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Abstract

The proper functioning of the cellular mechanisms that underlie the makeup of living systems

is governed by the intricate interactions between the proteins, which are frequently perturbed in

disease conditions. The advancement of high-throughput technologies has led to an unprece-

dented wealth of quantitative data to trace these perturbations. It is of utmost importance to

identify the key set of proteins responsible for modulating these perturbations to obtain the po-

tential targets in a disease. Notably, systematic efforts to detect these core sets of proteins have

spurred the expeditious growth of network biology, providing a framework ideal for describ-

ing disease characteristics and predicting prospective therapeutic targets. In addition, compre-

hending how these spatially and temporally dispersed perturbations culminate in imperative

biological processes is crucial to understanding cellular homeostasis and, by extension, dis-

ease pathogenesis. One such cardinal biological process is autophagy, which remains at the

crossroads of numerous other biological processes and pathways. Autophagy plays a crucial

role in maintaining cellular homeostasis by degrading unwanted materials like damaged mi-

tochondria and misfolded proteins. However, the contribution of autophagy toward a healthy

cell environment is not limited to the cleaning process. It also assists in protein synthesis when

the system lacks the amino acids’ inflow from the extracellular environment due to diet con-

sumption. Reduction in the autophagy process is associated with diseases like cancer, diabetes,

non-alcoholic steatohepatitis, etc., while uncontrolled autophagy may facilitate cell death. In

many diseases, therefore, Autophagy is seen to act as Janus.

Nevertheless, despite decades of prominent research focus, it is still a puzzle with various
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missing pieces due to its complex mechanism in numerous biological processes and diseases.

This necessitates the integration of systems biology into the autophagy scenario, which can in-

vestigate a system both in pieces and as a whole. The veracity of these investigations hinges on

their capacity to capture effective system dynamics. The development of a purely theoretical

algorithm may find crucial nodes in the network by resolving all spatiotemporal scales, often

at a cost that ignores the effect on the clinical characteristics of a disease. At the same time,

their findings may not allow for generalisation. Conversly, an algorithm that investigates only

the primary network properties, or clinical characteristics, is limited by the inability to look at

the in-depth association between proteins. Therefore, an unmet need exists for a systematic

framework that bridges protein perturbations, large-scale theoretical simulations, autophagy,

and clinical characteristics of a disease to learn effective disease pathophysiology. Addressing

these piers, in this thesis, we have incorporated mathematical modelling and network biol-

ogy approaches to develop computational frameworks to investigate the protein perturbations

in diseases with an accentuation on the autophagy process. We first developed a framework

for identifying autophagy-related targets in diabetic retinopathy by forming algorithmic alloys

between disease and autophagic proteins. Investigating the perturbations of proteins at both

the gene and metabolic levels and using network controllability, we developed a methodology

to identify potential targets in NASH. In the same disease, we next incorporated a guilt-by-

association methodology, machine learning, constrained network controllability, and metabolic

analysis to identify another set of potential targets. Intriguingly, we noted that a subset of

the targets identified by both frameworks was either autophagy-related or was surrounded by

autophagy-related proteins, suggesting an autophagy-mediated mode of operation for these tar-

gets. Finally, we formulated a mathematical model to investigate the mechanistic understand-

ing of the autophagy process, where we addressed the interplay between DNA damage and

Autophagy. Overall, the study discussed in this thesis suggests some potential targets and ther-

apeutic interventions which are either directly or indirectly autophagy-related. On one hand,

the frameworks used in this study exploited a quintessential biological process by using an

extensive clinical dataset and mathematical modelling, while, on the other hand, the protein

perturbations at the gene and metabolic levels were investigated to identify potential therapeu-
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tic targets. The proposed methodologies in this thesis are general and can be applied to study

any potential disease. We believe that learning the disease dynamics with these frameworks

will provide potent novel modalities for accurately targeting diseases and, thereby will assist in

the advancement of the drug-discovery process.
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1
Introduction

1.1 Autophagy

"Frenemy"- a friend who may turn into a potential enemy. This is how a cell might introduce

autophagy to its compartments and cellular constituents. This crosstalk is necessary because

the process of autophagy, which is otherwise helpful, may turn into Thanatos if the situations

inside the cell or its immediate neighbourhood go berserk [1].

Autophagy refers to the process of self-eating. The term derives from the Greek word "Auto",

which means self and "phagy", which means death. However, just as we cannot say Mozart was

only a musician or Da Vinci was only a painter, enclosing autophagy to this simple definition

does not justify its role. But how and why does autophagy need to play a role in the cells? Let

us first go through what if it doesn’t.

1
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More than 200 years of biochemical research have gathered a pile of data to address every

minute detail of the formation of proteins and their functions. Interestingly, like autophagy,

the name protein also comes from the Greek word "Proteios", which means "first or foremost".

The name unequivocally justifies their importance. They are the building blocks of the cell

and carries out the necessary task to maintain the structure, and functions of the tissues and

organs of the body. Proteins need to assemble themselves with a sequence of amino acids to

perform their function. This process, known as the central dogma of molecular biology, starts

with the transcription and ends with the translation of proteins. As soon as the protein attains

its structure, it starts performing its assigned function whenever the need occurs. But what

happens if a protein does not acquire its necessary amino acid sequence? Does such a situa-

tion even exist? The answer is yes. Every 1 in 7 proteins does not get to perform its function

due to the incorrect occurrence of amino acid sequence, occurring due to factors like muta-

tions, ribosomal error, temperature and pH etc. Such proteins are termed misfolded proteins,

and they remain in the cytoplasm, idle. This leads to two types of problems inside the cell.

Firstly, shortage of proteins to do a specific task. For instance, if the proteins responsible for

metabolising sugar continuously misfold, the cell will grow slowly due to the lack of energy.

Another problem is the contortion of the misfolded proteins into shapes unfavourable for the

cellular environment. Both these problems lead to multiple diseases. Cystic Fibrosis, Marfan

syndrome, and Tay-Sachs disease are among the diseases caused by the first scenario, while

Huntington’s, Parkinson and Alzheimer’s disease are to be named among the diseases caused

by the second.

However, it is not only the proteins, which, despite being essential, may act harmful when not

folded properly. Another type of such essential to lethal transition is shown by mitochondria,

the powerhouse of the cell. Initially identified and declared as an elementary organism by Alt-

man in 1890 (however, he named them bioblasts), mitochondria finally got their name from

Carl Benda in 1898, which is acquired from two Greek words, “mitos” (thread) and “chon-

dros” (granule). It plays a multifaceted role in cell biology due to its involvement with energy

production, apoptosis activation, calcium homeostasis, phospholipid synthesis, and multiple

metabolic pathways such as fatty acid activation, gluconeogenesis etc. However, due to the
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mutation in nuclear or mitochondrial DNA, mitochondria lose their function and pave the way

to various clinically heterogeneous diseases, which primarily affect oxidative phosphorylation

resulting in a decrease in ATP production. Damaged mitochondria can release an excessive

amount of reactive oxygen species (ROS) to the cytosol, increasing inflammation. Some such

diseases include Leigh’s syndrome, deafness, diabetes etc. Can a cell overcome these hiccups?

It, of course, can not survive without these important molecular/ organelles. Therefore elimi-

nating them at the early stage is beyond a fact to consider. So what is the mechanism by which

cells keep these hiccups at bay and keep on performing their functions? The answer is simple,

if anything goes berserk, eat it, and that is where the cellular housekeeping process autophagy

comes in.

As already mentioned, cells experience a frequent appearance of unwanted constituents in the

cytoplasm. Necessitating the need for their removal, cells initiate a series of signalling events

which trigger the process of autophagy. Autophagy then takes this debris to the lysosome,

where they are degraded, and different forms of amino acids are released, which are again used

by the body in the construction of proteins and other cellular functions. In other words, when

the toxicity has veiled the pool of intracellular tranquillity, autophagy activates, and, after a

cascade of events, the cells gladly discover the debris outstretched at the lysosome, being ready

to be turned into nutrients.

However, although easy it sounds, autophagy is a complex biological process which needs the

synergetic association of numerous proteins for successful completion. It is divided into three

parts, i) macroautophagy, ii) microautophagy, and iii) chaperone-mediated autophagy. While

the three of them morphologically differ, the motive of the three types are the same, they differ

in how they degrade the intracellular debris. For instance, in macrophagy, a double membrane

structure called autophagosome is formed, which engulfs and carries the cargo to the lyso-

some. This structure is not required in microautophagy, and the cytoplasm directly fuses with

the lysosome. Chaperone-mediated autophagy, on the other hand, can act only on a certain type

of protein and directly takes them to the lysosome for degradation. By the term autophagy, we

will be referring to this form only.

Since we now know its importance and about whom we should be talking, let’s go back a few
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decades and take a brief snap at the history of autophagy.

1.1.1 History of autophagy research

Autophagy was a constant buzz in cell biology even before it was discovered. In the 1860s,

there was a concept of having a self-nourishment system in the human body, which allows the

individual to survive by eating itself when a nutrient deficiency occurs [2]. In 1859, in a French

journal titled “Des Seances de I academic de Science” (Session of the academy of sciences),

an impactful article containing the term “autophagie” was published by French physiologist

M. Anselmier. Addressing this, on the 14th of March, 1860, an article was published in the

New York Times under the section “Scientific Gossip in Paris” where they used the phrase

“cannibalism reduced to a civilized and humanitary institution” to summarise the work pub-

lished by M. Anselmier. In paris, the impact of the article of Anselemier led to the inclusion of

the word autophagie in the dictionary “NOUVEAU DICTIONNAIRE DE MÉDECINE ET DE

CHIRURGIE PRATIQUES” [2].

However, autophagy, as we know it today, was first defined by de Duve in 1963, which in-

volved serendipity, and some observations gleaned from experiments of many scientists. In

1955, a renowned Belgian cytochemist, Christian de Duve, while studying the effect of insulin

on rat liver cells, discovered the presence of a novel organelle, which he named “lysosome”,

referring to its “lytic” nature [3]. Soon this became a topic of discussion, and electron micro-

scopic studies were employed to assess their role further. These studies revealed the fusion of

phagosomes and lysosomes to degrade foreign materials. Following this, in 1957, the experi-

ment by S. Clark et al. [4] and Novikoff et al.[5] observed some irregular-shaped membrane

structures with mitochondria, ribosomes and ER. These structures were found to increase with

increasing stress and chemical treatments. Not many days later, the existence of autophago-

some was brought to light by the experiment of A U Arstila and B F Trump [6]. Riding on

these facts, de Duve presented a report at the Ciba Foundation Lysosome Symposium held in

London in 1963 [7]. Entitled ’The concept of Lysosomes’, the report delineated endocytosis

and exocytosis and determined the functions of lysosomes on heterophagy and autophagy. The

concept of autophagy was proposed for the first time, which was described as the degradation
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of cytoplasm and organelles via autophagosomes. Digging it deeper, de Duve and Wattiaux

published a review in 1966, where they predicted the function of autophagy and stated that

through fragmentation and self-digestion, cells use autophagy when there is nutrient deficiency

or self-cleaning of dead cells is required. In 1976 Christian de Duve, due to his discovery of

lysosome and peroxidases, was awarded the Nobel prize for Physiology or Medicine.

Since its discovery, the process of autophagy has passed through numerous glorious years

where it even found a noble prize given to two of its investigators. Below, the timeline of au-

tophagy is provided, followed by a detailed description of the events that complete autophagic

flux.

Autophagic research can be divided into two parts. From its discovery to 1992, the first part

can be termed the "pre-ATG" era. The years 1992-till now form the "post-ATG" era. Before

the advent of ATG, autophagy was typically explored using biochemical, cellular physiologi-

cal, and ultrastructural methods. In this era, in the 1960-the 80s, researchers investigated the

association of protein turnover in lysosomes. For instance, U. Pfeifer et al. investigated the au-

tophagic turnover of long-lived proteins and revealed the association between circadian rhythm

and autophagy [8, 9]. They observed that autophagy is inhibited by feeding while induced by

fasting between meals, underpinning the fact that this process is strongly modulated by nutrient

conditions. Their study also revealed that the liver loses 30-40% of proteins due to degradation

during a starvation period of 48 hours. Two crucial findings in this era were the inhibition of

autophagy by amino acids [10] and insulin [11]. The latter established the hormone as a legiti-

mate physiological inhibitor of autophagic degradation and also served as a tool for calculating

the average lifetime of the autophagic vesicles based on their rate of demise. Another notable

feat was achieved by Seglen et al. [12] when they reported that 3-methyladenine could specif-

ically inhibit autophagy without affecting protein synthesis or intracellular ATP levels. This

has become a classic autophagy inhibitor since then. Again, certain types of proteins can be

directly sequestered from the cytosol to the lysosomal membrane for destruction without the

aid of autophagosomes. This type of autophagy, as already mentioned, is called Chaperone-

mediated autophagy and was discovered by J. Fred Dice [13]. In this era, however, the genes

and proteins specifically associated with autophagic processes remained unidentified.
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A quantum leap in autophagy research came from a yeast genetic screen performed by Yoshi-

nori Ohsumi, marking the start of the post-ATG era. In 1992, Ohsumi et al. discovered that nu-

tritional shortage triggered an autophagic breakdown in Saccharomyces Cerevisiae [14]. This

discovery substantially benefited autophagy research. However, the phenotypes as well as the

physiological roles of the autophagy-deficient mutants were yet to be understood at that time.

In 1993, Ohsumi and Tsukada discovered Apg1, the first autophagy-deficient mutant, by using

light microscopic selection to acquire mutants, which, under nitrogen starvation conditions, fail

to accumulate autophagic bodies [15]. Although this mutant thrived properly in a nutrient-rich

environment, it perished after prolonged nitrogen deprivation. Using this phenotype as a pre-

liminary screen, they discovered approximately one hundred autophagy-deficient mutants, and

their genetic analysis showed fifteen complementation groups, leading to the discovery of sev-

eral autophagy-related genes, coined as APG. Within a span of a few years, various autophagy-

related genes were discovered by employing independent yeast genetic screens, which elon-

gated the list of Ohsumi’s APGs. For instance, Michael Thumm et al. isolated six autophagy-

deficient aut mutants in 1994 by employing antibody staining to identify colonies with impaired

cytoplasmic enzyme degradation [16]. Due to its comparable membrane properties, the Cyto-

plasm to Vacuole Targeting (Cvt) pathway has been explored extensively as a model for selec-

tive autophagy [17]. In 1995, D. Klionsky and his group isolated several Cvt mutants defective

in this pathway, which were shown to be predominantly allelic to APG mutants [18]. Various

other labs also worked on this domain in different species of Yeast [19–22]. For example, in

Pichia pastoris, William A. Dunn et al. [21] showed that glucose-induced microautophagy

needs the alpha-subunit of phosphofructokinase, while Suresh Subramani et al.[20] investi-

gated the Peroxisome Degradation by Microautophagy. There was a high overlapping between

the autophagy-related genes identified in these studies. However, ascribing mutants their own

names created a confusing circumstance. For example, APG1, PAZ1, AUT3, GSA10, CVT10,

and PDD7 all refer to the Saccharomyces cerevisiae gene now known as ATG1. To mitiigate

this, later in 2003, all these genes were brought under the term “autophagy-related genes”

(ATGs) [23]. Amidst this buzz of APGs, in 1994, Rapamycin silently entered autophagic re-

search when Meijer et al. discovered that Rapamycin attenuated the inhibitory impact of amino
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acids on autophagic proteolysis [24]. This was indeed a crucial discovery as the mammalian

target of Rapamycin (mTOR) was later found to play a quintessential role in autophagy.

The ATG proteins work in several functional units. Numerous studies looking into these rela-

tionships have discovered multiple conjugate systems. In 1998, the first such system, the Atg12

conjugation, was discovered by Ohsumi et al. [25] which was followed by the Atg8 conjuga-

tion system by the same group in 2000 [26].

In the interim, autophagy translational research was also taking shape. Marking as the first

instance, in 1999, Beth Levine et al. described the involvement of beclin1 [27] in cancer. They

stated that it has a reduced expression in breast cancer and can inhibit tumorigenesis. In the

following years, numerous other studies have reported the translational landscape of autophagy,

and its role in diseases like Crohn’s disease [28], Aging [29], neurological diseases [30] etc.

were identified. These studies were assisted by the discoveries like Atg14-PI3K complex [31],

the role of TFEB in autophagy [32] etc. The timeline of crucial events of autophagy is shown

in Figure 1.1.

1.1.2 Bird’s eye view to the process of autophagy

Due to the importance it carries, the process of autophagy remains at the crossroads of multiple

biological pathways and processes. As a result, autophagy is orchestrated by the synergistic

association of a large number of proteins. Each of these steps is modulated by some spe-

cific set of proteins. The core autophagic genes, ATGs, are involved throughout this process.

Based on their functions, they can be placed in five multifunctional modules. In yeast, these

modules are shown in Table 1.1. Except for red algae, these core molecules are conserved

across all the species. Autophagy is a multistep process that includes five sequential stages.

These are i) initiation, ii) double-membrane nucleation, iii) phagophore elongation, iv) cargo

sequestration, and v) degradation. The initiation of autophagy is dependent on the protein

mTOR. It is comprised of two functionally and structurally distinct conserved protein com-

plexes, mTORC1 and mTORC2. Nevertheless, only the former is susceptible to Rapamycin

[33] and serves an unquestionably vital function in autophagy. Although mTORC2 inhibition

was also reported to induce autophagy under fasting conditions, this is predominantly medi-



8 Chapter 1. Introduction

Figure 1.1: The timeline of autophagy.



1.1. Autophagy 9

Table 1.1: Distribution of the autophagy related genes (ATGs) accorss five disticnt modules
in yeast.

Module ATGs
Atg8-
phosphatidylethanoamine
and Atg5-Atg12 conjugation
system

Atg3-5, Atg7-8, Atg10,
Atg12, Atg16

Atg1 kinase complex Atg1, Atg13, Atg17, Atg29,
Atg31

PI3K complex Atg6, Atg14, Atg38, Vps15,
Vps34

Atg2-Atg18 complex Atg2, Atg18
Atg9 vesicles Atg9

ated via FoxO3 [34, 35]. Nutrient abundance or growth factor signalling prompts the lysosome

translocation of mTORC1, where it activates and initiates growth-promoting processes while

suppressing autophagy. It accomplishes this by inhibiting the autophagy initiation complex

[36] and the nuclear translocation of the TFEB, which regulates the transcription levels of a

plethora of lysosomal and autophagy genes [32]. In contrast, starvation disassociates mTORC1

from lysosomes, resulting in the induction of autophagy [36]. However, after prolonged starva-

tion, mTORC1 becomes reactivated, and forms proto-lysosomal tubules and vesicles that even-

tually mature into functioning lysosomes [37]. In other words, autophagy walks the tightrope

between mTORC1 and lysosomes for a steady autophagic flux.

Initiation of autophagy necessitates the ULK1 complex composed of FIP200, ATG13 and

ATG101, which is positively regulated by AMPK and negatively regulated by mTOR [38]. Fol-

lowing autophagy induction, the ULK1 complex translocates to autophagy initiation sites and

regulates the recruitment of the vacuolar protein sorting 34 (VPS34) complex composed of the

VPS34, beclin1, VPS15 and ATG14-like (ATG14L). This complex is responsible for produc-

ing the phospholipid phosphatidylinositol 3-phosphate (PI3P) at the autophagosome forming

site called the phagophore [39]. Multiple autophagy proteins have been found to bind beclin1

to activate or inhibit the beclin1/PI3KIII complex. For instance, AMBRA1 binds directly to

beclin1 and enhances its interaction with VPS34, resulting in higher activation of VPS34 and

the production of autophagosomes [40]. The autophagy process encounters its final obstacle at

the fusing of autophagosomes and lysosomes, where a significant energy barrier must be over-
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Figure 1.2: The schematic diagram of autophagy. The primary regulators of autophagy are
AMPK and mTOR, with the former serving as an inducer and the latter as an inhibitor. The
process is completed in five steps and the the core autophagic genes, ATGs play vital role in
different stages by forming into several complexes.

come. This fusion mechanism is tightly regulated by either STX17-SNAP29-VAMP7/VAMP8

[41] or STX7-SNAP29-YKT6 SNARE complex [36]. Again during fusion, the two vesicles

must be kept close for which HOPS complex, PLEKHM115, and EPG5 simultaneously inter-

act with proteins present on the autophagosomal and autolysosomal membrane. PLEKHM115

binds with Arl8base and RAB7ase on the lysosome and LC3 on the autophagosome, EPG5 binds

to RAB7ase and LC3[42], and the HOPS complex interacts with lysosomal Arl8base [43] and

autophagosomal Qa-SNARE STX17 [44]. Once the autolysosome forms, the inner autophago-

somal membrane degrades, and more than 60 lysosomal hydrolases work simultaneously to

digest the confined material [45]. The molecular mechanism of autophagy is shown in Figure

1.2.

1.1.3 Autophagy research in numbers: how much have we dug?

We obtained articles from PubMed that matched the search word "autophag*" within the Ti-

tle/Abstract field. A few publications discussed the term "autophagia" rather than autophagy/autophagosome

and were therefore excluded. We collected 69405 items in the end 1. In accordance with

Mizhushima et al.[46], we classified these publications into three time periods: 1965 to 1975,

1At the time of compiling the thesis.
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Figure 1.3: The fast emerging study field of autophagy. a) The number of publications in
autophagy as per the PubMed records. b) The number of publications on autophagy in three
different periods. It can be seen there has been a humongous rise in autophagy research in the
last few years.

1975 to 2000, and 2001 to the present. In the first period, an average of 15.20 articles were pub-

lished, followed by an average of 165.7 articles in the second period, and a whopping 7665.5

articles since 2001, establishing the fact that in recent years, there has been a meteoric rise in

the number of articles published about autophagy. The number of publications in autophagy

per year is shown in Figure 1.3.

1.1.4 Autophagy and diseases: despondency or hope?

The enormous number of publications on autophagy meant that it has been plotted, pieced,

and ploughed into the landscape of translational science to find its impact on multiple diseases.

Despite that, whether autophagy is despondency or hope is still unclear for many diseases. The

crucial role of autophagy in diseases can be attributed to multiple facts. For instance, this is

a quintessential process to maintain cellular homeostasis, which it accomplishes by aiding the

breakdown of long-lived or misfolded proteins, damaged organelles, and protein aggregates.

Again, autophagy’s ability to orchestrate various stress responses is another crowning achieve-

ment that keeps it at the crossroads of multiple diseases and disorders Figure 1.4. This complex

and paradoxical role of autophagy in regulating the course of the disease has been the subject

of extensive research. Autophagy acts as a Janus in cancer by playing a role both in tumour

suppressor and activator. The assessment of the ultimate fate of tumour cells by autophagy

relies on the type, stage, and genetic context of cancer. Autophagy provides a cytoprotective

impact by eliminating unwanted materials, thereby minimising the genomic damage leading to
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abnormal mutations and cancer. However, when cancer advances, the stress-suppressing fea-

tures of autophagy are co-opted by tumour cells to satisfy the increased metabolic demands

required for tumour survival and rapid growth. Autophagy-related proteins are associated with

preventing cancer cell growth in various cancers, including the colon, gastric, breast, lung

and prostate cancer [47–50]. However, autophagy also helps in tumorigenesis by promoting

the proliferation of cancer-cell and tumour growth [51, 52]. Abnormal lipid metabolism and

the excessive accumulation of triglycerides stored in lipid droplets trigger the non-alcoholic

fatty liver disease, which may eventually lead to non-alcoholic steatohepatitis (NASH) [53].

In vitro and in vivo studies have revealed that autophagy plays a protective role in NASH by

selective degradation of these lipid droplets [54]. Hence, the autophagy pathway can be a po-

tential target in treating NASH. In various neurodegenerative diseases, including Parkinson’s

disease, Alzheimer’s disease, and Amyotrophic lateral sclerosis [55], misfolded protein accu-

mulation is considered a pathological hallmark. Since the accumulation of misfolded proteins

is directly affected by a decrease in the neuronal autophagy level, autophagy is considered a

target pathway in neurodegenerative diseases. The importance of autophagy can be mapped

to insulin resistance and type 2 diabetes, as it plays an indispensable role in the physiology of

beta cells. Autophagy takes part in the regulation of insulin homeostasis and is necessary for

normal beta cell homeostasis [56, 57]. The disrupted autophagic activity has been reported in

the beta cells of type 2 diabetes mellitus (T2DM) patients [58]. Metformin has been widely

used in type 2 diabetes clinical therapy and protects pancreas beta cells from injury through

autophagy activation by the AMP-activated protein kinase (AMPK) pathway [59]. Due to its

crucial role in cellular housekeeping, autophagy also plays a role in anti-ageing mechanisms

[60]. It also plays an essential role in cell remodeling during development [61] and in cellular

defense against pathogens [1].

Nevertheless, despite playing a protective role in various diseases, uncontrolled autophagy may

lead to excessive degradation of the cellular constituents and may cause cell death [62–64].

Hence, although important, the autophagy process needs to be strictly monitored for the smooth

functioning of the cellular homeostasis [65, 66].



1.1. Autophagy 13

1.1.5 Autophagy as a therapeutic target: cancer as an example

In light of the aforementioned facts, pharmaceutical methods to upregulate or inhibit this sys-

tem are currently garnering substantial interest. As a physiological process, autophagy main-

tains the health of cells and inhibits carcinogenesis, but it can also contribute to the treatment

of numerous diseases by delivering nutrients or initiating cell death. Therefore, the strategy to

target autophagy with pharmaceutical intervention must be cautious and thoroughly supported

by preclinical facts pertaining to autophagy’s function and state. The majority of cells treated

with chemotherapy induce autophagy. This autophagy activation is a last-ditch effort by tu-

mour cells to survive. Various studies have reported that inhibiting autophagy sensitises cancer

cells to anti-cancer drugs. In ER-positive breast cancer cells, for example, the genetic deletion

of Atg5, Atg7, or beclin1 reverses tamoxifen resistance [67]. The efficacy of chemotherapy

in HER2-positive breast cancer cells can also be enhanced by combining inhibitor 3-MA, and

trastuzumab [68]. However, currently, CQ/HCQ, which inhibits the autophagosome-lysosome

fusion by disrupting lysosomal acidification, is the only FDA-approved autophagy inhibitor for

clinical trials [69, 70]. A list of autophagy modulators which are currently in clinical stages for

targeting cancer is shown in Table 1.2.

Table 1.2: Cancer-targeting autophagy modulators currently in clinical trials.

Clinical trials
Mechanism/target of

chemotherapy drugs
Current state Type of cancer Identifier

Sirolimus or

vorinostat

with HCQ

(Phase I)

mTOR and HDAC

inhibitor
Completed

Advanced solid

tumors
NCT01266057

Vorinostat with

HCQ

(Phase I)

HDAC inhibitor Ongoing
Advanced solid

tumors
NCT01023737
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Table 1.2 continued from previous page

Clinical trials
Mechanism/target of

chemotherapy drugs
Current state Type of cancer Identifier

Gemcitabine/

abraxane

with HCQ

(Phase I/II)

Nucleoside analog/

antimicrotubule

agent

Completed
Pancreatic

adenocarcinoma
NCT01506973

Paclitaxel,

carboplatin and

bevacizumab

with

HCQ (Phase II)

Microtubule

disrupting agents/

inhibitor of

DNA synthesis/

VEGF-A inhibitor

Completed
Non-small lung

cancer
NCT01649947

FOLFOX and

bevacizumab

with HCQ

(Phase I/II)

Folinic acid/

thymidylate

synthase inhibitor/

inhibition of DNA

synthesis/VEGFA

inhibitor

Completed Colorectal cancer NCT01206530

Vorinostat with

HCQ versus

regorafenib

(Phase II)

HDAC inhibitor/

Multi kinase

inhibitor

Completed

Refractory

metastatic

colorectal cancer

NCT02316340

MLN9708 and

vorinostat (Phase I)

Proteasome inhibitor/

HDAC inhibitor
Completed

Advanced p53

mutant

malignancies

NCT02042989

Temsirolimus

with HCQ

(Phase I)

Cell cycle arrest Completed
Refractory solid

tumors
NCT00909831
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Table 1.2 continued from previous page

Clinical trials
Mechanism/target of

chemotherapy drugs
Current state Type of cancer Identifier

CQ (Phase I/II) Lysosomal inhibitor Completed
Breast ductal

carcinoma
NCT01023477

RAD001 with

HCQ

(Phase I/II)

mTOR inhibitor Completed
Renal cell

carcinoma
NCT01510119

Navitoclax and

abiraterone

acetate with or

without HCQ

(Phase II)

Bcl2 inhibitor/

Androgen

synthesis inhibitor

Completed
Refractory

prostate cancer
NCT01828476

Sunitinib malate

with HCQ

(Phase I)

Receptor tyrosine

kinase inhibitor
Completed

Advanced solid

tumors
NCT00813423

CQ (Phase II) Lysosomal inhibitor Completed Breast cancer NCT02333890

Sorafenib with

HCQ

(Phase I)

Multi kinase

inhibitor
Completed

Refractory or

relapsed solid

tumors

NCT01634893

Dabrafenib and

trametinib with

HCQ (Phase I/II)

BRAF inhibitor/

MEK

inhibitor

Completed
Advanced BRAF

mutant melanoma
NCT02257424

Velcade and

cyclophosphamide

with CQ

(Phase II)

Proteasome

inhibitor/ DNA

replication inhibitor

Completed

Refractory or

relapsed multiple

myeloma

NCT01438177
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Table 1.2 continued from previous page

Clinical trials
Mechanism/target of

chemotherapy drugs
Current state Type of cancer Identifier

Cisplatin and

etoposide with

CQ (Phase I)

DNA replication

inhibitor/

topoisomerase

inhibitor

Completed
Stage 4 Small cell

lung cancer
NCT00969306

MK2206 with

HCQ (Phase I)
Akt inhibitor Completed

Advanced solid

tumors (Prostate,

melanoma or

kidney cancer)

NCT01480154

Enzalutamide

with metformin

hydrochloride

Anti-androgen Completed Prostate cancer NCT02339168

Gemcitabine and

abraxane

with or without

HCQ (Phase II)

Nucleoside analog/

Antimicrotubule

agent

Completed Pancreatic cancer NCT01978184

1.1.6 The need for a helping hand

The question arises whether the rising techniques and technological advancements for mon-

itoring autophagy are sufficient to reveal its potential. Can it address all the ifs and buts in

drug discovery? Also, what does the practicality indicate about investigating the effect of each

protein involved in this process?

The answer is no. Due to the kaleidoscopic nature of autophagy, this process needs to be

investigated through various methods. Many of these may not be feasible in the first place

from the experimental perspective. Addressing the crossover between intracellular mechanisms

and tissue-level phenotypes is one example, as it necessitates the computation of the probable
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Figure 1.4: Autophagy-related diseases. These diseases can be categorised into two parts:
organ-specific (shown in the inner circle) and multisystemic (shown in the outer circle). This
figure shows the autophagy-disease interplay. The association with most human diseases, in-
cluding varieties of cancer and immune disorders, has proved that autophagy is a quintessential
process, and its manipulation can be targeted as a therapeutic strategy.

system-level impacts of the behaviours of large sets of individual genes or proteins. This ne-

cessitates the integration of an approach that, through its sophisticated tools and methods, can

integrate quantitative technologies and extensive experimental measures to reveal the intra-

cellular heterogeneity as well as the rapid adaptation of the cellular environment in response

to stimuli that eventuate on timescales that cannot be described by evolutionary processes or

clonal selection and this is where systems biology enters the autophagy scenario. With its po-

tential to analyse a system both as a whole and in parts, systems biology unveils the curtains of

the autophagy mechanism and helps it conquer the pesky ladder in the chasm of uncertainties.

1.2 Systems biology: The key to identify the wolves in the

sheep’s clothing

Comprehending at a systems level has always been a perennial theme in biological science.

This comprehension extends beyond the assembly of genes and proteins. According to Hiroaki
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Kitano [71], the interconnections between proteins and genes are just static road maps, and

obtaining a complete inventory of them is equivalent to getting the parts of an aeroplane. They

are necessary but cannot explain the system’s fundamental complexity. For that part, it is an un-

met need to examine how individual components interact during a process. These interactions

are not random. There exist directions to avoid dejections, variations in interaction partners

for task specificity, and flexibility to function within the cell, among cells and even between

organisms. Biological systems are governed by specific rules, and systems biology acts as a

hatchet to unveil these underlying principles [72]. Though Mihajlo Mesarovic is often credited

with coining the term "systems biology" in 1968 [73, 74], many others believe that Ludwig

von Bertalanffy, the "father of general systems theory," actually coined the word in the 1920s.

Some of the crucial inventions aiding systems biology research are shown in Figure 1.5.

Every system possesses a hierarchical structure, and a systematic study of it helps to find how

components are organised, viz., what lies in the core, and what remains on the periphery of the

system. Again, these structures are interlinked together, where each lower level in the hierarchy

creates the level immediately above (for example, cell to tissue, tissue to organ, organ to the

organ system and so on) by means of some linkages. Systems biology is nothing but the study

of both these structures and their linkages. By analysing systems, "layer by layer," systems

biology allows for understanding why and how an event occurs, inevitably leading to ’what if’

type questions and enabling predictions [75]. In other words, systems biology can grasp all the

components of a biological system and, through quantification of these components and their

relationships, it endeavours to provide a comprehensive model of the system. Two crucial pil-

lars of systems biology are mathematical modelling an network analysis. The former looks into

the association of a small number of proteins and the effect of their crosstalk on the systems

dynamics while the latter investigates the entire system as a whole. Figure 1.6 summarises

systems biology, while the next section describes the two pillars in detail.
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Figure 1.6: An illustration of the systems biology approaches. ML-based approaches can be
used directly in the transcriptomic data of patients. The dataset can also be used to understand
the metabolic alterations in the disease. By identifying differentially expressed genes and using
various databases, protein-protein interaction network analysis can be carried out to identify the
crucial proteins. These proteins can further be taken under the grasp of mathematical modelling
studies to get more insight into the biological system. The structure-based drug-designing
approach can also be applied to get more insight into these crucial proteins.
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1.2.1 Mathematical modelling

1.2.1.1 Significance of mathematical models in studying biological systems

Biological systems are complex, and a mathematical model acts as a reflector of this complex-

ity. The complexity of a biological system appears due to many reasons. One of them is the

underlying hierarchy of the system that ranges from cells to the organism level. Each of the

different hierarchy levels is dynamic. Even if they imitate regular and predictable behaviour,

abrupt major and stochastic shifts may arise anytime, even for minute changes in the cellular

environment. These uncertainties lead to complexities that are difficult to capture in experimen-

tal studies. Even if they do, it is challenging to grasp routes and patterns of the actual evolution

of complexity. For example, to identify the functional role of a gene, scientists perform knock-

out experiments [76]. However, such experiments overemphasise the role and importance of a

single gene and are not ideal for understanding the complex nature of the system. Mathematical

models study these complexities of a system and portray an abstraction of reality. These models

study the crucial genes/proteins capable of driving the system and the underlying dynamics of

the association between the genes/proteins. These models have the audacity to identify crucial

parameters capable of deciding the system’s fate, which can be further proven by experimental

validation.

The mathematical modelling is based on four crucial pillars where the first pillar is a literature

survey of the system. The second pillar is the construction of the model, where the relationship

between the model variables will be established using model parameters. This step is followed

by the analysis of the model, and the last pillar is the validation part where the result of the

model will be validated either by literature or by an experimental approach. If the model fails

to deliver the appropriate output, the necessary changes will be implemented in the model until

the desired outcome appears. Mathematical models are perfect examples of complexity and

simplicity as they are ornamented with a set of equations, which are complex enough to repli-

cate the properties of the system and concurrently simple enough to grab up the underlying

phenomena of the system. Theoretically, these models can drive a system anywhere, but it has

to follow some constraints in systems biology. For example, a negative concentration of a pro-

tein will make no sense, so as a species’ negative population. Similarly, there must always be
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an upper bound, be it the concentration of a protein inside a cell or the population of a species.

But, although restricted to biological constraints, a mathematical model can help to find out the

crucial parameters responsible for deciding the fate of the system. In other words, for a specific

cellular process full of many regulatory patterns, mathematical modelling paves the way to pick

the right one.

1.2.1.2 Different type of mathematical models

Differential equations are extensively employed to represent biological systems due to their

effectiveness at capturing non-linear behaviour and illustrating interactions between several

variables. Among the various models available to investigate biological processes, ordinary

differential equations-based models are the most commonly used. These equations are of the

form
dxi

dt
= fi(x1,x2, .....,xn,λ1,λ2, .....,λk, t), i = 1 : n,

and they describe how individual variables xi vary over time, λk are the model parameters de-

scribing different rate constants. When explicit dependence of the dependent variables on the

independent variable is absent, the system is called autonomous. The functions, along with the

parameters, beautifully portray the dynamics of the state variables. Such models usually de-

scribe the change in the dynamics of a variable (proteins/cells etc.) without considering factors

like the noise, transversal and longitudinal diffusion of the model variables, etc.

Another type of mathematical model, called the delay differential equations (DDE) model, is

used in representing biological phenomena. Time delay is an inherent property and occurs

naturally in biological systems. The time delays in these models represent the duration of

hidden processes between two major processes. The time between the infection of a cell by

some pathogens and the subsequent production of new pathogens can be taken as an exam-

ple. Another example is a susceptible population which requires a consistent period of time,

termed the latent period of infection, to become infectious after coming into touch with an in-

fected individual. This phenomenon is even reflected in the central dogma of biology, which

states that the production of functional proteins is the result of a series of complex processes

involving transcription, translation, and post-translational modifications. Due to the sequential
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nature of protein synthesis, there is a delay between when RNA polymerase binds to promoter

DNA and when fully functional proteins appear. Such phenomena are captured using the delay

differential equation models. A typical delay differential equation is of the form

dX
dt

= F(t,X(t − τ1), ....,X(t − τn));τi, i = 1 : n ≥ 0,

where τi, i = 1 : n are time delays. They are measurable and may be constant. Sometimes, the

initial or boundary conditions may not be sufficient to predict the future state of a system. For

such a scenario, it is indispensable to know how the system behaved in the early stages, and

hence, delay differential equations play a vital role in understanding a biological system where

the current state of some variables depends on the past states.

Both ODE and DDE are deterministic methods to map a biological system of equations. But, a

biological system is always exposed to uncertainty that is not entirely understood. An approach

to model such systems is by adding stochastic influence or noise. It is another inherent property

of biological systems. Since biochemical kinetics at the single-cell level is inherently stochas-

tic, stochastic models are required to adequately reflect the numerous sources of heterogeneity

required for the realistic modelling of biological systems. Such models, however, are far more

computationally intensive than deterministic models and significantly more difficult to fit into

experimental data. Some stochastic behaviour examples are hormonal oscillations, respiration,

blood pressure variations, cellular metabolism, etc. The general form of a stochastic differential

equation (SDE) can be expressed as

dxt = f (t,xt)dt +G(t,xt)dwt ,

or with the equivalent integral form

xt = xt0 +
∫ t

t0
f (s,xs)ds +

∫ t

t0
G(s,xs)dws,

with an initial value, xt0 . Here, f : [t0, t]×Rd → Rd,G : [t0, t]∏Rd → Rd×m and {wt}t∈[t0,t] de-

note an m-dimensional Wiener process (Brownian motion). Rd and Rd×m are d-dimensional
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and d ×m-dimensional Euclidian space, respectively.

Agent-based modelling (ABM) is an alternative approach that relies on a predefined logical

programming language. In ABM, the system consists of interacting autonomous decision-

making bodies known as agents. ODE modelling presupposes a homogeneous environment,

while ABM is capable of simulating a transient and spatial evolution of a system in that each

participant in the model is represented as an individual agent per its laws. One of the funda-

mental aspects of ABM is the occurrence of complex behaviour from a set of simple rules. It

simulates the interactions between multiple independent agents and evaluates their effect on the

overall system. It captures the emerging phenomena of a complex system from the perspective

of its constituent components, making ABM a bottom-up approach [77]. The benefits of ABM

include their flexibility, the natural way of description of the system, and the capability of cap-

turing the emergent phenomena due to the interactions of individual entities [77]. Agent-based

modelling facilitates both discrete and continuum mathematical modelling approaches. The

study of tumour cell density, nutrient distribution, etc., comes within the radar of the continuum

modelling approach, whereas cellular automation is a representation of discrete mathematical

modelling. Agent-based models have been used extensively to explain biological phenomena in

various biological systems. For example, a three-dimensional agent-based Voronoi-Delaunay

hybrid model was developed by Schaller, and Meyer-Hermann [78], where reaction-diffusion

equations depicted the spatiotemporal distribution of oxygen and glucose. Their study was an

effort to test the hypothesized functional dependence of the absorption rates of glucose and oxy-

gen, and to determine suitable mechanisms for necrosis induction. Another agent-based model

was built by Engelberg et al. [79], where different spaces for tumour cells, oxygen, nutrient,

and toxic inhibitors were considered. The goal of the study was to create a model consisting of

separate cells that fairly represent the behaviour of an in vitro multicellular tumour spheroid.

Biological processes involve complex mechanisms with many pathways and molecules that

change over time and space, and in the understanding of such systems, ABM would play a vital

role. These models can also help with the mathematical portraiture of biological phenomena

like the spatial and temporal requirement of autophagy-related protein to bacteria. However,

ABM has certain drawbacks. For instance, it demands more details to be provided about the
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system of interest, which may not always be reported in the literature. Another disadvantage of

ABM is that it is more computationally expensive than partial differential equations (PDE) or

ordinary differential equations.

Petri net is the creation of Carl Adam Petri in his doctoral dissertation [80]. It is constructed

using two types of nodes, viz. places, depicted as circles, and transitions, represented as narrow

black rectangles. In systems biology, places refer to chemical species such as metabolites, pro-

teins, enzymes, DNA, RNA, etc., and transitions refer to chemical reactions such as activation,

inhibition, phosphorylation, etc. Nodes are connected by arcs, which may only be directed

from place to transition (input arcs) or transition to place (output arcs). A Petri net is always

bipartite. The stoichiometry of a reaction is indicated by the weight of the arc. Although ini-

tially designed to model only discrete processes, improvements have been made in Petri nets to

deal with a continuous process [81, 82] . Literature has witnessed many applications of Petri

nets to different biochemical systems. For example, Koch et al. [83] built a Metabolic Petri net

(where the places represent metabolites and the transitions represent the biochemical reactions

between metabolites) consisting of 17 places and 27 transitions that qualitatively modelled the

carbon metabolism in the potato tuber. Using this Petri net model as an example, the author

has provided a method for model validation of metabolic networks using Petri net. Signal

transduction pathways are commonly modelled with a set of ordinary differential equations,

but unknown parameter estimation is a problem inherent in ODE modelling. To deal with this

problem, Sackmann et al. [84] implemented the Petri net theory to model and analyse signal

transduction pathways. The authors put forward a systematic model validation method for sig-

nal transduction pathways that depends only on the network structure. This method is then

illustrated using the mating pheromone response pathway in Saccharomyces cerevisiae. Petri

net is advantageous in the absence of quantitative data. So, in a field like autophagy, where a

lot of pathways are involved, the Petri net model would play a vital role. However, it has the

limitation that it will not capture the mechanism that one can obtain with the help of differential

equation-based models.
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1.2.1.3 Tools and packages

Different tools and packages have been built across multiple platforms (MATLAB, Python,

R, etc.) to support mathematical modeling [85–91]. A structural diagram editor, Cell Designer

[92], has also been developed to draw gene-regulatory and biochemical networks to make math-

ematical modelling a feasible approach in systems biology. CellML is an XML-based language

designed to describe mathematical models in a machine-independent form suitable for sharing

between different authors and archiving in a model repository [93].

1.2.1.4 Mathematical Preliminaries

In this section, some of the mathematical-modelling related prelliminaries are discussed.

Equilibria of Ordinary Differential Equation

Let us consider a system of differential equations,

ẋ = f (x);x ∈ Rn. (1.1)

Here,

x ∈ R

f = ( f1, f2, ....., fn)
T

and, fi = fi(x1,x2, ....,xn).

1. The initial value problem,

ẋ = f (x) with x(0) = 0, has a unique solution if the partial derivatives of f1, f2, ....., fn

are C1 functions.

2. A point xe ∈ R is an equilibrium point of (1.1) if

ẋ = f (x̄e) = 0.
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3. Jacobian Matrix: The Jacobian matrix, named after its developer, Carl Gustav Jacob

Jacobi, contains all the partial derivatives of the first order of a vector-valued function.

The Jacobian matrix of f at the equilibrium point x̄, is the matrix of partial derivatives of

‘f’ evaluated at x̄. It is given by:

J(x̄) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ f1(x̄)
∂x1

∂ f1(x̄)
∂x2

.....
∂ f1(x̄)

∂xn

......

∂ fn(x̄)
∂x1

∂ fn(x̄)
∂x2

.....
∂ fn(x̄)

∂xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
or, simply, componentwise, it can be written as,

Jii(x̄) =
∂ fi(x̄)

∂x j
.

Stability of Equilibrium Points

Let x̄(t) be any solution of the equation 1.1. Then, x̄(t) is stable if solutions starting near to x̄(t)

at a given time remain close to x̄(t) for all times. It is asymptotically stable if nearby solutions

converge to x̄(t) as t → ∞. A solution which is not stable is said to be unstable [94].

Equilibrium points of a dynamical system can be categorised based onf the eigenvalues of the

Jacobian matrix. If none of the eigenvalues of the Jacobian matrix has zero real part, then

the equilibrium point is hyperbolic. If all eigenvalues have negative real parts, the equilibrium

point is stable. If at least one has a positive real part, the equilibrium is an unstable node.

Sensitivity analysis

Sensitivity analysis (SA) refers to a wide range of mathematical methods to measure the ex-

tent to which model output variance may be attributable to model inputs [95]. Because the

output behaviour of high-dimensional systems is frequently controlled by a small number of

parameters, SA provides a method for isolating these parameters so that they can be the focus

of subsequent studies. SA can be implemented both locally and globally. The former is the

straightforward approach, in which each parameter is varied independently while the others
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remain constant. This method has the disadvantage that it cannot examine the effect of the

variation of all parameters simultaneously. These methods are informative in conditions where

there does not exist much uncertainty in model inputs or if the interactions between the inputs

are very few [96].

Global sensitivity analysis (GSA) methods take into account the variations in model outputs

when input parameters are permitted to fluctuate simultaneously within specified ranges [95].

These methods are computationally expensive but provide more information than the local

SA. Two of the most commonly used GSA methods are the Partial Rank Correlation Coeffi-

cient (PRCC) and the Extended Fourier Amplitude Sensitivity Test (EFAST). The former is a

sampling-based while the latter is a variance-based method. In particular, PRCCs offer a mea-

sure of monotonicity following the removal of the linear effects of all variables but one. In

comparison, eFAST yields fractional variance measurements attributable to individual as well

as groups of variables [95]. Ideally, both these measures should be calculated for a comprehen-

sive and insightful study.

1.2.1.5 Limitations of mathematical modeling

Despite being an excellent approach to study biological system dynamics, mathematical mod-

elling possesses certain limitations and difficulties. These limitations must be taken into ac-

count in capturing the characteristics of a certain biological process with the help of mathe-

matical modelling. Equations in a mathematical model contain parameters, and mathematical

models are driven by these parameters. These parameters can be determined by experimental

studies. However, many parameters still remain unknown because either the relevant experi-

mental data is not available or the parameter values obtained in the literature are not from the

system addressed by the model. For example, in a lung cancer model, the rate of degradation

of beclin1 is a parameter, but in literature, this parameter value is reported in pancreatic can-

cer. Another difficulty in mathematical modelling is the different functioning times of various

components of a pathway. For example, genetic regulatory processes are caused by metabolic

reactions, but while the time taken by metabolic reactions is in seconds or minutes, the regu-

latory processes could occur for several hours or days. A mathematical model of a biological
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system should always be abided by biological constraints. The findings of the model need to be

validated according to the objectives of the model. Hence, a qualitative or quantitative associa-

tion of model output and biological data is very much necessary. But quantitative experimental

data on the time course of interaction between model variables is often very limited. Biological

systems possess hierarchical layers (cells-tissue-organs etc.). To understand a system, it is nec-

essary to understand the dynamics of each layer. However, it is hard to model the entire system

as a whole as the model formulated would be non-computable. Hence, modelling is limited to

studying the system in parts that necessitate the emergence of system biology approaches like

network analysis, which can study the entire system as a whole.

1.2.2 Network biology

Biological systems can be portrayed as networks, and these networks depict the physical and

spatial organisation of the organism. Systems biology employs a pragmatic approach to eluci-

date the emergent properties of such networks with the aim of quantitative explanation and to

foresee the biological processes occurring at molecular, cellular, tissue, organ, and whole-body

level. It focuses on a holistic analysis of biological networks of various processes and quests for

the understanding of the extent to which the intermodular connectivity modulates a biological

process.

Network analysis investigates the entire system as a whole. It is like a snapshot of the entire

system at a particular time, where we can see all the nodes and their interactors. In systems

biology, there are various types of the network depending on the nodes studied, such as protein-

protein interaction (PPI) network, where nodes are proteins, and the edges are the interaction

between them; metabolic network, where the nodes are metabolites and the edges are the reac-

tions between them; gene regulatory networks, where nodes are genes and edges are the phys-

ical and/or regulatory relationships between the genes; ecological networks, where species are

nodes and edges are the interactions which can be either trophic or symbiotic. In this thesis, we

are mainly focused on PPI networks.



30 Chapter 1. Introduction

1.2.2.1 Protein-protein interaction network

Inter- and intracellular mechanism coordination is dependent on molecular interactions. In

endorsing homeostasis, these interaction events are strictly controlled within a dynamic, in-

terconnected terrain of molecular pathways that authorise cells to execute complex processes.

Defects in these molecular pathways can lead to abnormal signalling and cellular malfunction.

PPIs drive a significant portion of this subcellular communication, and hence, a comprehensive

understanding of the PPI network is an unmet need for a better understanding of the molecular

level alterations occurring due to the progression of disease or invasion of a pathogen.

In a PPI network, two proteins are connected by an edge if an association exists between the

proteins, This association can be functional (activation/inhibition) or physical (direct binding).

The former is an example of a directional network, while the latter represent an undirected

network. The directionality captures the regulatory effect exerted by the source protein on the

target protein. Identifying key proteins in an undirected network may lead to various false-

positive results. For instance, when the mode of interactions for drug-disease relationships is

absent, we cannot determine if a drug heals a disease or produces one as a side effect [97].

Irrespective of its size, a PPI network always possesses a small set of core nodes, which can

modulate the fate of a biological system. Distinguishing these key proteins has proven to be a

daunting task, further exacerbated by the intricacy of understanding how such proteins interact

synergistically. In the conventional approach, defining such drivers relies only on the topol-

ogy of the PPI networks and not on their context-specificity. Methods akin to this have the

drawback that only the topological properties of PPI networks alone do not capture the whole

landscape of the signalling complexity. Therefore, the derived driver proteins may not be suffi-

cient to illuminate the complexity of the mechanism of disease progression. Identifying a target

necessitates causal inferences about interacting partners, which must be augmented in specific

contexts with knowledge about pathways, localisations, diseases, and biological processes. Nu-

merous databases containing the multiple information of proteins have been created to fulfil the

need for the aggregation of PPI data for a more informed insight into the mechanisms of cells

and diseases. A comparison of these databases is shown in Figure 1.7.
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Figure 1.7: The attribute-database heat map. The absence or presence of an attribute in a
database is represented by cyan, and violet colours, respectively.

1.2.3 Network biology glossary

Adjacency matrix:

Adjacency matrix defines the wiring diagram of a network. Let G = (V,E) is a network with n

nodes where V is the vertex set and E is the edge set. Then, the adjacency matrix Ai j is defined

by

ai j =


1, if i and j are connected.

0, otherwise.

For an unweighted undirected network, the adjacency matrix is symmetric, while in general,

for an unweighted directed network, it is asymmetric. A directed graph gives a symmetric

adjacency matrix if all the edges are bidirectional. In a weighted graph, the adjacency matrix

values can be replaced by the weights of the corresponding edges.



32 Chapter 1. Introduction

Density:

The density ρ of a network G = (V,E)is defined as the fraction of total number of edges to total

possible edges in the network. Mathematically,

ρ =
|E|

n(n−1)
2

,

where n is the total number of nodes in the network.

Distance:

In a network, the distance between two nodes is the number of edges in the shortest path

connecting them.

Diameter:

The diameter of a network is defined as the length of the "longest shortest path" between any

pair of vertices. Therefore, it corresponds to the highest of all entries in the graph distance

matrix.

Network module:

Modules are characterised by groupings of individual nodes that are strongly connected within

and sparsely connected between [98]. Detecting modules is crucial for network exploitation

since such substructures frequently correlate to essential functions. Elements of module M

exhibit identical behaviour towards elements outside of M [99]. Thus, a module can be reduced

to a single element without losing information about its neighbourhood and connectedness [99].

Components:

Networks may be both connected and disconnected. The former means that every node has at

least one path to reach all the other nodes in the network. Otherwise, the network is referred

to as disconnected. A disconnected network is comprised of numerous disjointly connected

components, the largest of which is referred to as the huge component. In the former, every
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node possesses at least one path to reach all the remaining nodes in the network. Otherwise,

the network is called a disconnected network. A disconnected network consists of many dis-

joint connected components, and the largest among them is called the giant component. The

robustness of a network is measured in terms of the size of the giant component.

Centrality measures:

Centrality measures identifies the most important nodes in a network. Since, the word ‘impor-

tant’ is vague, it gives rise to many methods which have been used to find the important nodes

of the system in their own way. Some of these methods include degree centrality, betweenness

centrality, radiality, clustering coefficient, etc. Numerous novel algorithms have also been de-

veloped to find important nodes in a network. To better understand the core set of the nodes in

a network, multiple centrality measures need to be used because a few nodes, which are central

in one measure, may not be central in another analysis. Nodes central in multiple measures

have a genuine capability to control the fate of a system.

Degree Centrality:

The calculation of degree centrality is one of the simplest. A node’s degree centrality corre-

sponds to its number of edges. The higher the degree, the more central the node is. In a graph

G = (V,E), where |V |= n ̸= 0, the degree of a node vi is defined as,

deg(vi) =
n

∑
j=1

ai j,

where

ai j =


1, if i and j are connected.

0, otherwise.

The nodes with the highest degree are termed hubs. A PPI network possesses a small number of

hubs and many poorly connected nodes. Numerous studies have demonstrated that the removal

of a hub protein is more fatal than the deletion of a non-hub protein, a phenomenon called the

centrality-lethality rule.
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For an undirected number, degree is just the number of edges a node has. However, in a directed

network, the degree of a node is the sum of the indegree and outdegree. The former measures

the number of incoming edges to a node while the later measures the number of edges going

awat from it, i.e., indeg(vi) = ∑
n
j=1 Ai j , outdeg(vi) = ∑

n
i=1 Ai j.

Betweenness centrality:

It evaluates the extent to which a vertex lies on the paths connecting other vertices. Mathemat-

ically, betweenness centrality (BC) of node v is given by,

BC(v) = ∑
s ̸=v̸=t

ρst(v)
ρst

;s,v, t ∈V,

where V is the vertex set, ρst(v) is the number of shortest path between ‘s’ and ‘v’ that passes

through ‘v’ while ρst is the total number of shortest path between ’s’ and ‘t’.

Betweenness centrality ignores a node’s degree. Instead, it investigates how much a node falls

between other nodes. Therefore, a node with a low degree can acquire a high betweenness

value. The largest to smallest possible betweenness value ratio in a network with n nodes is,

n2 −n+1
2n−1

.

For a large network, this value reduces to
n
2

. However, the betweenness centrality values in a

network is often normalized by dividing it by the total number of node pairs (n2), i.e.,

BC(v) =
1
n2 ∑

s ̸=v̸=t

ρst(v)
ρst

;s,v, t ∈V.

Closeness centrality:

This centrality measure evaluates how close a node to other nodes in a network. For a node ‘i’,

it is defined as

C(i) =
n

n

∑
j=1

di j

,
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where n is the total number of nodes in the network.

Despite being a natural centrality measure, it faces various obstacles. Frequently, the difference

between the closeness values of two nodes can only be determined by observing the trailing

digits. Also, the ratio between the largest and smallest closeness values in a typical network

is five or less. Therefore, it is challenging to differentiate between the central and non-central

nodes in the network.

Clustering coefficient:

The clustering coefficient (CC) measures a node’s cliquishness or local connectivity. For exam-

ple, let node ‘i’ is connected to two other nodes, ’ j’ and ’k’. Then, these three nodes will form

a tuple. If ‘ j’ and ‘k’ also interact, then the three nodes will create a triangle. The clustering

coefficient for a node ‘i’ is defined as the ratio of observed triangles to all the possible triangles

involving ‘i’, i.e.

CC(i) =
number of triangles involving i

number of possible triangles involving i

=⇒ CC(i) =
∑
j ̸=i

∑
k ̸=i, j

Ai jA jkAki

(∑
j ̸=i

Ai j)
2 −∑

j ̸=i
(Ai j)

2 ,

where Ai j is the adjacency matrix. It can be seen that 0 ≤CC(i)≤ 1.

Bridging centrality:

In a graph, a bridge node is a node that connects densely connected components. The bridging

centrality of a node is determined by multiplying its betweenness centrality (BC) and bridging

coefficient (CB). CB(v) measures how well ‘v’ is positioned between the high-degree nodes

and is defined as,

CB(v) =
d(v)−1

∑i∈N(v)
1

d(i)

,

where d(v) is the degree of v, and N(v)={neighbors of node v}. Thus, the bridging centrality

B(v) for node v is defined by:

B(v) = BC(v)×CB(v)
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=⇒ B(v) = ∑
s ̸=v̸=t

ρst(v)
ρst

× d(v)−1

∑i∈N(v)
1

d(i)

.

Network controllability:

It evaluates the capacity of a single node to control a directed network. The control theory anal-

ysis gives the minimum number of nodes required to control the network. The time-invariant

dynamics of a network of N nodes at a time can be expressed as [100],

dx
dt

= Ax(t)+Bu(t). (1.2)

Here, x(t)= (x1,x2, ............,xN)
T is the state vector of N nodes at time t, AN×N is the adjacency

matrix, BN×N ,(M ≤ N) contains the nodes that are controlled by an outside controller, and

u(t) = (u1(t), . . . ,uM(t))T is a time-dependent input vector which controls the network. The

same signal u1(t) is capable of driving multiple nodes in the network. Identifying the minimal

sets of nodes that can drive the network when steered by different signals is crucial to control

the network. These nodes are termed driver nodes in the literature [100–102]. According to

the controllability rank condition of Kalman [103], the system described by the equation 1.2 is

controllable if the augmented matrix

CN×NM = (B,AB,A2B, ...........AN−1B),

has full rank, i.e., rank(C) = N. Let G = (V,E), (|V | ≠ 0), be a directed graph, i.e., ∀e =

(i, j) ∈ E, ∃ a direction from ‘i’ to ‘j’. Here ‘i’ is refereed as parent node, and ‘j’ as the child

node. M ⊆ N is called a matching set if ∄ e1,e2 (e1 ̸= e2) ∈ M such that e1 and e2 share

a common parent or child node. In a graph, a matching set of highest cardinality is called a

maximum matching. If, e2 = (i, j) ∈M then ‘j’ is called a matching node and the rest are called

unmatched. Liu et al. [100] termed these unmatched nodes "driver nodes" and showed that

they are sufficient to control the network. Nevertheless, the cardinality of multiple matching

sets can be the same; consequently, a network can permit more than one maximal matching

set. Consequently, detecting driven nodes is not unique, and several solutions may coexist.
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Using this concept, the network nodes can be further categorised into critical, intermittent,

and redundant categories [104]. The critical category contains the nodes appearing as driver

nodes in all the matching sets, intermittent driver nodes appear in some but not all the matching

sets, while the redundant category contains nodes that are not driver nodes. Numerous studies

have been undertaken in an attempt to comprehend these driver nodes. Khazanchi et al. [105]

compared driver nodes of four different PPI networks. They found that the driver nodes tend

to be transcription factors and are enriched in first-degree neighbours of hubs. In addition,

they demonstrated that the hubs are the lethal proteins in the network and that it is, therefore,

preferable not to disturb the lethal hubs but rather the proteins close to the hubs. Badhwar et

al. [106] used network controllability in the neuronal network of C. elegans. They found that

driver neurons of C. elegans, were motor neurons located in the ventral nerve cord. Wu et

al. [107] developed a methodology to identify the driver nodes in a network. The study was

concerned with the states of disease biomolecules and biomolecules that cause adverse effects.

Their goal was to make the states of disease-causing biomolecules healthy while minimising the

state alterations of biomolecules that cause adverse effects. They discovered that the identified

potential therapeutic targets are targets of approved medications or are consistent with previous

research results, demonstrating the viability of the method.

Again, each node in the network can be divided into an indispensable (I), dispensable, and

neutral node category, if its deletion, respectively, increases, decreases, or causes no impact on

the minimal number of driver nodes required to control the network. These nodes are the most

fragile nodes in the network [102] and are prone to mutations and are often targeted by viruses

and drugs [101, 102].

Degree Distribution:

The degree distribution, P(k), is the probability that a node has precisely k links. It is calculated

by dividing the number of nodes with degree k by the total number of nodes in the network.
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Scale-free networks:

The notion that the vast majority or even every real-world network are scale-free is widely

spread throughout scientific domains and network classes. A network is termed scale-free if

the fraction of nodes with degree k obeys a power-law distribution, i.e., P(k)∼ k−γ where γ is

called degree exponent, and it determines numerous properties of a system. For instance, for

2 < γ < 3, a hierarchy of hubs is seen, while if γ > 3, hubs are irrelevant in the network. Scale-

free networks exhibit a high level of resilience against random node failures, but are vulnerable

to the failures of hubs.

Influential spreaders:

In several disciplines, a spreading process is a common and spontaneous event [108]. Influen-

tial spreaders (IS) in a complex network operate as maximisers or controllers of a spreading

process. To increase the flow of information, for instance, an IS operates as a maximiser [109],

whereas as a controller, they can manage epidemics or reduce bogus news in a social system

[110]. Identifying these spreaders is usually divided into two categories, individual or multi-

ple. The former ranks the nodes in the network according to their influence, while the latter

identifies the minimum number of nodes to achieve maximum collective influence. Centrality

measures like degree, betweenness, closeness, eigenvalue, etc. come in the first category, while

Voterank [111], optimal percolation method [112], etc., come in the second category.

Coreness:

It is a methodical approach to determining a protein’s local and global significance. It indicates

whether the protein is associated with a densely connected region of the network or with its

periphery. Additionally, it demonstrates how influential a node is at disseminating information

throughout a network.

Co-expression analysis:

For a comprehensive understanding of the complicated interconnections in biological pro-

cesses, approaches that can grasp the relationships between the genes involved are unmet needs.
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To overcome this challenge, biological networks have been employed as a framework for rep-

resenting and analysing gene-gene association. There are numerous ways accessible to sys-

tematically comprehend these relationships. Among them, one of the crucial methods is Gene

Co-expression analysis. It is also a method for determining the roles of unidentified genes and

their correlations with diseases. In such a network, the nodes represent the genes, and edges

represent their correlation strength. Despite the fact that the underlying concept is a thorough

understanding of the synergistic interaction between genes, the conclusion of such an analysis

can vary depending on the context. For instance, after constricting the coexpression matrix,

one may identify the genes that show similar expressions in a set of samples, or, using a guilt-

by-association method, co-expression analysis can help to determine the function of unknown

genes. The correlation strength between the genes across the conditions may vary. The genes

which show a higher correlation in one condition (say |Pearson correlation coecient| ≥ 0.7) may

show a lower correlation in another condition (say |Pearson correlation coecient| ≤0.3). Dif-

ferential co-expression analysis addresses these facts and tries to find crucial genes across the

conditions. This analysis relies on the premise that genes whose behaviour changes in relation

to a substantial number of neighbours across conditions are more apt to be prospective targets

or biomarkers.

1.2.4 Tools and software

Many packages across various platforms have also been used to perform the network-based

study. We have enlisted a few useful and most used packages in Table 1.3. Proper visualisation

of data is crucial for understanding the biological network. Frequently, the sheer quantity and

variability of data pose a difficulty for visualisation. Many network visualisation tools and soft-

ware are available in literature [113–120], most of which translate data onto two-dimensional

graphs to depict their relationships. However, when thousands of nodes and connections must

be evaluated and shown, the user-friendliness of many of these technologies reaches its limit.

Four of the most widely used visualisation and analysis software are Cytoscape [121], Gephi

[122], Tulip [123], and Pajek [124]. However, due to its user-friendliness and incorporation

of numerous plugins, Cytoscape has established itself as the big Banyan tree in the realm of
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network visualisations. Table 1.4 contains some useful Cytoscape plugins used in network

analysis, visualisations, and enrichment analysis.

Table 1.3: Various useful packages and software for the network biological studies.

Sr.

No.

Package/software Platform Description Ref.

1 dplyr R

It is a powerful R package that facilitates

the manipulation,cleaning, and

summarizing unstructured data. It comes

with many functions that perform widely

used data manipulation operations.

[125]

2 ggplot2 R An excellent data visualization package. [126]

3 Bioconductor R

The Bioconductor project is a collaborative

effort to create computational biology and

bioinformatics extensible packages and

software. It uses the R programming platform

and is open source and open development.

[127]

4 mlr R
An R package to perform machine learning

tasks.
[128]

5 limma R
This R package is used for the analysis of

gene expression data.
[129]

6 WGCNA R

WCGNA is a popular R analytical package

to constructs a gene co-expression network

and identify modules.

[130]
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Table 1.3 continued from previous page

Sr.

No.

Package/software Platform Description Ref.

7 biomaRt R

This open-source R package incorporates

easy and user-friendly functions to capture

all genomic data or data for selected

proteomes, genomes, coding sequences,

and annotation files contained in the

databases hosted by the National Center

for Biotechnology Information (NCBI)

and European Bioinformatics Institute

(EMBL-EBI)

[131]

8 DESeq2 R

DESeq2 is a widely used method for

differential expression analysis of count

data.

[132]

9 CFinder -

CFinder is a stand-alone application that

locates overlapping groups of densely

interconnected nodes in a network with

the aid of the clique percolation method

[133]

10 Enrichr -

This is a useful web-based and mobile

software application to perform gene

enrichment analysis and is facilitated

by various interactive visualization

approaches to display enrichment

results.

[134]

11 PyPathway Python

PyPathway is free and open-source

python package that performs functional

enrichment analysis, network modelling,

and network visualization.

[135]
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Table 1.3 continued from previous page

Sr.

No.

Package/software Platform Description Ref.

12 Cytoscape -

This software is designed for the

visualisation of large-scale networks.

Along with basic network analysis

measures, this app comes with various

plugins which are useful for finding

clusters and modules, pathway enrichment,

etc.

[121]

14 Metascape -

It is a web portal that provides functional

enrichment,interactome analysis and gene

annotation.

[136]

15 PIANO R
It is an R package to perform gene set

analysis.
[137]

16 DiffCoEx R
A method to identify gene co expression

differences between multiple conditions.
[138]

17 ComBat R
A package for correcting batch effects

in datasets with a known batch covariate.
[139]

18 BioNetStat R
A tool for comparison of two or more

networks simultaneously.
[140]

19 CentiServer

R,

Web-

based

portal

It can perform centrality analysis.

Currently, it can perform 403 different

types of centrality analysis.

[141]

20 DAVID -
A web-server that can perform functional

enrichment, gene ID-conversion etc.
[142]
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Table 1.3 continued from previous page

Sr.

No.

Package/software Platform Description Ref.

21 GSEA

R,

Soft-

ware

It can perform rank-based gene set

enrichment.
[143]

1.3 Omics technologies

The addition of the term "omics" to a molecular term denotes a thorough, or global, exami-

nation of a collection of molecules. The emergence of omics technologies such as genomics,

epigenomics, transcriptomics, proteomics, metabolomics, microbiomics, etc., have embraced

new possibilities to study a biological system to an extraordinary detailed level. Genomics is the

study of the genome of an organism, epigenomics aims at exploring global epigenetic changes

that offer crucial insights into mechanisms and function of gene regulation across several genes

in a cell or organism. Transcriptomics relies on the qualitative and quantitative genome-wide

study of RNA levels, while proteomics facilitates the study of the whole proteome of an organ-

ism [158]. Mass spectrometry-based proteomics is an indispensable approach to delineating

protein expression, protein-protein interactions, subcellular localisation, and post-translational

modifications. Similarly, metabolomics is the large-scale study of metabolites within cells,

biofluids, tissues, or organisms [159]. The study of the microorganism in a given community

comes under the focus of microbiomics [158]. Throughout the times, new dimensions have

been added to omics, such as lipidomics, nutrigenomics, etc. The advent of these technologies

has opened up new avenues for studying biological systems at an unprecedented level of de-

tail. In such studies, the characteristics and quantity of a specific type of molecule in samples

are quantified, and the patterns and/or relationships between the sample attributes are investi-

gated( [160]. Omics techniques yield massive amounts of multidimensional data that can be

analysed using new informatics methodologies and traditional statistical methods. While sys-

tems theories, such as network analysis and machine learning, are well-suited for analysing
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Table 1.4: List of useful Cytoscape plugins. All these plugins are freely available at the
Cytoscape app store (https://apps.cytoscape.org/).

Sr. No Plugin Description References
1 BiNGO Quantifies GO terms that have been overrep-

resented in the network and portrays them as
a network of relevant GO terms.

[144]

2 Mosaic and Cerebral These two are visualization plugins for
Cytoscape and can compartmentalize the
genes/proteins in a network according to their
subcellular localization.

[145, 146]

3 PathLinker This package reconstructs signaling pathways
from protein interaction networks.

[147]

4 CytoNCA Perform centrality analysis of weighted and
unweighted networks.

[148]

5 ClueGO It helps to create and visualize a functionally
grouped network of terms/pathways.

[149]

6 GeneMANIA Uses public databases to import interaction
networks from a list of genes with their an-
notations and putative functions.

[150]

7 BiNoM It helps to access and analyze pathways. [151]
8 PiNGO Helps to locate candidate genes in a network

that are linked with user-defined target GO
terms.

[152]

9 MCODE Create clusters in a given network based on
the topology to identify densely connected re-
gions.

[153]

10 ConsensusPathDBplugin Retrieves interaction evidence for a given pair
of genes or proteins

[154]

11 AgilentLiteratureSearch Curates scientific literature to find publica-
tions associated with the search term and to
create an interaction network based on the
search result.

[155]

12 jActiveModules Detects clusters where nodes show significant
changes in expression levels.

[156]

13 cytoHubba By using various topological algorithms, this
Cytoscape plugin can predict and find impor-
tant nodes and subnetworks in a given net-
work.

[157]
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these data, they must be used with a working knowledge of the relevant biological and com-

putational theories. Systems biology addresses the issues raised by the complex organisation

of biological processes by applying these methodologies to omics data. Integrating different

network-based and artificial intelligence-based approaches to omics data contributes to identi-

fying helpful markers of disease progression. For instance, numerous research has used blood

transcriptome data to develop classification models capable of discriminating between samples

from TB patients and controls within the cohort [161–163]. Burel et al. identified a CD4 T

cell immune signature of LTBI by combined cell population transcriptomics and single-cell

protein-profiling techniques [164]. The model provided novel insights into the phenotype of

TB-specific CD4 T cells. Taking blood serum from individuals with active and latent TB, Cao

et al. identified three potential serum biomarkers that can distinguish between these two types

of TB [165]. In many cohort studies, it has been reported that the plasma proteomes are differ-

ent in LTBI, TB, and HC cohorts and hence can be used as indicators to differentiate the three

types of individuals. Based on this, Sun et al. performed a label-free quantitative proteomics

analysis to identify plasma biomarkers that can discriminate pulmonary TB from active TB

[166]. Personalised medicine addresses the notion that "we are all alike, yet unique." It is a

fairy beacon of hope and clarity that burns brightly and shines jubilantly on getting patients on

the appropriate medication, and that too in a shorter time. It is a notion that has the potential to

change medical interventions by offering effective, individualised therapy methods based on an

individual’s genetic, epigenomic, and proteomic profile while taking into account the patient’s

unique circumstances. In other words, such technologies built a specific molecular window

that allows peeping through the discrepancies between the genomic profiles of diseased and

healthy individuals. However, this field is still in its infantry and requires the integration of

more sophisticated tools and methods.
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1.4 Tracing the footsteps of autophagy in computational bi-

ology2

The advent of systems biology is opportune for drug development. As the time and cost re-

quired to bring new pharmaceuticals to market continue to increase, it is crucial to expedite ef-

forts to identify the most promising candidates as quickly as feasible. This necessitates a deeper

comprehension of disease-related pathways to appropriately assess medication specificity or

detect and identify unintended or undesirable effects. In addition to addressing progressively

more complex, multivariate forms of the disease in target populations, the field of drug dis-

covery faces the additional challenge of confounding underlying mechanisms. As the ultimate

objective of pharmacotherapy is to modulate cellular biochemical function to induce physi-

ological change or assure repair, the cell provides a preliminary level of systems abstraction

for drug development. Even though cellular components are frequently functionally defined in

isolation, they execute their intracellular and intercellular roles within a complex network of

interactions. In these contexts, mathematical modelling studies also do not stay behind. The

large-scale studies have the limitation that they can not take into account the system’s situa-

tional changes, which include stochasticity, inherent delay, etc. These models can portray an

abstraction of reality and theoretically take the system from any state to any desired state. That

is why, together or individually, mathematical modelling and network biology can improve

drug development endeavours, new target identification, and delimitation of off-target effects,

ideally leading to preventative strategies and empowering individualised solutions. The process

of autophagy, as previously mentioned, is a quintessential biological process which has been

proven to be the cause or effect of a myriad of diseases. With the in vivo and in vitro studies of

autophagy which have explored many novel discoveries, systems biology, with the potential of

decrypting the system’s complexity both as a whole and in part, has significantly emerged and

made tremendous contributions to the field of autophagy. For example, using network biology

processes, the core proteins in the autophagy process in a disease can be identified. Mathe-

2The bulk of this section is taken verbatim from the published article: Sarmah, Dipanka Tanu, Nandadulal
Bairagi, and Samrat Chatterjee. "Tracing the footsteps of autophagy in computational biology." Briefings in
Bioinformatics 22.4 (2021): bbaa286.



1.4. Tracing the footsteps of autophagy in computational biology 47

matical modelling can be done on this set of proteins to may identify potential parameters that

otherwise could not be explained by network analysis alone. This methodology is shown in

Figure 1.8.

Figure 1.8: The journey of proteins from being inside the system to the arms of mathe-
matical modeling. The palate (A) shows the processing of data. The raw gene expression data
to study a particular disease is first corrected, including steps like dealing with the null values
and the outliers. The data is then normalized, and the differentially expressed genes (DEG) are
calculated. The palate (B) shows the autophagy specific study of the disease. The autophagic
genes are first obtained from an autophagy database from where the differentially expressed
autophagy genes are selected. Using PPI databases, a PPI network of the DEGs (which may be
entirely autophagic DEGs or a mixture of autophagic and not-autophagic DEGs) is constructed.
In the figure, the green color denotes the autophagic, and the orange color represents the non-
autophagic genes. Implementing machine learning approaches, graph theoretical approaches,
or enrichment analysis (pathway analysis, disease analysis, or gene ontology analysis), the sig-
nificant modules or target proteins from the network are extracted. In the first case, the proteins
driving the module can further be identified. Finally, the implementation of mathematical mod-
eling approaches can explore the dynamics and underlying mechanism of the target proteins or
the module.

Addressing this associations, in this section, we have encapsulated the overview of au-

tophagy in computational biology explored via mathematical modeling and network analysis

along with comprehensive insights about these approaches and their applications in the explo-

ration of the autophagy process at various levels (molecules, cells, tissues). We have delineated

several well-established methods such as mathematical models based on different types of dif-

ferential equations, Petri net, agent-based models, enrichment analysis, and centrality analysis
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to capture the dynamical behavior or the collective influencers in the network. Further, we have

enlisted the available autophagic databases and the related resources and their feature selection

and epitomized some conventional software and tools used for visualization and analysis in

computational biology.

1.4.1 Mathematical modeling for autophagy

The process of autophagy consists of 5 steps, and all these stages are easily observable [167].

Different steps in the autophagy pathway may exert a different effect on the system. How-

ever, the biochemical reactions in autophagy are mostly nonlinear, i.e., a minute change in any

of its stages will not necessarily exert a proportional effect throughout the system. Mathe-

matical modelling endorses simplified abstractions and approximations to identify the steps of

autophagy that are responsible for a particular behaviour in the system. Moreover, the constant

shift in the behaviour of the system exerts randomness in the autophagy process. Mathematical

modelling of autophagy keeps track of these factors and allows the researchers to investigate

the dynamics of the system following any environmental conditions that may arise due to var-

ious external or internal perturbations or signals. Autophagy is a bridge between cell survival

and cell death. Depending on certain extracellular or intracellular signalling, the process of

autophagy may decide cell fate. At the single-cell level, these events may be mutually exclu-

sive, indicating that cell death and cell survival events are different attractors of the system.

Mathematical modelling can be done to understand the crosstalk between these two events

using attractors, fixed points, and limit cycle concepts. Cell types differ in their response to

autophagy stimuli. Addressing this cell-to-cell variability, various therapies have targeted au-

tophagy manipulation in cancer therapy [67–69]. Mathematical modelling can help in planning

and predicting the parameters that [168, 169] could be targeted and its outcome on the cell pop-

ulation. For example, autophagy helps in tumour cell survival under various stress conditions

[170]. On the contrary, increased autophagy may lead to excessive cellular degradation and,

thus, may initiate cell death [50]. A mathematical model can perfectly utilise these conditions

to identify the biological parameters that increase the autophagy process in disease conditions

so that the tumour cell gets less benefit from the basal level of autophagy and cell death initi-
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ates. Thus, mathematical modelling can be used in a very effective way to decipher the process

of autophagy and its role in various diseases or conditions. We have discussed below some

of the modelling work done in the autophagy process to get an idea of the applicability of

mathematical modelling in understanding the autophagy process.

1.4.1.1 Differential equations based models for autophagy

In 1975, Deter et al. [171] formulated the first mathematical model to delineate glucagon-

induced autophagy in rat liver. This primitive study was based on experimental observa-

tions, collision theory and chemical kinetics and mainly focused on studying the population

of telolysosomes, autophagosomes and autolysosomes in rat liver. Thereafter, various studies

on autophagy have incorporated different types of mathematical models, viz. ODE, DDE, and

SDE. The widely used ODE-based models are the simplest to study the process of autophagy.

These models are entrenched in the assertion that the system considered is well-mixed and there

are sufficient numbers of components so that their numbers can be considered as continuous

quantities. Understanding the steady-state, stability, and other qualitative behaviour of a model

will unveil the system’s underlying mechanism. For example, response to cellular starvation is

an intrinsic property of autophagy and was mathematically addressed by Jin et al. [172]. They

classified the cells into normal phase and autophagic phase, and by taking nutrition as the third

variable, a logistic type (three-dimensional) model of the yeast cell population was constructed

and analysed. The model considered in this example has one unstable trivial equilibrium point

when the nutrient concentration in the input flux and nutrient loss rate by output flux is constant

and a locally asymptotically stable positive equilibrium point when the system is considered

without autophagy. The model analysis concluded that an efficient autophagy level might be

adequate to sustain a population during a long duration of starvation. However, the author did

not incorporate any molecular regulation in their study. A hybrid model consisting of cell pop-

ulation dynamics and molecular regulation could have provided a better insight into cell fate

regulation by autophagy. Addressing this issue, the same group later developed a hybrid model

[173] to understand the molecular regulation and population dynamics of yeast by incorporat-

ing molecular level interactions, the amino acid exchange between cells, and cell behaviour.
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ODE models are also built to predict optimal drug schedules to control autophagy. Shirin et

al. [174] formulated a nonlinear ODE model to predict optimal drug schedules to control au-

tophagy. Focussing on four autophagosome production influencers and their specific inhibitors,

the model figured out various drug pairs that are more effective when taken together. Mathe-

matical models can qualitatively estimate the protein levels capable of deregulating homeosta-

sis, like Ouzounoglou et al. [175] formulated a model to understand the dynamics of Alpha-

synuclein (ASYN) in Parkinson’s disease.

Autophagy and apoptosis pathways are closely regulated, and some proteins, which regulate

autophagy, can also regulate apoptosis [176, 177]. Hence, proper knowledge of autophagy

and apoptosis interconnections may help stop or promote fatal cell decisions. Kapuy et al.

[178] studied beclin1-mediated autophagy and caspases-mediated apoptosis by forming an

ODE model. The model was built to address the B-cell lymphoma 2 (BCL2)-Beclin1-caspases

minimal network. They have also considered the effect of stress on autophagy by taking it as

a bifurcation input. Based on the observation, it was suggested that the autophagy apoptosis

transition is adjudicated by a bistable switch and, depending upon the intensity and duration

of stress levels, sequential activation of cellular response can be initiated by a combination of

BCL2-dependent regulation and feedback loops between Beclin1 and caspases. Various other

models have also been built on understanding the autophagy-apoptosis interplay [179, 180].

A key feature of autophagy is that it also plays a role in unfolded protein response (UPR).

Cyto-protective or cyto-destructive UPR gets activated by anti-oestrogens or other drug ther-

apies. Autophagy assists in the cyto-protective role of UPR, while the cyto-destructive role

contributes to apoptosis [181]. Addressing these, a mathematical model of autophagy, apop-

tosis, and UPR was proposed to understand the interactions that accomplish anti-oestrogen

resistance and the effects of GRP78 on both sensitive and resistant breast cancer cells [181].

The model provides a clear picture of interactions of autophagy, apoptosis, and UPR to pro-

duce both sensitivity and resistance to antioestrogen therapy under various conditions. The

time delay associated with any biological process is not facilitated by ODE-based models. This

is mainly addressed by DDE. These models address the time lags between biological processes

and thus offer a better portrayal of biological systems. Time lag plays a vital role in autophagy,
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as in many biological processes. Various studies have implemented DDE-based mathemati-

cal modelling to understand the hidden mechanisms in the autophagy process. For example,

in autophagy, the formation of autolysosome follows autophagosome formation indicating a

time delay. Han et al. [182] formulated an eight-dimensional (8D) model using the delay to

study the behaviour of both resident (normal) and abnormal proteins along with the formation

of autophagosomes and autolysosomes, the intracellular concentration of Adenosine triphos-

phate (ATP), and amino acids. The study showed that intracellular levels of autophagosomes

and autolysosomes display an oscillatory behaviour. The same group later formed another

mathematical model to explore the role of autophagy in the protein/organelle quality control

when exposed to different physiological perturbations [183] and further extended their study to

Alzheimer’s disease [184]. ODE-based models do not consider the effect of noise, which is an

inherent property in many dynamical systems. This property is addressed by the SDE models,

as done by Martin et al. [182], who studied autophagy vesicle dynamics in a single cell. They

used live-cell fluorescent microscopy to measure the synthesis and lysosomal turnover of au-

tophagic vesicles (AV). The data was used to build a 4-dimensional ODE model, followed by

a 23-dimensional SDE model for the accurate prediction of autophagic vesicle dynamics in a

cell. The SDE model has implemented a sequence of biochemical and physiological steps in

the autophagic pathway from PtdIns3KC3 activation through LC3 conjugation that comprises

the nucleation of the phagophore, maturation of the autophagic vesicle and lysosomal degra-

dation. The mechanistic model was a better portrayal of the autophagy dynamics in a cell.

For example, correlating with the experimental data, the SDE model captured a time lag in the

production of AV in response to treatment initiation, but no such behaviour could be achieved

with the deterministic model. The SDE model was also capable of accurately predicting that an

80% decrease in ATG9 content would result in a corresponding reduction in vesicle synthesis

rate. It also stated the correlation between AV size and LC3 levels across single cells. The

study can be taken as an example to quote that although ODE models are less complicated and

can portray biological behaviour, SDE models are a better illustrator of biological phenomena.
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1.4.1.2 Agent-based models for autophagy

The applications of agent-based models to study autophagy are very few. The creation, move-

ment, fusion, and deterioration of autophagy pathway vesicles are dynamic both temporally

and spatially. To delineate the spatio-temporal aspects of autophagy regulation and its dynamic

behaviour, Borlin et al. [185] have constructed an agent-based model using the NetLogo ABM

platform. The first agent is the phagophore, which grows and matures to form the second agent

autophagosome, which then fuses with the third agent lysosome to generate the last agent au-

tolysosome. The newly formed autolysosomes can then either fuse with lysosomes, autophago-

somes, or other autolysosomes to grow. They inferred spontaneous motion for phagophores and

autolysosomes to simulate organelle movements, while autophagosomes and lysosomes travel

directly towards or directly away from the nucleus to replicate their active transport along the

cytoskeleton, at a pace that is independent of its size. The key parameters of the model were

fitted with an iterative method using a genetic algorithm and a predefined fitness function. The

model, integrated with high-resolution fluorescence microscopy data, could successfully repro-

duce the short-term and long-term behaviour and cell-to-cell variability.

1.4.1.3 Petri net

Minimal literature is available on the use of Petri net in the study of autophagy. Jennifer et al.

[186] studied the Salmonella xenophagy in epithelial cells by designing a Petri net model. The

model includes all biochemically proven and published processes of Salmonella xenophagy

in epithelial cells and comprises 61 places (proteins/ macromolecular complexes/ organisms/

signals) and 184 arcs. The model consists of 16 T-invariants describing biological subpath-

ways in steady-state and represents the fundamental dynamics of the system. The author has

implemented in silico knockouts of specific proteins to investigate the model behavior and the

corresponding biological effect.
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1.4.2 Network biology based approach for autophagy

1.4.2.1 Omics and autophagy

The integrated method of the omics strategies and network biology enable a better understand-

ing of the autophagy process. There are studies that incorporate a large-scale multi-omics

approach to study the broad framework of autophagy and its association with other biological

processes. These studies have deciphered the role of autophagy in host-pathogen interactions,

tumor growth, various cancers, nervous systems etc. [187, 188]. Considering that "omics"-

based studies are a pivotal area of current research to provide a more systematic view of bio-

logical processes, these approaches have driven our insights into the regulation of autophagy.

1.4.2.2 Network analysis for autophagy

Throughout the decades, the advancement of high-performing data collection technology has

resulted in a large number of autophagy-related data. Network analysis approaches have been

implemented in these data to delineate the association of autophagy with various diseases and

biological processes. Network analysis also helps uncover the organizing principles of diseases

and identifies the potential targets accountable for the disease pathogenesis.

Network analysis is well supported by autophagic databases, which play a crucial role in de-

lineating the role of autophagy in various diseases. Various studies have been done by the

implementation of the specific autophagic information obtained from these databases [188–

190]. Lin et al. [190] carried out a comprehensive study of autophagy-related genes (ATG)

and associated noncoding RNAs and transcription factors to investigate the association of au-

tophagy with digestive system tumours (DST). The Cancer Genome Atlas database was used

to get the digestive tumour transcription details. The autophagy genes were extracted from

the Human autophagy modulator database. The study, facilitated by WGCNA, crosstalk con-

nection, pivot analysis, and functional analysis, revealed that the autophagic genes control the

pathogenesis of digestive system tumours and highlighted the potential role of autophagy in the

treatment of DST. Wang et al. [188] constructed a disease autophagy network where disease

genes were taken from online mendelian inheritance in man (OMIM) [191] and autophagic
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genes were extracted from the human autophagy database (http://www.autophagy.lu/), the au-

tophagy database [192], and the autophagy regulatory network database [193]. The autophagy

genes were observed to act as a bridge between diseases and were found to be topologically

important in the disease-autophagy network.

Network-based studies often facilitate the identification of hubs and modules. Modularity is an

essential property of a network. It refers to the organization of nodes in clusters. Module-based

analyses can contribute to a deeper understanding of biological systems. Hub proteins are

also crucial in maintaining the global network structure. A study carried out by Durocher and

co-researchers [194] elucidates the gene network in the peripheral blood transcriptome associ-

ated with human intracerebral haemorrhage. Using the WGCNA package in R, they identified

the hubs and the modules in the network, and used ingenuity pathway analysis (IPA) and the

DAVID Bioinformatics Database [195] to find the associated pathways and processes. Various

studies [196–198] have performed a network-based analysis on autophagy by using the dataset

obtained from the Gene Expression Omnibus (GEO) repository [199]. After following the pre-

liminary analysis, the WGCNA package in R has been used to identify significant modules and

hubs in the network [197, 198, 200, 201]. Although network analysis approaches have been

applied extensively to study autophagy, methods like network stability, control theory, perco-

lation, etc., are yet to be integrated to study the autophagy process. Given the importance of

these methods, their implications will surely help identify novel targets and pathways related

to autophagy. The lack of sufficient temporal data to understand a disease progression has also

limited the network-based study of autophagy processes. Nonetheless, with time the data is

growing, and we believe in the coming years, we will have enough data to make better and

more accurate predictions.

1.4.3 Artificial Intelligence (AI) associated research of autophagy

As in many other biological processes, AI-based approaches have also been incorporated into

the field of autophagy. In a recent study, Zhaoyue et al. [202] applied machine learning (ML)

techniques to classify renal cell carcinoma (RCC) subtypes using autophagy proteins. The

expression data of the key autophagy proteins in renal cell carcinoma was measured by im-
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munohistochemical images. The data was then normalised with mean and standard deviation.

K-Nearest Neighbor (KNN) algorithm was applied to the normalised data for classification.

Their study identified the basal level of autophagy as a potential measurement for discrimina-

tion of renal cell carcinoma. In an early work by Janos and co-researchers [203], an image

analysis pipeline was developed using the support vector machine (SVM) for the determination

of novel selective pharmacological inducers of autophagy in human cancer cell lines. A variety

of software incorporating a broad range of machine learning algorithms has been developed

recently. For example, Serrano et al. [204] have used the software Scikit-learn [205] to study

the effect of mRNA alterations of some autophagic genes, one proapoptotic gene, and one anti-

apoptotic gene in HIV-infected patients effectively treated with combined antiretroviral therapy

(cART).

In the past two decades, the pharmacological modulation of autophagy has gathered a great

deal of attraction. The process of autophagy gets manipulated by various modulators. ML-

based methods can be blended to study the mechanism of actions of these autophagy mod-

ulators to gain knowledge on various factors that include side effects, drug repurposing, and

development of novel polypharmacological strategies [206]. AI approaches are powerful tools

that associate important molecular changes with an observed phenomenon. However, these

approaches remain silent on the underlying mechanism for such observations. To capture the

possible mechanism, we need to take help from differential equation-based models.

1.4.4 Databases with the information related to autophagy

Biological databases play a central role in systems biological studies. They offer the oppor-

tunity to access a wide variety of biologically relevant data, which include protein-protein

interaction information, disease-protein association information, microarray, next-generation

sequencing, protein localization, post-translational modification, the structural details of a pro-

tein or compound, and pathways associated with proteins, etc. However, databases containing

exclusively autophagic information are very few. In Table 1.5, we have enlisted eleven most

used databases in autophagy. These databases contain various information like disease associ-

ations, pathways, the specific effect on autophagy, etc. In Figure 1.9, we have compared the
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Figure 1.9: Comparison of some of the well-explored autophagy databases in literature.
The columns contain the name of the databases, and features are placed in the row. The orange
colour means that the particular feature is present in the database, and the blue colour means
it is absent. Here, the agent feature includes drugs, chemicals, and small molecules. Only
autophagy-related proteins are considered for the ARN database.

features of these databases.
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Table 1.5: Some of the most used databases in autophagy. The features of these databases
are shown in Figure 1.9.

Sr.no Name Full form URL Ref.

1 HAMDb Human Autophagy

Modulator Database

http://hamdb.scbdd.com [207]

2 ARN Autophagy Regula-

tory Network

http://autophagyregulation.org/ [193]

3 Autophagy

database

Autophagy database http://www.tanpaku.org/autophagy [192]

4 ncRDeathDB The noncoding RNA

(ncRNA)-associated

cell death database

http://www.rna-society.org/ncrdeathdb [208]

5 ACDB Autophagic com-

pound database

http://www.acdbliulab.com [209]

6 THANATOS Autophagy, Necro-

sis, Apoptosis Or-

chestratorS database

http://thanatos.biocuckoo.org [210]

7 HADb Human Autophagy

Database

http://www.autophagy.lu/ -

8 AutophagySMDB Autophagy Small

Molecule Database

http://www.autophagysmdb.org [211]

9 ATD Autophagy To Dis-

ease

http://auto2disease.nwsuaflmz.com [212]

10 iLIR In silico identifica-

tion of functional

LC3 Interacting

Region Motifs

database

https://ilir.warwick.ac.uk [213]

11 ATdb Autophagy and Tu-

mor Database

http://www.bigzju.com/ATdb [214]
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HAMDB contained the most autophagic proteins among these databases. To grasp how

these proteins function, it is necessary to comprehend their relationship with one another. In

other words, we must construct and analyse the network of their interactions. We first extracted

551 autophagy-related genes from the HAMDB database to create the autophagy interactome.

We used STRING [215] and SIGNOR [216] databases for information regarding their interac-

tions. The former compiles information regarding both predicted and experimental evidence,

while the latter details the functional interactions between proteins. As STRING also facilitates

text mining, a confidence score of 900 was used to build the network. In both of these networks,

the edges containing at least one autophagic protein were considered. We discovered that the

STRING network had more autophagic proteins than the Signor network. This indicates that

the functional information between these proteins has not yet been curated to its fullest extent.

This also caused the STRING network to be more interactive than its counterpart Figure 1.10.

The networks are shown in Figure 1.11 and 1.12.
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Figure 1.11: Autophagy interactome constructed using SIGNOR. Here, the nodes are sized
and colored according to their degree.
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HCCS

FXN

FECH

BLVRA

HEPH

HRAS

RANBP9

DOK1

LGALS3

RIN2

DAB2IP

RASA4

GRIN2D

RASGRF2

DOK2

CSF1R

RASA2

GRIN2C

SPRED1

SPRY3

RGL1

RASGRP1

ARHGAP1

CD209

RANBP10

CAMK2G

PRKCH

RASA3

ARHGAP6

CAMK2D

RASAL3

SPRY4

SPRED3

SPRED2

RASAL2

SHOC2

ARHGAP4

GRIN1

FRS3

PIM1

RASGEF1A

RASSF2

PTPRA

RABGEF1

ARHGAP5

ARAP1

PAQR5

GRIN2A

CAMK2A

DLG4

RASGRP3

ARHGAP35

CHN1

BRAP

SYNGAP1

MUC20

RGL2

PIK3C2G

RASAL1

PRRT2

RASSF5

GRIN2B

PHB

RASGRP4

NCAM1

NEFL

SYMPK

HSF1

RPS19BP1

MAPKAPK2

HSBP1

TIA1

CRYAB

HSP90AA1

AHSA1

HSPE1

AHR

TUBG2

TDRD1

FKBP6

B9D1

TUBGCP3

MOV10L1

MARK4

TTBK2

UNC45B

AIP

SCLT1

TOMM70A

ASZ1

PPID

TCTN2

CEP89

MLKL

MZT2AIQCB1

NPHP1

DNAJA2

NCL

HSPH1

PINX1

FBF1

PIF1

FES

C2CD3

LIMK1

CEP97

ESR2

PIWIL2

NR3C2

STIP1

AHI1

NME7

MAEL

TDRKH

SUGT1

NPHP4

KIF24

DNAJA1

RPGRIP1L

DUT

CDC37L1

HSPD1

MKS1

AHSA2

DNAJA4

TCTN1

CEP83

BCL6

CDK11A

CEP162

TDRD9

TMEM67

TDRD12

CC2D2A

UNC45A

DDX4

CFL1

TMEM216

FKBP5

TUBGCP2

HNRNPC

CDK11B

Sep-02

TCTN3

HSPA5

ST13

SEC61A1

CANX

DNAJB9

DNAJB6

DNAJC10

C11orf73

PDIA4

PDIA3

CALR

CLGN

SEC62

BAG5

TAP1

SEC63

BAG2

TAP2

DNAJC1

SYVN1

DNAJC2

TAPBP

DNAJC7

DNAJB11

BAG1

MANF

HYOU1

HSPA8

GPKOW

RBM22

SF3A1

SNRPD3

PHF5A

PAPOLA

PABPN1

SLC32A1

PQBP1

BLOC1S6

HNRNPL

SF3A2

DNASE2

RAB3A

STX1A

CPD

SRSF9

SKIV2L2

SF3B6

SYF2

CPSF3

SNRPA

SRSF6

SNRNP27

SNRPC

SNRPB2

SUGP1

LSM8

LSM7

PPIL4

SNRPA1

HSPBP1

CHL1

PRPF38A

SRSF1

WBP11

PPWD1

SNRNP40

DNAJC8

GRPEL1

CCAR1

PRPF6

SNRPF

DHX38

TXNL4A

PRCC

SF3B4

SNRPG

HNRNPU

PPIL3

CPSF4

U2AF1L4

CCT3

SLU7

PCF11

CPSF2

NUDT21

SNRPD1

SRRM2

LSM3

SH3D19

CD2BP2

PCBP1

CPLX1

SF3B3

PPIH

U2AF2

SART1

DDX23

USP39

HNRNPD

PRPF3

CSTF3

HNRNPA0

SNRNP200

TCP1

BLOC1S4

GCFC2

SF3B2

PRPF31

AP3S1

HNRNPM

WDR33

SRSF7

SRRM1

CSTF2T

DHX15

FIP1L1

DTNBP1

HNRNPA1

SNRPD2

RBM5

CPSF7

HNRNPA2B1

HNRNPH1

TBC1D8B

GAD1

PCBP2

CTNNBL1

SF3B5

SNAPIN

CDC40

BCAS2

SMNDC1

RBMX

DNAJB4

SRSF11

YBX1

HNRNPH2

CSTF2

SF3A3

PPIL1

SRSF3

SRSF4

PRPF4

HNRNPR

LSM2

GAD2

HNRNPK

DHX16

CRNKL1

SF1

SNX5

WBP4

SNX2

CWC27

HNRNPUL1

SRSF2

HNRNPA3

ELAVL2

SNRPN

NHP2L1

TFIP11

ELAVL1

BUD31

PRPF40A

CWC22

RBM17

PUM1

EFTUD2

PPIL6

BLOC1S3

HNRNPF

LSM5

SNRPB

METTL21A

DDX46

TRA2B

YIPF6

U2SURP

ALYREF LSM6
PLRG1

RIMS1

TPD52

CLINT1

TPD52L1

PUF60

CHERP

SRSF5

PRPF8

DDX42

LSM4

SNRNP70

CWC15

CWC25

SRRT

CPSF1

HSPB8

HS3ST1

HSPG2

TLL1

NID2

MMP15

APOC3

LAMA4

LAMA5

HS6ST1

MMP13

HS3ST2

NDST1

GLCE

NID1

NDST4

LRP12

HS3ST3A1

NDST3

BMP1

NDST2

LAMA3

HS3ST4

PDGFA

TLL2

LRP10

HS3ST3B1

LAMC3

HS2ST1

HPSE2

HS6ST3

EXT1

FGFBP1

EXT2

LAMA2

HS3ST6

HS3ST5

HS6ST2

DAG1

MMP12

APOC2

HTR2B

HAP1

HTT

F8A2

ICMT

RCE1

ZMPSTE24

TPH1

IDO1

AANAT

AFMID

TPH2

MAOA

CYP1A2

MAOB

CYP1A1

ASMT

DDC

INMT

IDO2

TDO2

CYP1B1

IFNG

IFNGR2

ETV5

FOXP3

STAT4

CIITA

IFNGR1

IFNAR2

IGF1

IGFBP2

LIF

CILP

CTF1

KLK1

IGFBP6

KLK2

KLK3

MMP1

PAPPA

TRPV2

PAPPA2

INSRR

IRS4

GHRH

ALOX15B

IGFALS

KLK13

IGF1R

KL

IKBKB

IKBKG

IKBKE

IL11

TYK2

IL11RA

IL17A

IL9

IL17RC

IL17RA

RORC

IL17F

IL1B

IL12B

IL1RN

IRAK3

IL12RB2

IL12A

DEFB4A

IL1RAP

PTGS2

IL12RB1

CCL3

IL2

CD69

IL7

IL15

SGMS1

UGCG

PRF1

IL22RA1

IL24

IL20RA

IL20RB

IL3

TSLP

IL33

IL1RL1

IL6

OSM

PTPRE

LRPPRC

IL23R

INS

GCK

ATP6V1B1

ATP6V1E1

PCSK2

ATP6V0A1

CACNA1C

ATP6V1C2

ATP6V1A

ATP6V1B2

ATP6V1G3

ATP6V0D2

CACNA1D

ATP6V0D1

CACNB3

MYRIP

ATP6V1G2

ATP6V1E2

PCSK1

ATP6V0A4

CACNB2

MAFA

RFX6

ATP6V0A2

SYT5

ERO1LB

ATP6V1H

DPP4

ATP6AP1

SORBS1

STXBP1

ATP6V1G1

NKX2-2

TMEM27

ERO1L

ATP6V1C1

ATP6V0E2

ATP6V1F

CACNA2D2

ATP6V0E1

ATP6V0B

SH2B2

FGF21

IRGM

ITGB4

DST

COL17A1

LAMB3

CD151

PMP22

CD79A

ITPR1

BLNK

PRKG2

PLCZ1

RASGRP2

ORAI2

AHCYL1

CD79B

AKAP5

MRVI1

TRPC1

DAPP1
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ORAI1

YEATS4

KAT8

TAF4

BRD8

KANSL1

EPC1

HCFC1

MSL2

MSL3

TAF7

SENP3

ING3

MCRS1

DMAP1

LAS1L

TEX10

AK6

TAF9

INO80C

KANSL3

TAF6

KANSL2

C17orf49

MSL1

ENSG00000267140

KDM4A

HIST2H3D

HIST2H3C

HIST1H3D

HIST2H3A

HIST2H3PS2

HIST1H3A

HIST1H3E

HIST1H3C

KDR

FLT1

AXL

ANGPT2

MYOF

NRP2

SH2D2A

MAPKAPK3

PGF

AKAP1

KIF25

KIF5C

KRAS

KRT14

KRT18

KRT20

KRT23

KRT37

KRT32

KRT13

KRT38

KRT9

KRT12

KRT31

KRT33B

KRT5

KRT1

KRT75

KRT6C

KRT6B

KRT15

KRT85

KRT84

KRT82

KRT24

KRT71

KRT10

KRT83

KRT72

KRT16

KRT27

KRT28

KRT78

KRT73

KRT74

KRT17

KRT25

KRT2

KRT79

KRT36

KRT7

KRT76

KRT26

KRT77

KRT39

KRT19

KRT40

KRT6A

KRT81

KRT33A

KRT35

KRT34

KRT80

KRT3

KRT86

KRT4

KRT8

LACRT

NPRL2

LAMP1

WDR59

EEA1

SZT2

NPRL3

LAMP2

LEP

UCP1

GH1

CNTF

LEPR

LMX1B

LRRK2

VPS35

ATP13A2

RAB29

PARK7

MAF1

POLR3A

MAP1LC3A

FYCO1

MAP1LC3B

MAP1S

MAP2K1

SHH

RUSC1

WDR83

MAP2K2

MAP2K4

MINK1

MAP3K4

MAP3K2

MAP3K12

MAP3K9

MAP2K7

MAPK8IP1

MAP3K13MAPK8IP2

DUSP19

ARHGEF2

MAPK14

MYF6

ATF1

GZMA

DUSP16

HSPB2

PLA2G1B

ELK4

DUSP10

CARD9

PRKG1

CCM2

TH

LSP1

IL4R

DSCAM

ETV1

DUSP7

ELK1

MAPK8

IL18RAP

MTG1

IL1RAPL1

IL1F10

IL18R1

WWOX

ZNF274

MAPT

BRSK1

BRSK2

MARK2

MBOAT4

MCL1

C22orf29

CACNG3

MDM2

CACNG4

CACNG8

GRIA4

CACNG2

EPB41L1

CCNG1

TRIM27

PIAS2

GRIA3

MEFV

MEGF10

MET

TNS4

RND1

TNS3

PLXNB1

SEMA4D

MFN1

TOMM20

TOMM40

TOMM5

MFN2

Mar-05

TYR

MITF

TYRP1

PAX3

SOX10

MMP10

CTRB2

PRSS1

CTRB1

MTDH

CDIPT

MTMR3

PIKFYVE

INPP4A

INPP4B

RRN3

MTOR

EIF4EBP2

TTI1

IGBP1

PRR5L

MVB12A

SMCHD1

USP28

MYC

NR0B2

POU5F1

BRD4

TAF12

TAF10

NR2F1

SUPT7L

GFI1

SUPT3H

FAT1

TJP2

PFDN5

MYD88

TLR10

TLR8

DHX36
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MYH1

MYL3

TNNC1

TNNT2

TMOD2

MYH4

TMOD1

TNNT3

ACTC1

TMOD4

MYL1

TMOD3

TCAP

TNNI3

TPM4

MYL4

MYH7

MYBPC2

TPM1

MYLK

TNNI1

DMD

TPM3

TNNC2

DES

TPM2

TNNI2

MYH8

MYH6

MYBPC1

MYH13

MYBPC3

MYH3

TTN

TNNT1

NEB

MYOCD

TAGLN

NACC1

RRP9

NAF1

MPHOSPH10

GAR1

NHP2

NOP10

NAMPT

NT5C1A

NT5C

NT5C2

NT5C1B

NMRK1

NT5M

NT5C3B

ENSG00000250741

NMRK2

NT5C3A

NBR1

NOX3

NCF1

NOX1

SYTL1

NCR1

NCR3

NCR3LG1

KLRK1

NCR2

ENSG00000255819

STK38L

NDRG1

NEU3

GAL3ST1

AKR7A2

NFE2L2

UGT1A6

MAFK

MAFF

MAFG

CRYZ

GSTA2

MAP2K5

NGF

EHD4

KIDINS220

SMPD2

ARHGDIA

RIT2

RHOG

FAIM

MAGEH1

DYNLT1

ACKR1

RIT1

BEX1

GIPC1

PCSK5

AGAP2

ENSG00000196689

VR1

PCSK6

FURIN

NHLRC1

NLRC4

NAIP

NLRP4

DTX4

NLRP6

NLRX1

NOD2

OTC

NOS1

RASD1

ARG2
AZIN2

ASL

PLN

ATP2B4

NOS1AP

ASS1

GATM

NOS2

NOS3

LYPLA1

CAV3

ZDHHC21

NOSTRIN

NOSIP

OSBPL5

NPC1

TMEM97

GGCX

NQO1

ODC1

ADK

VKORC1

NR1D1

PER2

CRY2

NRBF2

OCRL

RHOV

ITPKA

ITPKC

RHOF

ITPK1

RHOD

RAB6A

FAM109B

RHOJ

RHOT2

RHOBTB1

RHOT1

FAM109A

RHOU

MINPP1

INPP5B

IPMK

RHOH

PIP5KL1

SACM1L

INPP1

TPTE2

ITPKB

RHOBTB2

OPTN

RAB8B

CLCN7

OSTM1

PAFAH1B2

PAFAH1B3

PARK2

SNCAIP

ATXN3

PCGF1

KDM2B

BCOR

RYBP

BCORL1

PDK1

PDK2

PDK4

PGAM5

PIK3C2A

PI4KA

PI4K2B
INPP5F

PI4KB

TECR

PIK3C2B

PIK3C3

ZFYVE20

PIK3CA

IL23A

FGFR1OP2

RRAS2

TYROBP

CPSF6

MS4A2

MRAS

EML4

ARHGEF1

KIRREL

CD2AP

CUX1

NPHS2

FCER1A

CD2

MPL

TREM2

NPHS1

KLRC2

KLRD1

ALK

PVRL3

LAT2

FCGR3B

MYO18A

SLC2A14

ZMYM2

GHR

PIK3CB

GP6

PIK3R1

THRA

GP9

PIK3AP1

THRB

GP1BB

GP5

PIK3R2

TOMM22

PINK1

TRAP1

PARL TOMM7

TOMM6

TMEM55A

PIP4K2A

MTMR14

PLCH1

PLCH2

TMEM55B

PLCD4

PLCD1

PLCD3

PIP4K2B

PIP4K2C

TPI1

PKM

ENO1

RRM2B

TKTL2

LDHAL6A

LDHD

RRM1

ENTPD3

LDHAL6B

ME2

TALDO1

ENO3

ENTPD5

ENO4

ENTPD2

ENTPD4

NTPCR

GUK1

TKTL1

ENTPD1

ENTPD8

PGK1

ALDOB

ENTPD6

NUDT2

ITPA

AK3

HDDC3

LDHB

TKT

PNPT1

GPI

ENO2

LDHC

ME3

H6PD

PLA2G4A

PLCE1

PLD1

CHPT1

PEMT

EPT1

SCAMP2

PTDSS2

LPCAT4

PLA2G16

PISD

PPAPDC1B

PTDSS1

CEPT1

PLD2

PLD3

ARFIP2

PLAT

PLG

F3

S100A10

PDGFD

SERPINB2

PLK2

NPM1

C10orf2

POLG

POLG2

PPARG

PAX8

SETDB1

ZNF467

HSD11B1

ADIRF

NR2F2

ZNF638

CHD7

ZNF423

SLC17A7

PPFIA4

PPFIA1

LIN7B

LIN7C

SYN1

SLC18A2

PPFIA3

BZRAP1

PTPRS

SYN3

CASK

UNC13B

PTPRD

LIN7A

PPFIA2

SYN2

STRADB

PRKAA1

CAB39

PPM1A

STRADA

SESN3

CAB39L

PRKAA2

TBC1D1

PRKCD

MYLPF

PRKCQ

RGS9BP

STK39

PRKD1

PRKDC

APLF

RNF144A

PNKP

TDP1

POLL

DNTT

TDP2

POLM

APTX

PRNP

GFAP

PSAP

GBA

CHID1

PSEN1

DTX1

GNPTAB

DTX2

DNER

NFIC

CNTN1

PTEN

PREX2

SPRTN

TNKS

INPP5J

WWP2

MAST2

RNF146

INPP5A

TNKS2

INPP5E

PMPCA

OTUD3

SLC9A3R2

INPP5K

SCT

PTGER2

LHB

RAMP3

GPR83

MC3R

SCTR

RAMP2

RAMP1

TSHB

TAAR5

GPR45

VIPR2

GLP2R

GPR32

PTH2

PTH2R

TAAR6

TAAR8

TAAR1

CRH

GPHA2

PTH

GPR15

HTR6

PTGIR

RXFP2

MC4R

GPR25

PTGER4

GPR27

ADORA2B

DRD5
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GHRHR

PTH1R

VIPR1
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HTR7

CRHR2

ADRB3

CALCR

HTR4

VIP

TAAR2

ADRB1

GLP1R
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DRD1

ADM2

CRHR1

FSHR
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RXFP1

FSHB

TAAR9

GPBAR1
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ADM
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MC1R
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ADCYAP1

GIPR

GPHB5

CGA

ADCYAP1R1

PTPN22
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IFI16

NLRP12

PYDC2

NLRP7

QSOX1

RAB11A

AQP2

RAB26

RAB35

RAB9B

RAB38

RAB22A

RAB33A

RAB11FIP5

RAB21
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RAB36

RAB17

RAB20

RAB15

RAB41

RAB3C

MYO5B

RAB6B

RAB24

REP15

RABGGTB
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RAB39A

RAB11FIP1

RAB11B
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RAB25

DLL1

RAB32

RAB39B

RAB3B

RAB40A

RAB42

RAB2B

RABGGTA

RAB34

RAB23

RAB9A

RAB30

RAB40C

RAB19

RAB40B

RAB31

RAB18

RAB7B

RAB11FIP4

RAB12

RAB1A

TFG

TRAPPC8

SEC16B

TRAPPC12

SEC16A

TRAPPC11

TBC1D20

SAR1B

TRAPPC13

RAB7A

HLA-DOA

MON1B

VPS33A

ACTR1B

MON1A

RILP

VPS41

CCZ1B

OSBPL1A

CCZ1

VPS26A

HLA-DMA

VPS16

TGFBRAP1

HLA-DOB

HLA-DMB

VPS11

TBC1D2

RAC3

FAM13B

ARHGEF5
GMIP

ARHGDIG

CHN2

DEPDC7

ARHGEF6

ARHGEF9

PDLIM4

ARHGAP20

ARHGAP29

ARHGEF17

ARHGAP31

FAM13A

DEPDC1B

MYO3A

ARHGEF19

ARHGAP26

FGD2

ARHGAP36

DLC1

ARHGAP17

ARHGAP15

ARHGEF40

ARHGAP42

ABR

ARHGEF4

ARHGAP33

ARHGEF37

ARHGAP10

STARD13

ARHGEF10

SYDE2

ARHGEF3
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NET1
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OPHN1
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AKAP13
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TAGAP

ARHGAP30

ARHGAP18
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FGD1
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ARHGAP24
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ARHGEF12

ARHGAP25

ARHGEF33

ARHGAP28
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MYO1A

FGD4
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ARHGAP27

ARHGAP22

ARHGEF38
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MCF2L
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SRGAP2
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ARHGAP23

ARHGAP11B

RALGAPB

RAP1GAP2

RAPGEF3

ABCC8
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CD248
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RASIP1

RB1

ASF1A

ID2

HIRA

POLA2

SMC2

NCAPH2
MAF

SP100
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PRIM1

ZNF521

BGLAP

PPP2R3B

PPP1CB

UBN1

NCAPG2

HMGA1
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HMGA2

PRIM2

RB1CC1
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BCL3

SETD6

NKIRAS2

PAWR

C4BPA

CUZD1

NKIRAS1

POU2F2

RGS19

RHEB

PDE6D

SMPD3

RIPK1

RFFL

NSMAF

ABCE1

RNASEL

RNF152

ERLEC1

RNF5

RNF185

DERL3

RNF7

SLC9A3

ROCK1

PPP1R14A
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Figure 1.12: Autophagy interactome constructed using STRING. Here, the nodes are sized
and colored according to their degree.
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Table 1.6: Top 20 hub proteins in the autophagy network constructed using the Signor
database.

Name
Average Shortest

Path Length
Betweenness

Centrality
Closeness
Centrality

Clustering
Coefficient

In-
degree

Neighborhood
Connectivity

Out-
degree

Total
Degree

GSK3B 3.175408426 42.34641026 0.314920119 0.006864989 51 11.88695652 286 337
TP53 3.75322442 66.04662936 0.266437572 0.006352802 234 10.37762238 87 321
AKT1 3.00171969 66.69242166 0.333142366 0.004135649 83 9.102564103 219 302

MAPK14 3.073086844 39.38906864 0.325405708 0.005689001 71 10.12389381 177 248
ATM 3.190885641 28.60482708 0.313392617 0.010526316 26 10.80263158 173 199
EGFR 3.999140155 36.27201305 0.250053752 0.005709877 81 8.802469136 98 179

MAPK8 3.627687016 17.79660553 0.275657739 0.008544087 44 11.42857143 128 172
CTNNB1 4.349957008 21.16809061 0.22988733 0.005487122 126 9.305263158 27 153

ABL1 3.492691316 38.6789882 0.286312161 0.006438632 28 8.183098592 117 145
PRKCD 3.427343078 11.05973485 0.291771199 0.005456349 11 10.71875 131 142
GNAI3 1 0.570726378 1 0 123 1.266666667 4 127
MTOR 3.695614789 22.24446747 0.270590973 0.016098485 28 13.75757576 94 122
MYC 4.37661221 33.00901004 0.22848723 0.006894791 58 8.752808989 63 121

IKBKB 4.558899398 8.241234062 0.219351188 0.011396011 52 11.18518519 61 113
AKT2 3.270851247 11.91587683 0.30573081 0.015942029 23 20.06521739 81 104

PRKAA1 3.689595873 10.31743343 0.271032393 0.005737705 7 10.04918033 96 103
MAPT 0 0 0 0.026190476 100 17.42857143 0 100
BAD 4.731728289 9.64888711 0.211339269 0.014112903 86 21.53125 7 93

FOXO3 6.000859845 1.874892418 0.166642785 0.022177419 74 20.53125 11 85
SMAD2 6.13155632 3.183732833 0.163090731 0.005882353 77 7.171428571 6 83

To find the topologically strong proteins in both the networks, we opt for some basic cen-

trality measures: average shortest path, betweenness, closeness, clustering co-efficient, and

degree centrality. We identified the top 20 hubs in the network which are provided in Table

1.6-1.7. TP53, CTNNB1, and GNAI3 were common hubs in both networks, echoing the fact

that they are the three most significant proteins in the autophagy interactome.

1.4.5 One single process and various computational approaches: which

door to choose?

The Mathematical modelling and network analysis approaches can grasp the underlying dy-

namics and topology of any biological system. We have summarised the applications of math-

ematical and computational biology tools to study autophagy with differential environmental

conditions (Figure 1.13). Nevertheless, the complexity and the choice of the approach can vary

from system to system, depending on the perspective of the study. From initiation to degrada-

tion, the process of autophagy comes under the influence of many proteins and stresses. Taking

a few or all of them together, a mathematical model helps to understand how the dynamics of

these sets of proteins influence the progression of autophagy by taking a deterministic approach.
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Table 1.7: Top 20 hub proteins in the autophagy network constructed using the STRING
database.

Name
Average Shortest

Path Length
Betweenness

Centrality
Closeness
Centrality

Clustering
Coefficient Degree

Neighborhood
Connectivity

UBB 2.276239 0.19432585 0.439321209 0.011478494 1129 20.6705
APP 2.676824 0.048394323 0.373577096 0.034493657 563 27.20426

EP300 2.49169 0.062551069 0.401334074 0.017183758 478 23.84728
TP53 2.487227 0.068664942 0.402054201 0.019924693 470 27.72553

PIK3R1 2.614651 0.025442495 0.382460271 0.033349735 469 30.9403
PIK3CA 2.578024 0.028200107 0.387893983 0.0345009 466 32.34979
HSPA8 2.626039 0.069486163 0.380801688 0.018712542 425 19.45412
AGT 2.897199 0.012404202 0.345160948 0.051182874 406 29.46305

UBR4 2.878424 0.019843949 0.347412318 0.040383248 368 22.30978
CTNNB1 2.594183 0.039263504 0.385477843 0.01886428 353 28.94618

HRAS 2.542167 0.026544531 0.393365216 0.03498178 340 35.70882
ATG7 2.822099 0.011061642 0.354346166 0.049386736 333 27.88889

AGTR1 2.697599 0.015938434 0.370699983 0.058679467 320 36.5875
HSP90AA1 2.551554 0.047490903 0.391917973 0.020623413 313 32.76038

TRIM21 2.981533 0.006950559 0.335397956 0.048301725 306 23.62745
PIK3R2 2.862881 0.007819009 0.3492985 0.047188163 303 29.63366
CXCL12 2.895199 0.006840072 0.345399458 0.067518125 299 33.8796
GNAI3 2.852878 0.015238235 0.35052325 0.065789769 299 32.16388
RNF7 3.031856 0.002052966 0.329830973 0.053284523 298 23.26174

FBXL20 3.032318 0.002001357 0.329780755 0.054306468 295 23.4678

These models can predict cellular fate through autophagy by using a suitable set of parameters

and a core set of autophagy modulators. They can also be used to study the randomness in the

process of autophagy occurring due to the variability of the stress and frequent changes in the

cell’s energy requirements. Agent-based models can range from continuous to discrete based

on the requirement. Petri nets facilitate both the qualitative and quantitative models and hence

can be used to model the involvement of autophagy in cellular biochemical reactions.

On the other hand, network biology can be used to identify crucial autophagy-related proteins

responsible for the progression of diseases. Different sets of targets will be obtained for the

same disease owing to the method applied, which will further require biological validation. For

example, if the intention is to select only the most connected proteins, the proper method will

be to measure the degree centrality. But, if the goal is to find the proteins that can disperse infor-

mation very effectively, closeness centrality would be the best approach to consider. Contrary

to the analysis of the topology of the system by network analysis, enrichment analysis focuses

on extracting the pathways, localisation, and functions of the proteins present in the disease

network. These pathways can then further be studied by constructing an autophagy-specific
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Figure 1.13: Application of mathematical and computational biology tools to study
autophagy in different environmental conditions. Abbreviations: DEBM-Differential
equation-based mathematical models; ABM-Agent-based model; PN- Petri net; NA- Network
analysis; ML- Machine learning.

PPI network to detect influential proteins in that pathway.

1.5 Scope and objectives of the thesis

Proteins being the dominant molecules that carry out cellular functions and mediate numer-

ous pathways and processes, understanding their perturbations in disease is an unmet need.

Again, identifying crucial autophagic targets and regulatory mechanisms is essential for de-

signing effective therapeutic strategies for diseases such as diabetes, cancer, and nonalcoholic

steatohepatitis (NASH), as these diseases are significantly regulated by autophagy. One of the

severe complications of diabetes is diabetic retinopathy. Autophagy has been demonstrated to

play a dual role in this disease. In the early phase, it aids in the reduction of cellular stress.

However, in the latter stage, when the stress is severe, it aids in cell death. Nevertheless, the

essential autophagy-related genes that can prevent the onset or progression of the disease have

not yet been found. It is crucial to identify these proteins since the mechanisms that drive dis-
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ease development also affect autophagy.

Multifactorial diseases like NAFLD are modulated by perturbations at both the gene and the

metabolite levels. Although numerous studies have been conducted, both in silico and experi-

mental, studies that address perturbations at both these levels are very scarce. In addition, from

a computational standpoint, NASH lacks a comprehensive method that simultaneously studies

the molecular perturbations in NASH and determines whether genes with classification and

controllability power can be a possible target.

Similarly, cancer and autophagy have always been a topic of discussion. Beclin1 is a quintessen-

tial protein in autophagosome formation and plays a crucial role in multiple autophagy-related

proteins, including cancer. But, none of the proposed therapeutic methods has addressed the

dynamics between DNA damage, p53 and beclin1.

To address these challenges, the broad objectives of the thesis can be stated as follows,

1. Investigation of the autophagic protein perturbations in disease using network biology

approaches.

2. Investigation of the whole system protein perturbations in disease using network biology

approaches.

3. To develop a mathematical model to get a mechanistic insight of some autophagic genes

in cell proliferation and cell death

1.6 Thesis layout

The specific aim of this thesis involves a comprehensive analysis of the protein perturbations

in diseases with an emphasis on the association of autophagy. For this purpose, mathematical

modelling, clinical data and various PPI, as well as disease databases, are used in this study.

Overall, this thesis is organised into six chapters containing the information explained below:

Chapter 1: This chapter addresses the “What’s, Why’s, and How’s” of autophagy. Following

this, it addresses how mathematical modelling and systems biology-based applications are used

to uncover the underlying mechanism of this process in multiple diseases. This chapter also
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provides the history of autophagy and systems biology and various tools and databases used to

study them, together or alone.

Chapter 2: The autophagy process is associated with diabetic retinopathy. However, the

autophagy-related proteins targeting which can prevent or initiate the disease are yet to be

identified. Addressing this, this chapter describes a multi-layer relatedness (MLR) approach

to determine the relatedness of autophagic and Diabetic retinopathic (DR) proteins by incor-

porating both expression and prior-knowledge-based similarities. The goal of this study is

fourfold: 1) identification of the topologically significant novel disease-related candidate au-

tophagic proteins (CAP) in a PPI network constructed using prior knowledge-based informa-

tion, 2) evaluation of the significance of these proteins in a gene co-expression network, and 3)

in a differentially-expressed gene (DEG) network and 4) investigating the proximity of CAPs

to the known disease-related proteins in the DEG network. The proteins identified through our

methodology can influence the DR interactome in various layers of heterogeneity of clinical

manifestations. In short, in this chapter, we have used the autophagy-DR protein interaction

network to identify autophagy-related targets in diabetic retinopathy

Chapter 3: Addressing the perturbations in Non-alcoholic steatohepatitis (NASH) at both the

gene and metabolic level, in this chapter, we have used a de novo methodology to identify the

potential targets in NASH. We constructed a PPI network containing differentially expressed

genes and significant metabolic genes associated with NASH. We applied the structural control-

lability in this network and identified three indispensable proteins capable of initiating a disease

to a healthy transition in NASH. Interestingly, we observed one of the three identified targets

to be autophagy-related, which echoes the predominance of autophagy in the NASH paradigm.

However, to get a global view of the role of protein perturbation in a disease progression, we

need to understand the importance of the relation of a protein with the known disease genes.

In the next chapter, we captured the significance of proteins in terms of their proximity to the

disease genes.

Chapter 4: A major challenge in the computational way of solving the conundrum of a disease

system is to track down the effect of the potential recovery options on different layers of molec-

ular understanding. The proteins identified from the PPI networks may not play a crucial role in
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the metabolic level. The metabolic networks identify crucial reactions and the genes involved in

them. However, such a network cannot provide information about how the gene products, i.e.,

proteins, will behave in conjunction. Also, the information about forming clusters, spreaders,

role in information processing, etc., cannot be told from metabolic network analysis. Machine

learning (ML) classifies proteins and can identify the nodes with the best predictive capabil-

ity in the network. However, this approach alone can say nothing about metabolic adaptation,

which is imperative for cell homeostasis following a physiological change. But, integrating

with the ML approach in a study, the network analysis methods can be used to get more in-

depth knowledge of the disease systems. Addressing all these, in this chapter, we applied a

random walk restart multilayer approach to identify the proteins which remain in close prox-

imity with the disease proteins, possess the classification capability, can control the network

and eventually can alter the metabolic landscape. Here also, we found that the potential tar-

gets obtained using this methodology could affect the autophagy process. Though this network

analysis gives us a global scenario of proteins and their effects on disease as a whole, it is an

unmet need to understand how their modulation affects the disease dynamics, which demands

the application of mathematical modelling-based studies.

Chapter 5: Finally, we have applied a mathematical model-based study to get mechanistic in-

sight into some autophagic genes in cell proliferation and cell death. Reducing metabolic stress

and increasing nutrient availability through the breakdown of cellular organelles and unfolded

proteins are two ways autophagy fosters cancer growth and progression. This process is asso-

ciated with DNA damage, a critical factor in cancer initiation. The guardian of the genome,

p53, plays a crucial role in the repair of DNA and induces apoptosis if the damaged DNA can

not be repaired. Hence, when p53 loses this ability, abnormal cell growth and, thereby, cancer

initiates. Addressing these facts, this chapter describes a seven-dimensional non-autonomous

ODE model to investigate the complex interplay between DNA damage, p53, autophagy, and

lung cancer. The study aims to highlight the potential factors or parameters and propose that

autophagic cell death mediated by perturbation of these parameters over a specified range is the

way forward in lung cancer research.

Chapter 6: This chapter concludes the thesis by providing a brief summary of the work, its
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contribution to the discipline of autophagy, and future directions.





2
Identification of critical autophagy-related

proteins in diabetic retinopathy: A

multi-dimensional computational study1

2.1 Introduction

Diabetes mellitus (DM) is a global epidemic that is associated with a high rate of morbidity,

affecting over 415 million adults worldwide, and this number is only expected to rise to 642

million by 2040 [217]. It is a complex disease that causes both acute and chronic micro-and

macrovascular complications. Patients with diabetes frequently develop ophthalmic complica-

1The bulk of this chapter has been communicated for possible publication.
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tions such as corneal dysplasia, glaucoma, iris neovascularisation, cataracts, and neuropathies.

However, the most prevalent and potentially lethal of these complications is diabetic retinopa-

thy (DR). It occurs when damaged blood vessels in the retina allow fluid to leak into the macula,

the area of the eye responsible for sharp central vision, resulting in blurred vision and eventual

blindness [218]. Like many other slow-progressive diseases, DR patients remain asymptomatic

at the early stages of the disease. However, once the disease reaches an advanced stage, various

symptoms begin to appear that include microaneurysms, venous loops, and venous bleeding,

dot and blot hemorrhages, flame-shaped hemorrhages, retinal edema, hard exudates, macular

edema, etc. [219]. Blood pressure control and glycemia intervention can reduce the develop-

ment risk and progression of DR at an early stage [220]. However, the underlying molecular

mechanisms of DR are still not precise [221]. As the global burden of DR continues to increase

year after year, it has become an unmet necessity to unravel the mystery and capture critical

genes capable of regulating this nefarious disease.

As with many other diseases, DR is also susceptible to cellular degradation facilitated by au-

tophagy. Autophagy has been shown in the literature to play a dual role in the initiation and

development of DR [222]. During the early stage of the disease it protects the cells by in-

hibiting ER stress. However, under conditions of extreme stress, autophagy loses its protective

function and contributes to the death of pericytes, an abnormality that may lead to DR [223].

Furthermore, autophagic dysfunction is implicated in the etiology of DR as an early occurrence

[224]. Under hypoxic conditions, autophagy promotes angiogenesis in the retinal pigment ep-

ithelium (RPE) cells by increasing the amount of vascular endothelial growth factor (VEGF)

[225]. By mediating the protective functions of retinal ganglion cells, autophagy can attenu-

ate neurodegeneration in DR [226]. Thus, recognizing the molecular and pathophysiological

aspects behind this autophagic process may aid in developing prophylactic or therapeutic ap-

proaches for DR, necessitating a computational analysis of the DR-autophagy interactome to

identify the most significant molecules involved in this crosstalk.

There is a dearth of computational studies on DR. Gopalakrishnan et al. [227] studied the

topology of DR proteins. However, his study was focused on the five previously experimentally

identified DR genes and hence lacked a detailed insight into the entire interactome. Wang et al.



2.1. Introduction 71

[228] studied the impact of Chinese medicine Taohang Siwu against DR, where they conducted

a protein-protein interaction (PPI) network analysis by combining the targets of Taohang Siwu

with the DR-related genes. Safei et al. [229] performed the protein-protein interaction (PPI)

network analysis to monitor the protein alterations in rats following laser treatment. However,

none of them focused on the involvement of autophagy in the disease. Recently, some compu-

tational work was performed to study the association of autophagy with DR. Gao et al. [230]

performed a microarray analysis by isolating the total RNAs obtained from the retinas of di-

abetic mice. They identified four proteins, Bcl2, Gabarapl2, Atg4c, and Atg16L1, associated

with the cell death pathways. Finally, through the qRT-PCR analysis, they found Atg16L1 to

be significantly upregulated and concluded it to be a novel biomarker of DR. In another study,

Wang et al. [231] identified 23 potential DR autophagy-related genes using a PPI network.

They concluded that the downregulation of MAPK3 plays an important role in developing DR

by regulating autophagy.

The computational analysis of a biological system requires a thorough grasp of the relatedness

between the genes or their products. This relatedness can be investigated in three major ways:

A) The prior knowledge-based investigation. Here, a PPI network is constructed using the in-

formation extracted from various databases. B) The expression-based similarities between the

genes. It is commonly used to evaluate the conditional relatedness of the coexpression level

between a pair of genes under a given situation. C) Combining these two aspects, a hybrid type

of investigation can also be defined, which, based on statistical measures such as fold change,

p-value, false discovery rate, etc., first extracts the genes that are significantly expressed on a

certain condition, and then use the PPI databases to construct a network. Although type ‘A’

identifies the crucial proteins, they are extracted based on global relatedness and do not con-

sider their expression values. The robustness of such information also needs to be improved

[232]. Type ‘B’ covers these expectations, but genes with similar co-expression may not always

have related functions [233]. Again, because these associations are based on specific data, they

may not always be global. Type ‘C’, or the hybrid measure, covers both perspectives but may

suffer from various aspects such as quantitative cut-off or the inherent noise in the data. To gain

a complete understanding of a disease, these three types of investigations should be conducted
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simultaneously to identify the set of proteins capable of driving the system without being influ-

enced by global relatedness, expression similarity, or biasedness of certain quantitative cut-off

criteria.

The computational studies in DR are limited to understanding only one of the above three

perspectives. DR is associated with hyperglycemia, oxidative stress, hypoxia, endoplasmic

reticulum (ER) stress, and nutrient starvation, all of which are associated with autophagic flux

activation. However, the computational effort has been made so far to investigate the DR-

autophagy association are very few. Hence, it won’t be an embellishment to assert that there

remains a lack of holistic study of DR that covers a broad spectrum of disease severity. Again,

understanding the molecular and pathogenic mechanisms underpinning the autophagic process

may help develop DR prevention or treatment strategies. Therefore, in this study, to uncover

novel autophagy-related proteins involved in disease pathogenesis, we have employed a multi-

layer relatedness (MLR) approach. The objective of MLR is to determine the relatedness of

autophagic and DR genes by incorporating both expression and prior-knowledge-based sim-

ilarities. The goal of this study is fourfold: 1) identification of the topologically significant

novel disease-related candidate autophagic proteins (CAP) in a PPI network constructed using

prior knowledge-based information, 2) evaluation of the significance of these proteins in a gene

co-expression network, and 3) in a differentially-expressed gene (DEG) network and 4) inves-

tigating the proximity of CAPs to the known disease-related proteins in the DEG network. The

proteins identified through our methodology can influence the DR interactome in various layers

of heterogeneity of clinical manifestations.

2.2 Methodology

The method developed in this paper can be divided into four categories. i) The construction of

the prior knowledge-base network and identification of candidate autophagic proteins (CAPs).

ii) Evaluating the importance of the CAPs in a gene co-expression network. iii) Evaluating

the importance of the CAPs in a differentially expressed gene (DEG) based PPI network. iv)

Using a network propagation theory to identify the disease-associated genes. The methodology
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Figure 2.1: The workflow used in this study. The first dotted box showed the construction
and analysis of the DR-autophagy interactome, the second and third boxes represented the
integration of clinical data to study the gene co-expression and differentially expressed gene
network.

is shown in Figure 2.1.

2.2.1 Extracting disease and autophagy-related genes

The DR related genes (DRGs) are extracted from the DisGeNET [234] database. Among the

autophagy databases available in the literature, HAMDB [207] was found to be more informa-

tion enriched [66], and hence all the autophagy-related genes (ARGs) are collected using this

database.

2.2.2 Protein-protein interaction network construction

The DRGs and ARGs are converted to proteins using the UniProt database [235] and are here-

after referred to as DR-related proteins (DRPs) and autophagy-related proteins (ARPs), respec-
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tively. To construct a PPI network of the selected proteins, we took the help of the Search Tool

for Retrieval of Interacting Genes/Proteins (STRING) database [215]. The resulting protein-

protein interaction (PPI) network contains interactions between proteins on both a physical and

functional level. Each of the interactions in STRING is assigned a confidence score. The higher

the score, the more probable the proteins will interact. We took the highest confidence score of

900 to construct a highly significant network.

We first constructed a network by taking the ARPs and the DRPs. However, the network

was found to be disintegrated into different disconnected components. To circumvent this, we

need to identify a set of minimal nodes to connect these components. To ensure unbiasedness,

we used all the first neighborhoods of the ARPs, and DRPs and created one giant connected

network. Few other studies have also reported the use of first neighbours to construct a PPI

network [236, 237].

2.2.3 Methods for the analysis of PPI networks

To identify the core set of nodes in the network, we took the help of three classical centrality

measures: degree, betweenness, and closeness. The degree centrality measures the connectivity

of the proteins in the PPI network. The proteins with higher connectivity (usually those with

a degree twice the average degree) are known as hub proteins. The betweenness centrality

measures how much information passes through a specific node in the network. The proteins

with a high level of betweenness are termed bottlenecks. On the other hand, closeness centrality

quantifies how close a node is to other nodes in the network. The top 5% scoring proteins

(TSPs) were chosen for each of the three centralities, and the common proteins between them

were extracted. These TSPs are topologically significant and serve as the network’s backbone.

Next, from the TSPs, we identify the autophagic proteins (henceforth referred to as candidate

autophagic proteins, CAPs that were not previously identified as DR-associated in DisGeNET

[234]. Mathematically, these CAPs can be represented as

CAP = ARP∩ (T SP\DRP). (2.1)
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Coreness is a global property of a network and examines the capability of a node to belong to a

highly connected cluster. It also tells how much influential a node is in terms of the propagation

of information throughout the network. To identify the influential spreaders in the network, we

opt for the k-core decomposition method. Let G(V,E) is an undirected and unweighted graph

where V is the vertex set, and E is the set of the edges. A subset G2 of G1 is defined as k-core

of G1, if it is a maximal subgraph of G1, in which all nodes have degree at least k. The k-

core analysis enables the detection of interesting structural properties that are not captured by

many other network topological measures. The central cores contain more strongly connected

vertices and have many distinct paths connecting them [238].

2.2.4 Clinical data

From the Gene Expression Omnibus (GEO) [239] database, we selected the dataset GSE146615

[240] which contains the information on lymphoblastoid cell lines of seven healthy, seven dia-

betic individuals without DR, and eight diabetic individuals with DR. The dataset was quantile

normalized and contained three biological replicates per individual and treatment while three

individuals had five biological replicates.

2.2.5 Data pre-processing

The probe to gene mapping was done using the Illumina HumanHT-12 V4.0 expression bead-

chip platform. If a gene had any null values across the samples, it was removed from the study.

We next used the ‘filloutliers’ function in MATLAB to detect outliers by the ‘median’ value of

the gene across the samples and replaced them using the nearest value of the gene across the

samples.

2.2.6 Weighted Gene co-expression network analysis (WGCNA)

To investigate the relatedness of the crtitical genes in DR, we opt for a gene co-expression

analysis using WGCNA [130] which identifies the critical modules in the network. Modules

are defined as groupings of genes that share similar expression patterns and are frequently
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functionally connected and co-regulated. It is conceivable that such coordinated gene activities

contribute significantly to the complexity of biological processes and pathways. Among the

three set of cohorts, we considered the healthy group and the diabetic individuals with DR

group.

2.2.6.1 Parameters in WGCNA

Here, in our analysis using WGCNA, we have used maxBlockSize of 20,000, minModuleSize

of 30, and mergeCutHeight of 0.3. We have considered the disease status as clinical trait in-

formation. Here, if a sample comes from a healthy individual, it receives a score of 0, and if it

comes from a diseased individual, it receives a score of 1. The module-trait associations were

estimated by assessing the influence between the module signature and the phenotype (clin-

ical traits), allowing for easy identification of highly correlated modules with the phenotype.

Finally, for each module, a PPI network is constructed using the STRING database, and the

influential nodes are identified by measuring the topological properties.

2.2.7 Identification and analysis of differentially expressed genes

The co-expression analysis identifies genes that show a coordinated expression patterns across

the group of samples. However, such networks typically do not convey causal information

or distinguish between regulatory and regulated genes [241]. To mitigate this, we opt to find

differentially expressed genes (DEGs) in the dataset GSE146615. For this, we first removed

all the genes which possessed any null value across the samples, and the remaining genes were

then carried out for further analysis. Finally, we have taken the log fold change cut-off of ±1

to identify the DEGs in the network.
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2.3 Results

2.3.1 Prior knowledge-base investigation of the DR-autophagy interac-

tome

We identified 645 DRGs from DisGeNET and 551 ARGs from HAMdb. The UniProt mapping

of these genes has reduced these numbers to 573 DRPs and 482 ARPs, respectively. The

network consisting of these proteins and their immediate neighbors had 7856 proteins and

583928 interactions (Figure 2.2). The topological properties of the top ten hubs are shown

in (Figure 2.3A). Among these ten hubs, UBB and APP were ARPs. The top 10 biological

processes associated with the proteins in the network are shown in (Figure 2.3B). The top 5%

of nodes (rounded to 393 nodes) in each of the degree, betweenness, and closeness centrality

categories were extracted, and 104 TSPs were identified (refer to Section 2.2.3). The overlap

between the ARPs, DRPs, and the TSPs are shown in Figure 2.3C.

2.3.2 Candidate autophagic proteins (CAPs) control the network

Using equation (2.1), we identified 11 CAPs among the TSPs: APP, ATG7, GNAI3, HDAC1,

HSP90AA1, HSPA8, KRAS, PIK3R1, TP53, UBB, and UBR4. Investigating their topological

significance, we found that UBB is the third most connected node in the network while APP,

PIK3R1, and TP53 are ranked among the top fifty hubs in the network. Similarly, all the CAPs

were bottlenecks in the network, with UBB and TP53 being ranked fifth and seventh, respec-

tively. UBB was ranked fifth in the closeness category, while five other proteins, HSP90AA1,

HSPA8, KRAS, PIK3R1, and TP53, were ranked among the top fifty. These findings imply

that CAPs play a critical role in regulating the DR interactome.

We found that three CAPs, ATG7, UBB, and UBR4, were present in the innermost cores, while

the rest were present in the top ten innermost cores. This indicates that these nodes can dissem-

inate information to a wider portion of the network. The topological properties of the CAPs

are shown in Figure 2.5A, while the enriched biological processes are shown in Figure 2.5B.

These proteins are enriched with cell death-related pathways, autophagy-related pathways, pro-

tein phosphorylation and modification, and cytokine-related pathways. All these processes are
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Figure 2.2: The DR-autophagy interactome. Here the nodes are sized and colored according
to their degree.
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Figure 2.3: Analysis of the autophagy-DR PPI network. (A) The topological properties of
the hubs in the network. A majority of these proteins also had high betweenness and closeness
centrality. (B) Top 10 enriched biological processes associated with the proteins in the network.
The enrichment analysis is done using Enrichr [242]. (C) The UpSet plot of the overlap between
ARPs, DRPs, and the top 5% proteins in the degree, betweenness, and closness centralities. It
can be seen that the ARPs were enriched in each of the categories.
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found to play a crucial role in DR [175, 243, 244]. Clustering analysis facilitates the elevation

of network nodes to a more comprehensive level by subdividing them into a smaller number

of clusters. We used the Molecular Complex Detection (MCODE) [153] plugin in Cytoscape

[121] to perform clustering analysis. The selection parameters for the MCODE analysis were

set as follows: MCODE scores ≥5, degree cut-off = 2, node-score cut off = 0.2 and k-core = 2.

From the obtained clusters, we took a MCODE cut-off of 10 and found 27 significant clusters.

APP, ATG7, GNAI3, UBB and UBR4 were found in the topmost cluster. HSPA8 and PIK3R1

were present in the 2nd cluster, HSP90AA1 on the 5th cluster, KRAS and TP53 on the 8th

cluster and HDAC on the 12th cluster. The top 20 mcode clusters are shown in Figure 2.4.

It is worth noting that the specificity of the CAPs is fourfold: (i) they are derived from a

network containing the disease and autophagic proteins, (ii) they are among the topologically

strong proteins in the network, (iii) they were not previously reported to be associated with

DR, and (iv) their enriched pathways are also reported to play a role in disease physiology. We

believe that all these CAPs, or at least some of them, will also play a critical role in a gene-gene

association network that is constructed on the basis of expression similarities. To validate this,

we took a clinical dataset from GEO and proceed to gene co-expression analysis.

2.3.3 Co-expression network analysis

The expression values of 18972 protein-coding genes across the 15 samples of the dataset

GSE146615 were taken to WGCNA for co-expression analysis. All the samples were found

to be well clustered, and no outliers were detected (Figure 2.6A). In this study, the power of

β = 12 was selected as the soft-thresholding parameter to ensure a scale-free network (Figure

2.6B). We have constructed a signed co-expression network, and using the average linkage

hierarchical clustering, a total of twelve modules were identified (Figure 2.6C). Except for

the grey, each colour represents a gene module. The grey color indicates genes that are not

module-assignable. Correlations between these co-expression modules and clinical traits were

quantified using the correlations between module eigengenes and clinical traits. The groups

of correlated eigengenes are identified using the eigengene dendrogram and heatmap (Figure

2.6D). The associations between the modules and the clinical trait were quantified using the
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Figure 2.4: The top 20 Mcode clusters. The clusters which contain the CAPs are shown in
cyan color.
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A) B)

Figure 2.5: Topological properties and the functional enrichment of the CAPs. (A) The
topological properties. To facilitate visualization, the original betweenness and closeness cen-
trality values for each protein are transformed to the -log10 scale and then multiplied by ten.
On the other hand, each protein’s degree centrality value is reduced by tenfold. (B) The top ten
biological processes associated with the CAPs. The enrichment analysis is done using Enrichr.
The nodes sized are proportional to the quantity of candidate autophagic proteins in the pro-
cess, while the colors represent the gene ratio.

correlation between the eigengenes and the clinical traits (Figure 2.6E).

The results indicated that the brown module strongly correlates with disease status whereas the

turquoise module has a strong negative correlation. Mild positive correlations were seen with

the tan and red modules, while black and purple modules showed mild negative correlations

with disease. The expression of the eigengenes across the samples (Figure 2.6F) demonstrates

that the genes in the brown module are significantly over-expressed, while the genes in the

turquoise module are significantly down-regulated in the DR conditions. All the other modules

showed a highly heterogeneous behavior in the eigengene expression throughout the samples.

Among the thirteen modules, five (including the grey) contained at least one CAPs. To see the

impact of these CAPs, we constructed a PPI network of these modules by mapping each of

them to N900. Because a module network may encode a pathway or a protein complex, these

unique networks are beneficial. Interestingly, in all of the modules, the CAPs were among the

hubs and bottlenecks (Figure 2.6G). This justifies that they are among the critical proteins in

the co-expression modules and hence, are worthwhile to be further evaluated. An example of

one such module is shown in Figure 2.6(H).



2.3. Results 83

A B

C D

E F

G H

Hub and bottleneck

Modules Blue Brown Green Grey Turquoise

APP

ATG7

GNAI3

HDAC1

HSP90AA1

HSPA8

KRAS

PIK3R1

TP53

UBB

UBR4

Figure 2.6: WGCNA analysis. (A) Clustering dendrogram of the 15 samples. The Red de-
notes the normal while the white color represents the disease group. (B) The image on the left
illustrates the soft-thresholding power versus the scale-free fit index. The right panel shows
the mean connectivity versus soft-thresholding power. (C) Modularization of the co-expressed
genes based on the topological overlap matrix. A total of 13 modules (including the grey mod-
ule) were identified. (D) The eigengene dendrogram and heatmap identify groups of correlated
eigengenes. (E) The module-trait relationships. Each row corresponds to a module eigengene,
and the values in the column represent the correlation with the disease status. (F) The eigen-
gene expression throughout the samples for the brown, tan, turquoise, and purple modules. (G)
The modules which contain CAPs. (H) The PPI network of the blue module which contains
the CAP ATG7.
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2.3.4 Differentially expressed genes (DEG) network analysis

The differential gene expression analysis of the dataset GSE146115 revealed 6457 up-and 1115

down-regulated genes. We found that two of our CAPs, PIK3R1, and APP, were respectively

up and down-regulated in the dataset Figure 2.7A-B. To investigate the alterations at the gene

level, the KEGG enrichment analysis using the package clusterProfiler [245] was performed

(Figure 2.7C). The analysis revealed that the PI3K-AKT pathway was the most enriched path-

way, followed by neuroactive ligand-pathway interaction. Recent investigations have discov-

ered that the PI3K/Akt/mTOR proteins are highly expressed in the retinal tissue of diabetic rats

[246], justifying the predominant enrichment of the DEGs in this pathway. The prominence of

neuroactive ligand-pathway interaction pathway on the enriched list suggests that neuroprotec-

tive factors may be depleted, and retinal neurodegeneration may occur during diabetes.

To construct an undirected PPI network, we mapped the DEGs to the N900 network. How-

ever, the constructed network was found to consist of many separate components. We used

the STRING database to connect them and extract the fewest possible nodes. These additional

nodes are referred to as mediators. We found that 417 mediators were required to connect the

DEG network (Figure 2.7D). Notably, we found that two of our CAPs, TP53 and HSP90AA1,

function as mediator proteins. This indicates that, despite their relatively low levels of expres-

sion, these proteins are critical for propagating information throughout the network. The final

network contained 4466 nodes and 107832 edges (Figure 2.7E). Interestingly, all four CAPs

were found to be hubs and bottlenecks in the network. The topological properties of the CAPs

are provided in the Table 2.1.

Table 2.1: Topological properties of the CAPs.

CAP Betweenness Closeness Degree

TP53 0.051276521 0.360080645 388

APP 0.016289037 0.338206332 464

HSP90AA1 0.026229137 0.367247903 256

PIK3R1 0.019253502 0.349866792 392
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Figure 2.7: Construction of the DEG network. (A) The numbers of CAPs among the DEGs.
(B) Expression values of the two CAPs. C) The KEGG pathway enrichment of the DEGs. (D)
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Further, to see which proteins these CAPs interact with, we opt for a first neighborhood

analysis. The most interactors were found for APP, followed by PIK3R1 and TP53. On the

other hand, PIK3R1 had the highest density of disease genes in its first neighborhood, whereas

TP53 had the least percentage (Figure 2.8A). The presence of the most number of disease

genes in the PIK3R1 interactome may be a result of its interaction with the PI3K/AKT pathway,

which is critical for the progression of DR. The overlap between the neighbors of these proteins

are shown in a UpSet plot (Figure 2.8B). As can be seen, these proteins have no common

neighbors. A pairwise analysis revealed that APP and PIK3R1 shared the most neighbors,

whereas APP and HSP90AA1 had no common neighbors. The interactors of these four proteins

are shown in Figure 2.8C-F. To establish the relationship of the network proteins with the

disease proteins, we opt for the random walk with restart (RWR) algorithm. The seed nodes

for the analysis are identified using the equation, S = DRP∩V , where V is the set of DEGs in

the network. Each node in the network was assigned a score denoting its possibility of being a

novel DR protein using the RWR algorithm. The higher the score, the more likely the protein

is DR-related. We found that PIK3R1 is the top-ranked protein in the list while TP53 obtained

the third rank. The remaining two proteins APP and HSP90AA1 were ranked at 21st and 24th

positions. Thus, these CAPs are deemed to be in close proximity with the disease-related

proteins in DR.

2.3.5 Discussion

Diabetic retinopathy (DR) prevalence has reached epidemic proportions [247]. It is a slowly

progressive disease that arises from the complications of diabetes and in the last two decades,

has become a global burden [221]. Unfortunately, currently available treatments for DR are

invasive, less effective, and focus primarily on the chronic stages of the disease, with a slight

improvement in vision repair [218]. The literature review established that the factors associated

with DR, such as hyperglycemia, hypoxia, oxidative stress, ER stress, and nutrient deprivation,

are all strongly related to the activation of autophagic flux. However, the critical autophagic

genes required for the initiation and development of DR remain unknown.

This study developed a multi-level relatedness approach to find the novel autophagy-related
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proteins capable of regulating the DR interactome. We embraced a topological viewpoint to

measure the vitality of the nodes in the network, which mainly included the degree, between-

ness, closeness, and coreness of the nodes. We also performed a random walk restart analysis

to explore the functional association of identified novel proteins with the already known DR

proteins. MLR is a novel technique for determining the influence of biological molecules

(genes or their progeny, proteins in our study) across many biological layers. Identifying cru-

cial proteins in a network constructed from prior knowledge base information aids MLR in

capturing the global relatedness of proteins. We used the high confidence network of STRING

database to perform this analysis. The hub proteins in this network were found to be associated

with development and progression of DR. For example, the suppression of cytokines, which

are the key regulators of inflammations, have been shown to protect retinal capillaries from

pathological alterations in animal models [248]. In the retinas of diabetic animals and patients,

several physiologic and molecular alterations compatible with the role of inflammation have

been observed. In animal models of diabetes, it has been demonstrated that inhibiting these

inflammatory changes affects the development of retinal abnormalities [249]. While such re-

latedness may not always translate into significant biological activity, it can be aggregated with

biological data in a high-throughput manner to do integrated analysis, such as creating the tar-

get landscape of the disease. Hence, this global influence is then converged to a clinical dataset

to quantify the relevance of these proteins depending on their expression-based similarity. This

relevance is quantified on two levels: first, at the gene level, using WGCNA, which enables a

better understanding of which regulators may be driving transcriptional profiles during disease

progression. The second level includes the investigation of this relevance in a network con-

structed using the DEGs in the clinical dataset. Leveraging this pipeline, we finally identified

four proteins, TP53, HSAP90AA1, APP, and PIK3R1. However, APP was placed in the grey

module in the co-expression analysis. We, therefore, focus on the remaining three CAPs and

their associations with DR.

These three proteins are connected with several crucial proteins that regulate multiple char-

acteristics of DR development. For example, TP53 interacts with CDK, which prevents angio-

genesis by triggering cell cycle arrest and apoptosis [250]. HMGB1 is another interactor of
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TP53 that mediates diabetes-induced damage in retinal pericytes [251] and Muller cells [252].

Similarly, PIK3R1 interacts with JAK1, whose inhibition ameliorates the blood-retinal barrier

dysfunction [253]. We extracted the first neighbourhood of the three CAPs from N900 and per-

formed enrichment analysis using Enrichr [242]. We found several ways these proteins could

regulate the DR interactome exist. Il-1β play a significant role in DR as it expedites apoptosis

of retinal capillary cells through activation of NF-κB [254]. The neighbourhoods of the three

CAPs, TP53 and PIK3R1 are enriched with the IL-1β signalling pathway. There are mounting

evidences that diabetic retinopathy is highly associated with the alterations in the Wnt-signaling

pathways [255]. Enrichment of the biological process in the TP53 neighbourhood highlights

their importance in DR pathogenesis. In all neighborhoods, we found that cytokine modula-

tion is an enriched process. The literature has mentioned that the concentrations of various

cytokines increase with the DR severity. The role of angiogenesis and its key mediator, VEGF,

has been the most researched aspect of DR. Several anti-VEGF therapies have been proposed

in DR. The neighbourhood of two CAPs, HSP90AA1 and PIK3R1, are found to be enriched

with the VEGF signalling pathway, echoing their importance. Thus, we conclude that these

proteins play a crucial role in the DR, and their modulation will affect the disease pathology.

Their relation with DR-associated processes is summarized in Table 2.2.

Nevertheless, the association of proteins with essential pathways does not always fully jus-

tify the protein-disease association. In order to gain a complete understanding, it is necessary

to examine their association with disease hallmarks. In DR, such characteristics include an-

giogenesis, death of retinal pigment epithelial cells, pericyte cells etc. Angiogenesis is mainly

mediated by the vascular epithelial growth factor, VEGF. Its concentration is reported to be

significantly correlated with the DR severity. Therefore, evaluation of VEGF expression has

become a common method for determining angiogenesis and, by extension, the influence of

a protein in DR. The primary function of RPE cells is to maintain retinal homeostasis by a

series of secretory factors [267]. The loss of RPE cells has been implicated in the pathogen-

esis of DR [268]. Pericytes are essential components of the retina, and its microvasculature

[269]. They have crucial roles in angiogenesis, vascular remodelling, regression, stabilization,

and the formation and maintenance of the blood-brain barrier (BBB) and blood-retinal barrier
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Table 2.2: Association of the CAPs with DR. The biological process enrichment of the neigh-
bourhood of the CAPs is performed using Enrichr [242], and the DR-associated significant pro-
cesses are selected based on their p-value ≤0.005. The literature evidence for DR-associated
processes are given in the last column.

CAP Process P-value Reference

TP53

Il-1 Signalling Pathway 3.50E-17 [254]
Wnt Signalling Pathway 1.56E-16 [255]
Cytokine Mediated Pathway 2.54E-12 [244]
Histone Modification 1.74E-07 [256]
Response To Oxidative Stress 3.82E-06 [257]
Positive Regulation Of Blood Ves-
sel Endothelial Cell Migration

0.001219 [258]

Response To Insulin 0.001386 [259]
Nik/NF-κB Signaling 1.29E-20 [260]
Cellular Response To Hypoxia 3.56E-21 [259]

HSP90AA1

Vascular Endothelial Growth Factor
Receptor Signaling Pathway

7.66E-18 [261]

Regulation Of Apoptotic Process 2.11E-09 [262]
Cytokine-Mediated Signaling Path-
way

1.00E-07 [244]

Positive Regulation Of Blood Ves-
sel Endothelial Cell Migration

6.30E-07 [258]

Response To Insulin 1.73E-05 [259]
Response To Reactive Oxygen
Species

3.91E-05 [263]

Regulation Of Canonical Wnt Sig-
naling Pathway

0.001288 [255]

Regulation Of Nik/NF-κB Signal-
ing

0.001789 [260]

PIK3R1

Cytokine-Mediated Signaling Path-
way

1.56E-21 [244]

Inflammatory Response 1.39E-13
Vascular Endothelial Growth Factor
Receptor Signaling Pathway

2.22E-12 [261]

Insulin Receptor Signaling Pathway 1.34E-10 [259]
Positive Regulation Of Angiogene-
sis

2.26E-07 [264]

Regulation Of Nik/NF-κB Signal-
ing

1.21E-06 [260]

Cellular Response To Interleukin-6 7.20E-06
Response To Insulin 1.93E-05 [259]
Response To IL-1 2.25E-05 [254]
IL-12-Mediated Signaling Pathway 8.70E-05 [265]
Cellular Response To Lectin 9.79E-04 [266]
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Table 2.3: Experimental evidence from available literature.

gene name DR hallmark in vitro reference

TP53

Retinal pigment epithe-
lial cell

High glucose induces
p53 level in RPE cells
and induces cell death.

[270]

Knockdown of TP53
Inhibits RPE Apoptosis

[271]

Pericyte cell Increased O-
GlcNAcylation of
p53 leads to pericyte
loss and microvascular
dysfunction

[272]

Angiogenesis p53 rapidly induces
VEGF transcription
upon hypoxia exposure.

[273]

HSP90AA1 Angiogenesis HSP90AA1 correlates
with the upregulation of
proteins in the VEGF
pathway.

[274]

(BRB). Their demise results in the regression of the retinal microvasculature, which results in

fluid leakage, leukocyte adherence to the vasculature, and hypoxia in the injured area. This

eventually paves the way for DR. Various studies have shown the loss of ratinal ganglion cells

following the progression of diabetes. Two of our proposed targets, TP53 and HSP90AA1,

were experimentally observed to be associated with the DR hallmarks. These associations

are shown in Table 2.3. Thus, these experimental observation collected from literature brings

credibility to the results, which experimental biologist can explore further in understanding DR

progression and prevention.

2.4 Conclusion

In this study, we have addressed the crosstalk between autophagy and DR through a multilayer

relatedness approach. The analysis leads to the identification of three novel autophagy-related

proteins, which can modulate the progression and pathogenesis of DR. The specificity of these

proteins are six-fold. i) They are autophagy-related proteins, ii) not reported to be associ-

ated with DR, iii) topologically sound in the autophagy-DR interactome, iv) they are present

in crucial modules in the co-expression analysis, v) important proteins in the DEG network,
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and vi) possess a high-functional association with the DR associated proteins. To summarize,

these proteins are critical to regulate the DR interactome and shed light on previously unknown

aspects of the disease.



3
De novo analysis of a protein-protein

interaction network reveals potential targets

in NASH1

In Chapter 2, our study on understanding protein perturbation was limited to addressing the

interplay of autophagy and disease proteins. However, since we are focussed on only the

autophagy perspective, some of the crucial information about the progression of the disease

remain incarcerated within the perturbations of proteins which were not associated with au-

tophagy. Therefore, for a comprehensive understanding, it is an unmet need to study all the

perturbations inside a disease system. Addressing this, in this chapter, we have tried to identify

1The bulk of this chapter has been communicated for possible publication.
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potential targets in non-alcoholic steatohepatitis by investigating the disease perturbations at

both the protein and metabolic levels. Intriguingly, here also we found that one of the identified

targets is autophagy-related, which underlies the importance of this quintessential process.

3.1 Introduction

Non-alcoholic fatty liver disease (NAFLD) is an umbrella term for a spectrum of liver diseases

defined by the aggregation of triglycerides in the liver, without other causes such as medica-

tions and excessive alcohol intake, or certain heritable conditions [275]. There is currently no

commonly agreed criterion of significant alcohol use at which fatty liver disease can be deemed

alcohol-related; nevertheless, threshold amounts of 10-20 g of alcohol per day for women and

20-40 g per day for males have been documented [276–278]. It is strongly associated with

metabolic comorbidities, including obesity, hyperlipidemia, type 2 diabetes and metabolic syn-

drome. Unabated, its prevalence, estimated at 25% [279], is predicted to increase as a result

of the significant global surge in factors such as obesity, ageing, T2DM, etc. The initial stage

of the disease is the non-alcoholic fatty liver (NAFL), distinguished by steatosis of the liver,

encompassing more than 5% of parenchyma, with no signs of hepatocyte damage [280]. Non-

alcoholic steatohepatitis (NASH), characterised by steatosis, lobular inflammation, and hep-

atocellular ballooning, is the second stage of this continuum. If not appropriately treated, it

may lead to cirrhosis and hepatocellular carcinoma. It is a slowly progressive disease and often

remains clinically discerned, leading to late detections, thereby curbing the therapeutic options

and contributing to poor outcomes. Although it is known that the accumulation of lipids is the

key to steatosis, the molecular mechanism that governs the transition from steatosis to NASH

is yet to be elucidated. Furthermore, despite decades of research, no drug has been approved

by the FDA, and liver biopsy remains the gold standard for diagnosing NASH. An overview

of NASH is shown in Figure 3.1. The multicenter Nonalcoholic Clinical Research Network

(CRN) developed a scoring tool for the histological features of NAFLD (the NAFLD activity

score, NAS) to measure the morphological changes during therapeutic trials [281]. The three

primary characteristics of NAFLD, steatosis, hepatocellular ballooning, and lobular inflamma-
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tion, are assessed in this scoring system. The former and the latter score ranges from 0-3,

while the middle ranges from 0-2. Based on the assessment of these scores, each patient gets a

score. A liver condition is called Not-NASH or NAFL if 1 < NAS < 3 and NASH if NAS ≥ 5.

However, this scoring system does not consider fibrosis accumulation. Addressing this, an-

other scoring method, called steatosis, activity (hepatocellular ballong+ lobular inflammation),

fibrosis (SAF), was developed [282]. In this scoring system, steatosis ranges from 0-3, while

activity, as well as fibrosis score, ranges from 0-4.

NASH is a consequence of various metabolic alterations [285] in which excess triglyceride

(TG) synthesis is seen through the de novo lipogenesis process [286]. Also, its progression is

associated with distinct metabolic network-level changes, most notably, disruption in the mito-

chondrial metabolism, de-novo lipogenesis, and gluconeogenesis [287]. Besides the metabolic

alterations, pathways like inflammation, fibrosis, apoptosis, etc., also contribute to the disease

progression,. In other words, the quest to identify plausible potential targets should consider

both the protein and metabolic level alterations. In this context, protein-protein interaction

(PPI) network analysis can be applied to identify a core set of proteins that are capable of gov-

erning the disease system and can identify the potential targets that influence all the aforemen-

tioned pathways. PPI network serves as the basis for the signalling circuitry of an organism,

which governs cellular response to external and genetic inputs. Understanding this architecture

may enhance the prediction of gene function and the cellular response to numerous diseases

and disorders.

Irrespective of its size, a PPI network always possesses a small set of core nodes, which can

modulate the fate of a biological system. Distinguishing these proteins has proven to be daunt-

ing, further exacerbated by the intricacy of understanding how such proteins interact synergis-

tically. In literature, numerous methods exist that have tried to extract the core set of proteins

from the network. These methods vary from basic or simplest to more advanced or complex

architectures. However, in NASH, most of the works using the PPI network mainly focus on

identifying only the hub genes from the differentially expressed genes (DEG) network con-

structed from various transcriptomic data [288–295]. Karbalaei et al. [296] tried to identify

the common proteins between inflammatory bowel disease and NASH by using a systems bi-
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Figure 3.1: Overview of the current understanding of NAFLD and the factors involved
with progression and pathogenesis of NASH. NAFLD is a progressive disease that com-
mences with simple steatosis (non-alcoholic fatty liver, NAFL) and can advance to non-
alcoholic steatohepatitis (NASH), which is characterised by steatosis, inflammation, and fi-
brosis. NASH can develop into cirrhosis and, in some instances, hepatocellular cancer (HCC).
Obesity, T2DM, high-fat diet, etc., play a crucial role in the progression of NAFLD. Currently,
no drug is approved for NASH, and physical activity, controlled diet etc., are recommended
for possible disease reversibility. Liver biopsy despite having some drawbacks, remains the
gold standard for diagnosing NASH at the moment. NAFL is characterised by the buildup of
triglycerides in hepatocytes via de novo lipogenesis. This process is driven by the absorption
of glucose and free fatty acids (FFAs) and their integration into lipid-synthesis pathways. De-
velopment of NASH is also aided by multiple stress like Endoplasmic reticulum (ER) stress,
ROS formation, mitochondrial damage, etc. The origins of these stresses are multifaceted. For
instance, increased fructose absorption or accumulation of ER cholesterol leads to de novo lipo-
genesis, which results in the accumulation of saturated fatty acids (SFA). In addition, fructose
can activate hepatic immune cells via gut-derived inflammatory mediators. Consequently, it
can cause liver inflammation and cell death. This sets off a series of events, such as the release
of ATP, chemokines, and extracellular vesicles, which reinforce inflammatory processes and
the formation of fibrosis. This figure is modified from [283] and [284].
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ology perspective. They first extracted the disease-associated genes from DisGeNET, and the

common genes were used to construct a PPI network, where they identified the hubs and bot-

tlenecks and termed them as the key proteins in both diseases. Asadzadeh-Aghdaee et al. [289]

constructed a PPI network of NASH by using the ‘disease search’ plugin of the string database

in Cytoscape [121]. Based on three parameters, disease score, hub, and bottleneck, they iden-

tified the top 10 proteins in the network. These proteins were further searched for association

with crucial biological processes and pathways, and finally, five key proteins were identified.

Jiang et al. [291] used a clinical dataset GSE89632 which contained information on 19 NASH,

20 NAFL, and 24 healthy control (HC). Focussing on the NASH and HC, they constructed a

PPI network of the DEGs using the STRING database. The hubs in the network were identi-

fied, and their immune infiltration analysis was further performed. Ye et al. [292] merged three

clinical microarray datasets, GSE48452, GSE63067, and GSE89632 and identified the DEGs.

A PPI network of these DEGs was then constructed, and the hub proteins were identified. Feng

et al. [290] used multiple clinical datasets, and the common DEGs among them were used to

construct a PPI network where they identified the hub genes and carried out their survivability

analysis on a hepatocellular carcinoma dataset [297–301]. To explore the potential mechanism

of GANLU powder (GLP) in the treatment of NASH, Gao et al. [299] constructed and identi-

fied the hub proteins in a PPI network of the targets of GLP and the nash-related targets. The

study was further assisted by molecular docking analysis, where they investigated the capabil-

ity of direct interaction of the hubs with the bioactive compounds of GLP and based on this,

they claimed that GLP might treat NASH by regulating AKT1. However, all these studies are

quite one-dimensional. Most of these studies are constructed in a very small network; hence,

the global overview of the system is missing. Moreover, identifying only the hubs (very few

studies have additionally considered the betweenness or closeness) does not necessarily justify

the key proteins in the disease system.

Among several methods, a reliable perspective of studying such networks is the implications

of control theory, which investigates how to manipulate a dynamical system’s behaviour. One

of the ultimate objectives of analysing a network is to regulate its behaviour or state. Obtain-

ing the capability to control biological networks’ behaviour entails altering the phenotypes of
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biological systems as needed, which is crucial for treating diseases or any unwanted cellular

abnormalities. In the 1960s, Kalman developed the concepts of controllability that are now the

foundations of modern control theory. Each node in the network has its own state variable (for

instance, concentrations of proteins at a certain time). Due to the complex interaction between

proteins, the state of one node can affect another, which in turn can modify the state of an-

other protein, and so on. Controllability quantifies the ability to manoeuvre a network’s state

space by controlling a minimal number of nodes. Recent years have witnessed the emergence

of control theory as a mathematical framework for exploring complicated dynamic networks.

However, no study has been undertaken on network controllability in NASH.

The fundamental disadvantage of only PPI-based studies is that they do not account for changes

in metabolic flux level and, as a result, are unable to investigate perturbations in essential

metabolic pathways that drive the progression of the disease. However, the efficient analy-

sis of the PPI network can provide novel candidates for metabolic channelling. Again, the

core set of proteins, which can be the potential drug targets, should be capable of reversing

the disease-associated gene signatures. An established approach to check this endeavour is

using the connectivity map database (CMap), a large-scale perturbagens network that contains

the transcriptomic profiles of numerous cultivated cell lines treated with various chemical and

genetic reagents [302]. It is a platform that helps to get the functional relationships between

genes, perturbagens, and diseases. The query tool of CMap takes the list of upregulated and

downregulated genes and provides a connectivity score to perturbagens, mainly based on the

similarity between the query gene set and reference gene set. This score ranges from -100 to

+100. The higher the positive score, the higher the correlation between the query set and the

reference set of genes. Similarly, a negative score means that the induction of that particular

perturbagen causes an opposite gene expression profile to the query gene set. An overview of

CMap is shown in Figure 3.2.

Hence, to better understand the feasibility of the targets, their role in the disease system

should be adequately investigated, which brings the collaborative effort of the context-specific

molecular networks into the scenario. Probing these context-specific networks is probably the

only way to make sense of the cellular anomalies during disease progression. However, like
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Figure 3.2: The Mechanistic understanding of CMap. CMap’s reference database comprises
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a perturbagen is termed an inducer if S > 0 and an inhibitor if S < 0.
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several other diseases, NASH is yet to come under the grasp of such collaborative studies.

Taking all these as our motivation, we endeavour to study NASH at both the protein and

metabolic levels to identify a set of potential therapeutic targets. By taking a clinical dataset on

NAFLD, we simultaneously investigate the gene and the metabolic level alterations to find the

crucial genes that can initiate reversibility towards control. We further integrated these genes

into a directional PPI network of the DEGs and applied control theory analysis to get the most

fragile nodes in the interactome. The finally identified proteins are capable of inducing reverse

gene expression, metabolic transformation towards control, and also affect network control-

lability. We then analysed their knockdown gene expression profile to tailor their effect on

steatosis, inflammation, fibrosis, and cell death, the four clinical traits of NAFLD.

3.2 Materials and Methods

3.2.1 Data acquisition and pre-processing

To get the patient-specific transcriptomic data, we used the keywords: ‘Non-alcoholic’ and

‘Human’ in the Gene Expression Omnibus (GEO) database [239]. We further filtered out

the datasets based on the following exclusion criterion, i) The datasets that contained sam-

ples of other diseases (such as HCC, HIV) or were infected with viruses (such as HBV, etc.)

or were treated with interventions (such as dietary intervention) were eliminated. ii) All in-

vitro models were eliminated. iii) Also eliminated are datasets that lack adequate stage cat-

egorisation descriptions. iv) From the remaining datasets, we chose only those containing

RNA-Seq data. This is owing to the fact that RNA-Seq data distinguishes more differentially

regulated transcripts, splice variants, and noncoding transcripts, hence shedding more light

on numerous biomedical and biological topics. Finally, we received the datasets GSE130970

and GSE126848. The latter dataset was chosen based on its sample size. The control group

of GSE126848 comprises 14 healthy normal-weight subjects with body mass index (BMI)

18.5–25 kg/m2 and 12 overweight subjects with BMI 30 – 40 kg/m2 [303]. They recruited

31 NAFLD patients, and the severity of the disease was measured using steatosis, activity, and

fibrosis (SAF) score [282], which resulted in 15 NAFL and 16 NASH patients. We used the
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‘calculateTPM’ package of R to normalise (TPM) the data of GSE126848. After normalisa-

tion, outliers of the dataset were replaced using the ‘filloutliers’ function in MATLAB, which

detects the outliers and replaces them with the median one. This function defines outliers as

elements more than three scaled median absolute deviations (MAD) from the median. We also

excluded the genes with missing values in at least one sample.

3.2.2 Identifying DEGs in the clinical dataset

DEGs are expressed in all samples, and their behaviour varies in tandem with the categories.

To identify them, a two-sample t-test was performed to calculate the p-values for two different

clinical groups using the ‘mattest’ function in MATLAB. The ‘mafdr’ function was applied to

evaluate the Benjamini, and Hochberg FDR adjusted p-values. Finally, DEGs were calculated

using the cutoff values for FDR adjusted p-value ≤ 0.05 and | log(fold change) |≥1.2 [304].

The identified genes were further mapped to the UniProt [235], and only the reviewed proteins

were selected. All the analyses are carried out with respect to control.

3.2.3 Gene set enrichment analysis of the DEGs

We used the log fold change values of gene expression from each clinical group to perform the

gene set enrichment analysis (GSEA) [143]. This analysis was carried out in R using the ‘fgsea’

package [305]. For geneset/pathway annotation, we used the KEGG [306] and Reactome [307]

subcategories from the “Canonical pathways” category of MSigDB (version 7.4.1) database

[308].

3.2.4 Identifying possible candidate proteins using CMap

The query tool of CMap takes the list of up-and down-regulated genes and provides a connec-

tivity score (ranges from -100 to +100) to perturbagens, mainly based on the similarity between

the query gene set and the reference gene set. The higher the positive score, the higher is the

correlation between the query set and the reference set of genes. Similarly, a negative score

means that the induction of that particular perturbagen causes an opposite gene expression pro-
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file to the query gene set. We hypothesized that the perturbagens with a negative connectivity

score might possess a potential role in abrupting the propagation of disease. For this purpose,

we selected the perturbagens with a connectivity score ≤ -90. To generate a list of potential

candidate proteins (Cp), we considered only the gene knockdown among the three forms of

perturbagens available in the CMap database.

3.2.5 Construction of the directed PPI network (DPN)

A crucial attribute of a PPI network is directionality [101, 102]. In a PPI network, it refers to

the functional relationships between the proteins, which captures the regulatory effect exerted

by the source protein on the target protein. The identification of key proteins in an undirected

network may lead to various false-positive results [309]. For instance, when the mode of inter-

actions for drug-disease relationships is absent, we cannot determine if a drug heals a disease or

produces one as a side effect [97]. We have extracted the human interactome information from

the STRING [215] and the SIGNOR 2.0 [216]. We selected only the functional (inhibition and

activation) relationships from the former and filter out the interactions where the directionality

is applicable. We also extract the directional network provided by Arunachalam et al. [310].

3.2.6 Construction of the DPN for each category

For each category, the nodes of the network consisted of three groups. The first and second

groups consisted of the category-specific DEGs and Cp, respectively. The third group consists

of the metabolic genes having positive TS scores (metabolic candidate genes, MCGs) obtained

from the in silico single gene knockdown analysis. These nodes are then projected to the DPN

to construct a directional network. However, each of these networks consisted of many disjoint

components. To connect them, we took the help of the DPN and found a minimum number

of nodes to connect the components for each category. These nodes are termed mediators.

However, some components were still disconnected and were then removed from the study.
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3.2.7 Identification of the influential nodes in the network

Irrespective of its size, the fate of a network always hinges on a small set of nodes. To identify

these nodes in our study, we have opted for network controllability analysis. For details please

refer to Chapter 1, Section 1.2.3.

3.2.8 Gene knockdown profile extraction using the CMap database

We extracted the LINCS L1000 dataset from the CMap database. The LINCS L1000 dataset

consists of five separate levels of dataset ranging from original, processed, to z-score data.

The level 1 dataset contains raw fluorescent intensity values from Luminex 1000 platform,

the level 2 dataset provides the gene expression values for the 978 landmark genes obtained

after deconvolution. The level 3 dataset includes the normalised gene expression values of

the landmark genes and 11,350 additional genes which are estimated using the normalized

expression values of the landmark genes. The level 4 dataset contains Z-scores for each gene

based on the Level 3 data with respect to the entire plate population. In general, the L1000

experiments are carried out in 3 or more biological replicates. The level 5 data of the LINCS

database contains the consensus replicate signature by applying the moderated z-score (MODZ)

procedure. Here, we have opted for the level 5 dataset in our study as it is more robust (39),

and biological discovery is more likely to be achieved using this level of data. It contains

the consensus replicate signature by applying the MODZ procedure. We selected the HEPG2

cell line, the consensus gene signature of treated genes, and their untreated control vectors

and obtained 3341 treated and corresponding 533 control conditions for 12328 genes. The Z

difference score for each gene is then measured using the equation

Zi j
di f f = Zi

treated −Z j
control, i = 1 : 3341, j = 1 : 533. (3.1)

Here, Zi j
di f f is the Z difference score for treated condition i and control condition j.

Zi
treated is the Z score of a gene corresponding to treated condition i.

Z j
control is the Z score of a gene corresponding to control condition j.

We then identified the up-and downregulated genes for which Zi j
di f f ≥ 1.5 or Zi j

di f f ≤ −1.5
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satisfies at least 60% of the control conditions, respectively.

3.3 Results

3.3.1 Molecular alterations associated with NAFLD

The selected dataset, GSE126848, included RNA-Seq liver biopsy data of the 15 NAFL, 16

NASH, and 26 control individuals. The dataset is first Transcripts Per Million (TPM) nor-

malised. Differential gene expression analysis on this dataset revealed 5468 and 5672 DEGs

in the NAFL and NASH categories, respectively (Figure 3.3A). Again, being two consecutive

stages of the NAFLD spectrum, we found an overlap between the DEGs of these two cate-

gories (Figure 3.3B). A significant number of metabolic genes were also found to be perturbed

in these two stages (Figure 3.3C).

3.3.2 Functional enrichment of the differentially expressed genes

To find the up-and downregulated pathways in both the categories, we performed GSEA on

the DEGs (Figure 3.3D). We found that the collagen-associated pathways, autophagy, apop-

tosis pathways, oxidative phosphorylation, DNA damage, and hypoxia-related pathways were

upregulated in both groups. Collagen deposition, increased cholesterol biosynthesis, and apop-

tosis of liver cells are linchpins of the NAFLD progression. The upregulation of these indicates

the deterioration of the liver in individuals. Hypoxia enhances cellular lipid deposition and

upregulates genes involved in lipogenesis, lipid uptake, and lipid droplet formation, according

to several in vitro and in vivo studies [311, 312]. Similarly, some DNA damage checkpoint

proteins are found to promote apoptosis and fibrosis in NAFLD [313]. The upregulation of the

base excision repair pathway indicates elevated DNA repair activity, a feat often found to cor-

relate with fatty liver [312]. The increase in inflammation can be observed by the upregulation

of the interleukin-1 signalling and oxidative phosphorylation pathway [314, 315]. However,

quite uncharacteristically, we found various inflammation-related pathways among the down-

regulated pathways. However, this may be due to the reason that none of the NAFL and NASH

individuals was seen to have a high inflammation score [303]. Other than that, we have seen the
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Figure 3.3: The transcriptome landscape of NAFLD. A) Differential expression analysis of
genes in the NAFL and NASH group compared to the control. The blue colour in the volcano
plot represents the genes that are differentially expressed. B) Venn diagram representation of
the differentially expressed genes (DEGs) in the NAFL and NASH group. From the figure,
it is evident that there exists an overlap between the DEGs of each group. C) Venn diagram
representation of the altered metabolic genes. D) The normalised enrichment scores (NES)
obtained from the gene set enrichment analysis (GSEA).
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downregulation of carbohydrate metabolism and insulin signalling, both correlate with disease

progression in NAFLD. On the other hand, metabolic flux level analysis by integrating the gene

expression data on iHepatocytes2322 [316] followed by flux variability analysis (FVA) also re-

vealed the alterations in various crucial metabolic reactions [317]. These include carbohydrate

metabolism, fatty acid oxidation, fatty acid activation, desaturation, and beta-oxidation etc.

3.3.3 Candidate genes capable of metabolic transformation or reverse

gene expression

The disease-associated alterations were further used to determine potential recovery options

that can revert the system back towards a healthy state. At the metabolic stage, we have sys-

tematically carried out a 90% gene knockdown to sort the metabolic genes capable of reversing

the disease flux state towards the control and identified 93 genes in the NASH and 114 genes in

NAFL category [317]. These genes, hereafter referred to as metabolic candidate genes (MCG),

are therefore selected for further evaluation.

At the gene level, we have used the Connectivity Map database (CMap) [302] to obtain the

set of genes whose knockdown may result in a reverse gene expression profile of the DEGs.

CMap is a large-scale drug perturbation network piloted by the transcriptomic profiles of va-

rieties of cultivated cell lines treated with various chemical compounds. Here, for the HEPG2

cell line, we considered the genes whose knockdown results in a connectivity score of -90 or

less when queried with our topmost (top 150 up-and downregulated) DEGs. These genes might

be crucial in the NAFLD landscape because their knockdown demonstrates reversal effects on

gene expression in NAFLD. These are termed candidate proteins (Cp), and their numbers in

each category are shown in Figure 3.4A. As can be observed, Cp are largely distinct across the

two groups. The ten common Cp, were found to take part in endothelial cell migration, protein

modification, fatty acid biosynthesis, etc. Overall, the Cp for both categories is enriched with

cell death-related processes. While the NAFL group was enriched with autophagy-related pro-

cesses, the NASH group was found to be enriched in cytokine-mediated signalling pathways

(Figure 3.4B-C). The variability observed in molecular alterations at the gene, and metabolic

level reflects that organising principles are fundamental to a given biological scale. However,
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Figure 3.4: Connectivity map (CMap) analysis. A) Venn diagram representations of the
common proteins in the connectivity map analysis. B-C) Top ten biological processes enriched
with the candidate genes for NAFL and NASH group, respectively.

the investigations at these individual levels were insufficient to shed light on the delinquent

proteins that clandestinely influence the crucial biological pathways and processes. Thus, such

studies fail to capture the global influence of any perturbed protein to get the actual efficacy

of the proposed target. To overcome this, we extend our individual-level analysis to a collab-

orative study to identify the proteins capable of disease regulation at both the metabolic and

protein levels.

3.3.4 Construction and analysis of a PPI network bridging metabolic with

genomic level identified crucial proteins

The intricate interactions of proteins regulate the changes in both the transcriptomic and metabolic

networks. Understanding these interactions enables decoding the complicated association be-

tween proteins and disease-related abnormalities. To fully realise this potential, however, the

interactions between the proteins must be directed as the orientation of a PPI network gives

more insight into the signalling pathways, disease progression, drug development, and treat-

ment combinations, to name but a few important applications [318].

The constructed directional PPI network (DPN) contained 8673 nodes and 60546 edges. The
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average degree of the network was 13.9620. the highest degree, indegree, and outdegree of the

network were 506, 250, and 377, respectively. This network is shown in Figure 3.5.

In the next step, we collected the DEGs, CP, and the MCGs for both the NAFL and NASH

groups and integrated them into the DPN. Not surprisingly, each consisted of one giant compo-

nent and many small disconnected components. On the other hand, being a part of the network

is futile unless it is linked to the giant component. This is due to the fact that a disconnected

component would be unable to participate in the system’s information dissemination. We,

therefore, identified the minimum number of nodes required to connect the components and

finally obtained a connected directional network for NAFL and NASH (Figures 3.6A-B) with

different sizes and orders (Figures 3.6C-D). Both of them obey the power law of the degree

distribution, indicating the scale-free nature of the network. The network centrality properties

like betweenness, closeness, clustering coefficient, indegree, outdegree, and the total degree of

both networks are calculated. The degree centrality ranking of the proteins for the two net-

works was found to be almost identical (Pearson correlation coefficient: 0.9923), and the top

two proteins for both networks were TP53 and 14-3-3 protein zeta/delta. The histogram plot

of the degree-rank differences of the proteins has revealed that only 19 proteins had a larger

rank in the NASH network as compared to the NAFL network, while the rank of 14 proteins

remained the same (Figure 3.6E). With a few exceptions, the betweenness rank follows the

same trend as degree ranks (Pearson correlation coefficient: 0.9266). As with degree centrality,

the top two proteins in this category were also TP53 and 14-3-3 protein zeta/delta. The rank

correlations for clustering and closeness centrality within these two networks were 0.8440 and

0.9043, respectively.

We then used structural controllability theory [100] to identify the minimum number of driver

nodes capable of controlling the whole network. The nodes were then graded into indispens-

able (I), dispensable, and neutral categories based on the number of driver nodes. We found

that 45% and 44% of nodes are drivers and 18.67% and 20.59% are indispensable, respec-

tively, in the NAFL and NASH categories (Figure 3.6F). The degree distribution plots of these

categories show that the indispensable nodes and the neutral nodes tend to be the hubs while

the dispensable nodes are low-degree nodes in the network (Figure3.7). We use the equation
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Figure 3.5: The constructed directional network. It is constructed using STRING (version
11.0) [215] , SIGNOR 2.0 [216], and the directional network provided by Arunachalam et al.
[310]. We selected only the functional (inhibition and activation) relationships from the former
and filtered out the interactions where the directionality is applicable.
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ICP = I
⋂

CP to find the set of indispensable candidate proteins (ICp) in the network, where

I = set of indispensable proteins and Cp = set of candidate proteins. ICp contains 15 and 29

proteins in the NAFL and NASH categories, respectively (Figure 3.6G). These are the most

crucial proteins in the network because they not only generate reverse gene expression pro-

files but also influence network controllability [101]. By investigating the involvement of these

proteins in NASH, we discovered that they are critical in the development of the disease. For

example, the ICp obtained in the NASH category are enriched in the insulin resistance pathway

(PPP1CC, PRKAA2, AKT1, and FOXO1), in the apoptosis pathway (CASP3, AKT1, CYCS,

and RIPK1), glucagon signalling pathway (PRKAA2, AKT1, and FOXO1) and Toll-like recep-

tor signalling pathway (AKT1, IL12A, and RIPK1). Insulin resistance is a necessary condition

for the development of NASH [319]; apoptosis leads to death of the hepatocellular cells [320];

the glucagon pathway, on the other hand, regulates lipid metabolism [321].

3.3.5 Potential therapeutic targets in NAFLD

Diseases are driven by the perturbations in gene expressions, which tailor a cascade of events

that has a direct influence on the proteins and metabolic fluxes. Although ICp contains more

significant proteins than the others in the network, an aura of eeriness surrounds their prospec-

tive roles as targets in their respective categories. This can be mitigated by performing an

in silico knockdown and quantifying this effect in terms of the transformation from the dis-

ease state to the healthy one. For this, we extracted the gene knockdown expression data of

the HEPG2 cell line from the CMap database and revealed the up-and down-regulated genes

following the knockdown of each Cp using a Z-score difference cutoff of 1.5. These profiles

were then used to capture the metabolic flux level transition from the disease state to the target

state. Next, using the metabolic transformation algorithm, we identified the ICps with positive

transformation score (TS) [317] and were deemed as potential targets because they can induce

reverse gene expression to the DEGs, affect the controllability of the network, and revert the

disease flux state towards control.

The three obtained targets for NASH were BAG6, CYCS, and CASP3. We portrayed the signif-

icance of these targets in the NASH landscape through their interactors in the NASH network.
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Figure 3.6: Protein-protein interaction network analysis. A-B) The PPI network of the
NAFL and NASH groups, respectively. Here the greater the node size, the larger its degree.
C-D) The size and order of the two networks. The NAFL network consists of 3181 nodes and
16791 interactions, while the NASH network consists of 3195 nodes and 16703 edges. E) The
histogram plot shows the degree rank difference between the common proteins in the NAFL
and NASH network. F) The abundance of driver nodes (DN), indispensable (IP), dispensable
(DisP), and neutral (NP) nodes in the two networks. G) Indispensable candidate proteins (ICp)
in the NAFL and NASH group.
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Figure 3.7: Degree distribution plots of the indispensable, dispensable and neutral nodes.
A) NAFL network. B) NASH network. It is seen that in both networks, the indispensable nodes
are high-degree nodes.
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Among these three proteins, CASP3 has the maximum number of interactors, followed by

BAG6 and CYCS (Figure 3.8A). The PPI networks of these proteins are provided in Figure

3.8C-E. Topological analysis of these targets in the NASH network has revealed that CASP3

was the more topologically enriched protein with a relatively higher rank than the other two

in all the previously mentioned centrality measures. Its interactors include genes that play a

critical role in the pathogenesis of NASH. For instance, CFLAR inhibits JNK phosphorylation,

thereby ameliorating the clinical characteristics of NASH [322]. Another crucial interactor is

TNFR1, whose inhibition is reported as a promising perspective for NAFLD treatment [323].

Similarly, TRAF6 in the BAG6 and TP53 in the CYCS interactome can be named among many

crucial genes in the NAFLD landscape [324, 325]. Although CYCS was found to have a low

rank in all the centralities, TP53, the node with the highest degree and betweenness centrality in

the network, is an immediate neighbour of CYCS. This suggests that through TP53, CYCS can

exert its influence on the other proteins in the network. The results gathered from various clin-

ical studies have shown that NAFLD activation affects the immune system, leading to immune

infiltration. NASH has a chronic inflammatory phenotype and has been demonstrated to be

related to numerous immune cells. Interestingly, we found that 26.25%, 15.38%, and 11.76%

interactors of CASP3, BAG6, and CYCS, respectively, are immune-related genes. This sug-

gests that the identified targets are also associated with immune cell infiltration.

Coreness is a methodical approach to determining a protein’s local and global significance.

It indicates whether the protein is associated with a densely connected region of the network

or with its periphery. Additionally, it demonstrates how influential a node is in disseminating

information throughout a network. Its biological importance has been established in various

investigations [326, 327]. We have used the k-core decomposition algorithm [12] to measure

the coreness of a node in the network. It subdivides the network into multiple layers where

the outside layers indicate the network’s periphery, while the inner layers with larger k values

reflect the network’s densely connected core. The k-core analysis of the NASH PPI network

revealed that it consists of 8 cores, and the three targets of NASH, CASP3, BAG6, and CYCS,

are placed in 7th, 4th, and 6th core respectively. The higher coreness indicates that although the

possible target proteins are not hubs in the NASH PPI network, they are capable of spreading
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the transcription signal to other associated proteins.

The first neighbourhood analysis of these targets in the NASH network showed that they do

not share a common first neighbour. It means that there does not exist one single drug or

compound whose implement can affect all these three targets simultaneously. However, at an

individual level, BAG6 and CASP3 are connected by ATN1 and CDKN1A; and CASP3 and

CYCS are connected by BID and CASP9 (Figure 3.8F). Nevertheless, all three targets have

less connectivity (i.e., total degree, Table 3.1, particularly BAG6 and CYCS in the NASH

network, implying that targeting them will have very little off-target effects [328]. The biolog-

ical processes associated with the proteins of each network are shown in Figure 3.8F-H. The

topological properties of all the potential targets are provided in Table 3.1.
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Figure 3.8: The potential targets in NAFL and NASH. A) The targets in the NASH category
and their number of interactors in the network. B-D) The interactors of the three targets of
NASH in the network. E) Venn diagram of the interactors of the targets. F-H) The top 10
enriched biological processes of BAG6, CYCS, and CASP3, respectively.
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3.3.6 Capturing the effects of the potential targets on the disease-associated

perturbed pathways

Often, silencing a gene causes havoc in the genome, resulting in perturbations in the expres-

sion levels of specific genes. This is because these proteins share several similar pathways,

processes, and functions. Thus, an interpretation of the pathways and ontological properties of

these genes aids in the comprehension of the mechanistic understanding of the knocked-down

gene. To accomplish this, we retrieved such profiles following the knockdown of each potential

target and evaluated their effect on NASH (Figure 3.9A). The numbers of affected genes fol-

lowing the knockdown of the potential targets for both categories are shown in Figure 3.9B-C.

The knockdown of CASP3 and PLAU affected the most number of genes in the NASH and

NAFL categories, respectively. The knockdown profiles of these targets revealed that silencing

CYCS and CAPS3 improves inflammation, fibrosis, and apoptotic pathways, whereas silencing

BAG6 ameliorates the latter two (Table 3.2). Further, using GSMM, we evaluated their knock-

down effect on the metabolic landscape and found that our proposed targets can revert 66%

of the altered reactions found in fatty acid oxidation pathways [317]. The knockdown effect

of the NAFL targets is provided in Table 3.3. Here also, we found that the knockdown of the

NAFL targets can increase the flux rates of the reactions involved in mitochondrial fatty acid

beta-oxidation, echoing their significance in the metabolic level.

3.4 Discussion

Diseases are nothing but aberrations to the normal interplay between proteins. These aberra-

tions rise due to their perturbations following the progression of a disease. To gain a compre-

hensive grasp on the underlying mechanism of the progression of a disease and thereby identify

the potential targets, it is an unmet need to capture and analyse these perturbations.

In this chapter, we have developed a methodology focused on capturing these perturbations in

both the gene and metabolic levels. The former aids in the identification of genes whose expres-

sion significantly changes following disease progression, while the latter helps identify altered
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Figure 3.9: Mechanistic understanding of the potential targets.A) The schematic diagram
for exploring the potential targets. The process starts with extracting the gene knockdown
profile of each target from the CMap database and ends with identifying changes in the disease-
specific traits such as hepatic cell death, inflammation, and fibrosis. B-C) The bar plot of the
numbers of affected genes following the knockdown of the potential targets in the NAFL and
NASH groups, respectively. The total number of affected genes is shown at the top of each bar.
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Table 3.2: The potential targets in NASH and their therapeutic effect. At the metabolic
level, their knockdown was found to revert 66% of the altered reactions found in fatty acid
oxidation pathways.

Targets Fibrosis Inflammation Cell death

BAG6
Downregulates FN1
and DAG1, and
upregulates MMP1.

Not found
Downregulates
TNFRSF21.

CASP3
Downregulates FN1
and upregulates
WIF1.

Downregulates
S100A4.

Inhibiting CASP3
protects against
hepatocellular
damage and cell
death [329].

CYCS
Downregulates
Galectin1.

Decreases
expression
of cytokine
IL32.

CYCS release from
mitochondria
to the cytosol is a
key process in the
initiation
of apoptosis [330].

metabolites and reactions. The methodology is general and can be applied to any disease. We

have applied this methodology to NASH to identify potential targets in this multifactorial dis-

ease.

NASH is a progressive multifactorial disease, which initiates from a benign NAFL and may

move to severe cirrhosis and liver failure [275]. It is currently the leading cause of liver trans-

plants worldwide, and unabated, the numbers will continue to climb. However, despite decades

of research, the molecular mechanism driving NASH has not been unravelled, making the dis-

ease exceedingly challenging to treat. Consequently, seeking potential therapeutic targets for

NASH has become a top priority.

Proteins govern the biological processes, pathways, and molecular functions inside the cell.

They work in conjunction with other proteins to accomplish various cellular processes. The

causal PPI networks hold an upper hand against the physical interactions as these networks

provide the additional dimension of directionality and thus help gain knowledge about the in-

formation flow in the network. On the other hand, metabolic networks can explore variations

in the metabolism that emerge across the whole histological range of disease, examining the

changes that occur as benign to severe stages progress. Thus, there is a high demand for identi-

fying an ideal target, which not only regulates the disease interactome and generates a reverse



120
Chapter 3. De novo analysis of a protein-protein interaction network reveals potential

targets in NASH

Table 3.3: The potential targets in NAFL and their mechanistic understanding. In the
metabolic level, we found that the knockdown of the NAFL targets can increase the flux rates
of the reactions involved in mitochondrial fatty acid beta-oxidation.

Targets Inflammation Cell death Fibrosis
ACVR1 Downregulates

SPON2 and
C3.

Downregulates C3. Not found

BMP4 Upregulates
transcrip-
tion factor
FOXO4 and
downregulates
C3.

Upregulates transcription
factor FOXO4 and down-
regulates C3.

Not found

CASP3 Downregulates
S100A4.

CASP3 inhibition protects
against hepatocellular
damage and cell death
[329].

Downregulates
FN1 and upregu-
lates WIF1.

FGFR3 Downregulates
SPON2 and
VEGFA, and
upregulates
HMOX2.

Upregulates HMOX2. Downregulates
HIF1A and
VEGFA.

GABPB1 Downregulates
C3.

Downregulates C3. Downregulates
FN1, PLOD3,
COL1A1, and
LAMB1.

PLAU Not found Not found Not found
PPP1CC Not found Not found Downregulates

galectin1 and
CCN2.

VDAC1 Downregulates
PREP.

Downregulates keratin 8. Upregulates
COX-2 and
downregulates
NME1.
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gene expression profile but is also capable of exerting a significant influence on the altered

metabolic pathways under diseased conditions.

In this context, the collaborative study of metabolic and PPI networks opens a door to cap-

ture the effects of disease progression in multiple layers and offers more realistic solutions to

understand the disease mechanism. Here, we have developed a pipeline that can be used to

identify targets in any in silico studies through a better understanding of disease mechanisms.

The pipeline finds the significant elements of the genomic and metabolic level alterations and,

based on the former, identifies the candidate proteins (CP), which can initiate a reverse gene

expression profile. To demonstrate our hypothesis that these proteins may contain potential

targets, we constructed a PPI network with nodes consisting of DEGs, CP, and metabolic genes

with a positive transformation score (TS). The control theory algorithm identified the driver

nodes from the network that eventually resulted in indispensable nodes, which are the most

fragile nodes in the network [102]. These nodes are prone to mutations and are often targeted

by viruses and drugs [101, 102]. We identified the indispensable candidate proteins (ICP), the

common nodes between the CP and the indispensable proteins (I), and checked their knock-

down effects on the disease-specific GSMMs. The calculated TS values were then used to get

a quantitative marker of their effectiveness. Finally, ICP with positive TS scores were deemed

as potential targets because they can induce reverse gene expression to the DEGs, affect the

controllability of the network, and revert the disease flux state towards the control.

Like many other diseases, NASH is also driven by certain characteristics such as deranged

lipid accumulation (steatosis), hepatic cell death, inflammation, and fibrosis [331]. The poten-

tial targets of NASH, regardless of the method by which they are found, should be capable of

positively affecting these traits. We have identified three potential targets for NASH, CASP3,

BAG6, and CYCS. CASP3 is a member of the caspases family, which are critical mediators

of the inflammatory response and apoptosis, and contribute significantly to cellular and organ-

ismal homeostasis [332]. Genetically modified mice with loss of CASP3 activity are found

to be resistant to diet-induced NASH [329]. The analysis of the knockdown gene expression

profile of CASP3 revealed that its inhibition could exert a four-dimensional effect on NASH by

modulating all the aforementioned traits. First, its knockdown effect on hepatic steatosis can
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be seen from the increased fluxes for the altered (down-regulated) reactions involved in fatty

acid activation and mitochondrial beta-oxidation pathways. Secondly, its knockdown downreg-

ulates a fibrogenic gene, FN1, which plays a crucial role during liver fibrosis [333]. Also, by

upregulating WIF1, which is an inhibitor of the Wnt/β -catenin signaling pathway, a therapeutic

target for treating liver fibrosis [334], the CASP3 knockdown can again regulate fibrosis devel-

opment. Thirdly, its knockdown can regulate the inflammatory process by downregulating the

inflammation inducer S100A4. The role of CASP3 as a hepatic cell death inducer, on the other

hand, is very well explored [329]. These facts hence support that CASP3 could be an attractive

therapeutic target for NASH treatment.

CYCS is a small soluble heme protein found abundantly in the inner mitochondrial membrane.

The release of CYCS from mitochondria to the cytosol is a critical process in initiating the

intrinsic and extrinsic pathways of apoptosis [330]. Also, its translocation into the extracellular

space induces inflammation [335]. Its role in NASH is, however, yet to be properly explored.

We found that, like CASP3 and BAG6, CYCS knockdown can affect the crucial reactions in

the lipid accumulation process. Its silencing downregulates IL32, a NAFLD-related hepatic

cytokine, modulating the hepatic inflammation process. Tailoring CYCS to hepatic fibrosis,

we found that its knockdown downregulated Galectin 1, which can ameliorate fibrosis by in-

ducing apoptosis to HSCs [336]. Thus, like CASP3, CYCS knockdown also possesses a four-

dimensional effect on the development and progression of NASH.

BAG6 (BAT3/Scythe) is a ubiquitin-like protein involved in a myriad of non-related physio-

logical and pathological processes, including apoptosis, antigen presentation, immunological

pathways, and T-cell response. It is cleaved in the cytosol by CASP3 in response to intrinsic

or extrinsic apoptosis, yielding a C-terminal fragment of BAG6 that induces apoptosis [337].

Again, the exosomal BAG6 activates the NK cells while the soluble BAG6 inhibits the NK cell

cytotoxicity [337]. However, its role in NASH is yet to be explored. We linked its knockdown

effects to the traits mentioned above to investigate BAG6 as a potential candidate for NASH re-

covery. Increased extracellular matrix deposition, such as collagen types I and III, plays a role

in hepatic fibrosis [338]. Collagens are primarily synthesised by hepatic stellate cells (HSCs).

MMP1, an upregulated gene upon BAG6 silencing, can attenuate hepatic fibrosis via collagen
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type I and III breakdowns. Additionally, it has been shown that its gene delivery produces

fewer HSCs [338]. Also, the knockdown of BAG6 downregulated the fibrogenic gene FN1.

Thus, by the modulation of MMP1 and FN1, BAG6 knockdown attenuates hepatic fibrosis. Its

knockdown also downregulated an apoptotic gene, TNFRSF21 and hence played a role in hep-

atic cell death. Finally, we observed that, like CASP3, its knockdown also increases the fluxes

of the altered reactions involved in fatty acid activation and mitochondrial beta-oxidation path-

ways. These facts showed that BAG6 knockdown exerts a three-dimensional beneficial effect

on NASH and could be considered a potential therapeutic target.

On the otherhand, NAFL is characterised by the buildup of hepatic lipids in excess quantities.

This unregulated accumulation further increases lipotoxicity, which stimulates inflammation,

hepatocyte death, and fibrosis, paving the way for the development of NASH. We discovered

that eliminating each of the possible NAFL targets improved hepatic steatosis. Some of them,

including CASP3, VDAC1, GABPB1, and FGFR3, were seen to ameliorate inflammation, hep-

atic cell death, and liver fibrosis. ACVR1 and BMP4 were seen to improve inflammation and

hepatic cell death, while PPP1CC only improve the fibrosis process. As a result, targeting these

proteins might prevent the transition from NAFL to the NASH stage.

Interestingly, by peering through the identified targets, we noticed the dominance of autophagy

in NASH. Among the three potential targets, BAG6 is found to be an autophagy-related pro-

tein. It is essential for basal autophagy in mice embryos and for basal and starvation-induced

autophagy in wild-type and BAG6 -/- mouse embryonic fibroblasts. Its absence reduces au-

tophagosomes in cells and thereby reduces the autophagic flux, echoing its essentiality in form-

ing autophagosomes. It is shown to modulate autophagy by affecting the intracellular locali-

sation of EP300 [339]. Moreover, the cleaved N-terminal BAG6 (located in cytosol) interacts

with both the LC3B-I and the unprocessed form of LC3B to suppress autophagy [340].

3.5 Conclusion

Our strategy of leveraging and interconnecting the context-specific molecular networks is the

first of its kind to study NASH, where we identified three potential targets to control NASH
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and eight targets to control NAFL. These potential targets exert their effects at both the gene

and metabolic levels and reverse disease-associated gene signatures. We have shown that the

knockdown of these potential therapeutic targets affects several critical metabolic reactions

involved in steatohepatitis, and genes involved in inflammation and fibrosis development. This

proposed methodology lays out a pragmatic framework for identifying potential therapeutic

targets with a higher probability of success. It will save tremendous resources and time during

the drug discovery process and be used as a general pipeline to identify targets in any in silico

studies.



4
A data-driven multilayer approach for

identification of potential therapeutic targets

in non-alcoholic steatohepatitis1

An intriguing fact about proteins is that the proteins associated with a disease always remain in

close proximity, and only a few of them gets identified as pathogenic. However, the crosstalk

between all these proteins, irrespective of whether they are identified as pathogenic or not,

governs the development and progression of diseases. There are many diseases in which var-

ious potential target proteins are identified in vitro or in vivo and are taken to clinical phases.

Still, none of them eventually crosses all the clinical trial phases. Therefore, it won’t be an

1The bulk of this chapter has been communicated for possible publication.
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embellishment to assert that the existing disease proteins fail to capture the actual mechanism

governing the disease progression. In this chapter, using NASH as an example, we have devel-

oped an approach that integrates whole-system protein perturbation, finds proteins that remain

in close proximity to known disease proteins and then identify potential targets among them.

4.1 Introduction

A major challenge in the computational way of solving the conundrum of a disease system is

to track down the effect of the protein perturbations on different layers of molecular under-

standing. The proteins identified from the protein-protein interaction (PPI) networks may not

play a crucial role in metabolic level. The metabolic networks identify crucial reactions and the

genes involved in them. However, such a network cannot provide information about how the

gene products, i.e., proteins, will behave in conjunction. Also, the information about forming

clusters, spreaders, role in information processing, etc., cannot be told from metabolic network

analysis. Machine learning (ML), on the other hand, classifies proteins and can identify the

nodes with the best predictive capability in the network. However, this approach alone can

say nothing about metabolic adaptation, which is imperative for cell homeostasis following a

physiological change. But, integrating with the ML approach in a study, the network analysis

methods can be used to get more in-depth knowledge of the disease systems. Various studies

have used machine-learning algorithm to investigate the classification capabilities of the hubs

or other topologically strong proteins obtained from PPI analysis to identify important subset

among them [341, 342]. Thus, an approach combining these three methods would identify

proteins that are topologically important, have a strong predictive capability, and are able to

influence metabolites which are crucial in the progression of NASH. In other words, a joint

effort of these three approaches would enhance the probability of getting more viable disease

targets.

The computational efforts in NASH, are primarily focussed on only one of the above three

methods. The metabolic level investigations have considerably contributed to a deeper under-

standing of the condition, whereas the PPI-based research impede a thorough analysis of the
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system (as mentioned in Chapter 4). In the metabolic level, one of the pioner work was done

by Mardinglo et al. [316]. They developed a liver-specific genome scale metabolic model

(GSMM) iHepatocytes2322, and used it to investigate the transcriptomic data obtained from

NAFLD indivudals. According to their findings, the development of treatment strategies based

on the augmentation of endogenous serine and AKG levels may cure the fundamental aetiology

of NASH. In a subsequent investigation, it was demonstrated that plasma levels of serine and

glycine are decreased in NASH patients, indicating a serine shortage in these patients [343].

ML-based studies are used to uncover non-invasive biomarkers and generate diagnostic scores

to differentiate NAFL from NASH [344, 345]. For instance, Amaro et al. [341] developed an

ML-based approach to liver histology assessment that characterises disease heterogeneity and

severity and quantifies the treatment response in NASH. Perakakis et al. [346] used a vari-

ety of ML algorithms to find unique combinations of glycans, lipids, and hormonal variables

to accurately diagnose the presence of NASH, NAFL, or normal status. However, because

these studies [346, 347] are limited to biomarker detection, the aptness of machine learning to

discover targets remains less explored.

With the advent of large-scale PPI networks, the application of graph-theory-based methods

for their analysis, in an effort to glean insights into the information they carry about cellular

function. These techniques take advantage of the propensity for functionally-related proteins

to reside in the same network neighbourhood. Specifically, network-based guilt-by-association

techniques have been utilised extensively to uncover new disease-associated genes. Random

walk with restart (RWR), which was initially developed for internet search engines, is an effec-

tive guilt-by-association method [348]. It simulates the behaviour of an internet user, who, de-

pending on his needs, can navigate between web pages using the accessible hyperlinks. There-

fore, a few pages will be accessed more frequently than the rest during his internet session.

RWR is a state-of-the-art method in computational biology to identify candidate disease genes

/proteins. Here, a set of nodes, most preferably a set of disease nodes, are taken as seed(s), and

the remaining nodes in the network are then ranked according to their proximity to these seed

nodes.

In this study, we have developed a novel systematic approach that could be used to predict
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potential therapeutic targets that can control the disease PPI network and metabolic landscape.

The methodology starts with RWR, followed by a combination of classification approaches to

identify candidate proteins that classify the disease condition and hence are hypothesised to

be strongly associated with the disease. By analysing their controlling capability, the driver

proteins are then identified. Finally, these driver proteins are used to investigate the altered

metabolic landscape observed in NASH and identify possible targets for the development of

effective NASH therapy regimens with likely minimum adverse effects. We have termed this

multi-layer approach as a random walk restart multilayer approach (RWRMLA) and applied

this to identify potential targets for NASH. The methodology used in this study is shown in

Figure 4.1.

4.2 Materials and Methods

4.2.1 Construction of the undirected liver-specific protein-protein inter-

action network

We first constructed an undirected PPI network using the STRING database [215], which had

19385 nodes and 11938498 interactions. In this network, we kept only those interactions whose

confidence score was greater than or equal to 900. The network contains 11749 proteins and

245760 interactions. The network was made liver-specific by integrating it with the nodes

reported to be expressed in the liver as per the human protein atlas [349]. This liver-specific

network (hereafter referred to as N900) had 10,118 proteins and 2,09,828 interactions.

4.2.2 Random walk restart algorithm

Random walk with restart (RWR) algorithm [348] simulates a walker’s passage from its current

nodes to its neighbours in a network starting at several given seed nodes. It quantifies the

proximity of a node to a set of seed nodes in a graph. The algorithm can be expressed as,

Pt+1 = (1− r)MPt + rP0, (4.1)
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Figure 4.1: The workflow of the proposed method.
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Here, P0 is the vector of the initial probability distribution where only the seeds have values

other than zero, the vector of the initial probability distribution where only the seeds have

values other than zero. Pt is a vector whose ‘ith element represents the likelihood of getting

the random walker at node ‘i’ at step ‘t’. M is the normalised adjacency matrix, ‘r’ is the

global restart parameter. After multiple iterations, the difference between the vectors Pt+1 and

Pt becomes negligible and the elements in these vectors represent a proximity measure from

every graph node to the seed(s). We have implemented RWR by taking the disease proteins

as seeds and all the remaining nodes in the network as candidates. Each candidate node was

assigned a score based on their proximity to the seed nodes. Proteins with a score greater than

0.00005 [350] were selected for further analysis.

4.2.3 Screening method to select RWRPs

To exclude the proteins that may arise due to topological biasedness, a filtering method as

proposed in [351] was used. Here, 1000 sets were randomly produced, denoted by S1,S2, ....,

and S1000, each with the same disease protein size. Using each of these Si as a seed set, the RWR

algorithm generates 1000 candidate sets (one for each Si). The permutation false discovery rate

was then calculated for each candidate protein ‘p’ as follows:

FDR(p) =
∑

1000
i=1 fi

1000
,

where fi = 1 if the score of p is larger than the score computed by taking the disease proteins

as seed nodes, or fi = 0, otherwise. A candidate protein with a large permutation FDR is more

likely to be a universal protein and less likely to be NASH-associated.

4.2.4 Data acquisition and pre-processing

To get the patient-specific transcriptomic data, we used the keywords: ‘Non-alcoholic’ and

‘Human’ in the Gene Expression Omnibus (GEO) database [239]. We further filtered out the

datasets based on the following exclusion criterion, i) The datasets that contained samples of

other diseases (such as HCC, HIV) or were infected with viruses (such as HBV, etc.) or were
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Table 4.1: The comparison of two clinical datasets used in this study.

Dataset Data Type NASH definition Normal individual NASH individual
GSE162694 RNA-Seq NAS 32 40
GSE126848 RNA-Seq SAF score 26 16

treated with interventions (such as dietary intervention) were eliminated. ii) All in vitro mod-

els were eliminated. iii) Also eliminated are datasets that lack adequate stage categorisation

descriptions. iv) From the remaining datasets, we chose only those containing RNA-Seq data.

This is owing to the fact that RNA-Seq data distinguishes more differentially regulated tran-

scripts, splice variants, and noncoding transcripts, hence shedding more light on numerous

biomedical and biological topics. Finally, based on the sample size, we selected the datasets,

GSE162694 [352] and GSE126848 [303]. A comparison of this two datasets is provided in

Table 4.1. Two steps of data processing are performed in our study. In the first step, the genes

with a raw count less than ten were removed using the FilterbyExpr function from the edgeR

package [353, 354]. In the next step, the data was normalised using the trimmed mean of M

values (TMM) method [355].

4.2.5 Selection of optimal feature from ML algorithm

There are numerous classification algorithms in machine learning, and each is biased toward

its own objective function. So, redundant entities were removed using an ensemble strategy in

six widely known algorithms: SVM, perceptron, decision tree, XGBoost, random forest and

logistic regression. The recursive feature elimination (RFE) method has been used to identify

the important features, which was initially implemented for SVM [356] and later has been

implemented for other algorithms like random forest etc [357]. This method establishes a

classification model utilizing all available features, ranks them by importance, and abandons the

least important ones among them. The process of elimination goes on till the minimum number

of features has been selected for maximum accuracy. This recursive process of eliminating the

features is performed for 10-fold cross-validation for obtaining the reduced set. RFE has been

used as a wrapper in all of these six algorithms to obtain minimum features in each algorithm.
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4.2.6 Classification of the reduced RWR proteins

To build the machine learning (ML) models for assessing the classification capability, the RNA-

Seq dataset GSE162694 [352] has been used where the gene represents the input features to

be utilised in the algorithms. The SVM, perceptron, decision tree, XGBoost, random forest

and logistic regression algorithms were compared to check the maximum possible prediction

strength. For robust projection of results, a repeated 10-fold stratified cross-validation strategy

has been incorporated [358]. The stratified k-fold cross-validation strategy randomly splits the

disease and non-disease samples into k-equally proportioned subsets. Each time one subset

was used as the testing dataset, and the rest of them were used as the training dataset. To

further strengthen the ML models, a grid-based hyperparameter parameter search has been

performed with cross-validation. The identified optimal parameters have been used to tune the

ML algorithm for final prediction. The results of this binary classification problem also include

accuracy, F1-score, precision, and recall along with AUROC.

4.2.7 Construction of the directional DEG network

To construct a directional network, the functional human PPI interactome is extracted from the

SIGNOR database [216] and further filtered on the following criteria: i) both the interactors

must be proteins, ii) the source protein should either upregulate or downregulate the target

protein. Duplicated edges are then removed, and the final network (hereafter referred to as

Ndirectional) thereby obtained was found to contain 4594 proteins and 11310 interactions. The

DEGs and the RWRPCCs are next mapped to Ndirectional , and a subnetwork is constructed.

The network thus constructed was found to be disconnected. Hence, Ndirectional was used to

obtain the minimum number of nodes which are required to connect the disconnected DEGs.

These additional nodes are termed mediators. Some proteins, even after performing this step,

remained disconnected and therefore removed from the network.
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4.2.8 Prediction of gene knockdown effect in the metabolic network through

genome-scale metabolic modelling

The gene knockdown profile of each gene was integrated in a functional genome-scale metabolic

model (GSMM) for hepatocytes, iHepatocytes2322 [316], to capture the knockdown effect in

transforming the disease state back to the healthy state. To do so, the following preprocessing

steps were performed: (1) Determining the baseline flux distribution of the disease (source)

state (V re f ). To obtain the disease-specific GSMM, the average expression values of each

metabolic gene was integrated into the iHepatocytes2322 by applying the E-Flux method [359].

Additionally, a fasting condition was imposed as the liver biopsy samples were normally taken

at the fasting state. During the fasting conditions, the liver uptakes gluconeogenic substrates

(like lactate, glycerol, etc.), non-esterified fatty acids and amino acids. It produces glucose,

very-low-density lipoprotein (VLDL), ketone bodies, and plasma proteins [343]. Hence, we

selected lactate, glycerol, fatty acids, amino acids as input variables and glucose, VLDL, ke-

tone bodies as output variables in the model. We also allowed the uptake of oxygen, phosphate,

minerals, and the secretion of urea, H2O, CO2. The ‘gpSampler’ function implemented in the

CobraToolbox 3.0 [360] was used for uniform sampling, and the mean of the different flux

distributions was considered as V re f .

(2) Analyzing the gene expression data of disease (source) and control (target) data to deter-

mine the changed and unchanged reactions of the model. A detailed Boolean gene-to-reaction

mapping was employed to map the differentially expressed metabolic genes to reactions, repre-

senting the model’s changed reactions under the disease state [361]. The average gene expres-

sion data of disease samples was used as a baseline and employed 2-fold up-or down-regulation

on the expression values of the previously obtained up-and down-regulated genes, respectively,

to predict the probable knockdown effect of each gene in disease situations (refer to Chap-

ter 3, Section 3.2.8). This newly obtained probable knockdown specific gene expression data

was integrated into the iHepatocytes2322 using the E-Flux method, and the corresponding flux

state V res was predicted by applying the algorithm: Minimization of Metabolic Adjustment

(MOMA) ([362]). MOMA basically minimises the Euclidean distance between the disease-

specific flux distribution V re f and the knockdown flux distribution V res. Finally, a transforma-
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tion score (TS) was assigned for each of the knockdown genes, similar to the scoring method

proposed in the metabolic transformation algorithm (MTA) algorithm, using the relation,

T S =
∑i∈Rsuccess

|V re f
i −V res

i |−∑i∈Runsuccess
|V re f

i −V res
i |

∑i∈Rs
|V re f

i −V res
i |

.

The changed relations are classified into two groups, success (Rsuccess) and unsuccess (Runsuccess)

based on the transition of flux rates in the right direction, and the group (Rs) represents the un-

changed reactions.

4.3 Results

4.3.1 Novel NASH-related proteins identified through the RWR algorithm

The proteins associated with a disease always remain in a close proximity, and only a few

among them would have been previously identified as pathogenic [365]. Crosstalk between

these proteins governs the development and progression of diseases. As no drugs have been

approved for NASH, it won’t be an embellishment to assert that the existing disease proteins

fail to capture the actual mechanism governing the disease progression, necessitating the need

to identify novel NASH-related proteins. To uncover them, we have used the random walk with

restart (RWR) [348], which is capable of identifying novel proteins associated with disease de-

velopment.

For this purpose, using the STRING database [366], a high-confidence undirected PPI network

(with confidence score ≥ 900) containing 11,749 proteins and 2,45,760 interactions was first

constructed. This general network was further filtered and made liver-specific by retaining only

the nodes which are reported to be expressed in the liver as per the human protein atlas [349].

This liver-specific network (hereafter referred to as N900) had 10,118 proteins and 2,09,828 in-

teractions (Figure 4.2A). The final step before applying RWR requires a set of seed nodes in

the form of NASH associated protein from the network. To get them, the DisGeNET database

[367] was queried using the keyword ‘Nonalcoholic Steatohepatitis’, and 434 genes were ex-

tracted. These genes were mapped to the N900 network, and 336 proteins were obtained, which
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Figure 4.2: Random walk with restart analysis. A) The undirected liver-specific human PPI
network, N900, contains 10,118 proteins and 2,09,828 interactions. The nodes with the same
modularity are given the same colour while the node size corresponds to its degree. B) Venn
diagram representation of the proteins in the N900 and disease proteins. C) Permutation-FDR
values of the proteins obtained from RWR. Here, an FDR cut-off value of 0.05 is used to
select the 330 RWRPs shown in blue colour. D) GO-enrichment analysis of the RWRPs. The
enrichment analysis is performed using Enrichr [363]. E) The number of drugs reported against
these proteins as per the DGIdb [364]. Here, only the proteins which are associated with more
than ten drugs are shown.
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are referred to as ‘disease proteins’ (Figure 4.2B).

The RWR algorithm was applied to the network N900 with the ‘disease proteins’ as seeds and a

score is assigned to each candidate node based on its proximity to the seed nodes. The proteins

with a score greater than 0.00005 [350] were selected for further analysis. However, some of

these proteins may only appear due to their higher topological significance. This structural bi-

asedness is addressed by evaluating the relevance of each protein using a screening procedure

[351] (refer to the Section 4.2.3), which results in 330 proteins (hereafter referred to as random

walk restart proteins, RWRPs) (Figure 4.2C).

4.3.2 Topological significance of the RWRPs

We found that the average shortest path lengths of 340 RWRPs are less than the characteristic

path length (4.0421) in the network. This tells that these proteins can rapidly spread information

throughout the network. Again, 27 RWRPs appeared as hubs (degrees twice the average de-

gree), suggesting that they can alter the stability of the disease network. The tendency of a node

to form clusters is a crucial property in a network. Among the RWRPs, 129 possessed a higher

clustering value than the average clustering value (0.4062) in the network. Finally, the investi-

gation of the neighbourhood centrality revealed that 164 RWRPs have a greater neighbourhood

centrality value than the average (50.7573), suggesting that these proteins are associated with

high degree nodes in the network. The topological significance of these proteins is shown in

Figure 4.3.

4.3.3 Functional enrichment of the RWRPs

The enrichment analysis elucidates the biological processes that must be explored to identify

new therapeutic alternatives for disease [368]. The enriched biological processes (Figure 4.2D)

associated with these RWRPs are cholesterol metabolism, sterol metabolic process, inflamma-

tory response, cytokine-mediated signalling pathway etc., indicates that the RWRPs might play

a significant role in the deterioration of healthy liver and the development of NASH. Next, they

were mapped to the DGIdb database [364] and found that 135 (40.91%) of them were already

in the clinical stages for different diseases (Figure 4.2). Among them, 51 are associated with
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Figure 4.3: Topological significance of the RWRPs across the four topological measures.
A) The average shortest path length, B) clustering coefficient, C) the total degree, and D)
Neighborhood centrality of the RWRPs. The blue colour denotes that the RWRPs in this region
are topologically significant.

more than ten drugs. This indicates that the RWRPs can also serve as a rapid and comprehen-

sive strategy for identifying drug repurposing opportunities against NASH. Considering all this

facts, it is reasonable to anticipate that the RWRP family is replete with potential targets for

NASH.

However, the present study is keener in exploring and filtering these RWRPs further to iden-

tify targets that are better probable and robust. One such character to filter these RWRPs is its

capability to distinguish disease.

4.3.4 Capturing RWRPs that are capable of disease classification

To delve into the classification capability of the RWRPs, a clinical dataset GSE162694 [352]

was investigated, which includes RNA-Seq data of liver biopsy samples from 32 control and 40

NASH individuals. Following data filtration, 306 out of the 330 RWRPs were mapped with this

dataset. The recursive feature elimination [356] technique is then applied as a wrapper with six

prediction algorithms (SVM, perceptron, decision tree, XGBoost, random forest and logistic

regression) using ten-fold cross-validation to obtain the best features for each classifier. The

resulting feature sets from the algorithms were almost disjoint with a small overlap (Figure
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4.4A). To select the optimal feature subset, the union of all the important features was taken

for building the final feature set [369]. The new feature pool gives a more robust set of 199

features (hereafter referred to as RWRPCCs) and might enhance the predictive performance.

Next, the collective predictability of these RWRPCCs was assessed to classify the clinical phe-

notype of control and NASH. The predictive performance was obtained in terms of accuracy,

F1-score, area under the ROC curve (AUROC), Precision, and recall with repeated ten-fold

cross-validation associated with the six algorithms . For the testing dataset, the obtained AU-

ROC value for RWRPCCs ranged from 0.7 to 0.93 (Figure 4.4B), while the same for the 306

RWRPs ranged from 0.7 to 0.91 (Figure 4.4C). Whereas, on the training dataset, the obtained

range for RWRPCCs is 0.89 to 1 (Figure 4.5A) and for the 306 RWRPs is 0.9 to 1 (Figure

4.5B). Hence, the RWRPCCs showed a better classification capability than all the 306 RWRPs

on the testing dataset. These RWRPCCs pushed the average AUROC value beyond 0.9 for four

algorithms, namely SVM, KNN, decision tree, and logistic regression, while the remaining two

algorithms exhibited a minor increase in AUROC value on the test dataset. The AUROC value

above 0.9 was only achieved for all features in the random forest (0.91) and XGBoost (0.90).

This suggests that the RWRPCCs successfully capture the inherent pattern in the expression

data, which are exclusive to specific clinical labels.

The above classification value reports the maximum possible strength to distinguish the two

clinical groups. However, these values were obtained using the default parameters of the ML

algorithms and could be further enhanced by tuning hyperparameters like leaf size, number of

estimators, solver etc. (Table 4.2). Using grid search with cross-validation, the optimal pa-

rameters set was obtained that had been further used to enhance the classification performance.

The finely tuned models show the improved range of AUROC from 0.87 to 1 on the training

dataset (Figure 4.5C) and 0.71 to 0.94 on the test dataset (Figure 4.4D). Along with enhancing

the overall score range, it also improved AUROC in most of the prediction algorithms by ≥

1% except SVM. So, the currently obtained models have the highest performance with a lesser

possibility of overfitting.
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Figure 4.4: Classification capability of the RWRPCCs. A) Overlap between the important
features. B) Model evaluation metrics of each algorithm in the test set using 199 RWRPCCs.
C) Model evaluation metrics of each algorithm in the test set using 306 RWRPs. D) Model
evaluation metrics of tuned algorithms in the test set using all 199 RWRPCCs.

Figure 4.5: Classification capability of the RWRPCCs (training set). A) Model evaluation
metrics of each algorithm in the train set using 199 RWRPCCs. B) Model evaluation metrics
of each algorithm in the train set using 306 RWRPs. C) Model evaluation metrics of tuned
algorithms in the train set using all 199 RWRPCCs.
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Table 4.2: Hyperparameters available in SKLearn library, python and their tuned value
used in the study.

1 Decision Tree

Criterion Gini

Max_depth 1

Min_samples_leaf 1

Min_samples_split 2

2 Random Forest
Max_features sqrt

N_estimators 1000

3 KNeighborsClassifier

Metric Manhattan

N_neighbors 7

Weights Distance

4 SVM Kernel Linear

5 XGBClassifier

Learning_rate 0.1

Max_depth 7

N_estimators 100

Subsample 0.5

6 LogisticRegression

C 100

Penalty L2

Solver Lbfgs

Max_iter 1000

So, the filtered list of proteins (RWRPCCs) are not only have the potential to be targetted

but also have the ability to distinguish the disease. The accuracy was further confirmed with

an independent clinical dataset, GSE126848 [303] (Figure 4.6). Now such proteins to be re-

ally considered for drug target should be capable of regulating the protein perturbations caused

by the disease progression. This was investigated through the controllability paradigm of the

RWRPCCs in the differentially expressed gene (DEG) network of NASH in the following sec-

tion.



4.3. Results 141

Figure 4.6: Classification capability of the RWRPCCs in GSE126848. A) Model evaluation
metrics of each algorithm in the train set using 199 RWRPCC. B) Model evaluation metrics of
each algorithm in the test set using all 199 RWRPCC.

4.3.5 Controllability paradigm of RWRPCCs in the differentially expressed

gene (DEG) network

To identify the DEGs in the dataset GSE162694, we considered a fold change cut-off of 1.2

[370] and a false discovery rate (FDR) adjusted p-value cut-off of 0.05 [371]. We obtained

3451 up-and 1838 down-regulated genes denoting the perturbed protein profile in disease state.

To be considered a target, a protein must be capable of affecting these perturbations. Network

controllability is an effective method for identifying such proteins since it determines the small-

est number of driver nodes necessary to control the complete network. To apply this algorithm

we constructed a directional PPI network by integrating RWRPCCs and the DEGs to the func-

tional human PPI interactome obtained from the SIGNOR database [216]. This directional PPI

network (Figure 4.7, referred to as the DEG network since the majority of the nodes are DEGs)

contained 575 DEGs and 50 RWRPCCs. To identify the RWRPCCs with control capability, the

algorithm proposed by Guo et al. [372] was applied. It uses two predefined information, a set

of target nodes and a set of constrained control nodes. Here, the RWRPCCs were taken as the

control set, while the remaining DEGs of the network were taken as the target set. This process

was repeated 1000 times, and the proteins which appeared at all the repetitions were consid-

ered as final driver proteins. Thus, the constrained controllability analysis finally identified 18

RWRPCCs that have the ability to control the DEG network. The fold change in gene expres-

sion of the driver RWRPCCs are shown in Figure 4.8B. The first neighbourhood PPI network

of these proteins was abundant with various proteins which play a role in the development and
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progression of NASH (Figure 4.8C). For example, SIRT5 increases the expression of G6PD,

which is reported to increase oxidative and inflammatory response in adipose tissues of obese

animals [373]. It also activates NFE2L2, which is shown to play a dual role in the NASH land-

scape [374]. ZEB1 inhibits FBP1, which deficiency is reported to disrupt the liver metabolism

[375] and can cause fatty liver disease [376].

Thus, the network controllability method identified the proteins capable of changing the

system’s state. Given that the effects of these proteins are quantified in the DEG network,

it won’t be an embellishment to assert that they have the ability to regulate the perturbations

caused by disease progression. Now, as a final evaluation of these short-listed proteins as

potential targets, we set out to examine their effect on the metabolic landscape.

4.3.6 Effects of the driver RWRPCCs on the disease-associated metabolic

landscape

NASH is a consequence of various metabolic alterations in which excess triglyceride (TG)

synthesis and accumulations are seen. Hence, it demands further exploration of the identified

driver RWRPCCs on the NASH metabolic state. GSMM is the widely used in silico method

for understanding the disease-associated metabolic alterations [316, 370] and are also capable

of identifying drug targets [361, 377]. Here, the DEGs were mapped into the liver-specific

GSMM, iHepatocytes2322 [316], and obtained 1285 and 1556 reactions associated with the

up-and down-regulated genes, respectively. To capture the effect of the identified 18 driver

RWRPCCs on the NASH metabolic state, the gene knockdown profiles of 3341 genes from

the CMap database [378] were extracted, and the genes that were up-and down-regulated in

response to the knockdown were identified (refer to Chapter 4, Section 3.2.8). Among these

driver RWRPCCs, only 13 were found to be present in the CMap database. Amidst them,

knockdown of PRKAR1A affected the most number of genes, followed by ETS1 (Figure 4.9A-

B).

These profiles were then utilised to quantify the potentiality of transforming the NASH

state into a healthy one. Based on the network perturbations, the transformation score (TS), as

proposed by Yizhak et al. [361], was calculated for each of the 13 driver RWRPCCs. Basically,
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Figure 4.7: The differentially expressed gene (DEG) network of GSE62694. It contains 761
nodes and 1912 interactions.
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Figure 4.8: The controllability analysis of the DEGs. A) The expression fold change values
of the driver RWRPCCs. The red and blue colour bar represent the up-and down-regulated
proteins, respectively. B) The first neighbours of these proteins. The red-labelled nodes are the
driver proteins of the network.

TS reflects to which extent a metabolic network perturbation may transform the disease state

into a healthy flux state. A positive value indicates that the amount of successful changes in the

flux state is more than the unsuccessful ones, and vice versa. Thus, RWRPCCs with positive

TS were selected and finally obtained four potential targets: ETS1, LEF1, ZEB1, and PAK1.

Next, the number of successfully transformed DEG-associated reactions were captured for all

of these potential targets (Figure 4.9C). For example, the knockdown profile of PRKAR1A

shows the highest effect on the DEG-associated reactions, followed by ETS1. The knockdown

of the former can transform 88.63% (1139 reactions) and 15.61% (243 reactions) of the up-and

down-regulated genes-associated reactions towards healthy ones, whereas knockdown of ETS1

shows the transformation of 85.21% and 15.55% reactions, respectively.

As per DGIdb, except for ZEB1, all three remaining proteins are clinically actionable

[379]. Investigating their reported drugs in DRUGBANK [380], we found LEF1 is a tar-

get of Etacrynic acid [381], and PAK1 is a target of Fostamatinib [382]. No information

on ETS1 and ZEB1 was found in the DRUGBANK database. For PAK1, one compound

(CHEMBL3609372) is reported in CHEMBL [383] and three compounds (CID: 136590564,

CID: 137125241, and CID: 138115195) in the PubChem database [384]. Any such information
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for ETS1 in the aforementioned databases was not found. However, Jie et al. [385] have re-

ported four novel small molecule inhibitors of ETS1. Again, investigating the literature, ZEB1

was found to be inhibited by Salinomycin [386]. Among these four potential targets, only ETS1

was found to be associated with hepatic fibrosis, as reported in the GWAS catalogue (study ac-

cession number GCST004938). To further see the association of these four potential targets

with NASH, a co-expression analysis in NASH using the dataset GSE162694 was performed.

All these four targets were found to be co-expressed with genes that govern various NASH-

associated pathways. As an example, the co-expression partners of ETS1 that are associated

with NASH-related pathways and processes are shown in (Figure 4.9D). The neighbours of this

protein in the N900 network also showed such abundance (Figure 4.9E). Here, the redox related

genes are taken from [387], fatty acid metabolism-related genes from the Virtual Metabolic Hu-

man database [388], autophagy-related genes from HAMDB [207], and ARN database [193],

and the immune-related genes from [389].

4.3.7 ETS1 and autophagy

To find the affect of ETS1 on autophgay, we performed three separate analysis. We first look

into its neighborhood in the N900 network and identified the abundance of autophagy protein in

it. The same exercise is repeated for the DEG network. We also identified the numbers of up-

and down regulated autophagy-related genes following the knockdown of ETS1. The result is

shown in Figure 4.10. It is seen that the 25% of the ETS1 neighborhood are autophagy-related

proteins. This justifies that the function of ETS1 highly affect autophagy process. Figure 4.11

shows the neighborhood network and the effected genes.

Moreover, the knockdown of ETS1 is shown to increase autophagy in literature [390]. In

their study, Zhang et al. had reported that, following the silencing of ETS1, the mRNA level of

ATG5 and LC3II in pancreatic cancer cell lines increases as compared to the control.
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Figure 4.9: Potential target identification in NASH. A-B) The numbers of up-and down-
regulated metabolic genes following the knockdown of the driver RWRP, respectively. For
both the figures, the number above the bar is the abundance of metabolic genes. C) The num-
ber of up-and-downregulated reactions following the knockdown of each driver RWRPCC. D)
The co-expression partners of ETS1 and their association with various pathways. E) The 2nd

neighbourhood of ETS1 in the N900 network. It can be seen that these proteins are abundant
with various NASH-related pathways and processes.
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Figure 4.10: Association of ETS1 and autophagy. A) The figure shows the percentage of
autophagy-related proteins in the neighborhood of ETS1 in the N900 and DEG network. B) The
number (in %) of affected autophagic genes following the knockdown of ETS1.

4.4 Discussion

The present work and method contribute in measuring and controlling the alterations at different

molecular levels. It also provides a systematic approach that will produce a minimum number

of false positives.

Our methodology, the RWR multilayer approach (RWRMLA), identify the proteins that not

only have the classification capability but also are capable of controlling the disease network.

The identified proteins are the most crucial in the network and must be controlled if a transition

from disease to a healthy system is sought. Finally, RWRMLA investigates the importance

of these proteins in the metabolic landscape. Performing an in silico knockdown, it measures

whether silencing a driver protein will initiate a disease to healthy transition or not. Since

diseases result from aberrations at both protein and metabolic levels, the driver proteins that

can show such behaviour will be termed as potential targets in a disease.

NASH is the inflammatory subtype of NAFLD and may lead to liver cirrhosis if not treated

properly [391]. It is caused by complex interactions between metabolic and stress pathways

in hepatocytes [392], triggered by chronically elevated lipid levels [393], and inflammatory

processes mediated by multiple immune cell populations [283], collectively resulting in the
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Figure 4.11: Association of ETS1 and autophagy. A) The neighborhood of ETS1 in the N900
network. B) The neighborhood of ETS1 in the DEG network. B) The affected autophagic
genes following the knockdown of ETS1.

histological appearance of active steatohepatitis. Despite being studied for decades, no treat-

ment for NASH has been developed.

We applied our methodology to identify new potential drug targets for NASH. To start,

RWR is applied to a liver-specific PPI network, and a set of novel candidate proteins in NASH

was identified. To eliminate any possible topological bias, this list was filtered using a screening

process and obtained 330 proteins. The 330 proteins were further filtered using ML in a clinical

dataset GSE162694, where 199 highly disease-associated proteins were identified. The disease

associativity is defined based on their classification capability. The highest AUROC value

achieved in this dataset was 0.93. The accuracy was further confirmed with an independent

clinical dataset, GSE126848 [303] (Figure 4.6). Next, using network controllability, 22 driver

proteins among these proteins were retrieved. Finally, GSMM was applied to investigate their

ability to initiate a disease to a healthy transition and identified ETS1, PAK1, LEF1, and ZEB1

as potential targets. The four reasons to believe these proteins work as a target in NASH

are: i) they are novel proteins associated with the known disease proteins, ii) they possess

classification capability, iv) they can control the DEG network, and v) their silencing can initiate
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a disease to healthy transition in NASH.

To substantiate our claim on the identified proteins as targets, we seek literature support

and found that various studies have identified ETS1 as a promising target candidate [394–396].

It is a transcription factor and plays a role in regulating differentiation, proliferation, apopto-

sis, angiogenesis, migration, and cell metabolism. Its interacting partners, both at the protein

and gene levels, are highly enriched with NASH-associated processes and pathways such as

redox metabolism, immune pathway, autophagy and apoptosis, WNT-signalling pathway, de-

velopment of steatosis, etc. The other target, LEF1, is also a transcription factor and acts as a

mediator of the canonical Wnt signalling pathway by activating the Wnt-responsive genes in

association with β -catenin [397]. Therefore, this protein can contribute to the development of

fibrosis and activation of hepatic stellate cells (HSC), both of which are responsible for NASH

development. Its first neighbours in the PPI network consisted of immune-related, autophagic,

and apoptotic proteins. For instance, LEF1 is shown to upregulate MYC, whose overexpression

activates HSC and promotes liver fibrosis [398]. It also upregulates CCND1, which is involved

in both lipogenesis and gluconeogenesis in the liver [399]. The third target, ZEB1, is also a

transcription factor which is shown to regulate the expression of its target genes by epigenetic

mechanisms. Although it is widely reported for liver cancer, it can also play a crucial role in

the development of NASH by inhibiting crucial proteins like FBP1 [400], whose loss is shown

to disrupt liver metabolism [375]. Finally, PAK1 is a protein kinase and found to be associated

with various NASH-associated proteins. For instance, it upregulates ELF3 [401], CTNNB1

[402], and PLK1 [403], which are reported to promote liver fibrosis [404]. These facts support

that the identified targets might ameliorate NASH and initiate a disease to healthy transition

and thus needs further experimental exploration.

RWRMLA allows itself to be adjusted in several ways to reduce its constraints and chal-

lenges and augment its accuracy and adaptability to a larger range of diseases. The first is

fewer samples in the clinical dataset to perform ML-based analysis. The same, however, can

be circumvented by performing the analysis in two or more different clinical datasets for the

robustness of the analysis. The second limitation occurs in terms of the extraction of functional

relationships between proteins. Signor [216] is an excellent database for extracting such in-
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formation, but contains only 6584 proteins. However, this number can be improved through

an extensive curation of literature and using various PPI direction prediction algorithms. The

third limitation occurs in terms of getting the gene knockdown information. The only excellent

source to obtain the same is the CMap database. However, it contains the information of only a

few cell lines and a limited number of genes. Despite these limitations, this methodology lays

forth a pragmatic framework for finding possible therapeutic targets with a greater probability

of success and will save a substantial amount of time and resources during the drug discovery

process.

4.5 Conclusion

Given the absence of effective therapeutic alternatives for NASH, it is not exaggerated to as-

sert that the known disease proteins do not sufficiently represent the true mechanism of disease

progression. For this purpose, we developed and applied a methodology RWRMLA on NASH,

and identified four proteins as potential therapeutic candidates. RWRMLA is an efficacious

generic methodology that can be applied to any metabolic disease to identify potential targets.

Nevertheless, despite the fact that the proposed target proteins are implicated in potentially sig-

nificant disease pathways, their efficacy must be confirmed by follow-up studies and assessed

by experimental investigation.



5
The interplay between DNA damage and

autophagy in lung cancer: A mathematical

study1

The previous chapters used protein perturbations to identify large-scale data and potential tar-

gets. In all these chapters, we have seen the capability of autophagy to mitigate the progression

and development of a disease. However, although these three studies have shown the signifi-

cance of autophagy, they can not shed details on the mechanistic understanding of autophagy.

For this purpose, in this chapter, we have developed a mathematical model to get mechanistic

insight into some autophagic genes in cell proliferation and cell death in lung cancer.

1The bulk of this chapter has been published in Biosystems, 206 (2021) p.104443.
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5.1 Introduction

Lung cancer is the global leader in cancer-related mortality in the population, with the second

and fourth highest diagnoses among men and women, respectively [405]. While exposure to

smoking is considered a major etiologic factor, non-smokers have also been diagnosed with

lung cancer [406]. One of the challenges of lung cancer is its late detection. Therefore, the

search for a more efficacious diagnosis and treatment of lung cancer has become obligatory.

Various new methods, drugs, and pathways have been discovered to tackle lung cancer [407–

409]. Although enormous advances have been seen in the diagnosis and treatment of lung

cancer, several limitations have yet to be addressed, e.g., KRAS-mutated lung cancer shows no

response to treatments targeting oncogenic mutations [410]. Resistance to molecular-targeted

drugs and mechanisms has also been reported in the literature [410].

DNA damage leads to various diseases, including cancer, and often results from UV rays,

oxidative stress, ionising radiation, and various genotoxic attacks. To protect DNA from such

epochal events, the body maintains a strong cellular mechanism that acts as a saviour of DNA,

and p53 plays an unequivocal role in this process. Due to its ability to repair DNA damage

during stress, p53 is known as a protector of the genome. Under stress conditions, p53 activates

and initiates cell cycle arrest, allowing the cell to correct potential defects. In addition to being

an important presence in stress and nutritional response networks, the diverse activities of p53

are important in tumour suppression, metabolism, development, ageing, and neurodegeneration

[411].

Autophagy is an evolutionary conserved lysosomal degradation process to maintain cellular

homeostasis. There are three main types of autophagy, viz. macroautophagy, microautophagy,

and chaperone-mediated autophagy. Here, by autophagy, we will be referring to macroau-

tophagy, the autophagic process in which substrates are sequestered within autophagosomes.

This essential process is found at basal levels in most of the cells. It plays a crucial role in

controlling cellular homeostasis and therefore is consistently boosted in stress situations for the

adaptation and survival of cells. It engulfs unnecessary or misfolded proteins and organelles

inside the cell during stress. However, despite being a quintessential process, autophagy must

be strictly controlled [14, 66] as the excessive degradation of cytosolic components may lead
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to autophagic cell death. Both proliferation and deterioration of autophagy have been found to

be associated with the pathogenesis of cancer [412, 413].

In comparison to the experimental work on autophagy that has been published, mathemati-

cal work on autophagy is relatively scarce. Kapuy et al. [178] studied the autophagy apoptosis

interplay using a simplified mathematical model and revealed the underneath bistable nature.

Martin et al. [182] presented a computational model of autophagic vesicle dynamics in sin-

gle cells, Jennifer et al. [186] formulated a Petri net model for xenophagy, while Borlin et al.

[185] formulated an agent-based model to understand the spatiotemporal autophagy dynamics.

Mathematical models also need to be developed to investigate autophagy’s role in determining

cell fate in lung cancer. To the best of our knowledge, no mathematical work has been done

elucidating the p53-autophagy association and beclin1-induced cell death following DNA dam-

age, although autophagy is triggered after DNA damage as it is associated with DNA damage

response pathways [414]. Again, no study has been done on beclin1-induced cell death follow-

ing DNA damage. This association of p53 and autophagic cell death is vital as the former acts

whenever any threat comes to DNA [415, 416]. In contrast, the latter may act as a saviour of

tissue homeostasis by getting rid of the culprit cell.

Following severe DNA damage, p53 is known to induce apoptosis by activating its down-

stream apoptotic regulators. However, the ability of p53 to induce apoptosis gets compromised

in all cancers, including the lung, allowing the cancer cells to grow and proliferate. This neces-

sitates the need for an alternative pathway to mitigate the progression of cancer. In this paper,

we have formulated a seven-dimensional non-autonomous ODE model to investigate the com-

plex interplay between DNA damage, p53, autophagy, and lung cancer. We aim to highlight the

potential factors or parameters and propose that autophagic cell death mediated by perturbation

of these parameters over a specified range is the way forward in lung cancer research. We have

shown that if the ability of p53 to repair DNA damage gets compromised and can no more

suppress cancer, the cancer growth can be mitigated by the modulation of beclin1-mediated

autophagic cell death, and AMPK and BCL2 play vital roles in this restoration.
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5.2 Model description

5.2.1 Biological background

To capture the role of autophagy and p53, we considered a circuit with p53, MDM2, MDMX,

AMPK, mTOR, BCL2, and beclin1 (Figure 5.1). Following any exposure to DNA damage,

cellular p53 accumulates to promote the DNA repair process to reduce the risk of breeding mu-

tations [415, 416]. To maintain the low level of p53 in the absence of stress, p53 and MDM2, a

principal cellular antagonist of p53, form a negative feedback loop where p53 induces MDM2

expression, which for its part, encourages p53 degradation and quells the cellular activity of p53

[417–419]. The primary inhibition of p53 by MDM2 is by the proteasome-mediated degrada-

tion of p53 through the E3 ubiquitination ligase activity [416]. It also shuts p53 out to the

cytoplasm from the nucleus [417], binds to p53 to prevent it from interacting with transcrip-

tional co-activators p53 [420], and blocks its interaction as well as interacts with other nuclear

corepressors to inhibit the activity of p53 [421]. In comparison, p53 regulates the expression

of MDM2 by binding to its promoter [422]. The p53-MDM2 interaction is boosted by another

p53 regulator, MDMX. MDM2 possesses an exceedingly low half-life and thus remains largely

ineffective in down-regulating p53 in the absence of MDMX. MDMX enables MDM2 protein

stable enough to function at its full potential for p53 degradation [423]. MDMX binds to p53

in its transactivation domain and inhibits the transcriptional activity of p53 [424]. Like MDM2,

MDMX also gets positively regulated by p53 [425]. Furthermore, following DNA damage,

MDMX is degraded by MDM2 due to the post-translational modifications of MDMX so that

p53 can respond accordingly [425]. However, although there exist other pathways that affect

the p53-MDM2 interaction, to keep the model simple, we did not consider them explicitly. Be-

clin1 is a quintessential protein in the process of autophagy. It comes to the autophagy scenario

during the initiation stage, where it takes part in the formation of the isolation membrane, which

engulfs the cytoplasmic material to form the autophagosome [426]. It acts as a bottleneck pro-

tein in the autophagy network and hence remains at the crossroads of many autophagy-related

genes, some in favour of and some against the autophagy process, while many acts as dual

regulators. Among our model variables, AMPK comes in the first, mTOR, and BCL2 in the
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Figure 5.1: Schematic diagram of the activation-inhibition mechanisms of P53-induced
autophagy. Here the green and red arrows represent activation and inhibition, respectively.

second, while p53 belongs to the third category. AMPK is the nutrient and energy sensor which

catches the perturbation in the AMP: ATP, or ADP: ATP ratio and decides whether the system

has sufficient energy (based on ATP concentration) or not and if not, it initiates the autophagy

acceleration [427]. AMPK portrays a dual positive role for beclin1. It increases beclin1 activity

by phosphorylation of beclin1 directly at the Thr388 site [427] and by negatively regulating the

activity of mTOR, a negative regulator of autophagy [428]. In vivo studies have reported that

the inhibition of mTOR increases beclin1 activity, indicating the negative regulation of beclin1

by mTOR [429]. Another negative regulator of autophagy is the ER-localized BCL2, which

interacts with beclin1 to form beclin1: BCL2 complex and inhibits beclin1 activity [430]. Be-

clin1 should be released from this association for the initiation of autophagosome formation,

which brings p53 into the autophagy scenario. p53 reduces the autophagy level by inhibiting

AMPK [431], and by transcriptionally downregulating BCL2 expression, plays a positive role

in autophagy [432].

5.2.2 Model formation

With the above biological background, we proposed the non-autonomous model (5.1), where

the concentrations of p53, MDM2, MDMX, AMPK, mTOR, BCL2 and beclin1 are denoted by

y1, y2, y3, y4, y5, y6 and y7, respectively. In our proposed model, the p53-MDM2 interaction dy-

namics are extended versions of the model provided by Bar et al. [433]. They have mentioned

the presence of an intermediary between p53 and MDM2, which is replaced in our model by
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MDMX. Further complexity is added to their model by considering the activation of MDM2

by p53 and the inhibition of p53 by MDMX.

dy1

dt
= s1 −

d1y1y2

θ + y2
+αe−σty1 −

d2y1y3

γ + y3
−a11y1,

dy2

dt
= p1 +

p2yn1
3

kmn1
2 + yn1

3
−d3y2 +

α1yn2
1

kmn2
3 + yn2

1
,

dy3

dt
=

c1e−σty1

1+ c2y1y2
−d4y3,

dy4

dt
= k1 −

d6y1y4

1+ y1
−d7y4, (5.1)

dy5

dt
= k2 −d8y4y5 −d9y5,

dy6

dt
= k3 −d10y1y6 −d11y6,

dy7

dt
= k4 −d12y5y7 +a1y4 −d13y6y7 −d14y7.

The variation in p53 is represented by the first equation of the system (5.1). The basal produc-

tion and degradation rates of p53 are denoted by the terms s1 and a11, respectively. The pa-

rameter s1 is dependent on various factors that induce p53 following DNA damage. As already

mentioned, p53-MDM2, and p53-MDMX form two negative feedback loops and the effects

of MDM2 and MDMX on p53 has been incorporated by two Hill-type functions
d1y1y2

θ + y2
and

d2y1y3

γ + y3
, respectively, where θ and γ are the half-saturation constants, d1 and d2 are the max-

imum degradation rates of p53 by MDM2 and MDMX, respectively. The Stress-dependent

p53 activation term is taken from the reference [433] and is represented by the term αe−σ t, a

decreasing function of time. The stress is maximum at t = 0 that gradually fades with the res-

olution rate of σ . The parameter α is the stress coefficient and attains the value 0 when there

is no stress. The second equation represents the MDM2 dynamics. The term p1 represents the

p53-independent MDM2 transcription and translation rate. The second term,
p2yn1

3
kmn1

2 + yn1
3

rep-

resents MDMX-induced MDM2 activation [423, 434] as described by Bar et al. [433], where

km2 is the Michelis constant, p2 is the maximum production rate of Mdm2 and n1 is Hill’s

coefficient in the production of MDM2 via MDMX. d3 represents the basal degradation rate of
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MDM2. The p53-dependent activation of MDM2 follows a Hill-type function [435, 436] and is

represented by the term
α1yn2

1
kmn2

3 + yn2
1

, where α1 denotes the maximum production rate of MDM2

by p53, km3 and n2 denote the corresponding Michelis constant and Hill coefficient. The first

term of the third equation was built following [433]. It is reported that MDM2 binds to p53 to

reduce its transcriptional activity, causing a decrement in the production of MDMX [425]. Such

MDM2-dependent inhibition in the production of MDMX is incorporated through the denom-

inator function (1+ c2y1y2), where c2 is the MDM2-dependent inhibition rate. The numerator

shows the production of MDMX by p53 and stress with c1 as its maximum production rate. The

basal degradation rate of MDMX is denoted by the term d4. The fourth equation represents the

rate equation of AMPK. Its basal production and degradation follow the exponential law with

k1 and d7 as the rate constants. p53 has an inhibitory effect on the AMPK level, as stated earlier.

Such a sigmoidal inhibitory effect of p53 on AMPK is represented by the second term in this

equation with d6 as its maximum value. The basal production and degradation rates of AMPK

are denoted by k1 and d7, respectively. The next equation describes mTOR dynamics. Here, the

second and third terms represent AMPK-induced and basal degradation rates of mTOR, while

the first term represents its basal production. d8,d9 and k2 are the respective rate constants. In

the sixth equation, the transcriptional down-regulation of BCL2 by p53 is denoted by the term

d10y1y6 with rate constant d10. The basal production rate of BCL2 is measured by the parame-

ter k3, while its exponential decay rate is denoted by d11. The last equation represents beclin1

dynamics. The baseline production rate of beclin1 is k4, and its exponential decay occurs with

a rate constant d14. a1y4 is referred to as the phosphorylation rate of beclin1 by AMPK, where

a1 is the rate constant. On the other hand, d13y6y7 and d12y5y7 represent the inhibitory effect of

BCL2 and mTOR on beclin1, where d13 and d12 are the respective rate constants.

5.2.3 Some preliminary analysis

The equations of system (5.1) represent the protein dynamics and hence it is of prime impor-

tance to show that the state variables yi, i = 1 : 7 are non-negative and bounded. This analysis

cinches that the model is well-posed, and no anomaly is there in the realistic portrayal of the

protein dynamics.
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5.2.3.1 Positivity

Let Y = (yi)
T , i = 1 : 7 ∈ R7 and F(Y ) = [Fi(Y ))]T , i = 1 : 7. The system (5.1) can be written

as

Ẏ = F(Y ),

together with suitable initial conditions Y (0) =Y0 ∈ R7
+. It can be easily checked that whenever

Y0 ∈ R7
+ with Yi = 0, i = 1 : 7, then Fi(Y |Yi=0) ≥ 0. Thus, from the lemma of Nagumo [437],

any solution of the system (5.1) with Y0 ∈ R7
+, say Y (t) = Y (t,Y0), is such that Y (t) ∈ R7

+ for

all t > 0 .

5.2.3.2 Boundedness

ẏ3 =
c1e−σty1

1+ c2y1y2
−d4y3

=⇒ ẏ3 +d4y3 ≤ c1.

Therefore, the solution is bounded by the condition

y3 ≤
c1

d4
.

Again,
dy2

dt
= p1 +

p2yn1
3

kmn1
2 + yn1

3
−d3y2 +

α1yn2
1

kmn2
3 + yn2

1

=⇒ ẏ2 +d3y2 ≤ p1 + p2
2 +α1

=⇒ y2 ≤
p1 + p2

2 +α1

d3
.

Finally,

ẏ1 = s1 −
d1y1y2

θ + y2
+αe−σty1 −

d2y1y3

γ + y3
−a11y1

=⇒ ẏ1 ≤ s1 −βy1 =⇒ y1 ≤
s1

β
,
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where β = min
(

d1y2

θ + y2
+

d2y1y3

γ + y3
+a11 −αe−σt

)
.

ẏ4 = k1 −
d6y1y4

1+ y1
−d7y4 =⇒ ẏ4 +

(
d6y1

1+ y1
+d7

)
y4 ≤ k1

=⇒ y4 ≤
k1

d6y1

1+ y1
+d7

=⇒ y4 ≤
k1(1+ y1)

d6y1 +d7(1+ y1)
.

Since y1 is bounded, therefore y4 is bounded. Similarly, it can be shown that

y5 ≤
k2

d8y4 +d9
,

y6 ≤
k3

(d11 +d10y1)
,

y7 ≤
k4 +a1y4

(d12y5 +d13y6 +d14)
.

Thus, the solution of the model with positive initial condition is bounded and the bounds are

1. y1 ≤
s1

β
, where β = min

(
d1y2

θ + y2
+

d2y3

γ + y3
+a11 −αe−σt

)
,

2. y2 ≤
p1 + p2

2 +α1

d3
,

3. y3 ≤
c1

d4
,

4. y4 ≤
k1(1+ y1)

(d6 +d7)y1 +d7
,

5. y5 ≤
k2

d8y4 +d9
,

6. y6 ≤
k3

(d11 +d10y1)
,

7. y7 ≤
k4 +a1y4

(d12y5 +d13y6 +d14)
.

The nonlinear non-autonomous system (5.1) is too complicated for analytical solutions, and

we, therefore, opted for its numerical solutions.
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Table 5.1: Description of the model parameters of the p53 module with their default values
and reference.

Sl. No. Parameter Description Value Reference
1 s1 Basal production rate of p53 0.5 nM min−1 [433]
2 d1 Degradation rate of p53 by MDM2 2.1 min−1 estimated
3 α Stress coefficient 0.1099 min−1 estimated
4 σ Resolution rate of stress signal 0.0001 min−1 [433]
5 d2 Degradation rate of p53 by MDMX 0.000125 [433]
6 p1 p53-independent MDM2 transcription and translation 0.00235 nM min−1 [433]
7 p2 MDMX dependent production rate of MDM2 0.003 nM min−1 [433]
8 n1 Hill’s coefficient in the production of MDM2 via MDMX 50 [433]
9 km2 Michealis constant in the production of MDM2 via MDMX 25 nM [433]

10 d3 Degradation rate of MDM2 0.05 nM min−1 [433]
11 α1 input dependent production rate of MDM2 0.001 nM min−1 estimated
12 n2 Hill coefficient in the production of MDM2 via p53 0.13 estimated
13 km3 Michelis constant in the production of MDM2 via p53 4 nM estimated
14 c1 Input dependent production rate of MDMX 0.09 min−1 [433]
15 c2 Mdm2 dependent degradation of MDMX 0.01 nM−2 [433]
16 d4 Degradation rate of MDMX 0.09 min−1 estimated
17 a11 basal degradation rate of p53 0.0095 min−1 estimated
18 θ half maximal rate of MDM2 1.05 nM estimated
19 γ half-maximal rate of MDMX 1 nM estimated

5.3 Numerical simulations

To find different types of dynamical behaviour that can be unveiled by the model (5.1) in various

parameter regions, we solved the system numerically using the values of the parameter set given

in Table 5.1. The parameter set so chosen depicts the experimentally observed oscillations of

p53 as shown in [433]. Here, parameters are either taken from reference [433] or estimated

to produce Figure 5.2. As shown in this figure, the normal level of p53 will imply a healthy

system, and if in the no-repair region, it will indicate a lung-cancerous system. We will analyse

the healthy system first to identify potential threats that could lead to the system deteriorating

into a disease state, and then the diseased system to identify potential targets for restoring the

system’s healthiness. For the analysis of the whole system, we have considered the hypothetical

values for the rest of the parameters. These parameter values are estimated to keep beclin1 in

the normal range as given by [438]. To make the system parameter independent, later, we

performed the parameter sensitivity analysis using the Partial Rank Correlation Coefficient

(PRCC) method [95].
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Figure 5.2: The dynamics of p53. The levels of p53 denote the state of DNA. The green curve
denotes the p53 pulses when the system is in a healthy state and hereafter considered as the
normal level of p53. The elevation of p53, denoted by the black curve, indicates the severe
DNA damage and hereafter is considered as the no-repair phase of p53. The red curve denotes
an intermediate phase of p53, where DNA damage is not that extreme and can be repaired. The
right figure denotes the MDM2 level for three similar cases. The corresponding non-repairable
case, however, indicates an almost undetectable level of MDM2, an opposite characteristic of
p53. The time is calculated in minutes. The green curve is generated by using the parameter
values of Table 5.1, the black curve is generated by keeping c1 = 0.004 and the red curve is
generated by keeping c1 = 0.004,d4 = 0.004. The figure shows the p53 dynamics as mentioned
in [433]

Table 5.2: Description of the hypothetical parameters to keep beclin1 in normal range as
given in reference [438].

Sl. No. Parameter Description Value
1 k1 Basal production rate of AMPK 0.5 nM min−1

2 d6 p53 dependent inhibition rate of AMPK 0.17 nM−1min−1

3 d7 Basal degradation rate of AMPK 0.0159 min−1

4 k2 Basal production rate of mTOR 0.5 nM min−1

5 d8 Degradation rate of mTOR by AMPK 0.4nM−1min−1

6 d9 Basal degradation rate of mTOR 0.2min−1

7 k3 Basal production rate of BCL2 0.09nMmin−1

8 d10 Degradation rate of BCL2 by p53 0.0162nM−1min−1

9 d11 Degradation rate of BCL2 0.015min−1

10 k4 Basal production rate of beclin1 0.5 nM min−1

11 a1 Production of beclin1 by AMPK 0.00001 min−1

12 d12 mTOR dependent inhibition of beclin1 0.1 nM−1min−1

13 d13 Association rate of beclin1:BCL2 complex 0.68 nM−1min−1

14 d14 degradation rate of beclin1 0.145min−1
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Figure 5.3: Local sensitivity analysis of p53. Each parameter was varied over a range of ±10
fold from their defined values reported in Table 5.1, with other parameters fixed as in (Table
5.1). The bars represented the fold divergence from the base value, and its length indicated the
ranges beyond which the dynamics of p53 shift from normal to no-repair state. The blue colour
was used when the result was obtained by increasing the parameter value and the red color in
the opposite case.

5.3.1 Parameter sensitivity analysis of p53 module

Often, the output behaviour of a high-dimensional system with numerous parameters is deter-

mined by a small number of parameters. Sensitivity analysis (SA) provides a way to distinguish

these parameters so that they can be targeted by further studies. A local sensitivity analysis

(LSA) for p53 was carried out by perturbing one parameter at a time over a range of ±10 fold

from its reference value (Table 5.1) while the remaining parameters were kept at their corre-

sponding reference values. The local sensitivity measures how much disturbance is needed for

a parameter to propel p53 from a normal to a no-repair region (Figure 5.2). The LSA results

(Figure 5.3) show that the parameters s1,α,d3,c1, and θ are sensitive when they are down-

regulated and the parameters d1, p1,d4,α1, and a11 are sensitive when they are up-regulated,

while the parameters σ ,d2, p2,n1,km2,c2,n2,km3, and γ are robust.

The result from LSA is acquired by keeping most of the parameters fixed. To check the

robustness of the result under the uncertainties associated with the model’s parameters, we

performed a global sensitivity analysis (GSA), which allows simultaneous and uniform varia-

tions of model parameters from their basal values. GSA (Figure 5.4) for the healthy system

is performed following Latin Hypercube Sampling (LHS), and Partial Ranked Correlation Co-
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Figure 5.4: Sensitivity analysis of model parameters using the LHS-PRCC sensitivity anal-
ysis. We evaluated the PRCC value for each parameter related to each of the seven variables.

Figure 5.5: Temporal sensitivity analysis of the sensitive parameters obtained from Global
sensitivity analysis. Figure (i) denotes the variation of sensitive parameters for p53, while
figure (ii) denotes the variation of sensitive parameters for beclin1.

efficient (PRCC). The length of the bar represents the PRCC index of the parameter which

illustrates the linearity of the parameters for the specific output variable. The results obtained

from GSA were nearly identical to those obtained from LSA. We took a sensitivity index cutoff

of ±0.4 and found that d1,θ ,α,d3,a11,km2, and c1 were among the parameters with the most

effect on p53. Among these parameters, km2 was found to be robust in the LSA, while c1 was

found to be less sensitive. The other robust parameters from local sensitivity analysis were also

found to be less significant in GSA. To find the parameters affecting the beclin1 dynamics, we

took a ±0.4 PRCC index cut off and found that the parameters d3,c1,k1,d6,d10,d13, and a1

were the most significant parameters.
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We performed a temporal sensitivity analysis to ascertain the variation in sensitivity of the

GSA-identified sensitive parameters for p53 and beclin1. We have measured the sensitivity of

these parameters every 100 minutes, and the results are shown in Figure 5.5. The results indi-

cated that the parameters d1, d3, and α had a reduced sensitivity index at t=400 but increased

for subsequent time points. The sensitivity of the parameter θ was lower at t=600 than at t=100,

whereas the sensitivity of the parameter km2 varied across time points. a1 and c1 become more

sensitive at later time points. For beclin1, apart from d3 all the parameters showed a decrease

in sensitivity at t=600 than at t=100. The sensitivity of d3 was also found to be low at t=400,

which, however, increases for the later time points.

5.3.2 Recalibration of the parameters of the p53 module

The presence of normal p53 oscillations indicates the removal of any oncogenic hazard that

leads to DNA damage [439]. The capability of p53 to suppress DNA damage can be boosted

but also carries the threat of getting lowered by the variation of some parameters. The robust

parameters obtained from the sensitivity analysis produce no change in the normal behaviour

of p53. In other words, they maintained the goodness of the system until the 10-fold barrier.

So in an attempt to enhance the aforementioned goodness of the system, we, therefore, need

to increase the robustness of the sensitive parameters derived from LSA. We chose the robust

parameters from LSA as target parameters and increased each of them one by one to 10 fold

from their reference value (Table 5.1) and varied other parameters to measure the change in

their robustness. We repeated the same exercise by decreasing the robust parameters to 10 fold.

By removing the parameters with almost no changes (the difference between new sensitivity

and old sensitivity with a cut off ±0.08), the results are shown in Figure 5.6. It has been

seen that the parameters showed no significant changes in their sensitivity level, although the

robust parameters were fixed at a higher value from their reference value. This signifies that we

can not enhance the efficiency of p53 to repair DNA damage by recalibrating the p53 module,

and hence the system is moving towards cancer. Therefore, in case of p53 loses its DNA

damage repair ability, the system demands for other mechanisms to forestall the progression of

oncogenic activity.
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(A)

(B)

Figure 5.6: Parameter sensitivity recalibration analysis. (A) When the robust parameters
are fixed at ten fold up, than their reference value Table 5.1. The blue colour represents the old
sensitivity value, and red represents the new sensitivity value observed due to the change in the
robust parameter values. (B) When the robust parameters are fixed at ten-fold down than their
reference value Table 5.1. The color description is same as Figure 5.6A.
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5.3.3 Restoration from disease to healthy state: the elucidation of p53-

beclin1 analogy

Provided that the recalibration analysis of the p53 module parameters was insufficient to pre-

vent the DNA damage and the oncogenic activity now creates anarchy to the tissue homeostasis,

we trace the effect of p53 on the autophagy process via the autophagy inducer beclin1. The

objective was to see if the progression of cancer can be mitigated by modulation of the beclin1-

induced autophagic cell death when the system goes to the no-repair region.

In cancer, autophagy plays a dual role in the promotion and subjugation of tumours depend-

ing on the stage of development and the type of tumour [440]. The loss of beclin1 has been

reported to be associated with hepatocarcinoma, lung, ovarian, breast, and testicular cancer

[27, 189, 441]. DNA damage induces stress in the cell, to which the autophagy level gets in-

creased. However, tumour cells use autophagy to withstand nutritional deficiencies and hypoxic

conditions [442]. That being said, an abnormal rise in the autophagy level will eventually result

in cell death. For that purpose, in our model, we have tried to find out possible mechanisms to

propel beclin1 beyond the normal region.

5.3.3.1 Local sensitivity analysis of beclin1

We here carried out a local sensitivity analysis on beclin1 at the disease state (i.e., where p53 is

abnormally high, and beclin1 is at the lung cancerous region as defined by [438]). We perturbed

a parameter over a range of ±10 fold from its reference value while keeping other parameters

fixed. A parameter is called sensitive only if its perturbation can increase beclin1 beyond its

normal region. We have found six such parameters and are shown in Figure 5.7. The bar

length, i.e., the orange portion in the figure, represents the region to which a parameter can

hold beclin1 in its normal region. If we vary these parameters within the orange region, beclin1

will remain in the normal region only. However, if a parameter is pushed beyond the orange

region, the becin1 level will reach the excess region. For example, if we decrease the parameter

d6 by 6.0714 fold, the corresponding beclin1 level will enter the excess region. Similarly, if

we increase the parameter k1 by 3.98 fold, it will propel beclin1 to the excess region. It is

seen from the figure that the association rate of BCL2:beclin1 complex, d13, and the basal



5.3. Numerical simulations 167

Figure 5.7: The figure shows the fold change of the parameters at c = 0.045 for which
beclin1 exceeds the normal level. The orange portion denotes the region when beclin1 is in
the normal region beyond which beclin1 reaches the excess region.

production rate of AMPK, k3, require less than 2 fold variation from their reference value to

increase the beclin1 level. Throughout the analysis, the p53 level was kept at the no-repair

region by keeping c1 = 0.0450.

5.3.3.2 Two-dimensional parameter spaces analysis

To further investigate the association of parameters in increasing beclin1 level following DNA

damage, we performed a two-dimensional parameter spaces analysis (Figure 5.8). Here, we

varied two parameters from their reference value while keeping the other parameters fixed.

In their study, Liu et al.[438] have described the level of beclin1 in normal and lung cancer

tissues. To see the effect of the variation of two parameters on beclin1, we have subdivided the

parameter space into four regions. The first region contains those parameter values for which

beclin1 remains below the lung cancerous region, the second region contains the parameter

values for which beclin1 is in the lung cancer region, the third region contains the values for

which beclin1 level exceeds the lung cancerous region but remain within the normal region.

Finally, the last region for which beclin1 exceeds the normal region and will pave the way for



168
Chapter 5. The interplay between DNA damage and autophagy in lung cancer: A

mathematical study

Figure 5.8: The figure shows the change in steady-state beclin1 level upon variation of
two parameters at a time. Based on this steady-state value of beclin1 obtained after each
simulation and the reference value of beclin1 in normal and lung cancer tissues as given in
reference [438], we partitioned the region into four layers. According to Liu et al. [438], the red
and cyan regions denote, respectively, the beclin1 level in lung cancer (2.6 ≤ beclin1 ≤ 4.305)
and normal tissues (4.306 ≤ beclin1 ≤ 7.875). The yellow portion denotes a very low level
of beclin1 (beclin1 ≤ 2.5), while the blue portion indicates that the beclin1 level is more than
its normal value (beclin1 ≥ 7.876). Throughout all the simulations, the p53 level was kept at
no-repair region.

autophagic cell death. The basal production of p53, s1, was varied against all the parameters

from Figure 5.7. The variation of different parameters produced different effects on the beclin1

dynamics. The variation of basal production of p53 (s1) with the production of beclin1 by

AMPK (a1) showed the dominance of the latter. A similar effect was seen when s1 was varied

with the basal production rate of AMPK, k1, and with the basal production of beclin1, k4.

Again, the variation of s1 with the transcriptional degradation of BCL2 by p53 (d6) showed

that if the basal level of p53 increases, it will dissociate the BCL2:beclin1 interaction to induce

autophagy. A similar effect was observed when s1 is perturbed with the degradation rate of

beclin1 by BCL2 (d13). All these effects were captured by keeping p53 at the no-repair region.
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5.4 Discussion

One of the leading causes of cancer deaths has been the rising mortality rate due to lung cancer.

Given the substantial improvements in diagnosis and service, lung cancer prognosis remains

low, as in most cases. It is detected during the later stages, which curb therapeutic options

and contribute to poor outcomes. This demonstrates the importance of early diagnosis of lung

cancer, leading researchers to identify biomarkers that could be used for early detection and

enhance their understanding of lung cancer. In this paper, we have studied the interplay be-

tween DNA damage and autophagy in lung cancer and have proposed a mathematical model to

identify potential parameters/factors that may be fruitful in restoring the system’s healthiness.

DNA damage persists across a variety of endogenous and exogenous factors in all organ-

isms and appears to play a prominent role in many biological processes, which eventually lead

to cancer. Amidst the plethora of proteins that take part in the DNA damage response network,

we have chosen the guardians of the genome, the most commonly mutated protein in cancer,

p53, and its downstream regulators that eventually connect autophagy to the DNA damage re-

sponse network. The concentration of p53 protein within the cell is tightly regulated by the dy-

namic duo of MDMX and MDM2. The interactions between the triplet of p53-MDM2-MDMX

have been experimentally verified. The oscillatory responses of p53 due to the interaction with

MDM2, which get boosted by the presence of MDMX, have been observed in literature [423].

This oscillation refers to the DNA damage, which results in the elevation of p53 levels due to

post-translational modification of the p53 polypeptide [443]. This stimulates the DNA damage

repair process, which upon completion, is followed by the degradation of p53 by MDM2 and

MDMX. The constant DNA damage in the cell elevates the p53 level and, thus, the level of

MDM2 and MDMX, and these activation-degradation scenarios give rise to p53 oscillations.

Our model successfully portrayed this oscillatory behaviour of p53 (Figure 5.2). However, not

all DNA damage is repairable. When the DNA gets severely damaged, the cell initiates cellular

senescence, which results in an elevation of p53 level [444]. Our model has also addressed

this phenomenon, seen by the black line in Figure 5.2. Our model has thus addressed and

effectively substantiated the p53-DNA damage complex interaction.

Following any DNA damage, the p53 level upsurges, and it induces arrest within the G1
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phase of the cell cycle [445]. Bar et al. [433] have stated that the severity of DNA damage can

be correlated with the changes in p53 concentration with time. p53 acts as a tumour suppressor.

It can repair DNA damage and prevent the path, which eventually leads to various types of

diseases, including cancer. The ability of p53 to repair the DNA damage is expressed through

the normal oscillations as shown by the green curve in Figure 5.2. Again, following DNA

damage, the elevation of the p53 level has also been reported in literature [446]. Here, we

have addressed the first condition as the normal p53 level and the latter as the no-repair level

of p53. The intermediate phase, where the p53 level elevates but eventually returns to normal,

indicating a repair of DNA, is considered a repair phase in our study. The appearance of pulses

is an elucidation that DNA damages are being repaired in the system. We first search for the

important factors that can exacerbate the DNA damage-suppressing capability of p53. This

was obtained by implementing local and global sensitivity analysis on the p53 module. The

global sensitivity analysis identified crucial parameters that are influential in the regulation of

p53 dynamics, which include the degradation of p53 by MDM2 (d1), half-maximal rate of

MDM2 (θ ), the stress coefficient α , basal degradation rate of p53 (a11), Michaelis constant

in the production of MDM2 via MDMX (km2), the degradation rate of MDM2 (d3) and the

production rate of MDMX (c1). Our findings justify the experimentally observed strong effect

of the MDM2 on p53. MDM2 retains an ascendancy in the regulation of p53 rates, which is

observed by the presence of θ , d3, and d1 as key parameters. Again, due to the threat, they

pose towards DNA, following any stresses, the level of p53 increases, which justifies the stress

coefficient α as a crucial regulator of p53. The rate of p53 degradation (a11) prevents it from

increasing its level. Likewise, the effect of MDMX on p53 can not be overlooked because it

directly or indirectly monitors and regulates the level of p53, as evidenced by the emergence of

the sensitive parameters c1 and km2. The temporal sensitivity analysis (Figure 5.5) indicated

that the degradation rate of p53 by MDM2 is the most sensitive parameter throughout the time

points. It is also seen that the sensitivity index of these parameters varies with time. This may

result from the complex interactions between p53, MDM2, and MDMX. From a biological

perspective, this variance may be the result of the presence of numerous factors affecting the

dynamics of p53 along with MDM2 and MDMX.
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Again, an upward shift of the basal production level of p53, s1, will increase the concen-

tration of p53. However, each parameter’s effect, along with s1, needs to be strictly monitored

to control their effect on p53 as it determines the cell fate. A transition from normal to no-

repair region will indicate a menace to tissue homeostasis. In contrast, an opposite transition

will indicate a possible recovery of the system. Addressing the former, we have used local

sensitivity analysis to find out the range for each parameter beyond which the p53 level can

shift to the no-repair region from the normal (Figure 5.3). Decrease in the stress coefficient,

α , degradation of MDM2, d3, stress-dependent production of MDMX, c1, and half-maximal

rate of Mdm2, θ , while an increase in the degradation rate of MDMX, d4, was a crucial factor

in driving p53 to no-repair region. MDMX ablation will shift p53 beyond its normal state.

Literature has reported p53-dependent embryonic death in the absence of MDMX [447]. Since

MDM2 acts as the principal antagonist of p53, a decrease in its level will surely uplift the p53

level. Our model suggests that three factors mediate this uplift, directly by increasing MDM2

degradation and decreasing its half-life and indirectly by decreasing MDMX production. Both

of these results correlate with literature findings [425, 448].

The normal oscillations of p53 denote that the DNA damage is being repaired. To keep the

system in a healthy state, it is, therefore, necessary to make sure that p53 remains in the normal

region and its oscillations do not vanish. The aim of the sensitivity analysis was to foresee the

existence of any parameters of the p53 module which can boost the efficiency of p53 to repair

the DNA damage. Although we derived some robust parameters, there was a set of sensitive

parameters capable of abolishing the p53 oscillations. The recalibration analysis was an effort

to diminish this effect of sensitive parameters on p53. However, we observed that there is no

significant effect on the robustness of the sensitive parameters, briefing the fact that p53 can

no longer suppress cancer due to the loss of oscillations. This limitation of the p53 module

necessitates the need to find an alternate pathway in case p53 loses its suppression capability,

and it is now challenging to reacquire it through the recalibration of the parameters of the p53

module.

Evidence in the literature suggesting the dual role of autophagy in cancer is pervasive. The

cancer cells confide in autophagy to compensate for high metabolic demand due to increased
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cell proliferation [449]. Autophagy provides nutrition to cancer cells through the lysosomal

recycling of intracellular nutrients. To restore homeostasis, this protective effect of autophagy

on tumour cells must be annihilated, which can be attained by inducing an excess level of

autophagy to pave the way to autophagic cell death. The expression of the key autophagy

regulator beclin1 was found to be low in lung cancer [438]. To induce autophagic cell death, its

level will have to be increased. The induction of autophagy following DNA damage was found

to be DRAM-dependent [450], but to our knowledge, no study has linked beclin1-induced

cell death with DNA damage. Here, we have hypothesised that the changes which happen

following DNA damage due to lung cancer can be implemented in a beneficial way to get rid

of the culprit cells. The global sensitivity analysis resulted in seven sensitive parameters of

beclin1. The result obtained highlighted the importance carried by AMPK, p53, and BCL2 on

the beclin1 dynamics. The temporal sensitivity analysis showed a decrease in the sensitivity at

the last time points of all but one parameter (d3). From a biological perspective, this variance of

sensitivity may result from the presence of numerous pathways that always monitor the levels of

beclin1. For example, the association rate of the BCL2:BECLIN1 complex negatively regulates

the function of beclin1, and hence the autophagy level gets reduced. However, when the body

needs nutrition, various factors like HMGB1 [451], BNIP3 [430] binds to BCL2 or beclin1 and

inhibits this interaction. We performed a local sensitivity analysis on beclin1 by retaining p53

in the no-repair region and thus emulating a lung cancerous system, we quest for parameters

that could increase beclin1 beyond its normal level that will eventually lead to autophagic cell

death. We have identified six such parameters which, if perturbed beyond the range specified,

will increase the beclin1 level (Figure 5.7). The AMPK dynamics and BCL2 dynamics were

fruitful in altering the beclin1 level. The effect of p53 was also vital as both of its gateways to

autophagy, i.e., the p53-mediated degradation rates of AMPK and BCL2 were found crucial in

enhancing the beclin1 level. We next carried out a 2D-parameter space analysis to determine

the effect of variations of parameters in combination to induce autophagic cell death. Since

the literature has reported that DNA damage and autophagy go hand in hand, we vary all the

six parameters of Figure 5.7 with the basal production of p53 (Figure 5.8). We have observed

that the p53 level plays a significant role in the increase of the beclin1 level. Following DNA
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damage, the basal production rate of p53 increases as a part of the DNA damage response

program. From the two-dimensional parameter space, we can see that, as the basal level of

p53 increases, the parameters obtained from Figure 5.7 required minimum variation from their

base value than the previously found ranges to uplift the beclin1 level and hence, are capable

of inducing autophagic cell death in earlier phases of lung cancer.

5.5 Conclusion

par In this paper, we have formulated a mathematical model to study p53-mediated autophagy

in lung cancer. To acquire a comprehensive understanding of the association between p53 and

autophagic cell death, specifically, how it converts the chaos generated by DNA damage into

serendipity, was crucially important to decipher. Our study has provided the mechanism to

understand this association by identifying the parametric range required to initiate cell death in

lung cancer. We have also identified the parameters which are capable of sustaining the DNA

damage repair efficiency of p53.

Even if a mathematical model can not grasp everything present in a real system, it can still

put forward conditions, parameters, or factors that could possibly control the system. In that

sense, we claim that the parametric range we have defined is sufficient to induce autophagic cell

death and is capable of mitigating cancer progression. Some of our findings are consistent with

the established literature. Taken together, we conclude that our study adds a new dimension to

the DNA damage-p53-autophagy interplay in lung cancer in the scenario when the p53 level

fails to suppress the DNA damage and sheds light on the possible way to induce an excessive

level of beclin1 to pave the way for autophagic cell death.





6
Conclusions and future directions

6.1 Conclusions

The preponderance of cellular components exerts their roles via interactions with other cellular

components positioned within the same cell, between cells, or even between organs. With ≈

25,000 protein-coding genes and an undetermined number of different proteins, the inherent

complexity of the emergent network, the PPI network, is intimidating. This inter- and intracel-

lular interconnectedness suggests that the influence of a single genetic anomaly is not limited to

the behaviour of the proteins that carry it but can propagate through the entire network and alter

the activity of proteins that do not have the abnormality. Determining the phenotypic effects

of a disease’s characteristics requires a comprehension of these perturbations and, eventually,

the complicated interaction network between proteins. The protein perturbations are crucial
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in diseases and must be captured and decoded to comprehensively understand the disease pro-

gression, which is an unequivocal result.

Autophagy is a quintessential biological process that breaks down unwanted cellular con-

stituents and thus plays a crucial role in maintaining cellular homeostasis. Due to its immense

importance in the modulation of cellular fate, the process of autophagy remains at the cross-

roads of various cellular processes and signalling pathways. The tracking of signals that mod-

ulate autophagy, and genes, which have a role in the autophagy process, has encouraged the

detection and controlling of the autophagy pathway. Any hindrance to either of them may

lead to various diseases. In the last decade, there have been eminent progress in understand-

ing the role of autophagy in different processes, but the underlying mechanism that leads to

the observed phenomenon is still far from being captured. This is because autophagy is a very

complex process and exhibits different behaviours depending upon the situation. To understand

the underlying complexity, comprehensive knowledge of autophagy is important, necessitating

the implications of sophisticated methodology to unravel this complexity.

The present thesis aims to investigate protein perturbations in diseases with an emphasis on

the autophagy process using network biology and mathematical modelling approaches. As

discussed in Chapter 1, systems biology has played a crucial role in unrevealing the asso-

ciation between autophagy and other biological processes and diseases by investigating their

protein-protein interaction network. It has also helped provide mechanistic insight into the pro-

cess of autophagy with the help of mathematical modelling approaches. Despite being studied

for decades, there exist many diseases in which the perturbations of autophagy-related pro-

teins were not properly investigated. In Chapter 2, we used the interplay between autophagy

and diabetic retinopathy (DR) to identify novel autophagy-related targets in DR. We addressed

this crosstalk through a multilayer relatedness approach. The analysis identified three novel

autophagy-related proteins, TP53, PIK3R1, and HSP90AA1, which can modulate the progres-

sion and pathogenesis of DR. These proteins were significant in many aspects. Firstly, they

were not previously reported as DR-associated. Secondly, they were autophagy-related, i.e.,

they can modulate the autophagy process, either increasing or decreasing it. Thirdly, they were

hubs, high-betweenness, and high-closeness nodes in the autophagy-DR interactome. Fourthly,
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in the co-expression analysis using WGCNA, where we investigated gene-gene relatedness, we

found that these genes were present in the disease-related modules. Fifthly, when we examined

the PPI network of the DEGs of DR in a clinical dataset, we found that some of these proteins

are DEGs. Also, a few among them were found to act as meditators, the proteins acting as a

bridge to connect the disconnected components. In the co-expression and DEG network, these

proteins were also found to be hubs, echoing their topological importance. Finally, we applied

the RWR algorithm by taking the known disease proteins as seed and found that PIK3R1 ob-

tained the top, TP53 fifth, while HSP90AA1 received the 25th position in the RWR ranking.

This suggests that these proteins remain in close proximity to the known disease protein in

DR. To summarise, these proteins are critical to regulate the DR interactome and shed light on

previously unknown aspects of the disease.

However, comprehending the global changes in disease and identifying its targets necessitates

a full understanding of the entire system’s perturbations compared to exploring a subset of

the perturbations. To this purpose, in Chapter 3, we have applied a de novo methodology to

identify potential targets in NASH. Our approach of harnessing and integrating context-specific

molecular networks was the first of its genre. Using this, we found three possible targets for

NASH and eight for NAFL. Interestingly, we found that among the three targets for NASH, one

was associated with autophagy. These potential targets exert their effects at both the gene and

metabolic levels and reverse disease-associated gene signatures. We have demonstrated that

inhibiting these potential therapeutic targets impacts a number of crucial metabolic processes

involved in steatohepatitis, as well as proteins engaged in inflammation and fibrosis develop-

ment. This proposed methodology lays out a pragmatic framework for identifying potential

therapeutic targets with a higher probability of success. It will save tremendous resources and

time during the drug discovery process and be used as a general pipeline to identify targets in

any in silico studies.

An intriguing fact about proteins is that the proteins associated with a disease always remain in

close proximity, and only a few of them gets identified as pathogenic. However, the crosstalk

between all these proteins governs the development and progression of diseases. There are

many diseases in which various potential target proteins are identified in vitro/ in vivo and are



178 Chapter 6. Conclusions and future directions

taken to clinical phases. Still, none of them eventually crosses all the clinical trial phases.

Therefore, it won’t be an embellishment to assert that the existing disease proteins fail to cap-

ture the mechanism governing the disease progression. Addressing this and taking NASH as an

example, in Chapter 4, we have incorporated a methodology, RWRMLA, which first identifies

the proteins which remain in close proximity to the disease proteins; among them, it identifies

the proteins that not only have the classification capability but also are capable of controlling the

disease network and finally investigates the capability of these proteins to alter the metabolic

landscape. A protein which passes through all these is termed the potential target of the disease.

RWRMLA identified four proteins as potential therapeutic candidates in NASH. Here also, we

found that the identified proteins are associated with the autophagy process. However, regard-

less of the identified target proteins implicated in potential significant disease pathways, their

efficacy must be substantiated through follow-up investigations and evaluated through exper-

imental inquiry. RWRMLA is an efficacious generic methodology and can be applied to any

metabolic disease to identify potential targets.

In Chapter 5, we applied a mathematical modelling approach to get mechanistic insight into

some autophagic genes in cell proliferation and cell death. Here, we have formulated a math-

ematical model to study p53-mediated autophagy in lung cancer. To acquire a comprehensive

understanding of the association between p53 and autophagic cell death, specifically, how it

converts the chaos generated by DNA damage into serendipity, was crucially important to de-

cipher. Our study has provided the mechanism to understand this association by identifying the

parametric range required to initiate cell death in lung cancer. We claimed that the parametric

range we have defined is sufficient to induce autophagic cell death and can mitigate cancer pro-

gression. Some of our findings are consistent with the established literature. Taken together,

we conclude that our study adds a new dimension to the DNA damage-p53-autophagy inter-

play in lung cancer when the p53 level fails to suppress the DNA damage and sheds light on the

possible way to induce an excessive level of beclin1 to pave the way for autophagic cell death.

Overall, the work presented in this thesis proposes several novel potential targets in NASH

and diabetic retinopathy and establishes beclin1 as a potential therapeutic intervention in lung

cancer using a mathematical model. We found the dominance of autophagic proteins in these
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diseases and proposed that targeting these proteins will mitigate the disease progression. On

the other hand, the methodologies developed in this thesis are general and can be applied to

study any disease. In conclusion, the work given here can aid in formulating more effective

treatment regimens and the drug development process.

6.2 Future scope

The work presented in the thesis can further be extended from various aspects of modelling and

network analysis perspectives. In chapter 5, we have proposed a mathematical model to ad-

dress the interplay between DNA damage, autophagy, p53, and lung cancer. Here, we showed

that increasing beclin1 from its basal level could be a potential therapeutic intervention in lung

cancer. The importance of beclin1, and thereby, autophagy, can be analysed using a large-scale

clinical dataset of lung cancer and incorporating various network analysis approach. Addition-

ally, using inherent properties, like delay and stochasticity, the complexity of the model can

further be increased to get a more realistic portrayal of lung cancer. In chapters 2, 3, and 4, we

used network biology approaches to identify potential therapeutic targets. The identified targets

can further be evaluated using in-vitro or in-vivo studies to gain insight into their therapeutic

efficacy. Moreover, to get an insight into how the interplay between these targets is governing

the respective disease dynamics, mathematical modelling-based studies could be incorporated.

The process of autophagy has been a prominent focus of research as it is still a puzzle with

various missing pieces due to its complex mechanism in numerous biological processes and

diseases. From a network analysis perspective, temporal analysis of genes is done in diseases

like obesity, but none has been reported in autophagy. Such a study will help to decipher the

change in the behaviour of autophagy-related genes with respect to time and identify potential

drug targets. Again, using computational drug discovery approaches can also be incorporated

to investigate crucial factors like druggability. This study can also be facilitated by the mathe-

matical modelling of the identified targets. Such a pipeline-based study in autophagy is lacking

and will surely help to provide fruitful insights into the autophagy process.
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