. In our proposed model, the pS3-MDM2 interaction dy-
namics are extended versions of the model provided by Bar et al. [433]. They have mentioned

the presence of an intermediary between p53 and MDM?2, which is replaced in our model by
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MDMX. Further complexity is added to their model by considering the activation of MDM?2
by p53 and the inhibition of p53 by MDMX.
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The variation in p53 is represented by the first equation of the system (5.1). The basal produc-
tion and degradation rates of p53 are denoted by the terms s; and ap;, respectively. The pa-
rameter s is dependent on various factors that induce p53 following DNA damage. As already
mentioned, p53-MDM?2, and p53-MDMX form two negative feedback loops and the effects

d
of MDM?2 and MDMX on p53 has been incorporated by two Hill-type functions 6111)’2
Y2

, respectively, where 0 and 7 are the half-saturation constants, d| and d, are the max-

and

dry1y3

Yty3
imum degradation rates of p53 by MDM?2 and MDMX, respectively. The Stress-dependent

ot

pS53 activation term is taken from the reference [433] and is represented by the term oe™ ", a

decreasing function of time. The stress is maximum at r = O that gradually fades with the res-
olution rate of ¢. The parameter « is the stress coefficient and attains the value O when there

is no stress. The second equation represents the MDM2 dynamics. The term p; represents the

Py
kmy' + y5! P
resents MDMX-induced MDM2 activation [423, 434] as described by Bar et al. [433], where

pS3-independent MDM?2 transcription and translation rate. The second term,

km, is the Michelis constant, p; is the maximum production rate of Mdm2 and n; is Hill’s

coefficient in the production of MDM?2 via MDMX. d3 represents the basal degradation rate of
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MDM2. The p53-dependent activation of MDM?2 follows a Hill-type function [435, 436] and is
061y’112

R

by p53, km3 and ny denote the corresponding Michelis constant and Hill coefficient. The first

represented by the term where ¢ denotes the maximum production rate of MDM?2
term of the third equation was built following [433]. It is reported that MDM?2 binds to p53 to
reduce its transcriptional activity, causing a decrement in the production of MDMX [425]. Such
MDM?2-dependent inhibition in the production of MDMX is incorporated through the denom-
inator function (14 c2y1y2), where ¢; is the MDM2-dependent inhibition rate. The numerator
shows the production of MDMX by p53 and stress with ¢; as its maximum production rate. The
basal degradation rate of MDMX is denoted by the term d4. The fourth equation represents the
rate equation of AMPK. Its basal production and degradation follow the exponential law with
k1 and d7 as the rate constants. p53 has an inhibitory effect on the AMPK level, as stated earlier.
Such a sigmoidal inhibitory effect of pS3 on AMPK is represented by the second term in this
equation with dg as its maximum value. The basal production and degradation rates of AMPK
are denoted by k; and d7, respectively. The next equation describes mTOR dynamics. Here, the
second and third terms represent AMPK-induced and basal degradation rates of mTOR, while
the first term represents its basal production. dg,dy and k; are the respective rate constants. In
the sixth equation, the transcriptional down-regulation of BCL2 by p53 is denoted by the term
d10y1ye With rate constant djg. The basal production rate of BCL2 is measured by the parame-
ter k3, while its exponential decay rate is denoted by dj;. The last equation represents beclinl
dynamics. The baseline production rate of beclinl is k4, and its exponential decay occurs with
a rate constant d4. ayy is referred to as the phosphorylation rate of beclinl by AMPK, where
ap is the rate constant. On the other hand, d3ysy7 and d12ysy7 represent the inhibitory effect of

BCL2 and mTOR on beclinl, where d;3 and dj, are the respective rate constants.

5.2.3 Some preliminary analysis

The equations of system (5.1) represent the protein dynamics and hence it is of prime impor-
tance to show that the state variables y;,1 = 1 : 7 are non-negative and bounded. This analysis
cinches that the model is well-posed, and no anomaly is there in the realistic portrayal of the

protein dynamics.



Chapter 5. The interplay between DNA damage and autophagy in lung cancer: A
158 mathematical study

5.2.3.1 Positivity

LetY = (y)T,i=1:7€¢R7and F(Y) = [F;(Y))]", i=1:7. The system (5.1) can be written
as

Y =F(Y),

together with suitable initial conditions Y (0) =Y, € Rl. It can be easily checked that whenever
Yy € RZr with ¥; = 0,i = 1 : 7, then F;(Y|y—o) > 0. Thus, from the lemma of Nagumo [437],
any solution of the system (5.1) with Yo € R}, say Y (t) = Y (t,Yp), is such that Y (¢) € R, for

allt > 0.

5.2.3.2 Boundedness
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Since y; is bounded, therefore y, is bounded. Similarly, it can be shown that
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The nonlinear non-autonomous system (5.1) is too complicated for analytical solutions, and

we, therefore, opted for its numerical solutions.
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Table 5.1: Description of the model parameters of the pS3 module with their default values
and reference.

S1. No. Parameter Description Value Reference
1 S1 Basal production rate of p53 0.5 nM min ! [433]
2 dy Degradation rate of p53 by MDM?2 2.1 min~! estimated
3 a Stress coefficient 0.1099 min~! estimated
4 (e Resolution rate of stress signal 0.0001 min ! [433]
5 d Degradation rate of p53 by MDMX 0.000125 [433]
6 P1 p53-independent MDM?2 transcription and translation 0.00235 nM min~! [433]
7 P2 MDMX dependent production rate of MDM?2 0.003 nM min ! [433]
8 ni Hill’s coefficient in the production of MDM2 via MDMX 50 [433]
9 kmy Michealis constant in the production of MDM?2 via MDMX 25 nM [433]
10 ds Degradation rate of MDM?2 0.05 nM min~! [433]
11 o input dependent production rate of MDM?2 0.001 nM min~!  estimated
12 ny Hill coefficient in the production of MDM?2 via p53 0.13 estimated
13 kms3 Michelis constant in the production of MDM?2 via p53 4 nM estimated
14 c Input dependent production rate of MDMX 0.09 min~! [433]
15 o Mdm?2 dependent degradation of MDMX 0.01 nM—2 [433]
16 dy Degradation rate of MDMX 0.09 min~! estimated
17 ari basal degradation rate of p53 0.0095 min~! estimated
18 0 half maximal rate of MDM?2 1.05 nM estimated
19 Y half-maximal rate of MDMX 1 nM estimated

5.3 Numerical simulations

To find different types of dynamical behaviour that can be unveiled by the model (5.1) in various
parameter regions, we solved the system numerically using the values of the parameter set given
in Table 5.1. The parameter set so chosen depicts the experimentally observed oscillations of
pS53 as shown in [433]. Here, parameters are either taken from reference [433] or estimated
to produce Figure 5.2. As shown in this figure, the normal level of pS3 will imply a healthy
system, and if in the no-repair region, it will indicate a lung-cancerous system. We will analyse
the healthy system first to identify potential threats that could lead to the system deteriorating
into a disease state, and then the diseased system to identify potential targets for restoring the
system’s healthiness. For the analysis of the whole system, we have considered the hypothetical
values for the rest of the parameters. These parameter values are estimated to keep beclinl in
the normal range as given by [438]. To make the system parameter independent, later, we
performed the parameter sensitivity analysis using the Partial Rank Correlation Coefficient

(PRCC) method [95].
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Figure 5.2: The dynamics of pS3. The levels of p53 denote the state of DNA. The green curve
denotes the p53 pulses when the system is in a healthy state and hereafter considered as the
normal level of p53. The elevation of p53, denoted by the black curve, indicates the severe
DNA damage and hereafter is considered as the no-repair phase of p53. The red curve denotes
an intermediate phase of p53, where DNA damage is not that extreme and can be repaired. The
right figure denotes the MDM?2 level for three similar cases. The corresponding non-repairable
case, however, indicates an almost undetectable level of MDM2, an opposite characteristic of
pS3. The time is calculated in minutes. The green curve is generated by using the parameter
values of Table 5.1, the black curve is generated by keeping ¢; = 0.004 and the red curve is
generated by keeping ¢; = 0.004,ds = 0.004. The figure shows the p53 dynamics as mentioned
in [433]

Table 5.2: Description of the hypothetical parameters to keep beclinl in normal range as
given in reference [438].

Sl. No. Parameter Description Value
1 ki Basal production rate of AMPK 0.5 nM min !
2 ds p53 dependent inhibition rate of AMPK ~ 0.17 nM ™~ 'min !
3 d7 Basal degradation rate of AMPK 0.0159 min~!
4 ko Basal production rate of mTOR 0.5 nM min~!
5 dg Degradation rate of mTOR by AMPK 0.4nM~'min~!
6 doy Basal degradation rate of mTOR 0.2min !
7 k3 Basal production rate of BCL2 0.09nMmin~!
8 d1o Degradation rate of BCL2 by p53 0.0162nM ™~ 'min~!
9 dii Degradation rate of BCL2 0.015min~!
10 ky Basal production rate of beclinl 0.5 nM min !
11 ap Production of beclinl by AMPK 0.00001 min~!
12 di» mTOR dependent inhibition of beclinl 0.1 M~ 'min~!
13 di3 Association rate of beclinl:BCL2 complex  0.68 nM~'min~!
14 dia degradation rate of beclinl 0.145min~!
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Figure 5.3: Local sensitivity analysis of pS3. Each parameter was varied over a range of 10
fold from their defined values reported in Table 5.1, with other parameters fixed as in (Table
5.1). The bars represented the fold divergence from the base value, and its length indicated the
ranges beyond which the dynamics of p53 shift from normal to no-repair state. The blue colour
was used when the result was obtained by increasing the parameter value and the red color in
the opposite case.

5.3.1 Parameter sensitivity analysis of pS3 module

Often, the output behaviour of a high-dimensional system with numerous parameters is deter-
mined by a small number of parameters. Sensitivity analysis (SA) provides a way to distinguish
these parameters so that they can be targeted by further studies. A local sensitivity analysis
(LSA) for p53 was carried out by perturbing one parameter at a time over a range of £10 fold
from its reference value (Table 5.1) while the remaining parameters were kept at their corre-
sponding reference values. The local sensitivity measures how much disturbance is needed for
a parameter to propel p53 from a normal to a no-repair region (Figure 5.2). The LSA results
(Figure 5.3) show that the parameters sy, &, d3,c, and 0 are sensitive when they are down-
regulated and the parameters dy, p1,ds, 01, and a;; are sensitive when they are up-regulated,
while the parameters ©,d;, p2,ny,kmy,co,ny, kms, and 7y are robust.

The result from LSA is acquired by keeping most of the parameters fixed. To check the
robustness of the result under the uncertainties associated with the model’s parameters, we
performed a global sensitivity analysis (GSA), which allows simultaneous and uniform varia-
tions of model parameters from their basal values. GSA (Figure 5.4) for the healthy system

is performed following Latin Hypercube Sampling (LHS), and Partial Ranked Correlation Co-
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Figure 5.4: Sensitivity analysis of model parameters using the LHS-PRCC sensitivity anal-
ysis. We evaluated the PRCC value for each parameter related to each of the seven variables.
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Figure 5.5: Temporal sensitivity analysis of the sensitive parameters obtained from Global
sensitivity analysis. Figure (i) denotes the variation of sensitive parameters for p53, while
figure (i1) denotes the variation of sensitive parameters for beclinl.

efficient (PRCC). The length of the bar represents the PRCC index of the parameter which
illustrates the linearity of the parameters for the specific output variable. The results obtained
from GSA were nearly identical to those obtained from LSA. We took a sensitivity index cutoff
of £0.4 and found that dy, 0, a,d3,a;1,kmy, and ¢ were among the parameters with the most
effect on p53. Among these parameters, km, was found to be robust in the LSA, while c; was
found to be less sensitive. The other robust parameters from local sensitivity analysis were also
found to be less significant in GSA. To find the parameters affecting the beclinl dynamics, we
took a 0.4 PRCC index cut off and found that the parameters d3,c1,k1,dg,d10,d13, and a;

were the most significant parameters.
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We performed a temporal sensitivity analysis to ascertain the variation in sensitivity of the
GSA-identified sensitive parameters for p53 and beclinl. We have measured the sensitivity of
these parameters every 100 minutes, and the results are shown in Figure 5.5. The results indi-
cated that the parameters di, d3, and o had a reduced sensitivity index at t=400 but increased
for subsequent time points. The sensitivity of the parameter 8 was lower at t=600 than at t=100,
whereas the sensitivity of the parameter km; varied across time points. a; and ¢; become more
sensitive at later time points. For beclinl, apart from d3 all the parameters showed a decrease
in sensitivity at t=600 than at t=100. The sensitivity of dz was also found to be low at t=400,

which, however, increases for the later time points.

5.3.2 Recalibration of the parameters of the pS3 module

The presence of normal p53 oscillations indicates the removal of any oncogenic hazard that
leads to DNA damage [439]. The capability of p53 to suppress DNA damage can be boosted
but also carries the threat of getting lowered by the variation of some parameters. The robust
parameters obtained from the sensitivity analysis produce no change in the normal behaviour
of p53. In other words, they maintained the goodness of the system until the 10-fold barrier.
So in an attempt to enhance the aforementioned goodness of the system, we, therefore, need
to increase the robustness of the sensitive parameters derived from LSA. We chose the robust
parameters from LSA as target parameters and increased each of them one by one to 10 fold
from their reference value (Table 5.1) and varied other parameters to measure the change in
their robustness. We repeated the same exercise by decreasing the robust parameters to 10 fold.
By removing the parameters with almost no changes (the difference between new sensitivity
and old sensitivity with a cut off +0.08), the results are shown in Figure 5.6. It has been
seen that the parameters showed no significant changes in their sensitivity level, although the
robust parameters were fixed at a higher value from their reference value. This signifies that we
can not enhance the efficiency of p53 to repair DNA damage by recalibrating the pS3 module,
and hence the system is moving towards cancer. Therefore, in case of p53 loses its DNA
damage repair ability, the system demands for other mechanisms to forestall the progression of

oncogenic activity.
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Figure 5.6: Parameter sensitivity recalibration analysis. (A) When the robust parameters
are fixed at ten fold up, than their reference value Table 5.1. The blue colour represents the old
sensitivity value, and red represents the new sensitivity value observed due to the change in the
robust parameter values. (B) When the robust parameters are fixed at ten-fold down than their
reference value Table 5.1. The color description is same as Figure 5.6A.
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5.3.3 Restoration from disease to healthy state: the elucidation of p53-

beclinl analogy

Provided that the recalibration analysis of the p53 module parameters was insufficient to pre-
vent the DNA damage and the oncogenic activity now creates anarchy to the tissue homeostasis,
we trace the effect of p53 on the autophagy process via the autophagy inducer beclinl. The
objective was to see if the progression of cancer can be mitigated by modulation of the beclin1-
induced autophagic cell death when the system goes to the no-repair region.

In cancer, autophagy plays a dual role in the promotion and subjugation of tumours depend-
ing on the stage of development and the type of tumour [440]. The loss of beclinl has been
reported to be associated with hepatocarcinoma, lung, ovarian, breast, and testicular cancer
[27, 189, 441]. DNA damage induces stress in the cell, to which the autophagy level gets in-
creased. However, tumour cells use autophagy to withstand nutritional deficiencies and hypoxic
conditions [442]. That being said, an abnormal rise in the autophagy level will eventually result
in cell death. For that purpose, in our model, we have tried to find out possible mechanisms to

propel beclinl beyond the normal region.

5.3.3.1 Local sensitivity analysis of beclin1

We here carried out a local sensitivity analysis on beclinl at the disease state (i.e., where p53 is
abnormally high, and beclinl is at the lung cancerous region as defined by [438]). We perturbed
a parameter over a range of £10 fold from its reference value while keeping other parameters
fixed. A parameter is called sensitive only if its perturbation can increase beclinl beyond its
normal region. We have found six such parameters and are shown in Figure 5.7. The bar
length, i.e., the orange portion in the figure, represents the region to which a parameter can
hold beclinl in its normal region. If we vary these parameters within the orange region, beclin1
will remain in the normal region only. However, if a parameter is pushed beyond the orange
region, the becinl level will reach the excess region. For example, if we decrease the parameter
de by 6.0714 fold, the corresponding beclinl level will enter the excess region. Similarly, if
we increase the parameter k; by 3.98 fold, it will propel beclinl to the excess region. It is

seen from the figure that the association rate of BCL2:beclinl complex, di3, and the basal
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Figure 5.7: The figure shows the fold change of the parameters at ¢ = 0.045 for which
beclinl exceeds the normal level. The orange portion denotes the region when beclinl is in
the normal region beyond which beclinl reaches the excess region.

production rate of AMPK, k3, require less than 2 fold variation from their reference value to
increase the beclinl level. Throughout the analysis, the p53 level was kept at the no-repair

region by keeping c; = 0.0450.

5.3.3.2 Two-dimensional parameter spaces analysis

To further investigate the association of parameters in increasing beclinl level following DNA
damage, we performed a two-dimensional parameter spaces analysis (Figure 5.8). Here, we
varied two parameters from their reference value while keeping the other parameters fixed.
In their study, Liu et al.[438] have described the level of beclinl in normal and lung cancer
tissues. To see the effect of the variation of two parameters on beclinl, we have subdivided the
parameter space into four regions. The first region contains those parameter values for which
beclinl remains below the lung cancerous region, the second region contains the parameter
values for which beclinl is in the lung cancer region, the third region contains the values for
which beclinl level exceeds the lung cancerous region but remain within the normal region.

Finally, the last region for which beclinl exceeds the normal region and will pave the way for
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Figure 5.8: The figure shows the change in steady-state beclinl level upon variation of
two parameters at a time. Based on this steady-state value of beclinl obtained after each
simulation and the reference value of beclinl in normal and lung cancer tissues as given in
reference [438], we partitioned the region into four layers. According to Liu et al. [438], the red
and cyan regions denote, respectively, the beclinl level in lung cancer (2.6 < beclinl < 4.305)
and normal tissues (4.306 < beclinl < 7.875). The yellow portion denotes a very low level
of beclinl (beclinl < 2.5), while the blue portion indicates that the beclinl level is more than
its normal value (beclinl > 7.876). Throughout all the simulations, the p53 level was kept at
no-repair region.

autophagic cell death. The basal production of p53, s;, was varied against all the parameters
from Figure 5.7. The variation of different parameters produced different effects on the beclin1
dynamics. The variation of basal production of p53 (s1) with the production of beclinl by
AMPK (a;) showed the dominance of the latter. A similar effect was seen when s; was varied
with the basal production rate of AMPK, ki, and with the basal production of beclinl, k4.
Again, the variation of s; with the transcriptional degradation of BCL2 by p53 (dg) showed
that if the basal level of p53 increases, it will dissociate the BCL2:beclinl interaction to induce

autophagy. A similar effect was observed when s is perturbed with the degradation rate of

beclinl by BCL2 (d;3). All these effects were captured by keeping p53 at the no-repair region.
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5.4 Discussion

One of the leading causes of cancer deaths has been the rising mortality rate due to lung cancer.
Given the substantial improvements in diagnosis and service, lung cancer prognosis remains
low, as in most cases. It is detected during the later stages, which curb therapeutic options
and contribute to poor outcomes. This demonstrates the importance of early diagnosis of lung
cancer, leading researchers to identify biomarkers that could be used for early detection and
enhance their understanding of lung cancer. In this paper, we have studied the interplay be-
tween DNA damage and autophagy in lung cancer and have proposed a mathematical model to
identify potential parameters/factors that may be fruitful in restoring the system’s healthiness.

DNA damage persists across a variety of endogenous and exogenous factors in all organ-
isms and appears to play a prominent role in many biological processes, which eventually lead
to cancer. Amidst the plethora of proteins that take part in the DNA damage response network,
we have chosen the guardians of the genome, the most commonly mutated protein in cancer,
p53, and its downstream regulators that eventually connect autophagy to the DNA damage re-
sponse network. The concentration of p53 protein within the cell is tightly regulated by the dy-
namic duo of MDMX and MDM2. The interactions between the triplet of p53-MDM2-MDMX
have been experimentally verified. The oscillatory responses of p53 due to the interaction with
MDM?2, which get boosted by the presence of MDMX, have been observed in literature [423].
This oscillation refers to the DNA damage, which results in the elevation of p53 levels due to
post-translational modification of the p53 polypeptide [443]. This stimulates the DNA damage
repair process, which upon completion, is followed by the degradation of p53 by MDM2 and
MDMX. The constant DNA damage in the cell elevates the p53 level and, thus, the level of
MDM?2 and MDMX, and these activation-degradation scenarios give rise to pS3 oscillations.
Our model successfully portrayed this oscillatory behaviour of p53 (Figure 5.2). However, not
all DNA damage is repairable. When the DNA gets severely damaged, the cell initiates cellular
senescence, which results in an elevation of p53 level [444]. Our model has also addressed
this phenomenon, seen by the black line in Figure 5.2. Our model has thus addressed and
effectively substantiated the p5S3-DNA damage complex interaction.

Following any DNA damage, the p53 level upsurges, and it induces arrest within the G1
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phase of the cell cycle [445]. Bar et al. [433] have stated that the severity of DNA damage can
be correlated with the changes in p53 concentration with time. p53 acts as a tumour suppressor.
It can repair DNA damage and prevent the path, which eventually leads to various types of
diseases, including cancer. The ability of pS3 to repair the DNA damage is expressed through
the normal oscillations as shown by the green curve in Figure 5.2. Again, following DNA
damage, the elevation of the p53 level has also been reported in literature [446]. Here, we
have addressed the first condition as the normal p53 level and the latter as the no-repair level
of p53. The intermediate phase, where the p53 level elevates but eventually returns to normal,
indicating a repair of DNA, is considered a repair phase in our study. The appearance of pulses
is an elucidation that DNA damages are being repaired in the system. We first search for the
important factors that can exacerbate the DNA damage-suppressing capability of p53. This
was obtained by implementing local and global sensitivity analysis on the p5S3 module. The
global sensitivity analysis identified crucial parameters that are influential in the regulation of
pS3 dynamics, which include the degradation of p53 by MDM2 (d;), half-maximal rate of
MDM?2 (0), the stress coefficient ¢, basal degradation rate of p53 (a;;), Michaelis constant
in the production of MDM?2 via MDMX (km2), the degradation rate of MDM2 (d3) and the
production rate of MDMX (cy). Our findings justify the experimentally observed strong effect
of the MDM2 on p53. MDM2 retains an ascendancy in the regulation of p53 rates, which is
observed by the presence of 0, d3, and d; as key parameters. Again, due to the threat, they
pose towards DNA, following any stresses, the level of p53 increases, which justifies the stress
coefficient & as a crucial regulator of p53. The rate of p53 degradation (a;;) prevents it from
increasing its level. Likewise, the effect of MDMX on p53 can not be overlooked because it
directly or indirectly monitors and regulates the level of p53, as evidenced by the emergence of
the sensitive parameters ¢y and km,. The temporal sensitivity analysis (Figure 5.5) indicated
that the degradation rate of pS3 by MDM?2 is the most sensitive parameter throughout the time
points. It is also seen that the sensitivity index of these parameters varies with time. This may
result from the complex interactions between pS3, MDM?2, and MDMX. From a biological
perspective, this variance may be the result of the presence of numerous factors affecting the

dynamics of p53 along with MDM?2 and MDMX.
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Again, an upward shift of the basal production level of p53, s, will increase the concen-
tration of p53. However, each parameter’s effect, along with s, needs to be strictly monitored
to control their effect on p53 as it determines the cell fate. A transition from normal to no-
repair region will indicate a menace to tissue homeostasis. In contrast, an opposite transition
will indicate a possible recovery of the system. Addressing the former, we have used local
sensitivity analysis to find out the range for each parameter beyond which the p53 level can
shift to the no-repair region from the normal (Figure 5.3). Decrease in the stress coefficient,
o, degradation of MDM2, d3, stress-dependent production of MDMX, ¢, and half-maximal
rate of Mdm?2, 6, while an increase in the degradation rate of MDMX, d4, was a crucial factor
in driving p53 to no-repair region. MDMX ablation will shift p53 beyond its normal state.
Literature has reported p53-dependent embryonic death in the absence of MDMX [447]. Since
MDM2 acts as the principal antagonist of pS3, a decrease in its level will surely uplift the p53
level. Our model suggests that three factors mediate this uplift, directly by increasing MDM2
degradation and decreasing its half-life and indirectly by decreasing MDMX production. Both
of these results correlate with literature findings [425, 448].

The normal oscillations of p53 denote that the DNA damage is being repaired. To keep the
system in a healthy state, it is, therefore, necessary to make sure that p53 remains in the normal
region and its oscillations do not vanish. The aim of the sensitivity analysis was to foresee the
existence of any parameters of the p53 module which can boost the efficiency of p53 to repair
the DNA damage. Although we derived some robust parameters, there was a set of sensitive
parameters capable of abolishing the p53 oscillations. The recalibration analysis was an effort
to diminish this effect of sensitive parameters on p53. However, we observed that there is no
significant effect on the robustness of the sensitive parameters, briefing the fact that p5S3 can
no longer suppress cancer due to the loss of oscillations. This limitation of the pS3 module
necessitates the need to find an alternate pathway in case p53 loses its suppression capability,
and it is now challenging to reacquire it through the recalibration of the parameters of the p53
module.

Evidence in the literature suggesting the dual role of autophagy in cancer is pervasive. The

cancer cells confide in autophagy to compensate for high metabolic demand due to increased
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cell proliferation [449]. Autophagy provides nutrition to cancer cells through the lysosomal
recycling of intracellular nutrients. To restore homeostasis, this protective effect of autophagy
on tumour cells must be annihilated, which can be attained by inducing an excess level of
autophagy to pave the way to autophagic cell death. The expression of the key autophagy
regulator beclinl was found to be low in lung cancer [438]. To induce autophagic cell death, its
level will have to be increased. The induction of autophagy following DNA damage was found
to be DRAM-dependent [450], but to our knowledge, no study has linked beclinl-induced
cell death with DNA damage. Here, we have hypothesised that the changes which happen
following DNA damage due to lung cancer can be implemented in a beneficial way to get rid
of the culprit cells. The global sensitivity analysis resulted in seven sensitive parameters of
beclinl. The result obtained highlighted the importance carried by AMPK, p53, and BCL2 on
the beclinl dynamics. The temporal sensitivity analysis showed a decrease in the sensitivity at
the last time points of all but one parameter (d3). From a biological perspective, this variance of
sensitivity may result from the presence of numerous pathways that always monitor the levels of
beclinl. For example, the association rate of the BCL2:BECLIN1 complex negatively regulates
the function of beclinl, and hence the autophagy level gets reduced. However, when the body
needs nutrition, various factors like HMGB1 [451], BNIP3 [430] binds to BCL2 or beclinl and
inhibits this interaction. We performed a local sensitivity analysis on beclinl by retaining p53
in the no-repair region and thus emulating a lung cancerous system, we quest for parameters
that could increase beclinl beyond its normal level that will eventually lead to autophagic cell
death. We have identified six such parameters which, if perturbed beyond the range specified,
will increase the beclinl level (Figure 5.7). The AMPK dynamics and BCL2 dynamics were
fruitful in altering the beclinl level. The effect of p53 was also vital as both of its gateways to
autophagy, i.e., the p53-mediated degradation rates of AMPK and BCL2 were found crucial in
enhancing the beclinl level. We next carried out a 2D-parameter space analysis to determine
the effect of variations of parameters in combination to induce autophagic cell death. Since
the literature has reported that DNA damage and autophagy go hand in hand, we vary all the
six parameters of Figure 5.7 with the basal production of p53 (Figure 5.8). We have observed

that the p53 level plays a significant role in the increase of the beclinl level. Following DNA
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damage, the basal production rate of pS3 increases as a part of the DNA damage response
program. From the two-dimensional parameter space, we can see that, as the basal level of
p353 increases, the parameters obtained from Figure 5.7 required minimum variation from their
base value than the previously found ranges to uplift the beclinl level and hence, are capable

of inducing autophagic cell death in earlier phases of lung cancer.

5.5 Conclusion

par In this paper, we have formulated a mathematical model to study pS3-mediated autophagy
in lung cancer. To acquire a comprehensive understanding of the association between p53 and
autophagic cell death, specifically, how it converts the chaos generated by DNA damage into
serendipity, was crucially important to decipher. Our study has provided the mechanism to
understand this association by identifying the parametric range required to initiate cell death in
lung cancer. We have also identified the parameters which are capable of sustaining the DNA
damage repair efficiency of p53.

Even if a mathematical model can not grasp everything present in a real system, it can still
put forward conditions, parameters, or factors that could possibly control the system. In that
sense, we claim that the parametric range we have defined is sufficient to induce autophagic cell
death and is capable of mitigating cancer progression. Some of our findings are consistent with
the established literature. Taken together, we conclude that our study adds a new dimension to
the DNA damage-p53-autophagy interplay in lung cancer in the scenario when the p53 level
fails to suppress the DNA damage and sheds light on the possible way to induce an excessive

level of beclinl to pave the way for autophagic cell death.






Conclusions and future directions

6.1 Conclusions

The preponderance of cellular components exerts their roles via interactions with other cellular
components positioned within the same cell, between cells, or even between organs. With ~
25,000 protein-coding genes and an undetermined number of different proteins, the inherent
complexity of the emergent network, the PPI network, is intimidating. This inter- and intracel-
lular interconnectedness suggests that the influence of a single genetic anomaly is not limited to
the behaviour of the proteins that carry it but can propagate through the entire network and alter
the activity of proteins that do not have the abnormality. Determining the phenotypic effects
of a disease’s characteristics requires a comprehension of these perturbations and, eventually,

the complicated interaction network between proteins. The protein perturbations are crucial
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in diseases and must be captured and decoded to comprehensively understand the disease pro-
gression, which is an unequivocal result.

Autophagy is a quintessential biological process that breaks down unwanted cellular con-
stituents and thus plays a crucial role in maintaining cellular homeostasis. Due to its immense
importance in the modulation of cellular fate, the process of autophagy remains at the cross-
roads of various cellular processes and signalling pathways. The tracking of signals that mod-
ulate autophagy, and genes, which have a role in the autophagy process, has encouraged the
detection and controlling of the autophagy pathway. Any hindrance to either of them may
lead to various diseases. In the last decade, there have been eminent progress in understand-
ing the role of autophagy in different processes, but the underlying mechanism that leads to
the observed phenomenon is still far from being captured. This is because autophagy is a very
complex process and exhibits different behaviours depending upon the situation. To understand
the underlying complexity, comprehensive knowledge of autophagy is important, necessitating
the implications of sophisticated methodology to unravel this complexity.

The present thesis aims to investigate protein perturbations in diseases with an emphasis on
the autophagy process using network biology and mathematical modelling approaches. As
discussed in Chapter 1, systems biology has played a crucial role in unrevealing the asso-
ciation between autophagy and other biological processes and diseases by investigating their
protein-protein interaction network. It has also helped provide mechanistic insight into the pro-
cess of autophagy with the help of mathematical modelling approaches. Despite being studied
for decades, there exist many diseases in which the perturbations of autophagy-related pro-
teins were not properly investigated. In Chapter 2, we used the interplay between autophagy
and diabetic retinopathy (DR) to identify novel autophagy-related targets in DR. We addressed
this crosstalk through a multilayer relatedness approach. The analysis identified three novel
autophagy-related proteins, TP53, PIK3R1, and HSP9OAA1, which can modulate the progres-
sion and pathogenesis of DR. These proteins were significant in many aspects. Firstly, they
were not previously reported as DR-associated. Secondly, they were autophagy-related, i.e.,
they can modulate the autophagy process, either increasing or decreasing it. Thirdly, they were

hubs, high-betweenness, and high-closeness nodes in the autophagy-DR interactome. Fourthly,
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in the co-expression analysis using WGCNA, where we investigated gene-gene relatedness, we
found that these genes were present in the disease-related modules. Fifthly, when we examined
the PPI network of the DEGs of DR in a clinical dataset, we found that some of these proteins
are DEGs. Also, a few among them were found to act as meditators, the proteins acting as a
bridge to connect the disconnected components. In the co-expression and DEG network, these
proteins were also found to be hubs, echoing their topological importance. Finally, we applied
the RWR algorithm by taking the known disease proteins as seed and found that PIK3R1 ob-
tained the top, TP53 fifth, while HSPO9OAA1 received the 25th position in the RWR ranking.
This suggests that these proteins remain in close proximity to the known disease protein in
DR. To summarise, these proteins are critical to regulate the DR interactome and shed light on
previously unknown aspects of the disease.

However, comprehending the global changes in disease and identifying its targets necessitates
a full understanding of the entire system’s perturbations compared to exploring a subset of
the perturbations. To this purpose, in Chapter 3, we have applied a de novo methodology to
identify potential targets in NASH. Our approach of harnessing and integrating context-specific
molecular networks was the first of its genre. Using this, we found three possible targets for
NASH and eight for NAFL. Interestingly, we found that among the three targets for NASH, one
was associated with autophagy. These potential targets exert their effects at both the gene and
metabolic levels and reverse disease-associated gene signatures. We have demonstrated that
inhibiting these potential therapeutic targets impacts a number of crucial metabolic processes
involved in steatohepatitis, as well as proteins engaged in inflammation and fibrosis develop-
ment. This proposed methodology lays out a pragmatic framework for identifying potential
therapeutic targets with a higher probability of success. It will save tremendous resources and
time during the drug discovery process and be used as a general pipeline to identify targets in
any in silico studies.

An intriguing fact about proteins is that the proteins associated with a disease always remain in
close proximity, and only a few of them gets identified as pathogenic. However, the crosstalk
between all these proteins governs the development and progression of diseases. There are

many diseases in which various potential target proteins are identified in vitro/ in vivo and are
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taken to clinical phases. Still, none of them eventually crosses all the clinical trial phases.
Therefore, it won’t be an embellishment to assert that the existing disease proteins fail to cap-
ture the mechanism governing the disease progression. Addressing this and taking NASH as an
example, in Chapter 4, we have incorporated a methodology, RWRMLA, which first identifies
the proteins which remain in close proximity to the disease proteins; among them, it identifies
the proteins that not only have the classification capability but also are capable of controlling the
disease network and finally investigates the capability of these proteins to alter the metabolic
landscape. A protein which passes through all these is termed the potential target of the disease.
RWRMLA identified four proteins as potential therapeutic candidates in NASH. Here also, we
found that the identified proteins are associated with the autophagy process. However, regard-
less of the identified target proteins implicated in potential significant disease pathways, their
efficacy must be substantiated through follow-up investigations and evaluated through exper-
imental inquiry. RWRMLA is an efficacious generic methodology and can be applied to any
metabolic disease to identify potential targets.

In Chapter 5, we applied a mathematical modelling approach to get mechanistic insight into
some autophagic genes in cell proliferation and cell death. Here, we have formulated a math-
ematical model to study pS3-mediated autophagy in lung cancer. To acquire a comprehensive
understanding of the association between p53 and autophagic cell death, specifically, how it
converts the chaos generated by DNA damage into serendipity, was crucially important to de-
cipher. Our study has provided the mechanism to understand this association by identifying the
parametric range required to initiate cell death in lung cancer. We claimed that the parametric
range we have defined is sufficient to induce autophagic cell death and can mitigate cancer pro-
gression. Some of our findings are consistent with the established literature. Taken together,
we conclude that our study adds a new dimension to the DNA damage-p53-autophagy inter-
play in lung cancer when the p53 level fails to suppress the DNA damage and sheds light on the
possible way to induce an excessive level of beclinl to pave the way for autophagic cell death.
Overall, the work presented in this thesis proposes several novel potential targets in NASH
and diabetic retinopathy and establishes beclinl as a potential therapeutic intervention in lung

cancer using a mathematical model. We found the dominance of autophagic proteins in these
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diseases and proposed that targeting these proteins will mitigate the disease progression. On
the other hand, the methodologies developed in this thesis are general and can be applied to
study any disease. In conclusion, the work given here can aid in formulating more effective

treatment regimens and the drug development process.

6.2 Future scope

The work presented in the thesis can further be extended from various aspects of modelling and
network analysis perspectives. In chapter 5, we have proposed a mathematical model to ad-
dress the interplay between DNA damage, autophagy, p53, and lung cancer. Here, we showed
that increasing beclinl from its basal level could be a potential therapeutic intervention in lung
cancer. The importance of beclinl, and thereby, autophagy, can be analysed using a large-scale
clinical dataset of lung cancer and incorporating various network analysis approach. Addition-
ally, using inherent properties, like delay and stochasticity, the complexity of the model can
further be increased to get a more realistic portrayal of lung cancer. In chapters 2, 3, and 4, we
used network biology approaches to identify potential therapeutic targets. The identified targets
can further be evaluated using in-vitro or in-vivo studies to gain insight into their therapeutic
efficacy. Moreover, to get an insight into how the interplay between these targets is governing
the respective disease dynamics, mathematical modelling-based studies could be incorporated.
The process of autophagy has been a prominent focus of research as it is still a puzzle with
various missing pieces due to its complex mechanism in numerous biological processes and
diseases. From a network analysis perspective, temporal analysis of genes is done in diseases
like obesity, but none has been reported in autophagy. Such a study will help to decipher the
change in the behaviour of autophagy-related genes with respect to time and identify potential
drug targets. Again, using computational drug discovery approaches can also be incorporated
to investigate crucial factors like druggability. This study can also be facilitated by the mathe-
matical modelling of the identified targets. Such a pipeline-based study in autophagy is lacking

and will surely help to provide fruitful insights into the autophagy process.
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