Study of Certain Ternary
Algebraic Structures

THESIS SUBMITTED T0O THE JADAVPUR UNIVERSITY
For THE DEGREE OF

DocTOR OF PHILOSOPHY (SCIENCE)

BY

AGNI ROY

DEPARTMENT OF MATHEMATICS,
JADAVPUR UNIVERSITY,
KOLKATA - 700032,

WEST BENGAL, INDIA

2022






JADAVPUR UNIVERSITY
DEPARTMENT OF MATHEMATICS

KOLKATA - 700032

Date:

CERTIFICATE FROM THE SUPERVISOR

This is to certify that the thesis entitled “STUDY OF CERTAIN TERNARY
ALGEBRAIC STRUCTURES” submitted by Smt. Agni Roy who got his name reg-
istered on 5th September, 2018 (Index No.: 152/18/ MATHS/26) for the award of
Ph.D. (Science) degree of Jadavpur University, is absolutely based upon his own work under
the supervision of Prof. Sukhendu Kar and that neither this thesis nor any part of it
has been submitted for either any degree/ diploma or any other academic award anywhere

before.

(Signature of the Supervisor date with official seal)

Professor -
DEPARTMENT OF MATHEMATICS
Jadavpur University
Kolkata — 700 032, West Bengal






To my parents
Goutam Roy & Sibani Roy






Acknowledgements

This thesis becomes a reality with the kind support and assistance of so many
people whose names may not be enumerated. I would like to extend my heartiest
thanks with a deep sense of gratitude and respect to all of those who provides me
immense help and guidance during this journey.

First of all, I would like to express my deepest gratitude to my supervisor Prof.
Sukhendu Kar, Professor, Department of Mathematics, Jadavpur University for his
valuable guidance in carrying out this work under his effective supervision, encour-
agement and cooperation. The door to him was always open whenever I had a
question about my research or writting. I am very grateful for his advice, ideas,
moral support and patience that he put into helping me to complete my thesis. As
I continue to move towards my goal, I will recall this time of working under his
supervision as one of my best experiences.

This endeavor would not been possible without the help and encouragement of
Prof. Tapan Kumar Dutta, Retired Professor, Department of Mathematics, Cal-
cultta University. 1 am very fortunate and thankful to have the opportunity of
receiving his advices and continuous support, which kept me motivated throughout
my journey of research.

Word cannot express my gratitude to Prof. Manoranjan Singha, Department of
Mathematics, University of North Bengal. He has been a source of inspiration right
from my post graduate days. He steered me in the right direction whenever I needed

it. Thnaks to his advice and priceless suggestions.



11

I am extremely grateful to the faculty members and staffs of Department of
Mathematics, Jadavpur University for their cooperation. I am also thankful to the
staffs of Research section and PhD section, Jadavpur University.

I would like to extend my sincere thanks to University Grants Commission
(UGC), Government of India for providing research support in form of Junior Re-
search Fellowship (JRF).

Working with my colleagues and labmates has been an wonderful experience.
I am grateful to Dr. Indrani Dutta for her constant help and support that was
of great importance in completion of the thesis. I have learned a lot from her.
Special thanks to Dr. Sudipta Purkait, Dr. Bijan Biswas, Ranjan Sarkar, Soumen
Pradhan, Debopriyo Das and Saikat Das for their support and making this journey
noteworthy:.

Finally, I express my love and sincerest gratitude to my parents Mr. Goutam
Roy and Mrs. Sibani Roy. My parents inspire me to work hard and do better in
what I do in life. Nothing would have been possible without their blessings and love.

I pay my humble tribute to my grandmother Late Saneka Roy.

Thanks should also go to my sister Arya Roy for her support. I would like to
thank my aunt Aloka Roy for caring me since childhood. Also I like to thank my
mother-in-law Mrs. Daya Das and father-in-law Mr. Satish Chandra Das for their
support and patience.

Lastly, and most importantly, I would like to thank my husband Mr. Suman Das
for helping me survive all the stress and not letting me give up. It is not sufficient
to express my gratitude with only a few words.

My greatest thank to all who wished me success and inspire me always.

A%/LJ @atd,
18/ 10f/2022



Abstract

Ternary algebraic structures is one of the fascinating concepts in modern
Mathematics. This thesis deals with the study of ternary semigroups and ordered
ternary semigroups. We discuss different kind of regularities, ideal theory in ternary
semigroup, embedding of a ternary semigroup and some special type of ordered
ternary semigroup. The thesis consists of 7 chapters. We shall give a brief structure
of the thesis.

Chapter 1 discusses the background and motivation of the study. Also it gives
all the required definition and results from ternary semigroups and ordered ternary
semigroups that will be used throughout the thesis.

In Chapter 2, our focus is to characterize various kind of regularities in ordered
ternary semigroup by different ideals. We show the way to get into some results of
ordered ternary semigroup based on quasi-ideals, bi-ideals and semiprime ideals. We
extend some results of ordered semigroup into ordered ternary semigroup under cer-
tain methodology. In particular, we characterize some properties of regular ordered
ternary semigroup, left (resp. right) regular ordered ternary semigroup, completely
regular ordered ternary semigroup and intra-regular ordered ternary semigroup by
using quasi-ideal, bi-ideal and semiprime ideal of ordered ternary semigroup.

In Chapter 3, we study the notion of semigroup cover of ternary semigroup
introduced by Santiago and Sri Bala 78] in 2010. We mainly study the connection
between a ternary semigroup S and the semigroup cover Q(.S) of the ternary semi-
group S by using various ideals. Moreover we characterize left and right regularity,

complete regularity, intra-regularity in (S) and investigate isomorphism problem

il
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of ternary semigroup S and the corresponding semigroup cover Q(S). We further
introduce a partial order relation in Q(S) and study various lattice structures.

In Chapter 4, we consider a power ternary semigroup P(S) associated with a
ternary semigroup S and study some properties of P(.S) by using the corresponding
properties of S. After that we study the notion of ordered power ternary semigroup
P(S) and our main aim is to establish some interconnection between the properties
of a ternary semigroup S and the associated ordered ternary semigroup P(S). The
purpose of this chapter is to give an overview of the results that are interesting from
the algebraic point of view.

In Chapter 5, our focus is to characterize the structures of lattices in special
class of regular ternary semigroup, called ternary semigroup of mappings and de-
noted by T[X,Y]. Then we discuss the isomorphism problem. We also derive simple
conditions under which the converse is also true. Also we introduce a partial order
relation in the ternary semigroup of mappings T[X,Y]. We also study the notion
of ternary semigroup of isotone mappings. Further we present the characteriza-
tion of regular, intra-regular and idempotent ordered ternary semigroup in ternary
semigroup of isotone mappings.

In Chapter 6, we introduce the concept of right chain ordered ternary semigroup
as a genralization of right chain ordered semigroup. Then we study the ideal theory
of a right chain ordered ternary semigroup. Mainly we characterize them by using
various ideals. A right chain ordered ternary semigroup is a ternary semigroup
whose right ideals forms a chain. Our main aim to study right chain ordered ternary
semigroup in terms of prime ideals, completely prime ideals and prime segment.

Chapter 7 is devoted to introduce the concept of (n,m,l)-ideal in ordered
ternary semigroup. Also we characterize (n,m,l)-regular ordered ternary semi-
groups. We study the notion of quasi-prime, strongly quasi-prime, irreducible and

strongly irreducible (n,m,[)-ideal in (n, m,[)-regular ordered ternary semigroup.
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Chapter 1

Introduction, preliminaries and

prerequisites

1.1 Introduction

The modern presentation of abstract algebra begins with the simple abstract
definition of algebraic structures. The results in binary algebraic structures may be
extended to m-ary algebraic structures for arbitrary n but the transition from n =
3 to arbitrary n entails a great degree of complexity that makes it undesirable for
exposition. For this reason, we shall confine ourselves in the proposed research work
wholly to ternary algebraic structures. There are many topics in different areas of
mathematics which remain to be disclosed in ternary algebraic structures. The main
objective of this thesis is to extend different fundamental results of semigroups to
ternary semigroups. Since there has been a remarkable growth of semigroup theory
with manifold applications, it has been possible to study ternary semigroups to a
good extent, the outcome of which is the present thesis.

First of all, we study the literature of ternary semigroup. The literature of
ternary algebraic system dealing with ternary operation has a broad history. The

introduction of mathematical literature of ternary algebraic system dated back to
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1924. The notion of ternary algebraic system was first introduced by H. Priifer [72]
by the name ‘Schar’. Later on W. Dérnte [27] further studied this type of algebraic
system. The theory of ternary algebraic systems was introduced by Lehmer [64]
in 1932. Also he explored the triplex systems. But earlier such structures were
studied by Kasner who gave the concept of n-ary algebras. E. L. Post [71] later
developed the theory of n-ary group to higher level of study. R. Kerner [54] con-
tributed his ideas of ternary algebraic systems in mathematical physics. The notion
of ternary semigroup was known to S. Banach. He showed, by an example that a
ternary semigroup does not necessarily reduce to an ordinary semigroup. Later J.
Los [66] proved that every ternary semigroup can be embedded in a semigroup. In
1953, the idea of semiheap was introduced and studied by V. V. Vagner [91]. M. L.
Santiago further developed the theory of ternary semigroups and ternary semiheaps
in his thesis. Study of this thesis develop ternary semigroup theory. In 1932, D.
H. Lehmer [64] investigated certain ternary algebraic systems called triplexes which
turn out to be commutative ternary groups. This ternary algebraic system has two
types of associativity laws as follows :
(i) A nonempty set S together with a ternary operation denoted by juxtaposi-
tion, satisfying the associative law of 1st kind (abc)de = a(bed)e = ab(cde), for
all a,b,c,d,e € S is said to be Ternary Semigroup.
(ii)) A nonempty set S together with a ternary operation denoted by juxtaposi-
tion, satisfying the associative law of 2nd kind (abc)de = a(dcb)e = ab(cde), for all
a,b,c,d,e € S is said to be Ternary Semiheap.

We consider the set of integers Z which plays a major role in semigroup theory.
If we consider the set Z* the set of all positive integers subset of Z, then we see that
7" together with usual binary multiplication forms a semigroup. This is a natural
example of binary semigroup. If we consider the set Z~ the set of all negetive integers
subset of Z, then we see that Z~ is not closed under the binary multiplication. But
if we take the ternary multiplication ‘.” defined by (a,b,¢) — abc on Z~, then

7~ is closed under the ternary multiplication. Also Z~ satisfies the associative law
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(abc)de = a(bed)e = ab(cde), for all a,b,c,d,e € Z~. Thus we see that Z~ forms a
ternary semigroup with respect to usual ternary multiplication of negetive integers.
This is a natural examples of ternary semigroups that are not reducible to binary
semigroups. Any semigroup can be made into a ternary semigroup in the natural
way by defining the ternary multiplication abc = (ab)c.

In this thesis we study the notion of ‘Ordered Ternary Semigroup’ which disclosed
a new field of vision in the research of Abstract Algebra. Ordered ternary semigroup
bring the opportunity to study a partial order relation together with an associative
ternary operation on the same set. The basic definition of ordered ternary semigroup
has its origin in algebraic equations, computer science, economics and geometry
because very similar techniques were found to be applicable in variety of situations.
The formal definition of ordered ternary semigroup is as follows :

An ordered ternary semigroup (S, .,<) is a partially ordered set (S, <) with
resepect to partial order ‘<’ and at the same moment a ternary semigroup (S, .) with
resepect to ternary operation ‘.” such that for all a,b,z,y € S we have a < b =
axy < bry, ray < xby, xya < xyb.

At the present time the theory of ordered ternary semigroups has an exceptional
growth in reseach area. Many researchers have been taken interests to explore
ordered ternary semigroup. Ordered ternary semigroups and ordered semigroups
were studied by a number of authors in [16], [38], [65], [82]. N. Kehayapulu [46],
[47] introduced and studied the notion of completely regular ordered semigroup.
Also completely regular ordered semigroup was studied by D. M. Lee and S. K. Lee
[63]. In 2012, Daddi and Pawar [25] studied the concept of ordered quasi-ideals
and ordered bi-ideals in ordered ternary semigroup and also discussed about their
properties. The result on the minimality and maximality theory of ordered quasi-
ideal in ordered ternary semigroup was developed by Jailoka and Iampan [39).

In 1965, F.M. Sioson [87] developed the ideal theory and it is a key concept to
study ternary semigroup and ordered ternary semigroup. Other than left and right

ideal, Sioson also invented the idea of a new type of ideal which is known as the
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lateral ideal. Ideas of radicals, m-system, semiprimality, irreducbility, regularity in
ternary semigroup is also developed by Sioson. Ideal theory in ternary semigroup
was studied by Y. Sarala, A. Anjaneyulu and D. Madhusudhana Rao [79] and they
described properties of prime ideals and primary ideals. A. Anjaneyulu [2], [3], [4]
studied prime ideals and primary ideals and introduced the idea of primary decom-
position in duo semigroup. Muhammad Shabir and Shahida Bashir [83] studied
the notion of prime, semiprime and irreducible ideals in ternary semigroup. Recent
study of semiprime ideal theory in commutative ternary semigroup was developed
by G. Hanumanta Rao, A. Anjaneyulu and A. Gangadhar Rao in their paper [73].
Many authors like Bourne [7], H. Lal [62], V. L. Mannepalli, C. Nagore [69], M.
Satyanarayana [80], [81] developed the ideal theory in commutative semigroups. H.
J. Hoehnke [36] used the ideal theory in their work to develop the ideal theory of
commutative semigroup. In 1993, R. D. Giri and A. K. Wazalwar [32] initiated the
study of prime ideals and prime radicals in non-commutative semigroup.

In 1997, V. N. Dixit and S. Dewan [26] studied the notion of quasi and bi-
ideal in ternary semigroup. Later on T. K. Dutta, S. Kar and B. K. Maity [29)
illustrated the theory of ideal, quasi-ideal, bi-ideal in regular ternary semigroup and
also developed some properties of intra-regular ternary semigroup. Further S. Kar
and B. K. Maity [44] discussed over ideal theory of ternary semigroup. Congruence
on ternary semigroup was studied by A. Chronowski [20], S. Kar and B. K. Maity
[43]. Further bi-ideal was studied by R. A. Good and D. R. Hughes [33]. In ordered
semigroup, the notion of bi-ideal and quasi-ideal was studied by N. Kehayopulu [48],
[49], [50], [51]. The theory of minimal and maximal ideals in ordered semigroup was
studied by Y. Cao and X. Xu [14] in 2000. In [15], they also characterized minimal
and maximal left ideals in ordered semigroup. In 2002, the minimal and maximal
ideal in ordered semigroup was developed by M. M. Arslanov and N. Kehayopulu
[5]. In ordered ternary semigroup, ideal theory also plays an important role. V.
Jyothi, Y. Sarala and D. Madhusudhana Rao [40] study the concept of semipseudo

symmetric ideals in ordered ternary semigroups in 2014. Recenty in 2017, K. Hansda
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[35] studied minimal bi-ideal in ordered semigroup.

In 1961, S. Lajos [58| introduced the concept of (m,n)-ideals in semigroup as a
generelization of one-sided ideal. Further he studied (m,n)-ideal in [59], [60], [61].
T. Changphas [17] studied (m,n)-ideals of ordered semigroups. Later the theory
of (m,n)-ideal in various algebric structures were studied by many authors like
Muhammad Akram [1], Limpapat Bussaban [13], P. Luangchaisri [68], R. Mazurek
[70], J. Sanborisoot [75] and so on.

A large number of authors make an attempt to study regularities in ternary
semigroup. Perhaps the massive impact of regular semigroups have been convinced
them to study ordered structure in regular ternary semigroup. M. L. Santiago
[76], [77] investigated regular ternary semigroup, strongly regular ternary semigroup,
completely regular ternary semigroup, clifford ternary semigroup, vagner ternary
semigroup, inverse ternary semigroup. In the thesis of M. L. Santiago the notion
of idempotent pair was used to show completely regular ternary semigroup as a
disjoint union of ternary group and clifford ternary semigroup as a semilattice union
of ternary groups. M. L. Santiago, S. Sri Bala [78] contributed their works to
establish the theory of cover of a ternary semigroup and to develop its properties.
Ternary semigroup and semiheaps also studied by W. A. Dudek [28] and A. Knoebel
[55]. G. Sheeja [84], [85], [86] studied about ternary groups and developed the
idea of simple ternary semigroup, O-simple ternary semigroup, orthodox ternary
semigroup etc. N. Kehayopulu [45], [46], [47], [52], [53] investigated regularities in
ordered semigroup. D. N. Krgovi¢ [56] studied the notion of (m,n)-regular ordered
semigroups. P. Luangchaisri and T. Changphas [67] also investigated (m,n)-regular
and intra-regular ordered semigroups.

This thesis deals with the study of ternary semigroup and ordered ternary semi-
group. So we need to know the basic definitions and results of ternary semigroups.
Here in this chapter, I discuss briefly some important basic definitions and results

that we need in the rest of my thesis.
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1.2 Ternary Semigroup

In this section, we discuss some preliminary definitions and results of ternary semi-
group which are relevant for this thesis. Most of the basic definitions and some
results are taken from [29], |43|, [44], [77]. Throughout this section S denotes a

ternary semigroup.

Definition 1.2.1. A nonempty set S together with a ternary operation - denoted by
Juxtaposition is said to be a ternary semigroup if it satisfies the ternary associative

law
ab(cde) = a(bed)e = (abe)de for all a,b,c,d,e € S.
Example 1.2.2. There are some examples of ternary semigroup.

e Set of all negative integers Z~ with usual ternary multiplication is a natural

example of ternary semigroup.

o {i,—i} forms a ternary semigroup with usual ternary multiplication where i =

V1.

e Consider the set Sy = {r\/2 : r € Q}, where Q is the set of all rational num-

bers. Then S1 forms a ternary semigroup with usual ternary multiplication.

Definition 1.2.3. A nonempty subset A of a ternary semigroup S is said to be
ternary subsemigroup if A is itself a ternary semigroup w.r.t. ternary operation on
A.

A nonempty subset A of a ternary semigroup S is called a ternary subsemigroup

of S if A3 = AAA C A.

e For example, set of all negative integers w.r.t. usual ternary multiplication is
a ternary subsemigroup of the set of all negative real numbers w.r.t. usual ternary

multiplication.
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Definition 1.2.4. An element e of a ternary semigroup S is said to be an identity

element of S if eea = eae = aee for alla € S.
e —1 is an identity element of Z~.

Definition 1.2.5. Let a be an element of a ternary semigroup S. An element b of
S is said to be an inverse of a if aba = a and bab = b.

From the definition we can see that a is also an inverse of b.

Definition 1.2.6. A ternary semigroup S is said to be inverse ternary semigroup

if every element of S has unique inverse in S.

e Q7 the set of all negative rational number is an example of inverse ternary

semigroup w.r.t. usual ternary multiplication.

Definition 1.2.7. A ternary semigroup S is said to be
(1) left cancellative if abx = aby = x =y for all a,b,x,y € S.
(13) right cancellative if rab = yab = x =y for all a,b,z,y € S.
(7i1) lateral cancellative if axb = ayb = x =y for all a,b,z,y € S.
(

iv) cancellative if S is left, right and lateral cancellative.

Definition 1.2.8. A ternary semigroup S is said to be commutative if rixow3 =

To(1)To(2)To(3), Where o is a permutation of {1,2,3}.

e Set of all negative integers with usual ternary multiplication is a commutative

ternary semigroup.

Definition 1.2.9. Let S be a ternary semigroup. An element a € S is said to be a
reqular element of S if there exists an element x € S such that a = axa.
A ternary semigroup S is said to be reqular ternary semigroup if every element

of S is reqular.

Definition 1.2.10. An element a of a ternary semigroup S is said to be left (resp.
right) reqular element of S if there exists an element x € S such that a = zaa (resp.

a = aax).
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A ternary semigroup S is said to be left (resp. right) regular ternary semigroup

if every element of S is left (resp. right) reqular.

Definition 1.2.11. An element a of a ternary semigroup S is said to be completely
reqular element of S is regular, left reqular and right reqular.
A ternary semigroup S is said to be completely regular ternary semigroup if every

element of S is completely reqular.

Theorem 1.2.12. Let S be a ternary semigroup S. The following conditions are
equivalent :
(i) S is completely regular,

(ii) a € a*Sa® for alla € S.

Definition 1.2.13. An element a of a ternary semigroup S is said to be intra-regular
element of S is if there exist some elements x,y € S such that a = xa’y.
A ternary semigroup S is said to be intra-reqular ternary semigroup if every

element of S is intra-regqular.

Definition 1.2.14. An element a of a ternary semigroup S is said to be idempotent
element of S if a® = a.

A ternary semigroup S is said to be an idempotent ternary semigroup if every
element of S is idempotent element.

An idempotent ternary semigroup is also known as ternary band.

FEvery idempotent element in a ternary semigroup is reqular.

An idempotent ternary semigroup S is said to be strong idempotent ternary semi-

group if a® = a and a*b = ab® for all a,b € S.

e S; is the symmetric group of order 6. Then 7' = {(1 2),(1 3),(2 3)} is an
idempotent ternary semigroup with usual ternary composition.
e {0,—1} C R is an example of strong idempotent ternary semigroup w.r.t. usual

ternary multiplication.
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Definition 1.2.15. An equivalence relation p on a ternary semigroup S is said to
be ternary

(i) left congruence if apb = (sta)p(stb) for all a,b,s,t € S.

(13) right congruence if apb => (ast)p(bst) for all a,b,s,t € S.

(1) lateral congruence if apb = (sat)p(sbt) for all a,b,s,t € S.

( (

iv) congruence if apa’, bpl, cpd’ = (abe)p(a'b'd) for all a,a’,b, b, c,d € S.

Proposition 1.2.16. An equivalence relation p on a ternary semigroup S is a
ternary congruence if and only if it is a ternary left, a ternary right, a ternary

lateral congruence on S.

Definition 1.2.17. A pair (a,b) of elements in a ternary semigroup S is said to be

an idempotent pair if ab(abx) = abx and (rab)ab = xab for all x € S.

Definition 1.2.18. Two idempotent pairs (a,b) and (c,d) of a ternary semigroup S
are said to be equivalent if abx = cdx and xab = xcd for all x € S and it is denoted

by (a,b) ~ (c,d).

Definition 1.2.19. A ternary semigroup S is said to be a ternary group if for

a,b,c € S, the equations abxr = ¢, axb = ¢ and xab = ¢ have solutions in S.

Remark 1.2.20. In a ternary group S, the equations abx = ¢, axb = ¢ and xab = ¢

have unique solutions for all a,b,c € S.

Definition 1.2.21. A ternary semigroup S is said to be
(1) left zero if abc = a for all a,b,c € S;
(ii) right zero if abc = ¢ for all a,b,c € S;

(7i1) lateral zero if abc = b for all a,b,c € S.

Note 1.2.22. Let S be a lateral zero ternary semigroup and a,b,c € S. Thus
abc = b. Therefore, ac(abc) = acb => (aca)bc = ¢ = cbc = c = b =c.
Again ac(abc) = acb = a(cab)c = ¢ = aac = ¢ = a =c. Thusa =b = c.

So we conclude that lateral zero ternary semigroup is always singleton.
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Definition 1.2.23. A nonempty subset I of a ternary semigroup S is said to be
(1) a left ideal of S if SSI C I;
(7i) a right ideal of S if ISS C I;
(7i1) a lateral ideal of S if SIS C I;
(1v) a two-sided ideal of S if I is both left and right ideal of S;
(v) an ideal of S if I is a left, right and lateral ideal of S.
An ideal I of a ternary semigroup S is called a proper ideal if I # S.
Fvery ideal of S is a ternary subsemigroup of S. Thus ideals of a ternary semi-

group S is also a ternary semigroup.

Proposition 1.2.24. Let S be a ternary semigroup and a € S. Then the principal
i) left ideal generated by ‘a’ is given by < a >= SSaU{a};
i1) right ideal generated by ‘a’ is given by < a >,= aSS U {a};

i11) lateral ideal generated by ‘a’ is given by < a >,,= SaSUSSaSS U {a};

~—~~

iv) ideal generated by ‘a’is given by < a >= SSaUaSSUSaSUSSaSSU{a}.

Definition 1.2.25. Let S be a ternary semigroup. Then S is called
(1) left simple if S has no non-trivial proper left ideal.
(ii) right simple if S has no non-trivial proper right ideal.
(731) lateral simple if S has no non-trivial proper lateral ideal.
(1v) simple if S has no non-trivial proper ideal.
A ternary semigroup S is simple if it is left simple, right simple and lateral

simple.

Definition 1.2.26. Let S be a ternary semigroup. An ideal I of S is said to be
prime ideal if for any ideals A, B,C of S such that ABC C I we have A C I or
BCIorCCl.

Definition 1.2.27. Let S be a ternary semigroup. An ideal I of S is said to be
semiprime ideal if for any ideal A of S such that A> C I we have A C I.

10
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Definition 1.2.28. Let S be a ternary semigroup. An ideal I of S is said to be
completely prime ideal if for any elements a, b, ¢ of S such that abc € I we have

acelorbel orcel.

Definition 1.2.29. Let S be a ternary semigroup. An ideal I of S is said to be

completely semiprime ideal if for an element a of S such that a®> € I we have a € 1.

In the following figure we made an conclusion pictorially for the four types of

ideals which are defined above :

prime
completely prime semiprime

N

completely semiprime

Definition 1.2.30. Let S be a ternary semigroup. A monempty subset QQ of S is
said to be quasi-ideal of S if QSSNSQSNSSQ C Q and QSSNSSQSSNSSQ C Q.

Definition 1.2.31. A ternary subsemigroup B of a ternary semigroup S is said to

be bi-ideal of S if BSBSB C B.

Definition 1.2.32. Let C be a non-empty subset of a ternary semigroup S. Then
CuUCCccucscsc is the smallest bi-ideal of S containing C.

Definition 1.2.33. A ternary semigroup S is said to be a ternary semilattice if S

is commutative, idempotent and satisfies the condition x*y = xy? for all z,y € S.

Note 1.2.34. A commutative strong idempotent ternary semigroup is a ternary

semilattice.

11
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Example 1.2.35. Some examples of ternary semilattice are as follows :

-1 0 -1 0
e S5 = { , } C My(R), w.r.t. ternary matriz multiplica-
0 -1 0 0

tion.
o S5 ={-1,0} C R, w.r.t. usual ternary multiplication.

Definition 1.2.36. An idempotent ternary semigroup S is said to be a rectangular

ternary band if aba = a for all a,b € S.

Although the definition of rectangular ternary band and rectangular band in
binary are similar, but all the rectangular ternary bands are not rectangular bands

in binary.

Example 1.2.37. The following are examples of rectangular ternary bands which

are not rectangular bands in binary.

-1 0 -1 -1

° , C My(R) w.r.t. ternary matriz multiplication.
0 0 0 O
0 O -1 -1

. { , } C My(R) w.r.t. ternary matriz multiplication.
-1 -1 0 O

Definition 1.2.38. Let Sy and S be two ternary semigroups. A mapping : S —>
Sy is said to be ternary homomorphism if 1 (abc) = ¥ (a)(b)(c) for all a,b,c € Sy.
If 1 is one-one then v is said to be a ternary monomorphism from Sy to Ss.

If 1 is onto then 1 is said to be a ternary epimorphism from Sy to Ss.

If ¢ is both one-one and onto then 1 is said to be a ternary isomorphism from

Sl to 52.

12
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1.3 Ordered Ternary Semigroup

Now we briefly discuss the basic definitions and terminologies of ordered ternary
semigroup. Most of the basic definitions and some results are taken from [16],
125, [38], [37], [39], [65]. Throughout this section S denotes an ordered ternary

semigroup.

Definition 1.3.1. A ternary semigroup (.S,.) is called an ordered ternary semigroup
or a partially ordered ternary semigroup (in short po-ternary semigroup) if there is

a partial order “ <7 on S such that
v <y = w172 < YT T2, T1XT < T1YTo, D127 < X122y for all x,y, 1,09 € 5.

Example 1.3.2. There are some examples of ordered ternary semigroups :
o Let 7~ be the set of all negetive integers. Then (Z~,.,<) is an ordered ternary

semaigroup, where ‘.’

15 the usual ternary multiplication and ‘<’ is the usual partial
order on Z~.

e Let N be the set of all natural number. Then (N, ., <) is an ordered ternary
semigroup, where ‘<’ s the usual less than or equal to partial order on N and the
ternary multiplication ‘" is defined by abc = a + b+ c.

e Let S be a commutative ternary semigroup. Let 1(S) be the set of all ideals of

S. Then (I(S),.,<) is an ordered ternary semigroup where, < is the set inclusion

and the multiplication *." is defined by IJK = {ijk|i€ I,j € J k € K}.

Definition 1.3.3. Let (S,.,<) be an ordered ternary semigroup. Every ternary
subsemigroup with the parital order ‘<’ defined on S is an ordered ternary semigroup.
If ‘<4’ is partial order relation on A, then < =< N( Ax A). So (A,.,<4) is called

ordered ternary subsemigroup of (S, ., <).

e For an ordered ternary semigroup (S5, ., <) and a subset H of S, we denote by

(H] the subset of S defined by :

(H]:={te S|t<hforsomehecH}

13
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The set (H] is called the downward closure of H and H is called downward closed
if (Hl=Hie a€H, be Ssuchthatb<a=0be H. Clearly (H] C S.

e Let A be an ordered ternary subsemigroup of the ordered ternary semigroup

S then the set (H]4 C A defined by
(Hla:={te A|t <hfor some h € H}

The set (H]a C A is called downward closure of H in A. Now (H]4 = H implies
that a € Hbe Asuchthat b<a=—0b€e H

Definition 1.3.4. A nonempty subset A of an ordered ternary semigroup S is called
(1) a left ideal of S, if (1) SSAC A and (2) (A]=A
(17) a right ideal of S, if (1) ASS C A and (2) (A] = A,

(7it) a lateral ideal of S, if (1) SAS C A and (2) (A] = A,

(1v) an ideal of S if it is a left ideal, right ideal and lateral ideal of S.

Definition 1.3.5. For an ordered ternary semigroup S and a € S, we denote by
R(a) (resp. L(a), M(a)) the right (resp. left, lateral) ideal of S generated by the
element a and I(a) denotes the ideal generated by the element a. Thus

(i) left ideal generated by ‘a’ is given by L(a) = (a U SSal;

(13) right ideal generated by ‘a’is given by R(a) = (a U aSS];
(14i) lateral ideal generated by ‘a’ is given by M(a) = (a U SaS U SSaSS];
(iv) ideal generated by ‘a’is given by I(a) = (a U SSaUaSS U SaS U SSaSS].

Definition 1.3.6. Let (S, ., <) be an ordered ternary semigroup. A nonempty subset
Q of S is called a quasi-ideal of S, if

(1) (SSQIN(SQS|N(QSS] C Q,

(i7) (SSQIN (SSQSS]IN(QSS] C Q and

(iii) (Q] = Q.

e Every left, right and lateral ideal of an ordered ternary semigroup S is a quasi-

ideal of S. But the converse does not hold, in general.

14
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Definition 1.3.7. Let (S,.,<) be an ordered ternary semigroup. A subsemigroup
B of S is called a bi-ideal of S, if (i) BSBSB C B and (ii) (B] = B.

Definition 1.3.8. For an ordered ternary semigroup S and a € S, the bi-ideal

generated by the element a is given by B(a) = (a U a® U aSaSal.

e Every quasi-ideal of an ordered ternary semigroup S is a bi-ideal of S. Since
every left, right and lateral ideal of an ordered ternary semigroup S is a quasi-ideal

of S, it follows that every left, right and lateral ideal of an ordered ternary semigroup

S is a bi-ideal of S.

Note 1.3.9. In ordered ternary semigroup, the definition of prime ideal, semiprime
ideal, completely prime ideal, completely semiprime ideal, left simple ideal, right

simple ideal, simple ideal are same as ternary semigroups.

Definition 1.3.10. Let (Sy,. <1) and (Ss, ., <s) be two ordered ternary semigroups.
A mapping f : S1 — Sy is said to be an isotone mapping if a <1 b implies that
fla) <y f(b) for all a,b € S.

Definition 1.3.11. Let (Sy,. <1) and (Ss, ., <o) be two ordered ternary semigroups.
A mapping g : S1 — S5 is said to be an ordered ternary homomorphism if g is an

1sotone mapping and

g(abe) = g(a)g(b)g(c) for all a,b,c € S;.

If g is one-one then g is said to be an ordered ternary monomorphism from S;
to Ss.

If g is onto then g is said to be an ordered ternary epimorphism from Sy to Ss.

If g 1s both one-one and onto then g s said to be an ordered ternary isomorphism
from Sy to Ss. Two ordered ternary semigroups are called isomorphic if there is an

ordered ternary isomorphism between them.
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1.4 Some results on ordered ternary semigroups

In this section S denotes an ordered ternary semigroup. We give all the required
results on ordered ternary semigroup that will be used throughout the rest of the

thesis.

Proposition 1.4.1. [16] Let (S, ., <) be an ordered ternary semigroup and A be an
ordered ternary subsemigroup of S. Then for any ideal I of S, AN I is an ideal of
S.

Proposition 1.4.2. [16] Let (S, ., <) be an ordered ternary semigroup and {I}rea
is family of non-trivial ideals of S. Then (N ca I and Uyca In are ideals of S.

Next we have the following result which we will often use in this thesis.

Proposition 1.4.3. 2] Let (S,.,<) be an ordered ternary semigroup. Then the
followings hold :

(1) A C (A] for any non-empty subset A of S,

(i7) If A, B C S such that A C B then (A] C (B],

(i) ((A]] = (A] for any AC S,

() (A](B](C] € (ABC] for all A,B,C C S,

(v) ((AIBI(CT] = ((AI(BIC] = (AB(C]] = (ABC] for all A, B,C C S,

(vi) (AUB] = (AJU (B] for all A,B C S,

(vii) (AN B] C (A]N(B] forall A,B C S,

In particular, if A and B are ideals in S, then (AN B] = (Al N (B],

(viii) If {Axkaca is family of non empty subsets of S, then (Uyea 4] = Uyea (A4
and ((Nyea Axl € Myea(Ar],

(1z) (SSA], (ASS], (SASUSSASS| are left, right and lateral ideal in S respectively.
(1) ((ACn=h] = (A,

(i) If z,y € S and x <y, then (rAA] C (yAA] and (AAzx] C (AAy]

Lemma 1.4.4. Let (S,.,<) be a ordered ternary semigroup. The following are

equivalent:

16
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(i) (A3] = A for every ideal A of S.

(1) ANBNC = (ABC] for all ideals A, B,C of S.

(173) I(a) N I(b) N I(c) = (I(a)I(b)I(c)] for all a,b,c € S.
(iv) I(a) = (I(a)?] for alla € S.

Proof. (i) = (i7) Let us assume that (¢) holds. Suppose that A, B,C are ideals
of S. Then (ABC] C (SSC| C (C] = C. Similarly, (ABC] C A and (ABC] C B.
Thus (ABC] C ANBNC. Since (A%] = A for every ideal A of S, ANBNC = ((AN
BNC)3 = ((ANBNC)(ANBNC)(ANBNC)| C (ABC]. Thus, ANBNC = (ABC]
for all ideals A, B, C' of S.

(11) = (iit) Let a,b,c € S. Since I(a), I(b), I(c) are ideals in S then by (i7), we
have I(a) N 1(b) N I(c) = (I(a)I(b)I(c)].

(7ii) = (iv) It is obvious. We take I(a) = I(b) = I(c).

(iv) = (i) Let a be an element of S. Then I(a) = (I(a)?] = (I(a)l(a)I(a)] =
((I(a)’)(1(a)*)(1(a)’]] = (I(a)*I(a)*I(a)’]. Now I(a)* C SI(a)S = S(aU SSaU
aSSUSaSUSSaSS]S C (SaSuUSSSaSuUSasSSSuUSSasSSuUSSSasSsSs| C (SaSuU
5SaSS]. Thus a € I(a) C ((SaS U SSaSS|(SaS U SSaSS|(SaS U SSaSS]| C
(SaSSaSSaSUSaSSaSaSSUSaSaSaSUSaSaSSaSSUSSaSaSSaSUSSaSaSasSs
U SSaSSaSaS U SSaSSaSSaSs].

Let A be an ideal in S. Let x € (A3]. Then z < ajasas for some ay, as, a3z € A.
Now ajasaz € AAA C ASS C A. Hence z € (A] = A. Thus (A3 C A. Again let
y € ACS. Then y € (SySSySSyS U SySSySySS U SySySyS U SySySSySS U
SSySySSyS U SSySySySS U SSySSySyS U SSySSySSySsS] C (SASSASSAS U
SASSASASS U SASASAS U SASASSASS U SSASASSAS U SSASASASS U
SSASSASAS U SSASSASSASS] C (A3]. Thus A C (A3%]. Therefore, (A3] =
A. O

Theorem 1.4.5. |74 An ordered ternary semigroup S is left (resp. right, lateral)
simple if and only if (aSS] =S (resp. (SSa] = S, (aSa] = S) foralla e S. Again
S is simple if and only if (aSS] =S, (SSa] =S and (aSa) = S for alla € S.
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Corollary 1.4.6. An ordered ternary semigroup S is left (resp. right, lateral) simple
if and only if for every a,b,c € S there exists x € S such thatb < xac (resp. b < acz,

b < axc).

Theorem 1.4.7. [7j] An ordered ternary semigroup S is left (resp. right, lateral)
simple if and only if (abS] = S (resp. (Sab] = S, (aSH] = S) for all a,b € S. Again
S is simple if and only if (abS] = S, (Sab] = S and (aSb] = S for all a,b € S.

Corollary 1.4.8. An ordered ternary semigroup S is left (resp. right, lateral) simple
if and only if for every a,b € S there exist x,y € S such that b < xya (resp. b < axy,
b < zay).

Theorem 1.4.9. Let S be an ordered ternary semigroup. Then S is left and right

simple if and only if S does not contain proper bi-ideals.

Proof. Let S be left and right simple ordered ternary semigroup and B be a bi-ideal
in S. Let b € B. Then by Theorem [1.4.5, we have S = (bSS] = (bS(SSb]] =
(bSSSb] = (bS(bSS]Sb] = (bSHSSSH] C (bSbSH] € (BSBSB| C (B] = B Thus S
does not contain proper bi-ideal.

Conversely, suppose that S does not contain proper bi-ideals. Let L be a left
ideal and R be a right ideal in S. Since every left ideal and right ideal are bi-ideal
of S, then we have L = S and R = S. Thus S is left and right simple. O

Corollary 1.4.10. Let S be an ordered ternary semigroup. Then S is lateral simple

if and only if S does not contain proper bi-ideals.

Theorem 1.4.11. [16] For every left ideal L, lateral ideal M and right ideal R of
an ordered ternary semigoup S, RN M N L is a quasi-ideal of S.

From the above theorem we have the following corollary :
Corollary 1.4.12. Let S be an ordered ternary semigoup and Q) be a quasi-ideal of

S. Then Q = R(Q) N M(Q) N L(Q).
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Chapter 2

On regularities in ordered ternary

semigroups

2.1 Introduction

In this chapter, we study the notion of certain special classes regular ordered
ternary semigroups. We develop some results of ordered semigroup into ordered
ternary semigroup under certain methodology. In particular, we characterize some
properties of regular ordered ternary semigroup, left (resp. right) regular ordered
ternary semigroup, completely regular ordered ternary semigroup and intra-regular
ordered ternary semigroup by using ideal, quasi-ideal, bi-ideal, completely prime
ideal and semiprime ideal of ordered ternary semigroup.

Throughout this chapter, S denotes an ordered ternary semigroup.

2.2 Left regular and right regular ordered ternary
semigroup

In this section, we characterize left regular ordered ternary semigroup by using

properties of various ideals.
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Definition 2.2.1. An ordered ternary semigroup S is said to be left reqular if A C
(SA?] for every AC S.

An element a of an ordered ternary semigroup S is said to be left reqular if there
exists an element x € S such that a < xaa. If all elements of S are left reqular then

S is said to be a left reqular ordered ternary semigroup.

Definition 2.2.2. An ordered ternary semigroup S is said to be right regular if
A C (A%S] for every AC S.

An element a of an ordered ternary semigroup S is said to be right regular if
there exists an element x € S such that a < aax. If all elements of S are right

reqular then S is said to be a right reqular ordered ternary semigroup.

Lemma 2.2.3. Let S be a left (resp. right) reqular ordered ternary semigroup and
L be a lateral ideal of S, then L is left (resp. right) regular.

Proof. Let L be a lateral ideal of an ordered ternary semigroup S. Let A C L. Since
S is left regular, A C (SAA] C (SA(SAA]] C (SASAA] C (SLSAA] C (LAA].
Thus L is left regular. O

Theorem 2.2.4. Let S be an ordered ternary semigroup. Then the followings are
equivalent :

(1) S is left regular,

(ii) L(a) C L(a®) for everya € S,

(iii) L(a) = L(a®) for every a € S.

Proof. (i)==(ii) Let a € S. Since S is left regular a € (Sa?|. Let x € L(a) =
(aU SSa] = (a] U (SSa]. If z € (a] then z < a < xa® < z(va?)a = xxa® € SSad.
Thus z € (SSa®] C (SSa®Ua®). Againif z € (SSa] then x € (SS5(Sa?]] = (S5Sa?) C
(Sa?] C (S(Sa?la) = (SSa®] C (SSa*Ua®]. Thus in both cases z € L(a®). Therefore,
L(a) C L(a®).

(i) = (iii) Let @ € S. Now a® € SSa C (SSa] C L(a). Thus L(a®) C L(a). Hence
L(a) = L(a®).
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(iii) = (i) Let a be an element of S such that L(a) = L(a®). Thus a € L(a®) =
(a® U SSa®]. Therefore, either a < a® € Sa? or there exixts z,y € S such that
a < zya® € SSSa? C Sa®. Hence S is left regular. O

Theorem 2.2.5. Let S be an ordered ternary semigroup. Then the followings are
equivalent :

(1) S is right regular,

(ii) R(a) C R(a®) for everya € S,

(i) R(a) = R(a®) for everya € S.

Proof. Proof is similar to the above Theorem [2.2.4] O

Theorem 2.2.6. Let S be an ordered ternary semigroup such that S is a union of

left reqular ternary subsemigroups of S, then S is left reqular.

Proof. Suppose that S is a union of left regular ternary subsemigroups of S. Then
S = U S; where {S;|i € A} is a family of left regular ternary subsemigroups
of S. ZE@t a € S. Then a € S; for some j € A. Since 5, is a left regular ternary
subsemigroup of S, we have a € (S;a?]. Since S; C S, then S;a? C Sa? = (S;a? C

(Sa?]. Thus a € (Sa?] and hence S is left regular ordered ternary semigroup. [
Similar results hold if we replace ‘left” by ‘right’.

Theorem 2.2.7. Let S be an ordered ternary semigroup such that S is a union of

left simple ternary subsemigroups of S, then S is left regular.

Proof. Let S = U S;, where S; is a left simple subsemigroup of S for every j € A.
Let T be a left iyseAal of S such that a® € T for some a € S. Since a € S, a € S; for
some j € A. Now a® € T and a® € 5;5;5; CS;. Thusa® € TNS;. SoTNS; # {}.
Now S;S;(T'NS;) = S;5,TNS;> CSSTNS; CTNS;. Again let z € S; such that
r € (T'NS;]. Then x <y for somey € TNS; CT. Thus x € (T] = T. Hence
reTNnS;andso (T'NS;] =TNS;. Thus T'NS; is a left ideal in S;. Since S

is left simple we have T'NS; = 5;. Thus S; C T and hence a € T'. Thus T is left
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simple. Since T is arbitrary left ideal of S, every left ideal of S is left simple. Now
S is also a left ideal. Thus S = (aaS] for all a € S by Theorem [1.4.7, Hence S is
left regular. O]

Similarly we have the following corollary.

Corollary 2.2.8. Let S be an ordered ternary semigroup such that S is a union of

right simple ternary subsemigroups of S, then S is right reqular.

Theorem 2.2.9. Let S be an ordered ternary semigroup. Then S is left (resp. right)
reqular if and only if every left (resp. right) ideal of S is semiprime.

Proof. Let S be a left regular ordered ternary semigroup and L be a left ideal
of S. Let A*> C L for some left ideal A of S. Since S is left regular, we have
A C (SA? C (S(SA%A] = (S(SA%)A] = (8SA3%] C (SSL] C (L] = L. Thus L is
semiprime.

Conversely, suppose that every left ideal of S is semiprime. Let A C S. Then
SS(SAA] C (S](S](SAA] C (SSSAA] C (SAA] and ((SAA]] = (SAA]. Therefore,
(SAA] is a left ideal of S. Now A% = AAA C SAA C (SAA] = (SA?]. Since every
left ideal of S is semiprime, we have A C (SA?). Thus S is a left regular ordered
ternary semigroup.

Similarly, we can also prove the same for right ideal of S. O

Theorem 2.2.10. Let S be an ordered ternary semigroup. Then the followings are
equivalent:

(i) If L1, Ly and Lg are left ideals of S, then (LyLaLs) = (Lo(1)Le(2) L)) for every
permutation o of {1,2,3} and (L,*] = (L4].

(11) If Ly, Ly and Ls are left ideals of S, then Ly N Ly N Ly = (L1 LoLs)].

(111) S is left reqular and left simple.

Proof. (i) = (ii) Let Ly, Ly and Lg are left ideals of S. Thus, (L LoL3] C (SSLs| C
(Ls) = Ls, (LaLsLy] € (SSLy] € (L1] = Ly and (LsLiLy] C (SSLo| C (La] = Lo.
By (l) <L1L2L3] = (L2L3L1] = (LSLlLQ}. Thus (LngLg] Q L1 N L2 N L3. Now
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(L1LoLs) # {}. Therefore, Ly N Ly N L3 is a left ideal of S and by hypothesis
LiNLoNLy = ((LiNLyNL3)3] = ((L1NLaNL3)(LiNLyNL3)(LiNLyNL3)] € (LyLyLs]
and hence (L1L2L3] = Ll N L2 N L3.

(1) = (i4i) Let a € S. Then by (ii) L(a) = L(a)NL(a)NL(a) = (L(a)L(a)L(a)]
(L(a)?]. Also L(a) = SNSNL(a) = (SSL(a)] = (SSa]. Again (aSS] C (L(a)SS] =
La)nSNS = L(a) C (SSa]. Thus a € L(a) = (L(a)?] C ((SSa]?| = ((SSa)?] =
(SSaSSaSSa) = (SS(aSS](aSS]a] C (SS(SSa](SSala] C (SSSSSSSa?] C (Sa?].

Thus S is left regular.

Let a € S. Then a € L(a) C (SSa]. Thus S C (SSa]. Also (SSa] C (SSS] C S.
Thus S = (SSa]. Hence S is left simple.
(1i1) = (i) Let S be a left regular and left simple ordered ternary semigroup.
Now SS(LiLaLs] € (S](S)(L1LoLs] € (SSLiLoLs] C (LyLoLs] and ((LyLoLs)] =
(LyLyLs]. Thus (LyLoLs] is a left ideal of S. Similarly (LoLsLy] and (LsLy Lo
are left ideals of S. Let x € (LiLoLs]. So, x < abc where a € Ly, b € Lo,
¢ € Ly. Now abc € S, bca € S. Since S is simple by Corollary there exists
y,z € S such that abc < yzbca € SSLyLsly C LoLsLy. Thus x € (LaLsLy].
Hence (LyLoLs] C (LoLsLq]. Similarly, we can prove that (LoLsLq] C (LiLoLs].
Thus (LyLyLs] = (LeLsLy]. Proceeding in the same manner we can show that,
(L1LaL3] = (Lo(yLo(2)Los)] for every permutation o of {1,2,3}. For the second
part, let a € L1 C S. Since S is left regular, a € (Sa?] C (S(Sa?|a] = (SSa?] C
(SSLyLyLy] C (L L1 Ly]) € (Ly?]. Also (Ly*] € (SSLy] € (Ly] = Ly. This completes
the proof. n

Theorem 2.2.11. Let S be an ordered ternary semigroup. Then the followings are
equivalent:

(i) If Ry, Ry and Ry are right ideals of S, then (RiRyR3] = (Ro(1)Ro2)Ro(s)] for
every permutation o of {1,2,3} and (R,’] = (Ry].

(11) If Ry, Ry and Ry are left ideals of S, then Ry N Ry N Ry = (R1R2R3).

(111) S is right regular and right simple.
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Proof. Proof is similar to Theorem [2.2.10 O

2.3 Regular ordered ternary semigroups

In this section, we discuss the behaviour and properties of ideals, quasi-ideals, bi-

ideals, semiprime ideals on regular ordered ternary semigroup.

Definition 2.3.1. An ordered ternary semigroup S is said to be reqular if A C
(ASA] for every AC S.

An element a of an ordered ternary semigroup S is said to be regular if there
exists an element x € S such that a < axa. If all elements of S are reqular then S

15 said to be a regular ordered ternary semigroup.

Lemma 2.3.2. Let S be a regular ordered ternary semigroup and I be a lateral ideal

of S, then I is regular.

Proof. Let I be a lateral ideal of a regular ordered ternary semigroup S. Let A C [.
Since S is regular, A C (ASA]. Now A C (ASA] C (AS(ASA]] = (ASASA] =
(A(SAS)A] C (A(SIS)A] C (AIA]. Consequently, I is a regular ordered ternary

semigroup. L]

Corollary 2.3.3. In a reqular ordered ternary semigroup S every ideal of S is

reqular.

Theorem 2.3.4. (65, N. Lekkoksung] In a reqular ordered ternary semigroup S, the
following are equivalent :

(1) S is reqular;

(5) (RML) = RN M N L where R, M, L are right ideal, lateral ideal and left

ideal of S respectively.

Theorem 2.3.5. (65, N. Lekkoksung] In a regqular ordered ternary semigroup S, the
following are equivalent :

(1) S is regular;
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(1) for every bi-ideal B of S, (BSBSB] = B;
(1i1) for every quasi-ideal Q of S, (QSQSQ] = Q.

Theorem 2.3.6. An ordered ternary subsemigroup B of a reqular ordered ternary

semigroup S is a bi-ideal of S if and only if B = (BSB].

Proof. Let S be a regular ordered ternary semigroup and B C S. Let B = (BSB].
Then B = (BSB] = (BS(BSB]] = (BS(BSB)] = (BSBSB]. Thus BSBSB C
(BSBSB] = B. It remains to show that (B] = B. Let x € (B]. Then z €
((BSB]] = (BSB]| = B. Thus (B] C B. Hence B is a bi-ideal of S.

Conversely, let B be any bi-ideal of a regular ordered ternary semigroup S.
Since S is regular and B C S we have B C (BSB]|. Again (BSB| C (BS(BSB]| =
(BS(BSB)| = (BSBSB] C (B] = B. Thus B = (BSB|. O

Theorem 2.3.7. In a reqular ordered ternary semigroup S, every bi-ideal of S is a

quasi-ideal of S.

Proof. Let B be a bi-ideal of a regular ordered ternary semigroup S. Then BSBSB C
B and (B] = B. Now SS(SSB] C (S](S](SSB] C (SSSSB| C (SSB] and
((SSB]] = (SSB]. Hence (SSB]isaleft ideal of S. Also (BSS]SS C (BSS](S](S] C
(BSSSS]) € (BSS] and ((BSS]] = (BSS]. Thus (BSS] is a right ideal of S.
Again S(SBS U SSBSS]S C (S|(SBSUSSBSS]|(S] C (SSBSSUSSSBSSS| C
(SSBSSUSBS] and ((SBSUSSBSS|| = (SBSUSSBSS]. So (SBSUSSBSS]|
is a lateral ideal of S. From Theorem we have (BSS] N (SBSUSSBSS|N
(SSB] = ((BSS|(SBS U SSBSS](SSB]] = ((BSS)(SBS U SSBSS)(SSB)] =
(BSSSBSSSB U BSSSSBSSSSB| C (BSBSB U BSSBSSB| C (BSBSB U
BSB| = (BSBSB]U(BSB] = BU B = B, by using Theorem and Theorem
[2.3.6] Consequently, B is a quasi-ideal of S. O

Definition 2.3.8. An ordered ternary semigroup S is called commutative if x1xox3 =

To(1)Ta(2)To(3) for every permutation o of {1,2,3} and x1,2, 23 € S.
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Theorem 2.3.9. Let S be a commutative ordered ternary semigroup. Then S is

reqular if and only if every ideal of S is semiprime.

Proof. Let S be a commutative regular ordered ternary semigroup and I be any
ideal of S. Let A®> C I for A C S. Since S is regular and A C S we have
A C (ASA] = (AAS] C (A(ASA]S] = (A(ASA)S] = (A(AAS)S] = ((AAA)SS] =
(A3SS]) C (ISS] C (I] = I. Thus I is a semiprime ideal of S.

Conversely, we assume that every ideal of commutative ordered ternary semi-
group S is semiprime. Let A C S. Then (ASA] is an ideal of S.

Case 1 : If (ASA] = (S] =S, we get our conclusion.

Case 2 : If (ASA] # S. Then by hypothesis, (ASA] is a semiprime ideal of
S. Now A% = AAA C ASA C (ASA] implies that A C (ASA]. Consequently, S is
regular. O]

Definition 2.3.10. Let S be an ordered ternary semigroup. A nonempty subset By,
of S is called a weak bi-ideal of S, if

(1) bSbSL C B,, for allb € B, and

(17) (Byw) = Buw.

Clearly, we have the following results :

Lemma 2.3.11. Fvery bi-ideal of an ordered ternary semigroup S is a weak bi-ideal

of S.

Lemma 2.3.12. The intersection of arbitrary set of weak bi-ideals of a ordered

ternary semigroup S is either empty or a weak bi-ideal of S.

Theorem 2.3.13. Let S be an ordered ternary semigroup. Then S is reqular if and

only if B, = ( U bSbSh| for any weak bi-ideal By, of S.

bEBy,
Proof. Let S be a regular ordered ternary semigroup and B, be any weak bi-ideal

of S. Then bSbSb C B, for all b € B,. So U bSbSb C B,. This implies

beEBw
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that (U bSbSH] C (B,] = By. Let b € B,. Since S is regular, there exists

bEBw
x € S such that b < bzb. So b < bxb < bxbxb € bSbSh C U bSbSh. Therefore,
beBw
be () bSbSY]. Thus B, C (| ] bSbSH]. Hence B, = ( | J bSbSY].
beBu beBy, beBu,
Conversely, let B, = ( U bSbSbh|, where B, is a weak bi-ideal of S. Let R be a

beBy
right ideal, M be a lateral ideal and L be a left ideal of S. Since every left, right and

lateral ideal of an ordered ternary semigroup S is a bi-ideal of S, it follows that every
left, right and lateral ideal of an ordered ternary semigroup S is a weak bi-ideal of
S. So R, M, L are weak bi-ideals of S. Thus by Lemma[2.3.12) RN M N L is a weak
bi-ideal of S. Clearly, (RML] C RNMNL. Now let a € RNMNL. Since ROMNL
is weak bi-ideal of S, by hypothesis we have RN M N L = ( U xSz Sz]. Then

r€ERNMNL
a < xsjrsexr for some v € RN M N L and 51,82 € S. So a < x81x52ys3yssy for

some z,y € RN M N L and sy, s9, 53,54 € S. This implies that a € (RML]. Thus
RNMNLC (RML] and hence (RML] = RN M N L. Consequently, S is a regular
ordered ternary semigroup by Theorem [2.3.4] O

2.4 Completely regular ordered ternary semigroups

In this section, we introduce and study completely regular ordered ternary semi-
group. We also characterize completely regular ordered ternary semigroup by using

quasi-ideals, bi-ideals and semiprime ideals.

Definition 2.4.1. An ordered ternary semigroup S is said to be completely regular
if it is reqular, left reqular and right reqular i.e. A C (ASA], A C (SA?| and
A C (A%S] for every AC S.

Example 2.4.2. Let S = {a,b,c,d,e} be an ordered ternary semigroup with the

ternary operation defined on S as abc = a * (b * c), where the binary operation * is
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defined by
*lalblcl|d|e
alalalc|d|a
bla|b|lc|d]|a
clalalc|d]|a
dlalalc|d]|a
elalalc|dle

and the order defined as < :={(a,a),(a,c),(a,d),(b,b),(b,d), (b, a),(b,c),
(¢,¢), (c,d),(d,d), (e, a),(ec),(ed),(ee)}.

Now we have the covering relation “ <7 and the figure of S as follows :

< ={(a,¢), (b,a), (c,d), (e,a)}

®c

Then S is a completely reqular ordered ternary semigroup.

Theorem 2.4.3. In an ordered ternary semigroup S, the following conditions are
equivalent :

(i) S is completely regular;

(it) A C (A2SA?] for every AC S.
Proof. (i) = (i1).
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Let S be a completely regular ordered ternary semigroup. Then for any A C S,
we have A C (ASA] = ((A2S]S(SA?]] = ((A%29)S(SA?%)] = (A2SSSA?| C (A2SA?).
Let A C S. Then A C (A%2SA? = (A(ASA)A] C (ASA], A C (A25A4?% =
((A25)A?] C (SA? and A C (A%2SA?] = (A%(SA?)] C (A%S]. This implies that
S is regular, left regular and right regular. Consequently, S is completely regular

ordered ternary semigroup. O

In the following result we provide another characterization of completely regular

ordered ternary semigroup in terms of quasi-ideal.

Theorem 2.4.4. Let S be an ordered ternary semigroup. Then S is completely
reqular if and only if every quasi-ideal of S is a completely reqular subsemigroup of

S.

Proof. Let S be a completely regular ordered ternary semigroup and QQ be a quasi-
ideal in S. Since {} # Q C S and @Q* C QSS N SQS N SSQ C (QSS] N
(SRS N (SSQ] € @, Q is a subsemigroup of S. Let A C @ C S. We have to
show that @) is completely regular. Since S is completely regular and A C S, we
have A C (ASA] = ((A2S]S(SA?%] = ((A%5)S(SA?)] = (A2SSSA?% C (A2SA?%] =
(A(ASA)A] C (A(ASA]SAA] = (A(ASA)SAA] = (A(ASASA)A]. Now ASASA C
SSASS C SSQSS, ASASA C SSA C SSQ and ASASA C ASS C QSS. There-
fore, ASASA C SSQNSSQSSNQRSS C (SSQIN(SSQSS)|N(QSS] C Q. Hence

C (AQA]. Again A C (ASA] C (AS(SA?)] = (AS(SA?)] C (ASS(SA%A] =

(ASS(SA?)A] = ((ASSSA)A?| C ((ASA)A?| C (AS(ASAJA% = (AS(ASA)A?] =
((ASASA)A?) C (QA2] and A C (ASA] C ((A%S]SA] = ((A28)SA] C (A(A2S]SSA]
(A(A2S)SSA] = (A%(ASSSA)| C (A%(ASA)] C (A*(ASA]SA] = (A%(ASA)SA] =
(A%2(ASASA)] C (A%Q]. Thus Q is regular, left regular and right regular. Conse-

quently, @) is completely regular subsemigroup of S.
Conversely, suppose that every quasi-ideal of S is a completely regular subsemi-

group of S. Since S itself a quasi-ideal in S, S is completely regular. O
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Theorem 2.4.5. Let S be an ordered ternary semigroup. Then S is left reqular and

right reqular if and only if every quasi-ideal of S is semiprime.

Proof. Let S be a left regular and right regular ordered ternary semigroup and @
be a quasi-ideal of S. Let A C S and A® C Q. Since S is left regular and right
regular, A C (SA?] and A C (A%S]. Now A C (SA?% C (S(SA%YA] = (S(SA?)A] =
(SSA3 C (SSQ], A C (A%S] C (A(A2S]S] = (A(A2%8)S] = (A3S5S] C (QSS] and
A C (SA? C (SA(A%S]] = (SA3S] C (SQS]. Therefore, A C (SSQ] N (SQS] N
(QSS] C Q. Hence @ is semiprime.

Conversely, suppose that every quasi-ideal of S is semiprime. Since every right
ideal and left ideal of S is a quasi-ideal of S, every right ideal and left ideal are
semiprime. Now by using Theorem [2.2.9] we find that S is left regular and right
regular. O]

From Theorem [2.4.5 we have the following result :

Corollary 2.4.6. If S is a completely reqular ordered ternary semigroup then quasi-

ideals of S are semiprime.

The converse of the above result does not hold. This follows from the following

example :

Example 2.4.7. Let S = {a,b,c,d, e} be an ordered ternary semigroup with ternary
operation product defined on S by abc = ax(bxc), where binary operation * is defined

as

b|d|{b|b|d|b
cld{b|b|d|b
dld{b|b|d|b
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and the order defined by < = {(a,a), (b,a), (b,b), (b,d), (b, e), (c,a),
(c.c), (e, d), (c,e), (d,d), (d,a), (e,a), (e, €)}.
We give the covering relation “ <7 and the figure of S as follows :
< ={(b,d), (b e),(c,d),(c,e),(d;a), (e, a)}

Then S is a left reqular and right reqular ordered ternary semigroup. So every
quasi-ideal of S is semiprime by Theorem but S is not completely reqular. In

fact it is not reqular since c € S is not reqular.

In the following result we represent a completely regular ordered ternary semi-

group in terms of bi-ideal.

Theorem 2.4.8. An ordered ternary semigroup S is completely reqular if and only

if every bi-ideal of S is semiprime.

Proof. Let S be a completely regular ordered ternary semigroup and B be any bi-
ideal of S. Let A C S and A3 C B. Since S is completely regular ordered ternary
semigroup and A C S we have,
A C (A2SA?] C (A(A2SA?]S(A2SA%A] = (A(A2SA%)S(A2SA?) Al = ((A3SA%S) (A2
S)A3] C ((A3SA2S)(A2SA?](A2SA?|SA3] = ((A3SA%S)(A2SA%)(A2SA?)SA3 =
(A3(SA2SA%2S)A3(ASA%S) A% C (BSBSB] C (B] = B. Therefore B is semiprime.
Conversely, suppose that every bi-ideal of S is semiprime. Let {} # A C S. Then
we have A2SA? C S ie. (A%2SA?] C (S] = S. Now (A2SA?S(A%2SA%S(A25A?%] C
(A2SA?)(S)(A2SA%](S](A%2SA?] C (A2SA2SA2SA2SA%2SA?] C (A2S5A?.  Again
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we have ((A2SA?%] = (A2SA?%. Thus (A%2SA? is a bi-ideal in S. Now A% =
AAAAAAAAA = AA(AAAAA)AA C AASAA = A2SA? C (A2SA?). By hypothe-
sis, since every bi-ideal is semiprime, A? = (A3)? C (A2SA?] = A3 C (A*SA?] =
A C (A%SA?). Since A is arbitrary, A C (A2SA?] for every A C S. Hence S is

completely regular ordered ternary semigroup. O]

Theorem 2.4.9. Let S be a commutative ordered ternary semigroup. Then the bi-
ideals of S are completely prime if and only if the bi-ideals of S form a chain and

S is completely reqular.

Proof. Let the bi-ideals of S are completely prime. Let A and B are bi-ideals of S.
Then (BAB] C S. Now (BAB|S(BAB|S(BAB] C (BAB](S)(BAB](S|(BAB] C
(BABSBABSBAB] C (BASSSASSSAB] C (BASASAB] C (BAB] and ((BAB]]
= (BAB]. Thus (BAB] is a bi-ideal of S. Now BAB C (BAB]. Since (BAB] is
a completely prime bi-ideal of S, then (BAB] is prime bi-ideal of S. Therefore, we
have either A C (BAB] or B C (BAB]. If A C (BAB], then A C (B(BAB|B| =
(B(ABB|B] C (BSBSB| C (B] = B. If B C (BAB], then B C (BA(BAB]| =
(BA(BBA]] = (BABBA] C (BAB(BABJA] = (ABBBABA] = (ABABA] C
(A] = A. Thus for any two bi-ideals A and B we have either A C B or B C A.
Thus the bi-ideals of S form a chain.

Againlet a € S. Then (a?Sa?]S(a?Sa?S(a*Sa?] C (a?Sa*Sa*Sa*Sa*Sa?] C (a*Sa?].
So, (a®Sa?] is a bi-ideal in S. Now a®aa = a® € (a’Sa?] which implies that
a® € (a*Sa’] or a € (a*Sa?]. Again @® € (a’Sa?] = a € (a*Sa?*]. Thus S is
completely regular.

For the converse part, let the bi-ideals of S form a chain and S is completelely reg-
ular. Now let a € S such that a® € B where B is a bi-ideal of S. Now a € (a*Sa?] C
(a(a*Sa?)Sa?] = (a*Sa*Sa?] = (a*Sa(a?Sa?|S(a*Sa*la] = (a*Sa*Sa*Sa*Sa®] C
(a*Sa®Sa®] C (BSBSB] C (B] = B. Then B is completely semiprime. Now
we have to prove that (B(x)B(y)B(z)] = B(x) N B(y) N B(z). Let p € B(x) N
B(y)NB(z) C B(x). Similarly p € B(y) and p € B(z). Thus p* € B(x)B(y)B(z) C
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(B(x)B(y)B(z)]. Now (B(x)B(y)B(z)] is also a bi-ideal in S which is completely
semiprime. Hence p € (B(x)B(y)B(z)]. Thus B(z)NB(y)NB(z) C (B(z)B(y)B(2)].
Again let ¢ € (B ( ) (y)B(z)]. Then q < z1y12; for some x; € B(x), y; € B(y)
and z; € B(z). en ¢¢ < (ziy121)(myi2)(wyr21) = (wyz)(yiwnz1) (yiz121) €
B(x)B(y)B(2)B(y)B(x)B(2)B(y)B(2)B(x) € B(x)SB(x)SB(x) € B(x). Thus
¢® € (B(z)] = B(z) and so q € B(x). Thus (B(z)B(y)B(z)] C B(z). Similarly,
(B(x)B)B(2)] C Bly) and (B(x)B(y)B(z)] C B(2). Hence (B(x)B(y)B(2)] C
B(x) 0 B(y) N B(2). So, (B(x)B(y)B(=)] = B(x) N Bly) 1 B(>)

Now let a,b,c € S such that abc € B. For a,b € S either B(a) C B(b) or
B(b) C B(a). For b,c € S either B(b) C B(c) or B(c) C B(b). For c,a € S
either B(c) C B(a) or B(a) C B(c).

Case 1: If B(a) C B(b), B(a) € B(c) and B(b) C ), then a € B(a) = B(a)N
B(a) = B(a) N (B(b) N B(c)) = B(a) N B(b) N B(c) = (B(a)B(b)B(c)] € (B] = B.
Case 2: If B(a) C B(b), B(a) C B(c) and B(c) € B(b). This proof is similar to
Case 1.

Case 3: If B(b) C B(c), B(b) C B(a) and B(c) C B(a), then b € B(b) = B(b) N
B(b) = B(b) N (B(c) N B(a)) = B(a) N B(b) N B(c) = (B(a)B(b)B(c)] C (B] = B.
Case 4: 1f B(b) C B(c), B(b) € B(a) and B(a) € B(c). This proof is similar to
Case 3.

Case 5: 1f B(c) C B(a), B(c) € B(b) and B(a) C B(b), then ¢ € B(c) = B(c) N
B(c) = B(e) N (B(a) N B(b)) = B(a) N B(b) N B(c) = (B(a)B(b)B(c)] C (B] = B.
Case 6: 1f B(c) C B(a), B(c) C B(b) and B(b) C B(a). This proof is similar to
Case 5.

B(c
(B

Thus in all cases we have, either a € Bor b € B or ¢ € B. Hence B is completely

prime bi-ideal in S. [
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2.5 Intra-regular ordered ternary semigroups

In this section, we mainly characterize intra-regular ordered ternary semigroup by

using properties of ideals.

Definition 2.5.1. An ordered ternary semigroup S is called intra-regular if for every
a € S, there exist x,y € S such that a < xa®y or equivalently, a € (Sa3S] for all
a€ls.

In otherwords, an ordered ternary semigroup S is intra-reqular if A C (SA3S]

for every A C S.
Now we have the following result :

Lemma 2.5.2. If S is a left (resp. right) reqular ordered ternary semigroup, then

S is intra-regular.

Proof. Let S be left regular ordered ternary semigroup and A € S. Then A C
(SA?% C (S(SA%A] = (S(SA%)A] C (SS(SA?|AA] = (SS(SA?)AA] = (SSSA3A] C
(SSSA3S]) C (SA3S]. Thus S is intra-regular.

Similarly, we can prove the result for right regular ordered ternary semigroup. [J

But the converse of the above result is not true.
In the following, we give an example of an intra-regular ordered ternary semi-

group which is not left regular ordered ternary semigroup.

Example 2.5.3. Let S = {a,b,c,d, e} be an ordered ternary semigroup with ternary

operation defined on S by abc = a * (b * ¢), where the binary operation * is defined

as
lalblc|d|e
alalblald]|a
blalbla|d]|a
clal|blal|d]|a
dia|blald|a
elalblald|a
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and the order defined by < :={(a,a),(a,b),(a,c),(a,e),(bb),(cc),
(¢,b), (c,e),(d,d), (e,b), (e e)}.

We give the covering relation “ <7 and the figure of S as follows :

< ={(a,c),(c,b),(c,e),(e,b)}

Q.

Then (S, ., <) is an intra-regular ordered ternary semigroup but not left regular,

since ¢ and e are not left reqular elements of S.
Now we can easily prove the following result :

Theorem 2.5.4. In an intra-reqular ordered ternary semigroup S, LN M N R C
(LMR], where L, M, R are left ideal, lateral ideal and right ideal of S respectively.

Clearly, every ideal of an ordered ternary semigroup S is also a lateral ideal of
S. Certainly a lateral ideal of S is not necessarily an ideal of S. But in particular,

for intra-regular ordered ternary semigroup S we have the following result :

Theorem 2.5.5. Let S be an intra-regular ordered ternary semigroup. Then a non-

empty subset I of S is an ideal of S if and only if I is a lateral ideal of S.

Proof. Clearly, if I is an ideal of S, then [ is a lateral ideal of S.

Conversely, assume that [ is a lateral ideal of an intra-regular ordered ternary
semigroup S. Then SIS C [ and (I] = I. Since S is intra-regular and I C S we
have I C (SI3S].
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Now SST C (SSI] C (SS(SI3S]] = (SS(SI3S)] = (SSSI3S] C (SSS(SI3S) 18]
= (SSS(SI3S)12S] = ((SSSSI)I(ISIIS)] C (SIS) C (I] =1 and ISS C (ISS] C
((ST3S]SS] = ((SI?S)SS] = (SI?SSS]) C (SI*(SI*S]SSS] = (SI*(SI2S)SSS] =
((SIISI)I(ISSSS) C (SIS] C (I] =1I. Thus [ is a left ideal as well as a right ideal
of S. Consequently, I is an ideal of S. n

Lemma 2.5.6. Let S be an intra-regular ordered ternary semigroup and I be a

lateral vdeal of S then I s intra-reqular.

Proof. Let S be an intra-regular ordered ternary semigroup and I be a lateral ideal
of S. Let A C I C S. Since S is intra-regular, it follows that A C (SA3S]. Now
we have A C (SA3S] C (S(SA3S](SA?S|(SA3S]S] = (S(SA3S)(SA3S)(SA3S)S] =
((SSA3S8S)A3(SSA3SS)] C ((SSSASSS)A3(SSSASSS)] C ((SAS)A3(SAS)] C
((SIS)A3(SIS)] C (1A31].

U

Consequently, I is an intra regular ordered ternary semigroup.
Similarly, by Lemma we can prove the following result :

Corollary 2.5.7. Let S be an intra-reqular ordered ternary semigroup and I be an

tdeal of S then I is intra-regular.

Theorem 2.5.8. Let S be an intra-regular ordered ternary semigroup. Let I be an
ideal of S and J be an ideal of I. Then J is an ideal of the entire ordered ternary

semigroup S.

Proof. 1t is sufficient to show that J is a lateral ideal of S. Now J C [ C S and
SJS C SIS C I. We have to show that SJS C J. From Corollary [2.5.7 it
follows that I is an intra-regular ordered ternary semigroup. Also SJS C I. So
we have (SJS) C (I(SJS)3I) = (I(SJS)(SJS)(SJS)I] = ((ISJSS)J(SSJSI)] C
((ISISS)J(SSISI)] C ((IIS)J(SII)] C ((ISS)J(SSI)] C (IJI] C (J] = J. Con-
sequently, .J is a lateral ideal of S. n

Theorem 2.5.9. Let S be an ordered ternary semigroup. Then S is intra-reqular if

and only if every ideal of S is semiprime.
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Proof. Let S be an intra-regular ordered ternary semigroup and I be an ideal of S.
Let A3 C I for A C S. Since S is intra-regular ordered-ternary semigroup, we have
A C (SA3S] C (SIS] C (I] = I. Hence I is a semiprime ideal of S.
Conversely, suppose that every ideal of S is semiprime. Let A C S. Since
A% C I(A3) and by hypothesis I(A?) is a semiprime ideal of S, so A C I(A?).
Now I(A%) = (A3USSA3USA3SUSSA3SS U A3SS) = (A3 U (SSA3 U (SA3S]U
(SSA3SS)U (A3SS].
Case 1: If AC (A3%]. Then A C (A(A3]A] = (A(A%)A] C (SA3S].
Case 2: If A C (SSA3] then A% C (SSA% A% Hence A C (SS(SSA3A?%] =
(SS(SSA%)A?] = (SSSSAAAAA] C (SSSSSAAAS] = (SSSSSA3S] C (SA3S).
Case 3: Tf A C (SA3S] we get our conclusion.
Case 4: If AC (SSA?SS] then A® C A(SSA®SS]A. Hence A C (SSA(SSA*SS]
ASS] = (SSA(SSA3SS)ASS] = (SSASSA3SSASS]) C (SSSSSA35S8SSS| C
(SA3S].
Case 5: If A C (A3S95] then A®> C A?(A3SS]. Hence A C (A?(A3SS]SS] =
(A%(A385)SS] = (AAAAASSSS] C (SAAASSSSS] = (SA35SSSS] C (SA3S).
In each cases above we have seen that S is intra-regular. Consequently, S is an

intra-regular ordered ternary semigrouop. O
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Chapter 3

Semigroup cover of ternary

semigroup

3.1 Introduction

In this chapter, our main aim is to study the relation between a ternary semi-
group S and the semigroup cover Q(S) of the ternary semigroup S by their ideals,
bi-ideals, quasi-ideals, prime ideals, completely prime ideals, semiprime ideals, com-
pletely semiprime ideals. Then we discuss about left regularity, right regularity,
complete regularity and intra-regularity of S and @Q(S) by using these ideals. Then
we investigate the isomorphism problem between two ternary semigroups and their
corresponding semigroup covers. In the last section, we introduce a partial order
in Q(S) by help of the partial ordered defined in S and discuss lattice structure in
between S and @Q(S). M. L Santiago and S. Sri Bala [7§] introduced the notion of
semigroup cover of ternary semigroup in the following way.

For a ternary semigroup S, a semigroup Q(.S) was constructed in such a way that
S is embedded in Q(S) as a ternary subsemigroup. The construction of the semi-
group cover of a ternary semigroup is as follows : For a,b € S, suppose that L(a,b)

and R(a,b) are left and right multiplication operators on S given by L(a, b)c = abe
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and R(a,b)c = cba for all ¢ € S. The condition of associativity is equivalent to

either of the following :

L(a,b)L(c,d) = L(a,bed) = L(abc, d)
R(a,b)R(c,d) = R(a,dcb) = R(cba,d).

Put m(a,b) = (L(a, b), R(b, a)). Let M = {m(a,b) : a,b € S} and define a product
on M by the following way:

m(a, bym(c, d) = (L(a, b)L(c,d), R(d, ) R(b, a))

Thus m(a,b)m(c,d) = m(abe, d) = m(a,bed). Moreover M satisfies the associative
law for binary multiplication. Thus M can be made into a semigroup. Consider the
set Q(S) = SUM, where S and M are two disjoint sets. Define multiplication on
Q(S) as follows :

(

m(a,b) ifa,be S
m(ay, az)m(by, bg) if a =m(ay,az), b =m(by,by) € M
ab = < (3.1)
L(ay, as2)b if a =m(a,a2) e M, be S
\R(bg,bl)a ifae S, b=m(b,b) €M

This product is associative in Q(S). Thus Q(S) is a semigroup and M = S?
in Q(5). For all a,b,c € S, we have a(bc) = am(b,c) = R(c¢,b)a = abc. The
mapping f : S — Q(S) defined by f(a) = a is a monomorphism. Thus the ternary
semigroup S is embedded in the semigroup Q(S) as a ternary subsemigroup of Q(.5).
The semigroup Q(S) is called the “Semigroup Cover” of the ternary semigroup S.

The semigroup cover Q(S) is commutative if and only if the ternary semigroup
S is commutative [77].

Throughout this section S denotes a ternary semigroup and @Q(S) denotes the

semigroup cover of corresponding ternary semigroup .S.
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3.2 Ideals of ternary semigroup S and semigroup

cover Q(5)

In this section, we characterize a ternary semigroup S and the semigroup cover

Q(S) of the ternary semigroup S by using their different ideals.

Proposition 3.2.1. [77, Santiago] If I is a left (resp. right) ideal in a ternary
semigroup S, then IUSI (resp. IUILS) is a left (resp. right) ideal in the semigroup
cover Q(S). If I is an ideal in S, then I U ST UILS is an ideal in Q(S).

Proposition 3.2.2. [77, Santiago] If J is a left (resp. right) ideal in the semigroup
cover Q(S), then J NS is a left (resp. right) ideal in the ternary semigroup S.
Moreover if J is an ideal in Q(S), then J NS is an ideal in S.

Theorem 3.2.3. Let S be a ternary semigroup. Then every ideal in S is a prime
ideal of S if every ideal in Q(S) is a prime ideal of Q(S). If S is a left zero ternary
semigroup, then every ideal in Q(S) is a prime ideal of Q(S) if every ideal in S is
a prime ideal of S.

Proof. First suppose that every ideal of Q(S) is a prime ideal of Q(S). Then for
every ideal I of Q(S), JK C I implies that J C [ or K C I for any ideal J, K of
Q(S). Let P be an ideal of S such that ABC' C P for some ideal A, B, C of S. We
have to show that A C P or B C P or C C P. Since A, B,C are ideals in S, by
Proposition [3.2.1] we have AUSAUAS, BUSBUBS, CUSCUCS are ideals in
Q(S). Take a(A) = AUSAUAS, o(B) = BUSBUBS, a(C)=CUSCUCS.

Then, a(A)a(B)

=(AUSAUAS)(BUSBUBS)
=ABUASBUABSUSABUSASBUSABSUASBUASSBUASBS
CABUASBUABSUSABUABUSABSUASBUABUAB
=ABUASBUABSUSABUSABS.......cccc...... (1)
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Similarly, a(C)a(A) C CAUCSAUCASUSCAUSCAS. ..o (2)
Now from (1) and (2) we have we have,

a(A)a(B)a(C)a(A)

C(ABUASBUABSUSABUSABS)(CAUCSAUCASUSCAUSCAS)

= ABCAUABCSAUJUABCAS JUABSCAUJABSCAS UASBCAUASBCSAU

ASBCASUASBSCAUASBSCASUABSCAUABSCSAUABSCASUABSSCAU

ABSSCASUSABCAUSABCSAUSABCASUSABSCAUSABSCASUSABSCAU

SABSCSAUSABSCASUSABSSCAUSABSSCAS

C ABCS U ABCSS U ABCSS U ABSCS U ABSCSS UASBCS UASBCSS U

ASBCSSUASBSCSUASBSCSSUABSCSUABSCSSUABSCSSUABSSCSU

ABSSCSSUSABCSUSABCSSUSABCSSUSABSCSUSABSCSSUSABSCSU

SABSCSSUSABSCSS JUSABSSCSUSABSSCSS

C ABCSUABCUABCUABCUABCSUASBCSUASBCUASBCUASBCU

ASBCSUABCUABCSUABCSUABCSUABCUSABCSUSABCUSABC U

SABC USABCSUSABCUSABCSUSABCS UJUSABCSUSABC

cC PSUPUPUPUPSUASBCSUASBCUPUPSUPSUPSUPUSPSU

SPUSPUSPUSPSUSPUSPSUSPSUSPSUSP

CPUPSUSPUASBCS U ASBC.

Hence, (a(A)a(B)a(C)a(4)) = (a(A)a(B)a(C)a(4)) (a(Aa(B)a(C)a(4))

C(PUPSUSPUASBCSUASBC)(PUPSUSPUASBCSUASBC)

Cc PPUPSPUPPSUPASBCSUPASBCUSPPUSPSPUSPPSUSPASBCSU

SPASBCUPSPUPSSPUPSPSUPSASBCSUPSASBCUASBCSPUASBCSSPU

ASBCSPSUASBCSASBCSUASBCSASBCUASBCPUASBCSPUASBCPSU

ASBCASBCSUASBCASBC

C PSUPSSUPSSUPSSSSSUPSSSSUSSPUSSSPUSSPSUSPSSSSSU

SPSSSSUSSPUSSSPUSSPSUPSSSSSSUPSSSSSUSSSSSPUSSSSSSPU

SSSSSPSUSSSSSASBCSUSSSSSASBCUSSSSPUSSSSSPUSSSSPSU

SSSSASBCS USSSSASBC
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CPSUSPUPUSASBCSUSASBC USABCSUSABC
CPSUSPUPUPSUPUSPSUSP
CPUSPUPS.

Since P is an ideal in S, we have P U SP U PS is an ideal in Q(S) and
since every ideal of Q(S) is prime, P U SP U PS is a prime ideal in Q(S). Also
a(A)a(B), a(C)a(A), a(A)a(B)a(C)a(A) are ideals in Q(S) since a(A), a(B) and
a(C) are ideals in Q(.S). So, <a(A)a(B)a(C’)a(A)>2 C PUSPU PS implies that
a(A)a(B)a(C)a(A) € PUSPUPS. Similarly, a(A)a(B)a(C)a(A) C PUSPUPS
implies that a(A)a(B) € PUSPUPS or a(C)a(A) € PUSPUPS. So, a(A)a(B) C
P U SP U PS implies that a(A) € PUSPUPS or o(B) C PUSPUPS and
a(C)a(A) € PUSPUPS implies that o(C') € PUSPUPS or a(A) C PUSPUPS.
If a(A) = AUSAUAS C PUSPUPS then A C PUSP U PS which implies
that AC Por AC SPor ACPS. If AC SP then A C SS = M, which is a
contradiction. Since A is an ideal of S then A C S, so A cannot be a subset of M.
Thus A ¢ SP. Similarly, A ¢ PS. Hence we get A C P. Again we can show that
B C P or C C P. Therefore, P is a prime ideal of S and hence every ideal of S is
prime ideal.

Conversely, let every ideal of S is prime ideal and S is a left zero ternary semi-
group. Let R be an ideal of Q(S) such that AB C R for ideals A, B of Q(S). Since
A and B are ideals in Q(S), by Proposition [3.2.2] we have ANS and BN S are ideals
in S. Now, (ANS)(BNS)(BNS)=ABBNABSNASBNASSNSBBNSBSN
SSBNSSS C ABQ(S)NABQ(S)NAQ(S)BNANQ(S)BBNQ(S)BR(S)NBNS
CABNABNABNANBNBNBNSCRN(ANB)NS C RNQ(S)NS =RNS.
Since R is an ideal in Q(S), by Proposition we have RN S is an ideal in S.
Thus, (ANS)(BNS)(BNS) C RNS implies that ANS C RNS or BNS C RN S ie.
ANSCRor BNS C R. Again since A and B are ideals of Q(S) either A, B C S
or A, B C M = S?. Then we have the following four cases:

Case 1 :Let ABCS. Then ANS=Aand BNS =B. Thus, ANS C Ror
BNS C R implies that A C Ror B C R.
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Case 2 :Let A,BC M = S?. Let a=m(ay,as) € A and b = m(by,by) € B where
ai,as, by, by € S. Since S is a left zero ternary semigroup a, = aszy for all x,y € S.
Take ay = agbiby. Thus a = m(ay,as) = m(ay, azbibs) = m(ay, az)m(by,by) €
AB C R = A C R. Again Take by = byajas. Then b = m(by, bsaras) =
m(by, bo)m(ay, az) = m(by, by)m(ay, azbiby) = m(by, ba)m(ay, as)m(by,by) € BAB C
BRCQ(S)RCR= B CR.

Case 8 :Let AC S,B C M = S?, By case 1 we can say that if A C S, then A C R.
Let a € A,b = m(b1,by) € B where by,by € S. Take by = bibea and a = aab;.
Then b = m(by,b2) = m(bibsa,bs) = m(by,bo)m(a,bs) = m(by, bo)m(aaby,by) =
m(by, ba)m(a, a)m(by, by) = m(by, by)aam(by,by) € BAAB C Q(S)Q(S)R C R —
B CR.

Case 4 : Let AC M = S? B CS. Let a=m(a;,as) € A and b € B where
aj,as € S. Take ag = agbb. Thus a = m(ay,as) = m(ay, azbb) = m(ay, az)m(b,b) =
m(ay,as)bb € ABB C RQ(S) C R = A C R and by case 1 we can say that if
B C S, then B C R.

In the above four cases we have either A C R or B C R. Hence R is a prime ideal

in Q(S) and so every ideal of Q(S) is prime ideal. O

Theorem 3.2.4. Let S be a ternary semigroup. Then every ideal of S is semiprime
if every ideal of Q(S) is semiprime. Moreover if S is a left zero ternary semigroup,

then every ideal of Q(S) is semiprime if every ideal of S is semiprime.

Proof. Suppose that every ideal of Q(S) is semiprime. Then for every ideal I of
Q(S), J* C I implies that J C I for any ideal J of Q(S). Let P be an ideal of S
such that A3 C P for an ideal A of S. We have to show that A C P. Since A is
an ideal in S, by Proposition , we have AUSAU AS is an ideal in Q(S). Take
a(A)=AUSAUAS.

Then a(A)? = (AUSAUAS)(AUSAU AS)

=AAUASAUAAS USAAUSASAUSAAS UASAUASSAUASAS
CAAUASSUASSUSSAUAAUSAASUSSAUAAUAA

43



SEMIGROUP COVER OF TERNARY SEMIGROUP

CAAUAUAUAUAAUSAASUAUAAUAA
=AUAAUSAAS.

Again a(A)* =a(A)?a(A)> C (AUAAUSAAS) (AU AAUSAAS)
= AAU AAA U ASAAS U AAA U AAAA U AASAAS U SAASA U SAASAA U
SAASSAAS
CAAUPUSSAASUPUSSAAUSASSAS USAASS U SASSAS USAAAAS
[Since, A3 C P]

CAAUPUAASUPUAAUAAUSAAUAAUSSAASS
CAAUPUAASUPUAAUAAUSAAUAAU AA
=PUAUAASUSAA.

Now a(A)® =a(A)ta(A)* C(PUAUAASUSAA(PUAUAASUSAA)
= PPUPAAUPAASUPSAAUAAPUAAAAU AAAAS UAASAAU AASP U
AASAAUAASAAS UAASSAAUSAAPUSAAAAUSAAAAS USAASAA
C SPUPSSUPSSSUPSSSUSSPUAAAS U AAASS U AASSAU SSSP U
AASSAUASSAAS UAAASUSSSPUSSAAAUSAAASS USASSAA
CSPUPUPSUPSUPUPSUPSSUAAAUSPUAAAUAAAS U AAAS U
SPUAAAUSPSSUSAAA
cSPUPUPSUPSUPUPSUPSSUPUSPUPUPSUPSUSPUPUSPUSP
=PUSPUPS.

Since P is an ideal in S, we have PUSPUPS is an ideal in Q(S) and since every
ideal of Q(S) is semiprime, PUSP U PS is a semiprime ideal in Q(S). Also a(A)?,
a(A)* are ideals in Q(S), since a(A) is an ideal in Q(S). So a(A)® =a(A)*a(A)* C
PUSPU PS implies that a(A)* C PUSPU PS. Similary, a(A)* =a(A)*«(A)? C
PUSPUPS implies that a(A)? C PUSPUPS and a(A)? =a(A)a(A) C PUSPUPS
implies that a(A) € PUSPUPS. Thus A C a(A) € PUSPUPS. Now
ACPUSPUPS impliesthat AC Por AC SPor AC PS. But A C SP implies
that A C §S = M, which is a contradiction. Since A is an ideal of S, so A C S.
Thus A cannot be a subset of S? = M. Thus A ¢ SP. Similary, A ¢ PS. Hence

we get that A C P and so P is a semiprime ideal of S. Therefore, every ideal of S
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is semiprime.

Conversely, suppose that S is a left zero ternary semigroup and every ideal of S is
a semiprime ideal of S. Let R be an ideal of Q(S) such that A> C R for an ideal A of
Q(S). Since A is an ideal in Q(S), by Proposition [3.2.2] we have AN S is an ideal in
S. Now (ANS)? = (ANS)(ANS)(ANS) = AAANAASNSAANSASNASANASSN
SSANSSS C A3NAAQ(S) N Q(S)AANQ(S)AQ(S) N AQ(S)AN AQ(S)Q(S) N
QSQIS)IANSCAANANSCANS. So A2CR= A3=A?AC RQ(S) C R.
Thus (AN S)* C RN S. Since R is an ideal in Q(S), by Proposition , we have
RN S is an ideal in S which is semiprime. Thus ANS C RNS C R. Again since A
is an ideal of Q(S), either A C S or A C 5%, Then we have the following two cases :
Case 1 :If AC S, then ANS=A. Thus ANS C R implies that A C R.
Case 2 : Let A C M = 5% Let a = m(ay,as) € A, where aj,a, € S. Since S
is a left zero ternary semigroup, as = agxy for all z,y € S. Thus a = m(ay,as) =
m(ay, asaias) = m(ay, az)m(ar,as) € AA= A% So A C A% Hence A* C R implies
that A C R.

Thus in the above two cases, we have A C R. Hence R is a semiprime ideal in

Q(S) and so every ideal of Q(S) is semiprime. O

Theorem 3.2.5. Let S be a ternary semigroup. Then every ideal of S is com-
pletely prime if every ideal of Q(S) is completely prime. Moreover if S is a left zero
ternary semigroup, then every ideal of Q(S) is completely prime if every ideal of S

15 completely prime.

Proof. First, suppose every ideal of Q(S5) is completely prime. Then for every ideal
I of Q(S), zy € I implies that x € I or y € I for any elements z, y of Q(S). Let P
be an ideal of S such that abc € P for a,b,¢c € S. We have to show that a € P or
b e Porceée P. Since P is an ideal in S, by Proposition [3.2.1) we have PUSPUPS
is an ideal in Q(S). Now, abc € P = abca € PS C PUSP U PS. By assumption,
PUSP U PS is a completely prime ideal in Q(S). Then, abca € P USP U PS for
ab,ca € SS = S? C Q(S) implies that ab € PUSP U PS or ca € PUSP U PS.
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Again ab € PU SP U PS for a,b € S C Q(S) implies that « € PU SP U PS
orb € PUSPUPS and ca € PUSP U PS for ¢c,a € S C Q(S) implies that
ce PUSPUPSorae PUSPUPS. Now,a € PUSPU PS implies that a € P
ora € SPoraec PS. Butae SP = a € SS = M, which is a contradiction.
Because we take a is an element of S. Thus a ¢ SP. Similarly, a ¢ PS. Hence
a € P. In the similar manner we can show that b € PUSPU PS implies that b € P
and c € PU SP U PS implies that ¢ € P. Therefore, P is a completely prime ideal
of S and hence every ideal of S is completely prime.

Conversely, let every ideal of S is completely prime ideal and S is a left zero
ternary semigroup. Let T be an ideal of Q(S) such that ab € T for a,b € Q(S5).
Since T is an ideal in Q(S), by Proposition we have T'N S is an ideal in .S. We
have ab € T. Then abb € TQ(S) C T. Now, a and b are elements of Q(S). Hence
either a,b € S or a,b € M = S?. Thus we have the following four cases:

Case 1 :1fa,b € S. Then abb € SSS C S. Hence abb € TN S. Since T'N S is a
completely prime ideal in S, then abb € TNS = a€TNSorbeTNSie aeT
orbeT.

Case 2 : If a,b e S* = M. Let a = m(ay, as),b =m(by,by) where a1, as,by,bs € S.
Then ab = m(ay,as)m(by,by) = m(ay,azbiby) = m(ay,as) = a. Hence ab €
T = a € T. Also, bab = m(by, by)m(ay, az)m(by, by) = m(by,beajaz)m(by, by) =
m(by, ba)m(by,be) = m(by, babibs) = m(by,by) = b. Since ab € T, then bab €
Q(S)T CT. Hence b e T.

Case 8 : If a € S;b € S* = M. Let b = m(by,by) where by,bo € S. Then
ab = am(by, by) = (R(bg,b1)a) = abiby = a. Thus ab € T implies that a € T'. Also
baab = m(by, by)aam(by,by) = m(by,by)m(a,a)m(by,by) = m(by, beaa)m(by,by) =
m(by, by)m(by, ba) = m(by, babiby) = m(by,by) = b. Since ab € T, then baab €
QUS)QST CIS)T CT. Thusbe T.

Case 4 : Ifa € S? = M,b € S. Let a = m(ay,as) where aj,a, € S. Then
abb = m(ay,az)bb = m(ay, a)m(b,b) = m(ay,azbb) = m(a,a3) = a. Thus,

abb € T = a € T. Also ab = m(ay,a2)b = (L(a1,a2)b) = ajasb € SSS C S
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andsoabeTNS = ajaxbeTNS. Thusa e TNSorasecT NSorbeTNS.
ie.aye€eToraseT orbeT.
So, in all four cases we have either a« € T or b € T. Hence, T is a completely

prime ideal in Q(S) and so every ideal of Q(S) is completely prime. O]

Corollary 3.2.6. Let S be a ternary semigroup. Then every left (resp. right) ideal
of S is completely prime if every left (resp. right) ideal of Q(S) is completely prime.
Moreover if S is a left zero ternary semigroup, then every left (resp. right) ideal of

Q(S) is completely prime if every left (resp. right) ideal of S is completely prime.

Theorem 3.2.7. Let S be a ternary semigroup. Then every ideal of S is completely
semiprime if every ideal of Q(S) is completely semiprime. Moreover if S is a left
zero ternary semigroup, then every ideal of Q(S) is completely semiprime if every

ideal of S is completely semiprime.

Proof. First, suppose every ideal of Q(S) is completely semiprime. Then for every
ideal I of Q(S), 2% € I implies = € I for any elements z of Q(S). Let P be an ideal
of S such that a®> € P for some a € S. We have to show that a € P. Since P is an
ideal in S, by Proposition we have P USP U PS is an ideal in Q(S). Now,
a® € P=a*e€ PSC PUSPUPS. By assumption PUSP U PS is a completely
semiprime ideal in Q(S). So, a* = (a*)*> € PUSP U PS for a®* € SS = 52 C Q(9)
implies that a*> € PUSPUPS. Again a*> € PUSPUPS for a € S C Q(S) implies
that a € PUSPUPS. Now, a € PUSP U PS implies that a € P or a € SP or
a€ PS. Buta e SP=—a €S5S = M, which is a contradiction. Because we take
a is an element of S. Thus a ¢ SP. Similarly a ¢ PS. Hence a € P. Therefore,
P is a completely semiprime ideal of S and hence every ideal of S is completely
semiprime.

Conversely, let every ideal of S is completely semiprime ideal and S is a left zero
ternary semigroup. Let R be an ideal of Q(S) such that a* € R for a € Q(S). Since
R is an ideal in Q(S), by Proposition we have RN S is an ideal in S. We have
a’ € R. Then a®> € RQ(S) C R. Now, a is an element of Q(S) either a € S or
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a € S? = M. Thus we have the following two cases:

Case 1 :Ifa € S, then a®> € SSS C S. Hence a®> € RN S. Since RN S is a
completely semiprime ideal in S, then a® € RN S =ac RN Sie. acR.

Case 2 : If a € S? = M, then a = m(ai,as) where aj,a; € S. Then a® =
m(ay,az)m(ay,as) = m(ay, asaias) = m(ay,as) = a. Thus, a®> € R = a € R. So,
in both cases we have a € R. Hence, R is a completely semiprime ideal in Q(S) and

so every ideal of Q(5) is completely semiprime. O

Corollary 3.2.8. Let S be a ternary semigroup. Then every left (resp. right) ideal
of S is completely semiprime if every left (resp. right) ideal of Q(S) is completely
semiprime. Moreover if S is a left zero ternary semigroup, then every left (resp.
right) ideal of Q(S) is completely semiprime if every left (resp. right) ideal of S is

completely semiprime.

Theorem 3.2.9. [77, Santiago] A ternary semigroup S is left (resp. right) reqular
if and only if every left (resp. right) ideal of S is completely semiprime.

Corollary 3.2.10. A semigroup S is left (resp. right) regular if and only if every
left (resp. right) ideal of S is completely semiprime.

Theorem 3.2.11. A ternary semigroup S is left (resp. right) reqular if the semi-
group Q(S) is left (resp. right) regular. Moreover if S is a left zero ternary semi-
group, then Q(S) is left (resp. right) reqular if the semigroup S is left (resp. right)

reqular.

Proof. Let Q(S) be a left regular semigroup. Then by Corollary every left
ideal of Q(S) is completely semiprime. Therefore, every left ideal of the ternary
semigroup S is completely semiprime, by Corollary [3.2.8] Thus by Theorem [3.2.9]
S is a left regular ternary semigroup.

Conversely, suppose that S is a left zero ternary semigroup and also a left regular
ternary semigroup. Then by Therorem |3.2.9] every left ideal of S is completely

semiprime. Since S' is left zero ternary semigroup and every left ideal is completely
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semiprime, so every left ideal of Q(S) is completely semiprime, by Corollary |3.2.10
and hence Q(S) is left regular, by Corollary |3.2.10]

Similarly, we can prove the result for right ideal. O]

Theorem 3.2.12. 29, Dutta] A ternary semigroup S intra-reqular if and only if

every ideal of S is completely semiprime ideal.

Corollary 3.2.13. A semigroup S is intra-regular if and only if every ideal of S is

completely semiprime.
Finally, we prove when @Q(S) will be intra-regular ternary semigroup.

Theorem 3.2.14. A ternary semigroup S is intra-reqular if the semigroup Q(S) is
intra-reqular. Moreover if S is a left zero ternary semigroup, then Q(S) is intra-

reqular if S is intra-regqular.

Proof. Let Q(S) be an intra-regular semigroup and I be an ideal in Q(S). Let
a’ € I for an element a of Q(S). Since Q(S) is intra-regular and a € Q(S),
there exist z,y € Q(S) such that a = za’y € Q(S)IQ(S) C I. Thus I is a
completely semiprime ideal in Q(.S). Since I is an arbitrary ideal, every ideal of Q(S)
is completely semiprime. By Theorem [3.2.7] every ideal of S completely semiprime.
Hence S is a intra-regular ternary semigroup, by Theorem [3.2.12]

Conversely, suppose that S is a left zero ternary semigroup and also an intra-
regular ternary semigroup. Since S is an intra-regular ternary semigroup by The-
orem every ideal of S is completely semiprime ideal. Therefore, every ideal
of Q(S) is completely semiprime, by Theorem [3.2.7] Since Q(S) is a semigroup and
every ideal of Q(S) is completely semiprime, by Corollary it follows that

Q(S) is an intra-regular semigroup. O

3.3 Bi-ideals and quasi-ideals of S and Q(S)

The aim of this section is to characterize a ternary semigroup S and the corre-

sponding semigroup cover Q(S) of the ternary semigroup S by their bi-ideals and
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quasi-ideals.

Proposition 3.3.1. Let S be a ternary semigroup. If B is a bi-ideal in S, then
BUBSB s a bi-ideal in S and BSSB is a bi-ideal in M. Moreover BUBSBUBSSB
is a bi-ideal in Q(S).

Proof. Let B be a bi-ideal in S, then BSBSB C B. Now BUBSB C S. So (BU
BSB)S(BUBSB)S(BUBSB) = (BSBUBSBSBUBSBSBUBSBSBSB)S(BU
BSB) C (BSBUBUBUBSB)S(BUBSB) = (BUBSB)S(BU BSB) C
(BUBSB) and (BSSB)M(BSSB) = (BSSB)SS(BSSB) = BSSBSSBSSB C
BSSB. Thus BU BSB is a bi-ideal in S and BSSB is a bi-ideal in M.

Now BUBSBUBSSBC SUSSSUSSSS CSUS?=SUM =Q(9).

Then (BUBSB U BSSB)Q(S)(BUBSBU BSSB)

= (BUBSBUBSSB)(SUS*)(BUBSBUBSSB)

= BSB U BSBSB U BSBSSB U BS?B U BS*?BSB U BS*?BSSB U BSBSB U
BSBSBSBUBSBSBSSBUBSBS*BUBSBS?*BSBUBSBS*BSSBUBSSBSBU
BSSBSBSBUBSSBSBSSBUBSSBS*BU BSSBS?BSBU BSSBS?BSSB
C BSBUBUBSSBUBSSBUBSSBUBSBUBUBSBUBSSBUBSSBU
BSSBUBSBUBSSBUBSSBUBSBUBSBUBSBUBSSB

C BUBSBUBSSB.

Hence BU BSB U BSSB is a bi-ideal in Q(S). O

Proposition 3.3.2. Let A be a non-empty subset of a ternary semigroup S. Then
ASAUASSA is a bi-ideal in Q(S).

Proof. Let A be a non-empty subset of a ternary semigroup S. Then ASAUASSA C
Q(S). Now we have (ASAU ASSA)Q(S)(ASAU ASSA) = (ASAU ASSA)(S U
S%)(ASAU ASSA) = ASASASAU ASASASSAU ASAS?*ASAU ASAS?*ASSA U
ASSASASAUASSASASSAUASSAS?ASAUASSAS?ASSA C ASAUASSAU
ASSAUASAUASSAUASAUASAUASSA=ASAUASSA.

Therefore, ASAU ASSA is a bi-ideal in Q(.5). O

50



SEMIGROUP COVER OF TERNARY SEMIGROUP

Proposition 3.3.3. If B is a bi-ideal of Q(S), then BN S is a bi-ideal of S.

Proof. Let B be a bi-ideal of Q(S). Then B is a subsemigroup Q(S) and BQ(S)B C
B= B(SUM)BC B= BSBUBMBC B=— BSBUBSSBC B.

Now, (BN S)S(BNS)S(BNS)

= (BSBNBSSNSSBNSSS)S(BNS)

= BSBSBNBSBSSNBSSSBNBSSSSNSSBSBNSSBSSNSSSSBNSSSSS
CBSBNBSSNBSBNBSSNSSBNSSBSSNSSBNS

CBNS.

Hence BN S is a bi-ideal of S. O

Theorem 3.3.4. Let S be a ternary semigroup. Then every bi-ideal of S is semiprime
if every bi-ideal of Q(S) is semiprime. Moreover if S is a left zero ternary semigroup,

then every bi-ideal of Q(S) is semiprime if every bi-ideal of S is semiprime.

Proof. Suppose that every bi-ideal of Q(S) is semiprime. Let B be a bi-ideal of S
such that X? C B for X C S. Since B is a bi-ideal of S, B3 is also a bi-ideal of S.
Thus B3UB3SB*UB3SSB? is a bi-ideal in Q(5), by Proposiotion [3.3.1] We have to
show that X C B. Now X® C B=— X° C B?. Then X'® = X"X? C S"B* C SB3.
Again X'¢ = X°X7 C B3S" C B3S and hence X3? = XX C B35SB3 C
B3UB3SB3UB3SSB3. Since every bi-ideal of Q(S) is semiprime, so B>U B3SB? U
B3SSB? is a semiprime bi-ideal of Q(S). Thus X3 C B*U B3SB?* U B35SB?
implies that X'¢ C B3 U B3SB3 U B3SSB3. Proceeding in this manner, we get
X C BBUB3SB?*U B3SSB3. But X C B3SSB? implies that X C §% = M,
which is a contradiction. Thus X C B3 U B3SB? which implies that X C B3
or X C B3SB3. Since B is a bi-ideal of S, B is a subsemigroup of S. Thus
X CB3CB. If XCB3SB? then X C B3SB3 C BSBSBB? C B® C B. Hence
we get X C B and so B is a semiprime bi-ideal of S. Therefore, every bi-ideal of S
is semiprime.

Conversely, suppose that S is a left zero ternary semigroup and every bi-ideal of

S is semiprime. Let P be a bi-ideal of Q(S) such that Y2 C P for Y C Q(S). Since
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P is a bi-ideal in Q(S), by Proposition [3.3.3] we have P N S is bi-ideal in S. Now
Y2 C P =Y =Y2YY?Y?Y? C PQ(S)PPP C PQ(S)PQ(S)P C PQ(S)P C P.
Thus Y? C P. Again since Y C Q(S) either Y C S or Y C M = S2 Then we have
the following two cases :
Case 1 :IfY C S, then Y2 C 8% C S. Thus, Y? C PN S. Since P is bi-ideal in
Q(S), by Proposition we have PN S is bi-ideal in .S which is semiprime. Then
Y? C PN S implies that Y2 C PN S and Y3 C PN S implies that Y € PN S.
Hence Y C P.
Case 2 : IfY C M = 5% Let y = m(y;,y2) € Y where y;,y» € S. Since S is
a left zero ternary semigroup ys = yoxz for all z,z € S. Thus y = m(y1,y2) =
m(yy, y2v192) = m(yy, yo)m(y1,92) € YY = Y2 Thus Y C Y2 Hence Y2 C P
implies Y C P.

Thus in the above two cases, we have Y C P. Hence P is a semiprime bi-ideal

of Q(S) and so every bi-ideal of Q(S) is semiprime. O
Similarly, we have the following result :

Theorem 3.3.5. Let S be a ternary semigroup. Then every bi-ideal of S is com-
pletely semiprime if every bi-ideal of Q(S) is completely semiprime. Moreover if S
is a left zero ternary semigroup, every bi-ideal of Q(S) is completely semiprime if

every bi-ideal of S is completely semiprime.

Proof. First, suppose that every bi-ideal of Q(S) is completely semiprime. Let B
be a bi-ideal of S such that a®> € B for a € S. We have to show that a € B.
Now, a® € B = a° € B? and B? is also bi-ideal in S. Since B is a bi-ideal
in S, by Proposition we have B3 U B3SB3 U B3SSB? is a bi-ideal in Q(S),
which is a completely semiprime bi-ideal in Q(S). Now, a!® = a%a” € B3S” and
a'® = a’a® € STB3. Thus ¢** = a'%'% € B3SSB3 C B3 U B3SB3 U B3SSB?
which implies that a!'® € B3 U B3SB3 U B3SSB3. In this similar manner we get
a € B3UB3SB3UB3SSB? which implies that « € B3 ora € B3SB? ora € B3SSB3.

But a € B3SSB? = a € SS = M, which is a contradiction. Because we take a is
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an element of S. Thus a ¢ B3SSB?. Hence a € B*U B3SB®> C BUBSBSBB? C
B U B? C B. Therefore, B is a completely semiprime bi-ideal of S and hence every
bi-ideal of S is completely semiprime.

Conversely, suppose that every bi-ideal of S’ is completely semiprime and S is left
zero ternary semigroup. Let R be a bi-ideal of Q(S) such that b* € R for b € Q(S).
Since R is a bi-ideal in Q(S), by Proposition RN S is a bi-ideal in S. Now,
b C RRQ(S)RR C R. Since b € Q(S), either b € S or b € M = S?. Then we have
two cases:

Case 1 :1fbc S, then v € S and so b € RN S. Since RN S is a completely
semiprime quasi-ideal in Q(S) we have b> € RN S. Again b € RNS = be RNS.
Hence b € R.

Case 2 : If b € M = S? then b = m(by,by) where b;,bo € S. Now b* =
m(by, ba)m(by,bas) = m(by,babiby). Since S is a left zero ternary semigroup, we
have byb1by = by. So b* = m(by, by) = b. Thus b> € R = b € R. Thus in both cases
we have b € R. Therefore, R is a completely semiprime bi-ideal of Q(S) and hence

every bi-ideal of Q(.S) is completely semiprime. ]

Theorem 3.3.6. (29, Dutta] A ternary semigroup S is completely reqular if and
only if every bi-ideal of S is a completely semiprime bi-ideal of S.

Corollary 3.3.7. A semigroup S is completely reqular if and only if every bi-ideal

of S is a completely semiprime bi-ideal of .S.

Theorem 3.3.8. A ternary semigroup S is completely regular if Q(S) is completely
reqular. Moreover if S is a left zero ternary semigroup, then Q(S) is completely

reqular if S is completely regular.

Proof. Suppose that Q(S) is a completely regular semigroup. Then by Corollary
, every bi-ideal of Q(S) is completely semiprime. Therefore, every bi-ideal of
the ternary semigroup S is completely semiprime, by Theorem Thus S is
completely regular ternary semigroup, by Theorem [3.3.6]
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Conversely, suppose that S is a left zero ternary semigroup and also a completely
regular ternary semigroup. Then by Therorem [3.3.6| every bi-ideal of S is completely
semiprime. Since S is left zero ternary semigroup and every bi-ideal is completely
semiprime, so every bi-ideal of Q(S) is completely semiprime, by Theorem and
hence Q(S) is completely regular, by Corollary ]

Theorem 3.3.9. [/4, Kar] Let S be a ternary semigroup. Then S has no proper
bi-ideal if and only if S is a ternary group.

Corollary 3.3.10. Let S be a semigroup. Then S has no proper bi-ideal if and only
if S is a group.

Theorem 3.3.11. Let S be a ternary semigroup. Then S has no proper bi-ideal if
and only if Q(S) has no proper bi-ideal.

Proof. Suppose that S has no proper bi-ideal. For any bi-ideal B in Q(S), BN S is
a bi-ideal in S by Proposition [3.3.3, Then B NS = S which implies that S C B.
Again since B is a bi-ideal in Q(S), so BSB is also a bi-ideal in Q(S) and hence
BSBN S is a bi-ideal in S. Thus BSB NS = S which implies that S C BSB. So
S? C BSBB C BSQ(S)B=BS(SUM)B = BS(SUS?*)B=BSSBUBSSSB C
BSSBU BSB C B(S?US)B = B(M US)B = BQ(S)B C B. Hence Q(S) =
SUM = SUS? C B. Therefore, Q(S) has no proper bi-ideal.

For the converse part, let P be a bi-ideal in S. Then by Proposition (3.3.1
P U PSP UPSSP is a bi-ideal in Q(S). Let P, = PU PSP U PSSP. Since
(Q)(S) has no proper bi-ideal, we have P, = Q(S). Since P is a bi-ideal in S, PSP
is also a bi-ideal in S. Then PSP U (PSP)S(PSP) U (PSP)SS(PSP) is a bi-
ideal in Q(S). Let P, = PSP U PSPSPSP U PSPSSPSP. Since Q(S) has no
proper bi-ideal, we have P, = Q(S). Now Q(S)NS = (SUM)NS = S. But
QS)NS =~ NS =(PUPSPUPSSP)NS = PUPSP and Q(S)NS =
P,NS = (PSPUPSPSPSPUPSPSSPSP)NS = PSPUPSPSPSP. Thus
PUPSP=PSPUPSPSPSP C PSPUPSP = PSP. Hence P C PSP and so
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PSP C PS(PSP)=PSPSP C P. Thus S = PUPSP C PUP = P. Therefore,
S does not have any proper bi-ideal. O]

Theorem 3.3.12. A ternary semigroup S is a ternary group if and only if Q(S) is

a group.

Proof. Let S be a ternary group. Then S has no proper bi-ideal. By Theorem
B-3.11] Q(S) has no proper bi-ideal. Since Q(S) is a semigroup, by Corollary [3.3.10]
we have Q(95) is a group.

For the converse part, let Q(S) be a group. Then Q(S) has no proper bi-ideal
which implies that S has no proper bi-ideal. By Theorem [3.3.9] it follows that S is

a ternary group. O

Proposition 3.3.13. Let S be a ternary semigroup and Q) be a quasi-ideal of S.
Then SSQ U QSS U SQS U SSQSS is also a quasi-ideal of S and (QS N SQ) U
SQSSUSSQS is a quasi-ideal of M and QU (QSNSQ)USSQUERSSUSQSS U
SSQSUSQSUSSQSS is a quasi-ideal of Q(S).

Proof. Let Q C S be a quasi-ideal in a ternary semigroup S. Then Q' = QU SSQU
QSSUSQSUSSQSS C S.
Now, SSQ'NSQ'SNQ'SS
=95(QUSSQUESSUSQRSUSSQYSS)NS(QUSSQUERSSUSQYSUSSQSS)SN
(QUSSQUQESSUSQYSUSSQSS)SS
C SS(RUSSQUERSSUSRSUSSQSS)
CSSQUSSSSQUSSQYSSUSSSQSUSSSSQSS
CSSQUSSRSSUSQYSUSSQSS
CQUSSQUQESSUSYSUSSQSS =Q'.
Thus Q' = QU SSQUQSSUSQSUSSQSS is a quasi-ideal in S.

Let K = (QSNSQ)USQRSSUSSQS C M. Thus we have,
KM = ((QSNSQ)USQSSUSSQS)M = (QSMNSQM)USQSSMUSSQSM) =
((QSSSNSQYSS)USYRSSSSUSSRSSS) C ((QSNSRSS)USQRSSUSSQS) C
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QS USQSS U SSQS.
Also MK = M((QS N SQ) U SQSS U SSQS) = (MQS N MSQ) U MSQSS U
MSSQS) = ((SSQSNSSSQ)USSSQRSSUSSSSQS) C ((SSQSNSQ)USQSSU
SSQS) C SQ U SQSS U SSQS.

Thus we have, KM N MK
C (QSUSQSS U SSQS) N (SQUSQSS U SSQS)
— (SQSSUSSQS) U (QS N SQ)
— (QSNSQ)USQSS U SSQS
K

Therefore, K = (QS N SQ)USQSSUSSQS is a quasi-ideal in M.
Now (Q'UK) C SUM = Q(S). Thus we have

(Q UK)Q(S)

= (QU(QSN SQ)USSQUQRSSUSQSSUSSQS USQS U SSQSS)(M U S)

= (QM UQS U (QSM N SQM) U (QSS N SQS) U SSQM U SSQS UQSSM U
QSSS USQSSM U SQSSSUSSQSM U SSQSS U SQSM U SQSS U
SSQSSM U SSQSSS)

= (QSSUQS U (QSSS N SQSS) U(QSSNSQS)USSQSSUSSQS UQSSSS
UQSSS USQSSSSUSQSSS U SSQSSS USSQSS USQSSS U SQSS
U S5QSSSS U SSQSSS)

C (QSSUQSU(QSNSQSS)U(QSS N SQS)USSQSS U SSQS U SQSS U SQS)

= (SSQSSUSQSSUSSQSUSQS) U ((QSSUQSU(QS N SQSS) U(QSSNSQS))

C (SSQSSUSQSSUSSQSUSQS) U ((QSSUQRSUQS U(QSSNSQS))

— (SSQSSUSQSSUSSQSUSQS) U ((QSSUQSU(QSSN SQS))
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Also we have,

Q(9)(Q UK)

= (MUS)QU(QSNSQ)USSQUQRSSUSQSSUSSQSUSQS U SSQSS)

= (MQUSQU (MQSNMSQ)U (SQSNSSQ)UMSSQ U SSSQ U MQSSU
SQSSUMSQSSUSSQSS U MSSQS U SSSQS UMSQS U SSQSU
MSSQSS U SSSQSS)

= (S5QUSQU (S5QS N SSSQ) U (SQSNSSQ)USSSSQUSSSQ U SSQSS
USERSSUSSSQSSUSSQSSUSSSSQSUSSSQSUSSSQSUSSQS
USSSSQRSSUSSSQSS)

C (88Q U SQ U (SSQS N SQ) U (SQS N SSQ)USSQSS USQSS U SSQS U SQS)

= (55QS55 U SQSSUSSQS U SQS) U (SSQUSQ U (SSQS N SQ) U (SQS N SSQ))

C (88QSS U SQSSUSSQS U SQS) U (SSQ U SQ)

Now

(Q UK)Q(S)NQ(S)(Q U K)
— ((SSQSSUSQSS USSQS USQS) U((QSSUQS U(QSS N SQS)))N
((SSQSS USQSS USSQS USQS) U (SSQU SQ))
— (SSQSS U SQSS USSQS USQS) U (QSS N SSQ) U (QSS N SQ) U (QS N SSQ)
U(QSNSQ)U(QSSNSQSNSSQ) U (QSSN SQS N SQ)
C (SSQSS USQSS USSQS USQS) UQSSUQSSUSSQU(QSNSQ)UQUQSS
= (SSQSS USQSS USSQS USQS) UQSSUQUSSQ U (QS N SQ)
—QU(QSNSQ)USSQUQSSUSQSS U SSQS U SQS U SSQSS
=Q UK.

Therefore, Q U (QS N SQ) U SSQ U QSS U SQSS U SSQS U SQS U SSQSS is a
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quasi-ideal in Q(.5). O

Proposition 3.3.14. Let A be a non-empty subset of a ternary semigroup S. Then
(1) SAUSSA is a quasi-ideal of Q(S),
(17) ASU ASS is a quasi-ideal of Q(S),
(7i1) SASUSSASSUSASSUSSAS is a quasi-ideal of Q(S5).

Proof. (i) Let A be a non-empty subset of a ternary semigroup S. Then SAUSSA C
Q(S). Now SS(SAUSSA)NS(SAUSSA)SN(SAUSSA)SS C SS(SAUSSA) =
SSSAUSSSSA C SAUSSA. Therefore, SAUSSA is a quasi-ideal in Q(S5).

Similarly, we can prove (i7) and (ii7). O

Proposition 3.3.15. Let K be a quasi-ideal of Q(S). Then K NS is a quasi-ideal
of S.

Proof. Let K be a quasi-ideal in Q(S), then K NS is a non-empty subset in .S and
KQS)NQWS)K CK = KMUS ) N(MUS)K CK = (KMUKS)N(MK U
SK)C K = (KSSUKS)N(SSKUSK) C K = (KSSNSSK)U (KSSN
SKYU(KSNSSK)U(KSNSK)C K. Thus (KSSNSSK) C K. Now in S,

SS(KNS)NS(KNS)SN(KNS)SS

= SSKNSSSNSKSNSSSNKSSNSSS
CSSKNSNSKSNSNKSSN S

= SSKNSKSNKSSNS

C (SSKNKSS)NS

CKNnS

Hence K NS is a quasi-ideal in S. O]

Theorem 3.3.16. Let S be a ternary semigroup. Then every quasi-ideal of S is

semiprime if every quasi-ideal of Q(S) is semiprime. Moreover if S is a left zero
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ternary semigroup, then every quasi-ideal of Q(S) is semiprime if every quasi-ideal

of S is semiprime.

Proof. First suppose that every quasi-ideal of Q(S) is semiprime. Let K be a quasi-
ideal of S such that A% C K for any non-empty subset A of S. We have to show that
ACK. Now A3C K = A*C KS C KSUKSS. Since K C S, by Proposition
3.3.14) we have KS U KSS, SK USSK and SKSU SSKSSUSKSSUSSKS
are quasi-ideals in Q(S). By assumption, KS U KSS is a semiprime quasi-ideal
of Q(S). So A* = (4?)2 C KSUKSS for A2 C SS = S8* C Q(S) implies that
A? C KSUKSS. Again A2 C KSUKSS for A C S C Q(S) implies that
AC KSUKSS. Now A C KSUKSS implies that A C KS or A C KSS.
But A C KS — A C 5.8 = M, which contradicts the fact that A is a subset
of S. So A Q KS. Thus A C KSS. Similarly, we can show that A C SSK and
ACSKSUSSKSS. Hence A C KSSNSSKN(SKSUSSKSS) C K. Therefore,
K is semiprime and hence every quasi-ideal of S is semiprime.

Conversely, suppose that S is a left zero ternary semigroup and every quasi-ideal
of S is semiprime. Let R be quasi-ideal of Q(S) such that B> C R for B C Q(S).
Since R is a quasi-ideal in Q(S), RN S is a quasi-ideal in S by Proposition .
Now B? C RQ(S)NQ(S)R C R. We take B is a non-empty subset of Q(S) = SUM.
Then either B C S or B C M = 5?. Therefore, we have the following two cases :
Case 1 :If BC S, then B3 C S and so B> C RN S. Since R is a semiprime
quasi-ideal in Q(.S), we have B C RN S. Hence B C R.
Case 2: Let B C M = S% Let b = m(by,by) € B, where by,by € S. Now b =
m(by, by)m(by,by) = m(by, babibs) = m(by,bs) = b € B. Then B2C R = B C R.
Thus in both cases we have B C R. Therefore, R is a semiprime quasi-ideal of Q(S)

and hence every quasi-ideal of Q(S) is semiprime. O
Similarly, we have the following result :

Theorem 3.3.17. Let S be a ternary semigroup. Then every quasi-ideal of S is

completely semiprime if every quasi-ideal of Q(S) is completely semiprime. Moreover
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if S is a left zero ternary semigroup, then every quasi-ideal of Q(S) is completely

semiprime if every quasi-ideal of S is completely semiprime.

Proof. First, suppose every quasi-ideal of Q(S) is completely semiprime. Let K be
a quasi-ideal of S such that a® € K for a € S. We have to show that a € K. Now,
a?c K= a*c KS C KSUKSS. Since K is a quasi-ideal in S, by Proposition
3.3.14 we have KS U KSS, SK USSK and SKSUSSKSSUSSKSUSKSS is
a quasi-ideal in Q(S). Then KS U KSS is a completely semiprime quasi-ideal in
Q(S). So, a* = (a?)*> € KSU KSS for a* € 5.5 = 5% C Q(S) implies that a® €
KSUKSS. Againa*> € KSUKSS fora € S C Q(S) implies a € KSUKSS. Now,
a € KSUKSS implies that a € KS ora € KSS. Butae KS = a€ 5.5 =M,
which is a contradiction. Because we take a is an element of S. So a ¢ K.S. Thus
a € KSS. Similarly, a € SSK and a € SKSUSSKSS. Hence a € K. Therefore,
K is a completely semiprime quasi-ideal of S and hence every quasi-ideal of S is
completely semiprime.

Conversely, let every quasi-ideal of S is completely semiprime and S is a left
zero ternary semigroup. Let R be quasi-ideal of Q(S) such that v* € R for any
element b of Q(S). Since R is a quasi-ideal in Q(S5), by Proposition RN S is
a quasi-ideal in S. Now, b® € RQ(S)NQ(S)R C R. Since b € Q(S), either b € S or
b€ M = S? Then we have two cases:

Case 1 :Ifbe S, Thenb® € S and so b®> € RNS. Since RN S is a completely
semiprime quasi-ideal in S we have b € RN S. Hence b € R.

Case 2 : If b € M = S?. Let b = m(by,by) where by,b, € S. Now we have,
b3 = m(by,by)m(by, bo)m(by, by) = m(by, babibe)m(by,bo) = m(by, ba)m(by,by) =
m(by, bab1by) = m(by,by) = b. Hence we get, b = b € R. Thus in both cases
we have b € R. Therefore R is a completely semiprime quasi-ideal of Q(S) and

hence every quasi-ideal of Q(S) is completely semiprime. [

Theorem 3.3.18. Let S be a ternary semigroup. Then S has no proper quasi-ideal
if and only if Q(S) has no proper quasi-ideal.
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Proof. Suppose S has no proper quasi-ideal. Let K be a quasi-ideal in Q(S). Then
by Proposition [3.3.15 we have KNS is a quasi-ideal in S. Thus KNS =S. So S C K
and S? C KK C KQ(S). Also S? C KK C Q(S)K. Thus S2 C KQ(S)NQ(S)K C
K. Hence SUS? = SUM C K ie. Q(S) C K. Therefore, Q(S) has no proper
quasi-ideal.

Conversely, let Q(S) has no proper quasi-ideal. Let @) be a quasi-ideal in S.
Then @ C S. By Lemma [3.3.14 we have SQ U SSQ, QSUQSS, SQSUSSQSS U
SQSSUSSQS are all quasi-ideals in Q(5). Let Q; = SQUSSQ, Q2 = QSUQSS,
Qs = SQS U SSQSS U SQSS U SSQS. Since Q(S) has no proper quasi-ideal,
Q1 = Q(9), Q2 = Q(S5), Q3 = Q(S). Now Q(S)NS =(SUM)NS =S. But
Q) NS =0:NS =(SQUSSQY)NS = 5S5Q. Again Q(S)NS =@NS =
(QSURSS) NS =SS and Q(S) NS =QsNS = (SRSUSSQYSS U SQSS U
SSQS)NS =85QSUSSQSS. Then S = SSQ = QSS = (SQSUSSQSS). Hence
S=85QNQERSSN(SQSUSSQRSS) C Q. Thus S has no proper quasi-ideal.  [J

3.4 Isomorphism problem of S and Q(5)

Theorem 3.4.1. Let S; and Sy be two ternary semigroups. If S; = Sy, then
Q(S1) = Q(52).

Proof. Let Sy and S be two ternary semigroups such that S; = S;. Then there exists
an ternary isomorphism f : S} — Ss. Let us define a mapping ¢ : Q(S7) — Q(S2)

f(a) ifa €5
flay)f(as) if @ =mi(a1,as) € My or a = ajay € S,%

First we have to show that the mapping is well defined. For this, let a = b
for a,b € Q(S1). If a,b € Sy, then a = b = f(a) = f(b) = ¢(a) = ¢(b). If
a = my(ay,as),b = mi(b,by) € Si?, where ay,as,by,b, € S;. Then a = b —

mi(ay, az) = my(by,be). This implies that my(ay, az)e = mq(by, be)e for all ¢ € S
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i.e. ajasc = bibyc for all ¢ € Sy. Let ¢ € S;. Then we have,

aiascy = bibycy

—> f(ajascr) = f(bybacy)

— fla1) f(az)f(cr) = f(b1) f(b2) f (1)

— ma(f(ar), f(a2))f(c1) = ma(f(br), f(b2))f (1)

So, ma(f(ar), f(az))f(c) = ma(f(by), f(b2))f(c) for all ¢ € S;. Since f is onto
F(S1) = So. Thus, ma(f(ar), f(as))d = ma(f(b1), f(bs))d for all d € Sy. Similarly,
dma(f(a1), flaz)) = dma(f(b1), f(b2)) for all d € S;. Hence ma(f(ar), f(az)) =
ma(f(b1), f(b2)) = flar)f(az) = f(b1)f(b2) = ¢(a) = ¢(b). Thus ¢ is a well
defined mapping.

Now for any a,b € Q(S1), we have to show that ¢(ab) = ¢(a)p(b).
Case 1 : Let a,b € S;. Then ab € S15; C S1%. So ¢(ab) = f(a)f(b) = d(a)o(b).
Case 2 : Let a,b € S, Let a = my(ay,ay), b = my(by, by), where ay, ag, by, by € Sy.
Then ab € S1%5;> C S1%. So ¢(ab) = d(my(a, az)my(by, b)) = ¢(mi(ar, azbiby)) =
¢(arazbibs) = fla1) f(azbibs) = f(ar)f(az)f(br)f(b2) = d(a)o(b).
Case 3 : Let a € Sy and b € S1% Let b = my(by,by), where by, by € S;. Then
ab € 8151 € S;. So ¢(ab) = f(ab) = flami(by, b)) = f(R(bz,b1)a) = flabiby) =
f(a) f(b1) f(b2) = p(a)p(b).
Case 4 : Let a € S1%2and b € S;. Let a = my(ay,as), where a;,a; € S;. Then
ab € S12S; C Si. So ¢(ab) = f(ab) = f(my(ay,a2)b) = f(L(ay,a)b) = f(arasd) =
flar)f(a2) f(b) = ¢(a)d(b).

It remains to show that ¢ is a bijective mapping. Let ¢(a) = ¢(b) for a,b € Q(51).
If a,b € Sy, then ¢(a) = f(a) and ¢(b) = f(b). Thus ¢(a) = ¢(b) = f(a) =
f(b) = a = b (since f is one-one). Let a,b € S;>. Let a = my(ay,az), b =
mi(by,bs), where ay,as, by, by € S;. Now we have ¢(a) = ¢(b) = ¢d(my(ai,az)) =
d(mi(br, b2)) = d(araz) = ¢(bibz) = f(ar) f(az) = f(b1)f(b2) = ma2(f(ar), f(az))
= ma(f(b1), f(b2)) = ma(f(a1), f(az))d = ma(f(b1), f(b2))d for all d € S,. Since
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f is onto, for all d € Sy, there exists ¢ € S such that f(¢) = d. Thus we
have ma(f(a1), f(az2))f(c) = ma(f(b1), f(b2))f(c) for all ¢ € S; which implies that
flar)f(ag)f(c) = f(b1)f(ba)f(c) for all ¢ € S;. Since f is a ternary isomorphism,
flay)f(az)f(c) = f(b1)f(b2)f(c) = f(arasc) = f(bibec) = arasc = bibse =
my(ay, az)e = mqy(by, by)c for all ¢ € Sy. Similarly, cmy(ay, az) = emq(by, by) for all
c € Si. Hence my(ay,as) = my(b1,by) which implies that @ = b. Let a € Sy, b € 512
Let b = my(by,by), where by,by € S;. Then a # b. Now ¢(a) = f(a) € Sy and
o(b) = f(m(by, b)) = f(by)f(by) € So* = My. Thus ¢(a) # ¢(b). Therefore, ¢ is
one-one.

Now let b € Q(S3) = Sy U M,. For any y € Sy, there exists z € S; such that
f(z) =y. If b € Sy, then there exists a € Sy such that f(a) = bie. ¢(a) = b for
some a € S; C Q(S1). Let b € My = Sy, Then b = my(b1, by), where by, by € Ss.
Now my (b1, by) = biby = f(a1)f(as) = ¢(a) for some a = ayay € S1? = M; C Q(S)).
Hence ¢ is onto. Therefore, ¢ : Q(S;) — Q(S2) is an isomorphism. O

Remark 3.4.2. Let Sy and Sy be two ternary semigroups such that Q(S1) = Q(Ss).

Then S = Sy is not necessarily true, in general.
We give the following example.

Example 3.4.3. Let Sy = {1,—1,i,—i} be a semigroup. A semigroup is always a
ternary semigroup. Thus Sy is also a ternary semigroup. In that case, Si* = S;.
Then Q(Sy) = S1US,? = {1, —1,i,—i}. Let us take another ternary semigroup Sy =
{i,—i}. Thus Sy* = {m(i,i), (—i,—1), (i, —i),m(—4,i)}. Since m(i,i) = m(—i, —i)
and m(i,—i) = m(—i,i) then Q(S2) = {i,—i,m(i,i),m(i,—i)}. Let us define a
mapping ¢ from Q(51) to Q(S2) by ¥(1) = m(i,—i), ¥(=1) = m(i,i), ¥(i) = i,
Y(—i) = —i. Hence ¢ : Q(S1) — Q(S2) is an isomorphism. But there is no

bijection from Sy to Sy and so Sy is not isomorphic to Ss.

However we have the following results, in particular :
We find some class of ternary semigroups in which the above result holds. For

this, we first need the following lemma :
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Lemma 3.4.4. If f is a homomorphism from Q(S1) to Q(Ss) then the restriction
of f on Sy is also a ternary homomorphism from Sy to Q(Ss), considering Q(Sz2) as

ternary semigroup.

Proof. Let f be a homomorphism from Q(S;) to Q(S2) and f* be the restriction
of f on S;. Then for all z,y € Q(S1) we have f(zy) = f(z)f(y). Let a,b,c € Si.
Since S C Q(S;) we have a,b,c € Q(S1). Now in Q(S51), abc = a(bc) = am(b, c).
Thus f(abc) = f(am(b,c)) = f(a)f(m(b,c)) = f(a)f(be) = f(a)f(b)f(c). Hence
flabe) = f(a)f(b)f(c) for all a,b,c € S;. Thus f*: S — Q(S:) is a ternary

homomorphism. O

Theorem 3.4.5. Let S; and Sy be two ternary semigroups such that Sy is a left
zero ternary semigroup. If Q(S1) = Q(S3) then S; = Ss.

Proof. Let f be an isomorphism from Q(S7) to @Q(S2). Then by Lemma fis
a homomorphism from S; to Q(S2) and f is a bijection from Q(S;) to Q(S2). We
have to show that f(S1) = S2. Now S; C Q(S1). So f(S1) € Q(S2) = S2 U M.
Then f(S;) C S, US,% Let a,b € Sy such that f(a) € Sy and f(b) € Sy, Since
Sy is left zero ternary semigroup, aab = a. Then f(aab) = f(a) € Sy. Also by the
above Lemma we have, f(aab) = f(a)f(a)f(b) € $25555* C S,*. Thus for the
element aab € S; we get, f(aab) € Sy N Sy?, which is a contradiction. Therefore,
either f(S;) C Sy or f(S;) C S92

Let f(S;) C Sy%. Let a,b € Si. Then f(a), f(b) € Sy*. Thus f(ab) = f(a)f(b) €
Sy%5y% C Sy, Hence f(m(a,b)) € So? for all a,b € S;. Thus f(M;) = f(S,%) C Sy?
and so f(Q(S1)) € Sp*. Thus f(Q(S1)) C Sp° implies that for any d € S, there
is no element ¢ € Q(S7) such that f(c) = d, which contradicts the fact that f is a
bijection from Q(S;) to Q(Sz). So our assumption is is not true. Hence f(S;) € So°.
Therefore, we have f(S;) C Ss.

Again since f : Q(S1) — Q(S) is an isomorphism. Then f=' : Q(S;) —
Q(S)) is also an isomorphism. Thus f~!(Sy) € S;. Hence f(f7'(S2)) C f(S1) C
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Sy. Therefore, f(S;) = Sa. Hence the restriction of f on S; i.e. f* is a ternary

isomorphism from S; to Ss. O

Theorem 3.4.6. Let S be a ternary semilattice and Sy be a ternary semigroup such

that Q(Sl) = Q(SQ) Then Sl = 52.

Proof. Let f be an isomorphism from Q(S;) to Q(S2). Then f* the restriction of f
on S is a ternary homomorphism from S; to Q(S3) by Lemma . We have to
show that f(S;) = Sy. Let a,b € S; such that f(a) € S5 and f(b) € S,. Since S;
is a ternary semilattice we have a?b = ab®>. Thus f(a?b) = f(ab®). Now f(a®b) =
fla)f(a)f(b) € S3%5,%S, C Sy and f(ab?) = f(a)f(b)f(b) € 552525, C Sy%. Thus
f(a?b) # f(ab*) which implies that a?b # ab®. This contradicts our assumption
that S is a ternary semilattice. Therefore, either f(S;) C S or f(S;) C S2. By
previous Theorem we can say that f(S;) € So®. Then f(S;) C S. Now
proceeding in the similar way we can say that f(S;) = Sy and hence f* is a ternary

isomorphism from S; to Ss. O

Theorem 3.4.7. Let Sy be a ternary rectangular band and Sy be a ternary semi-

group. Then Q(S1) = Q(S2) implies that S; = Ss.

Proof. Suppose that f : Q(S1) — Q(S2) be an isomorphism. Then by Lemma
B-4.4 we have f* = fls, is a ternary homomorphism from S; to Q(Ss). Since S is
a ternary rectangular band then a = aba for all a,b € S;. Let a,b € Sy such that
f(a) € Sy and f(b) € So®. Then f(aba) = f(a) € Sy. Also by the Lemma [3.4.4]
faba) = f(a)f(b)f(a) € S555%Sy C So*. Hence f(aba) = f(a) € Sy N Sy*, which
is a contradiction. Therefore, either f(S;) C Sy or f(S;) C Sy, Proceeding in the
same manner as Theoremwe can say that f(S7) = Sy and so f* the restriction

of f on S is a ternary isomorphism from S; to Ss. ]
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3.5 Lattice structures in ordered ternary semi-
group S and its cover Q(S)

Let S be a ternary semigroup and ‘<’ is a partial order on S. Then we can define

a partial order ‘<p’ on Q(S) = S U M as follows:

For all a,b € S, a <g b if and only if a < b’,

For all a,b € M, a <q b if and only if ajasx < bibex and xzajas < xbiby Vo € S.

Let m(ay,as) € M = S%. Then we have ayasw, vaja; € S for all z € S. Now
a1asr < ayasr and zajas < zajay for all x € S. Hence m(a,as) <o m(ai,as).
Thus <g is reflexive.

Let m(ay,az), m(by, bs) € M = S? such that m(ay, az) <g m(by,bs) and m(by, by)
<g m(ai, az). Now m(ay, az) <g m(b1,bs) = ajasx < bibex and xajas < xbiby for
all x € S and m(by,b2) <g m(a1,as) = bibex < ajasx and xbiby < xajasy for all
x € S. Since < is anti-symmetric we have ajasx = biboxr and xaias = xbiby for all
x € S. Thus we have m(ay, as)x = ajasx = biboxr = m(by, be)x and zm(ay,as) =
zrayas = xbiby = xm(by, by) which implies that m(ay, az) = m(by, b2). Therefore <g
is anti-symmetric.

Let m(aq, as), m(b1,by),m(ci,c2) € M = S? such that m(ay,as) <g m(by,bs)
and m(by, ba) <o m(ci,c2). Now m(ay,az) <g m(bi,by) = ajasx < bibyx and
zrajas < xbiby for all x € S and m(by,be) <g m(ci,c2) = bibox < cieox and
xb1by < xcico for all z € S. Thus we have ajasx < ¢icox and xajas < xejcy for all
x € S( Since < is transitive ). Hence m(ay, az) <g m(cq, c2) and so <g is transitive.
Therefore < is a partial order relation in M = S2. By definition <gp is also a

partial order relation in S. Hence < is a partial order relation in S U M = Q(5).

Theorem 3.5.1. A ternary semigroup S is an ordered ternary semigroup with re-

spect to < if and only if Q(S) is an ordered semigroup with respect to <g.

Proof. First suppose that S is an ordered ternary semigroup with respect to <.

66



SEMIGROUP COVER OF TERNARY SEMIGROUP

Then for a,b € S, a < b = zya < xyb, xay < xby, ary < bxy for all x,y € S.
Let a,b € Q(S) such that a <g b. Then we have to show that for any two elements
a,b € Q(S), a <g b imples that ax <g br and za <g zb for all x € Q(S). Then we
have the following two cases:
Case 1: Let a,b € S such that a <g b. Then a <g b & a < b. Then for all
x,y € S we have xya < xyb, xay < xby, ary < bry. Also a < b = yxa < yxb,
yar < ybx, ayr < byx. Thus zay < xby and yra < yab for all x,y € § =
m(z,a) <g m(z,b) = za <g «xb. Similarly ary < bry and yar < ybx for all
r,y € S = m(a,x) <g m(b,z) = ax <g bx. Hence a <g b = ax <g bx and
zra <g xbforall z € S.

Again a < b = axy < by = axy <g bry = am(z,y) <g bm(x,y) and
a <b= zya < zya = zya <g rya = m(z,y)a <g m(z,y)b. Hence a <g
b= am(z,y) <g bm(z,y) and m(z,y)a <g m(z,y)b for all m(x,y) € S* = M.
Case 2: Let a,b € M = S? such that a <g b. Let a = m(a1,a2), b = m(by,bs)
where a1,a2,b1,00 € S. Now m(ay,a2) <g m(b1,b2) = ara2z < bibyz for all
z €S = ajasz <g bibez for all z € S( Since ajasz, bibyz € §) = m(ay,a2)z <g
m(by, be)z for all z € S. Similarly, m(ay, az) <g m(b1,b2) = zajas < zbyby for all
z € S = zajay <g zbiby for all z € S( Since zajag, 2b1by € ) = zm(a1,a2) <g
zm(by, by) for all z € S. Hence for all a,b € M, a <g b= za <g zb and az < bz
for all z € S.

Againforall z,y, 2z € S, ajasz < bibyz = ryajasz < xybibez( Since ajasz, bibyz €
S and S is an ordered ternary semigroup). Then m(z,yaiasz)z < m(z,ybibs)z for all
z € S and yajas < ybiby = zxyajay < zrybiby = zm(x,yajas) < zm(x,ybibs).
Thus we have m(z, yajas) <g m(x,ybiby) = m(z,y)m(a, az) <g m(z,y)m(by, bs)
for all m(z,y) € M = S?%. Similarly, for all x,y,z € S, zajas < 2b1by = zajasry <
2bibyry = zm(ay, asxy) < zm(aq,asxy) for all z € S and ajar < bibor =
arasxyz < biboxyz => m(aq, asry)z < m(by, bary)z. Then we have m(ay, acxy) <g
m(by, bazy) = m(ay, a)m(z,y) <g m(by,ba)m(z,y) for all m(z,y) € M = S*

Hence for all a,b € M, a <g b implies that za <g zb and az <g bz for all z € S.
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Thus in both cases we have a <g b imples that ax <g bx and za <g b for all
z € Q(S). Hence Q(S) is an ordered ternary semigroup with respect to the partial
order ‘<g’.

For the converse part, let Q(S) is an ordered ternary semigroup with respect
to the partial ordered ‘<p’. Then a <g b in Q(S) = za <g zb and azx <g bz
for all x € Q(S). Let a,b € S such that a <g b. Then azr <g bx for all x
in S. Since az,bx € Q(S5), ax <g br = azry <g bry = axy < bxy for all
y € S. Again za <g 2b = zay <g by = way < xby for all z,y € S. Also
a <g b implies that m(z,y)a <g m(z,y)b = zya <g ryb = xya < zyb and
am(z,y) <g bm(z,y) = axy <g bry = axy < bay for all m(z,y) € S* = M

Therefore S is an ordered ternary semigroup with respect to ‘<’. O

Note 3.5.2. We cannot define a partial order between the element of S and M =
S2. Otherwise if we take a € S and b € M = S? such that a <g b and b <g a then
by anti-symmetric properties of ‘<q’ we have a = b, which contradicts the fact that

S and M are disjoint sets.

Theorem 3.5.3. Let S be an ordered ternary semigroup. Then S is a lattice w.r.t.

‘<7if and only if Q(S) is a lattice w.r.t. ‘<g’.

Proof. Suppose Q(S) be a lattice with respect to <. Let a,b € S. Thus inf{a, b} =
a A'band sup{a,b} = a Vb exists in Q(S5). Let ¢,d € Q(S) such that ¢ = a A b and
d=aVb. If ce M =S5?then c = mf(e, f) for some e, f € S. Thus a A b= mf(e, f)
implies that m(e, f) <¢g a and m(e, f) <g b, which is a contradiction ( since ‘<g’
is a partial order relation, m(e, f) £g a,b). Thus ¢ ¢ M = S%. Hence ¢ € S. Thus
¢ = inf{a, b} exisxts in S. Similarly, we can show that d = sup{a,b} exists in S.
Therefore, S is also a lattice.

Conversely, let S be a lattice with respect to ‘<’. Then for all a,b € S we
have inf{a,b} = a A b and sup{a,b} = a V b exists in S. We have to show that
for any two elements z,y € Q(S), v Ay and = V y exists in Q(S). Since S is a

lattice, it is sufficient to prove that for all z,y € S?, Ay and z V y exists in S2.
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Let = m(ay,b1),y = m(ag, b)) € S? = M C Q(S) where ay,by,as,bo € S. Let
a=a; ANay and b = b; Aby. Then a < a1 = abx < aq1bxr and b < b = a;br <
a;byz (since S is a partially ordered ternary semigroup). Thus abx < a;byz for all
xr € S. Similarly, a < a1 = zab < xa;b and b < by = xa;b < xa;b;. Thus
zab < xaib;. Hence m(a,b) <g m(ai,b;). In the similar way we can show that,
m(a,b) <g m(az,by). Thus m(a,b) is a lower bound of m(ai,b;) and m(az, bs).

Thus inf{m(ay, b1), m(az,bs)} also exists in Q(S). Therefore Q(S5) is a lattice. [

Note 3.5.4. However, m(a,b) = m(a; A az, by A be) may not be the greatest lower

bound of m(ay,by) and m(az, by).

In the followings example we can show that m(a; A as,by A bs) # m(ay,by) A

m(ag, by).

Example 3.5.5. Let S = Z = the set of all integers. Since all binary semigroups
are ternary semigroups as well, we consider Z. is a ternary semigroup here. Let us
define a partial order relation on Z defined by a < b if and only if a divides b. Thus
(Z,.,<) is a lattice. Let m(4,2),m(3,4) € Z* where 2,3,4 € Z. Thus 4A\3 =1 and
2A4 =2, Thus m(4A3,2N4) =m(1,2). Again m(2,2) <g m(4,2) since2.2.x = 4x
divides 4.2.x = 8z for all x € Z. Similarly, m(2,2) <g m(3,4). Thus m(2,2) is
also a lower bound of {m(4,2),m(3,4)}. But m(1,2) <o m(2,2). So, m(1,2) is
not the inf{m(4,2),m(3,4)} = m(4,2) A m(3,4). Therefore, m(4 A 3,2 AN 4) #
m(4,2) Am(3,4).

Next we have the following theorem:

Theorem 3.5.6. The ordered ternary semigroup S is a complete lattice if and only

if Q(S) is a complete lattice.

Proof. Let Q(S) be a complete lattice with respect to <g. Let A = {a, : o € I}
be any non empty subset of S, I being an index set. Since Q(S) is a complete

lattice and A C S C Q(S), infA and supA exists in Q(S). Thus A Ga and V da
ac ag
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exist in Q(S). Let c¢,d € Q(S) = SUM such that ¢ = a/e\l% and d = OZ\E/Ioza. If
c € M = 5% then ¢ = m(a,b) for some a,b € S. Thus a/e\laa = m(a,b) implies
that m(a,b) <q an for each a € I where I is an index set, which is a contradiction
[since a € S, and m(a,b) € M,a % m(a,b)]. Thus c ¢ M = S*. Hence c € S.
Therefore, ¢ = OZ/e\lao( exisrts in S. Similarly, we can show that d = OC\E/Iaa exists in
S. Therefore, S is also a complete lattice.

Conversely, let S be a complete lattice with respect to ‘<’. Since S is a complete
lattice, then for all non-empty subsets of S both infimum and supremum exist in
S. We have to show that for any non-empty subset of Q(S) both infimum and
supremum exist in Q(S). Now it is sufficient to prove that for all non-empty subsets
of S? both infimum and supremum exists in S*. Let X = {m(agp,bg) : € I} where
ag,bg € S, I being an index set. Since S is a lattice by Theoremm Q(S) s
a lattice. Let a = B/E\Iag and b = 6/6\11)5. Then a < ag and b < bg for all B € 1.
Hence abr < agbx and = agbx < agbgx for all p € I [ since S is an ordered
ternary semigroup/. Thus abx < agbgx for all x € S and for all B € 1. Similarly,
a < ag = vab < zagh and b < by = wagb < wagbg. So, xab < wagbg. Thus
m(a,b) <g m(ag,bg) for all B € I. Hence m(a,b) is a lower bound of m(ag,bs) for
all B € I. Thus infim(ag,bg) : B € I} = infX also exists in Q(S). Therefore, Q(S)

1s a complete lattice.

Note 3.5.7. However from the previous example|3.5.5 we arrived at the conclusion
that A A Db A bg). H b) = A ADb tb

at m( A ap, A\ bs) # A mlag,bs). Hence m(a,b) = m(A ap, A bs) may not be
the infimum of inf{m(ag,bg) : € I}.

Theorem 3.5.8. The ordered ternary semigroup S is a modular lattice if and only

if Q(S) is a modular lattice.

Proof. Let S be an ordered ternary semigroup such that S a modular lattice. Then
a < b implies that a V (x Ab) = (aV z) Ab where a,b, x are arbitrary elements of S.
Let m(aq,b1), m(az, by) € M = S? such that m(ay, b1) <g m(az,ba).
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Then a;byz < asbor and xaiby < washy for all x € S. Let m(as, bs) be an
arbitrary element in M. Since a1b1x, asbox, asbsx € S, then a1byx < asboxr implies
that a1z V (azbsz A agboz) = (a1b1z V azbsz) A asbyx for all x € S.
= m(ay, b))z V (m(as, b3)x A m(as,be)x) = (m(ay, b))z V m(as, bs)x) A m(as,bs)x
for all z € S.

—> (m(a1,br) V (m(as, bs) Am(as, b2)))z = ((m(a1,b1) Vm(as, bs)) Am(as,bs))a for
all z € S.

Similarly, we have xaiby, xasby, xasbs are all elements of S. Then zab; < xashy
implies that xai1b; V (zagbs A xashy) = (zaiby V zagbs) A zasbs for all z € S.

= xm(ay, b1) V (xm(as, bs) A xm(az,by)) = (xm(ay,by) V xm(as, bs)) A xm(ag, by)
for all z € S.

—> z(m(a1,br)V (m(as, bs) Am(az, b)) = x((m(as, b)) Vm(as, bs)) Am(az, bs)) for
all z € S. Therefore, m(ay,b1) V (m(as, bs) A m(ag, b2)) = (m(ay,br) V m(as,bs)) A
m(az, be). Hence Q(S) = S UM is a modular lattice.

Conversely, let Q(S) be a modular lattice. Let a,b € S such that a < b. Since
a,b € Q(S), thena <b=a<gb SoaV (xAb)=(aVz)Abforal z € Q(S).

Thus for any ¢ € S we have aV (cAb) = (aVc)Ab. Hence S is a modular lattice. [
In the similar way we can prove the following theorem:

Theorem 3.5.9. The ordered ternary semigroup S is a distributive lattice if and

only if Q(S) is a distributive lattice.

Proof. Let S be an ordered ternary semigroup such that S a diatributive lattice.
Then for all a,b,c € S we have a A (bV ) = (aAb)V (aAc). Let my,ma,mg € Q(S).
If my, ma, m3 € S then our proof is done. If m; = m(aq, by), me = m(ag, by), ms =
m(az,b3) € M = S? C Q(S) then we have (m(al, bi) A (m(ag,bsy) V m(ag,bg))>x =
m(ay, by)x A (m(ag, bo)x V m(as,bs)x) = arbix V (agbex A agbsx) for all z € S. Since
a1z, agbox, azbsx € S, a1byx V (agbox A asbsz) = (arbix V aghox) A (a1biz V azbsz)

for all x € S. Hence
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<m(a1, bi) A (m(as, b) V m(as, bg)))m
= (a1b1x V agbex) A (a1byz V aszbsz) for all x € S
= (m(ay,by)x Am(ag, by)x) V (m(ay,by)x Am(ag, bs)x) for all x €S

- ((m(al, by) A mas, bo)) V (m(as, b)) A m(as, b3))>x

Similarly, we have xaiby, xasbs, zasbs € S. So, xa1by V (xasby A zagbs) = (xaiby V
zashy) A (zayby V zasbs) for all x € S implies that x(m(al,bl) A (m(az, by) V
mas,bs))) = @ ((mlar,b) Am(az, b)) V (m(ar,b1) A mias, b)) ). Hence Q(S) =
S UM is a distributive lattice.

For the converse part, let a,b,c are any three elements of S. Since Q(S5) is a
distributive lattice and a,b, ¢ € Q(S) we have a A (bV ¢) = (a Ab) V (a A ¢). Hence
S is a distributive lattice. O
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Chapter 4

Ordered power ternary semigroups

4.1 Introduction

The motivation for constructing power ternary semigroup of a ternary semigroup
came from the concept of power semigroup of a semigroup. For a ternary semigroup
S, one may define a ternary semigroup on the power set P(S). If S is a ternary
semigroup, then the ternary product of non-empty subsets of S can be defined in a
natural way to produce a ternary semigroup, which is called the power semigroup
of S, we simply denote it by P(S).

There are various ways to lift a relation from a base set to its power set. Power
ternary semigroup P(S) of ternary semigroup S is an appropriate ternary semigroup
defined on the power set P(S) as a generalization of power semigroup of a semigroup.
The main object of this paper has two aspects. We characterize power ternary semi-
group with the help of corresponding ternary semigroup and discuss the connection
between them. The rest of the paper deals with ordered power ternary semigroup.
We define a partial order in power ternary semigroup in a natural way. Ordered
power ternary semigroups are closely related to power ternary semigroups. In this
chapter, we study some properties of ordered power ternary semigroups and discuss

the connection between ternary semigroup and ordered power ternary semigroup.
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The study of power semigroup of a semigroup was initiated by Tamura and
Shafer [89] in 1967. Many authors [90], [88], [34], [57] studied power semigroups and
its properties. T. Dutta, S. Kar and K. Das [30] studied the notion of power ternary
semiring of a ternary semiring. S. Kar and I. Dutta [41] extend the notion of power
semigroups to power ternary semigroups.

In this chapter, S denotes a ternary semigroup.

4.2 Power ternary semigroup P(S) of a ternary
semigroup S

In this section, we consider the correlation between ternary semigroup S and the
corresponding power ternary semigroup P(.S).

If S is a ternary semigroup and P(S) be the set of all non-empty subsets of
S, then P(S) forms a ternary semigroup with respect to the ternary multiplication

defined as follows :
ABC ={abc:a€ A, be B, ce C} forall A, B, C € P(95).

We call P(S5), the power ternary semigroup of all non-empty subsets of a ternary
semigroup S.
Now we have the following results regarding some properties of a ternary semi-

group S and the corresponding properties of the power ternary semigroup P(S5).

Theorem 4.2.1. A ternary semigroup S is commutative if and only if the power

ternary semigroup P(S) is commutative.

Proof. First suppose that S be a commutative ternary semigroup. Then for all
a,b,c € S, we have abc = acb = bac = bca = cab = cba. Let A, B,C € P(S)
and © € ABC. Then x = aibic; for some a; € A, by € B, ¢; € C. Since S is
commutative, it follows that z = a1b1¢; = a1¢1b; € ACB. Hence ABC C ACB.
Similarly, ACB C ABC. Thus ABC = AC'B. Continuing in this way we can show
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that ABC' = ACB = BAC = BCA=CAB =CBA for all A,B,C € P(S). Hence
P(S) is a commutative ternary semigroup.

Conversely, let P(S) be a commutative ternary semigroup. Let a,b,c¢ € S. Then
abc € {abc} = {a}{b}{c}. Since P(S) is commutative, {a}{b}{c} = {a}{c}{b} =
{acb}. Hence abc € {acb} and so abc = acb. Continuing in this way we get abc =
acb = bac = bca = cab = cba for all a,b,c € S. Thus S is a commutative ternary

semigroup. O

Theorem 4.2.2. Let S be a ternary semigroup and A be a non-empty subset of S.

Then A is a ternary subsemigroup of S if and only if P(A) is a ternary subsemigroup

of P(S).

Proof. First let us consider A be a subsemigroup of S. Then A% C A. Since
A C S, it follows that P(A) C P(S). Let X € P(A)?. Thus X C A% C A and
so X € P(A). Hence P(A)? C P(A) and P(A) is a ternary subsemigroup of P(S5).
For the converse part, let P(A) be a ternary subsemigroup of P(S) for some non
empty subset A of S. Let € A3. Then x = ajasas for some a;,as, a3 € S. Now
{z} = {a1asa3} = {a1}{as}{as} € P(A)> C P(A). Thus x € A and hence A is a

ternary subsemigroup of S. [

Theorem 4.2.3. Let S be a ternary semigroup and I be a non-empty subset of S.

Then I is an ideal of S if and only if P(I) is an ideal of the power ternary semigroup
P(S).

Proof. Let us consider I be an ideal of S. Then P(I) C P(S) and P(I)P(J)P(K) =
{ABC : ACI,BC J,C CK)forall I,J;K CS. Let ABC € P(S) (
Thus ABC C SSI C [ and so ABC € P(I). Hence P(S)P(S)P(I) C P(I).
Similarly, we can show that P(S)P(I)P(S) C P(I) and P(I)P(S)P(S) C P(
Hence P(I) is an ideal of the power ternary semigroup P(.5).

For the converse part, let P(I) be an ideal of P(S) for some non-empty subset

I of S. Let x € SSI. Then x = s180i for some si,80 € S and i € I. Now

75



ORDERED POWER TERNARY SEMIGROUPS

{z} = {51801} = {s1H{s2}{i} € P(S)P(S)P(I) C P(I). Thus {2} € P(I) and so
{z} C I. Hence z € I. Thus SSI C I. Similarly, we can prove that SIS C I and
155 C I. Hence I is an ideal of S. O

Note 4.2.4. However, we notice that not all ideal of P(S) is in the form P(I) for
some ideal I of S.

We give the following example:

Example 4.2.5. Let S = Zy. Then P(—3ZyZy)\P({2k + 1}r——1-23..
ideal of P(Zy). This ideal cannot be written in the form P(A) for any non empty
subest A of S, so we conclude that the proposed ideal can not be written in the form

P(I) for some ideal I of Z, .

Theorem 4.2.6. Let S be a ternary semigroup and B be a non-empty subset of
S. Then B is a bi-ideal of S if and only if P(B) is a bi-ideal of the power ternary
semigroup P(S).

Proof. Assume that B is a bi-ideal of S. Then B®> C B and BSBSB C B. Since
B is a ternary subsemigroup of S, P(B) is a ternary subsemigroup of P(S), by
Theorem [4.2.2] Let A € P(B)P(S)P(B)P(S)P(B). Then A = B;S51B,5,B; for
some By, By, By € P(B) and 51,5, € P(S). Thus A C BSBSB C B. This
implies that A € P(B). So P(B)P(S)P(B)P(S)P(B) C P(B) and hence P(B) is
a bi-ideal of the power ternary semigroup P(S). For the converse part, let P(B)
be a bi-ideal of P(S). Then P(B) is a ternary subsemigroup of P(S) and hence
B is a ternary subsemigroup of S, by Theorem Let y € BSBSB. Then
y = b181b289b3 for some by, by, b3 € B and s1,80 € S. Now {y} = {bis1basabs} =
{biH{s1}H{b2}{s2}{bs} € P(B)P(S)P(B)P(S)P(B) C P(B). Thus {y} € P(B) and
so {y} C B. This shows that y € B and hence BSBSB C B. Consequently, B is a
bi-ideal of S. [l

Note 4.2.7. However not all bi-ideal of P(S) is in the form P(B) for some bi-ideal
B of S. In the previous example we have already seen that each ideal of P(S)
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not in the form P(I) for some ideal I of S. Since every ideal is a bi-ideal, this is

also an example of our conclusion.

Theorem 4.2.8. Let S be a ternary semigroup and @ be a non-empty subset of S.
Then Q is a quasi-ideal of S if and only if P(Q) is a quasi-ideal of the power ternary
semigroup P(5).

Proof. First let us consider @ be a quasi-ideal of S. Then @3 C @Q and SSQ N
(SQS U SSQSS)NQRSS € Q. Let A € P(S)P(S)P(Q) N (P(S)P(Q)P(S) U
P(S)P(S)P(Q)P(S)P(S)) N P(Q)P(S)P(S). Thus A € P(S)P(S)P(Q). Then
A = 515,Q, for some @) € P(Q) and 51,52 € P(S). Thus A C SSQ. Simi-
larly, we can show that A C (SQS U SSQSS) and A C @SS. This imlies that
A C SSQN(SRSUSSYSS)NQESS C Q. So A € P(Q) and hence P(Q) is a
quasi-ideal of the power ternary semigroup P(S).

For the converse part, let P(Q) be a quasi-ideal of P(S). Let y € SSQ N
(SQS U SSQSS) N QSS. Then y € SSQ and y = s152q; for some s1,50 € §
and ¢ € Q. Now {y} = {s1521} = {si}{s2H{ar} € P(S)P(S)P(Q). Hence
{y} € P(S)P(S)P(Q). Similarly, we can prove that {y} € P(S)P(Q)P(S) U
P(S)P(S)P(Q)P(S)P(S) and {y} € P(Q)P(S)P(S). So, {y} € P(S)P(S)P(Q) "
(P(S)P(Q)P(S) U P(S)P(S)P(Q)P(S)P(S)) N P(Q)P(S)P(S)

C P(Q) and so y € Q. Thus SSQ N (SQSUSSQSS) NQSS C Q. Consequently,
it follows that @) is a quasi-ideal of S. O

Theorem 4.2.9. Let S be a ternary semigroup and J be a non-empty subset of S.
Then J is a completely prime ideal of S if and only if P(J) is a completely prime
ideal of P(S).

Proof. First suppose that J be a completely prime ideal of S. Then J is an ideal of
S and hence P(J) be an ideal of P(S), by Theorem [4.2.3] It remains to show that
P(J) is completely prime. Let X,Y,Z € P(S) such that XY Z € P(J). Suppose
that Y, Z ¢ P(J). Then there exist some y € Y and z € Z such that y ¢ J and
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z ¢ J. Let x be an arbitrary element of X. Now {zyz} = {e}{y}{z} C XY Z C J.
Thus zyz € J. Since J is completely prime ideal of S and y, z ¢ J, we must have
xz € J. Thus X € P(J) and so P(J) is a completely prime ideal of P(.S).
Conversely, suppose that P(J) is a completely prime ideal of P(S). Let abc € J
for some a,b,c € S. Now {abc} € P(J) and so {a}{b}{c} € P(J). Since P(J)
is a completely prime ideal of P(S), so {a} € P(J) or {b} € P(J) or {c} € P(J)
ie. {a} CJor{b} CJor{c} CJ Thusa€ Jorbe JorceJ. HenceJis
completely prime ideal of S. n

Theorem 4.2.10. Let S be a ternary semigroup and K be a non-empty subset of
S. Then K is a completely semiprime ideal of S if and only if P(K) is a completely
semaprime ideal of P(S).

Proof. Let K be a completely semiprime ideal of S. Then K is an ideal of S and
hence P(K) is an ideal of P(S), by Theorem [£.2.3] We have to show that P(K) is
completely semiprime. Let X € P(S) such that X3 € P(K). Suppose z € X such
that 22 € X3 C K. Since K is completely semiprime, we have z € K ie. X C K.
Thus X € P(K).

For converse part, let P(K) be a completely semiprime ideal of P(S). Let a®> € K
for some a € S. Now {a*} € P(K) and so {a*} = {aaa} = {a}{a}{a} = {a}® €
P(K). Since P(K) is a completely semiprime ideal of P(S5), so {a} € P(K) i..
{a} C K. Thus a € K. Hence K is completely semiprime ideal of S. O

Now it can be easily proved the following result :

Theorem 4.2.11. If the power ternary semigroup P(S) is idempotent then the

ternary semigroup S is idempotent.

But the converse of the above Theorem |4.2.11]is not true. From following exam-
ple, we see that P(S) is not be an idempotent ternary semigroup though the ternary

semigroup S is idempotent.
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00
Example 4.2.12. Let S = , ; ) ; )

Then S forms a ternary semigroup together with the ternary matriz multipli-
cation operation. Clearly, every element of S is an idempotent element, thus S is

an idempotent ternary semigroup. But P(S) is not an idempotent power ternary

SEMIGroup.
10 00
For let A = , € P(S).
0 0 01
0 0 10 0 0 0 0
Then A3 = , . But ¢ A.
0 0 0 0 01 0 0

Hence A is not an idempotent element and so P(S) is not an idempotent ternary

SEMIGroup.
But in particular, we have the following result :

Theorem 4.2.13. Let S be a ternary semigroup. Then P(S) is an idempotent
ternary semigroup if and only if S is an idempotent ternary semigroup in which

every non-empty subset of S is a ternary subsemigroup of S.

Proof. Let S be an idempotent ternary semigroup in which every non-empty subset
of S is a ternary subsemigroup of S and A € P(S). Since A C S, by our hypothesis,
A is a ternary subsemigroup of S i.e. A3 C A. Let z € A. Then x = a; fome some
a; € AC S. Since S is an idempotent ternary semigroup z = a; = a3 € A%. Thus
A C A3. Hence A® = A and so P(S) is an idempotent ternary semigroup.
Conversely, suppose that P(S) is an idempotent ternary semigroup and a € S.
Then {a} € P(S). Since P(S) is an idempotent ternary semigroup, {a}® = {a}
i.e. a® = a. Hence S is an idempotent ternary semigroup. Let S; C S. Then

S8 =9, C S1, since P(S) is idempotent ternary semigroup. Thus S; is a ternary

subsemigroup of S. O
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Note that if S is a regular ternary semigroup then the power ternary semigroup
P(S) may not be a regular ternary semigroup.

We explain it by the following examples :

Example 4.2.14. Let S = Z~ x Z~ = {(a,b) : a,b € Z~}, where Z~ be the
set of all negative integers. Then S forms a ternary semigroup together with the
multiplication defined as (a,b)(c,d)(e, f) = (a, f) for all (a,b),(c,d), (e, f) € Z~ x
Z~. Clearly, S is a regular ternary semigroup but P(S) is not a regular ternary
semigroup. Let X = {(a,b),(c,d)} € P(S) for some (a,b),(c,d) € S. Then
XYX = {(a,b), (¢, )} {(z,9)}{(a,0), (¢, )} = {(a,}),(a,d), (¢,b), (c,d)} # X for
any {(z,y)} € P(S) . Hence X is not reqular element and so P(S) is not a regular

ternary semigroup.

Example 4.2.15. Let S = {qv/2 : ¢ € Qy~}. Then with usual ternary multi-
plication, S forms a regular ternary semigroup. But P(S) is not reqular ternary

SEMIGroup.
Moreover, we have the following result :

Theorem 4.2.16. Let S be a ternary semigroup in which every non-empty subset
of S is a left ideal of S. Then S is a regular ternary semigroup if and only if P(S)

18 a reqular ternary semigroup.

Proof. Let S be a regular ternary semigroup and A € P(S). Since A C S, Ais a
left ideal of S i.e. SSA C A. Let x € A. Then 2 = a; fome some a; € A C S.
Since S is regular ternary semigroup a; = a;sa; for some s € S. So we find that
r=a;8a; € ASA. Thus A C ASA. Now ASA C SSA C A. Hence ASA = A and
so P(S) is regular ternary semigroup.

For the converse part, suppose that P(S) is a regular ternary semigroup and
a € S. Then {a} € P(S). Since P(S) is regular ternary semigroup, {a} = {a}X{a}
for some X € P(5) i.e. a = axa for some x € X C S. Hence S is a regular ternary

semigroup. O
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However, if P(S) is regular, each non-empty subset of S may not be a left ideal

of S. Let us give an example :

Example 4.2.17. Let S = {i, —i} be a ternary semigroup. Then P(S) is a reqular
ternary semigroup. But A = {i} C S is not a left ideal of S.

Similarly, we can prove the following results :

Corollary 4.2.18. Let S be a ternary semigroup in which every non-empty subset
of S is a right ideal of S. Then S is a reqular ternary semigroup if and only if P(S)

18 a reqular ternary semigroup.

Corollary 4.2.19. Let S be a ternary semigroup in which every non-empty subset
of S is a lateral ideal of S. Then S is a reqular ternary semigroup if and only if

P(S) is a reqular ternary semigroup.

Let S be a ternary semigroup. If S'is a completely regular ternary semigroup then
the power ternary semigroup P(S) is not necessarily a completely regular ternary
semigroup.

We explain it by the following example :

Example 4.2.20. Let S = {£+1,+i}. Then S forms a ternary semigroup w.r.t. the
multiplication. Futhermore, S is a completely reqular ternary semigroup. But P(S)

is not a completely reqular ternary semigroup. Let A = {1, —i} € P(S). Then there
exists no X € P(S) such that A = A2X A%

Theorem 4.2.21. Let S be a ternary semigroup in which every non-empty subset
of S is a left ideal of S. Then S is a completely reqular ternary semigroup if and

only if P(S) is a completely reqular ternary semigroup.

Proof. Suppose that S be a completely regular ternary semigroup and A € P(S).
Let x € A. Then z = a; fome some a; € A C S. Since S is completely regular
ternary semigroup, so a; = a?sa? for some s € S. Thus x € A2SA?. This shows

that A C A%2SA%. Since A C S, A is a left ideal of S i.e. SSA C A. Now
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A2SA? C SSSAA C SAA C SSA C A. Hence A2SA? = A and so P(S) is a
completely regular ternary semigroup.

For the converse part, suppose that P(S) is a completely regular ternary semi-
group and a € S. Then {a} € P(S). Since P(S) is a completely regular ternary
semigroup, {a}?X{a}? = {a} for some X € P(S) i.e. a’za® = a for some z € X C

S. Hence S is a completely regular ternary semigroup. m
Similarly, we can prove the following results :

Corollary 4.2.22. Let S be a ternary semigroup in which every non-empty subset
of S is a right ideal of S. Then S is a completely regqular ternary semigroup if and

only if P(S) is a completely reqular ternary semigroup.

Corollary 4.2.23. Let S be a ternary semigroup in which every non-empty subset
of S is a lateral ideal of S. Then S is a completely reqular ternary semigroup if and

only if P(S) is a completely reqular ternary semigroup.

Notice that if S is an intra-regular ternary semigroup then P(S) is not an intra-
regular ternary semigroup.

Let us give an example :

Example 4.2.24. Let S = {+£1,4i}. Then S forms a ternary semigroup with
respect to the multiplication. Also S is an intra-reqular ternary semigroup but P(S)

18 not an intra-regular ternary semigroup.

Theorem 4.2.25. Let S be a ternary semigroup in which every non-empty subset
of S is an ideal of S. Then S is an intra-reqular ternary semigroup if and only if

P(S) is an intra-reqular ternary semigroup.

Proof. Let S be an intra-regular ternary semigroup and A € P(S). Since A C S,
A is an ideal of S. Let a € A C S. Since S is intra-regular ternary semigroup,
a = xa’y for some z,y € S. So we find that a € SA3S. Thus A C SA3S. Now
SA3S C SSSAS C SAS C A. Hence SA3S = A and so P(S) is an intra-regular

ternary semigroup.
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For the converse part, let P(S) be an intra-regular ternary semigroup a € S.
Then {a} € P(S). Since P(S) is an intra-regular ternary semigroup, X{a}*Y = {a}
for some XY € P(S) i.e. za’y = a for some z € X C S and y € Y C S. Hence S

is an intra-regular ternary semigroup. 0

4.3 Ordered power ternary semigroup P(S) of a
ternary semigroup S

In this section, our main focus is to describe and characterize ordered power ternary
semigroup P(S) of a ternary semigroup S. Furthermore, we investigate the connec-
tion between a ternary semigroup S and its corresponding ordered power ternary
semigroup P(S).

Let us define a partially order relation on the ternary semigroup P(S) in the

natural way as follows:
“A< Bifandonlyif AC B” for all A, B € P(S).

Then (P(S), ., <) becomes a partially ordered ternary semigroup or ordered ternary

semigroup. The partially ordered ternary semigroup (P(.5), ., <) is called the ordered
power ternary semigroup of S and we simply denote it by P(S).

Definition 4.3.1. Let (S,.,<) be a partially ordered ternary semigroup. An ele-
ment a of S is said to be ordered idempotent if a < a® and S is said to be an ordered

idempotent ternary semigroup if every element of S is ordered idempotent.

Theorem 4.3.2. A ternary semigroup S is idempotent if and only if the ordered

power ternary semigroup P(S) is ordered idempotent ternary semigroup.

Proof. First, let us consider S be an idempotent ternary semigroup and let A &
P(S). Suppose a € A C S. Since S is idempotent semigroup a = a®> € A3. Thus
A C A3 Thus A < A% and P(S) is ordered idempotent ternary semigroup.
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Conversely, let P(S) be ordered idempotent ternary semigroup. Let a € S. Thus
{a} € P(S). Let us denote {a} by Aie. A= {a}. Since P(S) is idempotent then
A< Adie. AC A% Hence a € A’ = {a}® = {a®}. Thus a = a® and so S is

idempotent ternary semigroup. L]

Definition 4.3.3. An ordered idempotent ternary semigroup S is said to be left
zero if for every a,b,c € S, there exists x,y € S such that a < azxybc.
An ordered idempotent ternary semigroup S is said to be right zero if for every

a,b,c € S, there exists x,y € S such that a < cbrya.

Theorem 4.3.4. An idempotent ternary semigroup S is left simple if and only if
the ordered power ternary semigroup P(S) is a left zero ordered idempotent ternary

SEMIGroup.

Proof. Let S be a left simple idempotent ternary semigroup. Let A, B,C € P(S).
Thus for a € A,b € B,c € C there is € S such that a = xbc. Let us denote
them by zgp.. Take X = {zg.:a € A,b € B,c € C}. Hence A < XBC'. Since S
is idempotent ternary semigroup, by theorem P(S) is an ordered idempotent
ternary semigroup. Thus A < A3 gives A < AXBCXBC. Let Y = BCX C S.
Hence A < AXY BC. Thus for A, B,C € P(S) there exists X, Y € P(S) such that
A < AXY BC. Hence P(S) is a left zero ordered idempotent ternary semigroup.
Conversely let P(S) is left zero ordered idempotent ternary semigroup. Let A =
{a}, B = {b} € P(S). Then for any C' = {c} € P(S) thereis X,Y € P(S) such that
C < CXYBA. Thus C C CXYBA. Hence ¢c € CXYBA = CXYB{a} C SSa.
Thus S = SSa and so S is a left simple idempotent ternary semigroup. O

Corollary 4.3.5. An idempotent ternary semigroup S is right simple if and only if
the ordered power ternary semigroup P(S) is a right zero ordered idempotent ternary

SEMIGTrOUD.

Definition 4.3.6. A partially ordered ternary semigroup S is called an ordered

ternary band if S is an ordered idempotent ternary semigroup.
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Corollary 4.3.7. A ternary semigroup S is a ternary band if and only if the ordered

power ternary semigroup P(S) is an ordered ternary band.

Definition 4.3.8. An ordered ternary semigroup S is called an ordered ternary
rectangular band if S is an ordered idempotent ternary semigroup and a < aba for

all a,b € S.

Example 4.3.9. Let S = {a, b, c} be an ordered ternary semigroup with the ternary

operation . on S as abc = a  (b* ¢) where the binary operation * is defined as

*lalbl| c

ajlalajla

blal|b|b

claj|c|c

and the order defined as < :={(a,a),(b,a),(b,b),(c,a),(c,c)}

This is an ordered ternary rectangular band.

Theorem 4.3.10. A ternary semigroup S is a ternary rectangular band if and only

if the ordered power ternary semigroup P(S) is an ordered ternary rectangular band.

Proof. First let us assume that, S is a ternary rectangular band. Since S is idem-
potent ternary semigroup by Theorem P(S) is ordered idempotent ternary
semigroup. It remains to show that A < ABA for all A, B € P(S). Let a € A and
b € B for any A, B € P(S). Since S is ternary rectangular band, a = aba € ABA.
Thus A C ABA. Hence A < ABA for all A,B € P(S). Hence P(S) is ordered
ternary rectangular band.

Conversely, Let a,b € S. Thus {a},{b} € P(S). Let A = {a}, B = {b}. Since
P(S) is a ordered ternary rectangular band A < ABA = {a} C {a}{b}{a} =
a = aba. Since P(S) is ordered idempotent ternary semigroup by Theorem S

is also idempotent ternary semigroup. Hence S is a ternary rectangular band. [J

Theorem 4.3.11. A ternary semigroup S is regular if and only if the ordered power

ternary semigroup P(S) is reqular.
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Proof. Let us consider S be a regular ternary semigroup. Let A € P(S). Then
for every a € A there exists z, € S such that a = ax,a. Let X = {z, : a € A}.
Then X € P(S) such that A C AXAie A< AXA. Thus A € (AP(S)A] for all
A € P(S). Hence P(S) is regular.

Conversely, suppose that P(S) be a regular ordered power ternary semigroup.
Let a € S. Then for A = {a} € P(S) there exists X € P(S) such that A < AXA
and so A € AXA. Thus for a € S there exists x € X C S such that a = aza.

Hence S is regular ternary semigroup. O

Corollary 4.3.12. A ternary semigroup S is left (resp. right) regular if and only
if the ordered power ternary semigroup P(S) is left (resp. right) regular.

Theorem 4.3.13. A ternary semigroup S is completely reqular if and only if the

ordered power ternary semigroup P(S) is completely regular.

Proof. Let S be a completely regular ternary semigroup. Let A € P(S). Then for
every a € A there exists z, € S such that a = a®z,a* Let X = {z,:a € A}. Then
X € P(S) such that A C A2X A% ie. A < A2X A2 Thus A € (A?P(S)A?] for all
A € P(S). Hence P(S) is completely regular.

Conversely, suppose that P(S) be a completely regular ordered power ternary
semigroup. Let a € S. Then for A = {a} € P(S) there exists X € P(S) such that
A< A2X A? and so A C A2X A2. Thus for a € S there exists x € X C S such that

a = a*va?®. Hence S is completely regular. O

Theorem 4.3.14. A ternary semigroup S is intra-regular if and only if the ordered

power ternary semigroup P(S) is intra-reqular.

Proof. First suppose that S be an intra-regular ternary semigroup. Let A € P(S).
Then for each a € A there exists x,,y, € S such that a = z,a%y,. Let X = {z,:a €
A}yandY = {y, :a € A}. Then X,Y € P(S) such that A C XA%Y ie. A < XA%Y.
Thus A € (P(S)A*P(8S)] for all A € P(S)). Hence P(S) is intra-regular.
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Conversely, suppose that P(S) be an intra-regular ordered power ternary semi-
group. Let a € S. Then for A = {a} € P(S) there exists X,Y € P(S) such that
A< XA and so A C XA3Y. Thus for a € S there exists 2,y € X C S such that

a = za’y. Hence S is intra-regular. ]

Theorem 4.3.15. A ternary semigroup S is a ternary group if and only if the

ordered power ternary semigroup P(S) is simple.

Proof. First, let us consider S be a ternary group. Let A, B,C € P(S). Then for
each a € A, b € B, c € C there exists unique x, y, z € S such that abx = ¢, ayb =
¢, and zab =c. Let X = {x,p.:a €A be B, c€CHLY ={yapc:a €A bE
B, ceC}, Z ={zpe:a€ A be B, c € C}. Then X,Y,Z € P(S) such
that C C ABX, C C AYB and C C ZAB. Let I be a left ideal of P(S). Then
I C P(S) such that P(S)P(S)I C I and (I] = I. Suppose that U,V € P(S) and
W e lie UV,W CS. Then there exists X* € P(S) such that U < X*VIW. Thus
UCX*VIW € P(S)P(S)I C I. Hence P(S) C I. Thus P(S) has no proper left
ideal and so P(S) is left simple. In the similar way we can show that P(S) is right
simple and lateral simple.

Conversely, let P(S) be simple ordered ternary semigroup. Let a,b,c¢ € S. Then
A = {a}, B = {b}, C = {c} € P(S). Now (P(S)AB] is a left ideal in P(S).
Since P(S) is left simple by Theorem we have (P(S)AB] = P(S). Thus
C € P(S) = (P(S)AB] and so C' < ZAB for some Z € P(S). Again (ABP(S)]
is a right ideal in P(S). Since P(S) is right simple by Theorem we have
(ABP(S)] = P(S). Thus C € P(S) = (ABP(S)] and so C < ABX for some
X € P(S). Since X € P(S) then there exists X* € P(S) such that X < X*AB and
so C < ABX < ABX*AB € AP(S)B. Thus C € (AP(S)B] and so C' < AY B for
some Y € P(S). Hence for A, B,C € P(S) there exists X,Y,Z € P(S) such that
C<ABX,C < AYBand C < ZABie. C C ABX,C CAYB and C C ZAB.
Hence for a,b,c € S there exists x,y, 2 € S such that abx = ¢, ayb = ¢ and zab = c.

Hence S is a ternary group. O
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Theorem 4.3.16. Let S be an ordered ternary semigroup. Then S is simple if and
only if a € (beSbc] for all a,b,c € S.

Proof. First, let us consider S be a simple ordered ternary semigroup. For a,b,c € S
there exists € S such that a < xbe. Again for b, ¢,z € S there exists y € S such
that x < ybe which implies a < bex < beybe. Thus a € (beSbe].

Conversely, a € (beSbe] implies a < besbe, s € S implies a < bes; where 57 =
sbc € S. In similar way we can show that a < bsye, a < s3be for some sy, 53 € S.

Hence S' is simple ordered ternary semigroup. O]

Theorem 4.3.17. A ternary semigroup S is a ternary group if and only if the
ordered power ternary semigroup A € (BCP(S)BC] for all A, B,C € P(S).

Definition 4.3.18. An ordered ternary semigroup (S,., <) is called a semilattice
ordered ternary semigroup if a\V b ezists in the poset (S, <) for every a,b € S. Then
for all a,b,c,d € S the following holds :

(1) ab(c V d) = abe V abd

(i7) (aV b)ed = acd V bed.

Let T be a ternary semigroup and P*(T) be the set of all finite subsetes of T'.
For A,B,C € P*(T) the ternary multiplication ‘.’ defined by ABC = {abc : a €
A,b € B,c € C} and partial order relation ‘<’ defined by ‘A < B if and only if
A C B”. Then P*(T) is a semillatice ordered ternary semigroup with respect to the

¢

multiplication *.” and partial order relation ‘<’

Theorem 4.3.19. Let T be a ternary semigroup, S be a semilattice ordered ternary
semigroup and ¢ : T — S be a ternary semigroup homomorphism. Then there is
an ordered semigroup ternary semigroup homomorphism g : P*(T) — S such that

the go f = ¢ where f: T — P*(T) is defined by f(x) = {x}.

Proof. Let us define a mapping g : P*(T) — S by g(A) = Veap(a) for all A €
P*(T).
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T f P*(T)

o g
S

Now for A, B,C € P*(T), we have

9(ABC) = Ve apep cccd(abe)
= VaeapeBeccd(@)(D)d(c)
= (Vacad(a))(Vpepd(D))(Veecd(c))
= g(A)g(B)g(C)

Again for all A,B € P*(T), if A < B then we have g(A) = Vsead(a) <
Vaep@(B) = ¢g(B). Thus g is an ordered ternary homomorphism from P*(7) to

S. Now, (go f)(x) = g(f(x)) = g({2}) = Vac(zy9(a) = o(2). i
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Chapter 5

Lattice structures in ternary

semigroup of mappings

5.1 Introduction

The topic in this chapter focuses on ternary semigroups of mappings. A. Chronowski
[19] introduced the notion of ternary semigroup of mappings which are a natural
generalization of semigroup of mappings and these algebraic structures are used
for constructing the natural examples of ternary algebras, which are the counter-
part of binary algebras. Some properties of ternary semigroup of homomorphism,
ternary semigroup of lattice homomorphism, ternary semigroups of linear mappings
are studied by A. Chronowski [21], [22], [24], [23]. The set S(X) of all mappings of
a given non-empty set X into itself, where the binary operation is the usual com-
position of mappings, forms an important class of semigroup which is commonly
known as semigroup of mappings. A. Chronowski studied about n-ary semigroup of
mappings and in particular, ternary semigroup of mappings, embedding theorem,
classical Green’s equivalence relation, structure of ternary semigroup of linear map-
pings, ternary semigroup of matrices etc. The corresponding results for semigroup

of mappings have been intensively studied by several authors. Also S. Kar, I. Dutta
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[42] studied the notion of various structures of ternary semigroup of mappings. G.
Birkhoff [6] disscussed about lattice theory.

In the first section, we give a characterization of the structures of lattices in
ternary semigroup of mappings. In remaining sections, we discuss the problem that
if X =2 X and Y =2 Y’ then the corresponding ternary semigroups of mappings
T[X,Y] and T[X',Y"] are isomorphic. The converse statement is not valid. We also
derive simple conditions under which the converse is also true. We also introduce a
partial order relation in the ternary semigroup of mappings 7[X,Y]. We also study
the notion of ternary semigroup of isotone mappings O[X, Y]. Further we present the

characterization of regular, intra-regular and idempotent ordered ternary semigroup

in O[X,Y].

5.2 Ternary semigroup of mappings 7[X,Y]

In this section, we are going to define a partial order in T'[X,Y] and after that we
study different types of lattice structure of T[X, Y]. Throughout this paper, T X, Y]
will denote a ternary semigroup of mappings of sets X and Y.

Let X and Y be non-empty sets. By T'(X,Y") and T'(Y, X) we denote the set of
all mappings of the set X into the set Y and the set of all mappings of the set Y into
the set X i.e. T(X,Y) = {p: pis a mapping from X to Y} and T(Y, X) = {¢: ¢ is
a mapping from Y to X'}. Now consider the set T[X, Y] =T(X,Y) x T'(Y, X).
Define the ternary operation - : T[X, Y| x T[X, Y] x T[X,Y] — T[X, Y] as follows:

(plu Q1) : (p27 Q2) : (P37 Q3) = (p1qu3, Q1P2Q3) V(pb 91)7 (p2, Q2); (]93; Q3) € T[X> Y]

The ternary operation defined above is associative. Then (T'[X,Y],-) is a ternary
semigroup. The ternary semigroup is called the “Ternary Semigroup of Mappings”
of sets X and Y.
If XNY = {}, then (T'[X,Y],) is called the disjoint ternary semigroup of mappings
of sets X and Y.
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The ternary semigroups (7[X,Y],-) and (T[Y, X],) are isomorphic for the sets X
and Y.

Throughout this section, T[X,Y] will denote a ternary semigroup of mappings
of sets X and Y.

5.3 Partial order on T'[X,Y]

In this section, we are going to define a partial order in T'[X,Y] and after that we
study different types of lattice structure of T'[X, Y.

Let (X,<x) and (Y, <y) be two posets with respect to the partial orders <x
and <y respectively. Let us define a partial order ‘<’ on T[X,Y]. For all (p1,q1),
(p2,q2) € T[X,Y] the partial order < defined as follows:

“ip1, 1) < (P2, q2) if and only if pi(x) <y pa2(x) and ¢:(y) <x ¢2(y)
forallz e X andy e Y”.

Thus (T'[X, Y], <) becomes a poset with respect to the partial order “ < 7.

Theorem 5.3.1. The ternary semigroup of mappings (T[X,Y],<) of X and Y is

a lattice if and only if (X, <x) and (Y, <y) are two lattices.

Proof. Let (X, <x) and (Y, <y) be two lattices under the partial order <y and <y
respectively. Let (p1,q1), (p2,q2) € T[X,Y]. Let p* : X — Y and ¢*: Y — X
be any two functions such that p*(z) = pi(z) A po(z) and ¢*(y) = q1(y) A ¢2(y)
for all z € X and y € Y. We have to show that (p*,q¢*) = Inf{(p1,¢1), (p2,2)}-
Now p*(z) = p1(x) A pa(z) = p*(z) < pi(z), pa(z) and ¢*(y) = a1(y) A @2(y) =
7 (y) < ¢1(y), g2(y). Thus (p*,q*) is a lower bound of (p1,q;) and (ps,q2). We
show that (p*,¢*) is the greatest lower bound of {(p1,q1), (p2,¢2)}. If not, then
there exists an another lower bound (p, q) of {(p1,q1), (p2,¢2)} in T[X,Y] such that
(p*,q") < (p,q) = p*(z) <y p(z) and ¢*(y) <x q(y) for all z € X and y € Y.
Again since (p,q) is a lower bound of (p1,q1) and (pa, g2), then (p,q) < (p1,q1)
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and (p,q) < (pa2,q2). This implies that p(z) <y pi(x) and p(z) <y pa(z) for all
z € X. Thus p(z) <y pi1(x) A pa(x) = p*(z). Hence p(x) = p*(z). Similarly, we can
prove that ¢(y) = ¢*(y). Thus (p,q) = (p*, ¢*) and hence (p*, ¢*) is the Inf{(p1, ¢1),
(P2, g2) }-

Similarly, we can show that there exists (p',¢') € T[X,Y] such that (p1, q1) V (p2, ¢2)
= (p',q) where p'(z) = pi(x) V po(z) and ¢'(z) = qi(y) V ga(y) for all z € X and
y € Y will be the Sup{(p1,q1), (p2,¢2)}. Hence T[X,Y] is a lattice.

Conversely, let T[X, Y] be a lattice. Let x1, 22 € X and y1,y2 € Y. Let us define two
mappings ¢, : Y — X such that ¢;(y) = 21 and ¢2(y) = x5 for all y € Y. Again
let us define two mappings py, ps : X — Y such that py(x) = y; and py(x) =y, for
all z € X. Since (p1,q1), (p2,q2) € T[X,Y] and T[X,Y] is a lattice then we have
(p*,q*) in T[X,Y] such that (p1,q1) A (p2,q2) = (p*, ¢*). Thus we have,

(r*,q") < (p1,q1) = p*(z) <y pi(z) = y1 and ¢*(y) <x q@1(y) = 21.

(p",q") < (2 @2) = p* (%) <y pa(x) = y2 and ¢*(y) <x ¢2(y) = 2.

Thus ¢*(y) is a lower bound of z; and z3. Let us assume ¢*(y) be not the greatest
lower bound of x; and z3. Then we found an another lower bound z° such that
q¢*(y) <x z°. Let us define a mapping ¢° : ¥ — X such that ¢°(y) = x° for all
y € Y. Thus ¢*(y) <x ¢°(y) for all y € Y. Again since x° is a lower bound of x;
and 5 then 2° <x x; and 2° <x s = ¢°(y) <x q1(y) and ¢°(y) <x ¢2(y) for all
yeyY.

Similarly, p*(x) is a lower bound of y; and ys. We have to show p*(x) be the greatest
lower bound of y; and y,. If not, then we found an another lower bound y° such
that p*(z) <y y°. Let us define a mapping p° : X — Y such that p°(z) = y° for all
z € X. Thus p*(x) <y p°(x) for all z € X. Again since y° is a lower bound of y; and
Yz then y° <y 41 and y° <y y» = p°(x) <y p1(z) and p°(z) <y po(z) forallz € X.

Thus (p°,¢°) < (p1,q1) and (p°,¢°) < (p2,q2) = (p°, (p1, 1) A (P2, q2) =

¢°) <
(p*,q*). Again from ¢*(y) <x z° and p*(z) <y y° we get (p*,q¢*) < (p°,¢°). Thus
(p°,¢°) = (p*,¢*). Hence p°(x) = p*(z) for all z € X and ¢°(y) = ¢*(y) forally € Y
and so y° = p*(x) and x° = ¢*(y). Thus ¢*(y) = Inf{x, 22} and p*(z) = Inf{y, y2}.
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Proceeding in the same manner we can show that Sup{z,x2} and Sup{y, y=} exist

in X and Y respectively. Thus X and Y are lattices. O

Theorem 5.3.2. The ternary semigroup of mappings (T[X,Y],<) of X and Y is
a complete lattice if and only if the posets (X, <x) and (Y,<y) are two complete

lattices.

Proof. Let (X, <x) and (Y, <y) be two complete lattices under the partial order <y
and <y respectively. By Theorem [5.3.1] T[X, Y] is a lattice. Let A = {(pa.qa) : @ €
I} be any non empty subset of T[X, Y], I being an index set. Since X is a complete
lattice and {q,(y) : y € Y,a € I} is a subset of X, then {q,(y) : y € Y,a € I}
has Inf and Sup in X. Thus a/e\lqa(y) and a\e/lqa(y) exists in X. Similarly, a/e\ [pa(x)
and a\érpa(m) exists in Y. Define CM/E\I(po[, 4o) = (p*,q¢") where p*(z) = a/e\rpa(x) and
7(y) = OC/E\Iqa(y) for all z € X and y € Y. Now we have to show that (p*,¢*)
be the InfA. If not then there is an another lower bound (p°,¢°) of A such that
(r",4") = (p%,¢°). Hence A pa(w) <y p’(z) and A da(y) <x ¢°(y) for allz € X
and y € Y, which is a contradiction. Thus (p*,¢*) is the InfA. Similarly, we can
show that SupA exists in T[X,Y]. Thus T[X, Y] is a complete lattice.

Conversely, let T[X,Y] be a complete lattice. By Theorem [5.3.1 we can say
that X and Y are also lattices. Let A = {x; : i € I} and B = {y; : i € I} are
non-empty arbitrary sets of X and Y respectively, I being an index set. Let us
define two mappings ¢; : Y — X such that ¢;(y) = x; and p; : X — Y such that
pi(x) =y; forallz € X andy € Y, wherei € I. Since (p;,¢;) € T[X,Y] and T[X, Y]
is a complete lattice then we have (p*, ¢*) in T[X, Y] such that (p*,¢*) = z‘é\1<pi’ ¢)-
Thus (p*,q%) < (pi¢i), i € I = p*(x) <y pi(z) = ¥, ¢ (y) <x @i(y) = i, i € 1.
Thus ¢*(y) is a lower bound of {z; : i € I} = A. We show that ¢*(y) is the greatest
lower bound of A. Let us assume that ¢*(y) be not the greatest lower bound of A.
Then there exists another lower bound z° such that ¢*(y) <x x°. Let us define a
mapping ¢° : Y — X such that ¢°(y) = z° for all y € Y.

Thus ¢*(y) <x ¢°(y) forallyecy . (1)
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Again 2° is a lower bound of A = {z; : i € I}.
Thus 2° <y x;, 1 € I = ¢°(y) <x ¢y) (2)
Again p*(x) is a lower bound of {y; : i € I} = B. We show that p*(z) is the greatest
lower bound of B. Assume that p*(z) is not the greatest lower bound of B. Then
there exists another lower bound y° such that p*(z) <y y°. Let us define a mapping
p°: X — Y such that p°(z) = y° for all z € X.
Thus p*(z) <y p°(x) forallze x (3)

Again y° is a lower bound of B = {y; : i € I}.

Thus y° <y y;, i € I = p°(x) <y pi(z) (4)
Thus from (2) and (4) we get (p°,¢°) < (pi,qi), i € I = (p°,¢°) < Zé\j(pi,q,-) —
(p°,¢°) < (p*,q*). Again from (1) and (3) we get (p*,¢*) < (p°,¢°). Thus (p*,¢*) =
(p°,¢q°). Hence p°(z) = p*(z) and ¢°(y) = ¢*(y) for all z € X and y € Y. Thus
y° = p*(z) and z° = ¢*(y). Proceeding in the same manner we can show that SupA
and SupB exist in X and Y respectively.

Thus X and Y are complete lattices. O

Theorem 5.3.3. The ternary semigroup of mappings (T[X,Y],<) of X and Y is
a modular lattice if and only if the posets (X,<x) and (Y,<y) are two modular

lattices.

Proof. Let (X,<x) and (Y,<y) be two modular lattices under the partial order
<x and <y respectively. Let (p1,q1), (p2, ¢2) € T[X, Y] such that (p1,q1) < (p2, ¢2)-
Thus pi(z) <y pa(x) and ¢ (y) <x ¢(y) for all x € X and y € Y. Consider
(p3,q3) € T[X,Y]. Since X and Y are modular lattices we have,

pi(z) <y p2(x) = pi(x) V (p3(@) A pa(x)) = (pr(@) V p3(x)) A pe(z) for all z € X
and

a(y) <x @y) = a(y) V(B Ae®y) = (@) vV a(y) Agy) foraly e Y.
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Therefore, we have (p1,q1) V ((pg, q3) N (pe, qg))

= (pi,q1) V (9, q) where, p (z) = p3(z) A pa(r) and

’

q (y) = as(y) N g2(y)
= (",q") where, p*(¢) = pi(«) V' (pa(a) A pa(a) ) and
) =)V (61) A eb)

forallz € X and y € Y.

Similarly, we have ((pl, 1)V (ps, q3)> A (P2, q2)

=(p',q") A (p2,q2) where, p’ () = p1(2) V p3(z) and

17

q (y)=a(y)Vay)
= (p%, ¢°) where, p°(z) = (p1 () Vps(:r)> A pa(x) and
@) = (00 V 6) A )

forallz € X and y € Y.

Since X and Y are modular lattices then p;(z) vV < 3(z) A pg(x)> = (pl(x) Y

p3(£)> A p2(z) and ¢ (y) V <Q3(y) A q2<y)) = ( )V ogs(y )) A qo(y) for all z € X
and y € Y. Thus (p*,¢*) = (p°,¢°) ie. (p1,q1)V ((ps,,%) A (pz,qz)) ((ph‘h) Vv
(ps3, q3)> A (p2,q2). Hence T[X,Y] is a modular lattice.

Conversely, suppose T'[X, Y] be a modular lattice. Let 1,29 € X and y1,y2 € Y
such that x1 <y x9 and y; <y yo. Let us define two mappings p1,ps : X — Y such
that p1(z) = y1 and pa(x) = yo for all x € X. Thus y; <y yo = p1(x) <y pa(x) for
all z € X. Again let us define two mappings ¢1,¢2 : Y — X such that ¢;(y) = x;
and ¢a(y) = o for all y € Y. Thus y; <y yo = p1(z) <y po(z) for all z € X and
r1 <x 22 => q1(y) <x q2(y) for all y € Y. This implies that (p1,q1) < (p2, 2)-
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Since T'[X,Y] is a modular lattice and (p1,q1), (p2,q2) € T[X,Y] such that

(p1,q1) < (p2,g2) then we have (p1,q1) V ((p, q) N (pz,Qz)> = ((pl,ql) vV (p, Q)> A

(p2,q2). This shows that,

(1, @) V (0", q7) = (0,4) A (D2, @2) where p*(z) = p(x) A pa(), ¢*(y) = ¢(y) A ga(y)
and p'(z) = pi(2) V p(2), ¢ (y) = a1(y) V q(y)
forallz € X andy €Y.

ie. (p,q) = (p",q") where p™(z) = pi(z) A p*(x), ¢ (y) = q1(y) A ¢ ()

and p” () = p () Vpa(2), ¢ (y) = ¢ (y) V @2(y)
forallz € X andy €Y.

e, (p,0") = (1,q") where p™*(x) = pi () A (p(2) A pa(a)),

7 (y) = aly ) ( ) A o ))
and p'(z) = (p1(2) V p(@)) V pa(a),
q'(y) = ( ) V ga(y)
foralla:EXandyEY
Thus (p**,¢**) = (p',q") implies that p**(x) = p"(z) for all 2 € X and ¢**(y) =

q (y) forally €Y.

ie. pi(e) v (p( >Apz ) = (pl 2)Vp() ) Apa(e) for all o € X and g1(y) v (a(y) A

qg(y)> ( ) Aqa(y) forall y € Y.

ie. yl\/( (x )/\yg) = <y1\/p( )) Ayy for all z € X and z; V <q(y)/\x2) =

(xl V q(y)) Az forally € Y.

Therefore, X and Y are modular lattices. O

Theorem 5.3.4. The ternary semigroup of mappings (T[X,Y],<) of X and Y is

a distributive lattice if and only if (X, <x) and (Y, <y) are two distributive lattices.

Proof. Let (X, <x) and (Y, <y) be two distributive lattices under the partial order

SX and SY reSpeCtiveIY' Let (pla QI)a (p27 QZ>7 (p37 Q3) € T[Xa Y]
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Therefore we have, (p1,q1) A ((pg, 7))V (ps, qd))

= (pi,q1) V (¢, q) where, p (x) = pa(2) V ps(x) and

’

¢ (y) = a(y) vV a(y)
forallz € X and y € Y.

= (p*,q*) where, p*(z) = pi(z) A (pg(x) \/pg(x)> and
7 (y) = a(y) A (qz(y) v Q3(y)>

forallz € X and y € Y.

Again, ((pl,ql) A (pa,cn)) v <(p1791) A (pa,%))
= (™ q™)V (p',q") where, p™*(2) = pi(x) Apa(2), () = 01(y) A @2(y)
and p' (z) = pi(x) Aps(2), 4 (y) = a1(y) A gs(y)
forallz € X and y € Y.
= (p°,¢") where, p°(z) = (p1(2) Apa(a)) V (p1(@) A ps(a) ) and
¢°(y) = (ql(y) A Q2(y)> v (ql(y) A q9,(y)>
forallz € X and y € Y.

Since X and Y are distributive lattices, then p;(z) A <p2(1:) % pg(:c)) = (pl () A

pa(@) )V (p1(@) Aps(@)) and @ () A () Vas() = (@) Ae))V (a) Aasy)
forallz € X andy €Y.

Thus (p*,¢*) = (p°,¢°) ie (p1,q1) A ((an(h) \ (ps,qy,)) = <(P1:CI1) A (p2,Q2)> %
((pl, @) A (ps, Q3)). Hence T[X, Y] is a distributive lattice.

Conversely, suppose T[X,Y] be a distributive lattice. Let x1,x9,23 € X and
Y1,Y2,Ys € Y. Let py, pe, p3 be such mappings from X to Y defined by p;(z) = v,
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pa(z) = yo and p3(x) = y3 for all x € X. Again let ¢y, ¢2, g3 be such mappings from
Y to X defined by ¢1(y) = x1, ¢2(y) = 22 and ¢3(y) = z3 for all y € Y. Thus
(p1, q1), (P2, @2), (p3,q3) € T[X,Y]. Since T[X,Y] is a distributive lattice then we
have (p1,q1) A ((pz, @)V (3, Q3)> = ((pl, @) A (p2, Q2)> N ((ph @) A (3, Q3)>
= (pr. @) A(p*,q") = (P, q) V (p°,¢°) where,
p*(x) = pa(x) V ps(x), ¢"(y) = @2(y) V gs(y)
p'(x) = pi(@) Apa(), ¢'(y) = ay) Agz(y)
p°(x) = pr(x) Aps(x), ¢°(y) = a(y) A as(y)
forallz € X and y € Y.
= (p.¢™) = (»",¢") where,
p™(x) = pr(x) Ap*(x), ¢ (y) = a(y) Ag*(y)
p'(x) =p(2)Vp(e), ¢ (y) = (y) V()
forallz € X andyeY.
= (p™,q™) = (", q") where

() = o) A (@) V )

P'(@) = (pr(@) Apa() V (pi(@) Ape(a)).
&) = (0 Ae®) v (6 Aaw)
forallz € X and y € Y.

Now, (p*,q) = (p’,¢") implies that p**(z) = p"(z) and ¢**(y) = ¢ (y) for all
reXandyeY.

e, pi(e) A (pa(0) Vs(@)) = (pi(2) Apa(2)) V (p1(2) Aps(2) ) and () A (a2(0) v
w5®) = (0 A e) v (0) Ag)) forall 2 € X and y € Y.

Le. 21 A (xa V) = (x1 Axg) V(1 Axs) and y1 A (Y2 Vyz) = (11 Ay2) V (11 Ays).
Thus X and Y are distributive lattices. O

Theorem 5.3.5. The ternary semigroup of mappings (T[X,Y],<) of X and Y is

a Boolean lattice if and only if (X, <x) and (Y, <y) are two Boolean lattices.

Proof. Let us assume that (X, <x) and (Y, <y) be two Boolean lattices with 1y,
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1y and Ox, Oy be the greatest and least elements of X and Y respectively. Let
(p,q) € T[X,Y]. We define two mappings p : X — Y and ¢ : Y — X such that
p(z) = p(z) and ¢'(y) = q(y) for all z € X and y € Y, where p(z) and ¢(y) denotes
the complement of p(z) and ¢(y) for all z € X and y € Y i.e p(z) V p(z) = 1y,
p(x) A p(z) = 0y and q(y) V q(y) = 1x, q(y) A q(y) = 0x for all z € X and y € Y.
If (p,gq) vV (p,q) = (p°,¢") and (p,q) A (p',q') = (p°,¢°) then we have to show
that (p*,¢*) and (p°, ¢°) be the greatest and least element of T[X,Y]. We proceed
by contradiction, let (p*,¢*) be not the greatest element of T[X,Y]. If not, then
there exists an element (p**,¢**) such that (p*,¢*) < (p**, ¢**) = p*(v) <y p™*(x)
and ¢*(y) <x ¢"*(y) forall z € X and y € Y = p(z) V p(z) <y p™(z) and
a)Vqy) <x ¢*(y) = 1y <y p**(z) and 1x <x ¢**(y), which is a contradiction.
In the similar way, let (p,q) be not the least element of T[X,Y]. If not then
there exists an element (p”,q") such that (p',¢") < (p,¢) = p'(z) <y p ()
and ¢"(y) <x ¢(y) forall z € X and y € Y = p’(z) <y p(z) A p(z) and
¢ () <x q(y) A (_y) — p'(2) <y 0y and ¢ (y) <x Ox, a contradiction. So that
(p*,q*) and (p’,q') be the greatest and least elements of 7'[X, Y] and hence T[X, Y]
is a Boolean lattice.

Conversely, let T'[X, Y] be a Boolean lattice. By Theorem|[5.3.1] X and Y are also
lattices. Let x1 € X and y; € Y. Let us define two mappings ¢; : Y — X such that
¢1(y) = x1 and p; : X — Y such that p;(z) = y; for all x € X and y € Y. Thus
(p1,q1) € T[X,Y]. Then there exists (p,q;) € T[X, Y] such that (p1,q)V (p,q;) =
Lrixy) and (p1,q1) A (P, q,) = Orpx,y), where 1pxy] and Orpxy] be the greatest
and least elements of T[X,Y]. Let lyxy) = (p*,¢*) and Orixy; = (p°, ¢°). Thus
(P, @) V (p1,q1) = (p",q") where p*(z) = pi(2) V py(2), ¢"(y) = q1(y) V ¢,(y) and
(P @) A (P 41) = (0°,.4°) where p°(2) = pi(2) Apy(2), ¢°(y) = a1(y) A ay(y) for all
r € X and y € Y. We have to show that ¢*(y) and p*(x) be the greatest elements
of X and Y. Also ¢°(y) and p°(z) be the least elements of X and Y. Let ¢*(y) be

no the greatest element in X. Then there exists z** such that ¢*(y) <x x**.
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Let us define a mapping ¢** : Y — X such that ¢**(y) = 2™ for all y € Y.
Hence ¢*(y) <x ¢**(y) for ally € Y Now ¢*(y) = q1(y)Vq,(y). Thus, ¢:(y)Vd,(y) <x

*(y) = a(y) <x ¢*() and ¢, (y) <x ¢ (V). s (1).
Again let p*(x) be not the greatest element in Y. Then there exists y*™* such that

p*(z) <y y**. Let us define another mapping p** : X — Y such that p**(z) = y**
for all # € X. Thus p*(z) <y p™*(z) for all z € X = p,(z) V p,(2) <y p™*(v) =
pi(x) <y p™*(x) and p,(z) <y p™(z) (2).
From (1) and (2) we get (pr,a1) < (5°,0), (Phod}) < (5°0) = (proar) V
(r),q,) < (p™, ¢**) = (p*,q*) < (p™, ¢**) which is not possible since (p*, ¢*) is the
greatest element in T[X,Y]. Thus ¢*(y) and p*(x) be the greatest elements of X
and Y. Similarly, we can show that ¢°(y) and p°(x) be the least elements of X and
Y. Hence X and Y are Boolean lattices. [l

5.4 Isomorphism between ternary semigroup of
mappings

In this section, we consider the problem of describing isomorphism between ternary

semigroups of mappings.

Definition 5.4.1. /22, Chronowski] Let (X,V,A) and (Y,V,A\) are two lattices. A
mapping [+ X — Y is said to be a lattice homomorphism if

(1) f(z1V x2) = f(21) V f(z2) and

(17) f(z1 Axe) = f(x1) A f(22) V1,29 € X

Again f is called a lattice isomorphism if f is one-one and onto.

Theorem 5.4.2. Let (X, A, V), (X, A, V), (Y,A, V), (Y, A, V) are lattices. If X is
isomorphic to X' andY is isomorphic to Y, then there is a lattice isomorphism from

the ternary semigroup of mappings T[X,Y] of X and Y to the ternary semigroup of
mappings T[X',Y'] of X' and Y.
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Proof. Let us suppose that X 2 X andY 2Y'. Let¢: X — X andv¢: Y — Y’
be two lattice isomorphisms. Let us define a mapping f from T[X, Y] onto T[X", Y]
by

f(p.q) = (p',q) such that p'(¢(x)) = ¥(p(x)), ¢ (¥ (y)) = (q(y)).

X ¢ X’

Let (p,q), (p1,q1) € T[X,Y]. Since T[X,Y] is a lattice sup{(p,q), (p1,q1)} =

(p. @) V (p1, @) and inf{(p, q), (p1, @)} = (p, @) A (p1, @) exists in T[X, Y].
Thus we have f((p,q) V (p1,q1)) = [(p°,¢°) where p°(z) = p(x) V pi(z), ¢°(y) =
q(y) Vaqi(y) for all z € X and y € Y and
Fo oV fpna) =@, )V, a) =@, q¢") where p” (z') = p'(z")Vpy (), ¢ (y)
=q@)Vaqy)forallz’ € X andy €Y.
We have to show that f((p,q)V (p1,q1)) = f(p, @)V f(pr, @) = F(0°.¢°) = (0", ¢°)
ie. p”(¢(x)) = ¢(p°(x)) and ¢” (Y (y)) = d(¢°(y)).
Now f(p,q) = (0,¢) = p (¢(2)) = ¥(p(2)), ¢ (¥(y)) = d(a(y)) and
for, @) = (01, 01) = p1(6(2)) = D(p1(2)), ¢(¥(y) = d(a(y))
Then, p”(¢(x)) = p'(¢(x)) V pi(d(x)) = $(p(x)) V $(pr(x)) = P(p(x) V pi(x)) =
¥(p°(x)) and
¢ (W) = d@W)Va®) = éq®)Voay) = ¢aw) Vv aly) = oY)
Thus f(p°,¢°) = (p°,¢°)-
Hence f((p.q) V (p1.@1)) = f(p,a) V f(p1. q1).

Similarly, it can be shown that f((p,¢)A(p1,¢1)) = f(p, @) A f(p1,q1). Therefore,
f is a lattice homomorphism. It remains to show that f is one-one and onto. For

(p,q), (p1,q1) € T|X,Y], we have
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fp,q) = f(p1, @)

— (p,q) = (P, )
— p (6(2)) = p1(6(2)), ¢ (V) = q,(¥(y)) for allz € X and y € Y
= (p(z)) = Y(p1(z)), da(y)) = d(ar(y)) for allz € X andy €Y
q(

= p(x) = p1(x), q(y) = q(y) for allz € X and y € Y.

= (p,q) = (P1, Q1)

Hence (p,q) = (p1,q1) and f is one-one. For the last part, let (p',¢') € T[X,Y].
Now p'(¢(2)) = ¢y = ¥(y) = ¥(p(z)) and ¢ (¥(y)) = =" = ¢(z) = é(q(y)). Thus
there exists (p, q) in T[X,Y] such that f(p,q) = (p’,¢). Hence f is onto and so f

is a lattice isomorphism. O

Note 5.4.3. But the converse of the theorem may not be true. Let us give an

example below.

Example 5.4.4. Assume that X, X', Y, Y’ be non-empty sets such that card (X)
=card (Y') =n,n € N and card (X') = card (Y) = 1. Let us consider the sets X =
{1,209, oo b, Y ={y}, X = {21} and Y = {y,, Yy oo yUnt
Define a partially order relation on X by x; < x; if and only if i < j and also
define a partially order relation on'Y' by y; < y;- if and only if i < j. Assume
that X' and Y are trivially ordered sets. Now T(X,Y) = {pi} where p(z) =
y1 for allx € X, T(Y,X) = {q1,q2, ceoevereernanne. ,qn} where q1(y) = x1, q2(y) =
L9y e s u(y) =y forally €Y and so TIX,)Y]| =T(X,Y) xT(Y,X) =
{(P1,01), (P1,G2) 5 cveeeeeanennn. ,(p1,qn) }-
Again, T(X',Y") = {py,p3s ey P} where py () = 4y, po(a) = Yo, ooy pa) =
y, for all ' € X', T(Y',X") = {q,} where q;(y) = z for all y € Y and so
TIX\Y=T(X V) x TV, X") = {(pr. ¢1); (02 1), wovvvvvoe (P @)}

Let us define a mapping f : T[X,Y] — T[X,Y'] by f(pi,q;) = (p;-,q;). Then
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it can be easily shown that f is an isomorphism from T[X,Y] to T[X',Y']. Since
card (T[X,Y]) = card (T[X',Y"]), then there exists a bijection from T[X,Y] to
TIX,Y']. Now f((p1, @) AD1, @) Avvevereerne. A(p1,qn)) = f(p*, ¢*) where p*(z) =
PLZ)APL(Z) APL(T) A e Api(z) = pi(x) and ¢*(y) = 1 (y) N g2(y) Ags(y) A
................... N (y) = qi(y). Therefore f((p1,q1) NP1, @) Aeevveeeveeneeec e A (D1, Gn)) =
fpr,q1) = (pll,qll).

Again f(p1, ) A f(P1yG2) A eeeeeeie, A1, an) = (01, @) A Doy @) Ao, A
(p,,q,) = (p,qy). Thus f is a homomorphism and so T[X,Y] = T[X',Y']. But X
is not isomorphic to X' and Y is not isomorphic to Y since card (X) # card (X')

and card (Y) # card (Y').

Note 5.4.5. If card (X) = card (X') and card (Y) = card (Y') and f is an isomor-
phism from T[X,Y] to T[X',Y"] such that f takes the pair of constant maps to a pair
of constant maps, then X is isomorphic to X andY is isomorphic toY' . Let us con-
sider py, g, be constant maps such that p,(z) =y and ¢;(y) =z forallz € X,y €Y.
Let us define two mappings ¢ : X — X and 1 1Y — Y by ¢(x) = 2 and
U(y) =y such that f(py, ) = (0. d,). Let (py@2)s Py 4n) € TIX,Y]. Since f

1 an 1somorphism, we have

F((Pys @) V (Pyy @21)) = fF(Pys @) V f(Pyss o)

= FPuV Py @V @) = (P ) V (015 0,0)
= F(PyV Py 4oV dr) = (0 V 0y 0 V 40

’

— f(py\/ym C_Iach) = (py'\/y 7qx \/x )

Thus ¢(x V x1) = ' V) = ¢(z) V ¢(z1) and (y V) =y Vi, = ¥(y) V (u).

Definition 5.4.6. A mapping f : X — Y s called a isotone of X into Y if

T <x T3 = f(z1) <y f(xg) for all x1,z5 € X.

Theorem 5.4.7. Let X and Y be posets and O(X,Y) be the set of all isotone
mappings from X to Y. Put O X, Y] = O(X,Y)xO(Y,X) C T[X,Y]. Then O[X,Y]
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18 an ordered ternary semigroup with respect to the ternary operation and partial

order defined in T[X,Y].

Proof. First, suppose that (p1,q1), (p2, ¢2) € O[X, Y] such that (p1,¢1) < (p2, ¢2) =
() <y pa(x), 1(y) <x @2(y) forallz € X andy €Y (1)
Since (ps,q3), (ps,qs) are elements of O[X,Y], we have (p1,q1)(p3,q3)(pa,qs) =
(P1g3pa, q1p3qa) and (pa, G2) (3, 43) (Pas 1) = (P2G3pa, @2p3qa). Now

/

(P1g3pa)(x) = (p1gs) (pa()) = (pras)(y) = (p1)(as(y)) = p1(x') and

/

(P2a3pa) () = (p2g3)(pa(x)) = (P2g3)(y) = (p2)(a3(y)) = pa(z)

’

where py(z) = y and g3(y) =z

Thus from (1) we have pi(z') <y pa(2') = p1gspa(x) <y pagspa(z) for all z € X.
In the similar manner we can show that, (¢1p3q1)(v) <y (gep3qs)(y) for all y € Y.
Hence (p1gsps, 1p3q1) < (P2qsps, g2p3qa) which implies that (p1, ¢1)(ps, ¢3)(ps, qa) <
(P2, @2)(P3, G3) (P4 Ga)-

Again, we have (ps, ¢3) (P4, ¢4)(P1, @1) = (P3qap1, 3paq1) and (ps3, 43)(pa, @a) (P2, G2) =
(P3qup2; @3pagz). Now pi(x) <y pa(r) = (qap1)(®) <x (qup2)(v) [since g4 is an
isotone map| and (gip1)(z) <x (@p2)(z) = (psqap1)(z) <y (p3qup2)(x) [ since
ps is an isotone map| for all x € X. Similarly, (g3psq1)(y) < (g3psq2)(y) for all
y € Y. Thus (psqup1, gspaqi) < (P3¢apa, gspaqa) implies that (ps,gs)(pa, qa) (1, q1)
< (3, ¢3)(P1, 44) (P2, @2)-

For the last part, (ps, ¢3)(P1, 1) (P, 1) = (P3q1P4, @3p1¢4) and (ps, 43)(P2: ¢2) (P4, 1)
= (p3qap4, @3p2qs). Let py(x) = y for some y € Y and since YV is a poset y <y y
Le. pa(z) <y ps(z) = (qipa)(x) <y (qups)(z) | since ¢, is an isotone map]
= (p3Q1p4)(fL') <y (pSQ1p4)($) [ since p3 is an isotone rnap]. Thus (p3Q1p4> Q3p1Q4>

< (p3q2pa; @3paqa) i-e. (p3,q3)(P1, q1)(Pas 1) < (P35 G3) (P2, G2) (P4, qa)-
Hence O[X,Y] is an ordered ternary semigroup. O

The ordered ternary semigroup O[X, Y] is called the ternary semigroup of isotone
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mappings of sets X and Y.

Theorem 5.4.8. The ternary semigroup of isotone mappings O[X,Y] is a regular

ordered ternary semigroup.

Proof. In [23, Corollary 28.16] we have seen that T'[X,Y] is regular ternary semi-
group. Now proceeding in the same way we can show that O[X,Y] is also regular
ternary semigroup i.e. for every (p,q) € O[X,Y] there exists (p', ¢ ) € O[X,Y] such
that (p,q)(p’,¢)(p,q) = (p,q). Since O[X,Y] is a partially ordered ternary semi-
group then (p,q) < (p,q) = (1,¢)(0,¢)(p,q). Thus O[X,Y] is a regular ordered

ternary semigroup. O

Theorem 5.4.9. The ternary semigroup of isotone mappings O[X,Y] is an intra-

reqular ordered ternary semigroup.

Proof. Let (p,q) € O[X,Y]. Let us define two mappings p; : Im(q) — Y and ¢ :
Im(p) — X such that py(x) =y for all x € I'm(q) and ¢,(y) = z for all y € Im(p).
Now Dom(p,) = Im(q) and Dom(q;) = Im(p). Let (p',¢) € O[X,Y] such that
P Im(g) = P1 and q| m(@p) = ¢1- Hence pg'p'q'p = p and qp'q'p'q = q. Thus for every
(p,q) € O[X, Y] there exists (p', ¢') € O[X, Y] such that (p,q)(p',¢)(p', ¢ )@, ¢ )(p, )
= (p,q)ie. (p,)(®,q)(p,q) = (p,q). Since O[X,Y] is a partially ordered ternary
semigroup then (p,q) < (p,q) = (p,¢)(¥', ¢ )*(p, q). Thus O[X,Y]is an intra-regular

ordered ternary semigroup. O]

Theorem 5.4.10. The ternary semigroup of isotone mappings O[X,Y] is an idem-

potent ordered ternary semigroup if either card(X) =1 or card(Y') = 1.

Proof. Let (p,q) € O[X,Y]. Let card(X) = 1. Then Img contains exactly one
element. Let the element be z;. Thus ¢(y) = x; for all y € Y. Let p(z;) =
y1- Then (qpg)(y) = (ap)(a(y)) = (qp)(x1) = q(p(x1)) = q(y1) = 21 = q(y) and

(pgp)(z) = (pap)(z1) = (pa)(p(z1)) = (pg)(y1) = p(a(y1)) = p(z1) = p(z). Hence
(pgp, qpq) = (p,q). Since O[X,Y] is a partially ordered ternary semigroup then
(

p,q) < (p,q) = (pap,arq) = (p,q)(p,q)(p,q). Thus O[X,Y] is an idempotent
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ordered ternary semigroup. Similarly, if card(Y) = 1 we can prove that O[X,Y] is

an idempotent ordered ternary semigroup. O

Definition 5.4.11. Let (X, ., <x) and (Y, ., <y) are ordered ternary semigroups. A

mapping f : X — Y is said to be an ordered ternary homomorphism if (i) f(x1xoxws) =

f(@1) f(z2) f(23)
(17) 71 <x x9 = f(x1) <y f(xg) for all x1, 29,23 € X.

Again, f is called an ordered ternary isomorphism if f is one-one and onto.

Theorem 5.4.12. Let X, X', Y, Y are posets. If p: X — X and¢: Y — Y’
are isomorphisms, then there exists an ordered ternary isomorphism f from O[X,Y]

to O[X',Y"].
Proof. The proof is similar to Theorem [5.4.2] O

The converse statement of the Theorem [5.4.12] is not true. By using Example

[5.4.4] we have reached the conclusion.
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Chapter 6

On right chain ordered ternary

semigroups

6.1 Introduction

In this chapter, we study the ideal theory of a right chain ordered ternary
semigroup S. Brungs and Torner develop the ideal theory for right cones [11] and
right holoids [12]. Our main aim to study right chain ordered ternary semigroup in
terms of prime ideals, completely prime ideals and prime segment. Prime segments
are studied by many authors in [10], [9], [8], [70]. Then we are going to extend the
concept of “Hoehnke ideal” of an ordered semigroup in an ordered ternary semigroup.
In a semigroup, S H. J. [36] Hoehnke introduced the set M® = {h € S : m ¢
mhS for all m € M\0} , where M is an S-system. Then M? is an ideal of the
semigroup S. Later Miguel Ferrero, Ryszard Mazurek, Alveri Sant’ Ana [31] defined
the Hoehnke ideal of a semigroup S to be the set {h € S : s & shS for all s € S\0}
and denoted by H(S). Thereafter Thawhat Changphas, Panuwat Luangchaisri,
Ryszard Mazurek [18] introduced the Hoehnke ideal of a semigroup S asscociated
with a proper right ideal A of S defined by Ha(S) ={h € S : s ¢ (shS] for all s €
S\A}. In this chapter, we introduce the notion of H-right ideal using Hoehnke ideal.
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The concept of H-right ideal is very helpful idea to construct semiprime right ideals
in right chain ordered ternary semigroup.

The definition of right chain ordered ternary semigroups is as follows:

Definition 6.1.1. A right chain ordered ternary semigroup is an ordered ternary
semigroup (S, ., <) in which right ideals forms a chain by inclusion. In other words,
if I, J are right ideals of S then either I C J or J C I.

e [n the similar way we can define left chain ordered ternary semigroup and
lateral chain ordered ternary semigroup.

e The ordered ternary semigroup S is a chain ordered ternary semigroup if it is

a right, left and lateral chain ordered ternary semigroup.

In this chapter, we consider that any ordered ternary semigroup contains the zero
element. Therefore, there exists an element ‘0" in the ordered ternary semigroup S
such that ab0 = a0b = 0ab = 0 for all a,b € S.

Throughout this chapter, S denotes a right chain ordered ternary semigroup

containing ‘0’ which is the zero element of S.

Example 6.1.2. Let S = {0,a,b, c}, where ‘0’ is the zero element in S. The ternary

multiplication in S defined as follows

(

x ify#0 and z #0

TYz =4y nyz()

z if2z=0

\

forallx,y,z € S. Then S with the ternary multiplication forms a ternary semigroup.

Let * <7 be a partial order on S defined by

<= {(a,0),(a,b),(a, ), (b,b), (b, ¢), (¢, ¢), (0,0), (0,a), (0,0), (0, ) }

Now (S, ., <) is an ordered ternary semigroup with respect to the partial order < <’.

The right ideals of (S, ., <) are {0}, {0,a}, {0,a,b}, {0, a,b, ¢} which are comparable.

109



ON RIGHT CHAIN ORDERED TERNARY SEMIGROUPS

Thus the right ideals of S form a chain. Hence S is a right chain ordered ternary

SEMIGroup.

6.2 H-ideals in right chain ordered ternary semi-

group

In this section, we are going to define the H-ideal of ordered ternary semigroup.

Next we have the proposition which we will often use in this chapter.

Proposition 6.2.1. Let S be an ordered ternary semigroup and I be an ideal of S.

Then I is completely prime if and only if I is prime and completely semiprime.

Proof. From the definitions of prime ideal, completely prime ideal and completely
semiprime ideal of an ordered ternary semigroup S it can be easily seen that if an
ideal I of S is completely prime then [ is prime and completely semiprime.

To prove the reverse side, assume that [ is prime and completely semiprime ideal
of S. Let abc € I for any a,b,c € S. Now (bca)® = (bca)(bea)(bea) = be(abe)(abe)a €
SSIIS CI1S C SIS C I and (cab)® = (cab)(cab)(cab) = c(abc)(abe)ab € SIISS C
SII C SIS C I. Since [ is completely semiprime ideal we have bca € I and cab € I.
Then I(a)l(b)I(c) C I for any a,b,c € S. Since [ is prime ideal then I(a) C I or
I(b) C T orI(c)C I andhencea€ lorbelorcel. Therefore, I is completely

prime ideal of S. [

Definition 6.2.2. Let (S,.,<) be an ordered ternary semigroup. For any proper
right ideal A of S we define the H-right ideal of S associated with A to be the set

H(S4)={heS:s¢ (s*hSS| for all s € S\A}

Theorem 6.2.3. Let (S,.,<) be an ordered ternary semigroup and A be a proper
right ideal of S. Then for any right ideal I of S, I C H(S4) if and only if s ¢ (s*I]
for all s € S\ A.
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Proof. We continue by contraposition. Suppose that I ¢ H(S4), then for some
i € I and s € S\ A we have s € (s%55] C (s?1S5S] C (s?I]. Thus we get, if s ¢ (s1]
for all s € S\ A, then I C H(S4).

To proof the reverse implication, let s € (s?I] for some s € S\A. Then there
exists some ¢ € I such that s < s%. Then s% < s%isi and so s < s%isi € s%iSS.
Hence s € (s%iS5], which shows that ¢ ¢ H(S4). Therefore, I ¢ H(S4) and the

proof is done. O

Theorem 6.2.4. Let (S,.,<) be an ordered ternary semigroup and A be a proper
right ideal of S. Then the followings hold:

(1) H(S4) is a semiprime right ideal of S.

(2) If A is a proper ideal of S, then A C H(S4).

Proof. (1) Suppose (5,.,<) be an ordered ternary semigroup and A be a proper
right ideal of S. We have to show that H(S4) is a semiprime right ideal of S. First,
we show that H(S,) is a right ideal of S. Since 0 € S, then 0 € A. For any s € S
we have, (s°05S] = (05S] = (0] € (A] = A. Thus s ¢ (s*0595] for all s € S\A.
Hence 0 € H(S4), which shows that H(S4) is nonempty. Next we have to show
that H(S4) is closed under right ternary multiplication i.e. H(S4)SS C H(S4).
Let us suppose H(S4)SS ¢ H(S4). Then for some h € H(S4) and s;s2 € S
we have hs1sy ¢ H(S4). By definition of H(S4) there exists s € S\ A such that
s € (s®hs15955] C (s?hSS]. Since h € H(S4), s € A which is a contradiction. So,
hsise € H(S4). Hence H(S4)SS C H(S4). To complete the proof that (H(S4)] C
H(S4), let € (H(S4)]. Then o < h for some h € H(S4). For any s € S\A we
have s?z < s?h. Hence by Proposition we have (s?zSS] C (s*hSS]. Since
h € H(S4), s ¢ (s*hSS] and so also s ¢ (s*xSS]| which implies that x € H(S,).
Therefore, (H(Sa)] € H(S4). Hence H(S4) is a right ideal of S.

The rest of the proof is complete by showing that H(S4) is a semiprime right
ideal of S. Let I be a right ideal of S such that I* C H(S4). If I ¢ H(Sa)
then by Theorem there exists s € S\A such that s € (s*I]. Now, s?I C
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(s?I]sI C (s*I)(sI] C (s*IsI]. Thus s € (s*I] C ((s*IsI]] = (s*IsI]. Again
s’I € (s?Isl)sI C (s*IsIsI] C (s*I%]. Thus s € (s*I*] C (s*H(S4)] which is a
contradiction. Hence I C H(S4) and H(S4) is semiprime right ideal of S.

(2) Next we are going to proof the last part of the theorem. Let us assume that, A
be an ideal of S. Then (s?A] C (SSA] C (A] = A and (sAS] C (SAS] C (A=A
for any s € S. So, s ¢ (s?A4] for all s € S\A. Hence by Theorem we get that
A C H(Sa).

This completes our proof. ]

Let A be a non-empty subset of an ordered ternary semigroup S. By A*"~! we
mean the set of all products ajas...as,_1 where ay,as, ..., as,_1 are all elements of S

and n € N. i.e.
2n—1 .
A = {a1a2a3....a2n,1 1A1,09, ..., Qop—1 € A}

Definition 6.2.5. Let A be an ideal of ordered ternary semigroup (S, ., <).
(a) An ideal I of S is said to be A-nilpotent if [**~1 C A for some n € N.

(b) An element t € S is said to be A-nilpotent t**~1 € A for some n € N.

Proposition 6.2.6. Let A be a proper right ideal of a right chain ordered ternary
semigroup (S, ., <). Then the followings hold:

(1) If I is an ideal of S such that I C H(Sa) and I is not A-nilpotent, then
Myen (12" is a completely semiprime right ideal of S.

(2) If t € S such that t € H(Sa) and t is not A-nilpotent, then (), o(t*"S] is a

semaprime right ideal of S.

Proof. (1) Assume that I is an ideal of S. Then for all n € N, (I?"~!] is a right ideal
and by Proposition , Myen(I?"71 is a right ideal of S. Let a be an arbitrary
element of S such that a* € (N, (I but a & (), cn(7**7']. Then a & (I*™!]
for some m € N. Now R(a) = (a U aSS] is a right ideal containing a of S and

since S is right chain ordered ternary semigroup we have (I*"~1'] C (a U aSS].
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Since a® € (), eny(**7], then ¢® € (I**7!] for all n € N. Now 6m —2 € N
since m € N. Then we have a® € ([2m=2-1] = (['?m=5) = ([Pm-1[10m—4) C
((aUaSSI™=1) C (a1 = (aI*™11873] C (a(a U aSS) ™3] C (a*I¥m3] =
(@21*m=1m=2] C (a*(a U aSS|I*™2] C (a®I°72] = (a*1*7 141 C (a(a U
aSS| ™1 C (a1 = (a* 1P 1% C (a*(aUaSS]T*™) C (a®1?™] = (a® 1?1 C
(a®(a U aSS|I] C (a1] = ((@®)?I]. Since I C H(S4), then a® C A and so
(126m=2-11 C ((a®)2I] C (A%I] C (ASS] C (4] = A. Hence (I?m=2-1] C A.
Taking m" = 6m — 2 we have (I2m/_1] C A for some m' € N implies that 72’ -1 CA
that for some m' € N which contradicts the fact that I is not A-nilpotent. Hence
a € (I* '] for all n € N and so a € (,([*"]. Therefore, ,cy(I*"7] is a
completely semiprime right ideal of S.

(2) Let us assume that ¢ € S such that t € H(S4) and ¢ is not A-nilpotent,
ie. 21 ¢ Aforalln € N. Forall n € N, (#*5] is a right ideal of S, then by
Proposition we have (), .(t*"S] is a right ideal of S. Let J be a right ideal
of S such that J* C (N, y(t*"S] but J € (), cx(#*"S]. Thus J € (t*™5] for some

m € N. Since S is a right chain ordered ternary semigroup we must have (£*™S] C J

where m € N. Now t € § = %3 ¢ S. Hence

756m—3 _ t(2m—2)+(2m—2)+(2m—2)+3
= ¢(m=2) 3 1Zm=2) 3 3 (2m=2) 3
= 2m=1) ¢ $2(m=1) 3 y2(m=1) 3

e

N

t2 (6m— 2 ]

N

(

(t2(6m 3) t2 ]
(o928
= (

()2 (tS)]

Since (#29] is a right ideal of S and (t*S] € H(S4), by Theorem we have
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#m=3 ¢ A which implies that 2™ D=1 ¢ A Taking 3m—1 = m’ we get 2™ "' € A
for some m € N which contradicts the fact that ¢ is not A-nilpotent element.

Therefore, J C (,cy(t*™S] and so (), (t*"S] is a semiprime right ideal of S. O
Next we have the following corollary which generalizes this proposition.

Corollary 6.2.7. Let I be an ideal (resp. right ideal) of a right chain ordered ternary
semigroup (S, ., <) such that (I*"*] # (I*"*!] for any n € N. Then (), cy(I**7!] is

a completely semiprime ideal (resp. right prime ideal) of S.

Proof. Let I be an ideal of a right chain ordered ternary semigroup (., ., <). Then
(I*"~1] are ideals of S for any n € N. Then by Proposition [1.4.2] (), cy(Z*""]
are ideals of S. Let A = (N, y(I*""']. Let s € S\A, then s ¢ (I*™!] for some
m € N. If s € (s?I] then (s*I] C ((s*I]sI] C (s*IsI]. So, s € (s*IsI] then
(s2I] C ((s*IsI]sI] C (s*IsIsI] C (s*ISISI] C (s?I%] and continuing in this way
we obatin s € (s2I*"7!] C (I?™7!], a contradiction. Hence s ¢ (s%*I], then by
Theorem we say that I C H(S4). Next we have to show that I is not A-
nilpotent. Suppose that I**=! C A for some k € N. Then (I?*71] C (A] = A. So,
(I C A=),en(I*71] C (I%*1] C (17! which implies that (1271 = (1%+1],
a contradiction. Therefore, I is not A-nilpotent. By Proposition we can say

that (), .n(7?"!] is a completely prime ideal of S. O

neN

Similarly, we can prove the corollary for right ideal.

6.3 Prime, semiprime, completely prime and com-
pletely semiprime ideals of right chain ordered
ternary semigroups

The next proposition shows that for any right chain ordered ternary semigroup
semiprime and prime right ideals are equivalent. Also on the other hand completely

semiprime and completely prime ideals are equivalent.
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Proposition 6.3.1. If (S, ., <) is a right chain ordered ternary semigroup, then we
have the followings :

(1) A right ideal I of S is semiprime ideal if and only if I is prime ideal.

(2) An ideal (resp. right ideal) I of S is completely semiprime ideal (resp. right
ideal) if and only if I is completely prime ideal (resp. right ideal).

Proof. (1) It is obvious that if [ is prime then [ is semiprime. Asssume that [ is
a semiprime right ideal of S. Let A, B, C' be right ideals of S such that ABC' C I.
Since S is right chain oredred ternary semigroup we must have A C B or B C A,
BCCorCCB,CCAor ACC. Then A3 C ABB C ABC C I which implies
that A C I. Similarly, we have B C I and C' C I. Thus I is prime ideal of S.

(2) Let I be a completely semiprime ideal of S. Consider a,b,c € S such that
abc € I. For a,b,c € S R(a),R(b), R(c) are the right ideals of S generated by
a,b, c respectively. Now a® € R(a)R(a)R(a). Since S is right chain oredred ternary
semigroup we have a® € R(a)R(b)R(c) i.e. a® € (a UaSS|(bUbSS](cUcSS] C
(abcUabeSSUabSScUabSSeSSUaSSbeUaSSbeSSUaSShSScUaSShSSceSS| C 1.
Since I is completely semiprime ideal of S, we have a € I. Similarly, b € I and
c € I. This [ is completely prime ideal of S. The converse part is obvious.
Similarly, we can proof that A right ideal I of S is completely semiprime right ideal
if and only if I is completely prime right ideal. O]

Now we define associated prime right ideal in right chain ordered ternary semi-

group.

Definition 6.3.2. Let (S,.,<) be an ordered ternary semigroup. For any proper
ideal A of S we define the associated prime right ideal of S to be the set

P(Sx)={p €S :zyp for some x,y € S\A}

Proposition 6.3.3. Let A be proper ideal of a right chain ordered ternary semigroup

(S,.,<). Then P(Sa) is a completely prime right ideals of S conatining A.
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Proof. Since A is a proper ideal of S. Hence there exists an element = in S such
that = ¢ A ie. z € S\A. Now for any a € A we have z?a € SSA C A it follows
that a € P(S4). Thus A C P(S4)

Now we have to show that P(S4) is a right ideal of S ie. P(S4)SS C P(Sa).
Let y € P(S4)SS. Then y = psise for some p € P(S4) and s;,s2 € S. Hence
there exist u,v € S\A such that uvp € A. Thus (uvp)s;sy € ASS C A. So,
uv(ps182) = (uvp)s1sy € A which implies that ps;se € P(S4) which proves that
P(S4)SS C P(S4). Now we have to show that (P(S4)] = P(S4). Let ¢ € (P(S4)]
then there exists p € P(S4) such that ¢ < p and zwp € A for some z,w € S\A.
For z,w € S\ A we have zwq < zwp € A. Thus zwq € (A] = A. Hence ¢ € P(S4).
Thus (P(S4)] € P(S4) and so (P(S4)] = P(Sa). Therefore, P(S,) is right ideal.
To complete the proof it remains to show that the right ideal P(S4) is completely
prime. Let a,b,c € S such that abc € P(S4). So there exist r,t € S\ A such that
rt(abc) € A = (rta)bc € A. Now we have the following two cases.

Case 1: If rta € A, then a € P(Sy).

Case 2: If rta ¢ Ai.e. rta € S\ A, then we have two posibilities either b € A or
b¢ A.

o Ifbe Athenrthbe SSAC A. Thus b€ P(S4).

e If b ¢ A. Then (rta)bc € A implies that ¢ € A [ since rta ¢ A].

Therefore, P(S4) is a completely prime right ideal of S containing A. O

Proposition 6.3.4. Let A be a prime right ideal of a right chain ordered ternary
semigroup (S,.,<). Then for any proper ideal I of S we have, either I C A or
P(Sa) C 1.

Proof. Let S be an ordered ternary semigroup and A be a prime right ideal of S.
Let I be a proper ideal of S such that P(S4) € I. Thus there exists an element
p € P(S4) such that p ¢ I. Since p € P(S4) there exists z,y € S\ A such that
zyp € A. Alsop ¢ I = (pUpSS] € I. Since S is a right chain ordered ternary
semigroup we have I C (p U pSS]. Let us assume that A C I. Now for y € S\ A,
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(SSyI?SS C (SSyI?|(S](S] € (SSyI?SS| C (SSyI?]. Thus (SSyI?] is aright ideal
of S. If y € (SSyI? C (SSSI? C (I] = 1. Then S\A C I. Thus (S\A)UA C I
and so I C S, which is a contradiction. Thus I C A. If y ¢ (SSyl?]. Since

(SSyI?] is a right ideal of S and S is a right chain ordered ternary semigroup we
have (SSyI?] C (y UySS]. Now,

(x UzSS](y UySSII? = xyl* UzySST? UxSSyI® U xSSySST?
C oyl Uayl? UxSSyI® UxSSyI?
= zyl? UxSSyl®
Cayl Ux(yUySS|I
=yl Uxyl UxySSIT
Cayl
C ay(p U pSS]
= (zyp U zypS 5]
€ (AU ASS|
c(A=4

Since x,y ¢ A and A is a prime right ideal of S, we have I C A andso [ C A. [J

Lemma 6.3.5. If A is a proper ideal of a right chain ordered ternary semigroup

(S,.,<) such that A = (A3], then A = (s*A] for any s € S\A and n € N.

Proof. Let A be a proper ideal of a right chain ordered ternary semigroup and
s€ S\A. ie. s¢ A Thus R(s) = (sUsSS] € A. Since S is a right chain ordered
ternary semigroup we must have A C (s U sSS]. Hence A = (A3] = (AAA] C
((s UsSSJAA] C (sAAU sSSAA] C (sAAUsAA] C (sAA] C (s(sUsAAJA] C
(s?AUs?SSA| C (s2AUs*A] C (s*A] C (SSA] C (A] = A. Thus we get A = (s?A].
So, it is true for n = 1. Assume that it is true for n = k. Hence A = (s**A] =

(s%F(s2A]] = (s%*+1A] = (s**+D A]. Hence the result is true for n = k + 1. Thus the
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result follows by induction. m

Next we define exceptional prime ideal and minimal ideal of a right chain ordered

ternary semigroup.

Definition 6.3.6. Let (S,.,<) be a right chain ordered ternary semigroup. An
exceptional prime ideal Q) of S is an ideal which is prime but not completely prime

ideal of S. Similarly, exceptional right, left and lateral prime ideals are defined.

Definition 6.3.7. If I C J are ideals (resp. right ideals, left ideals and lateral
ideals) of a right chain ordered ternary semigroup S such that there are no further
ideals (resp. right ideals, left ideals and lateral ideals) properly between I and J,

then we say that J is minimal over I.

Proposition 6.3.8. let Q) be an exceptional prime ideal of a right chain ordered
ternary semigroup (S, ., <). Then there ezists a unique ideal R of S such that Q C R

and R is minimal over Q. Moreover, R = (R3] i.e. R is an idempotent ideal of S.

Proof. Let R = ﬂQg ; I, i.e. R denote the intersection of all ideals I of S such that
2 C I which implies that Q C R. Since @) is exceptional prime ideal, then () is prime
ideal of S. Then by Proposition we have either P(Sg) C I or I C @, for any
such ideal I of S. Since @ C I, then I ¢ @ for any such ideal I. Then P(Sgp) C I
for any ideal I such that @ C I. Thus P(Sg) C [\,yc; I = R. By Proposition W
P(Sg) is completely prime ideal of S containing ). Thus @@ C P(Sgp). But since
() is exceptional prime ideal @ # P(Sg) and so @Q C P(Sgp). Hence Q C R. By
Proposition , R ={Ngc; I is anideal of S and R is the smallest ideal containing
. Thus we can say that R is minimal over ).

For the second part, let R # (R?]. Then (R?*] C (SSR] C (R] = R. So, R* C R.
Since R is minimal over Q, R?® C @ and since Q is a prime ideal of S, R? C Q =
R C @, which contradicts the fact that () C R.

Therefore, R = (R?] i.e. R is an idempotent ideal of S. O
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Proposition 6.3.9. let ) be an exceptional prime ideal of a right chain ordered
ternary semigroup (S,., <) and R be the unique ideal of S such that R is minimal
over Q and R = (R?|. Then there exists an element a € R\Q such that Q C
Nyen(a®*S]. In particular, if a € R\Q then a is not Q-nilpotent.

Proof. Let us consider the set X = {z € S: (), cy(¢*"R] C Q}, where R = (R?] i.e.
R is the unique idempotent ideal minimal over ().

Let ¢ € Q. Then (¢*R] C (¢°S] C (@SS] € (Q] = Q and (¢'R] = (¢*(¢°R]] C
(Q) € (S5Q] € (Q] = Q. Again (¢°F] = (¢*(¢*R]] < (¢*Q] € (S5Q] € (Q] = Q
and continuing in this way we get (¢*"R] C @ for all n € N. Thus Q C X and thus
the set X is non empty.

We claim that X C R. If s ¢ R, then s € S\R. Since R is an idempotent ideal of
S ie. R = (R?, then by Lemma we can say that R ¢ Q = (s*"R] = R for

all n € N. So, ,en($*R] € @ which implies that s ¢ X. By contraposition we

neN
have X C R which proves our claim. Since () is exceptional prime ideal of S, then
(@ is prime but not completely prime and by Proposition it is not completely
semiprime. Then there exists y € S such that > € Q but y ¢ Q, ie. y € S\Q.
If y € (z*yRR] for some x € X. Then (y] C ((z*yRR]] = z*yRR C (2*yRR] C
(z?(z*yRR|RR] = (z*yRRRR] C (z*yRR] C (2*(z*yRR)RR] = (2yRRRR] C
(zSyRR] C .......... C (z*%RR] C .......... C (z"YyRR] C e (z?yRR] C ............
Continuing in this way we obtain (y] C (z*"yRR] for arbitrary m € N. So, (y] C
(z?™(x*’yRR]RR] = (x*"*2yRRRR] C (2" *2yRR] = (z*™**YyRR] for m +1 € N.
Thus it is true for all n € N. Hence (y] C ), en(@*"yRR] for all n € N. Now
Y € MNpen(@®yRR] C N,en(@*R] € Q, which is a contradiction. So, y ¢ (*yRR).
Hence (y] € (z*yRR] = (y] U (ySS] € (#*yRR] = (yUySS] € (#*yRR]. Since
S is right chain ordered ternary semigroup we have (2?yRR] C (y U ySS] =
(X*yRR] C (y UySs].
If X = R, then (R?yRR] C (yUySS]. Thus we have ((y UySS]RR]? is a right ideal
of S. Then ((y UySS|RR]* = (yRRUySSRR]* C (yRR]® = (yRR](yRR](yRR] C
(yRRyRRyRR] C (y(y UySSJyRR] = (y’)RRU y*>SSyRR] C (y>’SRRUy*SSSRRE]
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C (y*SSRUy*SSSSR] C (y*R]. Let Y = ((y UySS]RR)?. Then Y is also a right

ideal of S. Now we have,

| ﬂ

y*R)®
y*R|(y*R](y*R]
v’ Ry* Ry’ R]
v*(RPy*(R]*y*R]
v>’RRRy’RRRy*R]

N

N

Yy’ RRSSySSRSSR]

N

v’ RRyRR]

N

v (y UySS]|

(

= (

< (

= (

= (
(y*RRSSySSRSSR]
(

(

(

= (¥’ Uy’SS]
(

N

QJ =

Since @ is a prime ideal we have Y C @ ie. ((y UySS|RR]? C Q = ((y U
ySS]RR] C Q = (yUySS|RR C Q. Again since @ is a prime ideal we have either
(yUySS] € Q or RC Q. But R C @ contradicts the fact that @ C R. Again
(yUySS] C Q = y € @ which is also a contradiction. Thus X # R and we must
have X C R.

To complete the proof, take any a € R\X C R\Q, then a € R but a ¢ X. So,
MNyen(a®™R] € Q. Since (a®"R] is a right ideal of S for all n € N by Proposition
, MN,en(a®™R] is also a right ideal of S. Since S is a right chain ordered ternary
(@R € () (@"S].

Again (),y(a®"R] € Q@ = (a®"R] € Q for all n € N = «*a ¢ Q for all
neN=a"""¢QforallneN. Alsoa ¢ X and Q C X = a € Q. Thus
a ¢ Q and a®*™! ¢ Q implies that ¢! ¢ Q for all n € N. Hence for any element

semigroup , we must have Q) C ) neN

a € R\X C R\@, we have a is not Q-nilpotent.
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This completes the proof. n

6.4 Prime right segments of right chain ordered
ternary semigroup

Following [31], we define a prime (resp. prime left, prime right, prime lateral)

segment of a right chain ordered ternary semigroup (5, ., <).

Definition 6.4.1. Let (S, ., <) be a right chain ordered ternary semigroup.

(a) A prime segment of S is a pair (Py, Py) of completely prime ideals of S such that
Py, C Py and there are no further completely prime ideal of S exists between Py and
P.

(b) A prime right segment of S is a pair (Ry, Ra) of completely prime right ideals
of S such that Ry C Ry and there are no further completely prime right ideal of S
exists between Ry and Rs.

(¢) A prime left segment of S is a pair (Li, Ls) of completely prime left ideals of S
such that Ly C Lo and there are no further completely prime left ideal of S exists
between L, and L.

(d) A prime lateral segment of S is a pair (My, My) of completely prime lateral ideals
of S such that M, C M,y and there are no further completely prime lateral ideal of
S exists between My and M.

Next we show that for a prime right segment of a right chain ordered ternary

semigroup four different posibilities may happen.

Definition 6.4.2. Let (5,.,<) be a right chain ordered ternary semigroup, and let
(R1, Ry) be a right prime segment of S. The right prime segment is called simple if
there are no further right ideals of S between Ry and Rs. i.e. there are no further

ideals of S between Ry and R,.

Definition 6.4.3. Let (S,.,<) be a right chain ordered ternary semigroup, and

let (Ry1, Ry) be a right prime segment of S. The right prime segment is called
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archimedean if for every a € Ro\R; there exists a right ideal I C Ry of S such
that a € I and (), = Ry.

Definition 6.4.4. Let (5, .,<) be a right chain ordered ternary semigroup, and let
(R1, R2) be a right prime segment of S. The right prime segment is called exceptional
if there exists a prime right ideal Q) of S with Ry C QQ C Rs.

Definition 6.4.5. Let (S, ., <) be a right chain ordered ternary semigroup, and let
(Ry1, Rs) be a right prime segment of S. The right prime segment is called supple-
mentary if there exists a right ideal D of S such that Ry C D C Ry and D is minimal

over Ry.
Next we have the following theorem for prime right segments:

Theorem 6.4.6. Let (S,.,<) be a right chain ordered ternary semigroup, and
(R1, R2) be a prime right segment of S. Then the prime right segment (Ry, Rz)

15 either simple or archimedean or exceptional or supplementary.

Proof. Let (Ry, R2) be a prime right segment of a right chain ordered ternary semi-
group S. Then prime right segment (R;, Ry) is either simple or not simple. If
(R1, Ry) is simple, then our aim is done. Let us suppose that the prime right seg-
ment is not simple. Then there exists an ideal I of S such that Ry C I C Rs.
Case 1: First assume that Ry ¢ H(S;). Then H(S;) C Ry, since S is a right
chain ordered semigroup. So, by Theorem we have H(S)) is a semiprime right
ideal of S and I C H(S;). Since S is a right chain ordered ternary semigroup by
Corollary [6.3.1] H(S;) is a prime right ideal of S and Ry C I C H(S;) C R,. So,
H(Sy) is a prime right ideal lying properly between R; and R,. Thus the prime
right segment is exceptional in this case.

Case 2: Next we assume that Ry C H(S7). Here we have two cases.

Subcase 2a: First consider the case where the prime right segment (R;, Rs)
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contains the ideal I of S such that (/™! = (I*"!] for some m € N. Then

([2m+1] (IZm 1+2] ([2m 1[2] ((IQm—l]IQ] — (([2m+1][2] ([2m+3]
(12H3] = (P4 = (1P ) = (121 = (241 = (120

(]2m+5] (I2m 1+6] (I2m 116] ((IQm—l]]6] — ((]2m+1]]6] (IQm—i-?]

So continuing in this way we get (™71 = ([*"T] = (™3] = ... = ([2m+(n=1)]
for all n € Nie. ([P = (™12 = (P = .. = (I*™=121] for all
n € N. So, (I*™71] = (I*"~'*2*] for all k € N. Let D = (/*"~!]. Then D is a right
ideal of S. Thus we have D = ([?™71] = ([@m~D@n=1)] = (([2m-12n=1)] = (D2—1]
forallm € Nand D = (I*™7!] C (I] = I C Ry. Now if D = (I*™~!] C Ry, since R; is
completely prime hence prime we would get / C R;, which is a contradiction. Thus
D ¢ Ry and so Ry C D, since S is a right chain ordered ternary semigroup. Next
we show that D is minimal over R;. Let us suppose that D is not minimal over Ry,
then there exists a right ideal A of S such that Ry C A C D. Then R C A C R».
Again A C D implies that D ¢ A and so D*" ' ¢ A for all n € N. Thus D is not

A-nilpotent. Hence by Proposition |6.2.6j “ N,en(D?" 71 = D is a completely prime

nen(
right ideal of S and so D is a completely prime right ideal of S which contradicts
the fact that (R, Rg) is prime right segment. Hence D is minimal over R; and thus
the prime right segment is supplementary in this case.

Subcase 2b: Next consider the case where (I*"71] # (I?"*!] for all n € N.
Since Ry C I then I ¢ R;. Now for alln € N, [*"' C By = I C R; since R,
is completely prime right ideal of S. So, I*""! ¢ R;. Thus we have R; C "1
for all n € N, since S is a right chain ordered ternary semigroup and thus R; C
(I*"'] C Ry for allm € N = Ry C ,,y(I*"'] C Ry. By Corollary [6.2.7) the

ideal () .n(7?"7'] is completely prime right ideal of S. Since (Ry, Ry) is a prime

neN
right segment, there are no further completely prime right ideals between R; and

Ry. Hence (), cy(I*" 7] = Ry.
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Let us consider the set Z be the collection of all ideals I, of S such that Ry C

I, C Ry, where k € A and A is an index set.
IT=AI, CS: Iyisanideal of S and Ry C Iy C Ry, k € A}

Then for any ideal I, € Z, we have (), (Ix*" '] = Ri. Let us suppose X =
U;ez I then by Proposition X 1is also a right ideal of S. If X = R, then
a € Ry\ Ry = Ry\ X there is an ideal I such that a € I}, where I}, C UlkeZ[ =X =
Ry and (), cn(Ix** '] = Ryi. Thus in this case the prime right segment (R, Ry) is
archimedean.
If X # Ry then X C Ry. Then we have the following two cases:

Subcase 2b(1): (R3] # Ry. Then (R3] C Ry. If (R3] C Ry, then since Ry is

completely prime right ideals of S we have Ry C R; which is a contradiction. Thus
(R3] € Ry. Since S is a right chain ordered ternary semigroup, Ry C (R3] and so
Ry C (R3) C Ry. Thus (R3] € Z. Then N, (B3> Y] = Ry = ,en(Ba" V] =
R;. Again Ry C Ry = Ry ¢ R;. Thus for any n € N, (R3™ '] C R, implies that
Ry C Ry, since Ry is completely prime right ideal. Hence (R3""'] € R, for alln € N.
Thus By C (),en(BZY € N,en (R3] = Ry. Hence Ry = (,n(RZ*Y). Thus
for every a € Ry\R; we have ﬂneN(Rgn_l] = R;. Therefore, the prime segment is
archimedean in this case.

Subcase 2b(ii): (R3] = Ry. We show that the ideal X is prime and our aim is
done. Let A be a right ideal of S such that A> C X C R,, which implies that A C R,
since Ry is completely prime. If A = Ry, then Ry = (R3] = (A%] C (X] = X, which
contradicts the fact that X C Ry. Hence Ry # A and so A C R,. Now (R3] C Ry
imples that R} C Ry = Ry, C R;, which is a contradiction. Thus Ry C (R3] C
(A%] € (ASS] C (Al = A. Hence Ry C AC Ry andso A C J;er I = X. Thus X

is prime right ideal properly lying between R; and R,. Therefore, the prime right

segment is exceptional in this case. O]

We explain the proof of the above theorem by the following chart:
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Prime right
segment

=

not simple

J an ideal I such that Ry C I C R,

Ry ¢ Hi(S) Ry C Hy(S)
)
exceptional
- @@
(= (1] #
([2n+1] ([2n+1]
supplementaryl X=J{I:R CICRy}

Ol o EITN

archimedean
- @@

Do

Figure 6.1: Chart



ON RIGHT CHAIN ORDERED TERNARY SEMIGROUPS

In the next corollary we characterize archimedian prime right segements of right

chain ordered ternary semigroups.

Corollary 6.4.7. Let (R, Ry) be a prime right segment of a right chain ordered
ternary semigroup (S, ., <). Then the following conditions are equivalent:

(i) The prime right segment (Ry, Ry) is archimedean.

(i) For any a € Ro\Ry, (,en(a®S] = Ry.

(111) For any a € Ro\ Ry, (ReaRy] C (aUaSS].

Proof. (1) = (ii) Let us consider the prime right segment (R;, Ry) is archimedian.
Then for every a € Ry\R; there exists an right ideal I C Ry of S such that a € T
and ﬂ (IQnil] = R;.

neN

Let z € ﬂ (a®9]

neN

= 2 € (a®"S] for alln € N
— x € (I*"S] for all n € N
x € (I*"*11S] for all n € N

= x € ([ ?1S8S] for alln € N

—xc (I* ' forallneN

=z e[ |I*™ '] =R

neN

Thus ﬂneN(a%S] C Ry. Again, for any n € N, (a*"Ry] C Ry = a*"a € R| =
a®t' € Ry = a € R; [ since R; is completely prime]. This is a contradiction.
Thus (a®"Ry] € Ry and for any n € N. Then Ry C (a**R,] C (a®*S] for all n € N.
Therefore, Ry C ,,cn(@*"S] and hence (N, oy(a*S] = R;.
(ii) == (iil) Let us suppose for any a € Ro\R; and (a U aSS] C (RyaRy]. Then
a € (RsaRs] which implies that a < raq for some r,q € Ry. If either r or ¢
in Ry then a < raq € RiSR; C R1SS C Ry = a € (Ry] = Ry, which is a

contradiction. Thus 7, q ¢ R; and so r,q € Ry\R;. Moreover, a < raq implies that
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a < r(raq)q = r*aq® < r*(raq)q® = r*aq® < r3(raq)q® = rtag* < r*(raq)q* = .....
continuing in this way we get a < r"aq" for all n € N. Thus a < r*ag¢®" for all
n € N. So, a € (r**S5*"] = (r*S?"*1] = (r*"S] for all n € N. Thus a € (), (r*"5].
By (ii) (,en(r?"S] = Ry. which implies that a € Ry, which is not possible. Hence
(aUaSS] € (RaaRs) and so (ReaRs] C (aU aSS].

(ili) = (i) Assume that (iii) holds. Then for any a € Ry\R;, (ReaRy] C Ry —
a® € Ry = a € Ry | since R, is completely prime ideal of S]. Thus for any
a € Ry\Ry, we have Ry C (RyaRy] C (aUaSS| C (Ry U RySS] C (Ry] = Ry, and
thus the prime segment (R;, R) is not simple.

Suppose the prime segment (Ry, Ry) is exceptional, i.e. there exists a prime right
ideal @ of S such that Ry C ) C R,. Then by Proposition there exists an
ideal D of S which is minimal over Q). Now (iii) implies that for any a € D\Q we
have @ C (RyaRs2] C (aUaSS] C D, which contradicts the fact that R is minimal
over . Thus the prime right segment (R, R») is not exceptional.

Next, suppose the prime segment (R;, Rs) is supplementary. Then there exists
a right ideal K of S such that Ry C K C Ry and K is minimal over R;. Then by
(iii), for any a € K\R; we have Ry C (ReaR;] C (aUaSS] C K. Then there exists
right ideals of S properly lying between K and R;, which is a contradiction. Hence
the prime segment (R;, Ry) is neither simple, nor exceptional, nor supplementary,

and thus by Theorem [6.4.6[it must be archimedean. This completes our proof. [
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Chapter 7

(n, m,l)-ideals in ordered ternary

semigroup

7.1 Introduction

In this chapter we have introduced the concept of (n,m,[)-ideal in ordered
ternary semigroup and study properties of (n,m,1)-ideal in different classes of or-
dered ternary semigroups. Let [, m, n be non-negetive odd integers. A ternary
subsemigroup A of an ordered ternary semigroup S is called an (n, m,[)-ideal of S if
it satisfies the following conditions: (i) A"SA™SA' C A (ii) (A] = Aie. forye S
andz e A, y<z=yecA

Throughout this chapter, S denotes an ordered ternary semigroup.

7.2 Characterization of (n,m,l)-ideal in ordered
ternary semigroup

Theorem 7.2.1. Let S be an ordered ternary semigroup and A be an (n,m,l)-ideal

of S. Then for any ternary subsemigroup T of S, (ANT] is an (n,m,l)-ideal of T,
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where [, m, n are non-negetive odd integers.

Proof. Since A is an (n,m,l)-ideal of S, A is a ternary subsemigroup of S. Now
(ANTP = (ANTIANT|(ANT] C (A3NT? C (ANT]. Again let z € (AN
TI"T(ANT|™T(ANT). Thus z = a"sb™tc for some a,b,c € (ANT] C (A] and
s,t € T C S. Hence z = a"sb™tct € (A|"S(AJmS(A]'! € A"SAmSAL C A. On
the other hand, = a"sb™tc € (T|"T(T)™T(T)' C (T"TT™TT'] C (T]. Hence
e AN(T)C(AIN(T] C (ANT]. Also, (ANT]]=(ANT]. Hence (ANT]is an
(n,m,l)-ideal of T. O

Theorem 7.2.2. The non-empty intersection of any collection of (n, m,l)-ideals of
an ordered ternary semigroup S is an (n,m,l)-ideal of S where I, m, n are non-

negetive odd integers.

Proof. Let S be an ordered ternary semigroup and {A, : @ € A} be the collection
of (n,m,()-ideals of S. Suppose (| A # {}. Then () Aa) C Ap for all 5 € A.

a€A acA

So ( DA Aa)’ = (N A)( N Aa)( QA Aa) © ApAgds = Ag® C Ag.

a€A a€A

Thus () A, is a subsemigroup of S. Again for all v € A we have,
acA

(N A"S(N A)"S( N Aa)' € A,SA,SA, C A,

a€A aEA aEA

= (N A)"S(N Aa)"S(N Aa)' € N Ao

acA acA acA aceA

Also (N AuJ € N (Aa] = N Aa S (] Ad] -

acA acA acA acA

Therefore, the non-empty intersection ( (| Aa] of any collection {4, : a € A}
aEA
of (n,m,l)-ideals of an ordered ternary semigroup S is an (n, m,[)-ideal of S. [

Theorem 7.2.3. Let (5, ., <) be an ordered ternary semigroup and a € S. Then the
intersection of all (n,m,l)-ideals of S containing a is an (n,m,l)-ideal of S denoted
by [a)nmy and it is of the form

n+m-+l1

almpy = | {a'}ua"Sa™Sal]

i=2k—1,keN

where [, m, n are non-negetive odd integers.
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Proof. Suppose {A; : i € I} be the set of all (n, m,[)-ideals of S containing a. Then
Nics Ai is non-empty since a € (),.; A; and by Theorem we have (1),c; 4; is an
(n,m,l)-ideal of S. Thus [a](my = N;e; Ai-

n+m-+l
Now, (( U {a’} Ua"Sa™Sd'])" s
i=2k—1,keN
n+m-+l . . n+m-+l .
= (( U {a'}Ua"Sa™Sa'])" ( U {a'} Ua™Sa™Sd'|S
i=2k—1,keN i=2k—1,keN
n+m-+l A
C (( U {a'} U a”SamSal])n_l(aS]
i=2k—1,keN
e,
n+m-+l A
C (( U {a’} Ua"Sa™Sd])" " (a"9]
i=2k—1,keN
= (a" 5]
n+m-+l ) m
Similarly, (( U {a’} Ua"Sa™Sd'])"S C (a™S].
i=2k—1,keN
n+m+l ] n n+m+l ] m n+m+l )
So, (U A{atua"SamSa))"S(( U {d'}ua"SamSd'])"S(( U {a'}U
i=2k—1,keN i=2k—1,keN i=2k—1,keN
n+m-+l
a”SamSal])l C (a"S](a™S](d'] C (a®Sa™Sa' | C ( U {a'}ua™Sa™Sal].
i=2k—1,keN
n+m-+l )
Thus we have (|  {a‘} Ua"Sa™Sd!] is an (n,m,[)-ideal of S containing a
i=2k—1,keN
n+m+l )
and hence [a]mmy C (U {a'} Ua™Sa™Sd!).
i=2k—1,keN

Again (a"5a"Sa') € ([a)inmy" Sl non)" 1) men)] € [a)inn.

n+m-+l1

Therefore, ( |J  {a’} Ua™Sa™Sa'] C [a]mm-
i=2k—1,keN
n+m-+l )
Thus for any element a of S, we have [a]my =( U {a'}Ua"Sa™Sdl].
i=2k—1,keN

O

Theorem 7.2.4. Let X and Y be two subsets of an ordered ternary semigroup S
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and A be an (n,m,l)-ideal of S, where I, m, n are non-negetive odd integers. Then
(AXY], (XY A] and (YAX] are (n,m,l)-ideals of S if AXY CAor XYAC A or
YAX C A.

Proof. Let us assume AXY C A. Then (AXY]? = (AXY](AXY](AXY] C (A](A](A
XY] C (A3XY] C (AXY]. Thus (AXY] is a ternary subsemigroup of S. Now,

(AXY]"S(AXY]™S(AXY]
AXY(S(AXY]™(S|(AXYT]
AP (S)(A™ (S|(AX Y] (AXY]

< (
< (
C (A" (SUA]™S (AT (AXY]
= (A"SA™SA'XY)]

< (

AXY]

Hence (AXY] is an (n,m,[)-ideal of S.
Also, (XYAP = (XYA|(XYA|(XYA] C (XYAXYAXYA] C (XYAY] C
(XY A]. Thus (XY A] is also a ternary subsemigroup of S. Now,

(XYA]" = (XYA|(XYA/(XY A]...... (XY A] (1 times )
C(XYAXYAXYA...... XY A]

n times

— (XY A"]

Then (XY A"S(XY A" S(XY Al C (XY A"(S|(XY A™|(S](XY AY] = (XY A"SXY
AMSXY A C (XY A"SSSA™SSSAY C (XY APSA™SA! C (XY A]
Hence (XY A] is also an (n,m,[)-ideal of S.

Again, (VAX] = (YAX](YAX|(YAX] C (YAXYAXYAX] C (YAPX] C
(Y AX].

131



(N, M, L)-IDEALS IN ORDERED TERNARY SEMIGROUP

On the other hand,

(YAX]"S(Y AX|™S(Y AX]!
C (YA"X](S|(Y A" X](S](Y A'X]
= (YA"XSY A" X SY A'X]
C (YA"SSSA™SSSA'X]
C (YA"SA™SA'X] C (YAX]

Hence (YAX] is an (n,m,[)-ideal of S.
Similarly, we can prove the result if one of the conditions XY A C Aor YAX C A
holds. O]

Corollary 7.2.5. Let A be an (n,m,l)-ideal of an ordered ternary semigroup S
where [, m, n are non-negetive odd integers and a and b be two arbitrary elements

of S. Then (abA], (Aab] and (aAb] are also (n,m,l)-ideals of S.

Definition 7.2.6. An ordered ternary semigroup is called (n,m,1)-simple if it does

not contain any proper (n,m,l)-ideal, where n,m,l are non-negetive odd integers.

Lemma 7.2.7. A ternary semigroup S is (n,0,0) (resp. (0,m,0), (0,0,1))-simple
if and only if (a®SS] = S (resp. (Sa™S| =S, (SSd'] = S), for all a € S where

n,m,l are non-negetive odd integers.

Proof. Let A be an (n,0,0)-ideal of S and (a®SS] = S for all a € S. Let x € S.
Then z < a™yz for some y,z € S. So, z < a"yz € A"SS C A [ since A is an
(n,0,0)-ideal of S] = = € (4] = A. Thus S C A and hence S is (n, 0, 0)-simple.
Conversely, let S is (n,0,0)-simple and a € S. Then (a"SS] is an (n, 0, 0)-ideal
of S. Since S has no proper (n,0,0)-ideal then (a™SS]| = S.
Similar proof for (0, m,0)-simple, (0,0, [)-simple ternary semigroup. ]

Theorem 7.2.8. Let n,m,l be non-negative odd integers. An ordered ternary semi-
group does not contain proper (n,m,l)-ideal if and only if it is (n,0,0)-simple,

(0,m,0)-simple and (0,0,1)-simple.
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Proof. Let S is (n,0,0)-simple, (0,m,0)-simple and (0, 0,))-simple. Thus (a"SS]| =
S, (SamS) = S and (SSa!] = S for all a € S. Let A be an (n,m,l)-ideal in S.
Let x € A. Then S = (2"SS] = (z"(Sz™S]S] = (z"Sz™SS] = (z"Sz™S(SS2]] =
(z"Sxm 5SSl C (a"Sax™mSxl] C (AnSA™SA! C (Al = A. Thus S has no proper
(n,m,)-ideal.

Conversely, S does not contain any proper (n,m,l)-ideal. Let B be a (n,0,0)-
ideal of S. Then B"SB™SB! C B"SS™SS!' C B"SS C B. Thus B is an (n,m,1)-
ideal in S and so B = S. Hence S is (n,0,0)-simple. Similarly, we can prove that S
is (0,m,0)-simple and (0,0, [)-simple. ]

Definition 7.2.9. An ordered ternary semigroup S is called a ternary group like
ordered ternary semigroup if for all a,b,c € S there are x,y, z € S such that a < zbc,

a < byc and a < bez.

Theorem 7.2.10. An ordered ternary semigroup S is a ternary group like ordered
ternary semigroup if and only if it contains no proper (n,m,l)-ideals, where n,m,!

are non-negetive odd integers.

Proof. Let S be a group like ordered ternary semigroup and let A be an (n,m,[)-
ideal of S. Let a € A and b,c € S. Then a" € A* C ACS. Thus b < a"zxc € a"SS
for some z € S. So, b € (a™SS]. Hence S C (a™SS]. On the other hand, (a"SS] C
(S™SS] C (S] € S. So, S = (a"SS]. Therefore, S is (n,0,0)-simple. Similarly,
we can prove S is (0,m,0)-simple and (0,0, [)-simple. Then by Theorem the
ordered ternary semigroup conatins no proper (n,m,()-ideal.

Conversely, S conatins no proper (n,m,[)-ideal. Let b, c € S. Then by Corollary
[7.2.5] we have (bcS)], (Sbc] and (bSc] are (n,m,l)-ideals of S. Hence, S = (bcS],
S = (Sbc] and S = (bSc|]. Hence for all a,b,c € S we have a < bex, a < ybe and
a < bzc for some z,y,z € S. Therefore, S is a ternary group like ordered ternary

semigroup. O

Theorem 7.2.11. Let S be an ordered ternary semigroup and the ordered ternary

subsemigroups of S satiesfies the descending chain condition. If S has at least one
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proper (n,m,l)-ideal where n > 1, m > 1 and |l > 1 then S has either a proper
(1,p,q)-ideal or (p,1,q)-ideal or (p,q,1)-ideal, where I, m, n are non-negetive odd

integers.

Proof. Let ny be the smallest positive integer such that (nq,m,()-ideal exists, m; be
the smallest positive integer such that (n,my,[)-ideal exists and [; be the smallest
positive integer such that (n,m,[;)-ideal exists. We show that either ny < m,l or
my < n,l orl; < n,m holds. If ny > m,l and m; > n,[ holds then n; < n and
m < ny < n < my contradicts the minimality of m;. Similarly, m; > n,[l and
Iy > n,m contradicts the minimality of {; and ny > m,[ and l; > m,n contradicts
the minimality of ny. Let 1 <ny < m,l and A is a proper (n;,m,)-ideal of S. Let
AMSAMSA' C A and By, = B SB;"SB,! where i =1,2,3,....... Thus B;11 C A.
Since B; satiesfies the descending chain condition of subsemigroup of S, then there
exists a positive integer j such that B; = B, forallk > lie. B; = Bj’“SBijle.
If we take B = B;, then B = B"SB™SB!. Therefore,

B =B"SB™SB!

— B™SB™SBPSB™SB' = BSB"SB!

— B"SB™SB'B~™B™SB™SB' = BSB™SB!
— B™SB™SB"™(B"SB™SB") = BSB™SB'
— BmSB™SB""™B = BSB™SB

— B SB™SB"™m*! = BSB™SB!

— BmSBmSBi-mtipm-l — pSpmSB! M1
—> B"SB™SB' = BSB"SB"™M !

— B = BSB™SBtm—1

Thus B is a (1,m,l + ny — 1)-ideal. Taking p = m, ¢ =1+ n; — 1 we can say
that S has a proper (1, p, g)-ideal in S.

In the similar way we can say that, if m; < n,[ holds then S has a proper (p, 1, ¢)-
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ideal and if [; < n,m holds then S has a proper (p, g, 1)-ideal. ]

7.3 (n,m,l)-ideals in (n,m,[)-regular ordered ternary
semigroup

Definition 7.3.1. Let S be an ordered ternary semigroup and n,m,l are non-
negetive odd integers.

o An (n,m,l)-ideal A of S is called quasi-prime if (AjA3A3] C A= A; C A or
Ay C A or A3 C A, where Ay, Ay, As are (n,m,l)-ideals S.

e An (n,m,l)-ideal A of S is called quasi-semiprime if (A}] C A = Ay, where
Ay, Ag, Az are (n,m,l)-ideals S.

o An (n,m,l)-ideal A of S is called strongly quasi-prime if (A1 AsA3] N (A2A3A4:] N
(A3A14) C A= A C A or Ay C A or A3 C A where Ay, Ay, As are (n,m,l1)-
ideals S.

Note that strongly quasi-prime ideals are quasi-prime ideals. Also quasi-prime

ideals are quasi-semiprime ideals of S.

Definition 7.3.2. Let S be an ordered ternary semigroup and n,m,l are non-
negetive odd integers.

e An (n,m,l)-ideal A of S is called irreducible if Ay N AyN A3 = A= Ay = A or
Ay = A or A3 = A where Ay, Ay, Az are (n,m,l)-ideals S.

o An (n,m,l)-ideal A of S is called strongly irreducible if A\NAsNA3 C A=A CA
or Ay C A or A3 C A where Ay, Ay, A are (n,m,l)-ideals S.

Strongly irreducible (n,m,[)-ideal = irreducible (n,m,()-ideal

Theorem 7.3.3. The non-empty intersection of any collection of quasi-semiprime
(n,m,l)-ideals of an ordered ternary semigroup S is a quasi-semiprime (n, m,l)-ideal

of S.
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Theorem 7.3.4. Let A be an (n,m,l)-ideal of an ordered ternary semigroup S. If

A is strongly irreducible and quasi-semiprime, then A is strongly quasi-prime.

Proof. Let A be a strongly irreducible and quasi-semiprime (n,m,[)-ideal S and
suppose (A1 A2 A3|N(A2A3A1]N(A3A1 Ay] € A where Ay, Ay, Az are (n, m, [)-ideals S.
Now (A;NANA3)? C AjAsAs. Thus (A1NA;NA3)? C A Ay AsNAs A3A1NA3 A Ay C
(A1A3A3 N AsA3AL N A3A1 Ag) C (A1 A2 A3l N (AsAs3A ] N (AsA1As] C A,

If AynAsNAs = {}. Then A;NANA; C A. If AjNAsNA;s # {} then A;NANA;3
is an (n,m,[)-ideal of S. Since A is quasi-semiprime, (4; N Ay N A3)3 C A =
A1NANAs C A. Again A is strongly irreducible, hence A{NA;NA3 C A= A C A
or Ay € A or Az. Therefore, A is strongly quasi-prime (n, m,[)-ideal of an ordered

ternary semigroup S. O

Definition 7.3.5. An ordered ternary semigroup is called (n,m,l)-reqular if a €

(a"Sa™Sd'] for all a € S, where n,m,l are non-negetive odd integers.

Theorem 7.3.6. Let S be an ordered ternary semigroup. Then S is (n, m,l)-reqular

if and only if [a](nmy = (a"Sa™Sd'] for alla € S.

Proof. Let S be an (n,m,l)-regular ordered ternary semigroup. Let z € [a](m,) for

n+m-+l . n+m+l ]

somea€S. Thusze( J {d}ua"SamSd]=( U {d'}U(a"SamSd'].

i=2k—1,keN i=2k—1,keN

n+m+l )
Therefore, we have either z € (a"Sa™Sa'lorz € ( | af].
i=2k—1,keN
If x € (a"Sa™Sa'], then our proof is done.
n+m+1l ) )
Ifze( U a then x € (¢’] where 2k — 1(k € N) < j <n+m+ (. Thus
i=2k—1,keN

xr € ((a"SamSal]j] C ((a™Sa™Sd']] C (a"Sa™Sda']. Again (a™Sa™Sa'] C [a]pmm).
Therefore, [a],my) = (a™Sa™Sa'].

Conversely, suppose for all a € S, we have [a](,m) = (a™Sa™Sd']. Since [a] g m.
contains a, a € (a"Sa™Sa!]. Therefore, S is an (n,m,l)-regular ordered ternary

semigroup. ]
Lemma 7.3.7. Let A be an (n,m,l)-ideal of an ordered ternary semigroup (S, ., <)
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where n, m,l are non-negetive odd integers and B be a non-empty subset of A. Then

(B] = (Bla.

Proof. 1t is obvuious that (B]a C (B]. Let z € (B]. Then x € S such that x <b
for some b € B C A. Thus = € (A] = A. Hence z € A such that x < b € B implies
that z € (B]4 and so (B] C (B]a. Therefore, (B] = (B]a. O

Theorem 7.3.8. Let A be an (n, m,l)-ideal of an ordered ternary semigroup (S, ., <)

where n, m,l are non-negetive odd integers and B be a non-empty subset of A. Then

(1Bl nym))"S ([Ba) )™ S([Balnm))' | = (B"SB™SB']

n+m-+l )
where [Balmmiy defined by [Balmmy =( U {B'}UB"AB™AB',.

1=2k—1,keN

Proof. Let B be a non-empty subset of an (n,m,l)-ideal A. Then B C (B] =
n+m-+l )
(BlaC ( U {B}UB"SB™SB'|4 = [Balmmy. Therefore (B*"AB™AB'] C
i=2k—1,keN

(([Baltnm )" S([Balnmp)™S ([BAhn,m,l))l]- Now let 2 € (([Bal(nm)"S([Balmmp)™
S([BA](nﬁmJ))l]. Then we have z < b;"yby"2bs' for some y,z € S and by, by, bs €

n+m-+l n+m-+l
Balpmy =( U {B}UB"AB™AB'], C (( U {BZ}UB”AB”‘ABZ]A] =
i=2k—1,kEN i=2k—1,kEN
n+m-+l ) n+m-+l )
(U {B}uUB"AB™AB!] = U {B'}UB"AB™AB! | since we have,
i=2k—1,keN 1=2k—1,keN

n+m+l )
U {B}UB"AB™AB' C A]. The following cases may arise:
i=2k—1,keN

n+m-+l )
Case 1: 1fby,by,b5€ |J {B'}, then we have by € B",by € B* b3 € B' for
i=2k—1,keN

some 7, s,t € {1,3,5,...... ,n+m +1}. Then by yby™2bs" € (BT)"S(BS)mS(Bt)l -
B™SB*™SB" C B"SB™SB' and hence z € (B"SB™SB!].

n+m-+l )
Case 2: Ifb;,bpe | {B'}andbs; € B"AB™AB' C B"SB™SB', then we

i=2k—1,keN
have by € B",by € B* for some 1, s € {1,3,5,...... ,n+m +1}. Then b,"Sby,™Sbs" €

(B")"S(B*)"S(B"SB™SB) C B"SB™SB!. Thus z € (B"SB™SB].
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n+m+l )
Case 3: b;,bz€ |J {B'} and by € B"AB™AB'. Proof is similar to Case
i=2k—1,keN

n+m-+l )
Case 4: by, b3 € U {B'} and b, € B*"AB™AB'. Proof is similar to Case

i=2k—1,kEN

n+m-+l

Case 5: Ifb, € U  {B%} and by,b3 € B"AB™AB!. Then b, € B" for some

i=2k—1,keN

r€{1,3,5,.....,n+m-+l}. Then b;"Sby"Sbs' € (B")"S(B"AB™AB")"S(B"AB™AB")'
C (B")"S(B"SB™SB)"S(B"SB™SB!) C B"SB™SB'. Thus z € (B"SB™SB!].

n+m-+l1 )
Case 6: If by € |J {B'} and by,b3 € B"AB™AB'. The proof is similar
i=2k—1,keN
to case b.
n+m-+l1 )
Case 7: If by € U {B'} and by, by € B"AB™AB!. The proof is similar
- i=2k—1,keN
to case b.

Case 8: 1f by, by, by € B"AB™AB' C B"SB™SB'. Then we have b;"Sb,™Sb;' €
(B"SB™SBY"S(B"SB"SB)"S(B"SB"SB!) C BrSB™SB. Thusx € (B"SB™SBI].
So, in all cases we have z € (B"SB™SB!.

Hence (([BA](n’m,l))nS([BA](mm,l))mS([BA](mmJ))l] g (BnSBmSBl]
Therefore, (([BA](n,m,l))nS([BA](n,m,l))ms([BA](n,m,l))li| = (B"SB"SB. 0

Theorem 7.3.9. Let (S, ., <) be an ordered ternary semigroup and A be an (n,m,1)-
ideal of S. Then every (n,m,l)-ideal of A is an (n, m,l)-ideal of S if and only if for
each non-empty subset B of A, (B"SB™SB!| C [Bal(nmyp) -

Proof. Let A be an (n, m,[)-ideal of an ordered ternary semigroup (5, ., <) and every
(n,m,l)-ideal of A is an (n,m,1)-ideal S. Let B be a non empty subset of A. Now

n+m+l

Balmy =( U {B}UB"SB™SB!], is an (n,m,[)-ideal of A and hence an
(n,m,1)- 1deallof21i91%‘e§us B"SB™SB' C (B"SB™SB'(([Balnmu)™S([Bal@mmu)'S
([Balmmn)"| € ([Balnmn] S [Balmm-

For the converse part let us assume that for some non-empty subset B of A,

B"SB™SB" C [Ba|nmu- Let I be an (n,m,l)-ideal of A. Thus I C A.
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Now we have,

I"ST™ST!

g [IA](n,m,l)
n—+m-1 A
=( U A{ryursrsri,

i=2k—1,keN
=(JulPu... .Uty SIS,

Cla=1

Hence [ is an (n,m,[)-ideal of S. O

Theorem 7.3.10. Let (S, ., <) be an ordered ternary semigroup. Let R, 0.0y, M(0.m,0)
and Lo, are the set of all (n,0,0)-ideals, (0,m,0)-ideals and (0,0,1)-ideals respec-
tively. Then the following statements hold:

(i) S is (n,0,0)-regular if and only if (R*SS] = R for all R € R, 0,0

(ii) S is (0,m,0)-regular if and only if (SM™S] = M for all M € Mg .0

(ii) S is (0,0,1)-regular if and only if (SSL'| = L for all L € Ly

() S is (n,m,1)-regular if and only if (R"M™L') = RNM N L for all R € Rn0,),
M € Mmoo and L € Lo,y)-

Proof. (i) Let S be (n,0,0)-regular ordered ternary semigroup. Let a € R C S.
Thus a € (a"SS] and so a < a"xy for some z,y € S. Thus a € (R"SS]. Again
(R"SS] C (R] = R. Therefore, (R"SS] = R.

Conversely, let (R"SS] = R for all R € Rp00). Let a be an arbitrary element
in S. Now [a](n00) € Rmo0)- Now [a]mo0) = (([a](n00)"SS] C (a"SS]. Hence
a € (a"SS] and S is (n,0,0)-regular.

Similar proof for (ii) and (iii).

(iv) Let S be an (n,m,[)-regular ordered ternary semigroup. Let a € RN M N L

where R € R(n00, M € Momo and L € Lgy. Since a € 5, a < a"ramyal

for some x,y € S. Now a < a"ra™ya' = a" taxa™ya' < a" '(a"wa™ya!)ra™yal =
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a® zamyalza™yad = a"a" xa™yalzamyal € RPS"TISM™SSISSMSLE = RPSTM™
SmHES L C RPSM™SLE C RPM™L! [ since M is a (0,m, 0)-ideal, SM™S C M].
Thus a € (R"M™L!. Again (R"M™L'] C (S"S™LY C (SSL'] C L. Similarly
(R"M™L') C M and (R"M™L"] C R. Thus (R"M™L) C RAM AL C (RNMNL|
and hence (R"M™L'] = (RN M N L).

Conversely, les RN M N L = (R"M™L'. Now a € [a]mo0). Again [a]mo0 €
Rn00), [alom0) € Momo), [alooy € Loy Then [a]um,00) N [alomo) N [a]000) =
([a](n.0.0)" ([a)0m,0)) ™ ([a0.00)"] S (([a)(n0,0)]"S™S"] € (a™SS]. Thus [a](m,00)
(a™SS]. Also (a"SS]is an (n,0,0)-ideal of S. Similary [a] (om0 € (Sa™S], [a]0,01) C
(SSd'] and (Sa™S], (SSa'] are (0,m,0)-ideal, (0,0,1)-ideal of S respectively. Now

N

[a](n,0,0) = [@](n,0,0) N [@](0,m,0) N [a](0,0,0)
a"SS]N (Sa™SIN (SSal]

N

(a”SS)"(Sa™S]™ (S5 a")]

N

N

(

((
(a"SS](Sa™S)(SSa']
(a"SSSa™SSSa'|

< (a

"Sa™Sa']
Therefore, a € (a"Sa™Sa!] and hence S is (n,m,[)-regular ordered ternary semi-
group. O

Corollary 7.3.11. Let S be an ordered ternary semigroup. Then S is (n,m,l)-

reqular if and only if [a](m,0,0) N [a]0,m0) N [a]©0,00) = ([a]m00)"([a] (Oymyo))m([a](opyl))l
foralla € S.

Theorem 7.3.12. Let S be an ordered ternary semigroup. Then S is both (n,m,1)-
reqular and intra-regular if and only if (A3 = A for every (n,m,l)-ideal A of S.

Proof. Let us assume that S be an intra-regular and (n, m, [)-regular ordered ternary

semigroup. Let A be an (n,m,)-ideal of S. Thus A is a ternary subsemigroup of
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S. So A3 C A = (A% C (A] = A. Tt remains to show that A C (A3]. The following
cases may arise:

Case1: n=1,m=1,1=1
Here A is a (1,1, 1)-ideal of S, thus ASASA C A. Again S is a (1,1, 1)-regular and
intra-regular ternary semigroup. Thus A C (ASASA| and A C (SA3S]. Then we
have A C (ASASA] C ((ASASA|S(SA3S)S(ASASA] = (ASASASSA3SSASASA|
C (ASASAASSASASA] C (AASSASASA] C (AASS(SA3S|S(SA3S]SA] = (AAS
SSA3SSSA3SSA| C (AASASAAASSA] C (AAA(SA3S]SSA] = (AAASA3SSSA]
C (AAASASA] C (AAA] = (A3].

Case 2. n=1,m=1,1>1
In this case S is an intra-regular and (1, 1,1)-regular ordered ternary semigroup and
Ais a (1,1,0)-ideal of S. Thus ASASA! C A. Since S is (1,1,1)-regular A C
(ASASA! = (ASASA2A%) C (ASASA2(ASASAY(ASASAY| C (ASASA2(A]
(A]] C (ASAAA] C (AS(ASASAYAA] = (ASASASAIAA] C (AAA] = (A3).

Case 3: n=1,m>1,l=1
Thus S is an intra-regular and (1, m, 1)-regular ordered ternary semigroup and A
is a (1,m,1)-ideal of S. Therefore, ASA™SA C A. Thus A C (ASA™SA] =
(ASA™2A25A) C (ASAAASA] C (AS(ASA™SAJAAS(ASA™SA]] = (ASASA™S
AAASASA™SA] C (AAA] = (A4%].

Case 4:n>1m=11=1
Here Aisan (n,1,1)-ideal of S, thus A”SASA C A. Again Sis a (n, 1, 1)-regular and
intra-regular ordered ternary semigroup. Thus A C (A"SASA] = (A"2A2SASA| C
(A3SASA| C (A%2(A"SASA]SASA] C (A2A"SASA| C (A3].

Case 5: n>1,m>1,1=1
In this case S is an intra-regular and (n,m, 1)-regular ordered ternary semigroup.
Let A be an (n,m, 1)-ideal of S i.e A"SA™SA C A. Thus A C (A"SA™SA| =
(A"SA™2AASA] C (A"SAAASA]
C (A"S(A"SAMSAJA(AMSA™SA]SA] C (APSA™MSAAATSA™SA] C (A3].
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Case 6: n=1,m>1,1>1
Let A be an (1,m,l)-ideal of S. In this case S is an intra-regular and (1,m,)-
regular ordered ternary semigroup. Thus A C (ASA™SAY = (ASA™2AASA! C
(ASAAASA! C (AS(ASAMSANA(ASA™SAYSAN C (ASA™MSATAASA™SAY C
(4],

Case 7:n>1m=1,1>1
Here A is a (n,1,0)-ideal of S i.e A"SASA' C A. Again S is a (n,1,[)-regular
and intra-regular ternary semigroup. Thus A C (A"SASA!| = (A"2A2SASA!| C
(AAASASAY C (AA(A"SASASASAY C (AAANSASA! C (A%).

Case 8: n>1,m>1,1>1
Here A is a (n,m,[)-ideal of S i.e AVSA™SA! C A. Again S is a (n, m, [)-regular and
intra-regular ternary semigroup. Thus A C (A"SA™SAY = (A"SA™MSA2AA] C
(A"SA™MSAAA] C (A"SA™S(A"SA™SAYSAA] C (ASA™SA'AA] C (A3).
Thus in all cases we have A C (A3].

Conversely, let a € S. Then ( nTjH {a'} Ua™Sa™Sd'] is an (n,m, l)-ideal of

i=2k—1,keN
S containing a. Since (A% = A for every (n,m,[)-ideal A of S, we have

n+m-+l

U {a'} U a"SamSal]
i=2k—1,keN
_ n+m-+l i . . 1]3}
((i:%qjkeN{a}Ua Sa™Sa
(U wroesesa](U w@oesesa (U o
((izsz,keN{a}Ua v i=2k—1,keN i=2k—1,keN
a"SamSalr”
n+m-+l ‘ l n+m-+l A l n+m-+l '
(Y eoesesa)( Y ervesesd(( Y
a"SamSalrﬂ
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ntmtl z ntmtl z nbmAl
B <<i2kg,keN{az} Jarsen > <i2kg,keN{az} Jarsee ) (izkg,keN{aZ} -
a"Sa™S al> 3}
= (( "U“ {a'} U a"SamSal>5} = << HUH {a'} U a"SamSal)3+2]
i=2k—1,keN i=2k—1,keN

Continuing in the similar way we get,

n+m-+l ) n+m-+l ) n+m-+1+2
( U {«}u a"SamSal} = << U {d}U a”SamSal) ]
i=2k—1,keN i=2k—1,keN
n+m-+l ) n+m-+I1+2
Thus a € (( U {}U a”SamSal) } C (a"Sa™Sa!] and also a €

i=2k—1,keN

(( HJUH {a'} Ua”SamSal>5} C (Sa®9].

i=2k—1,keN

So, S is both (n,m,)-regular and intra-regular ordered ternary semigroup. [J

Lemma 7.3.13. Let S be an ordered ternary semigroup. Then the followings are
equivalent:

(i) (A%] = A for every (n,m,l)-ideal A of S.

(11) Ay N As N Az = (A1 As A3l N (A AsAq] N (Ag Ay As) for all (n,m,l)-ideal Ay, As
and As of S.

(1i1) Every (n,m,l)-ideal of S is quasi semiprime.

Proof. (i)==(ii) Suppose A;, Ay and Aj are (n,m,[)-ideal of S.
Case 1: Let us consider the case when A; N A, N A3 = {}.

So, (A1 Az A3]" (A1 Ax As]™S(Ar Ay As]!
Ay Ap As]" (S](Ay As Ag]™ (S]( Ay As Ay
(A1 As Ag)(Ar Ay As)™ L S(Ar Ay As) (A1 As Ag)™ S (Ar Ay As)'~ (Ar Ay As)

C (
C (
C (4,855 1S AS8S™ 1SS Ay Ay As)
= (A;S™T2 A ST AL Ay As)

C (

ATSATSAL Ay Ag) C (A Ay Ay
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Also ((A1A243]] = (A1 A2A;5]. Hence (A1A2A3] is an (n, m,l)-ideal of S. Similarly,
(A2 A3A;] and (A3A;As] are also (n,m,l)-ideal of S. Let us assume (A;A3A3] N
(AA3A1] N (A3A1As] # {}. Then (A1 A2As] N (A2A3A1] N (A3A1As] is an (n,m, [)-
ideal of S. Therefore,

((A1A3A3] N (A2A3A1] N (A3A1A)))
C (((A1A2A3] N (A A3 AL N (A3A1Ag))
C ((A1A2A43)(ArA3 A1) (A3AL As)]

A1 As A3 Ay A3 AL As Al Ay

N

A1SASA,]

N

(

(

=

C (A1SSSA,S55 4]
(

(A"SAmSAl ]

(

N

Ayl =

Similarly, (A;4sAs] N (AsAsA1] N (A3A145] C Ay and (A, AsAs] N (AsAsA,] N
(AsA1As] C As. So (A1 A2 AN (A2A3A1)N(A3A41A5] € AjNAsNAs = {}. Thus our
assumption is not true. Hence (A1 AgA3]N(A2A3A41]N(A3A1A5) = {} = A1NANAs.
Case 2: Let us consider the case when A1 N Ay N A3 # {}.

Thus A; N Ay N A3z is an (n,m,l)-ideal of S. This implies that A; N Ay N A3 =
((A1NANA3)3] C (A1 AsA3NAy Az AiNA3 A As] C (A1 A A3IN(A A3 AN (A3 A Ag).
Hence (A; Ay A3)N(A3A3A1]N(A3A;1As] is non empty. By case 1 we have (A; Ay Az]N
(A2 A3 AN (A3 A A] C A; N AN Ay, Therefore, (A3 Az As]N(Az Ay Ar] N (A3 Ay Ay] =
AN AN As.

(ii)=-(iii) Let A be an (n,m,[)-ideal of S such that (A}] C A for some (n, m,[)-ideal
Ar of 8. Thus A, N AN Ay = (A1 A A N (AL ALAL] N (ALALA] = (A3] C A, Thus
A; C A and hence A is quasi-semiprime (n,m,[)-ideal of S.

(iii)=-(i) Let A be an (n,m,l)-ideal of S. Thus A is a ternary subsemigroup of
S. So, A3 C A= (A% C (A] C A. Now (A3"S(A3mS(A3)' C (A3"SA3mS A3 =
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(AmA2nSA™ AP S ALALAT] = (AmAZRSA™ AZM S ALAI A2 AA] = (AP §2n1 Am g2t A1
AF2ALAA] C (ARS2Zr+1 AmS2m+2=1 ALAA] C (APSA™SALAA] C (A%). Again ((A%]] =
(A3]. Thus (A?] an (n,m,[)-ideal of S. Since A* C (A3] and (A?] is quasi semiprime
A C (A?%]. Thus (4%] = A. O

Corollary 7.3.14. Let S be an (n,m,l)-reqgular and intra-reqular ordered ternary
semigroup. Then an (n,m,l)-ideal A of S is strongly irreducible if and only if A is

strongly quasi-prime.

Proof. Let S be an (n,m,l)-regular and intra-regular ordered ternary semigroup.
Then by Theorem (A3] = A for every (n,m,l)-ideal A of S. Let us assume
that A be an (n,m,!)-ideal of S is strongly quasi-prime and A; N A; N A3 C A for
some (n,m,l)-ideals Ay, Ay, A3 of S. By Lemma A1NAyNA; = (A1AA3]N
(AsAsAi] N (A3A1As]. Thus (A1 AAs] N (AsA3A ] N (A3A1As] € Al Since A is
strongly quasi-prime we have A; C A or Ay C A or A3 C A. Therefore, A is
strongly irreducible.

Conversely, suppose A be a strongly irreducible (n, m,)-ideal of S. Since S be
an (n, m,l)-regular and intra-regular ordered ternary semigroup by Lemma
it follows that A is strongly quasi-prime. m

Remark 7.3.15. Let S be an (n,m,l)-reqgular and intra-reqular ordered ternary
semigroup. Then we have the following result.

Strongly quasi-prime (n, m,l)-ideal <= Strongly irreducible (n, m,l)-ideal.

Lemma 7.3.16. Let S Let S be an ordered ternary semigroup. Then the following
statement are equivalent:

(i) The set A ={A; : ARSAMSAL C A;} is a chain under inclusion.

(i1) Every (n,m,l)-ideal is strongly irreducible and AyNAsNAs # {} for all (n,m,1)-
ideal Ay, As and As of S.

(111) Every (n,m,l)-ideal of S is irreducible.

Proof. (i)==(ii) Let us assume the condition (i) holds. Let A be an (n,m,[)-ideal
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of S such that A; N Ay N Az C A for some (n,m,[)-ideal Ay, Ay and A3 of S. Since
Ay C Ay or Ay C Ay we have A; N A; N Az # {}.

Case 1: Let A; C Ay. Then A;N Ay = Ay, Again A; and Aj are (n, m, 1)-ideal
of S. Thus we have either A; C Az or A3 C A;. If A} C As, then A; = A1 NA =
(A1NA)NA CANANA; CA If A3 C Ay, then A3 = A3N A3 C A3N A =
AiNA;NA; CA.

Case 2: Let Ay C A;. Then A N Ay = Ay. Again Ay and Aj are (n,m,1)-
ideal of S. Thus we have either A, C Az or A3 C A,. If Ay C As, then Ay =
AyNAy=(A1NA)NA C(ANA)NA3=A1NANA; C A If A3 C A, then
A3 =A3NA3 C A NA3=ANANA; C A
So in both cases we have A; C A, Ay C Aor A3 C A. Hence A is strongly irreducible
(n,m,l)-ideal of S.

(ii)==-(iii) This proof is straightforward.

(iii)==(i) Let us assume A be an (n,m,()-ideal of S which is irreducible and A; N
Ay N Az # {} for all (n,m,l)-ideal A;, Ay and Az of S. Thus A; N Ay N A; is an
(n,m,l)-ideal of S. Let A;NAyN A3 = A. This implies A} = A, Ay = Aor A3 = A.
If Ay = A, then Ay = Ay N Ay N A;s. Thus A C A; N A3 = A; C Ay or A) C As.
Simililarly if A5 = A, then Ay C Ay or Ay C As and if A3 = A, then A3 C A; or
Az C A,. Thus for Ay, Ay we have either A; C A, or Ay C A;. Similarly for A,, A
and Az, A; we have either Ay C Az or A3 C Ay and A3 C A; or A; C As. Therefore,
the set of all (n,m,)-ideal of S is a chain. O

We conclude this chapter with following theorem:

Theorem 7.3.17. Let (S,. <) be an ordered ternary semigroup. Then every (n,m,1)-
ideal of S is strongly quasi-prime and Ay N Ay N Az # {} for all (n,m,l)-ideal of S
if and only if S is (n,m,l)-reqular, intra-reqular and the set of all (n,m,l)-ideals is

a chain.

Proof. Let every (n,m,l)-ideal of S is strongly quasi-prime and A; N Ay N A3 # {}.
Then (A%] = A for all (n,m,()-ideal A of S (By Lemma|[7.3.13). Hence by Lemma
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7.3.12[ S is both intra-regular and (n,m,[)-regular. Thus by Corollary [7.3.14] S is

strongly irreducible.

Conversely, S is (n,m,[)-regular, intra-regular ordered ternary semigroup and
the set of all (n,m,[)-ideals is a chain. By Lemma every (n,m,l)-ideal of S
is strongly quasi-prime and A; N Ay N Az # {} for all (n,m,()-ideals A;, As, A3 of
S. By Corollary S is strongly quasi-prime. O
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Conclusion and Future Scope

Analysis of Contributions

In this research work, the goal was to evaluate different classes of ternary semi-
group. Also, the objective of the present investigation was to study ordered ternary
semigroup. We mainly discussed the various types of regularity in ordered ternary
semigroup. Ideal theory is a key concept in ternary semigroup. We charaterized
ordered ternary semigroup by using different types of ideals. Also bi-ideal, quasi-
ideal, prime ideal, completely prime ideal, semiprime ideal, completely semiprime
ideal plays a major role to study regularities in ordered ternary semigroup. We
discuss the connection between a semigroup cover of a ternary semigroup and the
corrresponding ternary semigroup. Furthermore we find relation between the or-
dered power ternary semigroup and ternary semigroup. Then we introduced the
notion of lattice structures in ternary semigroup of mappings. Afterthat, we also
introduced the notion of right chain ordered ternary semigroup. Finally, we estab-

lished the concept of (n,m,()-ideal in an ordered ternary semigroup.

Scope for further research

The present study lays the groundwork for future research on different algebraic

structures. This would be a fruitful area for further work. The knowledge gained in
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this study can inspire other scholars for future studies. We have already started to
work on different classes of ternary semigroups and investigated many problems in
ternary semigroup and ordered ternary semigroup. There are still several questions
to be answered.

In chapter 3, we study different classes on the semigroup cover of a ternary
semigroup and also discuss the isomorphism problem. One of the most significant
conclusions that emerge from this study is that if two semigroup S; and Sy are
isomorphic then the associated semigroup cover Q(S7) and @Q(S3) are isomorphic.
But the converse is not true. We have shown by an example. Afterthat we give
some few classes where the converse is true. So, there will be a scope to find some
other classes in which the converse statement also holds.

Ternary semigroup of mappings denoted by T[X, Y] is another significant topic
which we discussed in chapter 5. We study lattice structures in T[X,Y]. There is
enough oppourtunity to study some other algebraic properties in ternary semigroup
of mappings T'[X,Y].

We introduced the notion of right chain ordered ternary semigroup in chapter
6. This is also a attractive perspective to work with. The methods used for this
construction can be applied to another algebraic structutes in other branches of
research work.

This thesis has provided a deeper insights for upcoming research.
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