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Abstract

Ternary algebraic structures is one of the fascinating concepts in modern

Mathematics. This thesis deals with the study of ternary semigroups and ordered

ternary semigroups. We discuss different kind of regularities, ideal theory in ternary

semigroup, embedding of a ternary semigroup and some special type of ordered

ternary semigroup. The thesis consists of 7 chapters. We shall give a brief structure

of the thesis.

Chapter 1 discusses the background and motivation of the study. Also it gives

all the required definition and results from ternary semigroups and ordered ternary

semigroups that will be used throughout the thesis.

In Chapter 2, our focus is to characterize various kind of regularities in ordered

ternary semigroup by different ideals. We show the way to get into some results of

ordered ternary semigroup based on quasi-ideals, bi-ideals and semiprime ideals. We

extend some results of ordered semigroup into ordered ternary semigroup under cer-

tain methodology. In particular, we characterize some properties of regular ordered

ternary semigroup, left (resp. right) regular ordered ternary semigroup, completely

regular ordered ternary semigroup and intra-regular ordered ternary semigroup by

using quasi-ideal, bi-ideal and semiprime ideal of ordered ternary semigroup.

In Chapter 3, we study the notion of semigroup cover of ternary semigroup

introduced by Santiago and Sri Bala [78] in 2010. We mainly study the connection

between a ternary semigroup S and the semigroup cover Q(S) of the ternary semi-

group S by using various ideals. Moreover we characterize left and right regularity,

complete regularity, intra-regularity in Q(S) and investigate isomorphism problem
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of ternary semigroup S and the corresponding semigroup cover Q(S). We further

introduce a partial order relation in Q(S) and study various lattice structures.

In Chapter 4, we consider a power ternary semigroup P (S) associated with a

ternary semigroup S and study some properties of P (S) by using the corresponding

properties of S. After that we study the notion of ordered power ternary semigroup

P(S) and our main aim is to establish some interconnection between the properties

of a ternary semigroup S and the associated ordered ternary semigroup P(S). The

purpose of this chapter is to give an overview of the results that are interesting from

the algebraic point of view.

In Chapter 5, our focus is to characterize the structures of lattices in special

class of regular ternary semigroup, called ternary semigroup of mappings and de-

noted by T [X, Y ]. Then we discuss the isomorphism problem. We also derive simple

conditions under which the converse is also true. Also we introduce a partial order

relation in the ternary semigroup of mappings T [X, Y ]. We also study the notion

of ternary semigroup of isotone mappings. Further we present the characteriza-

tion of regular, intra-regular and idempotent ordered ternary semigroup in ternary

semigroup of isotone mappings.

InChapter 6, we introduce the concept of right chain ordered ternary semigroup

as a genralization of right chain ordered semigroup. Then we study the ideal theory

of a right chain ordered ternary semigroup. Mainly we characterize them by using

various ideals. A right chain ordered ternary semigroup is a ternary semigroup

whose right ideals forms a chain. Our main aim to study right chain ordered ternary

semigroup in terms of prime ideals, completely prime ideals and prime segment.

Chapter 7 is devoted to introduce the concept of (n,m, l)-ideal in ordered

ternary semigroup. Also we characterize (n,m, l)-regular ordered ternary semi-

groups. We study the notion of quasi-prime, strongly quasi-prime, irreducible and

strongly irreducible (n,m, l)-ideal in (n,m, l)-regular ordered ternary semigroup.
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Chapter 1

Introduction, preliminaries and

prerequisites

1.1 Introduction

The modern presentation of abstract algebra begins with the simple abstract

definition of algebraic structures. The results in binary algebraic structures may be

extended to n-ary algebraic structures for arbitrary n but the transition from n =

3 to arbitrary n entails a great degree of complexity that makes it undesirable for

exposition. For this reason, we shall confine ourselves in the proposed research work

wholly to ternary algebraic structures. There are many topics in different areas of

mathematics which remain to be disclosed in ternary algebraic structures. The main

objective of this thesis is to extend different fundamental results of semigroups to

ternary semigroups. Since there has been a remarkable growth of semigroup theory

with manifold applications, it has been possible to study ternary semigroups to a

good extent, the outcome of which is the present thesis.

First of all, we study the literature of ternary semigroup. The literature of

ternary algebraic system dealing with ternary operation has a broad history. The

introduction of mathematical literature of ternary algebraic system dated back to

1



INTRODUCTION, PRELIMINARIES AND PREREQUISITES

1924. The notion of ternary algebraic system was first introduced by H. Prüfer [72]

by the name ‘Schar’. Later on W. Dörnte [27] further studied this type of algebraic

system. The theory of ternary algebraic systems was introduced by Lehmer [64]

in 1932. Also he explored the triplex systems. But earlier such structures were

studied by Kasner who gave the concept of n-ary algebras. E. L. Post [71] later

developed the theory of n-ary group to higher level of study. R. Kerner [54] con-

tributed his ideas of ternary algebraic systems in mathematical physics. The notion

of ternary semigroup was known to S. Banach. He showed, by an example that a

ternary semigroup does not necessarily reduce to an ordinary semigroup. Later J.

Los [66] proved that every ternary semigroup can be embedded in a semigroup. In

1953, the idea of semiheap was introduced and studied by V. V. Vagner [91]. M. L.

Santiago further developed the theory of ternary semigroups and ternary semiheaps

in his thesis. Study of this thesis develop ternary semigroup theory. In 1932, D.

H. Lehmer [64] investigated certain ternary algebraic systems called triplexes which

turn out to be commutative ternary groups. This ternary algebraic system has two

types of associativity laws as follows :

(i) A nonempty set S together with a ternary operation denoted by juxtaposi-

tion, satisfying the associative law of 1st kind (abc)de = a(bcd)e = ab(cde), for

all a, b, c, d, e ∈ S is said to be Ternary Semigroup.

(ii) A nonempty set S together with a ternary operation denoted by juxtaposi-

tion, satisfying the associative law of 2nd kind (abc)de = a(dcb)e = ab(cde), for all

a, b, c, d, e ∈ S is said to be Ternary Semiheap.

We consider the set of integers Z which plays a major role in semigroup theory.

If we consider the set Z+ the set of all positive integers subset of Z, then we see that

Z+ together with usual binary multiplication forms a semigroup. This is a natural

example of binary semigroup. If we consider the set Z− the set of all negetive integers

subset of Z, then we see that Z− is not closed under the binary multiplication. But

if we take the ternary multiplication ‘.’ defined by (a, b, c) −→ abc on Z−, then

Z− is closed under the ternary multiplication. Also Z− satisfies the associative law

2



INTRODUCTION, PRELIMINARIES AND PREREQUISITES

(abc)de = a(bcd)e = ab(cde), for all a, b, c, d, e ∈ Z−. Thus we see that Z− forms a

ternary semigroup with respect to usual ternary multiplication of negetive integers.

This is a natural examples of ternary semigroups that are not reducible to binary

semigroups. Any semigroup can be made into a ternary semigroup in the natural

way by defining the ternary multiplication abc = (ab)c.

In this thesis we study the notion of ‘Ordered Ternary Semigroup’ which disclosed

a new field of vision in the research of Abstract Algebra. Ordered ternary semigroup

bring the opportunity to study a partial order relation together with an associative

ternary operation on the same set. The basic definition of ordered ternary semigroup

has its origin in algebraic equations, computer science, economics and geometry

because very similar techniques were found to be applicable in variety of situations.

The formal definition of ordered ternary semigroup is as follows :

An ordered ternary semigroup (S, .,≤) is a partially ordered set (S,≤) with

resepect to partial order ‘≤’ and at the same moment a ternary semigroup (S, .) with

resepect to ternary operation ‘.’ such that for all a, b, x, y ∈ S we have a ≤ b =⇒

axy ≤ bxy, xay ≤ xby, xya ≤ xyb.

At the present time the theory of ordered ternary semigroups has an exceptional

growth in reseach area. Many researchers have been taken interests to explore

ordered ternary semigroup. Ordered ternary semigroups and ordered semigroups

were studied by a number of authors in [16], [38], [65], [82]. N. Kehayapulu [46],

[47] introduced and studied the notion of completely regular ordered semigroup.

Also completely regular ordered semigroup was studied by D. M. Lee and S. K. Lee

[63]. In 2012, Daddi and Pawar [25] studied the concept of ordered quasi-ideals

and ordered bi-ideals in ordered ternary semigroup and also discussed about their

properties. The result on the minimality and maximality theory of ordered quasi-

ideal in ordered ternary semigroup was developed by Jailoka and Iampan [39].

In 1965, F.M. Sioson [87] developed the ideal theory and it is a key concept to

study ternary semigroup and ordered ternary semigroup. Other than left and right

ideal, Sioson also invented the idea of a new type of ideal which is known as the

3



INTRODUCTION, PRELIMINARIES AND PREREQUISITES

lateral ideal. Ideas of radicals, m-system, semiprimality, irreducbility, regularity in

ternary semigroup is also developed by Sioson. Ideal theory in ternary semigroup

was studied by Y. Sarala, A. Anjaneyulu and D. Madhusudhana Rao [79] and they

described properties of prime ideals and primary ideals. A. Anjaneyulu [2], [3], [4]

studied prime ideals and primary ideals and introduced the idea of primary decom-

position in duo semigroup. Muhammad Shabir and Shahida Bashir [83] studied

the notion of prime, semiprime and irreducible ideals in ternary semigroup. Recent

study of semiprime ideal theory in commutative ternary semigroup was developed

by G. Hanumanta Rao, A. Anjaneyulu and A. Gangadhar Rao in their paper [73].

Many authors like Bourne [7], H. Lal [62], V. L. Mannepalli, C. Nagore [69], M.

Satyanarayana [80], [81] developed the ideal theory in commutative semigroups. H.

J. Hoehnke [36] used the ideal theory in their work to develop the ideal theory of

commutative semigroup. In 1993, R. D. Giri and A. K. Wazalwar [32] initiated the

study of prime ideals and prime radicals in non-commutative semigroup.

In 1997, V. N. Dixit and S. Dewan [26] studied the notion of quasi and bi-

ideal in ternary semigroup. Later on T. K. Dutta, S. Kar and B. K. Maity [29]

illustrated the theory of ideal, quasi-ideal, bi-ideal in regular ternary semigroup and

also developed some properties of intra-regular ternary semigroup. Further S. Kar

and B. K. Maity [44] discussed over ideal theory of ternary semigroup. Congruence

on ternary semigroup was studied by A. Chronowski [20], S. Kar and B. K. Maity

[43]. Further bi-ideal was studied by R. A. Good and D. R. Hughes [33]. In ordered

semigroup, the notion of bi-ideal and quasi-ideal was studied by N. Kehayopulu [48],

[49], [50], [51]. The theory of minimal and maximal ideals in ordered semigroup was

studied by Y. Cao and X. Xu [14] in 2000. In [15], they also characterized minimal

and maximal left ideals in ordered semigroup. In 2002, the minimal and maximal

ideal in ordered semigroup was developed by M. M. Arslanov and N. Kehayopulu

[5]. In ordered ternary semigroup, ideal theory also plays an important role. V.

Jyothi, Y. Sarala and D. Madhusudhana Rao [40] study the concept of semipseudo

symmetric ideals in ordered ternary semigroups in 2014. Recenty in 2017, K. Hansda

4



INTRODUCTION, PRELIMINARIES AND PREREQUISITES

[35] studied minimal bi-ideal in ordered semigroup.

In 1961, S. Lajos [58] introduced the concept of (m,n)-ideals in semigroup as a

generelization of one-sided ideal. Further he studied (m,n)-ideal in [59], [60], [61].

T. Changphas [17] studied (m,n)-ideals of ordered semigroups. Later the theory

of (m,n)-ideal in various algebric structures were studied by many authors like

Muhammad Akram [1], Limpapat Bussaban [13], P. Luangchaisri [68], R. Mazurek

[70], J. Sanborisoot [75] and so on.

A large number of authors make an attempt to study regularities in ternary

semigroup. Perhaps the massive impact of regular semigroups have been convinced

them to study ordered structure in regular ternary semigroup. M. L. Santiago

[76], [77] investigated regular ternary semigroup, strongly regular ternary semigroup,

completely regular ternary semigroup, clifford ternary semigroup, vagner ternary

semigroup, inverse ternary semigroup. In the thesis of M. L. Santiago the notion

of idempotent pair was used to show completely regular ternary semigroup as a

disjoint union of ternary group and clifford ternary semigroup as a semilattice union

of ternary groups. M. L. Santiago, S. Sri Bala [78] contributed their works to

establish the theory of cover of a ternary semigroup and to develop its properties.

Ternary semigroup and semiheaps also studied by W. A. Dudek [28] and A. Knoebel

[55]. G. Sheeja [84], [85], [86] studied about ternary groups and developed the

idea of simple ternary semigroup, 0-simple ternary semigroup, orthodox ternary

semigroup etc. N. Kehayopulu [45], [46], [47], [52], [53] investigated regularities in

ordered semigroup. D. N. Krgović [56] studied the notion of (m,n)-regular ordered

semigroups. P. Luangchaisri and T. Changphas [67] also investigated (m,n)-regular

and intra-regular ordered semigroups.

This thesis deals with the study of ternary semigroup and ordered ternary semi-

group. So we need to know the basic definitions and results of ternary semigroups.

Here in this chapter, I discuss briefly some important basic definitions and results

that we need in the rest of my thesis.

5



INTRODUCTION, PRELIMINARIES AND PREREQUISITES

1.2 Ternary Semigroup

In this section, we discuss some preliminary definitions and results of ternary semi-

group which are relevant for this thesis. Most of the basic definitions and some

results are taken from [29], [43], [44], [77]. Throughout this section S denotes a

ternary semigroup.

Definition 1.2.1. A nonempty set S together with a ternary operation · denoted by

juxtaposition is said to be a ternary semigroup if it satisfies the ternary associative

law

ab(cde) = a(bcd)e = (abc)de for all a, b, c, d, e ∈ S.

Example 1.2.2. There are some examples of ternary semigroup.

� Set of all negative integers Z− with usual ternary multiplication is a natural

example of ternary semigroup.

� {i,−i} forms a ternary semigroup with usual ternary multiplication where i =
√
−1.

� Consider the set S1 = {r
√
2 : r ∈ Q}, where Q is the set of all rational num-

bers. Then S1 forms a ternary semigroup with usual ternary multiplication.

Definition 1.2.3. A nonempty subset A of a ternary semigroup S is said to be

ternary subsemigroup if A is itself a ternary semigroup w.r.t. ternary operation on

A.

A nonempty subset A of a ternary semigroup S is called a ternary subsemigroup

of S if A3 = AAA ⊆ A.

• For example, set of all negative integers w.r.t. usual ternary multiplication is

a ternary subsemigroup of the set of all negative real numbers w.r.t. usual ternary

multiplication.

6



INTRODUCTION, PRELIMINARIES AND PREREQUISITES

Definition 1.2.4. An element e of a ternary semigroup S is said to be an identity

element of S if eea = eae = aee for all a ∈ S.

• −1 is an identity element of Z−.

Definition 1.2.5. Let a be an element of a ternary semigroup S. An element b of

S is said to be an inverse of a if aba = a and bab = b.

From the definition we can see that a is also an inverse of b.

Definition 1.2.6. A ternary semigroup S is said to be inverse ternary semigroup

if every element of S has unique inverse in S.

• Q−, the set of all negative rational number is an example of inverse ternary

semigroup w.r.t. usual ternary multiplication.

Definition 1.2.7. A ternary semigroup S is said to be

(i) left cancellative if abx = aby =⇒ x = y for all a, b, x, y ∈ S.

(ii) right cancellative if xab = yab =⇒ x = y for all a, b, x, y ∈ S.

(iii) lateral cancellative if axb = ayb =⇒ x = y for all a, b, x, y ∈ S.

(iv) cancellative if S is left, right and lateral cancellative.

Definition 1.2.8. A ternary semigroup S is said to be commutative if x1x2x3 =

xσ(1)xσ(2)xσ(3), where σ is a permutation of {1, 2, 3}.

• Set of all negative integers with usual ternary multiplication is a commutative

ternary semigroup.

Definition 1.2.9. Let S be a ternary semigroup. An element a ∈ S is said to be a

regular element of S if there exists an element x ∈ S such that a = axa.

A ternary semigroup S is said to be regular ternary semigroup if every element

of S is regular.

Definition 1.2.10. An element a of a ternary semigroup S is said to be left (resp.

right) regular element of S if there exists an element x ∈ S such that a = xaa (resp.

a = aax).

7



INTRODUCTION, PRELIMINARIES AND PREREQUISITES

A ternary semigroup S is said to be left (resp. right) regular ternary semigroup

if every element of S is left (resp. right) regular.

Definition 1.2.11. An element a of a ternary semigroup S is said to be completely

regular element of S is regular, left regular and right regular.

A ternary semigroup S is said to be completely regular ternary semigroup if every

element of S is completely regular.

Theorem 1.2.12. Let S be a ternary semigroup S. The following conditions are

equivalent :

(i) S is completely regular,

(ii) a ∈ a2Sa2 for all a ∈ S.

Definition 1.2.13. An element a of a ternary semigroup S is said to be intra-regular

element of S is if there exist some elements x, y ∈ S such that a = xa3y.

A ternary semigroup S is said to be intra-regular ternary semigroup if every

element of S is intra-regular.

Definition 1.2.14. An element a of a ternary semigroup S is said to be idempotent

element of S if a3 = a.

A ternary semigroup S is said to be an idempotent ternary semigroup if every

element of S is idempotent element.

An idempotent ternary semigroup is also known as ternary band.

Every idempotent element in a ternary semigroup is regular.

An idempotent ternary semigroup S is said to be strong idempotent ternary semi-

group if a3 = a and a2b = ab2 for all a, b ∈ S.

• S3 is the symmetric group of order 6. Then T = {(1 2), (1 3), (2 3)} is an

idempotent ternary semigroup with usual ternary composition.

• {0,−1} ⊂ R is an example of strong idempotent ternary semigroup w.r.t. usual

ternary multiplication.
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Definition 1.2.15. An equivalence relation ρ on a ternary semigroup S is said to

be ternary

(i) left congruence if aρb =⇒ (sta)ρ(stb) for all a, b, s, t ∈ S.

(ii) right congruence if aρb =⇒ (ast)ρ(bst) for all a, b, s, t ∈ S.

(iii) lateral congruence if aρb =⇒ (sat)ρ(sbt) for all a, b, s, t ∈ S.

(iv) congruence if aρa′, bρb′, cρc′ =⇒ (abc)ρ(a′b′c′) for all a, a′, b, b′, c, c′ ∈ S.

Proposition 1.2.16. An equivalence relation ρ on a ternary semigroup S is a

ternary congruence if and only if it is a ternary left, a ternary right, a ternary

lateral congruence on S.

Definition 1.2.17. A pair (a, b) of elements in a ternary semigroup S is said to be

an idempotent pair if ab(abx) = abx and (xab)ab = xab for all x ∈ S.

Definition 1.2.18. Two idempotent pairs (a, b) and (c, d) of a ternary semigroup S

are said to be equivalent if abx = cdx and xab = xcd for all x ∈ S and it is denoted

by (a, b) ∼ (c, d).

Definition 1.2.19. A ternary semigroup S is said to be a ternary group if for

a, b, c ∈ S, the equations abx = c, axb = c and xab = c have solutions in S.

Remark 1.2.20. In a ternary group S, the equations abx = c, axb = c and xab = c

have unique solutions for all a, b, c ∈ S.

Definition 1.2.21. A ternary semigroup S is said to be

(i) left zero if abc = a for all a, b, c ∈ S;

(ii) right zero if abc = c for all a, b, c ∈ S;

(iii) lateral zero if abc = b for all a, b, c ∈ S.

Note 1.2.22. Let S be a lateral zero ternary semigroup and a, b, c ∈ S. Thus

abc = b. Therefore, ac(abc) = acb =⇒ (aca)bc = c =⇒ cbc = c =⇒ b = c.

Again ac(abc) = acb =⇒ a(cab)c = c =⇒ aac = c =⇒ a = c. Thus a = b = c.

So we conclude that lateral zero ternary semigroup is always singleton.

9
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Definition 1.2.23. A nonempty subset I of a ternary semigroup S is said to be

(i) a left ideal of S if SSI ⊆ I;

(ii) a right ideal of S if ISS ⊆ I;

(iii) a lateral ideal of S if SIS ⊆ I;

(iv) a two-sided ideal of S if I is both left and right ideal of S;

(v) an ideal of S if I is a left, right and lateral ideal of S.

An ideal I of a ternary semigroup S is called a proper ideal if I ̸= S.

Every ideal of S is a ternary subsemigroup of S. Thus ideals of a ternary semi-

group S is also a ternary semigroup.

Proposition 1.2.24. Let S be a ternary semigroup and a ∈ S. Then the principal

(i) left ideal generated by ‘a’ is given by < a >l= SSa ∪ {a};

(ii) right ideal generated by ‘a’ is given by < a >r= aSS ∪ {a};

(iii) lateral ideal generated by ‘a’ is given by < a >m= SaS ∪ SSaSS ∪ {a};

(iv) ideal generated by ‘a’ is given by < a >= SSa∪ aSS ∪SaS ∪SSaSS ∪{a}.

Definition 1.2.25. Let S be a ternary semigroup. Then S is called

(i) left simple if S has no non-trivial proper left ideal.

(ii) right simple if S has no non-trivial proper right ideal.

(iii) lateral simple if S has no non-trivial proper lateral ideal.

(iv) simple if S has no non-trivial proper ideal.

A ternary semigroup S is simple if it is left simple, right simple and lateral

simple.

Definition 1.2.26. Let S be a ternary semigroup. An ideal I of S is said to be

prime ideal if for any ideals A,B,C of S such that ABC ⊆ I we have A ⊆ I or

B ⊆ I or C ⊆ I.

Definition 1.2.27. Let S be a ternary semigroup. An ideal I of S is said to be

semiprime ideal if for any ideal A of S such that A3 ⊆ I we have A ⊆ I.
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Definition 1.2.28. Let S be a ternary semigroup. An ideal I of S is said to be

completely prime ideal if for any elements a, b, c of S such that abc ∈ I we have

a ∈ I or b ∈ I or c ∈ I.

Definition 1.2.29. Let S be a ternary semigroup. An ideal I of S is said to be

completely semiprime ideal if for an element a of S such that a3 ∈ I we have a ∈ I.

In the following figure we made an conclusion pictorially for the four types of

ideals which are defined above :

completely semiprime

semiprime

prime

completely prime

Definition 1.2.30. Let S be a ternary semigroup. A nonempty subset Q of S is

said to be quasi-ideal of S if QSS∩SQS∩SSQ ⊆ Q and QSS∩SSQSS∩SSQ ⊆ Q.

Definition 1.2.31. A ternary subsemigroup B of a ternary semigroup S is said to

be bi-ideal of S if BSBSB ⊆ B.

Definition 1.2.32. Let C be a non-empty subset of a ternary semigroup S. Then

C ∪ CCC ∪ CSCSC is the smallest bi-ideal of S containing C.

Definition 1.2.33. A ternary semigroup S is said to be a ternary semilattice if S

is commutative, idempotent and satisfies the condition x2y = xy2 for all x, y ∈ S.

Note 1.2.34. A commutative strong idempotent ternary semigroup is a ternary

semilattice.
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Example 1.2.35. Some examples of ternary semilattice are as follows :

� S1 =

{−1 0

0 −1

 ,

−1 0

0 0

}
⊆ M2(R), w.r.t. ternary matrix multiplica-

tion.

� S2 = {−1, 0} ⊆ R, w.r.t. usual ternary multiplication.

Definition 1.2.36. An idempotent ternary semigroup S is said to be a rectangular

ternary band if aba = a for all a, b ∈ S.

Although the definition of rectangular ternary band and rectangular band in

binary are similar, but all the rectangular ternary bands are not rectangular bands

in binary.

Example 1.2.37. The following are examples of rectangular ternary bands which

are not rectangular bands in binary.

•

{−1 0

0 0

 ,

−1 −1

0 0

}
⊆M2(R) w.r.t. ternary matrix multiplication.

•

{ 0 0

−1 −1

 ,

−1 −1

0 0

}
⊆M2(R) w.r.t. ternary matrix multiplication.

Definition 1.2.38. Let S1 and S2 be two ternary semigroups. A mapping ψ : S1 −→

S2 is said to be ternary homomorphism if ψ(abc) = ψ(a)ψ(b)ψ(c) for all a, b, c ∈ S1.

If ψ is one-one then ψ is said to be a ternary monomorphism from S1 to S2.

If ψ is onto then ψ is said to be a ternary epimorphism from S1 to S2.

If ψ is both one-one and onto then ψ is said to be a ternary isomorphism from

S1 to S2.
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1.3 Ordered Ternary Semigroup

Now we briefly discuss the basic definitions and terminologies of ordered ternary

semigroup. Most of the basic definitions and some results are taken from [16],

[25], [38], [37], [39], [65]. Throughout this section S denotes an ordered ternary

semigroup.

Definition 1.3.1. A ternary semigroup (S, .) is called an ordered ternary semigroup

or a partially ordered ternary semigroup (in short po-ternary semigroup) if there is

a partial order “ ≤ ” on S such that

x ≤ y =⇒ xx1x2 ≤ yx1x2, x1xx2 ≤ x1yx2, x1x2x ≤ x1x2y for all x, y, x1, x2 ∈ S.

Example 1.3.2. There are some examples of ordered ternary semigroups :

• Let Z− be the set of all negetive integers. Then (Z−, .,≤) is an ordered ternary

semigroup, where ‘.’ is the usual ternary multiplication and ‘≤’ is the usual partial

order on Z−.

• Let N be the set of all natural number. Then (N, .,≤) is an ordered ternary

semigroup, where ‘≤’ is the usual less than or equal to partial order on N and the

ternary multiplication ‘.’ is defined by abc = a+ b+ c.

• Let S be a commutative ternary semigroup. Let I(S) be the set of all ideals of

S. Then (I(S), .,≤) is an ordered ternary semigroup where, ≤ is the set inclusion

and the multiplication ‘.’ is defined by IJK = {ijk | i ∈ I, j ∈ J, k ∈ K}.

Definition 1.3.3. Let (S, .,≤) be an ordered ternary semigroup. Every ternary

subsemigroup with the parital order ‘≤’ defined on S is an ordered ternary semigroup.

If ‘≤A’ is partial order relation on A, then ≤A=≤ ∩( A×A). So (A, .,≤A) is called

ordered ternary subsemigroup of (S, .,≤).

• For an ordered ternary semigroup (S, .,≤) and a subset H of S, we denote by

(H] the subset of S defined by :

(H] := {t ∈ S | t ≤ h for some h ∈ H}

13
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The set (H] is called the downward closure of H and H is called downward closed

if (H] = H i.e. a ∈ H, b ∈ S such that b ≤ a =⇒ b ∈ H. Clearly (H] ⊆ S.

• Let A be an ordered ternary subsemigroup of the ordered ternary semigroup

S then the set (H]A ⊆ A defined by

(H]A := {t ∈ A | t ≤ h for some h ∈ H}

The set (H]A ⊆ A is called downward closure of H in A. Now (H]A = H implies

that a ∈ H, b ∈ A such that b ≤ a =⇒ b ∈ H

Definition 1.3.4. A nonempty subset A of an ordered ternary semigroup S is called

(i) a left ideal of S, if (1) SSA ⊆ A and (2) (A] = A

(ii) a right ideal of S, if (1) ASS ⊆ A and (2) (A] = A,

(iii) a lateral ideal of S, if (1) SAS ⊆ A and (2) (A] = A,

(iv) an ideal of S if it is a left ideal, right ideal and lateral ideal of S.

Definition 1.3.5. For an ordered ternary semigroup S and a ∈ S, we denote by

R(a) (resp. L(a), M(a)) the right (resp. left, lateral) ideal of S generated by the

element a and I(a) denotes the ideal generated by the element a. Thus

(i) left ideal generated by ‘a’ is given by L(a) = (a ∪ SSa];

(ii) right ideal generated by ‘a’ is given by R(a) = (a ∪ aSS];

(iii) lateral ideal generated by ‘a’ is given by M(a) = (a ∪ SaS ∪ SSaSS];

(iv) ideal generated by ‘a’ is given by I(a) = (a ∪ SSa ∪ aSS ∪ SaS ∪ SSaSS].

Definition 1.3.6. Let (S, .,≤) be an ordered ternary semigroup. A nonempty subset

Q of S is called a quasi-ideal of S, if

(i) (SSQ] ∩ (SQS] ∩ (QSS] ⊆ Q,

(ii) (SSQ] ∩ (SSQSS] ∩ (QSS] ⊆ Q and

(iii) (Q] = Q.

• Every left, right and lateral ideal of an ordered ternary semigroup S is a quasi-

ideal of S. But the converse does not hold, in general.
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Definition 1.3.7. Let (S, .,≤) be an ordered ternary semigroup. A subsemigroup

B of S is called a bi-ideal of S, if (i) BSBSB ⊆ B and (ii) (B] = B.

Definition 1.3.8. For an ordered ternary semigroup S and a ∈ S, the bi-ideal

generated by the element a is given by B(a) = (a ∪ a3 ∪ aSaSa].

• Every quasi-ideal of an ordered ternary semigroup S is a bi-ideal of S. Since

every left, right and lateral ideal of an ordered ternary semigroup S is a quasi-ideal

of S, it follows that every left, right and lateral ideal of an ordered ternary semigroup

S is a bi-ideal of S.

Note 1.3.9. In ordered ternary semigroup, the definition of prime ideal, semiprime

ideal, completely prime ideal, completely semiprime ideal, left simple ideal, right

simple ideal, simple ideal are same as ternary semigroups.

Definition 1.3.10. Let (S1, . ≤1) and (S2, .,≤2) be two ordered ternary semigroups.

A mapping f : S1 −→ S2 is said to be an isotone mapping if a ≤1 b implies that

f(a) ≤2 f(b) for all a, b ∈ S.

Definition 1.3.11. Let (S1, . ≤1) and (S2, .,≤2) be two ordered ternary semigroups.

A mapping g : S1 −→ S2 is said to be an ordered ternary homomorphism if g is an

isotone mapping and

g(abc) = g(a)g(b)g(c) for all a, b, c ∈ S1.

If g is one-one then g is said to be an ordered ternary monomorphism from S1

to S2.

If g is onto then g is said to be an ordered ternary epimorphism from S1 to S2.

If g is both one-one and onto then g is said to be an ordered ternary isomorphism

from S1 to S2. Two ordered ternary semigroups are called isomorphic if there is an

ordered ternary isomorphism between them.
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1.4 Some results on ordered ternary semigroups

In this section S denotes an ordered ternary semigroup. We give all the required

results on ordered ternary semigroup that will be used throughout the rest of the

thesis.

Proposition 1.4.1. [16] Let (S, .,≤) be an ordered ternary semigroup and A be an

ordered ternary subsemigroup of S. Then for any ideal I of S, A ∩ I is an ideal of

S.

Proposition 1.4.2. [16] Let (S, .,≤) be an ordered ternary semigroup and {Iλ}λ∈∆
is family of non-trivial ideals of S. Then

⋂
λ∈∆ Iλ and

⋃
λ∈∆ Iλ are ideals of S.

Next we have the following result which we will often use in this thesis.

Proposition 1.4.3. [25] Let (S, .,≤) be an ordered ternary semigroup. Then the

followings hold :

(i) A ⊆ (A] for any non-empty subset A of S,

(ii) If A,B ⊆ S such that A ⊆ B then (A] ⊆ (B],

(iii) ((A]] = (A] for any A ⊆ S,

(iv) (A](B](C] ⊆ (ABC] for all A,B,C ⊆ S,

(v) ((A](B](C]] = ((A](B]C] = (AB(C]] = (ABC] for all A,B,C ⊆ S,

(vi) (A ∪B] = (A] ∪ (B] for all A,B ⊆ S,

(vii) (A ∩B] ⊆ (A] ∩ (B] for all A,B ⊆ S,

In particular, if A and B are ideals in S, then (A ∩B] = (A] ∩ (B],

(viii) If {Aλ}λ∈∆ is family of non empty subsets of S, then (
⋃

λ∈∆Aλ] =
⋃

λ∈∆(Aλ]

and (
⋂

λ∈∆Aλ] ⊆
⋂

λ∈∆(Aλ],

(ix) (SSA], (ASS], (SAS∪SSASS] are left, right and lateral ideal in S respectively.

(x) ((A(2n−1)](2m−1)] = (A(2n−1)(2m−1)],

(xi) If x, y ∈ S and x ≤ y, then (xAA] ⊆ (yAA] and (AAx] ⊆ (AAy]

Lemma 1.4.4. Let (S, .,≤) be a ordered ternary semigroup. The following are

equivalent:
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(i) (A3] = A for every ideal A of S.

(ii) A ∩B ∩ C = (ABC] for all ideals A,B,C of S.

(iii) I(a) ∩ I(b) ∩ I(c) = (I(a)I(b)I(c)] for all a, b, c ∈ S.

(iv) I(a) = (I(a)3] for all a ∈ S.

Proof. (i) =⇒ (ii) Let us assume that (i) holds. Suppose that A,B,C are ideals

of S. Then (ABC] ⊆ (SSC] ⊆ (C] = C. Similarly, (ABC] ⊆ A and (ABC] ⊆ B.

Thus (ABC] ⊆ A∩B∩C. Since (A3] = A for every ideal A of S, A∩B∩C = ((A∩

B∩C)3] = ((A∩B∩C)(A∩B∩C)(A∩B∩C)] ⊆ (ABC]. Thus, A∩B∩C = (ABC]

for all ideals A,B,C of S.

(ii) =⇒ (iii) Let a, b, c ∈ S. Since I(a), I(b), I(c) are ideals in S then by (ii), we

have I(a) ∩ I(b) ∩ I(c) = (I(a)I(b)I(c)].

(iii) =⇒ (iv) It is obvious. We take I(a) = I(b) = I(c).

(iv) =⇒ (i) Let a be an element of S. Then I(a) = (I(a)3] = (I(a)I(a)I(a)] =

((I(a)3](I(a)3](I(a)3]] = (I(a)3I(a)3I(a)3]. Now I(a)3 ⊆ SI(a)S = S(a ∪ SSa ∪

aSS∪SaS∪SSaSS]S ⊆ (SaS∪SSSaS∪SaSSS∪SSaSS∪SSSaSSS] ⊆ (SaS∪

SSaSS]. Thus a ∈ I(a) ⊆ ((SaS ∪ SSaSS](SaS ∪ SSaSS](SaS ∪ SSaSS]] ⊆

(SaSSaSSaS∪SaSSaSaSS∪SaSaSaS∪SaSaSSaSS∪SSaSaSSaS∪SSaSaSaSS

∪ SSaSSaSaS ∪ SSaSSaSSaSS].

Let A be an ideal in S. Let x ∈ (A3]. Then x ≤ a1a2a3 for some a1, a2, a3 ∈ A.

Now a1a2a3 ∈ AAA ⊆ ASS ⊆ A. Hence x ∈ (A] = A. Thus (A3] ⊆ A. Again let

y ∈ A ⊆ S. Then y ∈ (SySSySSyS ∪ SySSySySS ∪ SySySyS ∪ SySySSySS ∪

SSySySSyS ∪ SSySySySS ∪ SSySSySyS ∪ SSySSySSySS] ⊆ (SASSASSAS ∪

SASSASASS ∪ SASASAS ∪ SASASSASS ∪ SSASASSAS ∪ SSASASASS ∪

SSASSASAS ∪ SSASSASSASS] ⊆ (A3]. Thus A ⊆ (A3]. Therefore, (A3] =

A.

Theorem 1.4.5. [74] An ordered ternary semigroup S is left (resp. right, lateral)

simple if and only if (aSS] = S
(
resp. (SSa] = S, (aSa] = S

)
for all a ∈ S. Again

S is simple if and only if (aSS] = S, (SSa] = S and (aSa] = S for all a ∈ S.
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Corollary 1.4.6. An ordered ternary semigroup S is left (resp. right, lateral) simple

if and only if for every a, b, c ∈ S there exists x ∈ S such that b ≤ xac (resp. b ≤ acx,

b ≤ axc).

Theorem 1.4.7. [74] An ordered ternary semigroup S is left (resp. right, lateral)

simple if and only if (abS] = S
(
resp. (Sab] = S, (aSb] = S

)
for all a, b ∈ S. Again

S is simple if and only if (abS] = S, (Sab] = S and (aSb] = S for all a, b ∈ S.

Corollary 1.4.8. An ordered ternary semigroup S is left (resp. right, lateral) simple

if and only if for every a, b ∈ S there exist x, y ∈ S such that b ≤ xya (resp. b ≤ axy,

b ≤ xay).

Theorem 1.4.9. Let S be an ordered ternary semigroup. Then S is left and right

simple if and only if S does not contain proper bi-ideals.

Proof. Let S be left and right simple ordered ternary semigroup and B be a bi-ideal

in S. Let b ∈ B. Then by Theorem 1.4.5, we have S = (bSS] = (bS(SSb]] =

(bSSSb] = (bS(bSS]Sb] = (bSbSSSb] ⊆ (bSbSb] ∈ (BSBSB] ⊆ (B] = B Thus S

does not contain proper bi-ideal.

Conversely, suppose that S does not contain proper bi-ideals. Let L be a left

ideal and R be a right ideal in S. Since every left ideal and right ideal are bi-ideal

of S, then we have L = S and R = S. Thus S is left and right simple.

Corollary 1.4.10. Let S be an ordered ternary semigroup. Then S is lateral simple

if and only if S does not contain proper bi-ideals.

Theorem 1.4.11. [16] For every left ideal L, lateral ideal M and right ideal R of

an ordered ternary semigoup S, R ∩M ∩ L is a quasi-ideal of S.

From the above theorem we have the following corollary :

Corollary 1.4.12. Let S be an ordered ternary semigoup and Q be a quasi-ideal of

S. Then Q = R(Q) ∩M(Q) ∩ L(Q).
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Chapter 2

On regularities in ordered ternary

semigroups

2.1 Introduction

In this chapter, we study the notion of certain special classes regular ordered

ternary semigroups. We develop some results of ordered semigroup into ordered

ternary semigroup under certain methodology. In particular, we characterize some

properties of regular ordered ternary semigroup, left (resp. right) regular ordered

ternary semigroup, completely regular ordered ternary semigroup and intra-regular

ordered ternary semigroup by using ideal, quasi-ideal, bi-ideal, completely prime

ideal and semiprime ideal of ordered ternary semigroup.

Throughout this chapter, S denotes an ordered ternary semigroup.

2.2 Left regular and right regular ordered ternary

semigroup

In this section, we characterize left regular ordered ternary semigroup by using

properties of various ideals.
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Definition 2.2.1. An ordered ternary semigroup S is said to be left regular if A ⊆

(SA2] for every A ⊆ S.

An element a of an ordered ternary semigroup S is said to be left regular if there

exists an element x ∈ S such that a ≤ xaa. If all elements of S are left regular then

S is said to be a left regular ordered ternary semigroup.

Definition 2.2.2. An ordered ternary semigroup S is said to be right regular if

A ⊆ (A2S] for every A ⊆ S.

An element a of an ordered ternary semigroup S is said to be right regular if

there exists an element x ∈ S such that a ≤ aax. If all elements of S are right

regular then S is said to be a right regular ordered ternary semigroup.

Lemma 2.2.3. Let S be a left (resp. right) regular ordered ternary semigroup and

L be a lateral ideal of S, then L is left (resp. right) regular.

Proof. Let L be a lateral ideal of an ordered ternary semigroup S. Let A ⊆ L. Since

S is left regular, A ⊆ (SAA] ⊆ (SA(SAA]] ⊆ (SASAA] ⊆ (SLSAA] ⊆ (LAA].

Thus L is left regular.

Theorem 2.2.4. Let S be an ordered ternary semigroup. Then the followings are

equivalent :

(i) S is left regular,

(ii) L(a) ⊆ L(a3) for every a ∈ S,

(iii) L(a) = L(a3) for every a ∈ S.

Proof. (i)=⇒(ii) Let a ∈ S. Since S is left regular a ∈ (Sa2]. Let x ∈ L(a) =

(a ∪ SSa] = (a] ∪ (SSa]. If x ∈ (a] then x ≤ a ≤ xa2 ≤ x(xa2)a = xxa3 ∈ SSa3.

Thus x ∈ (SSa3] ⊆ (SSa3∪a3]. Again if x ∈ (SSa] then x ∈ (SS(Sa2]] = (SSSa2] ⊆

(Sa2] ⊆ (S(Sa2]a] = (SSa3] ⊆ (SSa3∪a3]. Thus in both cases x ∈ L(a3). Therefore,

L(a) ⊆ L(a3).

(ii) =⇒ (iii) Let a ∈ S. Now a3 ∈ SSa ⊆ (SSa] ⊆ L(a). Thus L(a3) ⊆ L(a). Hence

L(a) = L(a3).
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(iii) =⇒ (i) Let a be an element of S such that L(a) = L(a3). Thus a ∈ L(a3) =

(a3 ∪ SSa3]. Therefore, either a ≤ a3 ∈ Sa2 or there exixts x, y ∈ S such that

a ≤ xya3 ∈ SSSa2 ⊆ Sa2. Hence S is left regular.

Theorem 2.2.5. Let S be an ordered ternary semigroup. Then the followings are

equivalent :

(i) S is right regular,

(ii) R(a) ⊆ R(a3) for every a ∈ S,

(iii) R(a) = R(a3) for every a ∈ S.

Proof. Proof is similar to the above Theorem 2.2.4.

Theorem 2.2.6. Let S be an ordered ternary semigroup such that S is a union of

left regular ternary subsemigroups of S, then S is left regular.

Proof. Suppose that S is a union of left regular ternary subsemigroups of S. Then

S =
⋃
i∈∆

Si where {Si|i ∈ ∆} is a family of left regular ternary subsemigroups

of S. Let a ∈ S. Then a ∈ Sj for some j ∈ ∆. Since Sj is a left regular ternary

subsemigroup of S, we have a ∈ (Sja
2]. Since Sj ⊆ S, then Sja

2 ⊆ Sa2 =⇒ (Sja
2] ⊆

(Sa2]. Thus a ∈ (Sa2] and hence S is left regular ordered ternary semigroup.

Similar results hold if we replace ‘left’ by ‘right’.

Theorem 2.2.7. Let S be an ordered ternary semigroup such that S is a union of

left simple ternary subsemigroups of S, then S is left regular.

Proof. Let S =
⋃
j∈∆

Sj, where Sj is a left simple subsemigroup of S for every j ∈ ∆.

Let T be a left ideal of S such that a3 ∈ T for some a ∈ S. Since a ∈ S, a ∈ Sj for

some j ∈ ∆. Now a3 ∈ T and a3 ∈ SjSjSj ⊆ Sj. Thus a
3 ∈ T ∩ Sj. So T ∩ Sj ̸= {}.

Now SjSj(T ∩ Sj) = SjSjT ∩ Sj
3 ⊆ SST ∩ Sj ⊆ T ∩ Sj. Again let x ∈ Sj such that

x ∈ (T ∩ Sj]. Then x ≤ y for some y ∈ T ∩ Sj ⊆ T . Thus x ∈ (T ] = T . Hence

x ∈ T ∩ Sj and so (T ∩ Sj] = T ∩ Sj. Thus T ∩ Sj is a left ideal in Sj. Since Sj

is left simple we have T ∩ Sj = Sj. Thus Sj ⊆ T and hence a ∈ T . Thus T is left

21



ON REGULARITIES IN ORDERED TERNARY SEMIGROUPS

simple. Since T is arbitrary left ideal of S, every left ideal of S is left simple. Now

S is also a left ideal. Thus S = (aaS] for all a ∈ S by Theorem 1.4.7. Hence S is

left regular.

Similarly we have the following corollary.

Corollary 2.2.8. Let S be an ordered ternary semigroup such that S is a union of

right simple ternary subsemigroups of S, then S is right regular.

Theorem 2.2.9. Let S be an ordered ternary semigroup. Then S is left (resp. right)

regular if and only if every left (resp. right) ideal of S is semiprime.

Proof. Let S be a left regular ordered ternary semigroup and L be a left ideal

of S. Let A3 ⊆ L for some left ideal A of S. Since S is left regular, we have

A ⊆ (SA2] ⊆ (S(SA2]A] = (S(SA2)A] = (SSA3] ⊆ (SSL] ⊆ (L] = L. Thus L is

semiprime.

Conversely, suppose that every left ideal of S is semiprime. Let A ⊆ S. Then

SS(SAA] ⊆ (S](S](SAA] ⊆ (SSSAA] ⊆ (SAA] and ((SAA]] = (SAA]. Therefore,

(SAA] is a left ideal of S. Now A3 = AAA ⊆ SAA ⊆ (SAA] = (SA2]. Since every

left ideal of S is semiprime, we have A ⊆ (SA2]. Thus S is a left regular ordered

ternary semigroup.

Similarly, we can also prove the same for right ideal of S.

Theorem 2.2.10. Let S be an ordered ternary semigroup. Then the followings are

equivalent:

(i) If L1, L2 and L3 are left ideals of S, then (L1L2L3] = (Lσ(1)Lσ(2)Lσ(3)] for every

permutation σ of {1, 2, 3} and (L1
3] = (L1].

(ii) If L1, L2 and L3 are left ideals of S, then L1 ∩ L2 ∩ L3 = (L1L2L3].

(iii) S is left regular and left simple.

Proof. (i) =⇒ (ii) Let L1, L2 and L3 are left ideals of S. Thus, (L1L2L3] ⊆ (SSL3] ⊆

(L3] = L3, (L2L3L1] ⊆ (SSL1] ⊆ (L1] = L1 and (L3L1L2] ⊆ (SSL2] ⊆ (L2] = L2.

By (i) (L1L2L3] = (L2L3L1] = (L3L1L2]. Thus (L1L2L3] ⊆ L1 ∩ L2 ∩ L3. Now

22



ON REGULARITIES IN ORDERED TERNARY SEMIGROUPS

(L1L2L3] ̸= {}. Therefore, L1 ∩ L2 ∩ L3 is a left ideal of S and by hypothesis

L1∩L2∩L3 = ((L1∩L2∩L3)
3] = ((L1∩L2∩L3)(L1∩L2∩L3)(L1∩L2∩L3)] ⊆ (L1L2L3]

and hence (L1L2L3] = L1 ∩ L2 ∩ L3.

(ii) =⇒ (iii) Let a ∈ S. Then by (ii) L(a) = L(a)∩L(a)∩L(a) = (L(a)L(a)L(a)] =

(L(a)3]. Also L(a) = S∩S∩L(a) = (SSL(a)] = (SSa]. Again (aSS] ⊆ (L(a)SS] =

L(a) ∩ S ∩ S = L(a) ⊆ (SSa]. Thus a ∈ L(a) = (L(a)3] ⊆ ((SSa]3] = ((SSa)3] =

(SSaSSaSSa] = (SS(aSS](aSS]a] ⊆ (SS(SSa](SSa]a] ⊆ (SSSSSSSa2] ⊆ (Sa2].

Thus S is left regular.

Let a ∈ S. Then a ∈ L(a) ⊆ (SSa]. Thus S ⊆ (SSa]. Also (SSa] ⊆ (SSS] ⊆ S.

Thus S = (SSa]. Hence S is left simple.

(iii) =⇒ (i) Let S be a left regular and left simple ordered ternary semigroup.

Now SS(L1L2L3] ⊆ (S](S](L1L2L3] ⊆ (SSL1L2L3] ⊆ (L1L2L3] and ((L1L2L3]] =

(L1L2L3]. Thus (L1L2L3] is a left ideal of S. Similarly (L2L3L1] and (L3L1L2]

are left ideals of S. Let x ∈ (L1L2L3]. So, x ≤ abc where a ∈ L1, b ∈ L2,

c ∈ L3. Now abc ∈ S, bca ∈ S. Since S is simple by Corollary 1.4.8 there exists

y, z ∈ S such that abc ≤ yzbca ∈ SSL2L3L1 ⊆ L2L3L1. Thus x ∈ (L2L3L1].

Hence (L1L2L3] ⊆ (L2L3L1]. Similarly, we can prove that (L2L3L1] ⊆ (L1L2L3].

Thus (L1L2L3] = (L2L3L1]. Proceeding in the same manner we can show that,

(L1L2L3] = (Lσ(1)Lσ(2)Lσ(3)] for every permutation σ of {1, 2, 3}. For the second

part, let a ∈ L1 ⊆ S. Since S is left regular, a ∈ (Sa2] ⊆ (S(Sa2]a] = (SSa3] ⊆

(SSL1L1L1] ⊆ (L1L1L1] ⊆ (L1
3]. Also (L1

3] ⊆ (SSL1] ⊆ (L1] = L1. This completes

the proof.

Theorem 2.2.11. Let S be an ordered ternary semigroup. Then the followings are

equivalent:

(i) If R1, R2 and R3 are right ideals of S, then (R1R2R3] = (Rσ(1)Rσ(2)Rσ(3)] for

every permutation σ of {1, 2, 3} and (R1
3] = (R1].

(ii) If R1, R2 and R3 are left ideals of S, then R1 ∩R2 ∩R3 = (R1R2R3].

(iii) S is right regular and right simple.
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Proof. Proof is similar to Theorem 2.2.10

2.3 Regular ordered ternary semigroups

In this section, we discuss the behaviour and properties of ideals, quasi-ideals, bi-

ideals, semiprime ideals on regular ordered ternary semigroup.

Definition 2.3.1. An ordered ternary semigroup S is said to be regular if A ⊆

(ASA] for every A ⊆ S.

An element a of an ordered ternary semigroup S is said to be regular if there

exists an element x ∈ S such that a ≤ axa. If all elements of S are regular then S

is said to be a regular ordered ternary semigroup.

Lemma 2.3.2. Let S be a regular ordered ternary semigroup and I be a lateral ideal

of S, then I is regular.

Proof. Let I be a lateral ideal of a regular ordered ternary semigroup S. Let A ⊆ I.

Since S is regular, A ⊆ (ASA]. Now A ⊆ (ASA] ⊆ (AS(ASA]] = (ASASA] =

(A(SAS)A] ⊆ (A(SIS)A] ⊆ (AIA]. Consequently, I is a regular ordered ternary

semigroup.

Corollary 2.3.3. In a regular ordered ternary semigroup S every ideal of S is

regular.

Theorem 2.3.4. [65, N. Lekkoksung] In a regular ordered ternary semigroup S, the

following are equivalent :

(i) S is regular;

(ii) (RML] = R ∩M ∩ L where R, M , L are right ideal, lateral ideal and left

ideal of S respectively.

Theorem 2.3.5. [65, N. Lekkoksung] In a regular ordered ternary semigroup S, the

following are equivalent :

(i) S is regular;
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(ii) for every bi-ideal B of S, (BSBSB] = B;

(iii) for every quasi-ideal Q of S, (QSQSQ] = Q.

Theorem 2.3.6. An ordered ternary subsemigroup B of a regular ordered ternary

semigroup S is a bi-ideal of S if and only if B = (BSB].

Proof. Let S be a regular ordered ternary semigroup and B ⊆ S. Let B = (BSB].

Then B = (BSB] = (BS(BSB]] = (BS(BSB)] = (BSBSB]. Thus BSBSB ⊆

(BSBSB] = B. It remains to show that (B] = B. Let x ∈ (B]. Then x ∈

((BSB]] = (BSB] = B. Thus (B] ⊆ B. Hence B is a bi-ideal of S.

Conversely, let B be any bi-ideal of a regular ordered ternary semigroup S.

Since S is regular and B ⊆ S we have B ⊆ (BSB]. Again (BSB] ⊆ (BS(BSB]] =

(BS(BSB)] = (BSBSB] ⊆ (B] = B. Thus B = (BSB].

Theorem 2.3.7. In a regular ordered ternary semigroup S, every bi-ideal of S is a

quasi-ideal of S.

Proof. LetB be a bi-ideal of a regular ordered ternary semigroup S. ThenBSBSB ⊆

B and (B] = B. Now SS(SSB] ⊆ (S](S](SSB] ⊆ (SSSSB] ⊆ (SSB] and

((SSB]] = (SSB]. Hence (SSB] is a left ideal of S. Also (BSS]SS ⊆ (BSS](S](S] ⊆

(BSSSS] ⊆ (BSS] and ((BSS]] = (BSS]. Thus (BSS] is a right ideal of S.

Again S(SBS ∪ SSBSS]S ⊆ (S](SBS ∪ SSBSS](S] ⊆ (SSBSS ∪ SSSBSSS] ⊆

(SSBSS ∪ SBS] and ((SBS ∪ SSBSS]] = (SBS ∪ SSBSS]. So (SBS ∪ SSBSS]

is a lateral ideal of S. From Theorem 2.3.5, we have (BSS] ∩ (SBS ∪ SSBSS] ∩

(SSB] = ((BSS](SBS ∪ SSBSS](SSB]] = ((BSS)(SBS ∪ SSBSS)(SSB)] =

(BSSSBSSSB ∪ BSSSSBSSSSB] ⊆ (BSBSB ∪ BSSBSSB] ⊆ (BSBSB ∪

BSB] = (BSBSB] ∪ (BSB] = B ∪ B = B, by using Theorem 2.3.5 and Theorem

2.3.6. Consequently, B is a quasi-ideal of S.

Definition 2.3.8. An ordered ternary semigroup S is called commutative if x1x2x3 =

xσ(1)xσ(2)xσ(3) for every permutation σ of {1, 2, 3} and x1, x2, x3 ∈ S.
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Theorem 2.3.9. Let S be a commutative ordered ternary semigroup. Then S is

regular if and only if every ideal of S is semiprime.

Proof. Let S be a commutative regular ordered ternary semigroup and I be any

ideal of S. Let A3 ⊆ I for A ⊆ S. Since S is regular and A ⊆ S we have

A ⊆ (ASA] = (AAS] ⊆ (A(ASA]S] = (A(ASA)S] = (A(AAS)S] = ((AAA)SS] =

(A3SS] ⊆ (ISS] ⊆ (I] = I. Thus I is a semiprime ideal of S.

Conversely, we assume that every ideal of commutative ordered ternary semi-

group S is semiprime. Let A ⊆ S. Then (ASA] is an ideal of S.

Case 1 : If (ASA] = (S] = S, we get our conclusion.

Case 2 : If (ASA] ̸= S. Then by hypothesis, (ASA] is a semiprime ideal of

S. Now A3 = AAA ⊆ ASA ⊆ (ASA] implies that A ⊆ (ASA]. Consequently, S is

regular.

Definition 2.3.10. Let S be an ordered ternary semigroup. A nonempty subset Bw

of S is called a weak bi-ideal of S, if

(i) bSbSb ⊆ Bw for all b ∈ Bw and

(ii) (Bw] = Bw.

Clearly, we have the following results :

Lemma 2.3.11. Every bi-ideal of an ordered ternary semigroup S is a weak bi-ideal

of S.

Lemma 2.3.12. The intersection of arbitrary set of weak bi-ideals of a ordered

ternary semigroup S is either empty or a weak bi-ideal of S.

Theorem 2.3.13. Let S be an ordered ternary semigroup. Then S is regular if and

only if Bw = (
⋃

b∈Bw

bSbSb] for any weak bi-ideal Bw of S.

Proof. Let S be a regular ordered ternary semigroup and Bw be any weak bi-ideal

of S. Then bSbSb ⊆ Bw for all b ∈ Bw. So
⋃

b∈Bw

bSbSb ⊆ Bw. This implies

26



ON REGULARITIES IN ORDERED TERNARY SEMIGROUPS

that (
⋃

b∈Bw

bSbSb] ⊆ (Bw] = Bw. Let b ∈ Bw. Since S is regular, there exists

x ∈ S such that b ≤ bxb. So b ≤ bxb ≤ bxbxb ∈ bSbSb ⊆
⋃

b∈Bw

bSbSb. Therefore,

b ∈ (
⋃

b∈Bw

bSbSb]. Thus Bw ⊆ (
⋃

b∈Bw

bSbSb]. Hence Bw = (
⋃

b∈Bw

bSbSb].

Conversely, let Bw = (
⋃

b∈Bw

bSbSb], where Bw is a weak bi-ideal of S. Let R be a

right ideal,M be a lateral ideal and L be a left ideal of S. Since every left, right and

lateral ideal of an ordered ternary semigroup S is a bi-ideal of S, it follows that every

left, right and lateral ideal of an ordered ternary semigroup S is a weak bi-ideal of

S. So R, M , L are weak bi-ideals of S. Thus by Lemma 2.3.12, R∩M ∩L is a weak

bi-ideal of S. Clearly, (RML] ⊆ R∩M ∩L. Now let a ∈ R∩M ∩L. Since R∩M ∩L

is weak bi-ideal of S, by hypothesis we have R ∩M ∩ L = (
⋃

x∈R∩M∩L

xSxSx]. Then

a ≤ xs1xs2x for some x ∈ R ∩M ∩ L and s1, s2 ∈ S. So a ≤ xs1xs2ys3ys4y for

some x, y ∈ R ∩M ∩ L and s1, s2, s3, s4 ∈ S. This implies that a ∈ (RML]. Thus

R∩M ∩L ⊆ (RML] and hence (RML] = R∩M ∩L. Consequently, S is a regular

ordered ternary semigroup by Theorem 2.3.4.

2.4 Completely regular ordered ternary semigroups

In this section, we introduce and study completely regular ordered ternary semi-

group. We also characterize completely regular ordered ternary semigroup by using

quasi-ideals, bi-ideals and semiprime ideals.

Definition 2.4.1. An ordered ternary semigroup S is said to be completely regular

if it is regular, left regular and right regular i.e. A ⊆ (ASA], A ⊆ (SA2] and

A ⊆ (A2S] for every A ⊆ S.

Example 2.4.2. Let S = {a, b, c, d, e} be an ordered ternary semigroup with the

ternary operation defined on S as abc = a ∗ (b ∗ c), where the binary operation * is
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defined by

* a b c d e

a a a c d a

b a b c d a

c a a c d a

d a a c d a

e a a c d e

and the order defined as ≤ := {(a, a), (a, c), (a, d), (b, b), (b, d), (b, a), (b, c),

(c, c), (c, d), (d, d), (e, a), (e, c), (e, d), (e, e)}.

Now we have the covering relation “ ≺ ” and the figure of S as follows :

≺ = {(a, c), (b, a), (c, d), (e, a)}

b

a

c

d

e

Then S is a completely regular ordered ternary semigroup.

Theorem 2.4.3. In an ordered ternary semigroup S, the following conditions are

equivalent :

(i) S is completely regular;

(ii) A ⊆ (A2SA2] for every A ⊆ S.

Proof. (i) =⇒ (ii).
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Let S be a completely regular ordered ternary semigroup. Then for any A ⊆ S,

we have A ⊆ (ASA] = ((A2S]S(SA2]] = ((A2S)S(SA2)] = (A2SSSA2] ⊆ (A2SA2].

(ii) =⇒ (i).

Let A ⊆ S. Then A ⊆ (A2SA2] = (A(ASA)A] ⊆ (ASA], A ⊆ (A2SA2] =

((A2S)A2] ⊆ (SA2] and A ⊆ (A2SA2] = (A2(SA2)] ⊆ (A2S]. This implies that

S is regular, left regular and right regular. Consequently, S is completely regular

ordered ternary semigroup.

In the following result we provide another characterization of completely regular

ordered ternary semigroup in terms of quasi-ideal.

Theorem 2.4.4. Let S be an ordered ternary semigroup. Then S is completely

regular if and only if every quasi-ideal of S is a completely regular subsemigroup of

S.

Proof. Let S be a completely regular ordered ternary semigroup and Q be a quasi-

ideal in S. Since {} ̸= Q ⊆ S and Q3 ⊆ QSS ∩ SQS ∩ SSQ ⊆ (QSS] ∩

(SQS] ∩ (SSQ] ⊆ Q, Q is a subsemigroup of S. Let A ⊆ Q ⊆ S. We have to

show that Q is completely regular. Since S is completely regular and A ⊆ S, we

have A ⊆ (ASA] = ((A2S]S(SA2]] = ((A2S)S(SA2)] = (A2SSSA2] ⊆ (A2SA2] =

(A(ASA)A] ⊆ (A(ASA]SAA] = (A(ASA)SAA] = (A(ASASA)A]. Now ASASA ⊆

SSASS ⊆ SSQSS, ASASA ⊆ SSA ⊆ SSQ and ASASA ⊆ ASS ⊆ QSS. There-

fore, ASASA ⊆ SSQ ∩ SSQSS ∩QSS ⊆ (SSQ] ∩ (SSQSS] ∩ (QSS] ⊆ Q. Hence

A ⊆ (AQA]. Again A ⊆ (ASA] ⊆ (AS(SA2]] = (AS(SA2)] ⊆ (ASS(SA2]A] =

(ASS(SA2)A] = ((ASSSA)A2] ⊆ ((ASA)A2] ⊆ (AS(ASA]A2] = (AS(ASA)A2] =

((ASASA)A2] ⊆ (QA2] andA ⊆ (ASA] ⊆ ((A2S]SA] = ((A2S)SA] ⊆ (A(A2S]SSA] =

(A(A2S)SSA] = (A2(ASSSA)] ⊆ (A2(ASA)] ⊆ (A2(ASA]SA] = (A2(ASA)SA] =

(A2(ASASA)] ⊆ (A2Q]. Thus Q is regular, left regular and right regular. Conse-

quently, Q is completely regular subsemigroup of S.

Conversely, suppose that every quasi-ideal of S is a completely regular subsemi-

group of S. Since S itself a quasi-ideal in S, S is completely regular.
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Theorem 2.4.5. Let S be an ordered ternary semigroup. Then S is left regular and

right regular if and only if every quasi-ideal of S is semiprime.

Proof. Let S be a left regular and right regular ordered ternary semigroup and Q

be a quasi-ideal of S. Let A ⊆ S and A3 ⊆ Q. Since S is left regular and right

regular, A ⊆ (SA2] and A ⊆ (A2S]. Now A ⊆ (SA2] ⊆ (S(SA2]A] = (S(SA2)A] =

(SSA3] ⊆ (SSQ], A ⊆ (A2S] ⊆ (A(A2S]S] = (A(A2S)S] = (A3SS] ⊆ (QSS] and

A ⊆ (SA2] ⊆ (SA(A2S]] = (SA3S] ⊆ (SQS]. Therefore, A ⊆ (SSQ] ∩ (SQS] ∩

(QSS] ⊆ Q. Hence Q is semiprime.

Conversely, suppose that every quasi-ideal of S is semiprime. Since every right

ideal and left ideal of S is a quasi-ideal of S, every right ideal and left ideal are

semiprime. Now by using Theorem 2.2.9, we find that S is left regular and right

regular.

From Theorem 2.4.5, we have the following result :

Corollary 2.4.6. If S is a completely regular ordered ternary semigroup then quasi-

ideals of S are semiprime.

The converse of the above result does not hold. This follows from the following

example :

Example 2.4.7. Let S = {a, b, c, d, e} be an ordered ternary semigroup with ternary

operation product defined on S by abc = a∗(b∗c), where binary operation * is defined

as

* a b c d e

a a e e a e

b d b b d b

c d b b d b

d d b b d b

e a e e a e
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and the order defined by ≤ := {(a, a), (b, a), (b, b), (b, d), (b, e), (c, a),

(c, c), (c, d), (c, e), (d, d), (d, a), (e, a), (e, e)}.

We give the covering relation “ ≺ ” and the figure of S as follows :

≺ = {(b, d), (b, e), (c, d), (c, e), (d, a), (e, a)}

b

d

a

e

c

Then S is a left regular and right regular ordered ternary semigroup. So every

quasi-ideal of S is semiprime by Theorem 2.4.5 but S is not completely regular. In

fact it is not regular since c ∈ S is not regular.

In the following result we represent a completely regular ordered ternary semi-

group in terms of bi-ideal.

Theorem 2.4.8. An ordered ternary semigroup S is completely regular if and only

if every bi-ideal of S is semiprime.

Proof. Let S be a completely regular ordered ternary semigroup and B be any bi-

ideal of S. Let A ⊆ S and A3 ⊆ B. Since S is completely regular ordered ternary

semigroup and A ⊆ S we have,

A ⊆ (A2SA2] ⊆ (A(A2SA2]S(A2SA2]A] = (A(A2SA2)S(A2SA2)A] = ((A3SA2S)(A2

S)A3] ⊆ ((A3SA2S)(A2SA2](A2SA2]SA3] = ((A3SA2S)(A2SA2)(A2SA2)SA3] =

(A3(SA2SA2S)A3(ASA2S)A3] ⊆ (BSBSB] ⊆ (B] = B. Therefore B is semiprime.

Conversely, suppose that every bi-ideal of S is semiprime. Let {} ≠ A ⊆ S. Then

we have A2SA2 ⊆ S i.e. (A2SA2] ⊆ (S] = S. Now (A2SA2]S(A2SA2]S(A2SA2] ⊆

(A2SA2](S](A2SA2](S](A2SA2] ⊆ (A2SA2SA2SA2SA2SA2] ⊆ (A2SA2]. Again
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we have ((A2SA2]] = (A2SA2]. Thus (A2SA2] is a bi-ideal in S. Now A9 =

AAAAAAAAA = AA(AAAAA)AA ⊆ AASAA = A2SA2 ⊆ (A2SA2]. By hypothe-

sis, since every bi-ideal is semiprime, A9 = (A3)3 ⊆ (A2SA2] =⇒ A3 ⊆ (A2SA2] =⇒

A ⊆ (A2SA2]. Since A is arbitrary, A ⊆ (A2SA2] for every A ⊆ S. Hence S is

completely regular ordered ternary semigroup.

Theorem 2.4.9. Let S be a commutative ordered ternary semigroup. Then the bi-

ideals of S are completely prime if and only if the bi-ideals of S form a chain and

S is completely regular.

Proof. Let the bi-ideals of S are completely prime. Let A and B are bi-ideals of S.

Then (BAB] ⊆ S. Now (BAB]S(BAB]S(BAB] ⊆ (BAB](S](BAB](S](BAB] ⊆

(BABSBABSBAB] ⊆ (BASSSASSSAB] ⊆ (BASASAB] ⊆ (BAB] and ((BAB]]

= (BAB]. Thus (BAB] is a bi-ideal of S. Now BAB ⊆ (BAB]. Since (BAB] is

a completely prime bi-ideal of S, then (BAB] is prime bi-ideal of S. Therefore, we

have either A ⊆ (BAB] or B ⊆ (BAB]. If A ⊆ (BAB], then A ⊆ (B(BAB]B] =

(B(ABB]B] ⊆ (BSBSB] ⊆ (B] = B. If B ⊆ (BAB], then B ⊆ (BA(BAB]] =

(BA(BBA]] = (BABBA] ⊆ (BAB(BAB]A] = (ABBBABA] = (ABABA] ⊆

(A] = A. Thus for any two bi-ideals A and B we have either A ⊆ B or B ⊆ A.

Thus the bi-ideals of S form a chain.

Again let a ∈ S. Then (a2Sa2]S(a2Sa2]S(a2Sa2] ⊆ (a2Sa2Sa2Sa2Sa2Sa2] ⊆ (a2Sa2].

So, (a2Sa2] is a bi-ideal in S. Now a3aa = a5 ∈ (a2Sa2] which implies that

a3 ∈ (a2Sa2] or a ∈ (a2Sa2]. Again a3 ∈ (a2Sa2] =⇒ a ∈ (a2Sa2]. Thus S is

completely regular.

For the converse part, let the bi-ideals of S form a chain and S is completelely reg-

ular. Now let a ∈ S such that a3 ∈ B where B is a bi-ideal of S. Now a ∈ (a2Sa2] ⊆

(a(a2Sa2]Sa2] = (a3Sa2Sa2] = (a3Sa(a2Sa2]S(a2Sa2]a] = (a3Sa3Sa2Sa2Sa3] ⊆

(a3Sa3Sa3] ⊆ (BSBSB] ⊆ (B] = B. Then B is completely semiprime. Now

we have to prove that (B(x)B(y)B(z)] = B(x) ∩ B(y) ∩ B(z). Let p ∈ B(x) ∩

B(y)∩B(z) ⊆ B(x). Similarly p ∈ B(y) and p ∈ B(z). Thus p3 ∈ B(x)B(y)B(z) ⊆
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(B(x)B(y)B(z)]. Now (B(x)B(y)B(z)] is also a bi-ideal in S which is completely

semiprime. Hence p ∈ (B(x)B(y)B(z)]. ThusB(x)∩B(y)∩B(z) ⊆ (B(x)B(y)B(z)].

Again let q ∈ (B(x)B(y)B(z)]. Then q ≤ x1y1z1 for some x1 ∈ B(x), y1 ∈ B(y)

and z1 ∈ B(z). Then q3 ≤ (x1y1z1)(x1y1z1)(x1y1z1) = (x1y1z1)(y1x1z1)(y1z1x1) ∈

B(x)B(y)B(z)B(y)B(x)B(z)B(y)B(z)B(x) ⊆ B(x)SB(x)SB(x) ⊆ B(x). Thus

q3 ∈ (B(x)] = B(x) and so q ∈ B(x). Thus (B(x)B(y)B(z)] ⊆ B(x). Similarly,

(B(x)B(y)B(z)] ⊆ B(y) and (B(x)B(y)B(z)] ⊆ B(z). Hence (B(x)B(y)B(z)] ⊆

B(x) ∩B(y) ∩B(z). So, (B(x)B(y)B(z)] = B(x) ∩B(y) ∩B(z).

Now let a, b, c ∈ S such that abc ∈ B. For a, b ∈ S either B(a) ⊆ B(b) or

B(b) ⊆ B(a). For b, c ∈ S either B(b) ⊆ B(c) or B(c) ⊆ B(b). For c, a ∈ S

either B(c) ⊆ B(a) or B(a) ⊆ B(c).

Case 1 : If B(a) ⊆ B(b), B(a) ⊆ B(c) and B(b) ⊆ B(c), then a ∈ B(a) = B(a) ∩

B(a) = B(a) ∩ (B(b) ∩B(c)) = B(a) ∩B(b) ∩B(c) = (B(a)B(b)B(c)] ⊆ (B] = B.

Case 2 : If B(a) ⊆ B(b), B(a) ⊆ B(c) and B(c) ⊆ B(b). This proof is similar to

Case 1.

Case 3 : If B(b) ⊆ B(c), B(b) ⊆ B(a) and B(c) ⊆ B(a), then b ∈ B(b) = B(b) ∩

B(b) = B(b) ∩ (B(c) ∩B(a)) = B(a) ∩B(b) ∩B(c) = (B(a)B(b)B(c)] ⊆ (B] = B.

Case 4 : If B(b) ⊆ B(c), B(b) ⊆ B(a) and B(a) ⊆ B(c). This proof is similar to

Case 3.

Case 5 : If B(c) ⊆ B(a), B(c) ⊆ B(b) and B(a) ⊆ B(b), then c ∈ B(c) = B(c) ∩

B(c) = B(c) ∩ (B(a) ∩B(b)) = B(a) ∩B(b) ∩B(c) = (B(a)B(b)B(c)] ⊆ (B] = B.

Case 6 : If B(c) ⊆ B(a), B(c) ⊆ B(b) and B(b) ⊆ B(a). This proof is similar to

Case 5.

Thus in all cases we have, either a ∈ B or b ∈ B or c ∈ B. Hence B is completely

prime bi-ideal in S.
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2.5 Intra-regular ordered ternary semigroups

In this section, we mainly characterize intra-regular ordered ternary semigroup by

using properties of ideals.

Definition 2.5.1. An ordered ternary semigroup S is called intra-regular if for every

a ∈ S, there exist x, y ∈ S such that a ≤ xa3y or equivalently, a ∈ (Sa3S] for all

a ∈ S.

In otherwords, an ordered ternary semigroup S is intra-regular if A ⊆ (SA3S]

for every A ⊆ S.

Now we have the following result :

Lemma 2.5.2. If S is a left (resp. right) regular ordered ternary semigroup, then

S is intra-regular.

Proof. Let S be left regular ordered ternary semigroup and A ⊆ S. Then A ⊆

(SA2] ⊆ (S(SA2]A] = (S(SA2)A] ⊆ (SS(SA2]AA] = (SS(SA2)AA] = (SSSA3A] ⊆

(SSSA3S] ⊆ (SA3S]. Thus S is intra-regular.

Similarly, we can prove the result for right regular ordered ternary semigroup.

But the converse of the above result is not true.

In the following, we give an example of an intra-regular ordered ternary semi-

group which is not left regular ordered ternary semigroup.

Example 2.5.3. Let S = {a, b, c, d, e} be an ordered ternary semigroup with ternary

operation defined on S by abc = a ∗ (b ∗ c), where the binary operation * is defined

as

* a b c d e

a a b a d a

b a b a d a

c a b a d a

d a b a d a

e a b a d a
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and the order defined by ≤ := {(a, a), (a, b), (a, c), (a, e), (b, b), (c, c),

(c, b), (c, e), (d, d), (e, b), (e, e)}.

We give the covering relation “ ≺ ” and the figure of S as follows :

≺ = {(a, c), (c, b), (c, e), (e, b)}

a

c

b

e d

Then (S, .,≤) is an intra-regular ordered ternary semigroup but not left regular,

since c and e are not left regular elements of S.

Now we can easily prove the following result :

Theorem 2.5.4. In an intra-regular ordered ternary semigroup S, L ∩M ∩ R ⊆

(LMR], where L, M , R are left ideal, lateral ideal and right ideal of S respectively.

Clearly, every ideal of an ordered ternary semigroup S is also a lateral ideal of

S. Certainly a lateral ideal of S is not necessarily an ideal of S. But in particular,

for intra-regular ordered ternary semigroup S we have the following result :

Theorem 2.5.5. Let S be an intra-regular ordered ternary semigroup. Then a non-

empty subset I of S is an ideal of S if and only if I is a lateral ideal of S.

Proof. Clearly, if I is an ideal of S, then I is a lateral ideal of S.

Conversely, assume that I is a lateral ideal of an intra-regular ordered ternary

semigroup S. Then SIS ⊆ I and (I] = I. Since S is intra-regular and I ⊆ S we

have I ⊆ (SI3S].
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Now SSI ⊆ (SSI] ⊆ (SS(SI3S]] = (SS(SI3S)] = (SSSI3S] ⊆ (SSS(SI3S]I2S]

= (SSS(SI3S)I2S] = ((SSSSI)I(ISIIS)] ⊆ (SIS] ⊆ (I] = I and ISS ⊆ (ISS] ⊆

((SI3S]SS] = ((SI3S)SS] = (SI3SSS] ⊆ (SI2(SI3S]SSS] = (SI2(SI3S)SSS] =

((SIISI)I(ISSSS) ⊆ (SIS] ⊆ (I] = I. Thus I is a left ideal as well as a right ideal

of S. Consequently, I is an ideal of S.

Lemma 2.5.6. Let S be an intra-regular ordered ternary semigroup and I be a

lateral ideal of S then I is intra-regular.

Proof. Let S be an intra-regular ordered ternary semigroup and I be a lateral ideal

of S. Let A ⊆ I ⊆ S. Since S is intra-regular, it follows that A ⊆ (SA3S]. Now

we have A ⊆ (SA3S] ⊆ (S(SA3S](SA3S](SA3S]S] = (S(SA3S)(SA3S)(SA3S)S] =

((SSA3SS)A3(SSA3SS)] ⊆ ((SSSASSS)A3(SSSASSS)] ⊆ ((SAS)A3(SAS)] ⊆

((SIS)A3(SIS)] ⊆ (IA3I].

Consequently, I is an intra regular ordered ternary semigroup.

Similarly, by Lemma 2.5.6 we can prove the following result :

Corollary 2.5.7. Let S be an intra-regular ordered ternary semigroup and I be an

ideal of S then I is intra-regular.

Theorem 2.5.8. Let S be an intra-regular ordered ternary semigroup. Let I be an

ideal of S and J be an ideal of I. Then J is an ideal of the entire ordered ternary

semigroup S.

Proof. It is sufficient to show that J is a lateral ideal of S. Now J ⊆ I ⊆ S and

SJS ⊆ SIS ⊆ I. We have to show that SJS ⊆ J . From Corollary 2.5.7, it

follows that I is an intra-regular ordered ternary semigroup. Also SJS ⊆ I. So

we have (SJS) ⊆ (I(SJS)3I] = (I(SJS)(SJS)(SJS)I] = ((ISJSS)J(SSJSI)] ⊆

((ISISS)J(SSISI)] ⊆ ((IIS)J(SII)] ⊆ ((ISS)J(SSI)] ⊆ (IJI] ⊆ (J ] = J . Con-

sequently, J is a lateral ideal of S.

Theorem 2.5.9. Let S be an ordered ternary semigroup. Then S is intra-regular if

and only if every ideal of S is semiprime.

36



ON REGULARITIES IN ORDERED TERNARY SEMIGROUPS

Proof. Let S be an intra-regular ordered ternary semigroup and I be an ideal of S.

Let A3 ⊆ I for A ⊆ S. Since S is intra-regular ordered-ternary semigroup, we have

A ⊆ (SA3S] ⊆ (SIS] ⊆ (I] = I. Hence I is a semiprime ideal of S.

Conversely, suppose that every ideal of S is semiprime. Let A ⊆ S. Since

A3 ⊆ I(A3) and by hypothesis I(A3) is a semiprime ideal of S, so A ⊆ I(A3).

Now I(A3) = (A3 ∪ SSA3 ∪ SA3S ∪ SSA3SS ∪A3SS] = (A3] ∪ (SSA3] ∪ (SA3S] ∪

(SSA3SS] ∪ (A3SS].

Case 1 : If A ⊆ (A3]. Then A ⊆ (A(A3]A] = (A(A3)A] ⊆ (SA3S].

Case 2 : If A ⊆ (SSA3] then A3 ⊆ (SSA3]A2. Hence A ⊆ (SS(SSA3]A2] =

(SS(SSA3)A2] = (SSSSAAAAA] ⊆ (SSSSSAAAS] = (SSSSSA3S] ⊆ (SA3S].

Case 3 : If A ⊆ (SA3S] we get our conclusion.

Case 4 : If A ⊆ (SSA3SS] then A3 ⊆ A(SSA3SS]A. Hence A ⊆ (SSA(SSA3SS]

ASS] = (SSA(SSA3SS)ASS] = (SSASSA3SSASS] ⊆ (SSSSSA3SSSSS] ⊆

(SA3S].

Case 5 : If A ⊆ (A3SS] then A3 ⊆ A2(A3SS]. Hence A ⊆ (A2(A3SS]SS] =

(A2(A3SS)SS] = (AAAAASSSS] ⊆ (SAAASSSSS] = (SA3SSSSS] ⊆ (SA3S].

In each cases above we have seen that S is intra-regular. Consequently, S is an

intra-regular ordered ternary semigrouop.
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Chapter 3

Semigroup cover of ternary

semigroup

3.1 Introduction

In this chapter, our main aim is to study the relation between a ternary semi-

group S and the semigroup cover Q(S) of the ternary semigroup S by their ideals,

bi-ideals, quasi-ideals, prime ideals, completely prime ideals, semiprime ideals, com-

pletely semiprime ideals. Then we discuss about left regularity, right regularity,

complete regularity and intra-regularity of S and Q(S) by using these ideals. Then

we investigate the isomorphism problem between two ternary semigroups and their

corresponding semigroup covers. In the last section, we introduce a partial order

in Q(S) by help of the partial ordered defined in S and discuss lattice structure in

between S and Q(S). M. L Santiago and S. Sri Bala [78] introduced the notion of

semigroup cover of ternary semigroup in the following way.

For a ternary semigroup S, a semigroup Q(S) was constructed in such a way that

S is embedded in Q(S) as a ternary subsemigroup. The construction of the semi-

group cover of a ternary semigroup is as follows : For a, b ∈ S, suppose that L(a, b)

and R(a, b) are left and right multiplication operators on S given by L(a, b)c = abc
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and R(a, b)c = cba for all c ∈ S. The condition of associativity is equivalent to

either of the following :

L(a, b)L(c, d) = L(a, bcd) = L(abc, d)

R(a, b)R(c, d) = R(a, dcb) = R(cba, d).

Put m(a, b) =
(
L(a, b), R(b, a)

)
. Let M = {m(a, b) : a, b ∈ S} and define a product

on M by the following way:

m(a, b)m(c, d) =
(
L(a, b)L(c, d), R(d, c)R(b, a)

)
Thus m(a, b)m(c, d) = m(abc, d) = m(a, bcd). Moreover M satisfies the associative

law for binary multiplication. Thus M can be made into a semigroup. Consider the

set Q(S) = S ∪M , where S and M are two disjoint sets. Define multiplication on

Q(S) as follows :

ab =



m(a, b) if a, b ∈ S

m(a1, a2)m(b1, b2) if a = m(a1, a2), b = m(b1, b2) ∈M

L(a1, a2)b if a = m(a1, a2) ∈M , b ∈ S

R(b2, b1)a if a ∈ S, b = m(b1, b2) ∈M

(3.1)

This product is associative in Q(S). Thus Q(S) is a semigroup and M = S2

in Q(S). For all a, b, c ∈ S, we have a(bc) = am(b, c) = R(c, b)a = abc. The

mapping f : S −→ Q(S) defined by f(a) = a is a monomorphism. Thus the ternary

semigroup S is embedded in the semigroup Q(S) as a ternary subsemigroup of Q(S).

The semigroup Q(S) is called the “Semigroup Cover” of the ternary semigroup S.

The semigroup cover Q(S) is commutative if and only if the ternary semigroup

S is commutative [77].

Throughout this section S denotes a ternary semigroup and Q(S) denotes the

semigroup cover of corresponding ternary semigroup S.
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3.2 Ideals of ternary semigroup S and semigroup

cover Q(S)

In this section, we characterize a ternary semigroup S and the semigroup cover

Q(S) of the ternary semigroup S by using their different ideals.

Proposition 3.2.1. [77, Santiago] If I is a left (resp. right) ideal in a ternary

semigroup S, then I ∪SI (resp. I ∪ IS) is a left (resp. right) ideal in the semigroup

cover Q(S). If I is an ideal in S, then I ∪ SI ∪ IS is an ideal in Q(S).

Proposition 3.2.2. [77, Santiago] If J is a left (resp. right) ideal in the semigroup

cover Q(S), then J ∩ S is a left (resp. right) ideal in the ternary semigroup S.

Moreover if J is an ideal in Q(S), then J ∩ S is an ideal in S.

Theorem 3.2.3. Let S be a ternary semigroup. Then every ideal in S is a prime

ideal of S if every ideal in Q(S) is a prime ideal of Q(S). If S is a left zero ternary

semigroup, then every ideal in Q(S) is a prime ideal of Q(S) if every ideal in S is

a prime ideal of S.

Proof. First suppose that every ideal of Q(S) is a prime ideal of Q(S). Then for

every ideal I of Q(S), JK ⊆ I implies that J ⊆ I or K ⊆ I for any ideal J , K of

Q(S). Let P be an ideal of S such that ABC ⊆ P for some ideal A, B, C of S. We

have to show that A ⊆ P or B ⊆ P or C ⊆ P . Since A,B,C are ideals in S, by

Proposition 3.2.1, we have A ∪ SA ∪AS, B ∪ SB ∪BS, C ∪ SC ∪CS are ideals in

Q(S). Take α(A) = A ∪ SA ∪ AS, α(B) = B ∪ SB ∪BS, α(C) = C ∪ SC ∪ CS.

Then, α(A)α(B)

= (A ∪ SA ∪ AS)(B ∪ SB ∪BS)

= AB ∪ ASB ∪ ABS ∪ SAB ∪ SASB ∪ SABS ∪ ASB ∪ ASSB ∪ ASBS

⊆ AB ∪ ASB ∪ ABS ∪ SAB ∪ AB ∪ SABS ∪ ASB ∪ AB ∪ AB

= AB ∪ ASB ∪ ABS ∪ SAB ∪ SABS.....................(1)
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Similarly, α(C)α(A) ⊆ CA ∪ CSA ∪ CAS ∪ SCA ∪ SCAS....................(2)

Now from (1) and (2) we have we have,

α(A)α(B)α(C)α(A)

⊆ (AB ∪ ASB ∪ ABS ∪ SAB ∪ SABS)(CA ∪ CSA ∪ CAS ∪ SCA ∪ SCAS)

= ABCA ∪ ABCSA ∪ ABCAS ∪ ABSCA ∪ ABSCAS ∪ ASBCA ∪ ASBCSA ∪

ASBCAS∪ASBSCA∪ASBSCAS∪ABSCA∪ABSCSA∪ABSCAS∪ABSSCA∪

ABSSCAS∪SABCA∪SABCSA∪SABCAS∪SABSCA∪SABSCAS∪SABSCA∪

SABSCSA ∪ SABSCAS ∪ SABSSCA ∪ SABSSCAS

⊆ ABCS ∪ ABCSS ∪ ABCSS ∪ ABSCS ∪ ABSCSS ∪ ASBCS ∪ ASBCSS ∪

ASBCSS∪ASBSCS∪ASBSCSS∪ABSCS∪ABSCSS∪ABSCSS∪ABSSCS∪

ABSSCSS∪SABCS∪SABCSS∪SABCSS∪SABSCS∪SABSCSS∪SABSCS∪

SABSCSS ∪ SABSCSS ∪ SABSSCS ∪ SABSSCSS

⊆ ABCS ∪ABC ∪ABC ∪ABC ∪ABCS ∪ASBCS ∪ASBC ∪ASBC ∪ASBC ∪

ASBCS ∪ABC ∪ABCS ∪ABCS ∪ABCS ∪ABC ∪SABCS ∪SABC ∪SABC ∪

SABC ∪ SABCS ∪ SABC ∪ SABCS ∪ SABCS ∪ SABCS ∪ SABC

⊆ PS ∪ P ∪ P ∪ P ∪ PS ∪ ASBCS ∪ ASBC ∪ P ∪ PS ∪ PS ∪ PS ∪ P ∪ SPS ∪

SP ∪ SP ∪ SP ∪ SPS ∪ SP ∪ SPS ∪ SPS ∪ SPS ∪ SP

⊆ P ∪ PS ∪ SP ∪ ASBCS ∪ ASBC.

Hence,
(
α(A)α(B)α(C)α(A)

)2

=
(
α(A)α(B)α(C)α(A)

)(
α(A)α(B)α(C)α(A)

)
⊆ (P ∪ PS ∪ SP ∪ ASBCS ∪ ASBC)(P ∪ PS ∪ SP ∪ ASBCS ∪ ASBC)

⊆ PP ∪PSP ∪PPS∪PASBCS∪PASBC∪SPP ∪SPSP ∪SPPS∪SPASBCS∪

SPASBC∪PSP∪PSSP∪PSPS∪PSASBCS∪PSASBC∪ASBCSP∪ASBCSSP∪

ASBCSPS∪ASBCSASBCS∪ASBCSASBC∪ASBCP∪ASBCSP∪ASBCPS∪

ASBCASBCS ∪ ASBCASBC

⊆ PS ∪PSS ∪PSS ∪PSSSSS ∪PSSSS ∪ SSP ∪ SSSP ∪ SSPS ∪ SPSSSSS ∪

SPSSSS∪SSP ∪SSSP ∪SSPS∪PSSSSSS∪PSSSSS∪SSSSSP ∪SSSSSSP ∪

SSSSSPS ∪ SSSSSASBCS ∪ SSSSSASBC ∪ SSSSP ∪ SSSSSP ∪ SSSSPS ∪

SSSSASBCS ∪ SSSSASBC
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⊆ PS ∪ SP ∪ P ∪ SASBCS ∪ SASBC ∪ SABCS ∪ SABC

⊆ PS ∪ SP ∪ P ∪ PS ∪ P ∪ SPS ∪ SP

⊆ P ∪ SP ∪ PS.

Since P is an ideal in S, we have P ∪ SP ∪ PS is an ideal in Q(S) and

since every ideal of Q(S) is prime, P ∪ SP ∪ PS is a prime ideal in Q(S). Also

α(A)α(B), α(C)α(A), α(A)α(B)α(C)α(A) are ideals in Q(S) since α(A), α(B) and

α(C) are ideals in Q(S). So,
(
α(A)α(B)α(C)α(A)

)2

⊆ P ∪ SP ∪ PS implies that

α(A)α(B)α(C)α(A) ⊆ P ∪SP ∪PS. Similarly, α(A)α(B)α(C)α(A) ⊆ P ∪SP ∪PS

implies that α(A)α(B) ⊆ P∪SP∪PS or α(C)α(A) ⊆ P∪SP∪PS. So, α(A)α(B) ⊆

P ∪ SP ∪ PS implies that α(A) ⊆ P ∪ SP ∪ PS or α(B) ⊆ P ∪ SP ∪ PS and

α(C)α(A) ⊆ P ∪SP ∪PS implies that α(C) ⊆ P ∪SP ∪PS or α(A) ⊆ P ∪SP ∪PS.

If α(A) = A ∪ SA ∪ AS ⊆ P ∪ SP ∪ PS then A ⊆ P ∪ SP ∪ PS which implies

that A ⊆ P or A ⊆ SP or A ⊆ PS. If A ⊆ SP then A ⊆ SS = M , which is a

contradiction. Since A is an ideal of S then A ⊆ S, so A cannot be a subset of M .

Thus A ⊈ SP . Similarly, A ⊈ PS. Hence we get A ⊆ P . Again we can show that

B ⊆ P or C ⊆ P . Therefore, P is a prime ideal of S and hence every ideal of S is

prime ideal.

Conversely, let every ideal of S is prime ideal and S is a left zero ternary semi-

group. Let R be an ideal of Q(S) such that AB ⊆ R for ideals A, B of Q(S). Since

A and B are ideals in Q(S), by Proposition 3.2.2 we have A∩S and B∩S are ideals

in S. Now, (A ∩ S)(B ∩ S)(B ∩ S) = ABB ∩ABS ∩ASB ∩ASS ∩ SBB ∩ SBS ∩

SSB ∩SSS ⊆ ABQ(S)∩ABQ(S)∩AQ(S)B ∩A∩Q(S)BB ∩Q(S)BQ(S)∩B ∩S

⊆ AB ∩AB ∩AB ∩A∩B ∩B ∩B ∩S ⊆ R∩ (A∩B)∩S ⊆ R∩Q(S)∩S = R∩S.

Since R is an ideal in Q(S), by Proposition 3.2.2 we have R ∩ S is an ideal in S.

Thus, (A∩S)(B∩S)(B∩S) ⊆ R∩S implies that A∩S ⊆ R∩S or B∩S ⊆ R∩S i.e.

A ∩ S ⊆ R or B ∩ S ⊆ R. Again since A and B are ideals of Q(S) either A,B ⊆ S

or A,B ⊆M = S2. Then we have the following four cases:

Case 1 : Let A,B ⊆ S. Then A ∩ S = A and B ∩ S = B. Thus, A ∩ S ⊆ R or

B ∩ S ⊆ R implies that A ⊆ R or B ⊆ R.
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Case 2 : Let A,B ⊆M = S2. Let a = m(a1, a2) ∈ A and b = m(b1, b2) ∈ B where

a1, a2, b1, b2 ∈ S. Since S is a left zero ternary semigroup a2 = a2xy for all x, y ∈ S.

Take a2 = a2b1b2. Thus a = m(a1, a2) = m(a1, a2b1b2) = m(a1, a2)m(b1, b2) ∈

AB ⊆ R =⇒ A ⊆ R. Again Take b2 = b2a1a2. Then b = m(b1, b2a1a2) =

m(b1, b2)m(a1, a2) = m(b1, b2)m(a1, a2b1b2) = m(b1, b2)m(a1, a2)m(b1, b2) ∈ BAB ⊆

BR ⊆ Q(S)R ⊆ R =⇒ B ⊆ R.

Case 3 : Let A ⊆ S,B ⊆M = S2, By case 1 we can say that if A ⊆ S, then A ⊆ R.

Let a ∈ A, b = m(b1, b2) ∈ B where b1, b2 ∈ S. Take b1 = b1b2a and a = aab1.

Then b = m(b1, b2) = m(b1b2a, b2) = m(b1, b2)m(a, b2) = m(b1, b2)m(aab1, b2) =

m(b1, b2)m(a, a)m(b1, b2) = m(b1, b2)aam(b1, b2) ∈ BAAB ⊆ Q(S)Q(S)R ⊆ R =⇒

B ⊆ R.

Case 4 : Let A ⊆ M = S2, B ⊆ S. Let a = m(a1, a2) ∈ A and b ∈ B where

a1, a2 ∈ S. Take a2 = a2bb. Thus a = m(a1, a2) = m(a1, a2bb) = m(a1, a2)m(b, b) =

m(a1, a2)bb ∈ ABB ⊆ RQ(S) ⊆ R =⇒ A ⊆ R and by case 1 we can say that if

B ⊆ S, then B ⊆ R.

In the above four cases we have either A ⊆ R or B ⊆ R. Hence R is a prime ideal

in Q(S) and so every ideal of Q(S) is prime ideal.

Theorem 3.2.4. Let S be a ternary semigroup. Then every ideal of S is semiprime

if every ideal of Q(S) is semiprime. Moreover if S is a left zero ternary semigroup,

then every ideal of Q(S) is semiprime if every ideal of S is semiprime.

Proof. Suppose that every ideal of Q(S) is semiprime. Then for every ideal I of

Q(S), J2 ⊆ I implies that J ⊆ I for any ideal J of Q(S). Let P be an ideal of S

such that A3 ⊆ P for an ideal A of S. We have to show that A ⊆ P . Since A is

an ideal in S, by Proposition 3.2.1, we have A∪ SA∪AS is an ideal in Q(S). Take

α(A) = A ∪ SA ∪ AS.

Then α(A)2 = (A ∪ SA ∪ AS)(A ∪ SA ∪ AS)

= AA ∪ ASA ∪ AAS ∪ SAA ∪ SASA ∪ SAAS ∪ ASA ∪ ASSA ∪ ASAS

⊆ AA ∪ ASS ∪ ASS ∪ SSA ∪ AA ∪ SAAS ∪ SSA ∪ AA ∪ AA
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⊆ AA ∪ A ∪ A ∪ A ∪ AA ∪ SAAS ∪ A ∪ AA ∪ AA

= A ∪ AA ∪ SAAS.

Again α(A)4 =α(A)2α(A)2 ⊆ (A ∪ AA ∪ SAAS)(A ∪ AA ∪ SAAS)

= AA ∪ AAA ∪ ASAAS ∪ AAA ∪ AAAA ∪ AASAAS ∪ SAASA ∪ SAASAA ∪

SAASSAAS

⊆ AA ∪ P ∪ SSAAS ∪ P ∪ SSAA ∪ SASSAS ∪ SAASS ∪ SASSAS ∪ SAAAAS

[Since, A3 ⊆ P ]

⊆ AA ∪ P ∪ AAS ∪ P ∪ AA ∪ AA ∪ SAA ∪ AA ∪ SSAASS

⊆ AA ∪ P ∪ AAS ∪ P ∪ AA ∪ AA ∪ SAA ∪ AA ∪ AA

= P ∪ A ∪ AAS ∪ SAA.

Now α(A)8 =α(A)4α(A)4 ⊆ (P ∪ A ∪ AAS ∪ SAA)(P ∪ A ∪ AAS ∪ SAA)

= PP ∪ PAA ∪ PAAS ∪ PSAA ∪AAP ∪AAAA ∪AAAAS ∪AASAA ∪AASP ∪

AASAA ∪ AASAAS ∪ AASSAA ∪ SAAP ∪ SAAAA ∪ SAAAAS ∪ SAASAA

⊆ SP ∪ PSS ∪ PSSS ∪ PSSS ∪ SSP ∪ AAAS ∪ AAASS ∪ AASSA ∪ SSSP ∪

AASSA ∪ ASSAAS ∪ AAAS ∪ SSSP ∪ SSAAA ∪ SAAASS ∪ SASSAA

⊆ SP ∪ P ∪ PS ∪ PS ∪ P ∪ PS ∪ PSS ∪ AAA ∪ SP ∪ AAA ∪ AAAS ∪ AAAS ∪

SP ∪ AAA ∪ SPSS ∪ SAAA

⊆ SP ∪P ∪PS ∪PS ∪P ∪PS ∪PSS ∪P ∪SP ∪P ∪PS ∪PS ∪SP ∪P ∪SP ∪SP

= P ∪ SP ∪ PS.

Since P is an ideal in S, we have P ∪SP ∪PS is an ideal in Q(S) and since every

ideal of Q(S) is semiprime, P ∪ SP ∪PS is a semiprime ideal in Q(S). Also α(A)2,

α(A)4 are ideals in Q(S), since α(A) is an ideal in Q(S). So α(A)8 =α(A)4α(A)4 ⊆

P ∪ SP ∪ PS implies that α(A)4 ⊆ P ∪ SP ∪ PS. Similary, α(A)4 =α(A)2α(A)2 ⊆

P∪SP∪PS implies that α(A)2 ⊆ P∪SP∪PS and α(A)2 =α(A)α(A) ⊆ P∪SP∪PS

implies that α(A) ⊆ P ∪ SP ∪ PS. Thus A ⊆ α(A) ⊆ P ∪ SP ∪ PS. Now

A ⊆ P ∪SP ∪PS implies that A ⊆ P or A ⊆ SP or A ⊆ PS. But A ⊆ SP implies

that A ⊆ SS = M , which is a contradiction. Since A is an ideal of S, so A ⊆ S.

Thus A cannot be a subset of S2 = M . Thus A ⊈ SP . Similary, A ⊈ PS. Hence

we get that A ⊆ P and so P is a semiprime ideal of S. Therefore, every ideal of S
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is semiprime.

Conversely, suppose that S is a left zero ternary semigroup and every ideal of S is

a semiprime ideal of S. Let R be an ideal of Q(S) such that A2 ⊆ R for an ideal A of

Q(S). Since A is an ideal in Q(S), by Proposition 3.2.2, we have A∩S is an ideal in

S. Now (A∩S)3 = (A∩S)(A∩S)(A∩S) = AAA∩AAS∩SAA∩SAS∩ASA∩ASS∩

SSA ∩ SSS ⊆ A3 ∩ AAQ(S) ∩ Q(S)AA ∩ Q(S)AQ(S) ∩ AQ(S)A ∩ AQ(S)Q(S) ∩

Q(S)Q(S)A ∩ S ⊆ A3 ∩A ∩ S ⊆ A3 ∩ S. So A2 ⊆ R =⇒ A3 = A2A ⊆ RQ(S) ⊆ R.

Thus (A ∩ S)3 ⊆ R ∩ S. Since R is an ideal in Q(S), by Proposition 3.2.2, we have

R∩S is an ideal in S which is semiprime. Thus A∩S ⊆ R∩S ⊆ R. Again since A

is an ideal of Q(S), either A ⊆ S or A ⊆ S2. Then we have the following two cases :

Case 1 : If A ⊆ S, then A ∩ S = A. Thus A ∩ S ⊆ R implies that A ⊆ R.

Case 2 : Let A ⊆ M = S2. Let a = m(a1, a2) ∈ A, where a1, a2 ∈ S. Since S

is a left zero ternary semigroup, a2 = a2xy for all x, y ∈ S. Thus a = m(a1, a2) =

m(a1, a2a1a2) = m(a1, a2)m(a1, a2) ∈ AA = A2. So A ⊆ A2. Hence A2 ⊆ R implies

that A ⊆ R.

Thus in the above two cases, we have A ⊆ R. Hence R is a semiprime ideal in

Q(S) and so every ideal of Q(S) is semiprime.

Theorem 3.2.5. Let S be a ternary semigroup. Then every ideal of S is com-

pletely prime if every ideal of Q(S) is completely prime. Moreover if S is a left zero

ternary semigroup, then every ideal of Q(S) is completely prime if every ideal of S

is completely prime.

Proof. First, suppose every ideal of Q(S) is completely prime. Then for every ideal

I of Q(S), xy ∈ I implies that x ∈ I or y ∈ I for any elements x, y of Q(S). Let P

be an ideal of S such that abc ∈ P for a, b, c ∈ S. We have to show that a ∈ P or

b ∈ P or c ∈ P . Since P is an ideal in S, by Proposition 3.2.1 we have P ∪SP ∪PS

is an ideal in Q(S). Now, abc ∈ P =⇒ abca ∈ PS ⊆ P ∪ SP ∪ PS. By assumption,

P ∪ SP ∪ PS is a completely prime ideal in Q(S). Then, abca ∈ P ∪ SP ∪ PS for

ab, ca ∈ SS = S2 ⊆ Q(S) implies that ab ∈ P ∪ SP ∪ PS or ca ∈ P ∪ SP ∪ PS.
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Again ab ∈ P ∪ SP ∪ PS for a, b ∈ S ⊆ Q(S) implies that a ∈ P ∪ SP ∪ PS

or b ∈ P ∪ SP ∪ PS and ca ∈ P ∪ SP ∪ PS for c, a ∈ S ⊆ Q(S) implies that

c ∈ P ∪ SP ∪ PS or a ∈ P ∪ SP ∪ PS. Now, a ∈ P ∪ SP ∪ PS implies that a ∈ P

or a ∈ SP or a ∈ PS. But a ∈ SP =⇒ a ∈ SS = M , which is a contradiction.

Because we take a is an element of S. Thus a ̸∈ SP . Similarly, a ̸∈ PS. Hence

a ∈ P . In the similar manner we can show that b ∈ P ∪SP ∪PS implies that b ∈ P

and c ∈ P ∪ SP ∪ PS implies that c ∈ P . Therefore, P is a completely prime ideal

of S and hence every ideal of S is completely prime.

Conversely, let every ideal of S is completely prime ideal and S is a left zero

ternary semigroup. Let T be an ideal of Q(S) such that ab ∈ T for a, b ∈ Q(S).

Since T is an ideal in Q(S), by Proposition 3.2.2 we have T ∩S is an ideal in S. We

have ab ∈ T . Then abb ∈ TQ(S) ⊆ T . Now, a and b are elements of Q(S). Hence

either a, b ∈ S or a, b ∈M = S2. Thus we have the following four cases:

Case 1 : If a, b ∈ S. Then abb ∈ SSS ⊆ S. Hence abb ∈ T ∩ S. Since T ∩ S is a

completely prime ideal in S, then abb ∈ T ∩S =⇒ a ∈ T ∩S or b ∈ T ∩S i.e. a ∈ T

or b ∈ T .

Case 2 : If a, b ∈ S2 =M . Let a = m(a1, a2), b = m(b1, b2) where a1, a2, b1, b2 ∈ S.

Then ab = m(a1, a2)m(b1, b2) = m(a1, a2b1b2) = m(a1, a2) = a. Hence ab ∈

T =⇒ a ∈ T . Also, bab = m(b1, b2)m(a1, a2)m(b1, b2) = m(b1, b2a1a2)m(b1, b2) =

m(b1, b2)m(b1, b2) = m(b1, b2b1b2) = m(b1, b2) = b. Since ab ∈ T , then bab ∈

Q(S)T ⊆ T . Hence b ∈ T .

Case 3 : If a ∈ S, b ∈ S2 = M . Let b = m(b1, b2) where b1, b2 ∈ S. Then

ab = am(b1, b2) = (R(b2, b1)a) = ab1b2 = a. Thus ab ∈ T implies that a ∈ T . Also

baab = m(b1, b2)aam(b1, b2) = m(b1, b2)m(a, a)m(b1, b2) = m(b1, b2aa)m(b1, b2) =

m(b1, b2)m(b1, b2) = m(b1, b2b1b2) = m(b1, b2) = b. Since ab ∈ T , then baab ∈

Q(S)Q(S)T ⊆ Q(S)T ⊆ T . Thus b ∈ T .

Case 4 : If a ∈ S2 = M, b ∈ S. Let a = m(a1, a2) where a1, a2 ∈ S. Then

abb = m(a1, a2)bb = m(a1, a2)m(b, b) = m(a1, a2bb) = m(a1, a2) = a. Thus,

abb ∈ T =⇒ a ∈ T . Also ab = m(a1, a2)b = (L(a1, a2)b) = a1a2b ∈ SSS ⊆ S
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and so ab ∈ T ∩ S =⇒ a1a2b ∈ T ∩ S. Thus a1 ∈ T ∩ S or a2 ∈ T ∩ S or b ∈ T ∩ S.

i.e. a1 ∈ T or a2 ∈ T or b ∈ T .

So, in all four cases we have either a ∈ T or b ∈ T . Hence, T is a completely

prime ideal in Q(S) and so every ideal of Q(S) is completely prime.

Corollary 3.2.6. Let S be a ternary semigroup. Then every left (resp. right) ideal

of S is completely prime if every left (resp. right) ideal of Q(S) is completely prime.

Moreover if S is a left zero ternary semigroup, then every left (resp. right) ideal of

Q(S) is completely prime if every left (resp. right) ideal of S is completely prime.

Theorem 3.2.7. Let S be a ternary semigroup. Then every ideal of S is completely

semiprime if every ideal of Q(S) is completely semiprime. Moreover if S is a left

zero ternary semigroup, then every ideal of Q(S) is completely semiprime if every

ideal of S is completely semiprime.

Proof. First, suppose every ideal of Q(S) is completely semiprime. Then for every

ideal I of Q(S), x2 ∈ I implies x ∈ I for any elements x of Q(S). Let P be an ideal

of S such that a3 ∈ P for some a ∈ S. We have to show that a ∈ P . Since P is an

ideal in S, by Proposition 3.2.1 we have P ∪ SP ∪ PS is an ideal in Q(S). Now,

a3 ∈ P =⇒ a4 ∈ PS ⊆ P ∪ SP ∪ PS. By assumption P ∪ SP ∪ PS is a completely

semiprime ideal in Q(S). So, a4 = (a2)2 ∈ P ∪ SP ∪ PS for a2 ∈ SS = S2 ⊆ Q(S)

implies that a2 ∈ P ∪SP ∪PS. Again a2 ∈ P ∪SP ∪PS for a ∈ S ⊆ Q(S) implies

that a ∈ P ∪ SP ∪ PS. Now, a ∈ P ∪ SP ∪ PS implies that a ∈ P or a ∈ SP or

a ∈ PS. But a ∈ SP =⇒ a ∈ SS = M , which is a contradiction. Because we take

a is an element of S. Thus a ̸∈ SP . Similarly a ̸∈ PS. Hence a ∈ P . Therefore,

P is a completely semiprime ideal of S and hence every ideal of S is completely

semiprime.

Conversely, let every ideal of S is completely semiprime ideal and S is a left zero

ternary semigroup. Let R be an ideal of Q(S) such that a2 ∈ R for a ∈ Q(S). Since

R is an ideal in Q(S), by Proposition 3.2.2 we have R∩S is an ideal in S. We have

a2 ∈ R. Then a3 ∈ RQ(S) ⊆ R. Now, a is an element of Q(S) either a ∈ S or
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a ∈ S2 =M . Thus we have the following two cases:

Case 1 : If a ∈ S, then a3 ∈ SSS ⊆ S. Hence a3 ∈ R ∩ S. Since R ∩ S is a

completely semiprime ideal in S, then a3 ∈ R ∩ S =⇒ a ∈ R ∩ S i.e. a ∈ R.

Case 2 : If a ∈ S2 = M , then a = m(a1, a2) where a1, a2 ∈ S. Then a2 =

m(a1, a2)m(a1, a2) = m(a1, a2a1a2) = m(a1, a2) = a. Thus, a2 ∈ R =⇒ a ∈ R. So,

in both cases we have a ∈ R. Hence, R is a completely semiprime ideal in Q(S) and

so every ideal of Q(S) is completely semiprime.

Corollary 3.2.8. Let S be a ternary semigroup. Then every left (resp. right) ideal

of S is completely semiprime if every left (resp. right) ideal of Q(S) is completely

semiprime. Moreover if S is a left zero ternary semigroup, then every left (resp.

right) ideal of Q(S) is completely semiprime if every left (resp. right) ideal of S is

completely semiprime.

Theorem 3.2.9. [77, Santiago] A ternary semigroup S is left (resp. right) regular

if and only if every left (resp. right) ideal of S is completely semiprime.

Corollary 3.2.10. A semigroup S is left (resp. right) regular if and only if every

left (resp. right) ideal of S is completely semiprime.

Theorem 3.2.11. A ternary semigroup S is left (resp. right) regular if the semi-

group Q(S) is left (resp. right) regular. Moreover if S is a left zero ternary semi-

group, then Q(S) is left (resp. right) regular if the semigroup S is left (resp. right)

regular.

Proof. Let Q(S) be a left regular semigroup. Then by Corollary 3.2.10, every left

ideal of Q(S) is completely semiprime. Therefore, every left ideal of the ternary

semigroup S is completely semiprime, by Corollary 3.2.8. Thus by Theorem 3.2.9,

S is a left regular ternary semigroup.

Conversely, suppose that S is a left zero ternary semigroup and also a left regular

ternary semigroup. Then by Therorem 3.2.9, every left ideal of S is completely

semiprime. Since S is left zero ternary semigroup and every left ideal is completely
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semiprime, so every left ideal of Q(S) is completely semiprime, by Corollary 3.2.10

and hence Q(S) is left regular, by Corollary 3.2.10.

Similarly, we can prove the result for right ideal.

Theorem 3.2.12. [29, Dutta] A ternary semigroup S intra-regular if and only if

every ideal of S is completely semiprime ideal.

Corollary 3.2.13. A semigroup S is intra-regular if and only if every ideal of S is

completely semiprime.

Finally, we prove when Q(S) will be intra-regular ternary semigroup.

Theorem 3.2.14. A ternary semigroup S is intra-regular if the semigroup Q(S) is

intra-regular. Moreover if S is a left zero ternary semigroup, then Q(S) is intra-

regular if S is intra-regular.

Proof. Let Q(S) be an intra-regular semigroup and I be an ideal in Q(S). Let

a2 ∈ I for an element a of Q(S). Since Q(S) is intra-regular and a ∈ Q(S),

there exist x, y ∈ Q(S) such that a = xa2y ∈ Q(S)IQ(S) ⊆ I. Thus I is a

completely semiprime ideal in Q(S). Since I is an arbitrary ideal, every ideal of Q(S)

is completely semiprime. By Theorem 3.2.7, every ideal of S completely semiprime.

Hence S is a intra-regular ternary semigroup, by Theorem 3.2.12.

Conversely, suppose that S is a left zero ternary semigroup and also an intra-

regular ternary semigroup. Since S is an intra-regular ternary semigroup by The-

orem 3.2.12, every ideal of S is completely semiprime ideal. Therefore, every ideal

of Q(S) is completely semiprime, by Theorem 3.2.7. Since Q(S) is a semigroup and

every ideal of Q(S) is completely semiprime, by Corollary 3.2.13, it follows that

Q(S) is an intra-regular semigroup.

3.3 Bi-ideals and quasi-ideals of S and Q(S)

The aim of this section is to characterize a ternary semigroup S and the corre-

sponding semigroup cover Q(S) of the ternary semigroup S by their bi-ideals and
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quasi-ideals.

Proposition 3.3.1. Let S be a ternary semigroup. If B is a bi-ideal in S, then

B∪BSB is a bi-ideal in S and BSSB is a bi-ideal inM . Moreover B∪BSB∪BSSB

is a bi-ideal in Q(S).

Proof. Let B be a bi-ideal in S, then BSBSB ⊆ B. Now B ∪ BSB ⊆ S. So (B ∪

BSB)S(B∪BSB)S(B∪BSB) = (BSB∪BSBSB∪BSBSB∪BSBSBSB)S(B∪

BSB) ⊆ (BSB ∪ B ∪ B ∪ BSB)S(B ∪ BSB) = (B ∪ BSB)S(B ∪ BSB) ⊆

(B ∪ BSB) and (BSSB)M(BSSB) = (BSSB)SS(BSSB) = BSSBSSBSSB ⊆

BSSB. Thus B ∪BSB is a bi-ideal in S and BSSB is a bi-ideal in M .

Now B ∪BSB ∪BSSB ⊆ S ∪ SSS ∪ SSSS ⊆ S ∪ S2 = S ∪M = Q(S).

Then (B ∪BSB ∪BSSB)Q(S)(B ∪BSB ∪BSSB)

= (B ∪BSB ∪BSSB)(S ∪ S2)(B ∪BSB ∪BSSB)

= BSB ∪ BSBSB ∪ BSBSSB ∪ BS2B ∪ BS2BSB ∪ BS2BSSB ∪ BSBSB ∪

BSBSBSB∪BSBSBSSB∪BSBS2B∪BSBS2BSB∪BSBS2BSSB∪BSSBSB∪

BSSBSBSB ∪BSSBSBSSB ∪BSSBS2B ∪BSSBS2BSB ∪BSSBS2BSSB

⊆ BSB ∪ B ∪ BSSB ∪ BSSB ∪ BSSB ∪ BSB ∪ B ∪ BSB ∪ BSSB ∪ BSSB ∪

BSSB ∪BSB ∪BSSB ∪BSSB ∪BSB ∪BSB ∪BSB ∪BSSB

⊆ B ∪BSB ∪BSSB.

Hence B ∪BSB ∪BSSB is a bi-ideal in Q(S).

Proposition 3.3.2. Let A be a non-empty subset of a ternary semigroup S. Then

ASA ∪ ASSA is a bi-ideal in Q(S).

Proof. Let A be a non-empty subset of a ternary semigroup S. Then ASA∪ASSA ⊆

Q(S). Now we have (ASA ∪ ASSA)Q(S)(ASA ∪ ASSA) = (ASA ∪ ASSA)(S ∪

S2)(ASA ∪ ASSA) = ASASASA ∪ ASASASSA ∪ ASAS2ASA ∪ ASAS2ASSA ∪

ASSASASA∪ASSASASSA∪ASSAS2ASA∪ASSAS2ASSA ⊆ ASA∪ASSA∪

ASSA ∪ ASA ∪ ASSA ∪ ASA ∪ ASA ∪ ASSA = ASA ∪ ASSA.

Therefore, ASA ∪ ASSA is a bi-ideal in Q(S).
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Proposition 3.3.3. If B is a bi-ideal of Q(S), then B ∩ S is a bi-ideal of S.

Proof. Let B be a bi-ideal of Q(S). Then B is a subsemigroup Q(S) and BQ(S)B ⊆

B =⇒ B(S ∪M)B ⊆ B =⇒ BSB ∪BMB ⊆ B =⇒ BSB ∪BSSB ⊆ B.

Now, (B ∩ S)S(B ∩ S)S(B ∩ S)

= (BSB ∩BSS ∩ SSB ∩ SSS)S(B ∩ S)

= BSBSB∩BSBSS∩BSSSB∩BSSSS∩SSBSB∩SSBSS∩SSSSB∩SSSSS

⊆ BSB ∩BSS ∩BSB ∩BSS ∩ SSB ∩ SSBSS ∩ SSB ∩ S

⊆ B ∩ S.

Hence B ∩ S is a bi-ideal of S.

Theorem 3.3.4. Let S be a ternary semigroup. Then every bi-ideal of S is semiprime

if every bi-ideal of Q(S) is semiprime. Moreover if S is a left zero ternary semigroup,

then every bi-ideal of Q(S) is semiprime if every bi-ideal of S is semiprime.

Proof. Suppose that every bi-ideal of Q(S) is semiprime. Let B be a bi-ideal of S

such that X3 ⊆ B for X ⊆ S. Since B is a bi-ideal of S, B3 is also a bi-ideal of S.

Thus B3∪B3SB3∪B3SSB3 is a bi-ideal in Q(S), by Proposiotion 3.3.1. We have to

show that X ⊆ B. Now X3 ⊆ B =⇒ X9 ⊆ B3. Then X16 = X7X9 ⊆ S7B3 ⊆ SB3.

Again X16 = X9X7 ⊆ B3S7 ⊆ B3S and hence X32 = X16X16 ⊆ B3SSB3 ⊆

B3∪B3SB3∪B3SSB3. Since every bi-ideal of Q(S) is semiprime, so B3∪B3SB3∪

B3SSB3 is a semiprime bi-ideal of Q(S). Thus X32 ⊆ B3 ∪ B3SB3 ∪ B3SSB3

implies that X16 ⊆ B3 ∪ B3SB3 ∪ B3SSB3. Proceeding in this manner, we get

X ⊆ B3 ∪ B3SB3 ∪ B3SSB3. But X ⊆ B3SSB3 implies that X ⊆ S2 = M ,

which is a contradiction. Thus X ⊆ B3 ∪ B3SB3 which implies that X ⊆ B3

or X ⊆ B3SB3. Since B is a bi-ideal of S, B is a subsemigroup of S. Thus

X ⊆ B3 ⊆ B. If X ⊆ B3SB3, then X ⊆ B3SB3 ⊆ BSBSBB2 ⊆ B3 ⊆ B. Hence

we get X ⊆ B and so B is a semiprime bi-ideal of S. Therefore, every bi-ideal of S

is semiprime.

Conversely, suppose that S is a left zero ternary semigroup and every bi-ideal of

S is semiprime. Let P be a bi-ideal of Q(S) such that Y 2 ⊆ P for Y ⊆ Q(S). Since
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P is a bi-ideal in Q(S), by Proposition 3.3.3, we have P ∩ S is bi-ideal in S. Now

Y 2 ⊆ P =⇒ Y 9 = Y 2Y Y 2Y 2Y 2 ⊆ PQ(S)PPP ⊆ PQ(S)PQ(S)P ⊆ PQ(S)P ⊆ P .

Thus Y 9 ⊆ P . Again since Y ⊆ Q(S) either Y ⊆ S or Y ⊆M = S2. Then we have

the following two cases :

Case 1 : If Y ⊆ S, then Y 9 ⊆ S9 ⊆ S. Thus, Y 9 ⊆ P ∩ S. Since P is bi-ideal in

Q(S), by Proposition 3.3.3 we have P ∩S is bi-ideal in S which is semiprime. Then

Y 9 ⊆ P ∩ S implies that Y 3 ⊆ P ∩ S and Y 3 ⊆ P ∩ S implies that Y ⊆ P ∩ S.

Hence Y ⊆ P .

Case 2 : If Y ⊆ M = S2. Let y = m(y1, y2) ∈ Y where y1, y2 ∈ S. Since S is

a left zero ternary semigroup y2 = y2xz for all x, z ∈ S. Thus y = m(y1, y2) =

m(y1, y2y1y2) = m(y1, y2)m(y1, y2) ∈ Y Y = Y 2. Thus Y ⊆ Y 2. Hence Y 2 ⊆ P

implies Y ⊆ P .

Thus in the above two cases, we have Y ⊆ P . Hence P is a semiprime bi-ideal

of Q(S) and so every bi-ideal of Q(S) is semiprime.

Similarly, we have the following result :

Theorem 3.3.5. Let S be a ternary semigroup. Then every bi-ideal of S is com-

pletely semiprime if every bi-ideal of Q(S) is completely semiprime. Moreover if S

is a left zero ternary semigroup, every bi-ideal of Q(S) is completely semiprime if

every bi-ideal of S is completely semiprime.

Proof. First, suppose that every bi-ideal of Q(S) is completely semiprime. Let B

be a bi-ideal of S such that a3 ∈ B for a ∈ S. We have to show that a ∈ B.

Now, a3 ∈ B =⇒ a9 ∈ B3 and B3 is also bi-ideal in S. Since B is a bi-ideal

in S, by Proposition 3.3.1 we have B3 ∪ B3SB3 ∪ B3SSB3 is a bi-ideal in Q(S),

which is a completely semiprime bi-ideal in Q(S). Now, a16 = a9a7 ∈ B3S7 and

a16 = a7a9 ∈ S7B3. Thus a32 = a16a16 ∈ B3SSB3 ⊆ B3 ∪ B3SB3 ∪ B3SSB3

which implies that a16 ∈ B3 ∪ B3SB3 ∪ B3SSB3. In this similar manner we get

a ∈ B3∪B3SB3∪B3SSB3 which implies that a ∈ B3 or a ∈ B3SB3 or a ∈ B3SSB3.

But a ∈ B3SSB3 =⇒ a ∈ SS = M , which is a contradiction. Because we take a is
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an element of S. Thus a /∈ B3SSB3. Hence a ∈ B3 ∪ B3SB3 ⊆ B ∪ BSBSBB2 ⊆

B ∪B3 ⊆ B. Therefore, B is a completely semiprime bi-ideal of S and hence every

bi-ideal of S is completely semiprime.

Conversely, suppose that every bi-ideal of S is completely semiprime and S is left

zero ternary semigroup. Let R be a bi-ideal of Q(S) such that b2 ∈ R for b ∈ Q(S).

Since R is a bi-ideal in Q(S), by Proposition 3.3.3 R ∩ S is a bi-ideal in S. Now,

b9 ⊆ RRQ(S)RR ⊆ R. Since b ∈ Q(S), either b ∈ S or b ∈ M = S2. Then we have

two cases:

Case 1 : If b ∈ S, then b9 ∈ S and so b9 ∈ R ∩ S. Since R ∩ S is a completely

semiprime quasi-ideal in Q(S) we have b3 ∈ R∩S. Again b3 ∈ R∩S =⇒ b ∈ R∩S.

Hence b ∈ R.

Case 2 : If b ∈ M = S2, then b = m(b1, b2) where b1, b2 ∈ S. Now b2 =

m(b1, b2)m(b1, b2) = m(b1, b2b1b2). Since S is a left zero ternary semigroup, we

have b2b1b2 = b2. So b
2 = m(b1, b2) = b. Thus b2 ∈ R =⇒ b ∈ R. Thus in both cases

we have b ∈ R. Therefore, R is a completely semiprime bi-ideal of Q(S) and hence

every bi-ideal of Q(S) is completely semiprime.

Theorem 3.3.6. [29, Dutta] A ternary semigroup S is completely regular if and

only if every bi-ideal of S is a completely semiprime bi-ideal of S.

Corollary 3.3.7. A semigroup S is completely regular if and only if every bi-ideal

of S is a completely semiprime bi-ideal of S.

Theorem 3.3.8. A ternary semigroup S is completely regular if Q(S) is completely

regular. Moreover if S is a left zero ternary semigroup, then Q(S) is completely

regular if S is completely regular.

Proof. Suppose that Q(S) is a completely regular semigroup. Then by Corollary

3.3.7, every bi-ideal of Q(S) is completely semiprime. Therefore, every bi-ideal of

the ternary semigroup S is completely semiprime, by Theorem 3.3.5. Thus S is

completely regular ternary semigroup, by Theorem 3.3.6.
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Conversely, suppose that S is a left zero ternary semigroup and also a completely

regular ternary semigroup. Then by Therorem 3.3.6, every bi-ideal of S is completely

semiprime. Since S is left zero ternary semigroup and every bi-ideal is completely

semiprime, so every bi-ideal of Q(S) is completely semiprime, by Theorem 3.3.5 and

hence Q(S) is completely regular, by Corollary 3.3.7.

Theorem 3.3.9. [44, Kar] Let S be a ternary semigroup. Then S has no proper

bi-ideal if and only if S is a ternary group.

Corollary 3.3.10. Let S be a semigroup. Then S has no proper bi-ideal if and only

if S is a group.

Theorem 3.3.11. Let S be a ternary semigroup. Then S has no proper bi-ideal if

and only if Q(S) has no proper bi-ideal.

Proof. Suppose that S has no proper bi-ideal. For any bi-ideal B in Q(S), B ∩ S is

a bi-ideal in S by Proposition 3.3.3. Then B ∩ S = S which implies that S ⊆ B.

Again since B is a bi-ideal in Q(S), so BSB is also a bi-ideal in Q(S) and hence

BSB ∩ S is a bi-ideal in S. Thus BSB ∩ S = S which implies that S ⊆ BSB. So

S2 ⊆ BSBB ⊆ BSQ(S)B = BS(S ∪M)B = BS(S ∪ S2)B = BSSB ∪ BSSSB ⊆

BSSB ∪ BSB ⊆ B(S2 ∪ S)B = B(M ∪ S)B = BQ(S)B ⊆ B. Hence Q(S) =

S ∪M = S ∪ S2 ⊆ B. Therefore, Q(S) has no proper bi-ideal.

For the converse part, let P be a bi-ideal in S. Then by Proposition 3.3.1

P ∪ PSP ∪ PSSP is a bi-ideal in Q(S). Let P1 = P ∪ PSP ∪ PSSP . Since

Q(S) has no proper bi-ideal, we have P1 = Q(S). Since P is a bi-ideal in S, PSP

is also a bi-ideal in S. Then PSP ∪ (PSP )S(PSP ) ∪ (PSP )SS(PSP ) is a bi-

ideal in Q(S). Let P2 = PSP ∪ PSPSPSP ∪ PSPSSPSP . Since Q(S) has no

proper bi-ideal, we have P2 = Q(S). Now Q(S) ∩ S = (S ∪ M) ∩ S = S. But

Q(S) ∩ S = P1 ∩ S = (P ∪ PSP ∪ PSSP ) ∩ S = P ∪ PSP and Q(S) ∩ S =

P2 ∩ S = (PSP ∪ PSPSPSP ∪ PSPSSPSP ) ∩ S = PSP ∪ PSPSPSP . Thus

P ∪ PSP = PSP ∪ PSPSPSP ⊆ PSP ∪ PSP = PSP . Hence P ⊆ PSP and so
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PSP ⊆ PS(PSP ) = PSPSP ⊆ P . Thus S = P ∪ PSP ⊆ P ∪ P = P . Therefore,

S does not have any proper bi-ideal.

Theorem 3.3.12. A ternary semigroup S is a ternary group if and only if Q(S) is

a group.

Proof. Let S be a ternary group. Then S has no proper bi-ideal. By Theorem

3.3.11, Q(S) has no proper bi-ideal. Since Q(S) is a semigroup, by Corollary 3.3.10,

we have Q(S) is a group.

For the converse part, let Q(S) be a group. Then Q(S) has no proper bi-ideal

which implies that S has no proper bi-ideal. By Theorem 3.3.9, it follows that S is

a ternary group.

Proposition 3.3.13. Let S be a ternary semigroup and Q be a quasi-ideal of S.

Then SSQ ∪ QSS ∪ SQS ∪ SSQSS is also a quasi-ideal of S and (QS ∩ SQ) ∪

SQSS ∪ SSQS is a quasi-ideal of M and Q∪ (QS ∩ SQ)∪ SSQ∪QSS ∪ SQSS ∪

SSQS ∪ SQS ∪ SSQSS is a quasi-ideal of Q(S).

Proof. Let Q ⊆ S be a quasi-ideal in a ternary semigroup S. Then Q
′
= Q∪SSQ∪

QSS ∪ SQS ∪ SSQSS ⊆ S.

Now, SSQ
′ ∩ SQ′

S ∩Q′
SS

= SS(Q∪SSQ∪QSS ∪SQS ∪SSQSS)∩S(Q∪SSQ∪QSS ∪SQS ∪SSQSS)S ∩

(Q ∪ SSQ ∪QSS ∪ SQS ∪ SSQSS)SS

⊆ SS(Q ∪ SSQ ∪QSS ∪ SQS ∪ SSQSS)

⊆ SSQ ∪ SSSSQ ∪ SSQSS ∪ SSSQS ∪ SSSSQSS

⊆ SSQ ∪ SSQSS ∪ SQS ∪ SSQSS

⊆ Q ∪ SSQ ∪QSS ∪ SQS ∪ SSQSS = Q
′
.

Thus Q
′
= Q ∪ SSQ ∪QSS ∪ SQS ∪ SSQSS is a quasi-ideal in S.

Let K = (QS ∩ SQ) ∪ SQSS ∪ SSQS ⊆M . Thus we have,

KM = ((QS∩SQ)∪SQSS∪SSQS)M = ((QSM∩SQM)∪SQSSM∪SSQSM) =

((QSSS ∩ SQSS) ∪ SQSSSS ∪ SSQSSS) ⊆ ((QS ∩ SQSS) ∪ SQSS ∪ SSQS) ⊆
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QS ∪ SQSS ∪ SSQS.

Also MK = M((QS ∩ SQ) ∪ SQSS ∪ SSQS) = ((MQS ∩ MSQ) ∪ MSQSS ∪

MSSQS) = ((SSQS∩SSSQ)∪SSSQSS∪SSSSQS) ⊆ ((SSQS∩SQ)∪SQSS∪

SSQS) ⊆ SQ ∪ SQSS ∪ SSQS.

Thus we have, KM ∩MK

⊆ (QS ∪ SQSS ∪ SSQS) ∩ (SQ ∪ SQSS ∪ SSQS)

= (SQSS ∪ SSQS) ∪ (QS ∩ SQ)

= (QS ∩ SQ) ∪ SQSS ∪ SSQS

= K

Therefore, K = (QS ∩ SQ) ∪ SQSS ∪ SSQS is a quasi-ideal in M .

Now (Q
′ ∪K) ⊆ S ∪M = Q(S). Thus we have

(Q
′ ∪K)Q(S)

= (Q ∪ (QS ∩ SQ) ∪ SSQ ∪QSS ∪ SQSS ∪ SSQS ∪ SQS ∪ SSQSS)(M ∪ S)

= (QM ∪QS ∪ (QSM ∩ SQM) ∪ (QSS ∩ SQS) ∪ SSQM ∪ SSQS ∪QSSM ∪

QSSS ∪ SQSSM ∪ SQSSS ∪ SSQSM ∪ SSQSS ∪ SQSM ∪ SQSS ∪

SSQSSM ∪ SSQSSS)

= (QSS ∪QS ∪ (QSSS ∩ SQSS) ∪ (QSS ∩ SQS) ∪ SSQSS ∪ SSQS ∪QSSSS

∪QSSS ∪ SQSSSS ∪ SQSSS ∪ SSQSSS ∪ SSQSS ∪ SQSSS ∪ SQSS

∪ SSQSSSS ∪ SSQSSS)

⊆ (QSS ∪QS ∪ (QS ∩ SQSS) ∪ (QSS ∩ SQS) ∪ SSQSS ∪ SSQS ∪ SQSS ∪ SQS)

= (SSQSS ∪ SQSS ∪ SSQS ∪ SQS) ∪ ((QSS ∪QS ∪ (QS ∩ SQSS) ∪ (QSS ∩ SQS))

⊆ (SSQSS ∪ SQSS ∪ SSQS ∪ SQS) ∪ ((QSS ∪QS ∪QS ∪ (QSS ∩ SQS))

= (SSQSS ∪ SQSS ∪ SSQS ∪ SQS) ∪ ((QSS ∪QS ∪ (QSS ∩ SQS))
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Also we have,

Q(S)(Q
′ ∪K)

= (M ∪ S)(Q ∪ (QS ∩ SQ) ∪ SSQ ∪QSS ∪ SQSS ∪ SSQS ∪ SQS ∪ SSQSS)

= (MQ ∪ SQ ∪ (MQS ∩MSQ) ∪ (SQS ∩ SSQ) ∪MSSQ ∪ SSSQ ∪MQSS∪

SQSS ∪MSQSS ∪ SSQSS ∪MSSQS ∪ SSSQS ∪MSQS ∪ SSQS∪

MSSQSS ∪ SSSQSS)

= (SSQ ∪ SQ ∪ (SSQS ∩ SSSQ) ∪ (SQS ∩ SSQ) ∪ SSSSQ ∪ SSSQ ∪ SSQSS

∪ SQSS ∪ SSSQSS ∪ SSQSS ∪ SSSSQS ∪ SSSQS ∪ SSSQS ∪ SSQS

∪ SSSSQSS ∪ SSSQSS)

⊆ (SSQ ∪ SQ ∪ (SSQS ∩ SQ) ∪ (SQS ∩ SSQ) ∪ SSQSS ∪ SQSS ∪ SSQS ∪ SQS)

= (SSQSS ∪ SQSS ∪ SSQS ∪ SQS) ∪ (SSQ ∪ SQ ∪ (SSQS ∩ SQ) ∪ (SQS ∩ SSQ))

⊆ (SSQSS ∪ SQSS ∪ SSQS ∪ SQS) ∪ (SSQ ∪ SQ)

Now

(Q
′ ∪K)Q(S) ∩Q(S)(Q′ ∪K)

=
(
(SSQSS ∪ SQSS ∪ SSQS ∪ SQS) ∪ ((QSS ∪QS ∪ (QSS ∩ SQS))

)
∩(

(SSQSS ∪ SQSS ∪ SSQS ∪ SQS) ∪ (SSQ ∪ SQ)
)

= (SSQSS ∪ SQSS ∪ SSQS ∪ SQS) ∪ (QSS ∩ SSQ) ∪ (QSS ∩ SQ) ∪ (QS ∩ SSQ)

∪ (QS ∩ SQ) ∪ (QSS ∩ SQS ∩ SSQ) ∪ (QSS ∩ SQS ∩ SQ)

⊆ (SSQSS ∪ SQSS ∪ SSQS ∪ SQS) ∪QSS ∪QSS ∪ SSQ ∪ (QS ∩ SQ) ∪Q ∪QSS

= (SSQSS ∪ SQSS ∪ SSQS ∪ SQS) ∪QSS ∪Q ∪ SSQ ∪ (QS ∩ SQ)

= Q ∪ (QS ∩ SQ) ∪ SSQ ∪QSS ∪ SQSS ∪ SSQS ∪ SQS ∪ SSQSS

= Q
′ ∪K.

Therefore, Q ∪ (QS ∩ SQ) ∪ SSQ ∪ QSS ∪ SQSS ∪ SSQS ∪ SQS ∪ SSQSS is a

57



SEMIGROUP COVER OF TERNARY SEMIGROUP

quasi-ideal in Q(S).

Proposition 3.3.14. Let A be a non-empty subset of a ternary semigroup S. Then

(i) SA ∪ SSA is a quasi-ideal of Q(S),

(ii) AS ∪ ASS is a quasi-ideal of Q(S),

(iii) SAS ∪ SSASS ∪ SASS ∪ SSAS is a quasi-ideal of Q(S).

Proof. (i) Let A be a non-empty subset of a ternary semigroup S. Then SA∪SSA ⊆

Q(S). Now SS(SA∪SSA)∩S(SA∪SSA)S ∩ (SA∪SSA)SS ⊆ SS(SA∪SSA) =

SSSA ∪ SSSSA ⊆ SA ∪ SSA. Therefore, SA ∪ SSA is a quasi-ideal in Q(S).

Similarly, we can prove (ii) and (iii).

Proposition 3.3.15. Let K be a quasi-ideal of Q(S). Then K ∩ S is a quasi-ideal

of S.

Proof. Let K be a quasi-ideal in Q(S), then K ∩ S is a non-empty subset in S and

KQ(S)∩Q(S)K ⊆ K =⇒ K(M ∪ S)∩ (M ∪ S)K ⊆ K =⇒ (KM ∪KS)∩ (MK ∪

SK) ⊆ K =⇒ (KSS ∪ KS) ∩ (SSK ∪ SK) ⊆ K =⇒ (KSS ∩ SSK) ∪ (KSS ∩

SK) ∪ (KS ∩ SSK) ∪ (KS ∩ SK) ⊆ K. Thus (KSS ∩ SSK) ⊆ K. Now in S,

SS(K ∩ S) ∩ S(K ∩ S)S ∩ (K ∩ S)SS

= SSK ∩ SSS ∩ SKS ∩ SSS ∩KSS ∩ SSS

⊆ SSK ∩ S ∩ SKS ∩ S ∩KSS ∩ S

= SSK ∩ SKS ∩KSS ∩ S

⊆ (SSK ∩KSS) ∩ S

⊆ K ∩ S

Hence K ∩ S is a quasi-ideal in S.

Theorem 3.3.16. Let S be a ternary semigroup. Then every quasi-ideal of S is

semiprime if every quasi-ideal of Q(S) is semiprime. Moreover if S is a left zero
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ternary semigroup, then every quasi-ideal of Q(S) is semiprime if every quasi-ideal

of S is semiprime.

Proof. First suppose that every quasi-ideal of Q(S) is semiprime. Let K be a quasi-

ideal of S such that A3 ⊆ K for any non-empty subset A of S. We have to show that

A ⊆ K. Now A3 ⊆ K =⇒ A4 ⊆ KS ⊆ KS ∪KSS. Since K ⊆ S, by Proposition

3.3.14, we have KS ∪ KSS, SK ∪ SSK and SKS ∪ SSKSS ∪ SKSS ∪ SSKS

are quasi-ideals in Q(S). By assumption, KS ∪ KSS is a semiprime quasi-ideal

of Q(S). So A4 = (A2)2 ⊆ KS ∪ KSS for A2 ⊆ SS = S2 ⊆ Q(S) implies that

A2 ⊆ KS ∪ KSS. Again A2 ⊆ KS ∪ KSS for A ⊆ S ⊆ Q(S) implies that

A ⊆ KS ∪ KSS. Now A ⊆ KS ∪ KSS implies that A ⊆ KS or A ⊆ KSS.

But A ⊆ KS =⇒ A ⊆ S.S = M , which contradicts the fact that A is a subset

of S. So A ⊈ KS. Thus A ⊆ KSS. Similarly, we can show that A ⊆ SSK and

A ⊆ SKS∪SSKSS. Hence A ⊆ KSS∩SSK ∩ (SKS∪SSKSS) ⊆ K. Therefore,

K is semiprime and hence every quasi-ideal of S is semiprime.

Conversely, suppose that S is a left zero ternary semigroup and every quasi-ideal

of S is semiprime. Let R be quasi-ideal of Q(S) such that B2 ⊆ R for B ⊆ Q(S).

Since R is a quasi-ideal in Q(S), R ∩ S is a quasi-ideal in S by Proposition 3.3.15.

Now B3 ⊆ RQ(S)∩Q(S)R ⊆ R. We take B is a non-empty subset of Q(S) = S∪M .

Then either B ⊆ S or B ⊆M = S2. Therefore, we have the following two cases :

Case 1 : If B ⊆ S, then B3 ⊆ S and so B3 ⊆ R ∩ S. Since R is a semiprime

quasi-ideal in Q(S), we have B ⊆ R ∩ S. Hence B ⊆ R.

Case 2 : Let B ⊆ M = S2. Let b = m(b1, b2) ∈ B, where b1, b2 ∈ S. Now b2 =

m(b1, b2)m(b1, b2) = m(b1, b2b1b2) = m(b1, b2) = b ∈ B. Then B2 ⊆ R =⇒ B ⊆ R.

Thus in both cases we have B ⊆ R. Therefore, R is a semiprime quasi-ideal of Q(S)

and hence every quasi-ideal of Q(S) is semiprime.

Similarly, we have the following result :

Theorem 3.3.17. Let S be a ternary semigroup. Then every quasi-ideal of S is

completely semiprime if every quasi-ideal of Q(S) is completely semiprime. Moreover
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if S is a left zero ternary semigroup, then every quasi-ideal of Q(S) is completely

semiprime if every quasi-ideal of S is completely semiprime.

Proof. First, suppose every quasi-ideal of Q(S) is completely semiprime. Let K be

a quasi-ideal of S such that a3 ∈ K for a ∈ S. We have to show that a ∈ K. Now,

a3 ∈ K =⇒ a4 ∈ KS ⊆ KS ∪KSS. Since K is a quasi-ideal in S, by Proposition

3.3.14 we have KS ∪KSS, SK ∪ SSK and SKS ∪ SSKSS ∪ SSKS ∪ SKSS is

a quasi-ideal in Q(S). Then KS ∪ KSS is a completely semiprime quasi-ideal in

Q(S). So, a4 = (a2)2 ∈ KS ∪ KSS for a2 ∈ S.S = S2 ⊆ Q(S) implies that a2 ∈

KS∪KSS. Again a2 ∈ KS∪KSS for a ∈ S ⊆ Q(S) implies a ∈ KS∪KSS. Now,

a ∈ KS ∪KSS implies that a ∈ KS or a ∈ KSS. But a ∈ KS =⇒ a ∈ S.S = M ,

which is a contradiction. Because we take a is an element of S. So a ̸∈ KS. Thus

a ∈ KSS. Similarly, a ∈ SSK and a ∈ SKS ∪ SSKSS. Hence a ∈ K. Therefore,

K is a completely semiprime quasi-ideal of S and hence every quasi-ideal of S is

completely semiprime.

Conversely, let every quasi-ideal of S is completely semiprime and S is a left

zero ternary semigroup. Let R be quasi-ideal of Q(S) such that b2 ∈ R for any

element b of Q(S). Since R is a quasi-ideal in Q(S), by Proposition 3.3.15 R ∩ S is

a quasi-ideal in S. Now, b3 ∈ RQ(S)∩Q(S)R ⊆ R. Since b ∈ Q(S), either b ∈ S or

b ∈M = S2. Then we have two cases:

Case 1 : If b ∈ S , Then b3 ∈ S and so b3 ∈ R ∩ S. Since R ∩ S is a completely

semiprime quasi-ideal in S we have b ∈ R ∩ S. Hence b ∈ R.

Case 2 : If b ∈ M = S2. Let b = m(b1, b2) where b1, b2 ∈ S. Now we have,

b3 = m(b1, b2)m(b1, b2)m(b1, b2) = m(b1, b2b1b2)m(b1, b2) = m(b1, b2)m(b1, b2) =

m(b1, b2b1b2) = m(b1, b2) = b. Hence we get, b = b3 ∈ R. Thus in both cases

we have b ∈ R. Therefore R is a completely semiprime quasi-ideal of Q(S) and

hence every quasi-ideal of Q(S) is completely semiprime.

Theorem 3.3.18. Let S be a ternary semigroup. Then S has no proper quasi-ideal

if and only if Q(S) has no proper quasi-ideal.
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Proof. Suppose S has no proper quasi-ideal. Let K be a quasi-ideal in Q(S). Then

by Proposition 3.3.15 we haveK∩S is a quasi-ideal in S. ThusK∩S = S. So S ⊆ K

and S2 ⊆ KK ⊆ KQ(S). Also S2 ⊆ KK ⊆ Q(S)K. Thus S2 ⊆ KQ(S)∩Q(S)K ⊆

K. Hence S ∪ S2 = S ∪M ⊆ K i.e. Q(S) ⊆ K. Therefore, Q(S) has no proper

quasi-ideal.

Conversely, let Q(S) has no proper quasi-ideal. Let Q be a quasi-ideal in S.

Then Q ⊆ S. By Lemma 3.3.14 we have SQ ∪ SSQ, QS ∪QSS, SQS ∪ SSQSS ∪

SQSS ∪SSQS are all quasi-ideals in Q(S). Let Q1 = SQ∪SSQ, Q2 = QS ∪QSS,

Q3 = SQS ∪ SSQSS ∪ SQSS ∪ SSQS. Since Q(S) has no proper quasi-ideal,

Q1 = Q(S), Q2 = Q(S), Q3 = Q(S). Now Q(S) ∩ S = (S ∪M) ∩ S = S. But

Q(S) ∩ S = Q1 ∩ S = (SQ ∪ SSQ) ∩ S = SSQ. Again Q(S) ∩ S = Q2 ∩ S =

(QS ∪ QSS) ∩ S = QSS and Q(S) ∩ S = Q3 ∩ S = (SQS ∪ SSQSS ∪ SQSS ∪

SSQS) ∩ S = SQS ∪ SSQSS. Then S = SSQ = QSS = (SQS ∪ SSQSS). Hence

S = SSQ ∩QSS ∩ (SQS ∪ SSQSS) ⊆ Q. Thus S has no proper quasi-ideal.

3.4 Isomorphism problem of S and Q(S)

Theorem 3.4.1. Let S1 and S2 be two ternary semigroups. If S1
∼= S2, then

Q(S1) ∼= Q(S2).

Proof. Let S1 and S2 be two ternary semigroups such that S1
∼= S2. Then there exists

an ternary isomorphism f : S1 −→ S2. Let us define a mapping ϕ : Q(S1) −→ Q(S2)

by

ϕ(a) =

f(a) if a ∈ S1

f(a1)f(a2) if a = m1(a1, a2) ∈M1 or a = a1a2 ∈ S1
2.

First we have to show that the mapping is well defined. For this, let a = b

for a, b ∈ Q(S1). If a, b ∈ S1, then a = b =⇒ f(a) = f(b) =⇒ ϕ(a) = ϕ(b). If

a = m1(a1, a2), b = m1(b1, b2) ∈ S1
2, where a1, a2, b1, b2 ∈ S1. Then a = b =⇒

m1(a1, a2) = m1(b1, b2). This implies that m1(a1, a2)c = m1(b1, b2)c for all c ∈ S1
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i.e. a1a2c = b1b2c for all c ∈ S1. Let c1 ∈ S1. Then we have,

a1a2c1 = b1b2c1

=⇒ f(a1a2c1) = f(b1b2c1)

=⇒ f(a1)f(a2)f(c1) = f(b1)f(b2)f(c1)

=⇒ m2(f(a1), f(a2))f(c1) = m2(f(b1), f(b2))f(c1)

So, m2(f(a1), f(a2))f(c) = m2(f(b1), f(b2))f(c) for all c ∈ S1. Since f is onto

f(S1) = S2. Thus, m2(f(a1), f(a2))d = m2(f(b1), f(b2))d for all d ∈ S2. Similarly,

dm2(f(a1), f(a2)) = dm2(f(b1), f(b2)) for all d ∈ S2. Hence m2(f(a1), f(a2)) =

m2(f(b1), f(b2)) =⇒ f(a1)f(a2) = f(b1)f(b2) =⇒ ϕ(a) = ϕ(b). Thus ϕ is a well

defined mapping.

Now for any a, b ∈ Q(S1), we have to show that ϕ(ab) = ϕ(a)ϕ(b).

Case 1 : Let a, b ∈ S1. Then ab ∈ S1S1 ⊆ S1
2. So ϕ(ab) = f(a)f(b) = ϕ(a)ϕ(b).

Case 2 : Let a, b ∈ S1
2. Let a = m1(a1, a2), b = m1(b1, b2), where a1, a2, b1, b2 ∈ S1.

Then ab ∈ S1
2S1

2 ⊆ S1
2. So ϕ(ab) = ϕ(m1(a1, a2)m1(b1, b2)) = ϕ(m1(a1, a2b1b2)) =

ϕ(a1a2b1b2) = f(a1)f(a2b1b2) = f(a1)f(a2)f(b1)f(b2) = ϕ(a)ϕ(b).

Case 3 : Let a ∈ S1 and b ∈ S1
2. Let b = m1(b1, b2), where b1, b2 ∈ S1. Then

ab ∈ S1S1
2 ⊆ S1. So ϕ(ab) = f(ab) = f(am1(b1, b2)) = f(R(b2, b1)a) = f(ab1b2) =

f(a)f(b1)f(b2) = ϕ(a)ϕ(b).

Case 4 : Let a ∈ S1
2 and b ∈ S1. Let a = m1(a1, a2), where a1, a2 ∈ S1. Then

ab ∈ S1
2S1 ⊆ S1. So ϕ(ab) = f(ab) = f(m1(a1, a2)b) = f(L(a1, a2)b) = f(a1a2b) =

f(a1)f(a2)f(b) = ϕ(a)ϕ(b).

It remains to show that ϕ is a bijective mapping. Let ϕ(a) = ϕ(b) for a, b ∈ Q(S1).

If a, b ∈ S1, then ϕ(a) = f(a) and ϕ(b) = f(b). Thus ϕ(a) = ϕ(b) =⇒ f(a) =

f(b) =⇒ a = b (since f is one-one). Let a, b ∈ S1
2. Let a = m1(a1, a2), b =

m1(b1, b2), where a1, a2, b1, b2 ∈ S1. Now we have ϕ(a) = ϕ(b) =⇒ ϕ(m1(a1, a2)) =

ϕ(m1(b1, b2)) =⇒ ϕ(a1a2) = ϕ(b1b2) =⇒ f(a1)f(a2) = f(b1)f(b2) =⇒ m2(f(a1), f(a2))

= m2(f(b1), f(b2)) =⇒ m2(f(a1), f(a2))d = m2(f(b1), f(b2))d for all d ∈ S2. Since

62



SEMIGROUP COVER OF TERNARY SEMIGROUP

f is onto, for all d ∈ S2, there exists c ∈ S1 such that f(c) = d. Thus we

have m2(f(a1), f(a2))f(c) = m2(f(b1), f(b2))f(c) for all c ∈ S1 which implies that

f(a1)f(a2)f(c) = f(b1)f(b2)f(c) for all c ∈ S1. Since f is a ternary isomorphism,

f(a1)f(a2)f(c) = f(b1)f(b2)f(c) =⇒ f(a1a2c) = f(b1b2c) =⇒ a1a2c = b1b2c =⇒

m1(a1, a2)c = m1(b1, b2)c for all c ∈ S1. Similarly, cm1(a1, a2) = cm1(b1, b2) for all

c ∈ S1. Hence m1(a1, a2) = m1(b1, b2) which implies that a = b. Let a ∈ S1, b ∈ S1
2.

Let b = m1(b1, b2), where b1, b2 ∈ S1. Then a ̸= b. Now ϕ(a) = f(a) ∈ S2 and

ϕ(b) = f(m(b1, b2)) = f(b1)f(b2) ∈ S2
2 = M2. Thus ϕ(a) ̸= ϕ(b). Therefore, ϕ is

one-one.

Now let b ∈ Q(S2) = S2 ∪M2. For any y ∈ S2, there exists x ∈ S1 such that

f(x) = y. If b ∈ S2, then there exists a ∈ S1 such that f(a) = b i.e. ϕ(a) = b for

some a ∈ S1 ⊆ Q(S1). Let b ∈ M2 = S2
2. Then b = m2(b1, b2), where b1, b2 ∈ S2.

Now m2(b1, b2) = b1b2 = f(a1)f(a2) = ϕ(a) for some a = a1a2 ∈ S1
2 =M1 ⊆ Q(S1).

Hence ϕ is onto. Therefore, ϕ : Q(S1) −→ Q(S2) is an isomorphism.

Remark 3.4.2. Let S1 and S2 be two ternary semigroups such that Q(S1) ∼= Q(S2).

Then S1
∼= S2 is not necessarily true, in general.

We give the following example.

Example 3.4.3. Let S1 = {1,−1, i,−i} be a semigroup. A semigroup is always a

ternary semigroup. Thus S1 is also a ternary semigroup. In that case, S1
2 = S1.

Then Q(S1) = S1∪S1
2 = {1,−1, i,−i}. Let us take another ternary semigroup S2 =

{i,−i}. Thus S2
2 = {m(i, i), (−i,−i), (i,−i),m(−i, i)}. Since m(i, i) = m(−i,−i)

and m(i,−i) = m(−i, i) then Q(S2) = {i,−i,m(i, i),m(i,−i)}. Let us define a

mapping ψ from Q(S1) to Q(S2) by ψ(1) = m(i,−i), ψ(−1) = m(i, i), ψ(i) = i,

ψ(−i) = −i. Hence ψ : Q(S1) −→ Q(S2) is an isomorphism. But there is no

bijection from S1 to S2 and so S1 is not isomorphic to S2.

However we have the following results, in particular :

We find some class of ternary semigroups in which the above result holds. For

this, we first need the following lemma :
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Lemma 3.4.4. If f is a homomorphism from Q(S1) to Q(S2) then the restriction

of f on S1 is also a ternary homomorphism from S1 to Q(S2), considering Q(S2) as

ternary semigroup.

Proof. Let f be a homomorphism from Q(S1) to Q(S2) and f ∗ be the restriction

of f on S1. Then for all x, y ∈ Q(S1) we have f(xy) = f(x)f(y). Let a, b, c ∈ S1.

Since S1 ⊆ Q(S1) we have a, b, c ∈ Q(S1). Now in Q(S1), abc = a(bc) = am(b, c).

Thus f(abc) = f(am(b, c)) = f(a)f(m(b, c)) = f(a)f(bc) = f(a)f(b)f(c). Hence

f(abc) = f(a)f(b)f(c) for all a, b, c ∈ S1. Thus f ∗ : S1 −→ Q(S2) is a ternary

homomorphism.

Theorem 3.4.5. Let S1 and S2 be two ternary semigroups such that S1 is a left

zero ternary semigroup. If Q(S1) ∼= Q(S2) then S1
∼= S2.

Proof. Let f be an isomorphism from Q(S1) to Q(S2). Then by Lemma 3.4.4 f is

a homomorphism from S1 to Q(S2) and f is a bijection from Q(S1) to Q(S2). We

have to show that f(S1) = S2. Now S1 ⊆ Q(S1). So f(S1) ⊆ Q(S2) = S2 ∪M2.

Then f(S1) ⊆ S2 ∪ S2
2. Let a, b ∈ S1 such that f(a) ∈ S2 and f(b) ∈ S2

2. Since

S1 is left zero ternary semigroup, aab = a. Then f(aab) = f(a) ∈ S2. Also by the

above Lemma 3.4.4 we have, f(aab) = f(a)f(a)f(b) ∈ S2S2S2
2 ⊆ S2

2. Thus for the

element aab ∈ S1 we get, f(aab) ∈ S2 ∩ S2
2, which is a contradiction. Therefore,

either f(S1) ⊆ S2 or f(S1) ⊆ S2
2.

Let f(S1) ⊆ S2
2. Let a, b ∈ S1. Then f(a), f(b) ∈ S2

2. Thus f(ab) = f(a)f(b) ∈

S2
2S2

2 ⊆ S2
2. Hence f(m(a, b)) ∈ S2

2 for all a, b ∈ S1. Thus f(M1) = f(S1
2) ⊆ S2

2

and so f(Q(S1)) ⊆ S2
2. Thus f(Q(S1)) ⊆ S2

2 implies that for any d ∈ S2 there

is no element c ∈ Q(S1) such that f(c) = d, which contradicts the fact that f is a

bijection from Q(S1) to Q(S2). So our assumption is is not true. Hence f(S1) ⊈ S2
2.

Therefore, we have f(S1) ⊆ S2.

Again since f : Q(S1) −→ Q(S2) is an isomorphism. Then f−1 : Q(S2) −→

Q(S1) is also an isomorphism. Thus f−1(S2) ⊆ S1. Hence f(f−1(S2)) ⊆ f(S1) ⊆
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S2. Therefore, f(S1) = S2. Hence the restriction of f on S1 i.e. f ∗ is a ternary

isomorphism from S1 to S2.

Theorem 3.4.6. Let S1 be a ternary semilattice and S2 be a ternary semigroup such

that Q(S1) ∼= Q(S2). Then S1
∼= S2.

Proof. Let f be an isomorphism from Q(S1) to Q(S2). Then f
∗ the restriction of f

on S1 is a ternary homomorphism from S1 to Q(S2) by Lemma 3.4.4. We have to

show that f(S1) = S2. Let a, b ∈ S1 such that f(a) ∈ S2
2 and f(b) ∈ S2. Since S1

is a ternary semilattice we have a2b = ab2. Thus f(a2b) = f(ab2). Now f(a2b) =

f(a)f(a)f(b) ∈ S2
2S2

2S2 ⊆ S2 and f(ab2) = f(a)f(b)f(b) ∈ S2
2S2S2 ⊆ S2

2. Thus

f(a2b) ̸= f(ab2) which implies that a2b ̸= ab2. This contradicts our assumption

that S1 is a ternary semilattice. Therefore, either f(S1) ⊆ S2 or f(S1) ⊆ S2
2. By

previous Theorem 3.4.5 we can say that f(S1) ⊈ S2
2. Then f(S1) ⊆ S2. Now

proceeding in the similar way we can say that f(S1) = S2 and hence f ∗ is a ternary

isomorphism from S1 to S2.

Theorem 3.4.7. Let S1 be a ternary rectangular band and S2 be a ternary semi-

group. Then Q(S1) ∼= Q(S2) implies that S1
∼= S2.

Proof. Suppose that f : Q(S1) −→ Q(S2) be an isomorphism. Then by Lemma

3.4.4 we have f ∗ = f |S1 is a ternary homomorphism from S1 to Q(S2). Since S1 is

a ternary rectangular band then a = aba for all a, b ∈ S1. Let a, b ∈ S1 such that

f(a) ∈ S2 and f(b) ∈ S2
2. Then f(aba) = f(a) ∈ S2. Also by the Lemma 3.4.4

f(aba) = f(a)f(b)f(a) ∈ S2S2
2S2 ⊆ S2

2. Hence f(aba) = f(a) ∈ S2 ∩ S2
2, which

is a contradiction. Therefore, either f(S1) ⊆ S2 or f(S1) ⊆ S2
2. Proceeding in the

same manner as Theorem 3.4.5 we can say that f(S1) = S2 and so f ∗ the restriction

of f on S1 is a ternary isomorphism from S1 to S2.
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3.5 Lattice structures in ordered ternary semi-

group S and its cover Q(S)

Let S be a ternary semigroup and ‘≤’ is a partial order on S. Then we can define

a partial order ‘≤Q’ on Q(S) = S ∪M as follows:

For all a, b ∈ S, a ≤Q b if and only if a ≤ b’,

For all a, b ∈M , a ≤Q b if and only if a1a2x ≤ b1b2x and xa1a2 ≤ xb1b2 ∀ x ∈ S.

Let m(a1, a2) ∈ M = S2. Then we have a1a2x, xa1a2 ∈ S for all x ∈ S. Now

a1a2x ≤ a1a2x and xa1a2 ≤ xa1a2 for all x ∈ S. Hence m(a1, a2) ≤Q m(a1, a2).

Thus ≤Q is reflexive.

Let m(a1, a2),m(b1, b2) ∈M = S2 such that m(a1, a2) ≤Q m(b1, b2) and m(b1, b2)

≤Q m(a1, a2). Now m(a1, a2) ≤Q m(b1, b2) =⇒ a1a2x ≤ b1b2x and xa1a2 ≤ xb1b2 for

all x ∈ S and m(b1, b2) ≤Q m(a1, a2) =⇒ b1b2x ≤ a1a2x and xb1b2 ≤ xa1a2 for all

x ∈ S. Since ≤ is anti-symmetric we have a1a2x = b1b2x and xa1a2 = xb1b2 for all

x ∈ S. Thus we have m(a1, a2)x = a1a2x = b1b2x = m(b1, b2)x and xm(a1, a2) =

xa1a2 = xb1b2 = xm(b1, b2) which implies that m(a1, a2) = m(b1, b2). Therefore ≤Q

is anti-symmetric.

Let m(a1, a2),m(b1, b2),m(c1, c2) ∈ M = S2 such that m(a1, a2) ≤Q m(b1, b2)

and m(b1, b2) ≤Q m(c1, c2). Now m(a1, a2) ≤Q m(b1, b2) =⇒ a1a2x ≤ b1b2x and

xa1a2 ≤ xb1b2 for all x ∈ S and m(b1, b2) ≤Q m(c1, c2) =⇒ b1b2x ≤ c1c2x and

xb1b2 ≤ xc1c2 for all x ∈ S. Thus we have a1a2x ≤ c1c2x and xa1a2 ≤ xc1c2 for all

x ∈ S( Since ≤ is transitive ). Hence m(a1, a2) ≤Q m(c1, c2) and so ≤Q is transitive.

Therefore ≤Q is a partial order relation in M = S2. By definition ≤Q is also a

partial order relation in S. Hence ≤Q is a partial order relation in S ∪M = Q(S).

Theorem 3.5.1. A ternary semigroup S is an ordered ternary semigroup with re-

spect to ≤ if and only if Q(S) is an ordered semigroup with respect to ≤Q.

Proof. First suppose that S is an ordered ternary semigroup with respect to ≤.
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Then for a, b ∈ S, a ≤ b =⇒ xya ≤ xyb, xay ≤ xby, axy ≤ bxy for all x, y ∈ S.

Let a, b ∈ Q(S) such that a ≤Q b. Then we have to show that for any two elements

a, b ∈ Q(S), a ≤Q b imples that ax ≤Q bx and xa ≤Q xb for all x ∈ Q(S). Then we

have the following two cases:

Case 1 : Let a, b ∈ S such that a ≤Q b. Then a ≤Q b ⇔ a ≤ b. Then for all

x, y ∈ S we have xya ≤ xyb, xay ≤ xby, axy ≤ bxy. Also a ≤ b =⇒ yxa ≤ yxb,

yax ≤ ybx, ayx ≤ byx. Thus xay ≤ xby and yxa ≤ yxb for all x, y ∈ S =⇒

m(x, a) ≤Q m(x, b) =⇒ xa ≤Q xb. Similarly axy ≤ bxy and yax ≤ ybx for all

x, y ∈ S =⇒ m(a, x) ≤Q m(b, x) =⇒ ax ≤Q bx. Hence a ≤Q b =⇒ ax ≤Q bx and

xa ≤Q xb for all x ∈ S.

Again a ≤ b =⇒ axy ≤ bxy =⇒ axy ≤Q bxy =⇒ am(x, y) ≤Q bm(x, y) and

a ≤ b =⇒ xya ≤ xya =⇒ xya ≤Q xya =⇒ m(x, y)a ≤Q m(x, y)b. Hence a ≤Q

b =⇒ am(x, y) ≤Q bm(x, y) and m(x, y)a ≤Q m(x, y)b for all m(x, y) ∈ S2 =M .

Case 2 : Let a, b ∈ M = S2 such that a ≤Q b. Let a = m(a1, a2), b = m(b1, b2)

where a1, a2, b1, b2 ∈ S. Now m(a1, a2) ≤Q m(b1, b2) =⇒ a1a2z ≤ b1b2z for all

z ∈ S =⇒ a1a2z ≤Q b1b2z for all z ∈ S( Since a1a2z, b1b2z ∈ S) =⇒ m(a1, a2)z ≤Q

m(b1, b2)z for all z ∈ S. Similarly, m(a1, a2) ≤Q m(b1, b2) =⇒ za1a2 ≤ zb1b2 for all

z ∈ S =⇒ za1a2 ≤Q zb1b2 for all z ∈ S( Since za1a2, zb1b2 ∈ S) =⇒ zm(a1, a2) ≤Q

zm(b1, b2) for all z ∈ S. Hence for all a, b ∈ M , a ≤Q b =⇒ za ≤Q zb and az ≤Q bz

for all z ∈ S.

Again for all x, y, z ∈ S, a1a2z ≤ b1b2z =⇒ xya1a2z ≤ xyb1b2z( Since a1a2z, b1b2z ∈

S and S is an ordered ternary semigroup). Then m(x, ya1a2)z ≤ m(x, yb1b2)z for all

z ∈ S and ya1a2 ≤ yb1b2 =⇒ zxya1a2 ≤ zxyb1b2 =⇒ zm(x, ya1a2) ≤ zm(x, yb1b2).

Thus we have m(x, ya1a2) ≤Q m(x, yb1b2) =⇒ m(x, y)m(a1, a2) ≤Q m(x, y)m(b1, b2)

for all m(x, y) ∈M = S2. Similarly, for all x, y, z ∈ S, za1a2 ≤ zb1b2 =⇒ za1a2xy ≤

zb1b2xy =⇒ zm(a1, a2xy) ≤ zm(a1, a2xy) for all z ∈ S and a1a2x ≤ b1b2x =⇒

a1a2xyz ≤ b1b2xyz =⇒ m(a1, a2xy)z ≤ m(b1, b2xy)z. Then we have m(a1, a2xy) ≤Q

m(b1, b2xy) =⇒ m(a1, a2)m(x, y) ≤Q m(b1, b2)m(x, y) for all m(x, y) ∈ M = S2.

Hence for all a, b ∈ M , a ≤Q b implies that za ≤Q zb and az ≤Q bz for all z ∈ S.
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Thus in both cases we have a ≤Q b imples that ax ≤Q bx and xa ≤Q xb for all

x ∈ Q(S). Hence Q(S) is an ordered ternary semigroup with respect to the partial

order ‘≤Q’.

For the converse part, let Q(S) is an ordered ternary semigroup with respect

to the partial ordered ‘≤Q’. Then a ≤Q b in Q(S) =⇒ xa ≤Q xb and ax ≤Q bx

for all x ∈ Q(S). Let a, b ∈ S such that a ≤Q b. Then ax ≤Q bx for all x

in S. Since ax, bx ∈ Q(S), ax ≤Q bx =⇒ axy ≤Q bxy =⇒ axy ≤ bxy for all

y ∈ S. Again xa ≤Q xb =⇒ xay ≤Q xby =⇒ xay ≤ xby for all x, y ∈ S. Also

a ≤Q b implies that m(x, y)a ≤Q m(x, y)b =⇒ xya ≤Q xyb =⇒ xya ≤ xyb and

am(x, y) ≤Q bm(x, y) =⇒ axy ≤Q bxy =⇒ axy ≤ bxy for all m(x, y) ∈ S2 = M.

Therefore S is an ordered ternary semigroup with respect to ‘≤’.

Note 3.5.2. We cannot define a partial order between the element of S and M =

S2. Otherwise if we take a ∈ S and b ∈ M = S2 such that a ≤Q b and b ≤Q a then

by anti-symmetric properties of ‘≤Q’ we have a = b, which contradicts the fact that

S and M are disjoint sets.

Theorem 3.5.3. Let S be an ordered ternary semigroup. Then S is a lattice w.r.t.

‘≤’ if and only if Q(S) is a lattice w.r.t. ‘≤Q’.

Proof. Suppose Q(S) be a lattice with respect to ≤Q. Let a, b ∈ S. Thus inf{a, b} =

a ∧ b and sup{a, b} = a ∨ b exists in Q(S). Let c, d ∈ Q(S) such that c = a ∧ b and

d = a ∨ b. If c ∈ M = S2 then c = m(e, f) for some e, f ∈ S. Thus a ∧ b = m(e, f)

implies that m(e, f) ≤Q a and m(e, f) ≤Q b, which is a contradiction ( since ‘≤Q’

is a partial order relation, m(e, f) ≰Q a, b). Thus c ̸∈ M = S2. Hence c ∈ S. Thus

c = inf{a, b} exisxts in S. Similarly, we can show that d = sup{a, b} exists in S.

Therefore, S is also a lattice.

Conversely, let S be a lattice with respect to ‘≤’. Then for all a, b ∈ S we

have inf{a, b} = a ∧ b and sup{a, b} = a ∨ b exists in S. We have to show that

for any two elements x, y ∈ Q(S), x ∧ y and x ∨ y exists in Q(S). Since S is a

lattice, it is sufficient to prove that for all x, y ∈ S2, x ∧ y and x ∨ y exists in S2.
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Let x = m(a1, b1), y = m(a2, b2) ∈ S2 = M ⊆ Q(S) where a1, b1, a2, b2 ∈ S. Let

a = a1 ∧ a2 and b = b1 ∧ b2. Then a ≤ a1 =⇒ abx ≤ a1bx and b ≤ b1 =⇒ a1bx ≤

a1b1x (since S is a partially ordered ternary semigroup). Thus abx ≤ a1b1x for all

x ∈ S. Similarly, a ≤ a1 =⇒ xab ≤ xa1b and b ≤ b1 =⇒ xa1b ≤ xa1b1. Thus

xab ≤ xa1b1. Hence m(a, b) ≤Q m(a1, b1). In the similar way we can show that,

m(a, b) ≤Q m(a2, b2). Thus m(a, b) is a lower bound of m(a1, b1) and m(a2, b2).

Thus inf{m(a1, b1),m(a2, b2)} also exists in Q(S). Therefore Q(S) is a lattice.

Note 3.5.4. However, m(a, b) = m(a1 ∧ a2, b1 ∧ b2) may not be the greatest lower

bound of m(a1, b1) and m(a2, b2).

In the followings example we can show that m(a1 ∧ a2, b1 ∧ b2) ̸= m(a1, b1) ∧

m(a2, b2).

Example 3.5.5. Let S = Z = the set of all integers. Since all binary semigroups

are ternary semigroups as well, we consider Z is a ternary semigroup here. Let us

define a partial order relation on Z defined by a ≤ b if and only if a divides b. Thus

(Z, .,≤) is a lattice. Let m(4, 2),m(3, 4) ∈ Z2 where 2, 3, 4 ∈ Z. Thus 4∧ 3 = 1 and

2∧4 = 2. Thus m(4∧3, 2∧4) = m(1, 2). Again m(2, 2) ≤Q m(4, 2) since 2.2.x = 4x

divides 4.2.x = 8x for all x ∈ Z. Similarly, m(2, 2) ≤Q m(3, 4). Thus m(2, 2) is

also a lower bound of {m(4, 2),m(3, 4)}. But m(1, 2) ≤Q m(2, 2). So, m(1, 2) is

not the inf{m(4, 2),m(3, 4)} = m(4, 2) ∧ m(3, 4). Therefore, m(4 ∧ 3, 2 ∧ 4) ̸=

m(4, 2) ∧m(3, 4).

Next we have the following theorem:

Theorem 3.5.6. The ordered ternary semigroup S is a complete lattice if and only

if Q(S) is a complete lattice.

Proof. Let Q(S) be a complete lattice with respect to ≤Q. Let A = {aα : α ∈ I}

be any non empty subset of S, I being an index set. Since Q(S) is a complete

lattice and A ⊆ S ⊆ Q(S), infA and supA exists in Q(S). Thus ∧
α∈I

aα and ∨
α∈I

aα
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exist in Q(S). Let c, d ∈ Q(S) = S ∪M such that c = ∧
α∈I

aα and d = ∨
α∈I

aα. If

c ∈ M = S2 then c = m(a, b) for some a, b ∈ S. Thus ∧
α∈I

aα = m(a, b) implies

that m(a, b) ≤Q aα for each α ∈ I where I is an index set, which is a contradiction

[since aα ∈ S, and m(a, b) ∈ M,a ≰ m(a, b)]. Thus c ̸∈ M = S2. Hence c ∈ S.

Therefore, c = ∧
α∈I

aα exisxts in S. Similarly, we can show that d = ∨
α∈I

aα exists in

S. Therefore, S is also a complete lattice.

Conversely, let S be a complete lattice with respect to ‘≤’. Since S is a complete

lattice, then for all non-empty subsets of S both infimum and supremum exist in

S. We have to show that for any non-empty subset of Q(S) both infimum and

supremum exist in Q(S). Now it is sufficient to prove that for all non-empty subsets

of S2 both infimum and supremum exists in S2. Let X = {m(aβ, bβ) : β ∈ I} where

aβ, bβ ∈ S , I being an index set. Since S is a lattice by Theorem 3.5.3, Q(S) is

a lattice. Let a = ∧
β∈I
aβ and b = ∧

β∈I
bβ. Then a ≤ aβ and b ≤ bβ for all β ∈ I.

Hence abx ≤ aβbx and =⇒ aβbx ≤ aβbβx for all β ∈ I [ since S is an ordered

ternary semigroup]. Thus abx ≤ aβbβx for all x ∈ S and for all β ∈ I. Similarly,

a ≤ aβ =⇒ xab ≤ xaβb and b ≤ bβ =⇒ xaβb ≤ xaβbβ. So, xab ≤ xaβbβ. Thus

m(a, b) ≤Q m(aβ, bβ) for all β ∈ I. Hence m(a, b) is a lower bound of m(aβ, bβ) for

all β ∈ I. Thus inf{m(aβ, bβ) : β ∈ I} = infX also exists in Q(S). Therefore, Q(S)

is a complete lattice.

Note 3.5.7. However from the previous example 3.5.5 we arrived at the conclusion

that m( ∧
β∈I
aβ, ∧

β∈I
bβ) ̸= ∧

β∈I
m(aβ, bβ). Hence m(a, b) = m( ∧

β∈I
aβ, ∧

β∈I
bβ) may not be

the infimum of inf{m(aβ, bβ) : β ∈ I}.

Theorem 3.5.8. The ordered ternary semigroup S is a modular lattice if and only

if Q(S) is a modular lattice.

Proof. Let S be an ordered ternary semigroup such that S a modular lattice. Then

a ≤ b implies that a∨ (x∧ b) = (a∨ x)∧ b where a, b, x are arbitrary elements of S.

Let m(a1, b1),m(a2, b2) ∈M = S2 such that m(a1, b1) ≤Q m(a2, b2).
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Then a1b1x ≤ a2b2x and xa1b1 ≤ xa2b2 for all x ∈ S. Let m(a3, b3) be an

arbitrary element in M . Since a1b1x, a2b2x, a3b3x ∈ S, then a1b1x ≤ a2b2x implies

that a1b1x ∨ (a3b3x ∧ a2b2x) = (a1b1x ∨ a3b3x) ∧ a2b2x for all x ∈ S.

=⇒ m(a1, b1)x ∨ (m(a3, b3)x ∧m(a2, b2)x) = (m(a1, b1)x ∨m(a3, b3)x) ∧m(a2, b2)x

for all x ∈ S.

=⇒
(
m(a1, b1)∨ (m(a3, b3)∧m(a2, b2))

)
x =

(
(m(a1, b1)∨m(a3, b3))∧m(a2, b2)

)
x for

all x ∈ S.

Similarly, we have xa1b1, xa2b2, xa3b3 are all elements of S. Then xa1b1 ≤ xa2b2

implies that xa1b1 ∨ (xa3b3 ∧ xa2b2) = (xa1b1 ∨ xa3b3) ∧ xa2b2 for all x ∈ S.

=⇒ xm(a1, b1) ∨ (xm(a3, b3) ∧ xm(a2, b2)) = (xm(a1, b1) ∨ xm(a3, b3)) ∧ xm(a2, b2)

for all x ∈ S.

=⇒ x
(
m(a1, b1)∨ (m(a3, b3)∧m(a2, b2))

)
= x

(
(m(a1, b1)∨m(a3, b3))∧m(a2, b2)

)
for

all x ∈ S. Therefore, m(a1, b1) ∨ (m(a3, b3) ∧m(a2, b2)) = (m(a1, b1) ∨m(a3, b3)) ∧

m(a2, b2). Hence Q(S) = S ∪M is a modular lattice.

Conversely, let Q(S) be a modular lattice. Let a, b ∈ S such that a ≤ b. Since

a, b ∈ Q(S), then a ≤ b =⇒ a ≤Q b. So a ∨ (x ∧ b) = (a ∨ x) ∧ b for all x ∈ Q(S).

Thus for any c ∈ S we have a∨(c∧b) = (a∨c)∧b. Hence S is a modular lattice.

In the similar way we can prove the following theorem:

Theorem 3.5.9. The ordered ternary semigroup S is a distributive lattice if and

only if Q(S) is a distributive lattice.

Proof. Let S be an ordered ternary semigroup such that S a diatributive lattice.

Then for all a, b, c ∈ S we have a∧ (b∨ c) = (a∧ b)∨ (a∧ c). Let m1,m2,m3 ∈ Q(S).

If m1,m2,m3 ∈ S then our proof is done. If m1 = m(a1, b1),m2 = m(a2, b2),m3 =

m(a3, b3) ∈ M = S2 ⊆ Q(S) then we have
(
m(a1, b1) ∧ (m(a2, b2) ∨m(a3, b3))

)
x =

m(a1, b1)x ∧ (m(a2, b2)x ∨m(a3, b3)x) = a1b1x ∨ (a2b2x ∧ a3b3x) for all x ∈ S. Since

a1b1x, a2b2x, a3b3x ∈ S, a1b1x ∨ (a2b2x ∧ a3b3x) = (a1b1x ∨ a2b2x) ∧ (a1b1x ∨ a3b3x)

for all x ∈ S. Hence
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(
m(a1, b1) ∧ (m(a2, b2) ∨m(a3, b3))

)
x

= (a1b1x ∨ a2b2x) ∧ (a1b1x ∨ a3b3x) for all x ∈ S

= (m(a1, b1)x ∧m(a2, b2)x) ∨ (m(a1, b1)x ∧m(a3, b3)x) for all x ∈ S

=
(
(m(a1, b1) ∧m(a2, b2)) ∨ (m(a1, b1) ∧m(a3, b3))

)
x

Similarly, we have xa1b1, xa2b2, xa3b3 ∈ S. So, xa1b1 ∨ (xa2b2 ∧ xa3b3) = (xa1b1 ∨

xa2b2) ∧ (xa1b1 ∨ xa3b3) for all x ∈ S implies that x
(
m(a1, b1) ∧ (m(a2, b2) ∨

m(a3, b3))
)
= x

(
(m(a1, b1) ∧ m(a2, b2)) ∨ (m(a1, b1) ∧ m(a3, b3))

)
. Hence Q(S) =

S ∪M is a distributive lattice.

For the converse part, let a, b, c are any three elements of S. Since Q(S) is a

distributive lattice and a, b, c ∈ Q(S) we have a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c). Hence

S is a distributive lattice.
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Chapter 4

Ordered power ternary semigroups

4.1 Introduction

The motivation for constructing power ternary semigroup of a ternary semigroup

came from the concept of power semigroup of a semigroup. For a ternary semigroup

S, one may define a ternary semigroup on the power set P (S). If S is a ternary

semigroup, then the ternary product of non-empty subsets of S can be defined in a

natural way to produce a ternary semigroup, which is called the power semigroup

of S, we simply denote it by P (S).

There are various ways to lift a relation from a base set to its power set. Power

ternary semigroup P (S) of ternary semigroup S is an appropriate ternary semigroup

defined on the power set P (S) as a generalization of power semigroup of a semigroup.

The main object of this paper has two aspects. We characterize power ternary semi-

group with the help of corresponding ternary semigroup and discuss the connection

between them. The rest of the paper deals with ordered power ternary semigroup.

We define a partial order in power ternary semigroup in a natural way. Ordered

power ternary semigroups are closely related to power ternary semigroups. In this

chapter, we study some properties of ordered power ternary semigroups and discuss

the connection between ternary semigroup and ordered power ternary semigroup.
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The study of power semigroup of a semigroup was initiated by Tamura and

Shafer [89] in 1967. Many authors [90], [88], [34], [57] studied power semigroups and

its properties. T. Dutta, S. Kar and K. Das [30] studied the notion of power ternary

semiring of a ternary semiring. S. Kar and I. Dutta [41] extend the notion of power

semigroups to power ternary semigroups.

In this chapter, S denotes a ternary semigroup.

4.2 Power ternary semigroup P (S) of a ternary

semigroup S

In this section, we consider the correlation between ternary semigroup S and the

corresponding power ternary semigroup P (S).

If S is a ternary semigroup and P (S) be the set of all non-empty subsets of

S, then P (S) forms a ternary semigroup with respect to the ternary multiplication

defined as follows :

ABC = {abc : a ∈ A, b ∈ B, c ∈ C} for all A, B, C ∈ P (S).

We call P (S), the power ternary semigroup of all non-empty subsets of a ternary

semigroup S.

Now we have the following results regarding some properties of a ternary semi-

group S and the corresponding properties of the power ternary semigroup P (S).

Theorem 4.2.1. A ternary semigroup S is commutative if and only if the power

ternary semigroup P (S) is commutative.

Proof. First suppose that S be a commutative ternary semigroup. Then for all

a, b, c ∈ S, we have abc = acb = bac = bca = cab = cba. Let A,B,C ∈ P (S)

and x ∈ ABC. Then x = a1b1c1 for some a1 ∈ A, b1 ∈ B, c1 ∈ C. Since S is

commutative, it follows that x = a1b1c1 = a1c1b1 ∈ ACB. Hence ABC ⊆ ACB.

Similarly, ACB ⊆ ABC. Thus ABC = ACB. Continuing in this way we can show
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that ABC = ACB = BAC = BCA = CAB = CBA for all A,B,C ∈ P (S). Hence

P (S) is a commutative ternary semigroup.

Conversely, let P (S) be a commutative ternary semigroup. Let a, b, c ∈ S. Then

abc ∈ {abc} = {a}{b}{c}. Since P (S) is commutative, {a}{b}{c} = {a}{c}{b} =

{acb}. Hence abc ∈ {acb} and so abc = acb. Continuing in this way we get abc =

acb = bac = bca = cab = cba for all a, b, c ∈ S. Thus S is a commutative ternary

semigroup.

Theorem 4.2.2. Let S be a ternary semigroup and A be a non-empty subset of S.

Then A is a ternary subsemigroup of S if and only if P (A) is a ternary subsemigroup

of P (S).

Proof. First let us consider A be a subsemigroup of S. Then A3 ⊆ A. Since

A ⊆ S, it follows that P (A) ⊆ P (S). Let X ∈ P (A)3. Thus X ⊆ A3 ⊆ A and

so X ∈ P (A). Hence P (A)3 ⊆ P (A) and P (A) is a ternary subsemigroup of P (S).

For the converse part, let P (A) be a ternary subsemigroup of P (S) for some non

empty subset A of S. Let x ∈ A3. Then x = a1a2a3 for some a1, a2, a3 ∈ S. Now

{x} = {a1a2a3} = {a1}{a2}{a3} ∈ P (A)3 ⊆ P (A). Thus x ∈ A and hence A is a

ternary subsemigroup of S.

Theorem 4.2.3. Let S be a ternary semigroup and I be a non-empty subset of S.

Then I is an ideal of S if and only if P (I) is an ideal of the power ternary semigroup

P (S).

Proof. Let us consider I be an ideal of S. Then P (I) ⊆ P (S) and P (I)P (J)P (K) =

{ABC : A ⊆ I, B ⊆ J,C ⊆ K} for all I, J,K ⊆ S. Let ABC ∈ P (S)P (S)P (I).

Thus ABC ⊆ SSI ⊆ I and so ABC ∈ P (I). Hence P (S)P (S)P (I) ⊆ P (I).

Similarly, we can show that P (S)P (I)P (S) ⊆ P (I) and P (I)P (S)P (S) ⊆ P (I).

Hence P (I) is an ideal of the power ternary semigroup P (S).

For the converse part, let P (I) be an ideal of P (S) for some non-empty subset

I of S. Let x ∈ SSI. Then x = s1s2i for some s1, s2 ∈ S and i ∈ I. Now
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{x} = {s1s2i} = {s1}{s2}{i} ∈ P (S)P (S)P (I) ⊆ P (I). Thus {x} ∈ P (I) and so

{x} ⊆ I. Hence x ∈ I. Thus SSI ⊆ I. Similarly, we can prove that SIS ⊆ I and

ISS ⊆ I. Hence I is an ideal of S.

Note 4.2.4. However, we notice that not all ideal of P (S) is in the form P (I) for

some ideal I of S.

We give the following example:

Example 4.2.5. Let S = Z−
0 . Then P (−3Z−

0 Z−
0 )\P ({2k + 1}k=−1,−2,−3,....) is an

ideal of P (Z−
0 ). This ideal cannot be written in the form P (A) for any non empty

subest A of S, so we conclude that the proposed ideal can not be written in the form

P (I) for some ideal I of Z−
0 .

Theorem 4.2.6. Let S be a ternary semigroup and B be a non-empty subset of

S. Then B is a bi-ideal of S if and only if P (B) is a bi-ideal of the power ternary

semigroup P (S).

Proof. Assume that B is a bi-ideal of S. Then B3 ⊆ B and BSBSB ⊆ B. Since

B is a ternary subsemigroup of S, P (B) is a ternary subsemigroup of P (S), by

Theorem 4.2.2. Let A ∈ P (B)P (S)P (B)P (S)P (B). Then A = B1S1B2S2B3 for

some B1, B2, B3 ∈ P (B) and S1, S2 ∈ P (S). Thus A ⊆ BSBSB ⊆ B. This

implies that A ∈ P (B). So P (B)P (S)P (B)P (S)P (B) ⊆ P (B) and hence P (B) is

a bi-ideal of the power ternary semigroup P (S). For the converse part, let P (B)

be a bi-ideal of P (S). Then P (B) is a ternary subsemigroup of P (S) and hence

B is a ternary subsemigroup of S, by Theorem 4.2.2. Let y ∈ BSBSB. Then

y = b1s1b2s2b3 for some b1, b2, b3 ∈ B and s1, s2 ∈ S. Now {y} = {b1s1b2s2b3} =

{b1}{s1}{b2}{s2}{b3} ∈ P (B)P (S)P (B)P (S)P (B) ⊆ P (B). Thus {y} ∈ P (B) and

so {y} ⊆ B. This shows that y ∈ B and hence BSBSB ⊆ B. Consequently, B is a

bi-ideal of S.

Note 4.2.7. However not all bi-ideal of P (S) is in the form P (B) for some bi-ideal

B of S. In the previous example 4.2.5 we have already seen that each ideal of P (S)
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not in the form P (I) for some ideal I of S. Since every ideal is a bi-ideal, this is

also an example of our conclusion.

Theorem 4.2.8. Let S be a ternary semigroup and Q be a non-empty subset of S.

Then Q is a quasi-ideal of S if and only if P (Q) is a quasi-ideal of the power ternary

semigroup P (S).

Proof. First let us consider Q be a quasi-ideal of S. Then Q3 ⊆ Q and SSQ ∩

(SQS ∪ SSQSS) ∩ QSS ⊆ Q. Let A ∈ P (S)P (S)P (Q) ∩ (P (S)P (Q)P (S) ∪

P (S)P (S)P (Q)P (S)P (S)) ∩ P (Q)P (S)P (S). Thus A ∈ P (S)P (S)P (Q). Then

A = S1S2Q1 for some Q1 ∈ P (Q) and S1, S2 ∈ P (S). Thus A ⊆ SSQ. Simi-

larly, we can show that A ⊆ (SQS ∪ SSQSS) and A ⊆ QSS. This imlies that

A ⊆ SSQ ∩ (SQS ∪ SSQSS) ∩ QSS ⊆ Q. So A ∈ P (Q) and hence P (Q) is a

quasi-ideal of the power ternary semigroup P (S).

For the converse part, let P (Q) be a quasi-ideal of P (S). Let y ∈ SSQ ∩

(SQS ∪ SSQSS) ∩ QSS. Then y ∈ SSQ and y = s1s2q1 for some s1, s2 ∈ S

and q1 ∈ Q. Now {y} = {s1s2q1} = {s1}{s2}{q1} ∈ P (S)P (S)P (Q). Hence

{y} ∈ P (S)P (S)P (Q). Similarly, we can prove that {y} ∈ P (S)P (Q)P (S) ∪

P (S)P (S)P (Q)P (S)P (S) and {y} ∈ P (Q)P (S)P (S). So, {y} ∈ P (S)P (S)P (Q) ∩(
P (S)P (Q)P (S) ∪ P (S)P (S)P (Q)P (S)P (S)

)
∩ P (Q)P (S)P (S)

⊆ P (Q) and so y ∈ Q. Thus SSQ ∩ (SQS ∪ SSQSS) ∩ QSS ⊆ Q. Consequently,

it follows that Q is a quasi-ideal of S.

Theorem 4.2.9. Let S be a ternary semigroup and J be a non-empty subset of S.

Then J is a completely prime ideal of S if and only if P (J) is a completely prime

ideal of P (S).

Proof. First suppose that J be a completely prime ideal of S. Then J is an ideal of

S and hence P (J) be an ideal of P (S), by Theorem 4.2.3. It remains to show that

P (J) is completely prime. Let X, Y, Z ∈ P (S) such that XY Z ∈ P (J). Suppose

that Y, Z /∈ P (J). Then there exist some y ∈ Y and z ∈ Z such that y /∈ J and

77



ORDERED POWER TERNARY SEMIGROUPS

z /∈ J . Let x be an arbitrary element of X. Now {xyz} = {x}{y}{z} ⊆ XY Z ⊆ J .

Thus xyz ∈ J . Since J is completely prime ideal of S and y, z /∈ J , we must have

x ∈ J . Thus X ∈ P (J) and so P (J) is a completely prime ideal of P (S).

Conversely, suppose that P (J) is a completely prime ideal of P (S). Let abc ∈ J

for some a, b, c ∈ S. Now {abc} ∈ P (J) and so {a}{b}{c} ∈ P (J). Since P (J)

is a completely prime ideal of P (S), so {a} ∈ P (J) or {b} ∈ P (J) or {c} ∈ P (J)

i.e. {a} ⊆ J or {b} ⊆ J or {c} ⊆ J . Thus a ∈ J or b ∈ J or c ∈ J . Hence J is

completely prime ideal of S.

Theorem 4.2.10. Let S be a ternary semigroup and K be a non-empty subset of

S. Then K is a completely semiprime ideal of S if and only if P (K) is a completely

semiprime ideal of P (S).

Proof. Let K be a completely semiprime ideal of S. Then K is an ideal of S and

hence P (K) is an ideal of P (S), by Theorem 4.2.3. We have to show that P (K) is

completely semiprime. Let X ∈ P (S) such that X3 ∈ P (K). Suppose x ∈ X such

that x3 ∈ X3 ⊆ K. Since K is completely semiprime, we have x ∈ K i.e. X ⊆ K.

Thus X ∈ P (K).

For converse part, let P (K) be a completely semiprime ideal of P (S). Let a3 ∈ K

for some a ∈ S. Now {a3} ∈ P (K) and so {a3} = {aaa} = {a}{a}{a} = {a}3 ∈

P (K). Since P (K) is a completely semiprime ideal of P (S), so {a} ∈ P (K) i.e.

{a} ⊆ K. Thus a ∈ K. Hence K is completely semiprime ideal of S.

Now it can be easily proved the following result :

Theorem 4.2.11. If the power ternary semigroup P (S) is idempotent then the

ternary semigroup S is idempotent.

But the converse of the above Theorem 4.2.11 is not true. From following exam-

ple, we see that P (S) is not be an idempotent ternary semigroup though the ternary

semigroup S is idempotent.
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Example 4.2.12. Let S =


0 0

0 0

 ,

1 0

0 1

 ,

1 0

0 0

 ,

0 1

0 0

 ,

0 0

1 0

 ,

0 0

0 1

.

Then S forms a ternary semigroup together with the ternary matrix multipli-

cation operation. Clearly, every element of S is an idempotent element, thus S is

an idempotent ternary semigroup. But P (S) is not an idempotent power ternary

semigroup.

For let A =


1 0

0 0

 ,

0 0

0 1

 ∈ P (S).

Then A3 =


0 0

0 0

1 0

0 0

 ,

0 0

0 1

. But


0 0

0 0

 /∈ A.

Hence A is not an idempotent element and so P (S) is not an idempotent ternary

semigroup.

But in particular, we have the following result :

Theorem 4.2.13. Let S be a ternary semigroup. Then P (S) is an idempotent

ternary semigroup if and only if S is an idempotent ternary semigroup in which

every non-empty subset of S is a ternary subsemigroup of S.

Proof. Let S be an idempotent ternary semigroup in which every non-empty subset

of S is a ternary subsemigroup of S and A ∈ P (S). Since A ⊆ S, by our hypothesis,

A is a ternary subsemigroup of S i.e. A3 ⊆ A. Let x ∈ A. Then x = a1 fome some

a1 ∈ A ⊆ S. Since S is an idempotent ternary semigroup x = a1 = a31 ∈ A3. Thus

A ⊆ A3. Hence A3 = A and so P (S) is an idempotent ternary semigroup.

Conversely, suppose that P (S) is an idempotent ternary semigroup and a ∈ S.

Then {a} ∈ P (S). Since P (S) is an idempotent ternary semigroup, {a}3 = {a}

i.e. a3 = a. Hence S is an idempotent ternary semigroup. Let S1 ⊆ S. Then

S1
3 = S1 ⊆ S1, since P (S) is idempotent ternary semigroup. Thus S1 is a ternary

subsemigroup of S.
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Note that if S is a regular ternary semigroup then the power ternary semigroup

P (S) may not be a regular ternary semigroup.

We explain it by the following examples :

Example 4.2.14. Let S = Z− × Z− = {(a, b) : a, b ∈ Z−}, where Z− be the

set of all negative integers. Then S forms a ternary semigroup together with the

multiplication defined as (a, b)(c, d)(e, f) = (a, f) for all (a, b), (c, d), (e, f) ∈ Z− ×

Z−. Clearly, S is a regular ternary semigroup but P (S) is not a regular ternary

semigroup. Let X = {(a, b), (c, d)} ∈ P (S) for some (a, b), (c, d) ∈ S. Then

XYX = {(a, b), (c, d)}{(x, y)}{(a, b), (c, d)} = {(a, b), (a, d), (c, b), (c, d)} ≠ X for

any {(x, y)} ∈ P (S) . Hence X is not regular element and so P (S) is not a regular

ternary semigroup.

Example 4.2.15. Let S = {q
√
2 : q ∈ Q0

−}. Then with usual ternary multi-

plication, S forms a regular ternary semigroup. But P (S) is not regular ternary

semigroup.

Moreover, we have the following result :

Theorem 4.2.16. Let S be a ternary semigroup in which every non-empty subset

of S is a left ideal of S. Then S is a regular ternary semigroup if and only if P (S)

is a regular ternary semigroup.

Proof. Let S be a regular ternary semigroup and A ∈ P (S). Since A ⊆ S, A is a

left ideal of S i.e. SSA ⊆ A. Let x ∈ A. Then x = a1 fome some a1 ∈ A ⊆ S.

Since S is regular ternary semigroup a1 = a1sa1 for some s ∈ S. So we find that

x = a1sa1 ∈ ASA. Thus A ⊆ ASA. Now ASA ⊆ SSA ⊆ A. Hence ASA = A and

so P (S) is regular ternary semigroup.

For the converse part, suppose that P (S) is a regular ternary semigroup and

a ∈ S. Then {a} ∈ P (S). Since P (S) is regular ternary semigroup, {a} = {a}X{a}

for some X ∈ P (S) i.e. a = axa for some x ∈ X ⊆ S. Hence S is a regular ternary

semigroup.
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However, if P (S) is regular, each non-empty subset of S may not be a left ideal

of S. Let us give an example :

Example 4.2.17. Let S = {i,−i} be a ternary semigroup. Then P (S) is a regular

ternary semigroup. But A = {i} ⊆ S is not a left ideal of S.

Similarly, we can prove the following results :

Corollary 4.2.18. Let S be a ternary semigroup in which every non-empty subset

of S is a right ideal of S. Then S is a regular ternary semigroup if and only if P (S)

is a regular ternary semigroup.

Corollary 4.2.19. Let S be a ternary semigroup in which every non-empty subset

of S is a lateral ideal of S. Then S is a regular ternary semigroup if and only if

P (S) is a regular ternary semigroup.

Let S be a ternary semigroup. If S is a completely regular ternary semigroup then

the power ternary semigroup P (S) is not necessarily a completely regular ternary

semigroup.

We explain it by the following example :

Example 4.2.20. Let S = {±1,±i}. Then S forms a ternary semigroup w.r.t. the

multiplication. Futhermore, S is a completely regular ternary semigroup. But P (S)

is not a completely regular ternary semigroup. Let A = {1,−i} ∈ P (S). Then there

exists no X ∈ P (S) such that A = A2XA2.

Theorem 4.2.21. Let S be a ternary semigroup in which every non-empty subset

of S is a left ideal of S. Then S is a completely regular ternary semigroup if and

only if P (S) is a completely regular ternary semigroup.

Proof. Suppose that S be a completely regular ternary semigroup and A ∈ P (S).

Let x ∈ A. Then x = a1 fome some a1 ∈ A ⊆ S. Since S is completely regular

ternary semigroup, so a1 = a21sa
2
1 for some s ∈ S. Thus x ∈ A2SA2. This shows

that A ⊆ A2SA2. Since A ⊆ S, A is a left ideal of S i.e. SSA ⊆ A. Now
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A2SA2 ⊆ SSSAA ⊆ SAA ⊆ SSA ⊆ A. Hence A2SA2 = A and so P (S) is a

completely regular ternary semigroup.

For the converse part, suppose that P (S) is a completely regular ternary semi-

group and a ∈ S. Then {a} ∈ P (S). Since P (S) is a completely regular ternary

semigroup, {a}2X{a}2 = {a} for some X ∈ P (S) i.e. a2xa2 = a for some x ∈ X ⊆

S. Hence S is a completely regular ternary semigroup.

Similarly, we can prove the following results :

Corollary 4.2.22. Let S be a ternary semigroup in which every non-empty subset

of S is a right ideal of S. Then S is a completely regular ternary semigroup if and

only if P (S) is a completely regular ternary semigroup.

Corollary 4.2.23. Let S be a ternary semigroup in which every non-empty subset

of S is a lateral ideal of S. Then S is a completely regular ternary semigroup if and

only if P (S) is a completely regular ternary semigroup.

Notice that if S is an intra-regular ternary semigroup then P (S) is not an intra-

regular ternary semigroup.

Let us give an example :

Example 4.2.24. Let S = {±1,±i}. Then S forms a ternary semigroup with

respect to the multiplication. Also S is an intra-regular ternary semigroup but P (S)

is not an intra-regular ternary semigroup.

Theorem 4.2.25. Let S be a ternary semigroup in which every non-empty subset

of S is an ideal of S. Then S is an intra-regular ternary semigroup if and only if

P (S) is an intra-regular ternary semigroup.

Proof. Let S be an intra-regular ternary semigroup and A ∈ P (S). Since A ⊆ S,

A is an ideal of S. Let a ∈ A ⊆ S. Since S is intra-regular ternary semigroup,

a = xa3y for some x, y ∈ S. So we find that a ∈ SA3S. Thus A ⊆ SA3S. Now

SA3S ⊆ SSSAS ⊆ SAS ⊆ A. Hence SA3S = A and so P (S) is an intra-regular

ternary semigroup.
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For the converse part, let P (S) be an intra-regular ternary semigroup a ∈ S.

Then {a} ∈ P (S). Since P (S) is an intra-regular ternary semigroup, X{a}3Y = {a}

for some X, Y ∈ P (S) i.e. xa3y = a for some x ∈ X ⊆ S and y ∈ Y ⊆ S. Hence S

is an intra-regular ternary semigroup.

4.3 Ordered power ternary semigroup P(S) of a

ternary semigroup S

In this section, our main focus is to describe and characterize ordered power ternary

semigroup P(S) of a ternary semigroup S. Furthermore, we investigate the connec-

tion between a ternary semigroup S and its corresponding ordered power ternary

semigroup P(S).

Let us define a partially order relation on the ternary semigroup P (S) in the

natural way as follows:

“A ≤ B if and only if A ⊆ B” for all A, B ∈ P (S).

Then (P (S), .,≤) becomes a partially ordered ternary semigroup or ordered ternary

semigroup. The partially ordered ternary semigroup (P (S), .,≤) is called the ordered

power ternary semigroup of S and we simply denote it by P(S).

Definition 4.3.1. Let (S, .,≤) be a partially ordered ternary semigroup. An ele-

ment a of S is said to be ordered idempotent if a ≤ a3 and S is said to be an ordered

idempotent ternary semigroup if every element of S is ordered idempotent.

Theorem 4.3.2. A ternary semigroup S is idempotent if and only if the ordered

power ternary semigroup P(S) is ordered idempotent ternary semigroup.

Proof. First, let us consider S be an idempotent ternary semigroup and let A ∈

P(S). Suppose a ∈ A ⊆ S. Since S is idempotent semigroup a = a3 ∈ A3. Thus

A ⊆ A3. Thus A ≤ A3 and P(S) is ordered idempotent ternary semigroup.
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Conversely, let P(S) be ordered idempotent ternary semigroup. Let a ∈ S. Thus

{a} ∈ P(S). Let us denote {a} by A i.e. A = {a}. Since P(S) is idempotent then

A ≤ A3 i.e. A ⊆ A3. Hence a ∈ A3 = {a}3 = {a3}. Thus a = a3 and so S is

idempotent ternary semigroup.

Definition 4.3.3. An ordered idempotent ternary semigroup S is said to be left

zero if for every a, b, c ∈ S, there exists x, y ∈ S such that a ≤ axybc.

An ordered idempotent ternary semigroup S is said to be right zero if for every

a, b, c ∈ S, there exists x, y ∈ S such that a ≤ cbxya.

Theorem 4.3.4. An idempotent ternary semigroup S is left simple if and only if

the ordered power ternary semigroup P(S) is a left zero ordered idempotent ternary

semigroup.

Proof. Let S be a left simple idempotent ternary semigroup. Let A,B,C ∈ P(S).

Thus for a ∈ A, b ∈ B, c ∈ C there is x ∈ S such that a = xbc. Let us denote

them by xabc. Take X = {xabc : a ∈ A, b ∈ B, c ∈ C}. Hence A ≤ XBC. Since S

is idempotent ternary semigroup, by theorem 4.3.2 P(S) is an ordered idempotent

ternary semigroup. Thus A ≤ A3 gives A ≤ AXBCXBC. Let Y = BCX ⊆ S.

Hence A ≤ AXY BC. Thus for A,B,C ∈ P(S) there exists X, Y ∈ P(S) such that

A ≤ AXY BC. Hence P(S) is a left zero ordered idempotent ternary semigroup.

Conversely let P(S) is left zero ordered idempotent ternary semigroup. Let A =

{a}, B = {b} ∈ P(S). Then for any C = {c} ∈ P(S) there is X, Y ∈ P(S) such that

C ≤ CXY BA. Thus C ⊆ CXY BA. Hence c ∈ CXY BA = CXY B{a} ⊆ SSa.

Thus S = SSa and so S is a left simple idempotent ternary semigroup.

Corollary 4.3.5. An idempotent ternary semigroup S is right simple if and only if

the ordered power ternary semigroup P(S) is a right zero ordered idempotent ternary

semigroup.

Definition 4.3.6. A partially ordered ternary semigroup S is called an ordered

ternary band if S is an ordered idempotent ternary semigroup.
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Corollary 4.3.7. A ternary semigroup S is a ternary band if and only if the ordered

power ternary semigroup P(S) is an ordered ternary band.

Definition 4.3.8. An ordered ternary semigroup S is called an ordered ternary

rectangular band if S is an ordered idempotent ternary semigroup and a ≤ aba for

all a, b ∈ S.

Example 4.3.9. Let S = {a, b, c} be an ordered ternary semigroup with the ternary

operation . on S as abc = a ∗ (b ∗ c) where the binary operation * is defined as

* a b c

a a a a

b a b b

c a c c

and the order defined as ≤ := {(a, a), (b, a), (b, b), (c, a), (c, c)}

This is an ordered ternary rectangular band.

Theorem 4.3.10. A ternary semigroup S is a ternary rectangular band if and only

if the ordered power ternary semigroup P(S) is an ordered ternary rectangular band.

Proof. First let us assume that, S is a ternary rectangular band. Since S is idem-

potent ternary semigroup by Theorem 4.3.2 P(S) is ordered idempotent ternary

semigroup. It remains to show that A ≤ ABA for all A,B ∈ P(S). Let a ∈ A and

b ∈ B for any A,B ∈ P(S). Since S is ternary rectangular band, a = aba ∈ ABA.

Thus A ⊆ ABA. Hence A ≤ ABA for all A,B ∈ P(S). Hence P(S) is ordered

ternary rectangular band.

Conversely, Let a, b ∈ S. Thus {a}, {b} ∈ P(S). Let A = {a}, B = {b}. Since

P(S) is a ordered ternary rectangular band A ≤ ABA =⇒ {a} ⊆ {a}{b}{a} =⇒

a = aba. Since P(S) is ordered idempotent ternary semigroup by Theorem 4.3.2 S

is also idempotent ternary semigroup. Hence S is a ternary rectangular band.

Theorem 4.3.11. A ternary semigroup S is regular if and only if the ordered power

ternary semigroup P(S) is regular.
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Proof. Let us consider S be a regular ternary semigroup. Let A ∈ P(S). Then

for every a ∈ A there exists xa ∈ S such that a = axaa. Let X = {xa : a ∈ A}.

Then X ∈ P(S) such that A ⊆ AXA i.e. A ≤ AXA. Thus A ∈ (AP(S)A] for all

A ∈ P(S). Hence P(S) is regular.

Conversely, suppose that P(S) be a regular ordered power ternary semigroup.

Let a ∈ S. Then for A = {a} ∈ P(S) there exists X ∈ P(S) such that A ≤ AXA

and so A ⊆ AXA. Thus for a ∈ S there exists x ∈ X ⊆ S such that a = axa.

Hence S is regular ternary semigroup.

Corollary 4.3.12. A ternary semigroup S is left (resp. right) regular if and only

if the ordered power ternary semigroup P(S) is left (resp. right) regular.

Theorem 4.3.13. A ternary semigroup S is completely regular if and only if the

ordered power ternary semigroup P(S) is completely regular.

Proof. Let S be a completely regular ternary semigroup. Let A ∈ P(S). Then for

every a ∈ A there exists xa ∈ S such that a = a2xaa
2. Let X = {xa : a ∈ A}. Then

X ∈ P(S) such that A ⊆ A2XA2 i.e. A ≤ A2XA2. Thus A ∈ (A2P(S)A2] for all

A ∈ P(S). Hence P(S) is completely regular.

Conversely, suppose that P(S) be a completely regular ordered power ternary

semigroup. Let a ∈ S. Then for A = {a} ∈ P(S) there exists X ∈ P(S) such that

A ≤ A2XA2 and so A ⊆ A2XA2. Thus for a ∈ S there exists x ∈ X ⊆ S such that

a = a2xa2. Hence S is completely regular.

Theorem 4.3.14. A ternary semigroup S is intra-regular if and only if the ordered

power ternary semigroup P(S) is intra-regular.

Proof. First suppose that S be an intra-regular ternary semigroup. Let A ∈ P(S).

Then for each a ∈ A there exists xa, ya ∈ S such that a = xaa
3ya. Let X = {xa : a ∈

A} and Y = {ya : a ∈ A}. ThenX, Y ∈ P(S) such that A ⊆ XA3Y i.e. A ≤ XA3Y .

Thus A ∈ (P(S)A3P(S)] for all A ∈ P(S)). Hence P(S) is intra-regular.
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Conversely, suppose that P(S) be an intra-regular ordered power ternary semi-

group. Let a ∈ S. Then for A = {a} ∈ P(S) there exists X, Y ∈ P(S) such that

A ≤ XA3Y and so A ⊆ XA3Y . Thus for a ∈ S there exists x, y ∈ X ⊆ S such that

a = xa3y. Hence S is intra-regular.

Theorem 4.3.15. A ternary semigroup S is a ternary group if and only if the

ordered power ternary semigroup P(S) is simple.

Proof. First, let us consider S be a ternary group. Let A,B,C ∈ P(S). Then for

each a ∈ A, b ∈ B, c ∈ C there exists unique x, y, z ∈ S such that abx = c, ayb =

c, and zab = c. Let X = {xa,b,c : a ∈ A, b ∈ B, c ∈ C}, Y = {ya,b,c : a ∈ A, b ∈

B, c ∈ C}, Z = {za,b,c : a ∈ A, b ∈ B, c ∈ C}. Then X, Y, Z ∈ P(S) such

that C ⊆ ABX, C ⊆ AY B and C ⊆ ZAB. Let I be a left ideal of P(S). Then

I ⊆ P(S) such that P(S)P(S)I ⊆ I and (I] = I. Suppose that U, V ∈ P(S) and

W ∈ I i.e. U, V,W ⊆ S. Then there exists X∗ ∈ P(S) such that U ≤ X∗VW . Thus

U ⊆ X∗VW ∈ P(S)P(S)I ⊆ I. Hence P(S) ⊆ I. Thus P(S) has no proper left

ideal and so P(S) is left simple. In the similar way we can show that P(S) is right

simple and lateral simple.

Conversely, let P(S) be simple ordered ternary semigroup. Let a, b, c ∈ S. Then

A = {a}, B = {b}, C = {c} ∈ P(S). Now (P(S)AB] is a left ideal in P(S).

Since P(S) is left simple by Theorem 1.4.7, we have (P(S)AB] = P(S). Thus

C ∈ P(S) = (P(S)AB] and so C ≤ ZAB for some Z ∈ P(S). Again (ABP(S)]

is a right ideal in P(S). Since P(S) is right simple by Theorem 1.4.7, we have

(ABP(S)] = P(S). Thus C ∈ P(S) = (ABP(S)] and so C ≤ ABX for some

X ∈ P(S). Since X ∈ P(S) then there exists X∗ ∈ P(S) such that X ≤ X∗AB and

so C ≤ ABX ≤ ABX∗AB ∈ AP(S)B. Thus C ∈ (AP(S)B] and so C ≤ AY B for

some Y ∈ P(S). Hence for A,B,C ∈ P(S) there exists X, Y, Z ∈ P(S) such that

C ≤ ABX, C ≤ AY B and C ≤ ZAB i.e. C ⊆ ABX, C ⊆ AY B and C ⊆ ZAB.

Hence for a, b, c ∈ S there exists x, y, z ∈ S such that abx = c, ayb = c and zab = c.

Hence S is a ternary group.
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Theorem 4.3.16. Let S be an ordered ternary semigroup. Then S is simple if and

only if a ∈ (bcSbc] for all a, b, c ∈ S.

Proof. First, let us consider S be a simple ordered ternary semigroup. For a, b, c ∈ S

there exists x ∈ S such that a ≤ xbc. Again for b, c, x ∈ S there exists y ∈ S such

that x ≤ ybc which implies a ≤ bcx ≤ bcybc. Thus a ∈ (bcSbc].

Conversely, a ∈ (bcSbc] implies a ≤ bcsbc, s ∈ S implies a ≤ bcs1 where s1 =

sbc ∈ S. In similar way we can show that a ≤ bs2c, a ≤ s3bc for some s2, s3 ∈ S.

Hence S is simple ordered ternary semigroup.

Theorem 4.3.17. A ternary semigroup S is a ternary group if and only if the

ordered power ternary semigroup A ∈ (BCP(S)BC] for all A,B,C ∈ P(S).

Definition 4.3.18. An ordered ternary semigroup (S, .,≤) is called a semilattice

ordered ternary semigroup if a∨ b exists in the poset (S,≤) for every a, b ∈ S. Then

for all a, b, c, d ∈ S the following holds :

(i) ab(c ∨ d) = abc ∨ abd

(ii) (a ∨ b)cd = acd ∨ bcd.

Let T be a ternary semigroup and P ∗(T ) be the set of all finite subsetes of T .

For A,B,C ∈ P ∗(T ) the ternary multiplication ‘.’ defined by ABC = {abc : a ∈

A, b ∈ B, c ∈ C} and partial order relation ‘≤’ defined by ‘A ≤ B if and only if

A ⊆ B”. Then P ∗(T ) is a semillatice ordered ternary semigroup with respect to the

multiplication ‘.’ and partial order relation ‘≤’.

Theorem 4.3.19. Let T be a ternary semigroup, S be a semilattice ordered ternary

semigroup and ϕ : T −→ S be a ternary semigroup homomorphism. Then there is

an ordered semigroup ternary semigroup homomorphism g : P ∗(T ) −→ S such that

the g ◦ f = ϕ where f : T −→ P ∗(T ) is defined by f(x) = {x}.

Proof. Let us define a mapping g : P ∗(T ) −→ S by g(A) = ∨a∈Aϕ(a) for all A ∈

P ∗(T ).
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S

T P ∗(T )

ϕ g

f

Now for A,B,C ∈ P ∗(T ), we have

g(ABC) = ∨a∈A,b∈B,c∈Cϕ(abc)

= ∨a∈A,b∈B,c∈Cϕ(a)ϕ(b)ϕ(c)

= (∨a∈Aϕ(a))(∨b∈Bϕ(b))(∨c∈Cϕ(c))

= g(A)g(B)g(C)

Again for all A,B ∈ P ∗(T ), if A ≤ B then we have g(A) = ∨a∈Aϕ(a) ≤

∨a∈Bϕ(B) = g(B). Thus g is an ordered ternary homomorphism from P ∗(T ) to

S. Now, (g ◦ f)(x) = g(f(x)) = g({x}) = ∨a∈{x}ϕ(a) = ϕ(x).
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Chapter 5

Lattice structures in ternary

semigroup of mappings

5.1 Introduction

The topic in this chapter focuses on ternary semigroups of mappings. A. Chronowski

[19] introduced the notion of ternary semigroup of mappings which are a natural

generalization of semigroup of mappings and these algebraic structures are used

for constructing the natural examples of ternary algebras, which are the counter-

part of binary algebras. Some properties of ternary semigroup of homomorphism,

ternary semigroup of lattice homomorphism, ternary semigroups of linear mappings

are studied by A. Chronowski [21], [22], [24], [23]. The set S(X) of all mappings of

a given non-empty set X into itself, where the binary operation is the usual com-

position of mappings, forms an important class of semigroup which is commonly

known as semigroup of mappings. A. Chronowski studied about n-ary semigroup of

mappings and in particular, ternary semigroup of mappings, embedding theorem,

classical Green’s equivalence relation, structure of ternary semigroup of linear map-

pings, ternary semigroup of matrices etc. The corresponding results for semigroup

of mappings have been intensively studied by several authors. Also S. Kar, I. Dutta
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[42] studied the notion of various structures of ternary semigroup of mappings. G.

Birkhoff [6] disscussed about lattice theory.

In the first section, we give a characterization of the structures of lattices in

ternary semigroup of mappings. In remaining sections, we discuss the problem that

if X ∼= X
′
and Y ∼= Y

′
, then the corresponding ternary semigroups of mappings

T [X, Y ] and T [X
′
, Y

′
] are isomorphic. The converse statement is not valid. We also

derive simple conditions under which the converse is also true. We also introduce a

partial order relation in the ternary semigroup of mappings T [X, Y ]. We also study

the notion of ternary semigroup of isotone mappings O[X, Y ]. Further we present the

characterization of regular, intra-regular and idempotent ordered ternary semigroup

in O[X, Y ].

5.2 Ternary semigroup of mappings T [X, Y ]

In this section, we are going to define a partial order in T [X, Y ] and after that we

study different types of lattice structure of T [X, Y ]. Throughout this paper, T [X, Y ]

will denote a ternary semigroup of mappings of sets X and Y .

Let X and Y be non-empty sets. By T (X, Y ) and T (Y,X) we denote the set of

all mappings of the set X into the set Y and the set of all mappings of the set Y into

the set X i.e. T (X, Y ) = {p : p is a mapping from X to Y } and T (Y,X) = {q : q is

a mapping from Y to X}. Now consider the set T [X, Y ] = T (X, Y )× T (Y,X).

Define the ternary operation · : T [X, Y ]×T [X, Y ]×T [X, Y ] −→ T [X, Y ] as follows:

(p1, q1) · (p2, q2) · (p3, q3) = (p1q2p3, q1p2q3) ∀(p1, q1), (p2, q2), (p3, q3) ∈ T [X, Y ]

The ternary operation defined above is associative. Then (T [X, Y ], ·) is a ternary

semigroup. The ternary semigroup is called the “Ternary Semigroup of Mappings”

of sets X and Y .

If X∩Y = {}, then (T [X, Y ], ·) is called the disjoint ternary semigroup of mappings

of sets X and Y .
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The ternary semigroups (T [X, Y ], ·) and (T [Y,X], ·) are isomorphic for the sets X

and Y .

Throughout this section, T [X, Y ] will denote a ternary semigroup of mappings

of sets X and Y .

5.3 Partial order on T [X, Y ]

In this section, we are going to define a partial order in T [X, Y ] and after that we

study different types of lattice structure of T [X, Y ].

Let (X,≤X) and (Y,≤Y ) be two posets with respect to the partial orders ≤X

and ≤Y respectively. Let us define a partial order ‘≤’ on T [X, Y ]. For all (p1, q1),

(p2, q2) ∈ T [X, Y ] the partial order ≤ defined as follows:

“(p1, q1) ≤ (p2, q2) if and only if p1(x) ≤Y p2(x) and q1(y) ≤X q2(y)

for all x ∈ X and y ∈ Y ”.

Thus (T [X, Y ],≤) becomes a poset with respect to the partial order “ ≤ ”.

Theorem 5.3.1. The ternary semigroup of mappings (T [X, Y ],≤) of X and Y is

a lattice if and only if (X,≤X) and (Y,≤Y ) are two lattices.

Proof. Let (X,≤X) and (Y,≤Y ) be two lattices under the partial order ≤X and ≤Y

respectively. Let (p1, q1), (p2, q2) ∈ T [X, Y ]. Let p∗ : X −→ Y and q∗ : Y −→ X

be any two functions such that p∗(x) = p1(x) ∧ p2(x) and q∗(y) = q1(y) ∧ q2(y)

for all x ∈ X and y ∈ Y . We have to show that (p∗, q∗) = Inf{(p1, q1), (p2, q2)}.

Now p∗(x) = p1(x) ∧ p2(x) =⇒ p∗(x) ≤ p1(x), p2(x) and q
∗(y) = q1(y) ∧ q2(y) =⇒

q∗(y) ≤ q1(y), q2(y). Thus (p∗, q∗) is a lower bound of (p1, q1) and (p2, q2). We

show that (p∗, q∗) is the greatest lower bound of {(p1, q1), (p2, q2)}. If not, then

there exists an another lower bound (p, q) of {(p1, q1), (p2, q2)} in T [X, Y ] such that

(p∗, q∗) ≤ (p, q) =⇒ p∗(x) ≤Y p(x) and q∗(y) ≤X q(y) for all x ∈ X and y ∈ Y .

Again since (p, q) is a lower bound of (p1, q1) and (p2, q2), then (p, q) ≤ (p1, q1)
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and (p, q) ≤ (p2, q2). This implies that p(x) ≤Y p1(x) and p(x) ≤Y p2(x) for all

x ∈ X. Thus p(x) ≤Y p1(x) ∧ p2(x) = p∗(x). Hence p(x) = p∗(x). Similarly, we can

prove that q(y) = q∗(y). Thus (p, q) = (p∗, q∗) and hence (p∗, q∗) is the Inf{(p1, q1),

(p2, q2)}.

Similarly, we can show that there exists (p
′
, q

′
) ∈ T [X, Y ] such that (p1, q1)∨ (p2, q2)

= (p
′
, q

′
) where p

′
(x) = p1(x) ∨ p2(x) and q

′
(x) = q1(y) ∨ q2(y) for all x ∈ X and

y ∈ Y will be the Sup{(p1, q1), (p2, q2)}. Hence T [X, Y ] is a lattice.

Conversely, let T [X, Y ] be a lattice. Let x1, x2 ∈ X and y1, y2 ∈ Y . Let us define two

mappings q1, q2 : Y −→ X such that q1(y) = x1 and q2(y) = x2 for all y ∈ Y . Again

let us define two mappings p1, p2 : X −→ Y such that p1(x) = y1 and p2(x) = y2 for

all x ∈ X. Since (p1, q1), (p2, q2) ∈ T [X, Y ] and T [X, Y ] is a lattice then we have

(p∗, q∗) in T [X, Y ] such that (p1, q1) ∧ (p2, q2) = (p∗, q∗). Thus we have,

(p∗, q∗) ≤ (p1, q1) =⇒ p∗(x) ≤Y p1(x) = y1 and q∗(y) ≤X q1(y) = x1.

(p∗, q∗) ≤ (p2, q2) =⇒ p∗(x) ≤Y p2(x) = y2 and q∗(y) ≤X q2(y) = x2.

Thus q∗(y) is a lower bound of x1 and x2. Let us assume q∗(y) be not the greatest

lower bound of x1 and x2. Then we found an another lower bound xo such that

q∗(y) ≤X xo. Let us define a mapping qo : Y −→ X such that qo(y) = xo for all

y ∈ Y . Thus q∗(y) ≤X qo(y) for all y ∈ Y . Again since xo is a lower bound of x1

and x2 then xo ≤X x1 and xo ≤X x2 =⇒ qo(y) ≤X q1(y) and q
o(y) ≤X q2(y) for all

y ∈ Y .

Similarly, p∗(x) is a lower bound of y1 and y2. We have to show p∗(x) be the greatest

lower bound of y1 and y2. If not, then we found an another lower bound yo such

that p∗(x) ≤Y yo. Let us define a mapping po : X −→ Y such that po(x) = yo for all

x ∈ X. Thus p∗(x) ≤Y po(x) for all x ∈ X. Again since yo is a lower bound of y1 and

y2 then y
o ≤Y y1 and y

o ≤Y y2 =⇒ po(x) ≤Y p1(x) and p
o(x) ≤Y p2(x) for all x ∈ X.

Thus (po, qo) ≤ (p1, q1) and (po, qo) ≤ (p2, q2) =⇒ (po, qo) ≤ (p1, q1) ∧ (p2, q2) =

(p∗, q∗). Again from q∗(y) ≤X xo and p∗(x) ≤Y yo we get (p∗, q∗) ≤ (po, qo). Thus

(po, qo) = (p∗, q∗). Hence po(x) = p∗(x) for all x ∈ X and qo(y) = q∗(y) for all y ∈ Y

and so yo = p∗(x) and xo = q∗(y). Thus q∗(y) = Inf{x1, x2} and p∗(x) = Inf{y1, y2}.
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Proceeding in the same manner we can show that Sup{x1, x2} and Sup{y1, y2} exist

in X and Y respectively. Thus X and Y are lattices.

Theorem 5.3.2. The ternary semigroup of mappings (T [X, Y ],≤) of X and Y is

a complete lattice if and only if the posets (X,≤X) and (Y,≤Y ) are two complete

lattices.

Proof. Let (X,≤X) and (Y,≤Y ) be two complete lattices under the partial order ≤X

and ≤Y respectively. By Theorem 5.3.1 T [X, Y ] is a lattice. Let A = {(pα, qα) : α ∈

I} be any non empty subset of T [X, Y ], I being an index set. Since X is a complete

lattice and {qα(y) : y ∈ Y, α ∈ I} is a subset of X, then {qα(y) : y ∈ Y, α ∈ I}

has Inf and Sup in X. Thus ∧
α∈I

qα(y) and ∨
α∈I

qα(y) exists in X. Similarly, ∧
α∈I

pα(x)

and ∨
α∈I

pα(x) exists in Y . Define ∧
α∈I

(pα, qα) = (p∗, q∗) where p∗(x) = ∧
α∈I

pα(x) and

q∗(y) = ∧
α∈I

qα(y) for all x ∈ X and y ∈ Y . Now we have to show that (p∗, q∗)

be the InfA. If not then there is an another lower bound (po, qo) of A such that

(p∗, q∗) ≤ (po, qo). Hence ∧
α∈I

pα(x) ≤Y po(x) and ∧
α∈I

qα(y) ≤X qo(y) for all x ∈ X

and y ∈ Y , which is a contradiction. Thus (p∗, q∗) is the InfA. Similarly, we can

show that SupA exists in T [X, Y ]. Thus T [X, Y ] is a complete lattice.

Conversely, let T [X, Y ] be a complete lattice. By Theorem 5.3.1, we can say

that X and Y are also lattices. Let A = {xi : i ∈ I} and B = {yi : i ∈ I} are

non-empty arbitrary sets of X and Y respectively, I being an index set. Let us

define two mappings qi : Y −→ X such that qi(y) = xi and pi : X −→ Y such that

pi(x) = yi for all x ∈ X and y ∈ Y , where i ∈ I. Since (pi, qi) ∈ T [X, Y ] and T [X, Y ]

is a complete lattice then we have (p∗, q∗) in T [X, Y ] such that (p∗, q∗) = ∧
i∈I

(pi, qi).

Thus (p∗, q∗) ≤ (pi, qi), i ∈ I =⇒ p∗(x) ≤Y pi(x) = yi, q
∗(y) ≤X qi(y) = xi, i ∈ I.

Thus q∗(y) is a lower bound of {xi : i ∈ I} = A. We show that q∗(y) is the greatest

lower bound of A. Let us assume that q∗(y) be not the greatest lower bound of A.

Then there exists another lower bound xo such that q∗(y) ≤X xo. Let us define a

mapping qo : Y −→ X such that qo(y) = xo for all y ∈ Y .

Thus q∗(y) ≤X qo(y) for all y ∈ Y ..............(1)
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Again xo is a lower bound of A = {xi : i ∈ I}.

Thus xo ≤X xi, i ∈ I =⇒ qo(y) ≤X qi(y) ..............(2)

Again p∗(x) is a lower bound of {yi : i ∈ I} = B. We show that p∗(x) is the greatest

lower bound of B. Assume that p∗(x) is not the greatest lower bound of B. Then

there exists another lower bound yo such that p∗(x) ≤Y yo. Let us define a mapping

po : X −→ Y such that po(x) = yo for all x ∈ X.

Thus p∗(x) ≤Y po(x) for all x ∈ X ..............(3)

Again yo is a lower bound of B = {yi : i ∈ I}.

Thus yo ≤Y yi, i ∈ I =⇒ po(x) ≤Y pi(x) ..............(4)

Thus from (2) and (4) we get (po, qo) ≤ (pi, qi), i ∈ I =⇒ (po, qo) ≤ ∧
i∈I

(pi, qi) =⇒

(po, qo) ≤ (p∗, q∗). Again from (1) and (3) we get (p∗, q∗) ≤ (po, qo). Thus (p∗, q∗) =

(po, qo). Hence po(x) = p∗(x) and qo(y) = q∗(y) for all x ∈ X and y ∈ Y . Thus

yo = p∗(x) and xo = q∗(y). Proceeding in the same manner we can show that SupA

and SupB exist in X and Y respectively.

Thus X and Y are complete lattices.

Theorem 5.3.3. The ternary semigroup of mappings (T [X, Y ],≤) of X and Y is

a modular lattice if and only if the posets (X,≤X) and (Y,≤Y ) are two modular

lattices.

Proof. Let (X,≤X) and (Y,≤Y ) be two modular lattices under the partial order

≤X and ≤Y respectively. Let (p1, q1), (p2, q2) ∈ T [X, Y ] such that (p1, q1) ≤ (p2, q2).

Thus p1(x) ≤Y p2(x) and q1(y) ≤X q2(y) for all x ∈ X and y ∈ Y . Consider

(p3, q3) ∈ T [X, Y ]. Since X and Y are modular lattices we have,

p1(x) ≤Y p2(x) =⇒ p1(x) ∨ (p3(x) ∧ p2(x)) = (p1(x) ∨ p3(x)) ∧ p2(x) for all x ∈ X

and

q1(y) ≤X q2(y) =⇒ q1(y) ∨ (q3(y) ∧ q2(y)) = (q1(y) ∨ q3(y)) ∧ q2(y) for all y ∈ Y .
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Therefore, we have (p1, q1) ∨
(
(p3, q3) ∧ (p2, q2)

)
= (p1, q1) ∨ (p

′
, q

′
) where, p

′
(x) = p3(x) ∧ p2(x) and

q
′
(y) = q3(y) ∧ q2(y)

= (p∗, q∗) where, p∗(x) = p1(x) ∨
(
p3(x) ∧ p2(x)

)
and

q∗(y) = q1(y) ∨
(
q3(y) ∧ q2(y)

)
for all x ∈ X and y ∈ Y.

Similarly, we have
(
(p1, q1) ∨ (p3, q3)

)
∧ (p2, q2)

= (p
′′
, q

′′
) ∧ (p2, q2) where, p

′′
(x) = p1(x) ∨ p3(x) and

q
′′
(y) = q1(y) ∨ q3(y)

= (po, qo) where, po(x) =
(
p1(x) ∨ p3(x)

)
∧ p2(x) and

qo(y) =
(
q1(y) ∨ q3(y)

)
∧ q2(y)

for all x ∈ X and y ∈ Y.

Since X and Y are modular lattices then p1(x) ∨
(
p3(x) ∧ p2(x)

)
=

(
p1(x) ∨

p3(x)
)
∧ p2(x) and q1(y) ∨

(
q3(y) ∧ q2(y)

)
=

(
q1(y) ∨ q3(y)

)
∧ q2(y) for all x ∈ X

and y ∈ Y . Thus (p∗, q∗) = (po, qo) i.e. (p1, q1) ∨
(
(p3, q3) ∧ (p2, q2)

)
=

(
(p1, q1) ∨

(p3, q3)
)
∧ (p2, q2). Hence T [X, Y ] is a modular lattice.

Conversely, suppose T [X, Y ] be a modular lattice. Let x1, x2 ∈ X and y1, y2 ∈ Y

such that x1 ≤X x2 and y1 ≤Y y2. Let us define two mappings p1, p2 : X −→ Y such

that p1(x) = y1 and p2(x) = y2 for all x ∈ X. Thus y1 ≤Y y2 =⇒ p1(x) ≤Y p2(x) for

all x ∈ X. Again let us define two mappings q1, q2 : Y −→ X such that q1(y) = x1

and q2(y) = x2 for all y ∈ Y . Thus y1 ≤Y y2 =⇒ p1(x) ≤Y p2(x) for all x ∈ X and

x1 ≤X x2 =⇒ q1(y) ≤X q2(y) for all y ∈ Y . This implies that (p1, q1) ≤ (p2, q2).
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Since T [X, Y ] is a modular lattice and (p1, q1), (p2, q2) ∈ T [X, Y ] such that

(p1, q1) ≤ (p2, q2) then we have (p1, q1) ∨
(
(p, q) ∧ (p2, q2)

)
=

(
(p1, q1) ∨ (p, q)

)
∧

(p2, q2). This shows that,

(p1, q1)∨ (p∗, q∗) = (p
′
, q

′
)∧ (p2, q2) where p

∗(x) = p(x)∧ p2(x), q∗(y) = q(y)∧ q2(y)

and p
′
(x) = p1(x) ∨ p(x), q

′
(y) = q1(y) ∨ q(y)

for all x ∈ X and y ∈ Y .

i.e. (p∗∗, q∗∗) = (p
′′
, q

′′
) where p∗∗(x) = p1(x) ∧ p∗(x), q∗∗(y) = q1(y) ∧ q∗(y)

and p
′′
(x) = p

′
(x) ∨ p2(x), q

′′
(y) = q

′
(y) ∨ q2(y)

for all x ∈ X and y ∈ Y .

i.e. (p∗∗, q∗∗) = (p
′′
, q

′′
) where p∗∗(x) = p1(x) ∧

(
p(x) ∧ p2(x)

)
,

q∗∗(y) = q1(y) ∧
(
q(y) ∧ q2(y)

)
and p

′′
(x) =

(
p1(x) ∨ p(x)

)
∨ p2(x),

q
′′
(y) =

(
q1(y) ∨ q(y)

)
∨ q2(y)

for all x ∈ X and y ∈ Y .

Thus (p∗∗, q∗∗) = (p
′′
, q

′′
) implies that p∗∗(x) = p

′′
(x) for all x ∈ X and q∗∗(y) =

q
′′
(y) for all y ∈ Y .

i.e. p1(x)∨
(
p(x)∧p2(x)

)
=

(
p1(x)∨p(x)

)
∧p2(x) for all x ∈ X and q1(y)∨

(
q(y)∧

q2(y)
)
=

(
q1(y) ∨ q(y)

)
∧ q2(y) for all y ∈ Y .

i.e. y1 ∨
(
p(x) ∧ y2

)
=

(
y1 ∨ p(x)

)
∧ y2 for all x ∈ X and x1 ∨

(
q(y) ∧ x2

)
=(

x1 ∨ q(y)
)
∧ x2 for all y ∈ Y .

Therefore, X and Y are modular lattices.

Theorem 5.3.4. The ternary semigroup of mappings (T [X, Y ],≤) of X and Y is

a distributive lattice if and only if (X,≤X) and (Y,≤Y ) are two distributive lattices.

Proof. Let (X,≤X) and (Y,≤Y ) be two distributive lattices under the partial order

≤X and ≤Y respectively. Let (p1, q1), (p2, q2), (p3, q3) ∈ T [X, Y ].
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Therefore we have, (p1, q1) ∧
(
(p2, q2) ∨ (p3, q3)

)
= (p1, q1) ∨ (p

′
, q

′
) where, p

′
(x) = p2(x) ∨ p3(x) and

q
′
(y) = q2(y) ∨ q3(y)

for all x ∈ X and y ∈ Y.

= (p∗, q∗) where, p∗(x) = p1(x) ∧
(
p2(x) ∨ p3(x)

)
and

q∗(y) = q1(y) ∧
(
q2(y) ∨ q3(y)

)
for all x ∈ X and y ∈ Y.

Again,
(
(p1, q1) ∧ (p2, q2)

)
∨
(
(p1, q1) ∧ (p3, q3)

)
= (p∗∗, q∗∗) ∨ (p

′′
, q

′′
) where, p∗∗(x) = p1(x) ∧ p2(x), q∗∗(y) = q1(y) ∧ q2(y)

and p
′′
(x) = p1(x) ∧ p3(x), q

′′
(y) = q1(y) ∧ q3(y)

for all x ∈ X and y ∈ Y.

= (po, qo) where, po(x) =
(
p1(x) ∧ p2(x)

)
∨
(
p1(x) ∧ p3(x)

)
and

qo(y) =
(
q1(y) ∧ q2(y)

)
∨
(
q1(y) ∧ q3(y)

)
for all x ∈ X and y ∈ Y.

Since X and Y are distributive lattices, then p1(x) ∧
(
p2(x) ∨ p3(x)

)
=

(
p1(x) ∧

p2(x)
)
∨
(
p1(x)∧p3(x)

)
and q1(y)∧

(
q2(y)∨q3(y)

)
=

(
q1(y)∧q2(y)

)
∨
(
q1(y)∧q3(y)

)
for all x ∈ X and y ∈ Y .

Thus (p∗, q∗) = (po, qo) i.e (p1, q1) ∧
(
(p2, q2) ∨ (p3, q3)

)
=

(
(p1, q1) ∧ (p2, q2)

)
∨(

(p1, q1) ∧ (p3, q3)
)
. Hence T [X, Y ] is a distributive lattice.

Conversely, suppose T [X, Y ] be a distributive lattice. Let x1, x2, x3 ∈ X and

y1, y2, y3 ∈ Y . Let p1, p2, p3 be such mappings from X to Y defined by p1(x) = y1,
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p2(x) = y2 and p3(x) = y3 for all x ∈ X. Again let q1, q2, q3 be such mappings from

Y to X defined by q1(y) = x1, q2(y) = x2 and q3(y) = x3 for all y ∈ Y . Thus

(p1, q1), (p2, q2), (p3, q3) ∈ T [X, Y ]. Since T [X, Y ] is a distributive lattice then we

have (p1, q1) ∧
(
(p2, q2) ∨ (p3, q3)

)
=

(
(p1, q1) ∧ (p2, q2)

)
∨
(
(p1, q1) ∧ (p3, q3)

)
=⇒ (p1, q1) ∧ (p∗, q∗) = (p

′
, q

′
) ∨ (po, qo) where,

p∗(x) = p2(x) ∨ p3(x), q∗(y) = q2(y) ∨ q3(y)

p
′
(x) = p1(x) ∧ p2(x), q

′
(y) = q1(y) ∧ q2(y)

po(x) = p1(x) ∧ p3(x), qo(y) = q1(y) ∧ q3(y)

for all x ∈ X and y ∈ Y .

=⇒ (p∗∗, q∗∗) = (p
′′
, q

′′
) where,

p∗∗(x) = p1(x) ∧ p∗(x), q∗∗(y) = q1(y) ∧ q∗(y)

p
′′
(x) = p

′
(x) ∨ po(x), q′′(y) = q

′
(y) ∨ qo(y)

for all x ∈ X and y ∈ Y .

=⇒ (p∗∗, q∗∗) = (p
′′
, q

′′
) where

p∗∗(x) = p1(x) ∧
(
p2(x) ∨ p3(x)

)
,

q∗∗(y) = q1(y) ∧
(
q2(y) ∨ q3(y)

)
p
′′
(x) =

(
p1(x) ∧ p2(x)

)
∨
(
p1(x) ∧ p3(x)

)
,

q
′′
(y) =

(
q1(y) ∧ q2(y)

)
∨
(
q1(y) ∧ q3(y)

)
for all x ∈ X and y ∈ Y .

Now, (p∗∗, q∗∗) = (p
′′
, q

′′
) implies that p∗∗(x) = p

′′
(x) and q∗∗(y) = q

′′
(y) for all

x ∈ X and y ∈ Y .

i.e. p1(x)∧
(
p2(x)∨ p3(x)

)
=

(
p1(x)∧ p2(x)

)
∨
(
p1(x)∧ p3(x)

)
and q1(y)∧

(
q2(y)∨

q3(y)
)
=

(
q1(y) ∧ q2(y)

)
∨
(
q1(y) ∧ q3(y)

)
for all x ∈ X and y ∈ Y .

i.e. x1 ∧ (x2 ∨ x3) = (x1 ∧ x2) ∨ (x1 ∧ x3) and y1 ∧ (y2 ∨ y3) = (y1 ∧ y2) ∨ (y1 ∧ y3).

Thus X and Y are distributive lattices.

Theorem 5.3.5. The ternary semigroup of mappings (T [X, Y ],≤) of X and Y is

a Boolean lattice if and only if (X,≤X) and (Y,≤Y ) are two Boolean lattices.

Proof. Let us assume that (X,≤X) and (Y,≤Y ) be two Boolean lattices with 1X ,
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1Y and 0X , 0Y be the greatest and least elements of X and Y respectively. Let

(p, q) ∈ T [X, Y ]. We define two mappings p
′
: X −→ Y and q

′
: Y −→ X such that

p
′
(x) = p(x) and q

′
(y) = q(y) for all x ∈ X and y ∈ Y , where p(x) and q(y) denotes

the complement of p(x) and q(y) for all x ∈ X and y ∈ Y i.e p(x) ∨ p(x) = 1Y ,

p(x) ∧ p(x) = 0Y and q(y) ∨ q(y) = 1X , q(y) ∧ q(y) = 0X for all x ∈ X and y ∈ Y .

If (p, q) ∨ (p
′
, q

′
) = (p∗, q∗) and (p, q) ∧ (p

′
, q

′
) = (po, qo) then we have to show

that (p∗, q∗) and (po, qo) be the greatest and least element of T [X, Y ]. We proceed

by contradiction, let (p∗, q∗) be not the greatest element of T [X, Y ]. If not, then

there exists an element (p∗∗, q∗∗) such that (p∗, q∗) ≤ (p∗∗, q∗∗) =⇒ p∗(x) ≤Y p∗∗(x)

and q∗(y) ≤X q∗∗(y) for all x ∈ X and y ∈ Y =⇒ p(x) ∨ p(x) ≤Y p∗∗(x) and

q(y)∨ q(y) ≤X q∗∗(y) =⇒ 1Y ≤Y p∗∗(x) and 1X ≤X q∗∗(y), which is a contradiction.

In the similar way, let (p
′
, q

′
) be not the least element of T [X, Y ]. If not then

there exists an element (p
′′
, q

′′
) such that (p

′′
, q

′′
) ≤ (p

′
, q

′
) =⇒ p

′′
(x) ≤Y p

′
(x)

and q
′′
(y) ≤X q

′
(y) for all x ∈ X and y ∈ Y =⇒ p

′′
(x) ≤Y p(x) ∧ p(x) and

q
′′
(y) ≤X q(y) ∧ q(y) =⇒ p

′′
(x) ≤Y 0Y and q

′′
(y) ≤X 0X , a contradiction. So that

(p∗, q∗) and (p
′
, q

′
) be the greatest and least elements of T [X, Y ] and hence T [X, Y ]

is a Boolean lattice.

Conversely, let T [X, Y ] be a Boolean lattice. By Theorem 5.3.1 X and Y are also

lattices. Let x1 ∈ X and y1 ∈ Y . Let us define two mappings q1 : Y −→ X such that

q1(y) = x1 and p1 : X −→ Y such that p1(x) = y1 for all x ∈ X and y ∈ Y . Thus

(p1, q1) ∈ T [X, Y ]. Then there exists (p
′
1, q

′
1) ∈ T [X, Y ] such that (p1, q1)∨ (p

′
1, q

′
1) =

1T [X,Y ] and (p1, q1) ∧ (p
′
1, q

′
1) = 0T [X,Y ], where 1T [X,Y ] and 0T [X,Y ] be the greatest

and least elements of T [X, Y ]. Let 1T [X,Y ] = (p∗, q∗) and 0T [X,Y ] = (po, qo). Thus

(p1, q1) ∨ (p
′
1, q

′
1) = (p∗, q∗) where p∗(x) = p1(x) ∨ p

′
1(x), q

∗(y) = q1(y) ∨ q
′
1(y) and

(p1, q1)∧ (p
′
1, q

′
1) = (po, qo) where po(x) = p1(x)∧ p

′
1(x), q

o(y) = q1(y)∧ q
′
1(y) for all

x ∈ X and y ∈ Y . We have to show that q∗(y) and p∗(x) be the greatest elements

of X and Y . Also qo(y) and po(x) be the least elements of X and Y . Let q∗(y) be

no the greatest element in X. Then there exists x∗∗ such that q∗(y) ≤X x∗∗.
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Let us define a mapping q∗∗ : Y −→ X such that q∗∗(y) = x∗∗ for all y ∈ Y .

Hence q∗(y) ≤X q∗∗(y) for all y ∈ Y Now q∗(y) = q1(y)∨q
′
1(y). Thus, q1(y)∨q

′
1(y) ≤X

q∗∗(y) =⇒ q1(y) ≤X q∗∗(y) and q
′
1(y) ≤X q∗∗(y). ........................(1).

Again let p∗(x) be not the greatest element in Y. Then there exists y∗∗ such that

p∗(x) ≤Y y∗∗. Let us define another mapping p∗∗ : X −→ Y such that p∗∗(x) = y∗∗

for all x ∈ X. Thus p∗(x) ≤Y p∗∗(x) for all x ∈ X =⇒ p1(x) ∨ p
′
1(x) ≤Y p∗∗(x) =⇒

p1(x) ≤Y p∗∗(x) and p
′
1(x) ≤Y p∗∗(x) ........................(2).

From (1) and (2) we get (p1, q1) ≤ (p∗∗, q∗∗), (p
′
1, q

′
1) ≤ (p∗∗, q∗∗) =⇒ (p1, q1) ∨

(p
′
1, q

′
1) ≤ (p∗∗, q∗∗) =⇒ (p∗, q∗) ≤ (p∗∗, q∗∗) which is not possible since (p∗, q∗) is the

greatest element in T [X, Y ]. Thus q∗(y) and p∗(x) be the greatest elements of X

and Y . Similarly, we can show that qo(y) and po(x) be the least elements of X and

Y . Hence X and Y are Boolean lattices.

5.4 Isomorphism between ternary semigroup of

mappings

In this section, we consider the problem of describing isomorphism between ternary

semigroups of mappings.

Definition 5.4.1. [22, Chronowski] Let (X,∨,∧) and (Y,∨,∧) are two lattices. A

mapping f : X −→ Y is said to be a lattice homomorphism if

(i) f(x1 ∨ x2) = f(x1) ∨ f(x2) and

(ii) f(x1 ∧ x2) = f(x1) ∧ f(x2) ∀x1, x2 ∈ X.

Again f is called a lattice isomorphism if f is one-one and onto.

Theorem 5.4.2. Let (X,∧,∨), (X ′
,∧,∨), (Y,∧,∨), (Y ′

,∧,∨) are lattices. If X is

isomorphic to X
′
and Y is isomorphic to Y

′
, then there is a lattice isomorphism from

the ternary semigroup of mappings T [X, Y ] of X and Y to the ternary semigroup of

mappings T [X
′
, Y

′
] of X

′
and Y

′
.
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Proof. Let us suppose thatX ∼= X
′
and Y ∼= Y

′
. Let ϕ : X −→ X

′
and ψ : Y −→ Y

′

be two lattice isomorphisms. Let us define a mapping f from T [X, Y ] onto T [X
′
, Y

′
]

by

f(p, q) = (p
′
, q

′
) such that p

′
(ϕ(x)) = ψ(p(x)), q

′
(ψ(y)) = ϕ(q(y)).

Y

X X
′

Y
′

p q p
′
q
′

ψ

ϕ

Let (p, q), (p1, q1) ∈ T [X, Y ]. Since T [X, Y ] is a lattice sup{(p, q), (p1, q1)} =

(p, q) ∨ (p1, q1) and inf{(p, q), (p1, q1)} = (p, q) ∧ (p1, q1) exists in T [X, Y ].

Thus we have f((p, q) ∨ (p1, q1)) = f(po, qo) where po(x) = p(x) ∨ p1(x), q
o(y) =

q(y) ∨ q1(y) for all x ∈ X and y ∈ Y and

f(p, q)∨f(p1, q1) = (p
′
, q

′
)∨(p′

1, q
′
1) = (po

′
, qo

′
) where po

′
(x

′
) = p

′
(x

′
)∨p′

1(x
′
), qo

′
(y

′
)

= q
′
(y

′
) ∨ q′1(y

′
) for all x

′ ∈ X
′
and y

′ ∈ Y
′
.

We have to show that f((p, q)∨(p1, q1)) = f(p, q)∨f(p1, q1) =⇒ f(po, qo) = (po
′
, qo

′
)

i.e. po
′
(ϕ(x)) = ψ(po(x)) and qo

′
(ψ(y)) = ϕ(qo(y)).

Now f(p, q) = (p
′
, q

′
) =⇒ p

′
(ϕ(x)) = ψ(p(x)), q

′
(ψ(y)) = ϕ(q(y)) and

f(p1, q1) = (p
′
1, q

′
1) =⇒ p

′
1(ϕ(x)) = ψ(p1(x)), q

′
1(ψ(y)) = ϕ(q1(y))

Then, po
′
(ϕ(x)) = p

′
(ϕ(x)) ∨ p

′
1(ϕ(x)) = ψ(p(x)) ∨ ψ(p1(x)) = ψ(p(x) ∨ p1(x)) =

ψ(po(x)) and

qo
′
(ψ(y)) = q′(ψ(y)) ∨ q′1(ψ(y)) = ϕ(q(y)) ∨ ϕ(q1(y)) = ϕ(q(y) ∨ q1(y)) = ϕ(qo(y)).

Thus f(po, qo) = (po
′
, qo

′
).

Hence f((p, q) ∨ (p1, q1)) = f(p, q) ∨ f(p1, q1).

Similarly, it can be shown that f((p, q)∧(p1, q1)) = f(p, q)∧f(p1, q1). Therefore,

f is a lattice homomorphism. It remains to show that f is one-one and onto. For

(p, q), (p1, q1) ∈ T [X, Y ], we have
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f(p, q) = f(p1, q1)

=⇒ (p
′
, q

′
) = (p

′

1, q
′

1)

=⇒ p
′
(ϕ(x)) = p

′

1(ϕ(x)), q
′
(ψ(y)) = q

′

1(ψ(y)) for all x ∈ X and y ∈ Y

=⇒ ψ(p(x)) = ψ(p1(x)), ϕ(q(y)) = ϕ(q1(y)) for all x ∈ X and y ∈ Y

=⇒ p(x) = p1(x), q(y) = q1(y) for all x ∈ X and y ∈ Y.

=⇒ (p, q) = (p1, q1)

Hence (p, q) = (p1, q1) and f is one-one. For the last part, let (p
′
, q

′
) ∈ T [X

′
, Y

′
].

Now p
′
(ϕ(x)) = y

′
= ψ(y) = ψ(p(x)) and q

′
(ψ(y)) = x

′
= ϕ(x) = ϕ(q(y)). Thus

there exists (p, q) in T [X, Y ] such that f(p, q) = (p
′
, q

′
). Hence f is onto and so f

is a lattice isomorphism.

Note 5.4.3. But the converse of the theorem may not be true. Let us give an

example below.

Example 5.4.4. Assume that X, X
′
, Y , Y

′
be non-empty sets such that card (X)

= card (Y
′
) = n, n ∈ N and card (X

′
) = card (Y ) = 1. Let us consider the sets X =

{x1, x2, ..................., xn}, Y = {y1}, X
′
= {x′

1} and Y
′
= {y′

1, y
′
2, ..................., y

′
n}.

Define a partially order relation on X by xi ≤ xj if and only if i < j and also

define a partially order relation on Y
′
by y

′
i ≤ y

′
j if and only if i < j. Assume

that X
′
and Y are trivially ordered sets. Now T (X, Y ) = {p1} where p1(x) =

y1 for all x ∈ X, T (Y,X) = {q1, q2, ..................., qn} where q1(y) = x1, q2(y) =

x2, ..................., qn(y) = xn for all y ∈ Y and so T [X, Y ] = T (X, Y ) × T (Y,X) =

{(p1, q1), (p1, q2), ..................., (p1, qn)}.

Again, T (X
′
, Y

′
) = {p′

1, p
′
2, ......, p

′
n} where p

′
1(x

′
) = y

′
1, p

′
2(x

′
) = y

′
2, ......, p

′
n(x

′
) =

y
′
n for all x

′ ∈ X
′
, T (Y

′
, X

′
) = {q′1} where q

′
1(y

′
) = x

′
1 for all y

′ ∈ Y
′
and so

T [X
′
, Y

′
] = T (X

′
, Y

′
)× T (Y

′
, X

′
) = {(p′

1, q
′
1), (p

′
2, q

′
1), ........., (p

′
n, q

′
1)}.

Let us define a mapping f : T [X, Y ] −→ T [X
′
, Y

′
] by f(pi, qj) = (p

′
j, q

′
i). Then
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it can be easily shown that f is an isomorphism from T [X, Y ] to T [X
′
, Y

′
]. Since

card (T [X, Y ]) = card (T [X
′
, Y

′
]), then there exists a bijection from T [X, Y ] to

T [X
′
, Y

′
]. Now f((p1, q1)∧(p1, q2)∧...................∧(p1, qn)) = f(p∗, q∗) where p∗(x) =

p1(x)∧p1(x)∧p1(x)∧ ...................∧p1(x) = p1(x) and q
∗(y) = q1(y)∧q2(y)∧q3(y)∧

...................∧qn(y) = q1(y). Therefore f((p1, q1)∧(p1, q2)∧...................∧(p1, qn)) =

f(p1, q1) = (p
′
1, q

′
1).

Again f(p1, q1)∧f(p1, q2)∧...................∧f(p1, qn) = (p
′
1, q

′
1)∧(p

′
2, q

′
1)∧...................∧

(p
′
n, q

′
1) = (p

′
1, q

′
1). Thus f is a homomorphism and so T [X, Y ] ∼= T [X

′
, Y

′
]. But X

is not isomorphic to X
′
and Y is not isomorphic to Y

′
since card (X) ̸= card (X

′
)

and card (Y ) ̸= card (Y
′
).

Note 5.4.5. If card (X) = card (X
′
) and card (Y ) = card (Y

′
) and f is an isomor-

phism from T [X, Y ] to T [X
′
, Y

′
] such that f takes the pair of constant maps to a pair

of constant maps, then X is isomorphic to X
′
and Y is isomorphic to Y

′
. Let us con-

sider py, qx be constant maps such that py(x) = y and qx(y) = x for all x ∈ X, y ∈ Y .

Let us define two mappings ϕ : X −→ X
′
and ψ : Y −→ Y

′
by ϕ(x) = x

′
and

ψ(y) = y
′
such that f(py, qx) = (p

′

y′
, q

′

x′ ). Let (py, qx), (py1 , qx1) ∈ T [X, Y ]. Since f

is an isomorphism, we have

f((py, qx) ∨ (py1 , qx1)) = f(py, qx) ∨ f(py1 , qx1)

=⇒ f(py ∨ py1 , qx ∨ qx1) = (p
′

y′
, q

′

x′ ) ∨ (p
′

y
′
1
, q

′

x
′
1
)

=⇒ f(py ∨ py1 , qx ∨ qx1) = (p
′

y′
∨ p′

y
′
1
, q

′

x′ ∨ q′
x
′
1
)

=⇒ f(py∨y1 , qx∨x1) = (p
′

y′∨y′1
, q

′

x′∨x′
1
)

Thus ϕ(x ∨ x1) = x
′ ∨ x′

1 = ϕ(x) ∨ ϕ(x1) and ψ(y ∨ y1) = y
′ ∨ y′

1 = ψ(y) ∨ ψ(y1).

Definition 5.4.6. A mapping f : X −→ Y is called a isotone of X into Y if

x1 ≤X x2 =⇒ f(x1) ≤Y f(x2) for all x1, x2 ∈ X.

Theorem 5.4.7. Let X and Y be posets and O(X, Y ) be the set of all isotone

mappings from X to Y. Put O[X, Y ] = O(X, Y )×O(Y,X) ⊂ T [X, Y ]. Then O[X, Y ]
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is an ordered ternary semigroup with respect to the ternary operation and partial

order defined in T [X, Y ].

Proof. First, suppose that (p1, q1), (p2, q2) ∈ O[X, Y ] such that (p1, q1) ≤ (p2, q2) =⇒

p1(x) ≤Y p2(x), q1(y) ≤X q2(y) for all x ∈ X and y ∈ Y .....................(1)

Since (p3, q3), (p4, q4) are elements of O[X, Y ], we have (p1, q1)(p3, q3)(p4, q4) =

(p1q3p4, q1p3q4) and (p2, q2)(p3, q3)(p4, q4) = (p2q3p4, q2p3q4). Now

(p1q3p4)(x) = (p1q3)(p4(x)) = (p1q3)(y) = (p1)(q3(y)) = p1(x
′
) and

(p2q3p4)(x) = (p2q3)(p4(x)) = (p2q3)(y) = (p2)(q3(y)) = p2(x
′
)

where p4(x) = y and q3(y) = x
′

Thus from (1) we have p1(x
′
) ≤Y p2(x

′
) =⇒ p1q3p4(x) ≤Y p2q3p4(x) for all x ∈ X.

In the similar manner we can show that, (q1p3q4)(y) ≤Y (q2p3q4)(y) for all y ∈ Y .

Hence (p1q3p4, q1p3q4) ≤ (p2q3p4, q2p3q4) which implies that (p1, q1)(p3, q3)(p4, q4) ≤

(p2, q2)(p3, q3)(p4, q4).

Again, we have (p3, q3)(p4, q4)(p1, q1) = (p3q4p1, q3p4q1) and (p3, q3)(p4, q4)(p2, q2) =

(p3q4p2, q3p4q2). Now p1(x) ≤Y p2(x) =⇒ (q4p1)(x) ≤X (q4p2)(x) [since q4 is an

isotone map] and (q4p1)(x) ≤X (q4p2)(x) =⇒ (p3q4p1)(x) ≤Y (p3q4p2)(x) [ since

p3 is an isotone map] for all x ∈ X. Similarly, (q3p4q1)(y) ≤ (q3p4q2)(y) for all

y ∈ Y . Thus (p3q4p1, q3p4q1) ≤ (p3q4p2, q3p4q2) implies that (p3, q3)(p4, q4)(p1, q1)

≤ (p3, q3)(p4, q4)(p2, q2).

For the last part, (p3, q3)(p1, q1)(p4, q4) = (p3q1p4, q3p1q4) and (p3, q3)(p2, q2)(p4, q4)

= (p3q2p4, q3p2q4). Let p4(x) = y for some y ∈ Y and since Y is a poset y ≤Y y

i.e. p4(x) ≤Y p4(x) =⇒ (q1p4)(x) ≤Y (q1p4)(x) [ since q1 is an isotone map]

=⇒ (p3q1p4)(x) ≤Y (p3q1p4)(x) [ since p3 is an isotone map]. Thus (p3q1p4, q3p1q4)

≤ (p3q2p4, q3p2q4) i.e. (p3, q3)(p1, q1)(p4, q4) ≤ (p3, q3)(p2, q2)(p4, q4).

Hence O[X, Y ] is an ordered ternary semigroup.

The ordered ternary semigroup O[X, Y ] is called the ternary semigroup of isotone
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mappings of sets X and Y .

Theorem 5.4.8. The ternary semigroup of isotone mappings O[X, Y ] is a regular

ordered ternary semigroup.

Proof. In [23, Corollary 28.16] we have seen that T [X, Y ] is regular ternary semi-

group. Now proceeding in the same way we can show that O[X, Y ] is also regular

ternary semigroup i.e. for every (p, q) ∈ O[X, Y ] there exists (p
′
, q

′
) ∈ O[X, Y ] such

that (p, q)(p
′
, q

′
)(p, q) = (p, q). Since O[X, Y ] is a partially ordered ternary semi-

group then (p, q) ≤ (p, q) = (p, q)(p
′
, q

′
)(p, q). Thus O[X, Y ] is a regular ordered

ternary semigroup.

Theorem 5.4.9. The ternary semigroup of isotone mappings O[X, Y ] is an intra-

regular ordered ternary semigroup.

Proof. Let (p, q) ∈ O[X, Y ]. Let us define two mappings p1 : Im(q) −→ Y and q1 :

Im(p) −→ X such that p1(x) = y for all x ∈ Im(q) and q1(y) = x for all y ∈ Im(p).

Now Dom(p1) = Im(q) and Dom(q1) = Im(p). Let (p
′
, q

′
) ∈ O[X, Y ] such that

p
′ |Im(q) = p1 and q

′ |Im(p) = q1. Hence pq′p′q′p = p and qp′q′p′q = q. Thus for every

(p, q) ∈ O[X, Y ] there exists (p
′
, q

′
) ∈ O[X, Y ] such that (p, q)(p

′
, q

′
)(p

′
, q

′
)(p

′
, q

′
)(p, q)

= (p, q) i.e. (p, q)(p
′
, q

′
)3(p, q) = (p, q). Since O[X, Y ] is a partially ordered ternary

semigroup then (p, q) ≤ (p, q) = (p, q)(p
′
, q

′
)3(p, q). Thus O[X, Y ] is an intra-regular

ordered ternary semigroup.

Theorem 5.4.10. The ternary semigroup of isotone mappings O[X, Y ] is an idem-

potent ordered ternary semigroup if either card(X) = 1 or card(Y ) = 1.

Proof. Let (p, q) ∈ O[X, Y ]. Let card(X) = 1. Then Imq contains exactly one

element. Let the element be x1. Thus q(y) = x1 for all y ∈ Y . Let p(x1) =

y1. Then (qpq)(y) = (qp)(q(y)) = (qp)(x1) = q(p(x1)) = q(y1) = x1 = q(y) and

(pqp)(x) = (pqp)(x1) = (pq)(p(x1)) = (pq)(y1) = p(q(y1)) = p(x1) = p(x). Hence

(pqp, qpq) = (p, q). Since O[X, Y ] is a partially ordered ternary semigroup then

(p, q) ≤ (p, q) = (pqp, qpq) = (p, q)(p, q)(p, q). Thus O[X, Y ] is an idempotent
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ordered ternary semigroup. Similarly, if card(Y ) = 1 we can prove that O[X, Y ] is

an idempotent ordered ternary semigroup.

Definition 5.4.11. Let (X, .,≤X) and (Y, .,≤Y ) are ordered ternary semigroups. A

mapping f : X −→ Y is said to be an ordered ternary homomorphism if (i) f(x1x2x3) =

f(x1)f(x2)f(x3)

(ii) x1 ≤X x2 =⇒ f(x1) ≤Y f(x2) for all x1, x2, x3 ∈ X.

Again, f is called an ordered ternary isomorphism if f is one-one and onto.

Theorem 5.4.12. Let X, X
′
, Y , Y

′
are posets. If ϕ : X −→ X

′
and ψ : Y −→ Y

′

are isomorphisms, then there exists an ordered ternary isomorphism f from O[X, Y ]

to O[X
′
, Y

′
].

Proof. The proof is similar to Theorem 5.4.2.

The converse statement of the Theorem 5.4.12 is not true. By using Example

5.4.4 we have reached the conclusion.
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Chapter 6

On right chain ordered ternary

semigroups

6.1 Introduction

In this chapter, we study the ideal theory of a right chain ordered ternary

semigroup S. Brungs and Törner develop the ideal theory for right cones [11] and

right holoids [12]. Our main aim to study right chain ordered ternary semigroup in

terms of prime ideals, completely prime ideals and prime segment. Prime segments

are studied by many authors in [10], [9], [8], [70]. Then we are going to extend the

concept of “Hoehnke ideal” of an ordered semigroup in an ordered ternary semigroup.

In a semigroup, S H. J. [36] Hoehnke introduced the set M0 = {h ∈ S : m ̸∈

mhS for all m ∈ M\0} , where M is an S-system. Then M0 is an ideal of the

semigroup S. Later Miguel Ferrero, Ryszard Mazurek, Alveri Sant’ Ana [31] defined

the Hoehnke ideal of a semigroup S to be the set {h ∈ S : s ̸∈ shS for all s ∈ S\0}

and denoted by H(S). Thereafter Thawhat Changphas, Panuwat Luangchaisri,

Ryszard Mazurek [18] introduced the Hoehnke ideal of a semigroup S asscociated

with a proper right ideal A of S defined by HA(S) = {h ∈ S : s /∈ (shS] for all s ∈

S\A}. In this chapter, we introduce the notion of H-right ideal using Hoehnke ideal.
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The concept of H-right ideal is very helpful idea to construct semiprime right ideals

in right chain ordered ternary semigroup.

The definition of right chain ordered ternary semigroups is as follows:

Definition 6.1.1. A right chain ordered ternary semigroup is an ordered ternary

semigroup (S, .,≤) in which right ideals forms a chain by inclusion. In other words,

if I, J are right ideals of S then either I ⊆ J or J ⊆ I.

• In the similar way we can define left chain ordered ternary semigroup and

lateral chain ordered ternary semigroup.

• The ordered ternary semigroup S is a chain ordered ternary semigroup if it is

a right, left and lateral chain ordered ternary semigroup.

In this chapter, we consider that any ordered ternary semigroup contains the zero

element. Therefore, there exists an element ‘0’ in the ordered ternary semigroup S

such that ab0 = a0b = 0ab = 0 for all a, b ∈ S.

Throughout this chapter, S denotes a right chain ordered ternary semigroup

containing ‘0’ which is the zero element of S.

Example 6.1.2. Let S = {0, a, b, c}, where ‘0’ is the zero element in S. The ternary

multiplication in S defined as follows

xyz =


x if y ̸= 0 and z ̸= 0

y if y = 0

z if z = 0

for all x, y, z ∈ S. Then S with the ternary multiplication forms a ternary semigroup.

Let ‘ ≤’ be a partial order on S defined by

≤:= {(a, a), (a, b), (a, c), (b, b), (b, c), (c, c), (0, 0), (0, a), (0, b), (0, c)}

Now (S, .,≤) is an ordered ternary semigroup with respect to the partial order ‘ ≤’.

The right ideals of (S, .,≤) are {0}, {0, a}, {0, a, b}, {0, a, b, c} which are comparable.
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Thus the right ideals of S form a chain. Hence S is a right chain ordered ternary

semigroup.

6.2 H-ideals in right chain ordered ternary semi-

group

In this section, we are going to define the H-ideal of ordered ternary semigroup.

Next we have the proposition which we will often use in this chapter.

Proposition 6.2.1. Let S be an ordered ternary semigroup and I be an ideal of S.

Then I is completely prime if and only if I is prime and completely semiprime.

Proof. From the definitions of prime ideal, completely prime ideal and completely

semiprime ideal of an ordered ternary semigroup S it can be easily seen that if an

ideal I of S is completely prime then I is prime and completely semiprime.

To prove the reverse side, assume that I is prime and completely semiprime ideal

of S. Let abc ∈ I for any a, b, c ∈ S. Now (bca)3 = (bca)(bca)(bca) = bc(abc)(abc)a ∈

SSIIS ⊆ IIS ⊆ SIS ⊆ I and (cab)3 = (cab)(cab)(cab) = c(abc)(abc)ab ∈ SIISS ⊆

SII ⊆ SIS ⊆ I. Since I is completely semiprime ideal we have bca ∈ I and cab ∈ I.

Then I(a)I(b)I(c) ⊆ I for any a, b, c ∈ S. Since I is prime ideal then I(a) ⊆ I or

I(b) ⊆ I or I(c) ⊆ I and hence a ∈ I or b ∈ I or c ∈ I. Therefore, I is completely

prime ideal of S.

Definition 6.2.2. Let (S, .,≤) be an ordered ternary semigroup. For any proper

right ideal A of S we define the H-right ideal of S associated with A to be the set

H(SA) = {h ∈ S : s /∈ (s2hSS] for all s ∈ S\A}

Theorem 6.2.3. Let (S, .,≤) be an ordered ternary semigroup and A be a proper

right ideal of S. Then for any right ideal I of S, I ⊆ H(SA) if and only if s /∈ (s2I]

for all s ∈ S\A.
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Proof. We continue by contraposition. Suppose that I ⊈ H(SA), then for some

i ∈ I and s ∈ S\A we have s ∈ (s2iSS] ⊆ (s2ISS] ⊆ (s2I]. Thus we get, if s /∈ (s2I]

for all s ∈ S\A, then I ⊆ H(SA).

To proof the reverse implication, let s ∈ (s2I] for some s ∈ S\A. Then there

exists some i ∈ I such that s ≤ s2i. Then s2i ≤ s2isi and so s ≤ s2isi ∈ s2iSS.

Hence s ∈ (s2iSS], which shows that i /∈ H(SA). Therefore, I ⊈ H(SA) and the

proof is done.

Theorem 6.2.4. Let (S, .,≤) be an ordered ternary semigroup and A be a proper

right ideal of S. Then the followings hold:

(1) H(SA) is a semiprime right ideal of S.

(2) If A is a proper ideal of S, then A ⊆ H(SA).

Proof. (1) Suppose (S, .,≤) be an ordered ternary semigroup and A be a proper

right ideal of S. We have to show that H(SA) is a semiprime right ideal of S. First,

we show that H(SA) is a right ideal of S. Since 0 ∈ S, then 0 ∈ A. For any s ∈ S

we have, (s20SS] = (0SS] = (0] ⊆ (A] = A. Thus s /∈ (s20SS] for all s ∈ S\A.

Hence 0 ∈ H(SA), which shows that H(SA) is nonempty. Next we have to show

that H(SA) is closed under right ternary multiplication i.e. H(SA)SS ⊆ H(SA).

Let us suppose H(SA)SS ⊈ H(SA). Then for some h ∈ H(SA) and s1s2 ∈ S

we have hs1s2 /∈ H(SA). By definition of H(SA) there exists s ∈ S\A such that

s ∈ (s2hs1s2SS] ⊆ (s2hSS]. Since h ∈ H(SA), s ∈ A which is a contradiction. So,

hs1s2 ∈ H(SA). Hence H(SA)SS ⊆ H(SA). To complete the proof that (H(SA)] ⊆

H(SA), let x ∈ (H(SA)]. Then x ≤ h for some h ∈ H(SA). For any s ∈ S\A we

have s2x ≤ s2h. Hence by Proposition 1.4.3 we have (s2xSS] ⊆ (s2hSS]. Since

h ∈ H(SA), s /∈ (s2hSS] and so also s /∈ (s2xSS] which implies that x ∈ H(SA).

Therefore, (H(SA)] ⊆ H(SA). Hence H(SA) is a right ideal of S.

The rest of the proof is complete by showing that H(SA) is a semiprime right

ideal of S. Let I be a right ideal of S such that I3 ⊆ H(SA). If I ⊈ H(SA)

then by Theorem 6.2.3 there exists s ∈ S\A such that s ∈ (s2I]. Now, s2I ⊆
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(s2I]sI ⊆ (s2I](sI] ⊆ (s2IsI]. Thus s ∈ (s2I] ⊆ ((s2IsI]] = (s2IsI]. Again

s2I ∈ (s2IsI]sI ⊆ (s2IsIsI] ⊆ (s2I3]. Thus s ∈ (s2I3] ⊆ (s2H(SA)] which is a

contradiction. Hence I ⊆ H(SA) and H(SA) is semiprime right ideal of S.

(2) Next we are going to proof the last part of the theorem. Let us assume that, A

be an ideal of S. Then (s2A] ⊆ (SSA] ⊆ (A] = A and (sAS] ⊆ (SAS] ⊆ (A] = A

for any s ∈ S. So, s /∈ (s2A] for all s ∈ S\A. Hence by Theorem 6.2.3 we get that

A ⊆ H(SA).

This completes our proof.

Let A be a non-empty subset of an ordered ternary semigroup S. By A2n−1 we

mean the set of all products a1a2...a2n−1 where a1, a2, ..., a2n−1 are all elements of S

and n ∈ N. i.e.

A2n−1 = {a1a2a3....a2n−1 : a1, a2, ...., a2n−1 ∈ A}

Definition 6.2.5. Let A be an ideal of ordered ternary semigroup (S, .,≤).

(a) An ideal I of S is said to be A-nilpotent if I2n−1 ⊆ A for some n ∈ N.

(b) An element t ∈ S is said to be A-nilpotent t2n−1 ∈ A for some n ∈ N.

Proposition 6.2.6. Let A be a proper right ideal of a right chain ordered ternary

semigroup (S, .,≤). Then the followings hold:

(1) If I is an ideal of S such that I ⊆ H(SA) and I is not A-nilpotent, then⋂
n∈N(I

2n−1] is a completely semiprime right ideal of S.

(2) If t ∈ S such that t ∈ H(SA) and t is not A-nilpotent, then
⋂

n∈N(t
2nS] is a

semiprime right ideal of S.

Proof. (1) Assume that I is an ideal of S. Then for all n ∈ N, (I2n−1] is a right ideal

and by Proposition 1.4.2,
⋂

n∈N(I
2n−1] is a right ideal of S. Let a be an arbitrary

element of S such that a3 ∈
⋂

n∈N(I
2n−1] but a ̸∈

⋂
n∈N(I

2n−1]. Then a ̸∈ (I2m−1]

for some m ∈ N. Now R(a) = (a ∪ aSS] is a right ideal containing a of S and

since S is right chain ordered ternary semigroup we have (I2m−1] ⊆ (a ∪ aSS].
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Since a3 ∈
⋂

n∈N(I
2n−1], then a3 ∈ (I2n−1] for all n ∈ N. Now 6m − 2 ∈ N

since m ∈ N. Then we have a3 ∈ (I2(6m−2)−1] = (I12m−5] = (I2m−1I10m−4] ⊆

((a ∪ aSS]I10m−4] ⊆ (aI10m−4] = (aI2m−1I8m−3] ⊆ (a(a ∪ aSS]I8m−3] ⊆ (a2I8m−3] =

(a2I2m−1I6m−2] ⊆ (a2(a ∪ aSS]I6m−2] ⊆ (a3I6m−2] = (a3I2m−1I4m−1] ⊆ (a3(a ∪

aSS]I4m−1] ⊆ (a4I4m−1] = (a4I2m−1I2m] ⊆ (a4(a∪aSS]I2m] ⊆ (a5I2m] = (a5I2m−1I] ⊆

(a5(a ∪ aSS]I] ⊆ (a6I] = ((a3)2I]. Since I ⊆ H(SA), then a3 ⊆ A and so

(I2(6m−2)−1] ⊆ ((a3)2I] ⊆ (A2I] ⊆ (ASS] ⊆ (A] = A. Hence (I2(6m−2)−1] ⊆ A.

Taking m
′
= 6m−2 we have (I2m

′−1] ⊆ A for some m
′ ∈ N implies that I2m

′−1 ⊆ A

that for some m
′ ∈ N which contradicts the fact that I is not A-nilpotent. Hence

a ∈ (I2n−1] for all n ∈ N and so a ∈
⋂

n∈N(I
2n−1]. Therefore,

⋂
n∈N(I

2n−1] is a

completely semiprime right ideal of S.

(2) Let us assume that t ∈ S such that t ∈ H(SA) and t is not A-nilpotent,

i.e. t2n−1 /∈ A for all n ∈ N. For all n ∈ N, (t2nS] is a right ideal of S, then by

Proposition 1.4.2 we have
⋂

n∈N(t
2nS] is a right ideal of S. Let J be a right ideal

of S such that J3 ⊆
⋂

n∈N(t
2nS] but J ⊈

⋂
n∈N(t

2nS]. Thus J ⊈ (t2mS] for some

m ∈ N. Since S is a right chain ordered ternary semigroup we must have (t2mS] ⊆ J

where m ∈ N. Now t ∈ S =⇒ t6m−3 ∈ S. Hence

t6m−3 = t(2m−2)+(2m−2)+(2m−2)+3

= t(2m−2).t.t(2m−2).t.t(2m−2).t

= t2(m−1).t.t2(m−1).t.t2(m−1).t

∈ J3

⊆ (t2(6m−2)S]

= (t2(6m−3)t2S]

⊆ (t2(6m−3)(t2S]]

= ((t(6m−3))2(t2S]]

Since (t2S] is a right ideal of S and (t2S] ⊆ H(SA), by Theorem 6.2.3 we have
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t6m−3 ∈ A which implies that t2(3m−1)−1 ∈ A. Taking 3m−1 = m
′
we get t2m

′−1 ∈ A

for some m
′ ∈ N which contradicts the fact that t is not A-nilpotent element.

Therefore, J ⊆
⋂

n∈N(t
2nS] and so

⋂
n∈N(t

2nS] is a semiprime right ideal of S.

Next we have the following corollary which generalizes this proposition.

Corollary 6.2.7. Let I be an ideal (resp. right ideal) of a right chain ordered ternary

semigroup (S, .,≤) such that (I2n−1] ̸= (I2n+1] for any n ∈ N. Then
⋂

n∈N(I
2n−1] is

a completely semiprime ideal (resp. right prime ideal) of S.

Proof. Let I be an ideal of a right chain ordered ternary semigroup (S, .,≤). Then

(I2n−1] are ideals of S for any n ∈ N. Then by Proposition 1.4.2,
⋂

n∈N(I
2n−1]

are ideals of S. Let A =
⋂

n∈N(I
2n−1]. Let s ∈ S\A, then s /∈ (I2m−1] for some

m ∈ N. If s ∈ (s2I] then (s2I] ⊆ ((s2I]sI] ⊆ (s2IsI]. So, s ∈ (s2IsI] then

(s2I] ⊆ ((s2IsI]sI] ⊆ (s2IsIsI] ⊆ (s2ISISI] ⊆ (s2I3] and continuing in this way

we obatin s ∈ (s2I2m−1] ⊆ (I2m−1], a contradiction. Hence s /∈ (s2I], then by

Theorem 6.2.3 we say that I ⊆ H(SA). Next we have to show that I is not A-

nilpotent. Suppose that I2k−1 ⊆ A for some k ∈ N. Then (I2k−1] ⊆ (A] = A. So,

(I2k−1] ⊆ A =
⋂

n∈N(I
2k−1] ⊆ (I2k+1] ⊆ (I2k−1] which implies that (I2k−1] = (I2k+1],

a contradiction. Therefore, I is not A-nilpotent. By Proposition 6.2.6 we can say

that
⋂

n∈N(I
2n−1] is a completely prime ideal of S.

Similarly, we can prove the corollary for right ideal.

6.3 Prime, semiprime, completely prime and com-

pletely semiprime ideals of right chain ordered

ternary semigroups

The next proposition shows that for any right chain ordered ternary semigroup

semiprime and prime right ideals are equivalent. Also on the other hand completely

semiprime and completely prime ideals are equivalent.
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Proposition 6.3.1. If (S, .,≤) is a right chain ordered ternary semigroup, then we

have the followings :

(1) A right ideal I of S is semiprime ideal if and only if I is prime ideal.

(2) An ideal (resp. right ideal) I of S is completely semiprime ideal (resp. right

ideal) if and only if I is completely prime ideal (resp. right ideal).

Proof. (1) It is obvious that if I is prime then I is semiprime. Asssume that I is

a semiprime right ideal of S. Let A,B,C be right ideals of S such that ABC ⊆ I.

Since S is right chain oredred ternary semigroup we must have A ⊆ B or B ⊆ A,

B ⊆ C or C ⊆ B, C ⊆ A or A ⊆ C. Then A3 ⊆ ABB ⊆ ABC ⊆ I which implies

that A ⊆ I. Similarly, we have B ⊆ I and C ⊆ I. Thus I is prime ideal of S.

(2) Let I be a completely semiprime ideal of S. Consider a, b, c ∈ S such that

abc ∈ I. For a, b, c ∈ S R(a), R(b), R(c) are the right ideals of S generated by

a, b, c respectively. Now a3 ∈ R(a)R(a)R(a). Since S is right chain oredred ternary

semigroup we have a3 ∈ R(a)R(b)R(c) i.e. a3 ∈ (a ∪ aSS](b ∪ bSS](c ∪ cSS] ⊆

(abc∪abcSS∪abSSc∪abSScSS∪aSSbc∪aSSbcSS∪aSSbSSc∪aSSbSScSS] ⊆ I.

Since I is completely semiprime ideal of S, we have a ∈ I. Similarly, b ∈ I and

c ∈ I. This I is completely prime ideal of S. The converse part is obvious.

Similarly, we can proof that A right ideal I of S is completely semiprime right ideal

if and only if I is completely prime right ideal.

Now we define associated prime right ideal in right chain ordered ternary semi-

group.

Definition 6.3.2. Let (S, .,≤) be an ordered ternary semigroup. For any proper

ideal A of S we define the associated prime right ideal of S to be the set

P (SA) = {p ∈ S : xyp for some x, y ∈ S\A}

Proposition 6.3.3. Let A be proper ideal of a right chain ordered ternary semigroup

(S, .,≤). Then P (SA) is a completely prime right ideals of S conatining A.
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Proof. Since A is a proper ideal of S. Hence there exists an element x in S such

that x /∈ A i.e. x ∈ S\A. Now for any a ∈ A we have x2a ∈ SSA ⊆ A it follows

that a ∈ P (SA). Thus A ⊆ P (SA)

Now we have to show that P (SA) is a right ideal of S i.e. P (SA)SS ⊆ P (SA).

Let y ∈ P (SA)SS. Then y = ps1s2 for some p ∈ P (SA) and s1, s2 ∈ S. Hence

there exist u, v ∈ S\A such that uvp ∈ A. Thus (uvp)s1s2 ∈ ASS ⊆ A. So,

uv(ps1s2) = (uvp)s1s2 ∈ A which implies that ps1s2 ∈ P (SA) which proves that

P (SA)SS ⊆ P (SA). Now we have to show that (P (SA)] = P (SA). Let q ∈ (P (SA)]

then there exists p ∈ P (SA) such that q ≤ p and zwp ∈ A for some z, w ∈ S\A.

For z, w ∈ S\A we have zwq ≤ zwp ∈ A. Thus zwq ∈ (A] = A. Hence q ∈ P (SA).

Thus (P (SA)] ⊆ P (SA) and so (P (SA)] = P (SA). Therefore, P (SA) is right ideal.

To complete the proof it remains to show that the right ideal P (SA) is completely

prime. Let a, b, c ∈ S such that abc ∈ P (SA). So there exist r, t ∈ S\A such that

rt(abc) ∈ A =⇒ (rta)bc ∈ A. Now we have the following two cases.

Case 1 : If rta ∈ A, then a ∈ P (SA).

Case 2 : If rta /∈ A i.e. rta ∈ S\A, then we have two posibilities either b ∈ A or

b /∈ A.

• If b ∈ A then rtb ∈ SSA ⊆ A. Thus b ∈ P (SA).

• If b /∈ A. Then (rta)bc ∈ A implies that c ∈ A [ since rta /∈ A].

Therefore, P (SA) is a completely prime right ideal of S containing A.

Proposition 6.3.4. Let A be a prime right ideal of a right chain ordered ternary

semigroup (S, .,≤). Then for any proper ideal I of S we have, either I ⊆ A or

P (SA) ⊆ I.

Proof. Let S be an ordered ternary semigroup and A be a prime right ideal of S.

Let I be a proper ideal of S such that P (SA) ⊈ I. Thus there exists an element

p ∈ P (SA) such that p /∈ I. Since p ∈ P (SA) there exists x, y ∈ S\A such that

xyp ∈ A. Also p /∈ I =⇒ (p ∪ pSS] ⊈ I. Since S is a right chain ordered ternary

semigroup we have I ⊆ (p ∪ pSS]. Let us assume that A ⊆ I. Now for y ∈ S\A,
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(SSyI2]SS ⊆ (SSyI2](S](S] ⊆ (SSyI2SS] ⊆ (SSyI2]. Thus (SSyI2] is a right ideal

of S. If y ∈ (SSyI2] ⊆ (SSSI2] ⊆ (I] = I. Then S\A ⊆ I. Thus (S\A) ∪ A ⊆ I

and so I ⊆ S, which is a contradiction. Thus I ⊆ A. If y /∈ (SSyI2]. Since

(SSyI2] is a right ideal of S and S is a right chain ordered ternary semigroup we

have (SSyI2] ⊆ (y ∪ ySS]. Now,

(x ∪ xSS](y ∪ ySS]I3 = xyI3 ∪ xySSI3 ∪ xSSyI3 ∪ xSSySSI3

⊆ xyI3 ∪ xyI3 ∪ xSSyI3 ∪ xSSyI3

= xyI3 ∪ xSSyI3

⊆ xyI ∪ x(y ∪ ySS]I

= xyI ∪ xyI ∪ xySSI

⊆ xyI

⊆ xy(p ∪ pSS]

= (xyp ∪ xypSS]

∈ (A ∪ ASS]

⊆ (A] = A

Since x, y /∈ A and A is a prime right ideal of S, we have I3 ⊆ A and so I ⊆ A.

Lemma 6.3.5. If A is a proper ideal of a right chain ordered ternary semigroup

(S, .,≤) such that A = (A3], then A = (s2nA] for any s ∈ S\A and n ∈ N.

Proof. Let A be a proper ideal of a right chain ordered ternary semigroup and

s ∈ S\A. i.e. s /∈ A. Thus R(s) = (s ∪ sSS] ⊈ A. Since S is a right chain ordered

ternary semigroup we must have A ⊆ (s ∪ sSS]. Hence A = (A3] = (AAA] ⊆

((s ∪ sSS]AA] ⊆ (sAA ∪ sSSAA] ⊆ (sAA ∪ sAA] ⊆ (sAA] ⊆ (s(s ∪ sAA]A] ⊆

(s2A∪ s2SSA] ⊆ (s2A∪ s2A] ⊆ (s2A] ⊆ (SSA] ⊆ (A] = A. Thus we get A = (s2A].

So, it is true for n = 1. Assume that it is true for n = k. Hence A = (s2kA] =

(s2k(s2A]] = (s2k+1A] = (s2(k+1)A]. Hence the result is true for n = k + 1. Thus the
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result follows by induction.

Next we define exceptional prime ideal and minimal ideal of a right chain ordered

ternary semigroup.

Definition 6.3.6. Let (S, .,≤) be a right chain ordered ternary semigroup. An

exceptional prime ideal Q of S is an ideal which is prime but not completely prime

ideal of S. Similarly, exceptional right, left and lateral prime ideals are defined.

Definition 6.3.7. If I ⊂ J are ideals (resp. right ideals, left ideals and lateral

ideals) of a right chain ordered ternary semigroup S such that there are no further

ideals (resp. right ideals, left ideals and lateral ideals) properly between I and J ,

then we say that J is minimal over I.

Proposition 6.3.8. let Q be an exceptional prime ideal of a right chain ordered

ternary semigroup (S, .,≤). Then there exists a unique ideal R of S such that Q ⊂ R

and R is minimal over Q. Moreover, R = (R3] i.e. R is an idempotent ideal of S.

Proof. Let R =
⋂

Q⊆I I, i.e. R denote the intersection of all ideals I of S such that

Q ⊆ I which implies that Q ⊆ R. Since Q is exceptional prime ideal, then Q is prime

ideal of S. Then by Proposition 6.3.4 we have either P (SQ) ⊆ I or I ⊆ Q, for any

such ideal I of S. Since Q ⊆ I, then I ⊈ Q for any such ideal I. Then P (SQ) ⊆ I

for any ideal I such that Q ⊆ I. Thus P (SQ) ⊆
⋂

Q⊆I I = R. By Proposition 6.3.3

P (SQ) is completely prime ideal of S containing Q. Thus Q ⊆ P (SQ). But since

Q is exceptional prime ideal Q ̸= P (SQ) and so Q ⊂ P (SQ). Hence Q ⊂ R. By

Proposition 1.4.2, R =
⋂

Q⊆I I is an ideal of S and R is the smallest ideal containing

Q. Thus we can say that R is minimal over Q.

For the second part, let R ̸= (R3]. Then (R3] ⊆ (SSR] ⊆ (R] = R. So, R3 ⊆ R.

Since R is minimal over Q, R3 ⊆ Q and since Q is a prime ideal of S, R3 ⊂ Q =⇒

R ⊆ Q, which contradicts the fact that Q ⊂ R.

Therefore, R = (R3] i.e. R is an idempotent ideal of S.
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Proposition 6.3.9. let Q be an exceptional prime ideal of a right chain ordered

ternary semigroup (S, .,≤) and R be the unique ideal of S such that R is minimal

over Q and R = (R3]. Then there exists an element a ∈ R\Q such that Q ⊆⋂
n∈N(a

2nS]. In particular, if a ∈ R\Q then a is not Q-nilpotent.

Proof. Let us consider the set X = {x ∈ S :
⋂

n∈N(x
2nR] ⊆ Q}, where R = (R3] i.e.

R is the unique idempotent ideal minimal over Q.

Let q ∈ Q. Then (q2R] ⊆ (q2S] ⊆ (QSS] ⊆ (Q] = Q and (q4R] = (q2(q2R]] ⊆

(q2Q] ⊆ (SSQ] ⊆ (Q] = Q. Again (q6R] = (q2(q4R]] ⊆ (q2Q] ⊆ (SSQ] ⊆ (Q] = Q

and continuing in this way we get (q2nR] ⊆ Q for all n ∈ N. Thus Q ⊆ X and thus

the set X is non empty.

We claim that X ⊆ R. If s /∈ R, then s ∈ S\R. Since R is an idempotent ideal of

S i.e. R = (R3], then by Lemma 6.3.5 we can say that R ⊈ Q =⇒ (s2nR] = R for

all n ∈ N. So,
⋂

n∈N(s
2nR] ⊈ Q which implies that s /∈ X. By contraposition we

have X ⊆ R which proves our claim. Since Q is exceptional prime ideal of S, then

Q is prime but not completely prime and by Proposition 6.3.1 it is not completely

semiprime. Then there exists y ∈ S such that y3 ∈ Q but y /∈ Q, i.e. y ∈ S\Q.

If y ∈ (x2yRR] for some x ∈ X. Then (y] ⊆ ((x2yRR]] = x2yRR ⊆ (x2yRR] ⊆

(x2(x2yRR]RR] = (x4yRRRR] ⊆ (x4yRR] ⊆ (x4(x2yRR]RR] = (x6yRRRR] ⊆

(x6yRR] ⊆ .......... ⊆ (x8yRR] ⊆ .......... ⊆ (x10yRR] ⊆ ............(x12yRR] ⊆ ............

Continuing in this way we obtain (y] ⊆ (x2myRR] for arbitrary m ∈ N. So, (y] ⊆

(x2m(x2yRR]RR] = (x2m+2yRRRR] ⊆ (x2m+2yRR] = (x2(m+1)yRR] for m+ 1 ∈ N.

Thus it is true for all n ∈ N. Hence (y] ⊆
⋂

n∈N(x
2nyRR] for all n ∈ N. Now

y ∈
⋂

n∈N(x
2nyRR] ⊆

⋂
n∈N(x

2nR] ⊆ Q, which is a contradiction. So, y /∈ (x2yRR].

Hence (y] ⊈ (x2yRR] =⇒ (y] ∪ (ySS] ⊈ (x2yRR] =⇒ (y ∪ ySS] ⊈ (x2yRR]. Since

S is right chain ordered ternary semigroup we have (x2yRR] ⊆ (y ∪ ySS] =⇒

(X2yRR] ⊆ (y ∪ ySS].

If X = R, then (R2yRR] ⊆ (y∪ ySS]. Thus we have ((y∪ ySS]RR]3 is a right ideal

of S. Then ((y ∪ ySS]RR]3 = (yRR ∪ ySSRR]3 ⊆ (yRR]3 = (yRR](yRR](yRR] ⊆

(yRRyRRyRR] ⊆ (y(y ∪ ySS]yRR] = (y3RR ∪ y2SSyRR] ⊆ (y2SRR ∪ y2SSSRR]
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⊆ (y2SSR ∪ y2SSSSR] ⊆ (y2R]. Let Y = ((y ∪ ySS]RR]3. Then Y is also a right

ideal of S. Now we have,

Y 3 ⊆ (y2R]3

= (y2R](y2R](y2R]

⊆ (y2Ry2Ry2R]

= (y2(R]3y2(R]3y2R]

= (y2RRRy2RRRy2R]

⊆ (y2RRSSySSRSSR]

⊆ (y2RRSSySSRSSR]

⊆ (y2RRyRR]

⊆ (y2(y ∪ ySS]]

= (y3 ∪ y3SS]

⊆ (Q] = Q.

Since Q is a prime ideal we have Y ⊆ Q i.e. ((y ∪ ySS]RR]3 ⊆ Q =⇒ ((y ∪

ySS]RR] ⊆ Q =⇒ (y∪ ySS]RR ⊆ Q. Again since Q is a prime ideal we have either

(y ∪ ySS] ⊆ Q or R ⊆ Q. But R ⊆ Q contradicts the fact that Q ⊂ R. Again

(y ∪ ySS] ⊆ Q =⇒ y ∈ Q which is also a contradiction. Thus X ̸= R and we must

have X ⊂ R.

To complete the proof, take any a ∈ R\X ⊆ R\Q, then a ∈ R but a /∈ X. So,⋂
n∈N(a

2nR] ⊈ Q. Since (a2nR] is a right ideal of S for all n ∈ N by Proposition

1.4.2,
⋂

n∈N(a
2nR] is also a right ideal of S. Since S is a right chain ordered ternary

semigroup , we must have Q ⊆
⋂

n∈N(a
2nR] ⊆

⋂
n∈N(a

2nS].

Again
⋂

n∈N(a
2nR] ⊈ Q =⇒ (a2nR] ⊈ Q for all n ∈ N =⇒ a2na /∈ Q for all

n ∈ N =⇒ a2n+1 /∈ Q for all n ∈ N. Also a /∈ X and Q ⊆ X =⇒ a ∈ Q. Thus

a /∈ Q and a2n+1 /∈ Q implies that a2n−1 /∈ Q for all n ∈ N. Hence for any element

a ∈ R\X ⊆ R\Q, we have a is not Q-nilpotent.
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This completes the proof.

6.4 Prime right segments of right chain ordered

ternary semigroup

Following [31], we define a prime (resp. prime left, prime right, prime lateral)

segment of a right chain ordered ternary semigroup (S, .,≤).

Definition 6.4.1. Let (S, .,≤) be a right chain ordered ternary semigroup.

(a) A prime segment of S is a pair (P1, P2) of completely prime ideals of S such that

P1 ⊂ P2 and there are no further completely prime ideal of S exists between P1 and

P2.

(b) A prime right segment of S is a pair (R1, R2) of completely prime right ideals

of S such that R1 ⊂ R2 and there are no further completely prime right ideal of S

exists between R1 and R2.

(c) A prime left segment of S is a pair (L1, L2) of completely prime left ideals of S

such that L1 ⊂ L2 and there are no further completely prime left ideal of S exists

between L1 and L2.

(d) A prime lateral segment of S is a pair (M1,M2) of completely prime lateral ideals

of S such that M1 ⊂ M2 and there are no further completely prime lateral ideal of

S exists between M1 and M2.

Next we show that for a prime right segment of a right chain ordered ternary

semigroup four different posibilities may happen.

Definition 6.4.2. Let (S, .,≤) be a right chain ordered ternary semigroup, and let

(R1, R2) be a right prime segment of S. The right prime segment is called simple if

there are no further right ideals of S between R1 and R2. i.e. there are no further

ideals of S between R1 and R2.

Definition 6.4.3. Let (S, .,≤) be a right chain ordered ternary semigroup, and

let (R1, R2) be a right prime segment of S. The right prime segment is called
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archimedean if for every a ∈ R2\R1 there exists a right ideal I ⊆ R2 of S such

that a ∈ I and
⋂

n∈N(I
2n−1] = R1.

Definition 6.4.4. Let (S, .,≤) be a right chain ordered ternary semigroup, and let

(R1, R2) be a right prime segment of S. The right prime segment is called exceptional

if there exists a prime right ideal Q of S with R1 ⊂ Q ⊂ R2.

Definition 6.4.5. Let (S, .,≤) be a right chain ordered ternary semigroup, and let

(R1, R2) be a right prime segment of S. The right prime segment is called supple-

mentary if there exists a right ideal D of S such that R1 ⊂ D ⊂ R2 and D is minimal

over R1.

Next we have the following theorem for prime right segments:

Theorem 6.4.6. Let (S, .,≤) be a right chain ordered ternary semigroup, and

(R1, R2) be a prime right segment of S. Then the prime right segment (R1, R2)

is either simple or archimedean or exceptional or supplementary.

Proof. Let (R1, R2) be a prime right segment of a right chain ordered ternary semi-

group S. Then prime right segment (R1, R2) is either simple or not simple. If

(R1, R2) is simple, then our aim is done. Let us suppose that the prime right seg-

ment is not simple. Then there exists an ideal I of S such that R1 ⊂ I ⊂ R2.

Case 1 : First assume that R2 ⊈ H(SI). Then H(SI) ⊂ R2, since S is a right

chain ordered semigroup. So, by Theorem 6.2.4 we have H(SI) is a semiprime right

ideal of S and I ⊆ H(SI). Since S is a right chain ordered ternary semigroup by

Corollary 6.3.1, H(SI) is a prime right ideal of S and R1 ⊂ I ⊆ H(SI) ⊂ R2. So,

H(SI) is a prime right ideal lying properly between R1 and R2. Thus the prime

right segment is exceptional in this case.

Case 2 : Next we assume that R2 ⊆ H(SI). Here we have two cases.

Subcase 2a : First consider the case where the prime right segment (R1, R2)
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contains the ideal I of S such that (I2m−1] = (I2m+1] for some m ∈ N. Then

(I2m+1] = (I2m−1+2] = (I2m−1I2] = ((I2m−1]I2] = ((I2m+1]I2] = (I2m+3]

(I2m+3] = (I2m−1+4] = (I2m−1I4] = ((I2m−1]I4] = ((I2m+1]I4] = (I2m+5]

(I2m+5] = (I2m−1+6] = (I2m−1I6] = ((I2m−1]I6] = ((I2m+1]I6] = (I2m+7]

..............................................................................................................

So continuing in this way we get (I2m−1] = (I2m+1] = (I2m+3] = ......... = (I2m+(2n−1)]

for all n ∈ N i.e. (I2m−1] = (I2m−1+2] = (I2m−1+4] = .......... = (I2m−1+2n] for all

n ∈ N. So, (I2m−1] = (I2m−1+2k] for all k ∈ N. Let D = (I2m−1]. Then D is a right

ideal of S. Thus we have D = (I2m−1] = (I(2m−1)(2n−1)] = ((I2m−1](2n−1)] = (D2n−1]

for all n ∈ N andD = (I2m−1] ⊆ (I] = I ⊆ R2. Now ifD = (I2m−1] ⊆ R1, since R1 is

completely prime hence prime we would get I ⊆ R1, which is a contradiction. Thus

D ⊈ R1 and so R1 ⊂ D, since S is a right chain ordered ternary semigroup. Next

we show that D is minimal over R1. Let us suppose that D is not minimal over R1,

then there exists a right ideal A of S such that R1 ⊂ A ⊂ D. Then R1 ⊂ A ⊂ R2.

Again A ⊂ D implies that D ⊈ A and so D2n−1 ⊈ A for all n ∈ N. Thus D is not

A-nilpotent. Hence by Proposition 6.2.6,
⋂

n∈N(D
2n−1] = D is a completely prime

right ideal of S and so D is a completely prime right ideal of S which contradicts

the fact that (R1, R2) is prime right segment. Hence D is minimal over R1 and thus

the prime right segment is supplementary in this case.

Subcase 2b: Next consider the case where (I2n−1] ̸= (I2n+1] for all n ∈ N.

Since R1 ⊂ I then I ⊈ R1. Now for all n ∈ N, I2n−1 ⊆ R1 =⇒ I ⊆ R1 since R1

is completely prime right ideal of S. So, I2n−1 ⊈ R1. Thus we have R1 ⊆ I2n−1

for all n ∈ N, since S is a right chain ordered ternary semigroup and thus R1 ⊆

(I2n−1] ⊂ R2 for all n ∈ N =⇒ R1 ⊆
⋂

n∈N(I
2n−1] ⊂ R2. By Corollary 6.2.7, the

ideal
⋂

n∈N(I
2n−1] is completely prime right ideal of S. Since (R1, R2) is a prime

right segment, there are no further completely prime right ideals between R1 and

R2. Hence
⋂

n∈N(I
2n−1] = R1.
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Let us consider the set I be the collection of all ideals Ik of S such that R1 ⊂

Ik ⊂ R2, where k ∈ Λ and Λ is an index set.

I = {Ik ⊆ S : Ik is an ideal of S and R1 ⊂ Ik ⊂ R2, k ∈ Λ}

Then for any ideal Ik ∈ I, we have
⋂

n∈N(Ik
2n−1] = R1. Let us suppose X =⋃

I∈I I then by Proposition 1.4.2 X is also a right ideal of S. If X = R2 then

a ∈ R2\R1 = R2\X there is an ideal Ik such that a ∈ Ik where Ik ⊆
⋃

Ik∈I I = X =

R2 and
⋂

n∈N(Ik
2n−1] = R1. Thus in this case the prime right segment (R1, R2) is

archimedean.

If X ̸= R2 then X ⊆ R2. Then we have the following two cases:

Subcase 2b(i): (R3
2] ̸= R2. Then (R3

2] ⊂ R2. If (R3
2] ⊆ R1, then since R1 is

completely prime right ideals of S we have R2 ⊂ R1 which is a contradiction. Thus

(R3
2] ⊈ R1. Since S is a right chain ordered ternary semigroup, R1 ⊂ (R3

2] and so

R1 ⊂ (R3
2] ⊂ R2. Thus (R

3
2] ⊂ I. Then

⋂
n∈N((R

3
2]

2n−1] = R1 =⇒
⋂

n∈N(R
3(2n−1)
2 ] =

R1. Again R1 ⊂ R2 =⇒ R2 ⊈ R1. Thus for any n ∈ N, (R2n−1
2 ] ⊆ R1 implies that

R2 ⊆ R1, since R1 is completely prime right ideal. Hence (R2n−1
2 ] ⊈ R1 for all n ∈ N.

Thus R1 ⊆
⋂

n∈N(R
2n−1
2 ] ⊆

⋂
n∈N(R

3(2n−1)
2 ] = R1. Hence R1 =

⋂
n∈N(R

2n−1
2 ]. Thus

for every a ∈ R2\R1 we have
⋂

n∈N(R
2n−1
2 ] = R1. Therefore, the prime segment is

archimedean in this case.

Subcase 2b(ii): (R3
2] = R2. We show that the ideal X is prime and our aim is

done. Let A be a right ideal of S such that A3 ⊆ X ⊂ R2, which implies that A ⊆ R2

since R2 is completely prime. If A = R2, then R2 = (R3
2] = (A3] ⊆ (X] = X, which

contradicts the fact that X ⊂ R2. Hence R2 ̸= A and so A ⊂ R2. Now (R3
2] ⊆ R1

imples that R3
2 ⊆ R1 =⇒ R2 ⊆ R1, which is a contradiction. Thus R1 ⊂ (R3

2] ⊆

(A3] ⊆ (ASS] ⊆ (A] = A. Hence R1 ⊂ A ⊂ R2 and so A ⊆
⋃

I∈I I = X. Thus X

is prime right ideal properly lying between R1 and R2. Therefore, the prime right

segment is exceptional in this case.

We explain the proof of the above theorem by the following chart:
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Prime right
segment

simple not simple

R2 ⊈ HI(S)

exceptional

R2 ⊆ HI(S)

(I2n−1] =
(I2n+1]

supplementary

(I2n−1] ̸=
(I2n+1]

X = R2

archimedean

X ̸= R2

R2 ̸= R3
2

archimedean

R2 = R3
2

exceptional

∃ an ideal I such that R1 ⊂ I ⊂ R2

X =
⋃
{I : R1 ⊂ I ⊂ R2}

Figure 6.1: Chart
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In the next corollary we characterize archimedian prime right segements of right

chain ordered ternary semigroups.

Corollary 6.4.7. Let (R1, R2) be a prime right segment of a right chain ordered

ternary semigroup (S, .,≤). Then the following conditions are equivalent:

(i) The prime right segment (R1, R2) is archimedean.

(ii) For any a ∈ R2\R1,
⋂

n∈N(a
2nS] = R1.

(iii) For any a ∈ R2\R1, (R2aR2] ⊂ (a ∪ aSS].

Proof. (i) =⇒ (ii) Let us consider the prime right segment (R1, R2) is archimedian.

Then for every a ∈ R2\R1 there exists an right ideal I ⊆ R2 of S such that a ∈ I

and
⋂

n∈N(I
2n−1] = R1.

Let x ∈
⋂
n∈N

(a2nS]

=⇒ x ∈ (a2nS] for all n ∈ N

=⇒ x ∈ (I2nS] for all n ∈ N

=⇒ x ∈ (I2n−2IIS] for all n ∈ N

=⇒ x ∈ (I2n−2ISS] for all n ∈ N

=⇒ x ∈ (I2n−1] for all n ∈ N

=⇒ x ∈
⋂
n∈N

(I2n−1] = R1.

Thus
⋂

n∈N(a
2nS] ⊆ R1. Again, for any n ∈ N, (a2nR2] ⊆ R1 =⇒ a2na ∈ R1 =⇒

a2n+1 ∈ R1 =⇒ a ∈ R1 [ since R1 is completely prime]. This is a contradiction.

Thus (a2nR2] ⊈ R1 and for any n ∈ N. Then R1 ⊆ (a2nR2] ⊆ (a2nS] for all n ∈ N.

Therefore, R1 ⊆
⋂

n∈N(a
2nS] and hence

⋂
n∈N(a

2nS] = R1.

(ii) =⇒ (iii) Let us suppose for any a ∈ R2\R1 and (a ∪ aSS] ⊆ (R2aR2]. Then

a ∈ (R2aR2] which implies that a ≤ raq for some r, q ∈ R2. If either r or q

in R1 then a ≤ raq ∈ R1SR1 ⊆ R1SS ⊆ R1 =⇒ a ∈ (R1] = R1, which is a

contradiction. Thus r, q /∈ R1 and so r, q ∈ R2\R1. Moreover, a ≤ raq implies that
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a ≤ r(raq)q = r2aq2 ≤ r2(raq)q2 = r3aq3 ≤ r3(raq)q3 = r4aq4 ≤ r4(raq)q4 = .....

continuing in this way we get a ≤ rnaqn for all n ∈ N. Thus a ≤ r2naq2n for all

n ∈ N. So, a ∈ (r2nSS2n] = (r2nS2n+1] = (r2nS] for all n ∈ N. Thus a ∈
⋂

n∈N(r
2nS].

By (ii)
⋂

n∈N(r
2nS] = R1. which implies that a ∈ R1, which is not possible. Hence

(a ∪ aSS] ⊈ (R2aR2] and so (R2aR2] ⊂ (a ∪ aSS].

(iii) =⇒ (i) Assume that (iii) holds. Then for any a ∈ R2\R1, (R2aR2] ⊆ R1 =⇒

a3 ∈ R1 =⇒ a ∈ R1 [ since R1 is completely prime ideal of S]. Thus for any

a ∈ R2\R1, we have R1 ⊆ (R2aR2] ⊆ (a ∪ aSS] ⊆ (R2 ∪ R2SS] ⊆ (R2] = R2, and

thus the prime segment (R1, R2) is not simple.

Suppose the prime segment (R1, R2) is exceptional, i.e. there exists a prime right

ideal Q of S such that R1 ⊂ Q ⊂ R2. Then by Proposition 6.3.8 there exists an

ideal D of S which is minimal over Q. Now (iii) implies that for any a ∈ D\Q we

have Q ⊆ (R2aR2] ⊆ (a ∪ aSS] ⊆ D, which contradicts the fact that R is minimal

over Q. Thus the prime right segment (R1, R2) is not exceptional.

Next, suppose the prime segment (R1, R2) is supplementary. Then there exists

a right ideal K of S such that R1 ⊂ K ⊂ R2 and K is minimal over R1. Then by

(iii), for any a ∈ K\R1 we have R1 ⊆ (R2aR1] ⊆ (a ∪ aSS] ⊆ K. Then there exists

right ideals of S properly lying between K and R1, which is a contradiction. Hence

the prime segment (R1, R2) is neither simple, nor exceptional, nor supplementary,

and thus by Theorem 6.4.6 it must be archimedean. This completes our proof.

127



(n,m, l)-Ideals In
Ordered Ternary Semigroup

Chapter-7





Chapter 7

(n,m, l)-ideals in ordered ternary

semigroup

7.1 Introduction

In this chapter we have introduced the concept of (n,m, l)-ideal in ordered

ternary semigroup and study properties of (n,m, l)-ideal in different classes of or-

dered ternary semigroups. Let l, m, n be non-negetive odd integers. A ternary

subsemigroup A of an ordered ternary semigroup S is called an (n,m, l)-ideal of S if

it satisfies the following conditions: (i) AnSAmSAl ⊆ A (ii) (A] = A i.e. for y ∈ S

and x ∈ A, y ≤ x⇒ y ∈ A.

Throughout this chapter, S denotes an ordered ternary semigroup.

7.2 Characterization of (n,m, l)-ideal in ordered

ternary semigroup

Theorem 7.2.1. Let S be an ordered ternary semigroup and A be an (n,m, l)-ideal

of S. Then for any ternary subsemigroup T of S, (A∩ T ] is an (n,m, l)-ideal of T ,
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where l, m, n are non-negetive odd integers.

Proof. Since A is an (n,m, l)-ideal of S, A is a ternary subsemigroup of S. Now

(A ∩ T ]3 = (A ∩ T ](A ∩ T ](A ∩ T ] ⊆ (A3 ∩ T 3] ⊆ (A ∩ T ]. Again let x ∈ (A ∩

T ]nT (A ∩ T ]mT (A ∩ T ]l. Thus x = ansbmtcl for some a, b, c ∈ (A ∩ T ] ⊆ (A] and

s, t ∈ T ⊆ S. Hence x = ansbmtcl ∈ (A]nS(A]mS(A]l ⊆ AnSAmSAl ⊆ A. On

the other hand, x = ansbmtcl ∈ (T ]nT (T ]mT (T ]l ⊆ (T nTTmTT l] ⊆ (T ]. Hence

x ∈ A ∩ (T ] ⊆ (A] ∩ (T ] ⊆ (A ∩ T ]. Also, ((A ∩ T ]] = (A ∩ T ]. Hence (A ∩ T ] is an

(n,m, l)-ideal of T .

Theorem 7.2.2. The non-empty intersection of any collection of (n,m, l)-ideals of

an ordered ternary semigroup S is an (n,m, l)-ideal of S where l, m, n are non-

negetive odd integers.

Proof. Let S be an ordered ternary semigroup and {Aα : α ∈ ∆} be the collection

of (n,m, l)-ideals of S. Suppose
⋂

α∈∆
Aα ̸= {}. Then (

⋂
α∈∆

Aα) ⊆ Aβ for all β ∈ ∆.

So (
⋂

α∈∆
Aα)

3 = (
⋂

α∈∆
Aα)(

⋂
α∈∆

Aα)(
⋂

α∈∆
Aα) ⊆ AβAβAβ = Aβ

3 ⊆ Aβ.

Thus
⋂

α∈∆
Aα is a subsemigroup of S. Again for all γ ∈ ∆ we have,

(
⋂

α∈∆
Aα)

nS(
⋂

α∈∆
Aα)

mS(
⋂

α∈∆
Aα)

l ⊆ AγSAγSAγ ⊆ Aγ.

=⇒ (
⋂

α∈∆
Aα)

nS(
⋂

α∈∆
Aα)

mS(
⋂

α∈∆
Aα)

l ⊆
⋂

α∈∆
Aα.

Also (
⋂

α∈∆
Aα] ⊆

⋂
α∈∆

(Aα] =
⋂

α∈∆
Aα ⊆ (

⋂
α∈∆

Aα] .

Therefore, the non-empty intersection (
⋂

α∈∆
Aα] of any collection {Aα : α ∈ ∆}

of (n,m, l)-ideals of an ordered ternary semigroup S is an (n,m, l)-ideal of S.

Theorem 7.2.3. Let (S, .,≤) be an ordered ternary semigroup and a ∈ S. Then the

intersection of all (n,m, l)-ideals of S containing a is an (n,m, l)-ideal of S denoted

by [a](n,m,l) and it is of the form

[a](n,m,l) = (
n+m+l⋃

i=2k−1,k∈N

{ai} ∪ anSamSal]

where l, m, n are non-negetive odd integers.
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Proof. Suppose {Ai : i ∈ I} be the set of all (n,m, l)-ideals of S containing a. Then⋂
i∈I Ai is non-empty since a ∈

⋂
i∈I Ai and by Theorem 7.2.2 we have

⋂
i∈I Ai is an

(n,m, l)-ideal of S. Thus [a](n,m,l) =
⋂

i∈I Ai.

Now,
(
(

n+m+l⋃
i=2k−1,k∈N

{ai} ∪ anSamSal]
)n
S

=
(
(

n+m+l⋃
i=2k−1,k∈N

{ai} ∪ anSamSal]
)n−1

(
n+m+l⋃

i=2k−1,k∈N

{ai} ∪ anSamSal]S

⊆
(
(

n+m+l⋃
i=2k−1,k∈N

{ai} ∪ anSamSal]
)n−1

(aS]

⊆ ......................................................

⊆
(
(

n+m+l⋃
i=2k−1,k∈N

{ai} ∪ anSamSal]
)n−n

(anS]

= (anS]

Similarly,
(
(

n+m+l⋃
i=2k−1,k∈N

{ai} ∪ anSamSal]
)m
S ⊆ (amS].

So,
(
(

n+m+l⋃
i=2k−1,k∈N

{ai}∪anSamSal]
)n
S
(
(

n+m+l⋃
i=2k−1,k∈N

{ai}∪anSamSal]
)m
S
(
(

n+m+l⋃
i=2k−1,k∈N

{ai}∪

anSamSal]
)l ⊆ (anS](amS](al] ⊆ (anSamSal] ⊆ (

n+m+l⋃
i=2k−1,k∈N

{ai} ∪ anSamSal].

Thus we have (
n+m+l⋃

i=2k−1,k∈N
{ai} ∪ anSamSal] is an (n,m, l)-ideal of S containing a

and hence [a](n,m,l) ⊆ (
n+m+l⋃

i=2k−1,k∈N
{ai} ∪ anSamSal].

Again (anSamSal] ⊆ ([a](n,m,l)
nS[a](n,m,l)

mS[a](n,m,l)
l] ⊆ [a](n,m,l).

Therefore, (
n+m+l⋃

i=2k−1,k∈N
{ai} ∪ anSamSal] ⊆ [a](n,m,l).

Thus for any element a of S, we have [a](n,m,l) = (
n+m+l⋃

i=2k−1,k∈N
{ai} ∪ anSamSal].

Theorem 7.2.4. Let X and Y be two subsets of an ordered ternary semigroup S
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and A be an (n,m, l)-ideal of S, where l, m, n are non-negetive odd integers. Then

(AXY ], (XY A] and (Y AX] are (n,m, l)-ideals of S if AXY ⊆ A or XY A ⊆ A or

Y AX ⊆ A.

Proof. Let us assumeAXY ⊆ A. Then (AXY ]3 = (AXY ](AXY ](AXY ] ⊆ (A](A](A

XY ] ⊆ (A3XY ] ⊆ (AXY ]. Thus (AXY ] is a ternary subsemigroup of S. Now,

(AXY ]nS(AXY ]mS(AXY ]l

⊆ (AXY ]n(S](AXY ]m(S](AXY ]l

⊆ (A]n(S](A]m(S](AXY ]l−1(AXY ]

⊆ (A]n(S](A]mS(A]l−1(AXY ]

= (AnSAmSAlXY ]

⊆ (AXY ]

Hence (AXY ] is an (n,m, l)-ideal of S.

Also, (XY A]3 = (XY A](XY A](XY A] ⊆ (XY AXY AXY A] ⊆ (XY A3] ⊆

(XY A]. Thus (XY A] is also a ternary subsemigroup of S. Now,

(XY A]n = (XY A](XY A](XY A]........(XY A] ( n times )

⊆ (XY AXY AXY A........XY A]

⊆ (XY AAA........A︸ ︷︷ ︸
n times

]

= (XY An]

Then (XY A]nS(XY A]mS(XY A]l ⊆ (XY An](S](XY Am](S](XY Al] = (XY AnSXY

AmSXY Al] ⊆ (XY AnSSSAmSSSAl] ⊆ (XY AnSAmSAl] ⊆ (XY A].

Hence (XY A] is also an (n,m, l)-ideal of S.

Again, (Y AX]3 = (Y AX](Y AX](Y AX] ⊆ (Y AXY AXY AX] ⊆ (Y A3X] ⊆

(Y AX].
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On the other hand,

(Y AX]nS(Y AX]mS(Y AX]l

⊆ (Y AnX](S](Y AmX](S](Y AlX]

= (Y AnXSY AmXSY AlX]

⊆ (Y AnSSSAmSSSAlX]

⊆ (Y AnSAmSAlX] ⊆ (Y AX]

Hence (Y AX] is an (n,m, l)-ideal of S.

Similarly, we can prove the result if one of the conditionsXY A ⊆ A or Y AX ⊆ A

holds.

Corollary 7.2.5. Let A be an (n,m, l)-ideal of an ordered ternary semigroup S

where l, m, n are non-negetive odd integers and a and b be two arbitrary elements

of S. Then (abA], (Aab] and (aAb] are also (n,m, l)-ideals of S.

Definition 7.2.6. An ordered ternary semigroup is called (n,m, l)-simple if it does

not contain any proper (n,m, l)-ideal, where n,m, l are non-negetive odd integers.

Lemma 7.2.7. A ternary semigroup S is (n, 0, 0) (resp. (0,m, 0), (0, 0, l))-simple

if and only if (anSS] = S (resp. (SamS] = S, (SSal] = S), for all a ∈ S where

n,m, l are non-negetive odd integers.

Proof. Let A be an (n, 0, 0)-ideal of S and (anSS] = S for all a ∈ S. Let x ∈ S.

Then x ≤ anyz for some y, z ∈ S. So, x ≤ anyz ∈ AnSS ⊆ A [ since A is an

(n, 0, 0)-ideal of S] =⇒ x ∈ (A] = A. Thus S ⊆ A and hence S is (n, 0, 0)-simple.

Conversely, let S is (n, 0, 0)-simple and a ∈ S. Then (anSS] is an (n, 0, 0)-ideal

of S. Since S has no proper (n, 0, 0)-ideal then (anSS] = S.

Similar proof for (0,m, 0)-simple, (0, 0, l)-simple ternary semigroup.

Theorem 7.2.8. Let n,m, l be non-negative odd integers. An ordered ternary semi-

group does not contain proper (n,m, l)-ideal if and only if it is (n, 0, 0)-simple,

(0,m, 0)-simple and (0, 0, l)-simple.
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Proof. Let S is (n, 0, 0)-simple, (0,m, 0)-simple and (0, 0, l))-simple. Thus (anSS] =

S, (SamS] = S and (SSal] = S for all a ∈ S. Let A be an (n,m, l)-ideal in S.

Let x ∈ A. Then S = (xnSS] = (xn(SxmS]S] = (xnSxmSS] = (xnSxmS(SSxl]] =

(xnSxmSSSxl] ⊆ (xnSxmSxl] ⊆ (AnSAmSAl] ⊆ (A] = A. Thus S has no proper

(n,m, l)-ideal.

Conversely, S does not contain any proper (n,m, l)-ideal. Let B be a (n, 0, 0)-

ideal of S. Then BnSBmSBl ⊆ BnSSmSSl ⊆ BnSS ⊆ B. Thus B is an (n,m, l)-

ideal in S and so B = S. Hence S is (n, 0, 0)-simple. Similarly, we can prove that S

is (0,m, 0)-simple and (0, 0, l)-simple.

Definition 7.2.9. An ordered ternary semigroup S is called a ternary group like

ordered ternary semigroup if for all a, b, c ∈ S there are x, y, z ∈ S such that a ≤ xbc,

a ≤ byc and a ≤ bcz.

Theorem 7.2.10. An ordered ternary semigroup S is a ternary group like ordered

ternary semigroup if and only if it contains no proper (n,m, l)-ideals, where n,m, l

are non-negetive odd integers.

Proof. Let S be a group like ordered ternary semigroup and let A be an (n,m, l)-

ideal of S. Let a ∈ A and b, c ∈ S. Then an ∈ An ⊆ A ⊆ S. Thus b ≤ anxc ∈ anSS

for some x ∈ S. So, b ∈ (anSS]. Hence S ⊆ (anSS]. On the other hand, (anSS] ⊆

(SnSS] ⊆ (S] ⊆ S. So, S = (anSS]. Therefore, S is (n, 0, 0)-simple. Similarly,

we can prove S is (0,m, 0)-simple and (0, 0, l)-simple. Then by Theorem 7.2.8 the

ordered ternary semigroup conatins no proper (n,m, l)-ideal.

Conversely, S conatins no proper (n,m, l)-ideal. Let b, c ∈ S. Then by Corollary

7.2.5 we have (bcS], (Sbc] and (bSc] are (n,m, l)-ideals of S. Hence, S = (bcS],

S = (Sbc] and S = (bSc]. Hence for all a, b, c ∈ S we have a ≤ bcx, a ≤ ybc and

a ≤ bzc for some x, y, z ∈ S. Therefore, S is a ternary group like ordered ternary

semigroup.

Theorem 7.2.11. Let S be an ordered ternary semigroup and the ordered ternary

subsemigroups of S satiesfies the descending chain condition. If S has at least one
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proper (n,m, l)-ideal where n > 1, m > 1 and l > 1 then S has either a proper

(1, p, q)-ideal or (p, 1, q)-ideal or (p, q, 1)-ideal, where l, m, n are non-negetive odd

integers.

Proof. Let n1 be the smallest positive integer such that (n1,m, l)-ideal exists, m1 be

the smallest positive integer such that (n,m1, l)-ideal exists and l1 be the smallest

positive integer such that (n,m, l1)-ideal exists. We show that either n1 ≤ m, l or

m1 ≤ n, l or l1 ≤ n,m holds. If n1 > m, l and m1 > n, l holds then n1 ≤ n and

m < n1 ≤ n < m1 contradicts the minimality of m1. Similarly, m1 > n, l and

l1 > n,m contradicts the minimality of l1 and n1 > m, l and l1 > m,n contradicts

the minimality of n1. Let 1 < n1 ≤ m, l and A is a proper (n1,m, l)-ideal of S. Let

An1SAmSAl ⊆ A and Bi+1 = Bi
n1SBi

mSBi
l where i = 1, 2, 3, ....... Thus Bi+1 ⊆ A.

Since Bi satiesfies the descending chain condition of subsemigroup of S, then there

exists a positive integer j such that Bj = Bj+k for all k ≥ 1 i.e. Bj = Bj
n1SBj

mSBj
l.

If we take B = Bj, then B = Bn1SBmSBl. Therefore,

B = Bn1SBmSBl

=⇒ Bn1SBmSBpSBmSBl = BSBmSBl

=⇒ Bn1SBmSBlB−n1Bn1SBmSBl = BSBmSBl

=⇒ Bn1SBmSBl−n1(Bn1SBmSBl) = BSBmSBl

=⇒ Bn1SBmSBl−n1B = BSBmSBl

=⇒ Bn1SBmSBl−n1+1 = BSBmSBl

=⇒ Bn1SBmSBl−n1+1Bn1−1 = BSBmSBlBn1−1

=⇒ Bn1SBmSBl = BSBmSBl+n1−1

=⇒ B = BSBmSBl+n1−1

Thus B is a (1,m, l + n1 − 1)-ideal. Taking p = m, q = l + n1 − 1 we can say

that S has a proper (1, p, q)-ideal in S.

In the similar way we can say that, if m1 ≤ n, l holds then S has a proper (p, 1, q)-
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ideal and if l1 ≤ n,m holds then S has a proper (p, q, 1)-ideal.

7.3 (n,m, l)-ideals in (n,m, l)-regular ordered ternary

semigroup

Definition 7.3.1. Let S be an ordered ternary semigroup and n,m, l are non-

negetive odd integers.

• An (n,m, l)-ideal A of S is called quasi-prime if (A1A2A3] ⊆ A =⇒ A1 ⊆ A or

A2 ⊆ A or A3 ⊆ A, where A1, A2, A3 are (n,m, l)-ideals S.

• An (n,m, l)-ideal A of S is called quasi-semiprime if (A3
1] ⊆ A =⇒ A1, where

A1, A2, A3 are (n,m, l)-ideals S.

• An (n,m, l)-ideal A of S is called strongly quasi-prime if (A1A2A3] ∩ (A2A3A1] ∩

(A3A1A2] ⊆ A =⇒ A1 ⊆ A or A2 ⊆ A or A3 ⊆ A where A1, A2, A3 are (n,m, l)-

ideals S.

Note that strongly quasi-prime ideals are quasi-prime ideals. Also quasi-prime

ideals are quasi-semiprime ideals of S.

Definition 7.3.2. Let S be an ordered ternary semigroup and n,m, l are non-

negetive odd integers.

• An (n,m, l)-ideal A of S is called irreducible if A1 ∩ A2 ∩ A3 = A ⇒ A1 = A or

A2 = A or A3 = A where A1, A2, A3 are (n,m, l)-ideals S.

• An (n,m, l)-ideal A of S is called strongly irreducible if A1∩A2∩A3 ⊆ A⇒ A1 ⊆ A

or A2 ⊆ A or A3 ⊆ A where A1, A2, A3 are (n,m, l)-ideals S.

Strongly irreducible (n,m, l)-ideal =⇒ irreducible (n,m, l)-ideal

Theorem 7.3.3. The non-empty intersection of any collection of quasi-semiprime

(n,m, l)-ideals of an ordered ternary semigroup S is a quasi-semiprime (n,m, l)-ideal

of S.
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Theorem 7.3.4. Let A be an (n,m, l)-ideal of an ordered ternary semigroup S. If

A is strongly irreducible and quasi-semiprime, then A is strongly quasi-prime.

Proof. Let A be a strongly irreducible and quasi-semiprime (n,m, l)-ideal S and

suppose (A1A2A3]∩(A2A3A1]∩(A3A1A2] ⊆ A where A1, A2, A3 are (n,m, l)-ideals S.

Now (A1∩A2∩A3)
3 ⊆ A1A2A3. Thus (A1∩A2∩A3)

3 ⊆ A1A2A3∩A2A3A1∩A3A1A2 ⊆

(A1A2A3 ∩ A2A3A1 ∩ A3A1A2] ⊆ (A1A2A3] ∩ (A2A3A1] ∩ (A3A1A2] ⊆ A.

If A1∩A2∩A3 = {}. Then A1∩A2∩A3 ⊆ A. If A1∩A2∩A3 ̸= {} then A1∩A2∩A3

is an (n,m, l)-ideal of S. Since A is quasi-semiprime, (A1 ∩ A2 ∩ A3)
3 ⊆ A =⇒

A1∩A2∩A3 ⊆ A. Again A is strongly irreducible, hence A1∩A2∩A3 ⊆ A =⇒ A1 ⊆ A

or A2 ⊆ A or A3. Therefore, A is strongly quasi-prime (n,m, l)-ideal of an ordered

ternary semigroup S.

Definition 7.3.5. An ordered ternary semigroup is called (n,m, l)-regular if a ∈

(anSamSal] for all a ∈ S, where n,m, l are non-negetive odd integers.

Theorem 7.3.6. Let S be an ordered ternary semigroup. Then S is (n,m, l)-regular

if and only if [a](n,m,l) = (anSamSal] for all a ∈ S.

Proof. Let S be an (n,m, l)-regular ordered ternary semigroup. Let x ∈ [a](n,m,l) for

some a ∈ S. Thus x ∈ (
n+m+l⋃

i=2k−1,k∈N
{ai} ∪ anSamSal] = (

n+m+l⋃
i=2k−1,k∈N

{ai}] ∪ (anSamSal].

Therefore, we have either x ∈ (anSamSal] or x ∈ (
n+m+l⋃

i=2k−1,k∈N
ai].

If x ∈ (anSamSal], then our proof is done.

If x ∈ (
n+m+l⋃

i=2k−1,k∈N
ai], then x ∈ (aj] where 2k − 1(k ∈ N) ≤ j ≤ n + m + l. Thus

x ∈ ((anSamSal]
j
] ⊆ ((anSamSal]] ⊆ (anSamSal]. Again (anSamSal] ⊆ [a](n,m,l).

Therefore, [a](n,m,l) = (anSamSal].

Conversely, suppose for all a ∈ S, we have [a](n,m,l) = (anSamSal]. Since [a](n,m,l)

contains a, a ∈ (anSamSal]. Therefore, S is an (n,m, l)-regular ordered ternary

semigroup.

Lemma 7.3.7. Let A be an (n,m, l)-ideal of an ordered ternary semigroup (S, .,≤)
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where n,m, l are non-negetive odd integers and B be a non-empty subset of A. Then

(B] = (B]A.

Proof. It is obvuious that (B]A ⊆ (B]. Let x ∈ (B]. Then x ∈ S such that x ≤ b

for some b ∈ B ⊆ A. Thus x ∈ (A] = A. Hence x ∈ A such that x ≤ b ∈ B implies

that x ∈ (B]A and so (B] ⊆ (B]A. Therefore, (B] = (B]A.

Theorem 7.3.8. Let A be an (n,m, l)-ideal of an ordered ternary semigroup (S, .,≤)

where n,m, l are non-negetive odd integers and B be a non-empty subset of A. Then

(
([BA](n,m,l))

nS([BA](n,m,l))
mS([BA](n,m,l))

l
]
= (BnSBmSBl]

where [BA](n,m,l) defined by [BA](n,m,l) = (
n+m+l⋃

i=2k−1,k∈N
{Bi} ∪BnABmABl]A.

Proof. Let B be a non-empty subset of an (n,m, l)-ideal A. Then B ⊆ (B] =

(B]A ⊆ (
n+m+l⋃

i=2k−1,k∈N
{Bi} ∪ BnSBmSBl]A = [BA](n,m,l). Therefore (BnABmABl] ⊆(

([BA](n,m,l))
nS([BA](n,m,l))

mS([BA](n,m,l))
l
]
. Now let x ∈

(
([BA](n,m,l))

nS([BA](n,m,l))
m

S([BA](n,m,l))
l
]
. Then we have x ≤ b1

nyb2
mzb3

l for some y, z ∈ S and b1, b2, b3 ∈

[BA](n,m,l) = (
n+m+l⋃

i=2k−1,k∈N
{Bi}∪BnABmABl]A ⊆

(
(

n+m+l⋃
i=2k−1,k∈N

{Bi}∪BnABmABl]A
]
=

(
(

n+m+l⋃
i=2k−1,k∈N

{Bi} ∪ BnABmABl]
]
=

n+m+l⋃
i=2k−1,k∈N

{Bi} ∪ BnABmABl [ since we have,

n+m+l⋃
i=2k−1,k∈N

{Bi} ∪BnABmABl ⊆ A]. The following cases may arise:

Case 1 : If b1, b2, b3 ∈
n+m+l⋃

i=2k−1,k∈N
{Bi}, then we have b1 ∈ Br, b2 ∈ Bs, b3 ∈ Bt for

some r, s, t ∈ {1, 3, 5, ......, n + m + l}. Then b1
nyb2

mzb3
l ∈ (Br)nS(Bs)mS(Bt)

l
=

BrnSBsmSBtl ⊆ BnSBmSBl and hence x ∈ (BnSBmSBl].

Case 2 : If b1, b2 ∈
n+m+l⋃

i=2k−1,k∈N
{Bi} and b3 ∈ BnABmABl ⊆ BnSBmSBl, then we

have b1 ∈ Br, b2 ∈ Bs for some r, s ∈ {1, 3, 5, ......, n +m + l}. Then b1nSb2mSb3l ∈

(Br)nS(Bs)mS(BnSBmSBl)
l ⊆ BnSBmSBl. Thus x ∈ (BnSBmSBl].
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Case 3 : b1, b3 ∈
n+m+l⋃

i=2k−1,k∈N
{Bi} and b2 ∈ BnABmABl. Proof is similar to Case

2.

Case 4 : b2, b3 ∈
n+m+l⋃

i=2k−1,k∈N
{Bi} and b1 ∈ BnABmABl. Proof is similar to Case

2.

Case 5 : If b1 ∈
n+m+l⋃

i=2k−1,k∈N
{Bi} and b2, b3 ∈ BnABmABl. Then b1 ∈ Br for some

r ∈ {1, 3, 5, ......, n+m+l}. Then b1nSb2mSb3l ∈ (Br)nS(BnABmABl)
m
S(BnABmABl)

l

⊆ (Br)nS(BnSBmSBl)
m
S(BnSBmSBl)

l ⊆ BnSBmSBl. Thus x ∈ (BnSBmSBl].

Case 6 : If b2 ∈
n+m+l⋃

i=2k−1,k∈N
{Bi} and b1, b3 ∈ BnABmABl. The proof is similar

to case 5.

Case 7 : If b3 ∈
n+m+l⋃

i=2k−1,k∈N
{Bi} and b1, b2 ∈ BnABmABl. The proof is similar

to case 5.

Case 8 : If b1, b2, b3 ∈ BnABmABl ⊆ BnSBmSBl. Then we have b1
nSb2

mSb3
l ∈

(BnSBmSBl)
n
S(BnSBmSBl)

m
S(BnSBmSBl)

l ⊆ BnSBmSBl. Thus x ∈ (BnSBmSBl].

So, in all cases we have x ∈ (BnSBmSBl].

Hence
(
([BA](n,m,l))

nS([BA](n,m,l))
mS([BA](n,m,l))

l
]
⊆ (BnSBmSBl].

Therefore,
(
([BA](n,m,l))

nS([BA](n,m,l))
mS([BA](n,m,l))

l
]
= (BnSBmSBl].

Theorem 7.3.9. Let (S, .,≤) be an ordered ternary semigroup and A be an (n,m, l)-

ideal of S. Then every (n,m, l)-ideal of A is an (n,m, l)-ideal of S if and only if for

each non-empty subset B of A, (BnSBmSBl] ⊆ [BA](n,m,l).

Proof. Let A be an (n,m, l)-ideal of an ordered ternary semigroup (S, .,≤) and every

(n,m, l)-ideal of A is an (n,m, l)-ideal S. Let B be a non empty subset of A. Now

[BA](n,m,l) = (
n+m+l⋃

i=2k−1,k∈N
{Bi} ∪ BnSBmSBl]A is an (n,m, l)-ideal of A and hence an

(n,m, l)-ideal of S. Thus BnSBmSBl ⊆ (BnSBmSBl]
(
([BA](n,m,l))

mS([BA](n,m,l))
lS

([BA](n,m,l))
n
]
⊆ ([BA](n,m,l)] ⊆ [BA](n,m,l).

For the converse part let us assume that for some non-empty subset B of A,

BnSBmSBl ⊆ [BA](n,m,l). Let I be an (n,m, l)-ideal of A. Thus I ⊆ A.
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Now we have,

InSImSI l

⊆ [IA](n,m,l)

= (
n+m+l⋃

i=2k−1,k∈N

{I i} ∪ InSImSI l]A

= (I ∪ I3 ∪ ..... ∪ In+m+l ∪ InSImSI l]A

⊆ (I]A = I

Hence I is an (n,m, l)-ideal of S.

Theorem 7.3.10. Let (S, .,≤) be an ordered ternary semigroup. Let R(n,0,0),M(0,m,0)

and L(0,0,l) are the set of all (n, 0, 0)-ideals, (0,m, 0)-ideals and (0, 0, l)-ideals respec-

tively. Then the following statements hold:

(i) S is (n, 0, 0)-regular if and only if (RnSS] = R for all R ∈ R(n,0,0)

(ii) S is (0,m, 0)-regular if and only if (SMmS] =M for all M ∈M(0,m,0)

(iii) S is (0, 0, l)-regular if and only if (SSLl] = L for all L ∈ L(0,0,l)

(iv) S is (n,m, l)-regular if and only if (RnMmLl] = R∩M ∩L for all R ∈ R(n,0,0),

M ∈M(0,m,0) and L ∈ L(0,0,l).

Proof. (i) Let S be (n, 0, 0)-regular ordered ternary semigroup. Let a ∈ R ⊆ S.

Thus a ∈ (anSS] and so a ≤ anxy for some x, y ∈ S. Thus a ∈ (RnSS]. Again

(RnSS] ⊆ (R] = R. Therefore, (RnSS] = R.

Conversely, let (RnSS] = R for all R ∈ R(n,0,0). Let a be an arbitrary element

in S. Now [a](n,0,0) ∈ R(n,0,0). Now [a](n,0,0) = (([a](n,0,0))
nSS] ⊆ (anSS]. Hence

a ∈ (anSS] and S is (n, 0, 0)-regular.

Similar proof for (ii) and (iii).

(iv) Let S be an (n,m, l)-regular ordered ternary semigroup. Let a ∈ R ∩M ∩ L

where R ∈ R(n,0,0), M ∈ M(0,m,0) and L ∈ L(0,0,l). Since a ∈ S, a ≤ anxamyal

for some x, y ∈ S. Now a ≤ anxamyal = an−1axamyal ≤ an−1(anxamyal)xamyal =
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a2n−1xamyalxamyal = anan−1xamyalxamyal ∈ RnSn−1SMmSSlSSmSLl = RnSnMm

Sm+l+3Ll ⊆ RnSMmSLl ⊆ RnMmLl [ since M is a (0,m, 0)-ideal, SMmS ⊆ M ].

Thus a ∈ (RnMmLl]. Again (RnMmLl] ⊆ (SnSmLl] ⊆ (SSLl] ⊆ L. Similarly

(RnMmLl] ⊆M and (RnMmLl] ⊆ R. Thus (RnMmLl] ⊆ R∩M ∩L ⊆ (R∩M ∩L]

and hence (RnMmLl] = (R ∩M ∩ L].

Conversely, let R ∩ M ∩ L = (RnMmLl]. Now a ∈ [a](n,0,0). Again [a](n,0,0) ∈

R(n,0,0), [a](0,m,0) ∈ M(0,m,0), [a](0,0,l) ∈ L(0,0,l). Then [a](n,0,0) ∩ [a](0,m,0) ∩ [a](0,0,l) =(
[a](n,0,0))

n([a](0,m,0))
m([a](0,0,l))

l
]
⊆

(
([a](n,0,0)]

nSmSl
]
⊆ (anSS]. Thus [a](n,0,0) ⊆

(anSS]. Also (anSS] is an (n, 0, 0)-ideal of S. Similary [a](0,m,0) ⊆ (SamS], [a](0,0,l) ⊆

(SSal] and (SamS], (SSal] are (0,m, 0)-ideal, (0, 0, l)-ideal of S respectively. Now

[a](n,0,0) = [a](n,0,0) ∩ [a](0,m,0) ∩ [a](0,0,l)

⊆ (anSS] ∩ (SamS] ∩ (SSal]

=
(
(anSS]n(SamS]m(SSal]l

]
⊆ (anSS](SamS](SSal]

⊆ (anSSSamSSSal]

⊆ (anSamSal]

Therefore, a ∈ (anSamSal] and hence S is (n,m, l)-regular ordered ternary semi-

group.

Corollary 7.3.11. Let S be an ordered ternary semigroup. Then S is (n,m, l)-

regular if and only if [a](n,0,0) ∩ [a](0,m,0) ∩ [a](0,0,l) = ([a](n,0,0))
n([a](0,m,0))

m([a](0,0,l))
l

for all a ∈ S.

Theorem 7.3.12. Let S be an ordered ternary semigroup. Then S is both (n,m, l)-

regular and intra-regular if and only if (A3] = A for every (n,m, l)-ideal A of S.

Proof. Let us assume that S be an intra-regular and (n,m, l)-regular ordered ternary

semigroup. Let A be an (n,m, l)-ideal of S. Thus A is a ternary subsemigroup of
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S. So A3 ⊆ A⇒ (A3] ⊆ (A] = A. It remains to show that A ⊆ (A3]. The following

cases may arise:

Case 1 : n = 1,m = 1, l = 1

Here A is a (1, 1, 1)-ideal of S, thus ASASA ⊆ A. Again S is a (1, 1, 1)-regular and

intra-regular ternary semigroup. Thus A ⊆ (ASASA] and A ⊆ (SA3S]. Then we

haveA ⊆ (ASASA] ⊆ ((ASASA]S(SA3S]S(ASASA]] = (ASASASSA3SSASASA]

⊆ (ASASAASSASASA] ⊆ (AASSASASA] ⊆ (AASS(SA3S]S(SA3S]SA] = (AAS

SSA3SSSA3SSA] ⊆ (AASASAAASSA] ⊆ (AAA(SA3S]SSA] = (AAASA3SSSA]

⊆ (AAASASA] ⊆ (AAA] = (A3].

Case 2 : n = 1,m = 1, l > 1

In this case S is an intra-regular and (1, 1, l)-regular ordered ternary semigroup and

A is a (1, 1, l)-ideal of S. Thus ASASAl ⊆ A. Since S is (1, 1, l)-regular A ⊆

(ASASAl] = (ASASAl−2A2] ⊆ (ASASAl−2(ASASAl](ASASAl]] ⊆ (ASASAl−2(A]

(A]] ⊆ (ASAAA] ⊆ (AS(ASASAl]AA] = (ASASASAlAA] ⊆ (AAA] = (A3].

Case 3 : n = 1,m > 1, l = 1

Thus S is an intra-regular and (1,m, 1)-regular ordered ternary semigroup and A

is a (1,m, 1)-ideal of S. Therefore, ASAmSA ⊆ A. Thus A ⊆ (ASAmSA] =

(ASAm−2A2SA] ⊆ (ASAAASA] ⊆ (AS(ASAmSA]AAS(ASAmSA]] = (ASASAmS

AAASASAmSA] ⊆ (AAA] = (A3].

Case 4 : n > 1,m = 1, l = 1

Here A is an (n, 1, 1)-ideal of S, thus AnSASA ⊆ A. Again S is a (n, 1, 1)-regular and

intra-regular ordered ternary semigroup. Thus A ⊆ (AnSASA] = (An−2A2SASA] ⊆

(A3SASA] ⊆ (A2(AnSASA]SASA] ⊆ (A2AnSASA] ⊆ (A3].

Case 5 : n > 1,m > 1, l = 1

In this case S is an intra-regular and (n,m, 1)-regular ordered ternary semigroup.

Let A be an (n,m, 1)-ideal of S i.e AnSAmSA ⊆ A. Thus A ⊆ (AnSAmSA] =

(AnSAm−2AASA] ⊆ (AnSAAASA]

⊆ (AnS(AnSAmSA]A(AnSAmSA]SA] ⊆ (AnSAmSAAAnSAmSA] ⊆ (A3].
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Case 6 : n = 1,m > 1, l > 1

Let A be an (1,m, l)-ideal of S. In this case S is an intra-regular and (1,m, l)-

regular ordered ternary semigroup. Thus A ⊆ (ASAmSAl] = (ASAm−2AASAl] ⊆

(ASAAASAl] ⊆ (AS(ASAmSAl]A(ASAmSAl]SAl] ⊆ (ASAmSAlAASAmSAl] ⊆

(A3].

Case 7 : n > 1,m = 1, l > 1

Here A is a (n, 1, l)-ideal of S i.e AnSASAl ⊆ A. Again S is a (n, 1, l)-regular

and intra-regular ternary semigroup. Thus A ⊆ (AnSASAl] = (An−2A2SASAl] ⊆

(AAASASAl] ⊆ (AA(AnSASAl]SASAl] ⊆ (AAAnSASAl] ⊆ (A3].

Case 8 : n > 1,m > 1, l > 1

Here A is a (n,m, l)-ideal of S i.e AnSAmSAl ⊆ A. Again S is a (n,m, l)-regular and

intra-regular ternary semigroup. Thus A ⊆ (AnSAmSAl] = (AnSAmSAl−2AA] ⊆

(AnSAmSAAA] ⊆ (AnSAmS(AnSAmSAl]SAA] ⊆ (AnSAmSAlAA] ⊆ (A3].

Thus in all cases we have A ⊆ (A3].

Conversely, let a ∈ S. Then (
n+m+l⋃

i=2k−1,k∈N
{ai} ∪ anSamSal] is an (n,m, l)-ideal of

S containing a. Since (A3] = A for every (n,m, l)-ideal A of S, we have

( n+m+l⋃
i=2k−1,k∈N

{ai} ∪ anSamSal
]

=
(( n+m+l⋃

i=2k−1,k∈N

{ai} ∪ anSamSal
]3]

=
(( n+m+l⋃

i=2k−1,k∈N

{ai} ∪ anSamSal
]( n+m+l⋃

i=2k−1,k∈N

{ai} ∪ anSamSal
](( n+m+l⋃

i=2k−1,k∈N

{ai} ∪

anSamSal
]3]]

=
(( n+m+l⋃

i=2k−1,k∈N

{ai} ∪ anSamSal
)( n+m+l⋃

i=2k−1,k∈N

{ai} ∪ anSamSal
)(( n+m+l⋃

i=2k−1,k∈N

{ai} ∪

anSamSal
]3)]
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=
(( n+m+l⋃

i=2k−1,k∈N

{ai} ∪ anSamSal
)( n+m+l⋃

i=2k−1,k∈N

{ai} ∪ anSamSal
)( n+m+l⋃

i=2k−1,k∈N

{ai} ∪

anSamSal
)3]

=
(( n+m+l⋃

i=2k−1,k∈N

{ai} ∪ anSamSal
)5]

=
(( n+m+l⋃

i=2k−1,k∈N

{ai} ∪ anSamSal
)3+2]

Continuing in the similar way we get,( n+m+l⋃
i=2k−1,k∈N

{ai} ∪ anSamSal
]
=

(( n+m+l⋃
i=2k−1,k∈N

{ai} ∪ anSamSal
)n+m+l+2]

.

Thus a ∈
(( n+m+l⋃

i=2k−1,k∈N
{ai} ∪ anSamSal

)n+m+l+2]
⊆ (anSamSal] and also a ∈(( n+m+l⋃

i=2k−1,k∈N
{ai} ∪ anSamSal

)5]
⊆ (Sa3S].

So, S is both (n,m, l)-regular and intra-regular ordered ternary semigroup.

Lemma 7.3.13. Let S be an ordered ternary semigroup. Then the followings are

equivalent:

(i) (A3] = A for every (n,m, l)-ideal A of S.

(ii) A1 ∩ A2 ∩ A3 = (A1A2A3] ∩ (A2A3A1] ∩ (A3A1A2] for all (n,m, l)-ideal A1, A2

and A3 of S.

(iii) Every (n,m, l)-ideal of S is quasi semiprime.

Proof. (i)=⇒(ii) Suppose A1, A2 and A3 are (n,m, l)-ideal of S.

Case 1 : Let us consider the case when A1 ∩ A2 ∩ A3 = {}.

So, (A1A2A3]
nS(A1A2A3]

mS(A1A2A3]
l

⊆ (A1A2A3]
n(S](A1A2A3]

m(S](A1A2A3]
l

⊆ ((A1A2A3)(A1A2A3)
n−1S(A1A2A3)(A1A2A3)

m−1S(A1A2A3)
l−1(A1A2A3)

⊆ (A1SSS
n−1SA1SSS

m−1SSl−1A1A2A3]

= (A1S
n+2A1S

m+l+1A1A2A3]

⊆ (An
1SA

m
1 SA

l
1A2A3] ⊆ (A1A2A3]
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Also ((A1A2A3]] = (A1A2A3]. Hence (A1A2A3] is an (n,m, l)-ideal of S. Similarly,

(A2A3A1] and (A3A1A2] are also (n,m, l)-ideal of S. Let us assume (A1A2A3] ∩

(A2A3A1] ∩ (A3A1A2] ̸= {}. Then (A1A2A3] ∩ (A2A3A1] ∩ (A3A1A2] is an (n,m, l)-

ideal of S. Therefore,

((A1A2A3] ∩ (A2A3A1] ∩ (A3A1A2])

⊆ (((A1A2A3] ∩ (A2A3A1] ∩ (A3A1A2])
3]

⊆ ((A1A2A3](A2A3A1](A3A1A2]]

= (A1A2A3A2A3A1A3A1A2]

⊆ (A1SSSA1SSSA1]

⊆ (A1SA1SA1]

⊆ (An
1SA

m
1 SA

l
1]

⊆ (A1] = A1

Similarly, (A1A2A3] ∩ (A2A3A1] ∩ (A3A1A2] ⊆ A2 and (A1A2A3] ∩ (A2A3A1] ∩

(A3A1A2] ⊆ A3. So (A1A2A3]∩(A2A3A1]∩(A3A1A2] ⊆ A1∩A2∩A3 = {}. Thus our

assumption is not true. Hence (A1A2A3]∩(A2A3A1]∩(A3A1A2] = {} = A1∩A2∩A3.

Case 2 : Let us consider the case when A1 ∩ A2 ∩ A3 ̸= {}.

Thus A1 ∩ A2 ∩ A3 is an (n,m, l)-ideal of S. This implies that A1 ∩ A2 ∩ A3 =

((A1∩A2∩A3)
3] ⊆ (A1A2A3∩A2A3A1∩A3A1A2] ⊆ (A1A2A3]∩(A2A3A1]∩(A3A1A2].

Hence (A1A2A3]∩(A2A3A1]∩(A3A1A2] is non empty. By case 1 we have (A1A2A3]∩

(A2A3A1]∩(A3A1A2] ⊆ A1∩A2∩A3. Therefore, (A1A2A3]∩(A2A3A1]∩(A3A1A2] =

A1 ∩ A2 ∩ A3.

(ii)⇒(iii) Let A be an (n,m, l)-ideal of S such that (A3
1] ⊆ A for some (n,m, l)-ideal

A1 of S. Thus A1 ∩A1 ∩A1 = (A1A1A1] ∩ (A1A1A1] ∩ (A1A1A1] = (A3
1] ⊆ A. Thus

A1 ⊆ A and hence A is quasi-semiprime (n,m, l)-ideal of S.

(iii)⇒(i) Let A be an (n,m, l)-ideal of S. Thus A is a ternary subsemigroup of

S. So, A3 ⊆ A ⇒ (A3] ⊆ (A] ⊆ A. Now (A3]nS(A3]mS(A3]l ⊆ (A3nSA3mSA3l] =
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(AnA2nSAmA2mSAlAlAl] = (AnA2nSAmA2mSAlAlAl−2AA] = (AnS2n+1AmS2m+1Al

Al−2AlAA] ⊆ (AnS2n+1AmS2m+2l−1AlAA] ⊆ (AnSAmSAlAA] ⊆ (A3]. Again ((A3]] =

(A3]. Thus (A3] an (n,m, l)-ideal of S. Since A3 ⊆ (A3] and (A3] is quasi semiprime

A ⊆ (A3]. Thus (A3] = A.

Corollary 7.3.14. Let S be an (n,m, l)-regular and intra-regular ordered ternary

semigroup. Then an (n,m, l)-ideal A of S is strongly irreducible if and only if A is

strongly quasi-prime.

Proof. Let S be an (n,m, l)-regular and intra-regular ordered ternary semigroup.

Then by Theorem 7.3.12 (A3] = A for every (n,m, l)-ideal A of S. Let us assume

that A be an (n,m, l)-ideal of S is strongly quasi-prime and A1 ∩ A2 ∩ A3 ⊆ A for

some (n,m, l)-ideals A1, A2, A3 of S. By Lemma 7.3.13 A1 ∩A2 ∩A3 = (A1A2A3]∩

(A2A3A1] ∩ (A3A1A2]. Thus (A1A2A3] ∩ (A2A3A1] ∩ (A3A1A2] ⊆ A. Since A is

strongly quasi-prime we have A1 ⊆ A or A2 ⊆ A or A3 ⊆ A. Therefore, A is

strongly irreducible.

Conversely, suppose A be a strongly irreducible (n,m, l)-ideal of S. Since S be

an (n,m, l)-regular and intra-regular ordered ternary semigroup by Lemma 7.3.13

it follows that A is strongly quasi-prime.

Remark 7.3.15. Let S be an (n,m, l)-regular and intra-regular ordered ternary

semigroup. Then we have the following result.

Strongly quasi-prime (n,m, l)-ideal ⇐⇒ Strongly irreducible (n,m, l)-ideal.

Lemma 7.3.16. Let S Let S be an ordered ternary semigroup. Then the following

statement are equivalent:

(i) The set A = {Ai : A
n
i SA

m
i SA

l
i ⊆ Ai} is a chain under inclusion.

(ii) Every (n,m, l)-ideal is strongly irreducible and A1∩A2∩A3 ̸= {} for all (n,m, l)-

ideal A1, A2 and A3 of S.

(iii) Every (n,m, l)-ideal of S is irreducible.

Proof. (i)=⇒(ii) Let us assume the condition (i) holds. Let A be an (n,m, l)-ideal
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of S such that A1 ∩A2 ∩A3 ⊆ A for some (n,m, l)-ideal A1, A2 and A3 of S. Since

A1 ⊆ A2 or A2 ⊆ A1 we have A1 ∩ A2 ∩ A3 ̸= {}.

Case 1 : Let A1 ⊆ A2. Then A1 ∩A2 = A1. Again A1 and A3 are (n,m, l)-ideal

of S. Thus we have either A1 ⊆ A3 or A3 ⊆ A1. If A1 ⊆ A3, then A1 = A1 ∩ A1 =

(A1 ∩ A2) ∩ A1 ⊆ A1 ∩ A2 ∩ A3 ⊆ A. If A3 ⊆ A1, then A3 = A3 ∩ A3 ⊆ A3 ∩ A1 =

A1 ∩ A2 ∩ A3 ⊆ A.

Case 2 : Let A2 ⊆ A1. Then A1 ∩ A2 = A2. Again A2 and A3 are (n,m, l)-

ideal of S. Thus we have either A2 ⊆ A3 or A3 ⊆ A2. If A2 ⊆ A3, then A2 =

A2 ∩ A2 = (A1 ∩ A2) ∩ A2 ⊆ (A1 ∩ A2) ∩ A3 = A1 ∩ A2 ∩ A3 ⊆ A. If A3 ⊆ A2, then

A3 = A3 ∩ A3 ⊆ A2 ∩ A3 = A1 ∩ A2 ∩ A3 ⊆ A.

So in both cases we have A1 ⊆ A, A2 ⊆ A or A3 ⊆ A. Hence A is strongly irreducible

(n,m, l)-ideal of S.

(ii)=⇒(iii) This proof is straightforward.

(iii)=⇒(i) Let us assume A be an (n,m, l)-ideal of S which is irreducible and A1 ∩

A2 ∩ A3 ̸= {} for all (n,m, l)-ideal A1, A2 and A3 of S. Thus A1 ∩ A2 ∩ A3 is an

(n,m, l)-ideal of S. Let A1∩A2∩A3 = A. This implies A1 = A, A2 = A or A3 = A.

If A1 = A, then A1 = A1 ∩ A2 ∩ A3. Thus A1 ⊆ A2 ∩ A3 ⇒ A1 ⊆ A2 or A1 ⊆ A3.

Simililarly if A2 = A, then A2 ⊆ A1 or A2 ⊆ A3 and if A3 = A, then A3 ⊆ A1 or

A3 ⊆ A2. Thus for A1, A2 we have either A1 ⊆ A2 or A2 ⊆ A1. Similarly for A2, A3

and A3, A1 we have either A2 ⊆ A3 or A3 ⊆ A2 and A3 ⊆ A1 or A1 ⊆ A3. Therefore,

the set of all (n,m, l)-ideal of S is a chain.

We conclude this chapter with following theorem:

Theorem 7.3.17. Let (S, . ≤) be an ordered ternary semigroup. Then every (n,m, l)-

ideal of S is strongly quasi-prime and A1 ∩ A2 ∩ A3 ̸= {} for all (n,m, l)-ideal of S

if and only if S is (n,m, l)-regular, intra-regular and the set of all (n,m, l)-ideals is

a chain.

Proof. Let every (n,m, l)-ideal of S is strongly quasi-prime and A1 ∩A2 ∩A3 ̸= {}.

Then (A3] = A for all (n,m, l)-ideal A of S (By Lemma 7.3.13). Hence by Lemma
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7.3.12 S is both intra-regular and (n,m, l)-regular. Thus by Corollary 7.3.14 S is

strongly irreducible.

Conversely, S is (n,m, l)-regular, intra-regular ordered ternary semigroup and

the set of all (n,m, l)-ideals is a chain. By Lemma 7.3.16 every (n,m, l)-ideal of S

is strongly quasi-prime and A1 ∩ A2 ∩ A3 ̸= {} for all (n,m, l)-ideals A1, A2, A3 of

S. By Corollary 7.3.14 S is strongly quasi-prime.
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Conclusion and Future Scope

Analysis of Contributions

In this research work, the goal was to evaluate different classes of ternary semi-

group. Also, the objective of the present investigation was to study ordered ternary

semigroup. We mainly discussed the various types of regularity in ordered ternary

semigroup. Ideal theory is a key concept in ternary semigroup. We charaterized

ordered ternary semigroup by using different types of ideals. Also bi-ideal, quasi-

ideal, prime ideal, completely prime ideal, semiprime ideal, completely semiprime

ideal plays a major role to study regularities in ordered ternary semigroup. We

discuss the connection between a semigroup cover of a ternary semigroup and the

corrresponding ternary semigroup. Furthermore we find relation between the or-

dered power ternary semigroup and ternary semigroup. Then we introduced the

notion of lattice structures in ternary semigroup of mappings. Afterthat, we also

introduced the notion of right chain ordered ternary semigroup. Finally, we estab-

lished the concept of (n,m, l)-ideal in an ordered ternary semigroup.

Scope for further research

The present study lays the groundwork for future research on different algebraic

structures. This would be a fruitful area for further work. The knowledge gained in
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this study can inspire other scholars for future studies. We have already started to

work on different classes of ternary semigroups and investigated many problems in

ternary semigroup and ordered ternary semigroup. There are still several questions

to be answered.

In chapter 3, we study different classes on the semigroup cover of a ternary

semigroup and also discuss the isomorphism problem. One of the most significant

conclusions that emerge from this study is that if two semigroup S1 and S2 are

isomorphic then the associated semigroup cover Q(S1) and Q(S2) are isomorphic.

But the converse is not true. We have shown by an example. Afterthat we give

some few classes where the converse is true. So, there will be a scope to find some

other classes in which the converse statement also holds.

Ternary semigroup of mappings denoted by T [X, Y ] is another significant topic

which we discussed in chapter 5. We study lattice structures in T [X, Y ]. There is

enough oppourtunity to study some other algebraic properties in ternary semigroup

of mappings T [X, Y ].

We introduced the notion of right chain ordered ternary semigroup in chapter

6. This is also a attractive perspective to work with. The methods used for this

construction can be applied to another algebraic structutes in other branches of

research work.

This thesis has provided a deeper insights for upcoming research.
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-matique (Beograd) 18.32 (1975), 107–110.

[57] N. Kuroki, On power semigroups, Proceedings of the Japan Academy 47.5

(1971), 449–451.

[58] S. Lajos, Generalized ideals in semigroups, Acta Scientiarum Mathematicarum

22 (1961), 217–222.

[59] S. Lajos, Notes on (m, n)-ideals, II, Proceedings of the Japan Academy 40.8

(1964), 631–632.

[60] S. Lajos, Notes on (m, n)-ideals. I, Proceedings of the Japan Academy 39.7

(1963), 419–421.

155



BIBLIOGRAPHY

[61] S. Lajos, Notes on (m, n)-Ideals. III, Proceedings of the Japan Academy 41.5

(1965), 383–385.

[62] H. Lal, Commutative semi-primary semigroups, Czechoslovak Mathematical

Journal 25.1 (1975), 1–3.

[63] D. M. Lee and S. K. Lee, On intra-regular ordered semigroups, Korean Journal

of Mathematics 14.1 (2006), 95–100.

[64] D. H. Lehmer, A ternary analogue of abelian groups, American Journal of

Mathematics 54.2 (1932), 329–338.

[65] N. Lekkoksung and P. Jampachon, On regular ordered ternary semigroups, Far

East Journal of Mathematical Sciences 92 (2014), 67–84.

[66] J. Los, On the extending of models I, Fundamenta Mathematicae 42 (1955),

38–54.

[67] P. Luangchaisri and T. Changphas, On (m, n)-regular and intra-regular or-

dered semigroups, Quasigroups and Related Systems 27.2 (2019), 267–272.

[68] P. Luangchaisri and T. Changphas, On the principal (m, n)-ideals in the direct

product of two semigroups, Quasigroups and Related Systems 24.1 (2016), 75–

80.

[69] V. L. Mannepalli and C. Nagore, Generalized commutative semigroups, Semi-

group forum 17.1 (1979), 65–73.

[70] R. Mazurek and G. Törner, On semiprime segments of rings, Journal of the

Australian Mathematical Society 80.2 (2006), 263–272.

[71] E. L. Post, Polyadic groups, Transactions of the American Mathematical So-

ciety 48.2 (1940), 208–350.
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