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Abstract

The study of k—smoothness of operators between Banach spaces is relatively new area of re-
search in the geometry of Banach spaces. The study of k—smoothness and Birkhoff-James
orthogonality plays an important role in the geometry of Banach spaces. One of the most inter-
esting aspects of Birkhoff-James orthogonality is the relation between orthogonality of operators
and that of norm attainment set in the ground space. We first characterize k—smoothness of an
element on the unit sphere of a finite-dimensional polyhedral Banach space and k-smoothness
of an operator T € L(¢Z,Y), where Y is a two-dimensional Banach space with the additional
condition that 7" attains norm at each extreme point of the unit ball By . Then we character-
ize k—smoothness of an operator defined between £3, and 3. Next we study k—smoothness of
bounded linear operators defined between infinite-dimensional Hilbert spaces. We also charac-
terize k—smoothness of operators on some particular spaces, namely L(X, ¢%), L(¢3,,Y), where
X is a finite-dimensional Banach space and Y is a two-dimensional Banach space. Study of
k—smoothness is deeply related to extreme contractions, the characterization of which is still
elusive, in the general setting of Banach spaces. As an application of the study of k-smoothness
of operators, we characterize extreme contractions defined between Ego and Y, where Y is a two-
dimensional polygonal Banach space. Then we obtain extreme contractions defined between
finite dimensional polyhedral Banach spaces using k—smoothness of operators. We explicitly
compute the number of extreme contractions in some special Banach spaces. Next we explore
the connections between the numerical radius norm and operator norm under certain condi-
tions. We characterize nu-smoothness of order k for a bounded linear operator defined on a
finite-dimensional Banach space. Also we characterize nu-extreme contractions defined on two-
dimensional polygonal Banach spaces. Next we obtain the structure of the set of extreme points
in the dual of IL(X),,, where X is a two-dimensional polygonal Banach space. Then we move our
attention to the study of Birkhoff-James orthogonality of bounded linear operators. We explore
the relation between the orthogonality of bounded linear operators in the space of operators
and that of elements in the ground space. We continue exploring the validity of the BS (Bhatia-~
Semrl) Property in the setting of different Banach spaces. We characterize the space £ among

all 3-dimensional polyhedral Banach spaces whose unit ball have exactly eight extreme points.
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CHAPTER 1

INTRODUCTION

The study of k—smoothness is relatively a new area of research in the geometric theory of
Banach space. The concept of k—smoothness has evolved out of smoothness, the study of
which is classical area of research in Banach space theory. Throughout we assume that X, Y
are real Banach spaces and H is a real Hilbert space. Let Sx and Bx denote the unit sphere
and unit ball of the space X, i.e., Sx = {z € X : ||z|| = 1} and Bx = {z € X : ||z|| < 1}. By
L(X, Y)(K(X,Y)), we denote the collection of all bounded(compact) linear operators defined
between X and Y. In case X = Y, we write L(X,Y) = L(X) and K(X,Y) = K(X). Let X* denote
the Banach space of all bounded linear functionals on X, which is known as the dual space of
X. An element x of the unit sphere Sx is said to be a smooth element if there exists unique
linear functional z* € Sx+ such that z*(z) = 1. The question that arises naturally is if = is not
a smooth element then how many such norm one linear functionals can be there which attain
norm at x and out of them how many will be linearly independent. This concept sowed a seed of
motivation to study the order of smoothness of an element x if it is not a smooth element. The
major part of the thesis focuses on the study of smoothness of a bounded linear operator defined
between two Banach or Hilbert spaces. Several Mathematicians have studied k—smoothness on
various type of Banach spaces. Readers can look at the following papers [14, 24, 32, 67]. Let

us first interpret the geometric notions of smoothness and k—smoothness.

Definition 1.1 (Smoothness). An element x € Sx is said to be a smooth point if there is
a unique linear functional f € X* such that ||f|| = 1 and f(z) = ||z|| = 1. Equivalently, a
geometric definition of a smooth point is as follows: An element x € Sx is said to be a smooth

point if there is a unique hyperplane H supporting the unit ball Bx at x. A Banach space is said
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to be smooth if every element of the unit sphere is smoooth.

Every element of the unit sphere of £3(R) is a smooth element whereas in ¢3_(R), (1,0,0) is

a smooth point but (1,1,0) and (1,1, 1) are non-smooth points.

< non-Smooth

/ {
———— Smooth

Smooth point

Z non-Smooth

-
-

s

i

|

|

\/ -

Unit sphere of 3 Unit sphere of £3
Consider J(z) = {z* € Sx+ : a*(z) = 1}. It is easy to see that J(x) is a weak*-compact
convex subset of Sx«. The notion of smoothness has been generalized by Khalil and Saleh [24]

in 2005. They introduced the notion of multi-smoothness or k—smoothness depending on the

“size” of J(z) as follows:

Definition 1.2 (k—smoothness). [2// Let X be a Banach space and x € Sx. Then x is said to
be k—smooth or smooth of order k if J(x) contains exactly k linearly independent elements. In

particular, © is 1—smooth or simply smooth if J(x) is singleton.

= < 3—Smooth
e 4 1—Smooth
2—Smooth

Unit sphere of 3,

We will study k—smoothness of operators defined between finite-dimensional real polyhedral

Banach spaces, the definition of which goes as follows.

Definition 1.3. A polyhedron P is a non-empty compact subset of X which is the intersection
of finitely many closed half-spaces of X, that is, P = N_, M;, where M; are closed half-spaces
in X and r € N. The dimension dim(P) of the polyhedron P is defined as the dimension of the

subspace generated by the differences v —w of vectors v,w € P.

Definition 1.4. A polyhedron Q is said to be a face of the polyhedron P if either Q = P or if
we can write Q = PNOM, where M is a closed half-space in X containing P and M denotes the
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boundary of M. If dim(Q) = i, then Q is called an i-face of P. If dim(P) = n, then (n—1)-faces
of P are called facets of P and 1-faces of P are called edges of P.

Let S be a convex subset of the space X. An element z € S is said to be an extreme point
of the set S if whenever = (1 — t)y + tz for some ¢t € (0,1) and y,z € S then x = y = 2. The
collection of all extreme points of S is denoted by Ext (S) or ExtS. The space X is said to be
strictly convex if Fxt (Bx) = Sx. An operator 7' € L(X,Y) is said to be an extreme contraction
if T is an extreme point of the unit sphere of L(X,Y). The extreme contractions for operators
defined on Hilbert spaces is well-known, they are the maximal partial isometries [13]. However
the same for operators defined between Banach spaces is yet to be completely understood,
even for finite-dimensional spaces it is still elusive. Here we will try to apply the notion of
k—smoothness to study the extreme contractions for operators defined between Banach spaces.

We need the following well-known results.

Theorem 1.1. [68, Theorem 2.1] Let X, Y be Banach spaces over the field K(= Ror C), then
Ext Bgxyy = {27 @y" € K(X,Y)* : 2™ € Eat Bx«,y* € Ext By}, where v @ y* :
KX, Y) = K, (2 @y*)(T) = 2™ (T*y*) for every T € K(X,Y).

Theorem 1.2. [68, Corollary 2.2] Let X be a reflexzive Banach space over the field K(= R or C),
then Ext Bgx vy = {y*®@r € K(X,Y)* : 2 € Ext Bx,y* € Ext By«}, where y* @z : K(X,Y) —
K, (y* @ 2)(T) = y*(Tx) for every T € K(X,Y).

Motivated by the work of Lindenstrauss and Perles in [33], the following two definitions were

introduced recently in [51, 58], to study extreme contractions.

Definition 1.5. [58] Let X,Y be Banach spaces. We say that the pair (X,Y) has L-P (abbre-
viated from Lindenstrauss-Perles) property if T € SL(x,y) @ an extreme contraction if and only

if T(Ext(Bx)) C Ext(By).

Definition 1.6. [51] Let X,Y be Banach spaces. We say that the pair (X,Y) has weak L-P
property if for each extreme contraction T € Syx vy, T(Ext(Bx)) N Ext(By) # 0.

In due course of time we show that some of the results obtained in [58, 51] follows easily
from the results obtained by us. The notion of M-ideal plays a very important role in our

scheme of things.

Definition 1.7. Let X be a Banach space and V is a closed subspace of X. The subspace V is
said to be an M-ideal in X if X* = V* @1 VL, where V+ = {z* € X* : V C ker(z*)} and if

x* =z} + x} is the unique decomposition of x* then ||z*| = ||zf|| + ||z5]|.
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The role of norm attainment set [60] is essential in our study. For an operator T' € L(X,Y),

the norm attainment set, denoted by My, is defined as
Mr = {z € Sx, |T=| = ||T|[}.

Again the structure of norm attainment set is well-known if the operators are defined between
Hilbert spaces and the same is still unknown and intriguing for Banach spaces. To study
k—smoothness of an operator T" we have to investigate how many norm one linearly independ-
ednt linear functionals are there which attain its norm at 7. In this connection the following
result describing the Ext J(T') under some assumptions on the space and operator is very useful

in our study.

Lemma 1.1. [68, Lemma 3.1] Suppose that X is a reflevive Banach space. Suppose that K(X,Y)
is an M—ideal in L(X,Y). Let T € L(X,Y),||T|| = 1 and dist(T,K(X,Y)) < 1. Then Mp N
Ext(Bx) # 0 and

Ext JT)={y" @2z e KX, Y)": 2z € MrN Ezt(Bx),y" € Ext J(Tx)},

where y* @ x : K(X,Y) — R is defined by y* @ x(S) = y*(Sx) for every S € K(X,Y).

The numerical range of a bounded linear operator T on a complex Hilbert space H, denoted
by W(T), is defined as W (T') = {(T'z,x) : € Sy }. The numerical radius of a bounded linear
operator T, to be denoted by w(T), is defined as w(T') = sup{|(Tz,z)| : x € Sy}. If H is
a complex Hilbert space then w(7T) defines a norm on L(H). The natural generalization of

numerical radius for the Banach space X is as follows:
w(T) = sup{|z*(Tz)| : * € Sx+,x € Sx,z"(z) = 1}.

The numerical radius w(T") does not always define a norm on L(X). We consider only those real
finite-dimensional Banach spaces X such that numerical radius defines a norm on L(X) and use
the symbol L(X),, to denote the space of bounded linear operators endowed with the numerical
radius norm. Motivated by the notion of smooth operator of order k or k—smooth operator, we

generalize the notion of nu-smooth operator in the following way.

Definition 1.8. Let X be a Banach space. A non-zero operator T € L(X),, is said to be nu-
smooth of order k if there exist exactly k linearly independent elements f1, fa, ..., fr € Jw(T),
where J,(T) = {f € Sux):, : f(T) =w(T)}. In other words, T is said to be nu-smooth of order
k if

k =dim span Ju,(T) = dim span Ext J,(T).

4
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We study nu-smooth operators of order k for some special Banach spaces. We also study
nu-extreme contractions for some special Banach spaces. Note that an operator T € L(X),,
is said to be nu-extreme contraction if 7' is an extreme point of the unit sphere of L(X),.
Last two chapters of the thesis deals with the study of some important properties of Birkhoff-
James orthogonality [3, 20, 21] for bounded linear operators. The notion of Birkhoff-James
orthogonality in a Banach space is well-known and is used extensively in the study of the
geometry of Banach spaces. For x,y € X, x is said to be orthogonal to y in the sense of
Birkhoff-James, written as z_L gy, if ||z + Ay|| > ||z|| for all A € R. Similarly, for T, A € L(X,Y),
T is said to be Birkhoff-James orthogonal to A, written as T LgA, if [|T + AA|| > ||T| for
all A € R. For the n-dimensional Euclidean space E", Bhatia and Semrl [2] and Paul [49]
independently proved that for T, A € L(E™), TLpA if and only if there exists x € Sgn such that
ITz|| = |T|| and T'zL pAz. Note that the sufficient part of the above theorem is true whenever
the domain space and the co-domain space are any normed linear spaces of any dimension, i.e.,
if there exists x € My such that Txl gAx then T 1 gA. On the other hand, the necessary part
of the said theorem is not true in general Banach spaces, even if dim(X) is finite [31, 63, 62].
Sain and Paul [63] proved that if 7" is a linear operator on a finite-dimensional Banach space X
with My = DU(—D), where D is a connected subset of Sx then 7L A imples that there exists
x € My such that Tz 1 pAz. An operator T is said to satisfy BS (Bhatia-Semrl) Property [62] if
for an operator A, T'1. g A implies that there exists x € My such that Tz 1 gAx. The following

theorem characterises BS Property when the space is of dimension 2.

Theorem 1.3. [62, Th. 2.4] A linear operator T on a 2-dimensional Banach space X satisfies
the Bhatia-Semrl Property if and only if T attains its norm only on D U (=D), where D is a

non-empty connected subset of Sx.

The validity of the above result remains unknown, when the dimension of X is strictly

greater than 2. The following conjecture remains open to the best of our knowledge.

Conjecture 1.1. [62, Conj. 2.5] A linear operator T on a finite-dimensional Banach space
X satisfies the Bhatia-Semrl Property if and only if My = D U (—D), where D is a connected
subset of Sx.

We observe that the sufficient part of the above conjecture is true, but the validity of the
necessary part remains unknown. In view of this, the authors [62] defined the Bhatia-Semrl
(BS) Property of a bounded linear operator T € IL(X). Tt is possible to extend the definition of
the BS Property in a more general way, without giving the restriction that the domain space
and the co-domain space are identical. We now state the following definition of the BS Property

in more general way.



Chapter 1. Introduction

Definition 1.9. [50] Let X, Y be Banach spaces and let T € L(X,Y). We say that T satisfies
the Bhatia-Semrl (BS) Property if for any A € L(X,Y), T_LgA implies that there exists x € My
such that Tzl gAx.

Next we introduce the definition of BS pair which plays a crucial role in the whole scheme

of things.

Definition 1.10. Let X,Y be Banach spaces. We say that the pair (X,Y) is a BS pair if for
every T € IL(X,Y), T satisfies the BS Property if and only if My = D U (D), where D is a

non-empty connected subset of Sx.

We focus on the study of BS Property and BS pair of spaces in our last two chapters. We
note that the study further indicates that the conjecture 1.1 most likely to be true. We next

give a brief outline of the thesis.

1.1 Outline of the thesis

The thesis consists of eight chapters including the introductory one. In the introductory chapter
we provide a brief history of k—smoothness of elements and operators and also the history of
BS Property in the context of Birkhoff-James orthogonality of bounded linear operators. We
mention some definitions and notations to be used throughout the thesis.

In Chapter 2, we characterize k—smoothness of an element on the unit sphere of a finite-
dimensional polyhedral Banach space. Then we study k—smoothness of an operator T €
L(¢2,Y), where Y is a two-dimensional Banach space with the additional condition that My C
By . We also characterize k—smoothness of an operator T’ € L(£3,, 3).

In Chapter 3, we investigate k—smoothness of bounded linear operators defined between
arbitrary Hilbert spaces. We then study the problem in the setting of both finite and infinite-
dimensional Banach spaces. We also characterize k—smoothness of operators on some particular
spaces. As an application, we characterize extreme contractions on L(¢3_,Y), where Y is a two-
dimensional polygonal Banach space.

In Chapter 4, we characterize extreme contractions defined between finite dimensional poly-
hedral Banach spaces using k—smoothness of operators. Using this we explicitly compute the
number of extreme contractions in some special Banach spaces. Our approach in this paper in
studying extreme contractions lead to the improvement and generalization of previously known
results.

In Chapter 5, we completely characterize the k—smoothness of bounded linear operators

defined on ¢3_ the proof of which is given explicitly.

6
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In Chapter 6, we explore the connections between the numerical radius norm and operator
norm under certain conditions. Then we characterize nu-smoothness of order k for a bounded
linear operator defined on a finite-dimensional Banach space. Also we characterize nu-extreme
contractions defined on two-dimensional polygonal Banach spaces. Finally we obtain the struc-
ture of the set of extreme points in the dual of L(X),,, where X is a two-dimensional polygonal
Banach space.

Chapter 7 and 8 deals with the study of some important properties of Birkhoff-James or-
thogonality of bounded linear operators. In Chapter 7, we explore the relation of Birkhoff-James
orthogonality between the elements in operator space and ground space. In this context, we
introduce the notion of Property P, for a Banach space and illustrate its connection with or-
thogonality of a bounded linear operator between Banach spaces. We further study Property
P, for various polyhedral Banach spaces. In Chapter 8, we study operators satisfying Bhatia-
Semrl(BS) Property. We show that (¢7,Y) is a BS pair for any normed linear space Y and also
obtain that (£3_,¢3,) is a BS pair. Finally, we characterize the space £3_ among all 3-dimensional

polyhedral Banach spaces whose unit ball have exactly eight extreme points.

Before we end this section we would like to mention that in the beginning of each of the
following chapters, we provide a brief motivation and for the convenience of the reader we

provide the relevant notations and terminology to keep each chapter independent.



CHAPTER 2

STUDY OF K—SMOOTHNESS ON
FINITE-DIMENSIONAL POLYHEDRAL
BANACH SPACES

2.1 Introduction

The study of k—smoothness plays an important role to identify the structure of the unit ball of
a Banach space. The papers [14, 15, 24, 32] contain the study of k—smooth points of many of
the Banach spaces. There are several papers including [14, 24, 32, 38, 39, 36, 67] that contain
the study of k—smoothness of operators on different spaces. In [36], authors have obtained a
relation between k—smoothness and extreme points of the unit ball of a polyhedral Banach
space. The purpose of this chapter is to characterize the order of smoothness of an element on
the unit sphere of a finite-dimensional polyhedral Banach space. We also study k—smoothness
of an operator defined between polyhedral Banach spaces. Let us first fix the notation and
terminology.

Letters X, Y denote Banach spaces. Throughout the chapter we assume the Banach spaces

Content of this chapter is based on the following paper:
S. Dey, A. Mal and K. Paul; k—smoothness on polyhedral Banach spaces, Colloq. Math., 169 (2022),
no. 1, 25-37.



Chapter 2. Study of k—smoothness on finite-dimensional polyhedral Banach spaces

to be real. We denote the unit ball and the unit sphere of X respectively by Bx and Sk, i.e.,
By ={z e X: |z|| < 1},5x = {z € X: ||z|| = 1}. Let L(X,Y) denote the space of all bounded
linear operators between X and Y. For T' € L(X,Y), Mg denotes the collection of all unit
vectors of X at which T attains its norm, i.e., My = {x € Sx : ||Tz|| = ||T||}. For a set A, the
cardinality of A is denoted by |A|. The dual space of X is denoted by X*. An element z € Sx is
said to be an extreme point of the convex set By if and only if x = (1—t)y+tz for some y, z € Bx
and t € (0,1) implies that y = z = z. For z,y € X, let L{z,y] = {tr + 1 —t)y : 0 < ¢ < 1}
and L(z,y) = {tx + (1 —t)y : 0 < t < 1}. The set of all extreme points of Bx is denoted
by Ext(Bx). An element a* € Sx« is said to be a supporting linear functional of x € Sk, if
xz*(x) = 1. For a unit vector x, let J(x) denote the set of all supporting linear functionals of x,
ie., J(x) = {a* € Sx+ : *(x) = 1}. The set J(z) for € Sx plays a significant role to study the
k—smoothness. By the Hahn-Banach Theorem, it is easy to verify that J(z) # @, for all z € Sx.
We would like to mention that J(z) is a weak*-compact convex subset of Sx+. A unit vector x
is said to be a smooth point if J(x) is singleton. X is said to be a smooth Banach space if every
unit vector of X is smooth. The set of all extreme points of J(x) is denoted by Ext J(z), where
x € Sx. In 2005, Khalil and Saleh [24] defined k—smooth points as follows: An element z € Sx is
said to be k—smooth or the order of smoothness of z is k, if J(z) contains exactly k linearly inde-
pendent supporting linear functionals of z. In other words, z is k—smooth, if dim span J(z) = k.
Moreover, from [32, Prop. 2.1], we get that z is k—smooth, if k = dim span Ezt J(z). Similarly,
for T € L(X,Y) with ||[T]| =1, J(T) = {F e LIX,Y)* : |F|| =1, F(T) = 1} and T is said to
be k—smooth operator, if k = dim span J(T) = dim span Exzt J(T'). Observe that, 1—smooth
points of Sx are the smooth points of Sx. The spaces that we are dealing with in this chapter
are mostly finite-dimensional polyhedral Banach spaces. A finite-dimensional Banach space X is
said to be polyhedral if the unit ball Bx of X contains only finitely many extreme points. Equiv-
alently, a finite-dimensional Banach space X is a polyhedral Banach space, if Bx is a polyhedron.

In particular, a two-dimensional polyhedral Banach space is said to be a polygonal Banach space.

For a convex set C, int,(C) denotes the relative interior of the set C, ie., x € int,(C) if
there exists € > 0 such that B(z,¢€) N affine(C) C C, where affine(C) is the intersection of all
affine sets containing C' and an affine set is defined as the translation of a vector subspace.
A non-empty convex subset F of C' is said to be a face of C, if for z,y € C and t € (0,1),
(1-tix+tye F=x,y€F.

In this chapter, we first prove that a point on the relative interior of an i-face of the unit ball
of an n-dimensional polyhedral Banach space is (n —i)—smooth. In [39], the authors completely

characterized the k—smoothness of an operator defined between two Banach spaces X and Y,
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where dim(X) = dim(Y) = 2 and in [38], the authors characterized the k—smoothness of a
bounded linear operator defined between £3_ and a two-dimensional Banach space. We continue
our study in this direction and characterize the k—smoothness of a bounded linear operator
defined between ¢2, and a two-dimensional Banach space with the assumption that the linear
operator attains its norm at all the extreme points of the unit ball of 2. Then we characterize
k—smoothness of a bounded linear operator defined between ¢3, and £3.

We state the following lemma [68, Lemma 3.1], characterizing Fxt J(T'), which will be used

often. For simplicity we state the lemma for finite-dimensional Banach spaces.

Lemma 2.1. [68, Lemma 3.1] Suppose that X,Y are finite-dimensional Banach spaces. Let
T e L(X,Y) and |T|| =1 Then

Ext JT)={y" @z LX,Y)": 2 € MpN Exzt(Bx),y" € Ext J(Tx)},

where y* @ x : L(X,Y) — R is defined by y* @ x(S) = y*(Sx) for every S € L(X,Y).

2.2 k—smooth points of polyhedral Banach

spaces and operators spaces

We begin this section with a relation between the order of smoothness of a unit vector x in a
polyhedral Banach space and the dimension of the face F' such that x is in the relative interior

of F.

Theorem 2.1. Let X be an n-dimensional polyhedral Banach space. Let F' be an i-face of Bx.
Let x € int.(F). Then x is (n — i)—smooth.

Proof. Let f € Ext J(x). Since z € int,(F'), we have for all y € F, f(y) = 1. Therefore,

F CNcpat @)1y € Sx: fly) = 1} = A (say).

Clearly, A is a face of Byx. If possible, suppose that F' g A. Then there exists z € A\ F. Now,
reFCAandze A=tex+ (1—t)z€ Aforallte|0,1], since A is a face. Using convexity
argument of norm, it is easy to observe that ||z + A(z — x)|| > ||z| for all scalars A. Moreover,
we have ||z 4+ (z — z)|| = ||z|| = 1. If possible, let ||z + Ao(z — z)|| = 1 for some Ay < 0. Then

—Xo
1-X

r=tz+ (1 —t){z+ Ao(z — )}, wheret= € (0,1).

10
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Since F' is a face and = € F, we get z € F, a contradiction. Thus |z + Az — z)|| > 1
for all A < 0. Let Y = span{z,z}. Then dim(Y) = 2 and Y is a polygonal Banach space.
Using ||z 4+ (z —2)| = 1 and [z + A(z — z)|| > 1 for all A < 0, it is easy to observe that
x € Ezt(By). Thus, by [39, Th. 3.5], we get x is 2—smooth in Y. Let h,g be two linearly
independent elements of Ext(By+) such that h(x) = g(x) = 1. If h(z) = g(2) = 1, then
hz —2) = glr — z) = 0 = ker(h) = ker(g) = h = Ag, for some scalar A, a contradiction.
Without loss of generality, suppose that g(z) # 1. By [66, Lemma 1.2, Page 168], there exists
g1 € Ext(Bx~) such that g1]y = g. Now, ¢g1(z) = 1 and g1 € Ext(Bx+) = g1 € Ext J(x). Thus,
91(z) # 1 contradicts that z € A. Therefore, A\ F =0 = A=F, ie.,

F =0fepat 1)1y € Sx 0 f(¥) = 1} = Nfepar s(2) (T + ker(f)) N Sx.

This implies that i = dim(F) = dim(Nyega j)ker(f)). Now, let z be k—smooth. Let
{f1, f2, .-, fx} be the set of all linearly independent vectors of Ext J(x). Then

k
feExt J(x)=f=) a;fj, (a; €R)

J=1

=y ker(f;) € ker(f)
= ﬁf:l ker(f;) € Nycpat s@ker(f) € ﬁ§:1 ker(f;)
= Npepe J(x) ker(f) = NE_; ker(f))
= i=dim(N_ ker(f;)) =n—k
= k=n—i.
This completes the proof of the theorem. |

Remark 2.2. Note that, if X is an n-dimensional polyhedral Banach space and F is a facet of
By, then from Theorem 2.1, we get for each x € int,.(F), z is smooth. On the other hand, if
F is a 0-face, i.e., F = {x}, then = is n—smooth. In this case, clearly x is an extreme point of

Bx. It is worth mentioning that Theorem 2.1 generalizes [39, Th. 3.5].

Now, we focus on the space of all operators defined between some particular polyhedral Ba-
nach spaces. First we study k—smoothness of an operator defined between ¢ and an arbitrary

two-dimensional Banach space. To do so we need the following two lemmas.

Lemma 2.2. [39, Lemma 2.1] Suppose X, Y are finite-dimensional Banach spaces. If {x1,x2, ..., Tm}
is a linearly independent subset of X and {y3,y5, ..., y}} is a linearly independent subset of Y*

then {yf ® xj: 1 <1 <n,1 <j<m} is a linearly independent subset of L(X,Y)*.

11
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Lemma 2.3. Let X = (5, and Y be a two-dimensional Banach space. Let T' € Sy xy) be such
that Rank(T) = 2 and Ext(Bx) C My. Then the followings hold:

(i) T(Bx) is a convez set with 4 extreme points.

(i1) If T(Bx) is the convex hull of {21, £22}, then either for each x € Ext(Bx), Tx € £L[z1, 22]
or for each x € Ext(Bx), Tx € £L[z1, —22].

Proof. (i) Follows from [36, Remark 2.13].

(#3) Suppose e; = (0,0,...,1,0,...,0) with 1 at the i—th coordinate and 0 at the re-
maining places. Since, Rank(T) = 2, Te; # 0 for some i € {1,2,...,n}. Without loss of
generality, we assume i = 1, i.e., Te; # 0. It is well-known that Bx = conv(K U —K), where
K = {(1,ug,...,upn) : |uj] < 1,2 < i < n}. Now, K can be expressed as K = e; + F,
where e; = (1,0,...,0) and F = {(0,ug,...,un) : |u;| < 1,2 < i < n}. Observe that
x € Ext(Bx) if and only if there exists u € Ext(F') such that either x = e; +u or x = —e; + u.
Clearly, T(Bx) = conv(T(K) U T(—K)), where T(K) = T(e; + F) = Te; + T(F) and
T(—K) =T(—e1 + F) = —Tey + T(F). Now, T(F) must be a symmetric convex set about
origin, since F' is so. If T(F) has more than four extreme points then proceeding similarly
as in [36, Lemma 2.11], it can be shown that there exists v € Ext(Bx) such that v ¢ My, a
contradiction. Thus, T'(F') has at most four extreme points.

First suppose T'(F)) has only two extreme points say +y, i.e., T(F') is the convex hull of {y, —y}.
Clearly, T'(Bx) is the convex hull of +Te; +y. Now, for each x € Ext(F),Tx € L[y, —y]. There-
fore, for each z € Ext(Bx), Tz € £L[Te; + y,Te1 — y| and hence we are done.

Next, suppose T(F) has four distinct extreme points say +yi, +y2. We prove the rest of the

lemma in the following two steps.

Step 1. We claim that T'(Bx) is of the form conv{£(Te1—y2), £(Tei1+y1)} or conv{x(Te;—
y1), £(Ter + ya2)} or conv{£(Te; + y1), =(Ter + ya2)} or conv{£(Te; —y1), =(Ter — y2)}.

Since y1,y2 € Ext(T(F)), there exist x1,x2 € Ext(F) such that Tz1 = y1, Twa = yo. Now,
T(F) = conv{=£y1, tya} gives that T'(Bx) = conv{xTe1+y1,+Te; +y2}. Note that £Te;+y; =
+Te1+Tx;, for i = 1,2 and ey +x; € Ext(Bx). Therefore, || +Te; +y;|| =1, for i = 1, 2. Since
Y is two-dimensional and {y1 + y2,y1 — y2} is linearly independent, Te; = a(y1 +y2) +b(y1 —y2),
where a,b € R. We assert that either a = 0,b # 0 or a # 0,b = 0. Clearly, a and b can not be

12
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simultaneously zero as Te; # 0. If possible, suppose that a £ 0,b # 0. If a > 0,b > 0, then

T61 — N
T +22ab Tyt g +22bb TiTe )
1
BT RS U
and 2a+22ab+17 2a+22bb+1, 2a+§b+1 € (0,1). Moreover, we have, ||Te1 + y2| = [|[Te1 — y2|| = || Te1 +
y1|| = 1. Using this, it can be easily observed that ||[T'e; — Tx1| = || Te1 — y1|| < 1, which

contradicts that ey — z1 € Exzt(Bx) C Mp. Similarly, considering the other possible cases
a<0,b<0ora<0,b>0o0ra>0,b< 0, weget a contradiction. This establishes our
assertion. Assume that a = 0,b > 0.

Then we have

2b 1
Tey — = —(Tey — —(—Te; — d 2.1
e1— Y % 1 1( e1 —y2) + % 1 1( e1 —y1) an (2.1)
—Tey —ypo= —(Tey — —(=Te; — . 2.2
€1 — Y2 % T 1( e1 —y2) + % 1 1( er—yi) (2.2)

Thus, the only extreme points of T'(Bx) are +(Te; — y2) and +=(Te; + y1), i.e, T(Bx) =
conv{£(Te1 — y2), £(Te1 + y1)}. Similarly considering other cases, we can show that T'(Bx) is

of the form as claimed in Step 1.

Step 2. Claim that either Tz € +L[Te; + y1,—Te1 + yo] for each z € Ext(Bx) or Tz €
+L[Te; + y2,—Te1 + y1] for each z € Ext(Bx) or Tz € £L[Te; + y1,—Te; — yo] for each
z € Ext(Bx) or Tz € £L[Te; — y1, —Te1 + yo] for each z € Ext(Bx).

Suppose that T'(Bx) = conv{x(Te1 — y2),£(Te; + y1)}. Let z € Ext(Bx) be arbitrary.
We show that Tz € £L[Te; + y1, —Te1 + yo]. Now, there exists x € Ext(F) such that either
z=wx+e or z=ux—e;. First let z = x + e;. Now, if Tz is an interior point of T'(F'), then
Tz = Tx + Te; will be an interior point of T'(Bx) and hence ||Tz|| < ||T]|, a contradiction
as z € Ext(Bx). Thus, Tz is on the boundary of T'(F), i.e., Tx € £L[y1,y2] U £L[y1, —y2]. If
Tz € £L[y1,y2), then clearly Tz = Tx + Te; € £L[Te; + y1, —Te1 + y2] and we are done.

If possible, let Ta € L(y1, —y2), i.e., Tx = (1 — XN)y1 + AM(—y2),0 < A < 1. Then by Equation

13
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(2.2), we have

—Tx+Tep
= (1=XN(Ter—y1)+ XNTer + y2)

1 2b
= 1-=NTe1—wy1)+ /\(m(—Tel +y2) + m(Tq + y1))
= (1-=X(T )+ A (=Te1+y2) + 207 (Ter +y1)
- ATV T AT R Ty e Ty
Since 0 < A < 1, we have, 1 — A, Til’ % € (0,1). Moreover, we have, ||Te; —yi|| = || —Te1 +

y2l| = ||[Te1 + y1]| = 1. Using this, it can be easily observed that || — Tx + Te1|| < | T||, where
—z + e € Ext(Bx), a contradiction.

Similarly, if T2 € —L(y1, —y2), then we can show that ||Tz|| = ||Tz + Tey|| < ||T||, where
z = x 4 e1 € Ext(Bx), a contradiction. Therefore, we must have Tax € +L[y1,y2], i.e., Tz =
Tz +Tey € £L[Tey + y1, —Te1 + ya].
Now if z = & — ey, following the same line of arguments, we can show that Tz € +L[Te; +
y1, —Ter + yal.
Considering the other possibilities of T'(Bx) and proceeding similarly we can establish our claim

stated in Step 2. This completes the proof of the lemma. |
The following lemma is needed to prove the desired theorem.

Lemma 2.4. Any face of (", having exactly 2% extreme points contains evactly k + 1 linearly

independent extreme points.

Now, we are ready to prove our desired result. We completely characterize k—smoothness
of an operator defined between ¢ and any two-dimensional Banach space with the condition
that the operator attains its norm at each element of Ext(B ). We solve the problem in the
following two theorems. In the following theorem, we consider the case in which image of each

extreme point of By is smooth.

Theorem 2.3. Let X = (7, and Y be a two-dimensional Banach space. Let T' € Syx,y) be such
that Ext(Bx) C My and Tx is smooth for all x € Ext(Bx). Then the followings hold:

(i) If Rank(T) = 1, then T is n—smooth.

(ii) Let Rank(T) = 2. If Tx is an interior point of some line segment of T(Bx) for some
x € Ext(Bx), then T is n—smooth. Otherwise, T is (2n — 2)—smooth.

Proof. Let us write Fxt(Bx) = {+x1,+29,...,tx9n-1}, where {1, x2,..., z,} is linearly in-
dependent.
(i) Suppose Rank(T) = 1. Then Ta; = +Tx; for all 2 < i < 2771 Let J(Tx1) = {y*}. Then

14
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for any i € {1,2,...,2" 1}, either J(Tz;) = {y*} or J(Tz;) = {—y*}. Now, if T is k—smooth,
then

k = dim span J(T)
= dim span Exzt J(T)
= dim span {y* @x;:1<i<2" 1)
= dim span {y* @z, : 1 <i<n}

= n7
as {y* ® z; : 1 < i <n} is linearly independent by Lemma 2.2. Hence, T' is n—smooth.

(i4) Suppose Rank(T) = 2. Then by Lemma 2.3, T'(Bx) is a convex set with four extreme
points. Let +y1, £y2 be four distinct extreme points of T'(Bx).

First suppose Tz is an interior point of some line segment of T'(Bx) for some x € Ext(Bx),
i.e., Tzj € L(y1,y2) for some 1 < j < 2771 Again by Lemma 2.3, we get Tx; € £L[y1, yo] for
all 1 <4 <2771 Let J(Tx;) = {y*}. Then it is clear that for any i € {1,2,...,2" 1}, either
J(Tz;) = {y*} or J(Tx;) = {—y*}. Then as in case (i) it is easy to show that T is n—smooth.

Next, suppose that Tz is not an interior point of any line segment of T'(Bx) for any = €
Ext(Bx). Then Tx; ¢ L(£y1,+ys) for any 1 < i < 271 Thus, Ta; € {£y1, +tys} for all 1 <
i < 2" Since, Rank(T) = 2, without loss of generality, we may assume Txy = vy, TT2 = 1s.

Let J(Tz1) = {#;} and J(Tx9) = {25}. Then for any i € {1,2,...,2"" 1},

J(Tx;) = {27} or {—21} or {25} or {—25}.

Let S1 = {x; € Ext(Bx) : Tz; = Tz} and Sy = {z; € Ext(Bx) : Tx; = Txa}. Thus, we have
S1 NSy =0, £51 U+Sy = Ext(Bx) and |S; U So| = |S1| + |S2| = 2"~ L. Therefore, for any
i€ {1,2,...,2" 1}

J(T$¢) = {ZT}, if z; € 51

= {Z;}, if z; € Ss.

Now, it is clear that S; as well as Sy cannot contain n linearly independent vectors. For
otherwise, we get Rank(T) = 1, a contradiction. Thus, maximal linearly independent subsets
of S1 and Sy contain at most n — 1 elements. Now, we show that |S1| = 2772 and |Sy| = 2"~2.
If possible, let S| < 2772, Then we must have |Sa| > 2"~2. Observe that conv(Ss) is a face of
Bx. Clearly, Ext(conv(S2)) = S, i.e., |Ext(conv(S2))| = |S2| > 2"2. Hence, the face conv(Ss)
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of Bx contains at least 2"~! extreme points and hence by Lemma 2.4, conv(Ss) contains at
least n linearly independent extreme points. Thus, So contains at least n linearly independent
vectors. This gives that Rank(T) = 1, a contradiction. Therefore, |S;| > 2"~2. Similarly,
|Sy| > 2772, Thus, |S1| = |Sa| = 2772, i.e., |Ext(conv(S1))| = |Ext(conv(Ss2))| = 22, Now, by
Lemma 2.4, 57 and S2 has exactly n—1 linearly independent vectors. Without loss of generality,
suppose that the set of all linearly independent vectors of S; and So are {uy,us,...,u,—1} and

{tn, Un+t1, - .-, Usn—2} respectively. Now, if T is k—smooth, then

k= dim span J(T)
= dim span Exzt J(T)
= dim span {z] @ u;, 25 @uj : u; € Si,u; € So}
= dim span {z] @us, 25 Quj:1<i<n—1,n<j<2n-—2}

= 2n — 2, which can be easily verified.

Therefore, T' is (2n — 2)—smooth. This completes the proof. O

In addition to Theorem 2.3, if we assume that the range space is strictly convex and smooth,

then we obtain the following corollary.

Corollary 2.1. Let X = {7 and Y be a two-dimensional strictly convez, smooth Banach space.
Let T € Syxy) be such that Ext(Bx) C Mr. Then the followings hold:

(i) If Rank(T) = 1, then T is n—smooth.

(ii) If Rank(T) = 2, then T is (2n — 2)—smooth.

Proof. (i) follows clearly from Theorem 2.3. We only prove (ii). Let Rank(T) = 2. Then
by Lemma 2.3, T(Bx) is a convex set with four extreme points. Without loss of generality,
let +Tz1, £Tx2 be four distinct extreme points of T'(Bx). If possible, suppose that there exists
x € Ext(Bx) such that Tz is an interior point of some line segment of T'(Bx). Suppose that Tx €
L(Tx1,Txg). Since © € My, ||Tz|| = 1. Thus, it is clear that |ly|| = 1 for all y € L[Txy,Txs],
i.e.,, L[Tx1,Txe] C Sy. This contradicts that Y is strictly convex. Therefore, there does not
exist any x € Fzt(Bx) such that Tz is an interior point of some line segment of 7'(Bx). Hence,

from Theorem 2.3, we conclude that if Rank(T) = 2, then T is (2n — 2)—smooth. O

In the next theorem, we consider the remaining case in which the image of at least one
extreme point of Byn is not a smooth point. Note that in a two-dimensional Banach space, a

non-zero vector is either smooth or 2—smooth.
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Theorem 2.4. Let X = (3, and Y be a two-dimensional Banach space. Let T € Syxy) be
such that Ext(Bx) C Myp. Let S = {x € Ext(Bx) : Tz is not smooth} be non-empty and
Sy be the subset of S containing all linearly independent vectors of S. If |S1| = k, then T is
(n + k)—smooth.

Proof. Let Ext(Bx) = {£x1, £, .., £xon—1}. First suppose that Rank(T) = 1. Since S # 0,
assume 1 € S. Then for all 2 < i < 2", Ta; = +Tx;. Let Eat J(Tx) = {z}, 25} for
some 27, z5 € Sy«. Then either Ext J(Tz;) = {27,25} or Ext J(Tx;) = {—27,—=23} for all
2 < i <271 Clearly, | S| = n. Now,

dim span Ezt J(T)
= dim span {2} @ x;, 25 @1 1 <i <2771}
= dim span {z] @ x;, 25 @ x; 1 1 <i < n}

= 2n, using Lemma 2.2.

Thus, in this case T is 2n—smooth and we are done.

Next, suppose that Rank(T) = 2. Then by Lemma 2.3, T'(Bx) is a convex set with four extreme
points. Without loss of generality, let -y, £y2 be four distinct extreme points of T'(Bx). We
consider the following two cases:

Case I : § = Exzt(Bx).

Clearly, in this case |S1| = n. Let S1 = {x1,29,...,2,}. Observe that if Tx; € L(xy1, Ly2),
for any 1 < i < 2"7!, then T'z; will be smooth, which contradicts that S = Ext(Byx). Thus,
Tx; € {Fy1,+ys} for all 1 < 4 < 2771, Since Rank(T) = 2, Tx; = y1,Tx; = yo for some
1 <i# j < 2" 1 Therefore, y1,y2 are not smooth. Suppose that Ext J(y1) = {2,235} and
Ext J(y2) = {23, 2;}. Then for each 1 <i < 2"~! Eat J(Tx;) is either {27, 25} or {—27, —25}
or {23, 23} or {—=z3, —zj}. Observe that 23, z; € span{z], 23}, since dim(Y) = 2. Hence, for any

reX, 2@, 2 @ € span {2 ® x, z5 ® x}. Therefore,

dim span Ext J(T)
= dim span {2} @ ;25 Q1 1 <i <2771}
= dim span {z] @ x;,25 @ ;1 1 <i<n}

= 2n.

Thus, in this case T is 2n—smooth and we are done.
Case Il : S G Ext(Bx).

Without loss of generality, we may assume that S1 = {z1,z9,..., 2%} and S = {*z1, £xo, ..., Ly,
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+2pi1, 0 FTm ), (1<m <2011 <k <n). Asin Case I, Ta; € {£y;,+yo} forall1 <i < m.
Clearly, at least one of y1,y2 is not smooth. First we assume both of yi,y2 are not smooth.
Using Lemma 2.3, we get either Ta; € £L[y1, yo] for each m < i < 2" ! or Tax; € +L[—y1, o]
for each m < i < 277!, Without loss of generality, assume that Tz; € £L[y1,ys] for each
m < i < 271 Since, y1,y2 are not smooth and T; are smooth, Tx; ¢ {4y, 4y} for
m < i < 2772, Therefore, Tz; € +L(y1,y2) for each m < i < 277!, Now, it is easy to
observe that either J(Txz;) = {y*} or J(Tx;) = {—y*} for each m < i < 2", Suppose
Ext J(y1) = {y*, 27} and Ext J(y2) = {y*,23}. Then for each 1 < i < m, Ext J(Tz;) is
either {y*, 2]} or {—y*, —27} or {y*, 25} or {—y*, —23}. Observe that z5 € span{y*,z}}, since
dim(Y) = 2. Hence, for any z € X, z5 ® z € span {y* ® x, 2§ @ x}. Therefore,

dim span Ext J(T)
= dim span {y* @z, 2 @x;:1<i<2" 1< j<m}
= dim span{y*@xi,zi‘@xj:1§i§2n71,1§j§k}

= n+k, (by Lemma 2.2),

since {z; : 1 < i < 2"1} contains only n linearly independent vectors. Therefore, T is
(n + k)—smooth.
Now, if we consider exactly one of y1,y2 is not smooth, then following same line of arguments,

we can prove that T is (n + k)—smooth. This completes the proof of the theorem. O

We would like to mention that Theorem 2.3 and Theorem 2.4 improves on [38, Th. 3.10]. The
study of k—smoothness of an operator defined between ¢, and Y becomes more complicated
when dimY > 3. The rest of the chapter is devoted to the study of k—smoothness of an
operator defined between two particular spaces ¢, and 3. We denote the extreme points of
By by £z = £(1,1,1), 225 = £(-1,1,1), 23 = £(-1,-1,1), 24 = £(1,-1,1). |Mp N
Ext(Bys_ )| plays an important role in determining the order of smoothness of T'. Observe that
if [M7 N Ext(By_ )| < 6, then the order of smoothness of T' can be obtained using [39, Th. 2.2].
Therefore, we only consider the case for which |[Mr N Ext(Bys )| = 8, i.e., My N Ext(By ) =
{£z1, £x2, £x3, £24}. Note that, for 1 <i < 4, Tz; is k—smooth, where k € {1,2,3}. Suppose
Sk ={x € MrNExt(By ) : Tz is k—smooth}, where k € {1,2,3}. Clearly, [S1|+]S2|+[S3| = 8.

In the following theorem, we consider the case when |S;| = 8.

Theorem 2.5. Let X = £3, and Y = (3. Let T € Suex,yy be such that My N Ext(Bx) =
{fx1, a9, a3, +a4}. Let |S1| = 8. Then the followings hold:

(i) If £J(Tx;) = £J(Txj) for all x;,xj € Si, then T is 3—smooth.

(13) Otherwise, T is 4—smooth.
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Proof. (i) Suppose the given condition is satisfied. Let +J(Tx;) = {£y*} for 1 < i < 4. Now,
if T'is k—smooth, then

k = dim span J(T)
= dim span Ext J(T)
= dim span {y* @ z1,y" @ 2,y @ x3,y" @ x4}
= dim span {y* @ x1,y" @ z2,y" @ x3}
= 3, (using Lemma 2.2).

Hence, T is 3—smooth.

(i1) Let £J(Tx;) = {£y;} for 1 <i < 4. Since () is not satisfied, without loss of generality, we
assume yj # tys, i.e., {y},y5} is linearly independent. Let y3 = ay} + bys and y; = cy; + dys,
where a,b,c,d € R. Since ||y3]| = 1, @ and b cannot be zero simultaneously. Similarly, ¢ and d

cannot be zero simultaneously. Now, if T" is k—smooth, then

k= dim span J(T)
= dim span Ext J(T)

= dim span {yT®x17y§®x2ay§®x3ayz®x4}

Using the relations 4 = 1 — z2 + 73, y3 = ayj +by5, yi = cyj +dy5 and Lemma 2.2, it is easy
to verify that {y] ® z1,y5 ® x2,y35 ® x3,y; ® x4} is linearly independent. Therefore, k = 4 and
T is 4—smooth. O

Proceeding similarly we can find the k—smoothness of operator T for other feasible cases. We
skip the details of proof to avoid monotonicity. The following two tables illustrates the various
possible cases of k—smoothness under different conditions on Sj, Sy and Ss. The first table

contains the cases when S5 = 0, i.e., T'x; is either 1—smooth or 2—smooth but not 3—smooth.
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[S1] | |S2] | |Ss] Further conditions on the operator T' T is
k—smooth
with k& =
< 0 0 +J(Tx;) = +J(Txj) V 5,25 € Sy 3
Otherwise 4
6 ) 0 +J(Tx;) = +J(Txj) ¥V x,x; € S1 and
+J(Tx;) C +Ext J(Txy), Vo, € S1, 2 € S2 4
Otherwise 5
A A 0 +J(Tx;) = +J(Txj) ¥V x5 € S and
+J(Tx;) C £Ext J(Txy) Vo, € S,V € Sy 5
Otherwise 6
) 6 0 | Nzpes, £J(Tx)| > 2 and
+J(Tz;) C +Ext J(Txy) VNr; € S1,Vay € Sy 6
Otherwise 7
Nt £J(Tx;)| =4 6
0| 8|0 Either | N{ | +J(Tz;)| =2 or
| £ Ext J(Tx;) N £Ext J(Tx;)| # 2,
for 1 <i#j<4 7
Otherwise 8

The next table exhibits the cases when S3 # ).
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|S1] | |S2] | |Ss] Further conditions on the operator T° T is
k—smooth
with k£ =
6 0 ) +J(Tx;) = £J(Txj),Y i, x5 € Sq 5
Otherwise 6
A ) ) +J(Tx;) = £J(Txj),Y x;,x; € S and
+J(Tx;) C £Ext J(Txj), V x; € S1,25 € So 6
Otherwise 7
2 4 2 - 7
0 6 ) | Nzes, £Ext J(Ta;)| =4 7
Otherwise 8
4 0 4 - 7
0 4 4 - 8
0 0 8 - 9

Finally we would like to note that the following possibilities are not feasible: (i) |S1| = 2,|S2| =
2, |53‘ = 4, (ii) |51| = 27 |53| =6 and (iii) ‘SQ| = 2, ‘Sg| = 6.
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CHAPTER 3

CHARACTERIZATION OF
K—SMOOTHNESS OF BOUNDED
LINEAR OPERATORS

3.1 Introduction

The problem of characterizing k—smooth operators defined between arbitrary Banach or Hilbert
spaces is relatively new but an important area of research in the field of geometry of Banach
spaces. Characterization of smoothness of bounded linear operators has been studied in [56].
There are several papers including [14, 15, 24, 32, 39, 67] that contain the study of k—smoothness
of operators on different spaces. In this chapter, our objective is to study the k—smoothness of
bounded linear operators defined between infinite-dimensional spaces. We first fix the notations
and terminologies to be used throughout the chapter.

Let X, Y denote Banach spaces and H denote Hilbert space. Throughout the chapter we
assume that the spaces are real unless otherwise mentioned. The unit ball and the unit sphere

of X are denoted by Bx and Sx respectively, i.e., Bx = {z € X : ||z|| < 1},5x = {z € X :

Content of this chapter is based on the following paper:
A. Mal, S. Dey and K. Paul; Characterization of k—smoothness of operators defined between infinite-
dimensional spaces, Linear Multilinear Algebra (2021). DOI:10.1080/03081087.2020.1844130
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lz|| = 1}. The space of bounded (compact) linear operators between X and Y is denoted by
L(X)Y) (K(X,Y)). If X =Y, then we write L(X,Y) := L(X) and K(X,Y) := K(X). X* denotes
the dual space of X. An element = € Sk is said to be an extreme point of the convex set By if and
only if x = (1 — t)y + tz for some y, z € Bx and ¢ € (0,1) implies that y = z = x. The set of all
extreme points of By is denoted by Ext(Bx). For z,y € X, let L[z,y] = {te+(1—t)y : 0 <t < 1}
and L(z,y) = {tz + (1 —¢)y : 0 < ¢t < 1}. A Banach space X is said to be a strictly convex
Banach space if every element of the unit sphere Sx is an extreme point of the unit ball By,
equivalently, X is said to be a strictly convex Banach space, if the unit sphere of X does not
contain non-trivial straight line segment. A face E of a convex set C is said to be an edge if for
each z € F, there exist extreme points z,y in C such that z € L[z,y]. An element z* € Sx« is
said to be a supporting linear functional of = € Sx, if *(x) = 1. For a unit vector z, let J(z)
denote the set of all supporting linear functionals of z, i.e., J(z) = {a* € Sx~ : z*(x) = 1}.
By the Hahn-Banach Theorem, J(z) # 0, for all x € Sx. We would like to note that J(x) is
a weak*-compact convex subset of Sx-. The set of all extreme points of J(z) is denoted by
Ext J(z), where € Sx. A unit vector z is said to be a smooth point if J(x) is singleton. X is
said to be a smooth Banach space if every unit vector of X is smooth.

In 2005, Khalil and Saleh [24] generalized the notion of smoothness and introduced the notion
of multi-smoothness or k—smoothness depending on the “size” of J(z). An element = € Sx is said
to be k—smooth or the order of smoothness of « is k, if J(z) contains exactly k linearly indepen-
dent supporting linear functionals of x. In other words, x is k—smooth, if dim span J(z) = k.
Moreover, from [32, Prop. 2.1], we get that z is k—smooth, if k = dim span Fzt J(z). Similarly,
T € L(X,Y) is said to be k—smooth operator, if k¥ = dim span J(T) = dim span Ext J(T).
Observe that, 1—smooth points of Sx are actually the smooth points of Sx. In our study, the
norm attainment set of an operator plays an important role which will be clear in due time. The
norm attainment set of 7', denoted as My, is defined as the collection of all unit vectors = at
which T attains its norm, i.e., My = {x € Sx : |Tz|| = || T||}. The notion of k—smoothness has a
nice connection with extreme contraction which will be explored later. An operator T' € L(X,Y)
is said to be an extreme contraction, if 7" is an extreme point of the unit ball of L(X,Y). A
two-dimensional Banach space X is said to be a polygonal Banach space, if Bx contains only
finitely many extreme points. Equivalently, a two-dimensional Banach space X is a polygonal
Banach space, if Byx is a polygon.

From [32, Th. 3.8], we know that there is a large class of Banach spaces which does not
contain k—smooth point, where k € N. The papers [14, 15, 24, 32, 39, 67] contain extensive
study on multi-smoothness in Banach space and in operator space. In [67, Th. 2.4] Wéjcik

studied k—smoothness of compact operators defined between complex (real) Hilbert spaces. In
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this chapter, we obtain a complete characterization of k—smoothness of bounded linear opera-
tors defined between complex (real) Hilbert spaces. We prove that a bounded linear operator
T defined on a complex (real) Hilbert space H is n?—smooth ((";rl) —smooth) if and only if
My = Sp,, where dim(Hy) = n and ||T||H0L < ||IT||. Moving onto Banach spaces, the com-
plete characterization of k—smooth operators defined between arbitrary Banach spaces is still
not known, in fact it is elusive even for finite-dimensional Banach spaces. In [39], the authors
characterized the k—smoothness of a bounded linear operator defined between two-dimensional
Banach spaces. In this chapter, we continue our study in this direction and obtain sufficient
conditions for k—smoothness of bounded linear operators defined between infinite-dimensional
Banach spaces. We also obtain a relation between the order of smoothness of the operators T’
and T*, where T is defined between finite-dimensional Banach spaces and T™ is the adjoint of
T. Using this relation, we characterize the order of smoothness of an operator defined from a
finite-dimensional Banach space to ¢, (n € N). We also obtain a characterization of the order
of smoothness of T' € LL(£2,,Y), where Y is a two-dimensional Banach space. As an application
of this result, we characterize the extreme contractions in the space L(£3,,Y), where Y is a

two-dimensional polygonal Banach space.

We state the following lemma [68, Lemma 3.1], characterizing Fxt J(T'), which will be used

often.

Lemma 3.1. [68, Lemma 3.1] Suppose that X is a reflexive Banach space. Suppose that K(X,Y)
is an M—ideal in L(X,Y). Let T € L(X,Y), ||T|| = 1 and dist(T,K(X,Y)) < 1. Then Mp N
Ext(Bx) # 0 and

Ext J(T)={y*" @2 € KX,Y)": 2 € My N Ext(Bx),y" € Ext J(Tx)},

where y* @ x : K(X,Y) — R is defined by y* @ x(S) = y*(Sx) for every S € K(X,Y).

We end this section with the following definition: A subspace M of a Banach space X is said
to be an M —ideal if there exists a projection P on X* such that P(X*) = {z* € X* : 2*(m) =
0V m e M} and for all z* € X*,

[} = ([P + [l = P(2")]-

It is well known that for a Hilbert space H, K(H) is an M —ideal in IL(H) and for each 1 < p < oo,
K(¢p) is an M—ideal in L(£p). Interested readers are referred to [16] for more information in

this topic.
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3.2 k—smoothness of operators defined be-

tween Hilbert spaces

We begin this section with the study of k—smooth operators defined between arbitrary Hilbert
spaces. We use the notion of Birkhoff-James orthogonality to prove the theorem. Recall that,
for z,y € X, z is said to be Birkhoff-James orthogonal [3, 20] to y, written as z Lp y, if
lx + Ayl| > ||=| for each scalar A. Similarly, for T, A € L(X,Y), we say that T Lp A if
1T+ MA|| > ||T|| for each scalar A.

Theorem 3.1. Let Hy,Hy be Hilbert spaces. Let T' € Sy, m,) be such that My = Sp,, where
Hy is a finite-dimensional subspace of H;y with dim(Hp) = n and HTHHOL < 1. Then T is
2 n;l)

n*—smooth, if Hy,Hs are considered to be complex and it is ( —smooth, if the spaces are

considered to be real.

Proof. We claim that dist(T, K(H;y, Hs)) < 1. If possible, suppose that this is not true. Then
for every S € K(Hy,Hs), dist(T,Span{S}) > dist(T,K(H;,Hsy)) > 1, i.e., for every scalar
M T — AS|| > dist(T,Span{S}) > 1. Therefore, T Lp S. Define S : H — H by Sz = Tz
whenever x € Hy and Sz = 0, whenever z € Hy. Then clearly, S € K(Hj,Hs), since Hy is
finite-dimensional. Hence, T' Lg S. By [46, Th. 3.1], there exists x € Mr = Sg, such that
Tz L Sz, i.e., Tx L Tx, a contradiction. This establishes our claim. We note that K(H;, Hy) is
an M—ideal in L(H,,Hsy) and dist(T,K(H;,Hsy)) < 1, so by Lemma 3.1, Ext J(T) ={y* @ x :
x € Mp,y* € Ext J(Tx)}, where y*®@z(S) = y*(Sz) = (Sz,Tx) for every S € L(H;,Hs). So we
can write Ext J(T) = {x®Tx : x € My}, where x @Tx(S) = (Sz, Tx) for every S € L(H;, Hy).

Suppose that {ej1, es, ..., e,} is an orthonormal basis of Hy. Assume that Hy, Hy are complex

Hilbert spaces. Then

dim span Ezt J(T)

= dim span {r @ Tz : 2z € Mr}

n n
= dim span { Z a;aje; @ Tej : Z |ai‘2 = 1}

i,j=1 =1
= dim span {e;®Te; : 1 <14,j <n}
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Next assume that the Hilbert spaces are real, then

dim span Ezt J(T)

n

n
= dim span { Z ajaje; ® Te; : Z jai|* = 1}

ij=1 i=1
_ n+1
= 5 X

n+1

Thus, T is n?—smooth, if H;,Hs, are considered to be complex and it is ( M )fsmooth7 if the

spaces are considered to be real. O

Noting that for a compact operator T, dist(T,K(H;,Hs)) = 0 < 1, we get the following
corollary which provides a sufficient condition for the k—smoothness of a compact operator [67,

Th. 2.4] defined between Hilbert spaces.

Corollary 3.1. Let Hy, Hy be Hilbert spaces. Let T' € Sy, m,) be such that Mp = Sp,, where

Hy is a finite-dimensional subspace of Hy with dim(Hy) = n. Then T is n®>—smooth, if Hy, Hy

n—l—l)
2

are considered to be complex and it is ( —smooth, if the spaces are considered to be real.

Next we show that the conditions mentioned in Theorem 3.1 are necessary for k—smoothness.
To do so, we need the following theorem on Birkhoff-James orthogonality for complex Hilbert

spaces, in case of real Hilbert spaces an analogous theorem can be obtained from [40, Th. 3.2].

Theorem 3.2. Let Hy,Hy be complex Hilbert spaces. Let T' € Sy, m,) be such that
dist(T,K(H;,Hs)) < 1. Then for A € L(H;,Hs), T Lp A if and only if there exists x € My
such that Tx 1 Ax.

Proof. If there exists x € My such that Tx 1 Az, then it is easy to observe that 7' Lp A.
Conversely, suppose that T L g A. Then by [66, Th. 1.1, Page 170], there exists A\; > 0, f; €
Ext J(T) for 1 <i < 3such that A + Ay + A3 =1 and (A1 f1+ Aafo+ A3f3)(A4) = 0. By Lemma
3.1, there exists x; € My, y’ € Ext J(Tx;) for 1 < i < 3 such that f; =y’ ® ;. Since Tx; is
smooth, it is easy to observe that y ® x;(A) = (Az;, T'z;). Thus,

3
Z Aifi(A) = 0
i=1
3
= Z/\Zyl* ®xz;(A) = 0
i=1
3
=) Ai{Az;, Ta;) =0 (3.1)
i=1
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Consider the set W = {(Az,Tz) : x € Sg,} = {(Az,Tx) : © € Mr}. Since Hy is a subspace
of Hj, following the idea of [8, Th. 1], it can be easily verified that the set W is convex. Now, it
follows from (3.1) that 0 is in the convex hull of W, i.e., 0 € W. Therefore, there exists z € Mr
such that (Az,Tz) = 0 and so Tx L Az. This completes the proof of the theorem. O

Now, we are ready to prove our desired theorem.

Theorem 3.3. Let H be a separable complex Hilbert space andT' € Syqy. ThenT' is n?—smooth
if and only if Mt = Su,, where Hy is a finite-dimensional subspace of H with dim(Hy) = n and
1T g < 1.

In case the Hilbert space is real then the result still holds good with n®—smoothness replaced by
("'2"1) —smoothness.

Proof. First suppose that H is a complex Hilbert space. The sufficient part of the theorem
follows from Theorem 3.1. We only prove the necessary part. Suppose that T is n?—smooth.
Since H is separable, by [32, Th. 3.8], L(H)/K(H) has no operator whose order of smoothness
is finite. Hence, by [32, Remark 3.7], dist(T, K(H)) < 1. Thus, by Lemma 3.1, My # ). From
(63, Th. 2.2], we get My = Sp, for some subspace Hy of H. Now, let A € L(H) be such that
T Lp A. Then using Theorem 3.2, we get # € My such that Ta L Ax. Thus, by [46, Th. 3.1],
Hj is a finite-dimensional subspace of H and ||T'|| ms < 1. Let dim(Hy) = k. Then from Theorem
3.1, we get T is k?—smooth. Therefore, k? = n?, i.e., k = n. Thus, dim(Hy) = n.

The proof of the theorem for a real Hilbert space follows similarly using [40, Th. 3.2]. OJ

3.3 k—smoothness of operators defined be-

tween Banach spaces

In this section, we study k—smoothness of operators defined between Banach spaces. We begin

with the following simple lemma, the proof of which is given for the sake of completeness.

Lemma 3.2. Suppose X,Y are Banach spaces. If {x1,x2,...,2m} and {y],y5, ..., ys} are
linearly independent subsets of X and Y* respectively, then {yf @ z; : 1 <i<n, 1 <j<m} is
a linearly independent subset of L(X,Y)*.

Proof. Let ¢;; be scalars such that

> ey ez =0 (3.2)

1<i<n,1<j<m
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Choose y € Y, ¢ € X*. Define S € L(X,Y) by Sz = ¢(x)y for all z € X. Now, from (3.2) we get,

Z cijy; ®x;(5) =0

I<i<n,1<j<m

= Z cijny(xj) =0

1<i<n,1<5<m

= Yo eyl (y) =0
1<i<n, 1<j<m

= ¢< > Cz‘jxjyf(y)>—0
1<i<n, 1<j<m

= Z cijziy;i (y) = 0, (since ¢ € X* is arbitrary)
1<i<n,1<j<m

= Z cijyi (y) =0forall 1 <j<m

1<i<n

= Z cijy; =0 (since y € Y is arbitrary)
1<i<n
= ¢y=0foralll1 <j<m,1<i<n.

Thus, {yf ® zj: 1 <i<n,1<j<m}is a linearly independent subset of L(X, Y)*. O

We are in a position to prove the following theorem which gives a sufficient condition for
k—smoothness of operators defined between infinite-dimensional Banach spaces, which improves
on [39, Th. 2.2].

Theorem 3.4. Suppose X is a reflexive Banach space and Y is an arbitrary Banach space. Let
K(X,Y) be an M —ideal in (X, Y). Suppose that T € Sy x,y) is such that dist(T,K(X,Y)) < 1
and Mp N Ext(Bx) = {xx1, £, ..., xx,}, where {x1,x2,...,2,} is linearly independent in X.

Let Tx; be m;—smooth for each 1 < i <r. Then T is k—smooth, where mi+mao+...+m, = k.

Proof. Since Tx; is m;—smooth, we have, m; = dim span Ext J(Tz;), for each 1 <i < r. Let
{yfj € Ext J(Tz;) : 1 < j < m;} be a basis of span Ext J(Tx;) for each 1 < ¢ < r. Using
similar arguments as in Lemma 3.2, it can be shown that {yl*J Rr;:1<i<r1<j<m}is

linearly independent. Now, using Lemma 3.1, we get,

span Ext J(T)
= span {y;; @ z; 1 y;; € Bxt J(Tx;),1 <i <r}
= Span{y;‘j®xi:1§i§7‘,1§j§mi}.

Therefore, dim span Ext J(T) = mj + mg + ... + m,. Thus, T is k—smooth, where k =
m1 + mo + ...+ m,. This completes the proof of the theorem. O
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The following corollary now easily follows from Theorem 3.4. Once again, we recall that

K(¢p) is an M —ideal in L(¢,,), where 1 < p < oo.

Corollary 3.2. Let T € Sy,), where 1 < p < oco. Suppose that dist(T,K(¢,)) < 1 and
Mr = {£x1,+x9,...,+ar}, where {x1,22,..., x4} is linearly independent in €,. Then T is

k—smooth.

Proof. For 1 < p < o0, {, is strictly convex, smooth space. Hence, z; € Ext(By,) and Tw; is
smooth for each 1 < ¢ < k. Thus, by Theorem 3.4, T is k—smooth. O

Now, we exhibit an easy example to show that the converse of Corollary 3.2 is not true, i.e.,
there exists k—smooth operator T' € IL(¢,,) such that M7 is not of the form {£x1, 2o, ..., L)},

where {1, x2,..., 21} is linearly independent in £,,.

Example 3.5. Consider the operator T € IL({p), (1 < p < o0) defined by T, aie;) = areq +
asea, where {e; : i € N} is the canonical basis of £,. Then My = span{ei,ez}. Let x = ae1 + beg,
where a,b # 0. Then x € My and so by Lemma 3.1, e} ®e1,e5 R ey, x* @x € Ext J(T). Now, it
is easy to show that {e] ®ey, el @ea, x* @} is linearly independent. Therefore, T is k—smooth,

where k > 3. But Mt does not contain 3 linearly independent vectors.

Remark 3.6. Ezample 3.5 illustrates the fact that one part of the Theorem [2/, Th. 2.8],
namely (i) = (ii), is not correct and Theorem 3.4 improves on the other part of the same

theorem.

Next, we study the k—smoothness of a bounded linear operator T for which My N Ext(Bx)

may contain linearly dependent vectors.

Theorem 3.7. Let X be a reflexive Banach space and Y be a finite-dimensional Banach
space with dim(Y) = m. Let T € Syxy) be such that {x1,29,...,2,} C Mr N Ext(Bx) C
span{x1, za,...,x,}, where {x1, T2, ..., 2.} is linearly independent. Suppose Txz; is m—smooth

fori=1,2,...,r. ThenT is mr—smooth.

Proof. For each 1 < i < r, Tz; is m—smooth. Suppose {y;; : 1 < j < m} is a linearly
independent subset of Ext J(T'z;) for each 1 <4 < r. We first show that dim span Ext J(T) <
mr. Since Y is finite-dimensional, L(X, Y) = K(X, Y). Hence, T is compact operator and K(X, Y)
is trivially an M —ideal in L(X,Y). Thus, by Lemma 3.1,

Ext J(T) ={y* @z e K(X,Y)" : x € Mp N Ext(Bx),y* € Ext J(Tz)}.
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Let © € My N Ext(Bx). Then there exist scalars ¢;,7 = 1,2, ...,7 such that © = c121 + cox2 +
<o+ erar. Now, let y* € Ext J(Tz). Since {y7; : 1 < j < m} is linearly independent, and hence
forms a basis of Y*, there exist scalars d; (1 < j < m) such that y* = Zlgjgm djyi;. Thus,

y'er = y e (ar +cry+ .+ crry)

= ( Z dij’) ®( Z Cﬂii)

1<j<m 1<i<r

= Z cidjyfj & ZT;

1<i<r,1<j<m
€ span{yy; @z : 1 <i<r1<j<m}

Since z € My N Ext(Bx) and y* € Ext J(T'z) are arbitrary, we have Ext J(T') C span{yj; ®w; :
1<i<r1<j<m}. Now,

dim span Ezt J(T)
< dim span {y;; @z;: 1 <i<r,1<j<m}

= mr, (by Lemma 3.2).

Therefore, T is k—smooth, where k < mr. Now, y;-“j ®x; € Ext J(T) forall 1 <i <1

IN

j < m. Using similar arguments as in Lemma 3.2, it can be shown that {y;“] @xz; 1 <1

IN

r,1 < j < m} is linearly independent subset of Ezt J(T'). Thus, dim span Ezt J(T) > mr, i.e.,

k > mr. Therefore, k = mr and T is mr—smooth. This completes the proof of the theorem. [

To illustrate the usefulness of Theorem 3.7 we cite the following example for which k—smooth
-ness of the operator can not be obtained using Theorem 3.4 or [39, Th. 2.2] but can be obtained

using above theorem.
Example 3.8. Let X = (4 and Y be a two-dimensional Banach space such that By is the
convez: hull of {+(2,1),£(2,-1)}. Define T € L(X,Y) by T(x,y, z,w) = (y + w,x). Then

Mr N Ext(Bx) = {+(1,1,1,1), (1,1, —1,1), +(—1,1,1,1), £(1, -1,1, - 1) }.

Clearly, {(1,1,1,1),(1,1,-1,1),(-1,1,1,1),(1,—1,1, —1)} is linearly dependent. Therefore, the
order of smoothness of T cannot be obtained from Theorem 3.4 or [39, Th. 2.2]. Observe that,
My N Ext(Bx) C span {£(1,1,-1,1),£(-1,1,1,1), +(1,-1,1,-1)}, where {(1,1,—-1,1),
(-1,1,1,1),(1,-1,1,—-1)} is linearly independent. Moreover, T(1,1,—-1,1), T(-1,1,1,1),
T(1,—1,1,—1) are 2—smooth. Therefore, using Theorem 3.7 we get, T is 6—smooth.

We now turn our attention to the study of k—smoothness of operators in the setting of
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special Banach spaces. We characterize the k—smoothness of an operator defined from a finite-
dimensional Banach space to (2, (n € N). To do so we need [39, Cor. 2.3] and the following
proposition which gives a nice relation between the order of smoothness of an operator and its

adjoint.

Proposition 3.1. Let XY be finite-dimensional Banach spaces. Let T' € Syxy). Then T is
k—smooth if and only if T* is k—smooth.

Proof. We first show that Ext J(T) = Ext J(T*). Let y* @ x € Ext J(T). Then © € My N
Ext(Bx) and y* € Ext J(Tx). Now,

Yz =1=y"Tz)=1=z(TYy")=1=|T"y"| = 1.

Thus, y* € Mr- and x € J(T*y*). Moreover, z € Ext(Bx) and Exzt J(Txz) C Ext(By~).
Therefore, © € Ext J(T*y*) and y* € Mp- N Ext(By+) and so y* ® x € Fxt J(T*). Hence,
Ext J(T) C Ext J(T*). Now, replacing T by T*, we get Ext J(T*) C FExt J(T). Thus,
Ext J(T) = Ext J(T%), i.e., dim span Ext J(T) = dim span Ext J(T*). Therefore, T is
k—smooth if and only if T™* is k—smooth. O

Corollary 3.3. Let X be a finite-dimensional Banach space. Let T' € Syxn ). Then T is
k—smooth if and only if Mp« N E.Tt(Bg{L) = {£e1,teg,... £ e} for some 1 < r <mn, T*e; is

m;—smooth for each 1 <i<r and mi +mo+...+m, = k.

Proof. From Proposition 3.1, T'is k—smooth if and only if 7" is k—smooth. Now, T™ € Sy, x+).
Moreover, from [39, Cor. 2.3], we get that 7™ is k—smooth if and only if My« N Ext(Be) =
{te1,teq,... e} for some 1 <r < n, T*e; is m;—smooth for each 1 <4 < r and my + mg +

...+ m, = k. This completes the proof of the corollary. O

We next determine the order of smoothness of T' € L(¢2,,Y), where Y is an arbitrary two-
dimensional Banach space, depending on |[M7NExt(Bys_)|. Observe that if [MrNExt(Byg )| < 6,
then the order of smoothness of T' can be obtained using Theorem 3.4. Therefore, we only
consider the case for which [MyNExt(Byg )| = 8, i.e., MrNExt(Bys ) = {£x1, a9, T3, £14},
where x; = (1,1,1),20 = (-1,1,1),z3 = (-1,—-1,1),z4 = (1,-1,1). Note that, for each

1 <1 <4, Tx; is either smooth or 2—smooth.

Theorem 3.9. Let X = (3, and Y be two-dimensional Banach space. Let T € SLex,y) be such
that Mp N Ext(Bx) = {*x1, txo, ta3, 24} Suppose S1 = {x; : 1 < i < 4, Tx; is smooth}.
Then the following hold:

(I) Let |S| = 4.
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(a) If either Rank(T) =1 or for each i,j(1 < i # j < 4) either Tx;, Tx; or Tx;, —Tx; belong
to the same straight line contained in Sy, then T is 3—smooth.
(b) Otherwise, T is 4—smooth.
(II) If |S1| = 3, then T is 4—smooth.
(II1) If|Si| =2, then T is 5—smooth.
(IV) If |S1| < 2, then S1 =0 and T is 6—smooth.
Proof. Clearly, T is k—smooth for 1 < k& < 6, since dim(X) = 3 and dim(Y) = 2.
(I) Let |Si| =4. Then T'x; is smooth for 1 <14 < 4.

(a) If the given condition is satisfied, then it is clear that there exists y* € Sy such that
for all i(1 < i <4), J(Tx;) = {y*} or {—y*}. Now, if T is k—smooth, then

k= dim span J(T)
= dim span Exzt J(T)
= dim span {y* @ z1,y" @ 22,y @ x3,y" @ x4}
= dim span {y* @ x1,¥" @ x2,y* @ x3}
= 3, (by Lemma 3.2).

Hence, T is 3—smooth.

(b) Suppose the condition (a) is not satisfied. Thus, there exist 1 < 4,5 < 4 such that
Tz; # £T'x; and neither T'x;, Tx; nor T'x;, —Tx; belong to the same straight line contained in
Sy. Without loss of generality, we assume ¢ =1, j = 2. Let J(T'z;) = {y;}, (1 <i <4). Then it
is easy to observe that {y},y3} is linearly independent. Let y3 = ay; + bys and yj = cyj + dy3,
where a,b,c,d € R. Since ||y5]| = 1, @ and b cannot be zero simultaneously. Similarly, ¢ and d

cannot be zero simultaneously. Now, if T" is k—smooth, then

k= dim span J(T)
= dim span Ext J(T)

dim span {y] ® x1,y5 ® T2, Y3 ® T3, Y5 @ T4}

We show that {y} ® z1,v5 @ x2,y5 @ 3, yj ® x4} is linearly independent. Let ¢;(1 <i<4) e R
be such that
c1yy ® w1 + coys @ T2 + c3y3 ® 13 + cayy @ w4 = 0.

Then
a1y @ o1 + coys @ xo + c3(ayy + bys) @ x3 + calcy} + dys) @ (x1 — x2 + z3) = 0.
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= (c1 + cae)yf @ x1 + (c2 — cad)ys @ x2 + (c3a + cac)y; @ 3 + (c3b + cad)ys @ x3 — cacy; @ x9 +
cadys ® 1 = 0.

Since {x1,x2,x3} is linearly independent subset of X and {y7, y4} is linearly independent subset
of Y*, from Lemma 3.2, we get that {y; @ x1, y5 @21, yf @22, Y5 @ x2, yf @3, ys @x3} is linearly
independent subset of L(X,Y)*. Therefore,

c1+cyc=0, cg—cyd=0, cza+cqc=0, cgb+c4d =0, cqc =0, c4d = 0.

Now, solving these equations, we obtain ¢; = 0 for all 1 < i < 4. Hence, {y] @ z1,93 Q@ x2,y35 ®

x3,ys ® x4} is linearly independent. Thus, k = 4 and T is 4—smooth.

(IT) Without loss of generality, assume that S1 = {2, x3, 24}, i.e., T, Txg, Tx4 are smooth
points of Sy and T'z; is 2—smooth point of Sy. Clearly, Rank(T) = 2. Now, by [36, Lemma 2.11],
T(Bx) is a polygon with 4 extreme points. Since T'z; is a 2—smooth point of Sy, by [24, Th. 4.1],
+T'z1 must be two extreme points of By. Since ||T|| = 1, T(Bx) C By, i.e., Ext(By)NT(Bx) C
Ext(T(Bx)). Therefore, £Tx1 € Ext(T(Bx)). Suppose that the other two extreme points of
the polygon T(Bx) are +Txy. Then L[Txzo,—Tz1] is an edge of the polygon T(Bx). Now,
Llzg, —x1] N L]zs, —z4] = {(—1,0,0)}. Therefore, T(—1,0,0) € L[Tzo, —Tx1] N L[Tx3, —Tz4].
This implies that Tas, —Txy € L[Tx9,—Tx1]. Since Tx3,Tx4 are smooth points and Ty is
2—smooth point, Txs # —Tx1 and —Txzy # —Tx1. Now, Rank(T) = 2 implies that either
Txs # Txg or —Txy # Txy. Without loss of generality, let us assume that Tzs # Txy. Then
Txzs € L(Txy,—Tx1). Since ||Tzs|| = 1, L[Txq, —Tx1] C Sy. Now, let J(Tx3) = {y*}. Then it
is easy to see that J(Tx2) = {y*} and J(Tx4) = {—y*}. Since T'z1 is 2—smooth, it is clear that
Ext J(Tx1) = {y},y5}, where {y],y5} is a linearly independent subset of Y*. Let y* = ay;+bys.
Now, if T' is k—smooth, then

k = dim span J(T)
= dim span Ext J(T)
= dim span {yT®x17y;®x17y*®x27y*®x37y*®x4}

= dim span {y; ® x1,¥5 @ 21, y" @ x2,y" @ x3}.

Now, using Lemma 3.2 it can be observed that {y; ® 1,45 ® 1, y* ® x2,y* ® 23} is a linearly
independent subset of L(X,Y)*. Hence, k = 4 and T is 4—smooth.

(III) Without loss of generality, we assume S; = {x3,24}. Then +7Tx3, +Tz4 are smooth
points of Sy and £Tx1, Tz are 2—smooth points of Sy. Clearly, Rank(T) = 2. By [24, Th.
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4.1], £Tx1,£Txe € Ext(By). Since ||T|| = 1,T(Bx) € By. This gives that Ext(By)NT(Bx) C
Ext(T(Bx)). Thus, we get, Tz, £Tx9 € Ext(T(Bx)). If possible, suppose that Tz = —T'zs.
Then z4 = x1 — x2 + x3 implies that Tz = % Since Tx; € Ext(By), we must have
Txy = Txy = —Tx3. Thus, Rank(T) = 1, a contradiction. Therefore, Tzy # —Txo. First
assume that Txy = Txe. Then from x4 = 1 — x2 + x3, we get Txg = Tay. Let J(Tx3) =
J(Tz4) = {y*} and Ext J(Tz1) = Ext J(Txz2) = {y],vys}. Then it is easy to see that T is
5—smooth. Now, assume that Txy # Txy. Then £Tx1, +T o are 4 distinct extreme points of
the polygon T'(Bx) and L[Tx9, —Tx1] is an edge of T'(Bx). Now, as in (II), it can be shown that
Txz3,—Txy € L[Txe,—Tx1]. Since Txs, —Txz4 are smooth points, Tx3, —Txy € L(Txe, —Tx1).
From ||Tz3|| = 1, we can show that L[Txzq, —Tx1] C Sy. Let J(Tz4) = {y*}. Then J(Tx3) =
{-y"}. Let Ext J(T'z1) = {yj,y3} and Ext J(Tx2) = {y3,yi}. Clearly, {97,435} and {y3, i}

are linearly independent. Now, if T" is k—smooth, then

k= dim span J(T)
= dim span Ext J(T)
= dim span {y] @ x1,y5 @ 1, Y3 @ T2, Yy @ T2,y" @ x3,y" @ x4}
= dim span {y] @ x1,¥5 @ x1,y3 @ T2, Yy @ T2, y* @ T3}
= dim span {y7 @ x1,y5 @ 21, Y] ®@ T2,y3 @ T2, y" ® T3}

= b, by simple calculation.

Hence, T is 5—smooth.

(IV) Since |S1| < 2, at least 3 points of Tx;, 1 < i < 4 are 2—smooth. Without loss of
generality, suppose that T'zq,Tzg, Txs are 2—smooth. If Rank(T) = 1, then it is easy to see
that T'z4 is 2—smooth. Suppose Rank(T) = 2. Then by [36, Lemma 2.11], T'(Bx) is a polygon
with 4 extreme points. First let Ext (T'(Bx)) = {£Tx1,£Tz2}. Then using similar arguments
as in (ITI) we can show that Txs, —Txy4 € L[Txo,—Tx1]. Since Tx3 is 2—smooth, we must
have either Txg = Txy or Taxs = —Tx1. If Txg = Txs, then from x4 = 21 — 22 + 3, We get
Txy =Txy. If Txs = —Txy, then similarly, we get Txy = —Tz9. In each case, Tx4 is 2—smooth.
Similarly, considering other cases, we can conclude that if |S1| < 2, then Tx; are 2—smooth
for all 1 < i < 4,ie., S; = 0. Using Theorem 3.7, we can now say that T is 6—smooth. This
completes the proof of the theorem. O

In Theorem 3.9, if we further assume that Y is a two-dimensional strictly convex, smooth

Banach space, then we obtain the following corollary.

34



Chapter 3. Characterization of k—smoothness of bounded linear operators

Corollary 3.4. Let X = 3 and Y be a two-dimensional strictly convex, smooth Banach space.
Let T € Syx,y)y and My N Ext(Bx) = {41, £x9, &3, £24}. Then the following hold:

(7) If Rank(T) =1 then T is 3—smooth.

(i3) If Rank(T) = 2, then T is 4—smooth.

Proof. Observe that, since Y is strictly convex, Sy does not contain non-trivial straight line
segment. Now, since Y is smooth, Tz; is smooth for all 1 < ¢ < 4. Thus, the corollary follows

from case (I) of Theorem 3.9. O

As an immediate application of Theorem 3.9, we can characterize the extreme contractions

defined from ¢3_ to arbitrary two-dimensional polygonal Banach space.

Theorem 3.10. Let X = 3 and Y be a two-dimensional polygonal Banach space. Let T €
Sux,y). Then T is an extreme contraction if and only if |Mr N Ext(Bx)| > 6 and T(Mr N
Ext(Bx)) - E;Et(By).

Proof. First let T be an extreme contraction. Then by [36, Th. 2.2], T" is 6—smooth. From [58,
Th. 2.2], we get span(Mp N Ext(Bx)) = X, i.e., |Mp N Ext(Bx)| > 6. Let |Mp N Ext(Bx)| = 6.
Then My N Ext(Bx) is of the form {+x1, £x9, +x3}, where {x1, 2,23} is linearly independent.
Now, from Theorem 3.4 it is clear that Tz; is 2—smooth for each 1 < ¢ < 3. Therefore, by
(24, Th. 4.1}, Tx; € Ext(By) for all 1 < i < 3. Now, suppose that |Mr N Ext(Bx)| = 8.
Then from Theorem 3.9, we can conclude that for all x € Mr N Ext(Bx), Tz is 2—smooth, i.e.,
Tz € Ext(By).

Conversely, suppose that |Mp N Ext(Bx)| > 6 and T'(Mr N Ext(Bx)) C Exzt(By). If |Mr N
Ext(Bx)| = 6, then from Theorem 3.4, we get, T is 6—smooth. Hence, by [36, Th. 2.2], T is an
extreme contraction. If |Mp N Ext(Bx)| = 8, then from Theorem 3.9, we get T is 6—smooth.
Thus, again by [36, Th. 2.2], T is an extreme contraction. This completes the proof of the

theorem. O
We end this article with the following question:

Question 3.11. Suppose X and Y are Banach spaces and T € Spxy), then what are the
necessary and sufficient conditions for T to be multi-smooth point of finite order? One can
consider the case X = 03, Y = (7, (n > 3). There are many more cases where the question is

still unanswered.
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CHAPTER 4

STUDY OF EXTREME CONTRACTIONS
THROUGH K—-SMOOTHNESS OF
OPERATORS

4.1 Introduction

The study of extreme contractions and smoothness of operators between Banach spaces are
two classical and fertile areas of research in Banach space theory. While the characterization
of extreme contractions defined between Hilbert spaces is well known [11, 23, 44, 66], the
characterization of the same is still elusive, in the general setting of Banach spaces. There are
several papers including [1, 6, 7, 12, 19, 25, 30, 29, 33, 51, 54, 58, 64, 65], that deal with the
study of extreme contractions of operators defined between some special Banach spaces. The
purpose of this chapter is to study extreme contractions between polyhedral Banach spaces and
explore interesting connections between the order of smoothness of an operator and extreme
contraction. In particular, we generalize and improve on the results obtained in [51] in an

elegent way. Before proceeding further, we first establish the notations and terminologies.

Content of this chapter is based on the following paper:
A. Mal, K. Paul and S. Dey; Characterization of extreme contractions through k—smoothness of oper-
ators, Linear Multilinear Algebra, (2021), DOI:10.1080/03081087.2021.1913086
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We denote the Banach spaces by the letters X and Y. Throughout the chapter, we assume
that the Banach spaces are real. |A| denotes the cardinality of a set A. An element z of a
convex set A is said to be an extreme point of A, if z = ty + (1 — )z for some t € (0,1) and
Y,z € A implies that z = y = z. The set of all extreme points of a convex set A is denoted by
Ext(A). The unit ball and the unit sphere of X are denoted by Bx and Sx respectively, that is,
Bx ={zeX:|z|| <1} and Sx = {z € X : ||z|| = 1}. L(X,Y) denotes the space of all bounded
linear operators defined from X to Y endowed with the usual operator norm. M7 denotes the
set of all unit vectors at which 7" attains its norm, that is, My = {z € Sx : |Tz| = ||T||}. For

x1, 22 € X, L[x1,x2), L(x1, z2) and L[xy, 2| represent the following sets:
Lz, o] = {tx1 + (1 —t)z2: 0 <t < 1},

L(zy,29) ={tx1+ (1 —t)z2: 0 <t <1} and
L[l‘l,l'g[: L[$1,£2] U {tﬂ?z — (t — 1)%1 > 1}.

X* denotes the dual space of X. A bounded linear functional z* € Sk« is said to be a support-
ing linear functional of a non-zero vector = € X, if z*(z) = ||z||. For € Sk, the set of all
supporting linear functionals of = is denoted by J(x), that is, J(z) = {z* € Sx- : 2*(x) = 1}.
Note that, J(x) is a non-empty, weak™-compact, convex subset of Sx-. € Sx is said to
be a smooth point if J(z) is singleton. z € Sx is said to be a k—smooth point [24] or the
order of smoothness of x is said to be k, if J(z) contains exactly k linearly independent func-
tionals, that is, k& = dim span J(z). From [32, Prop. 2.1], we get, if x is k—smooth, then
k = dim span Exzt J(z). Likewise an operator T' € Sp(x,y) is said to be k—smooth operator, if
k =dim span J(T') = dim span Ext J(T). For more information on k—smoothness in Banach
space, the readers may go through [14, 15, 24, 32, 38, 39, 68]. An operator T' € L(X,Y) is said
to be an extreme contraction, if T' is an extreme point of the unit ball of L(XY). Observe that,
if T is an extreme contraction, then ||T'|| = 1. Recall that, a finite-dimensional Banach space
is said to be a polyhedral Banach space, if the unit ball contains only finitely many extreme
points. Equivalently, a finite-dimensional Banach space is said to be polyhedral if Bx is a poly-
hedron. In particular, a two-dimensional polyhedral Banach space is said to be a polygonal
Banach space. Note that by [27, Th. 2.11] a finite-dimensional Banach space is polyhedral if
and only if its dual is polyhedral. Motivated by the work of Lindenstrauss and Perles in [33], the

following two definitions have been introduced recently in [51, 58], to study extreme contractions.

In this chapter, we first obtain a characterization of extreme contractions defined between

finite-dimensional polyhedral Banach spaces in terms of k—smoothness of the operators. As
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an immediate application of this result, we characterize the extreme contractions defined be-
tween two-dimensional polygonal Banach spaces. Next, we obtain a sufficient condition for a
pair of finite-dimensional polyhedral Banach spaces to satisfy weak L-P property. This result
generalizes [51, Th. 2.1] and also improves on [51, Th. 2.5]. Then we show that the sufficient
condition for a pair (X,Y) to satisfy weak L-P property, given in Theorem 4.3 of this chapter,
is also a necessary condition, if X is two-dimensional polygonal Banach space and Y = Ego.
However, by exhibiting proper examples, we show that this is not true in general. As a final
result of this chapter, we explicitly compute the exact number of extreme contractions defined
on X, where Sx is a regular hexagon. All the results obtained here, highlight the pivotal role
of the order of smoothness of an operator in the study of extreme contractions defined between
finite-dimensional polyhedral Banach spaces.

We will use [68, Lemma 3.1] in describing the structure of Ext J(T'). For simplicity we state

the lemma for finite-dimensional Banach spaces.

Lemma 4.1. [68, Lemma 3.1] Suppose that X,Y are finite-dimensional Banach spaces. Let
T e S]L(X,Y)- Then My N Ext(Bx) # 0 and

Ext JT)={y"@x e LX,Y)": z € My N Ezt(Bx),y* € Ext J(Tx)},

where y* @ x : L(X,Y) = R is defined by y* ® x(S) = y*(Sx) for every S € L(X,Y).

4.2 Role of k—smoothness to extreme con-

tractions

We begin this section with the characterization of exposed points of the unit ball of a finite-
dimensional polyhedral Banach space, which clearly follows from [39, Th. 3.5] and [68, Th. 4.2].
Recall that an element x € Sx is said to be an exposed point of the unit ball By, if there exists
a supporting linear functional z* of x such that z* attains norm only at +z. We also observe
that in a finite-dimensional polyhedral Banach space, a point is an extreme point of the unit
ball if and only if it is an exposed point of the same. We write these observations in the form

of the following proposition.

Proposition 4.1. Let X be a polyhedral Banach space of dimension n. Let x € Sx. Then the
following are equivalent:

(a) x is an exposed point of Bx.
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(b) x is an extreme point of Bx.

(¢) x is n—smooth.

In the next theorem, we prove a characterization of extreme contractions defined between

finite-dimensional polyhedral Banach spaces in terms of k—smoothness.

Theorem 4.1. Let X,Y be polyhedral Banach spaces such that dim(X) = n and dim(Y) = m.

Then T € Syx,y) s an extreme contraction if and only if T' is mn—smooth.

Proof. Since X,Y are finite-dimensional Banach spaces, from [28, Th. 1], we get
Ext(B]L(X,Y)*) = El’t(By*> (9 E.%'t(Bx)

Since Ext(By~) and Ext(Bx) are finite sets, there are only finitely many extreme points in the
unit ball of L(X, Y)*. Therefore, L(X,Y)* is a polyhedral Banach space. Moreover, L(X,Y)* is
a finite-dimensional Banach space. Therefore, L(X,Y) is also a finite-dimensional polyhedral
Banach space. Now, dim(L(X,Y)) = mn. Hence, from Proposition 4.1, we can conclude that

T € Spx,y) is an extreme contraction if and only if T" is mn—smooth. O

Using Theorem 4.1, we can now characterize the extreme contractions between two-dimensional

polygonal Banach spaces.

Theorem 4.2. Let X,Y be polygonal Banach spaces such that dim(X) = dim(Y) = 2. Let
T € Suix,y)- Then T is an extreme contraction if and only if either of the following holds:

(i) My N Ext(Bx) = {£x1, 22} and Tz, Tzo € Ext(By).

(it) My N Ext(Bx) = {£x1, £22, 23} and |{z; : Tx; € Ext(By),1 <1i <3} > 2.

(i1i) M N Ext(Bx) = {£x1, £xe, a3}, Tay € Ext(By), Tz, Txz ¢ Ext(By) and there exist
edges F,G of By such that Txg € F,Txzs € G and F # £G.

(iv) |Mp N Ext(Bx)| > 8 and there exists x € My N Ext(Bx) such that Tx € Ext(By).

(v) |Mr N Ext(Bx)| > 8 and for each x € Mp N Ext(Bx), Tx ¢ Exzt(By). Moreover, there
exist x; € Mp N Ext(Bx) and y; € Ext J(Tx;) for 1 < i <4 such that zo = axi + bxz, x4 =
cxy +dws, ys = ary] + oaoys, yi = Syl + Bays and Bragad — Baabe # 0.

Proof. From Theorem 4.1, we can say that T is an extreme contraction if and only if T is
4—smooth. If T is an extreme contraction, then from [58, Th. 2.2], we get, span(Mr N
Ext(Bx)) =X, that is, |Mp N Ext(Bx)| > 4. Hence, we only assume that |Mp N Ext(Bx)| > 4.

First let | My N Ext(Bx)| = 4. In this case, we show that T is an extreme contraction if and
only if (i) holds. Let My N Ext(Bx) = {+x1, x2} for some z1,z9 € Sx. Clearly, {z1,z2} is
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linearly independent. Therefore, from [39, Th. 2.2], we can conclude that T is extreme contrac-
tion, that is, T is 4—smooth if and only if Tx; and Tz are 2—smooth. Thus, by Proposition
4.1, Txy,Txy € Ext(By). Therefore, if |Mp N Ext(Bx)| = 4, then T is an extreme contraction
if and only if (i) holds.

Now, let |Mr N Ezt(Bx)| = 6. In this case, we show that 7" is an extreme contraction if and
only if either (i) or (iéi) holds. Let My N Ext(Bx) = {+x1, £xo, a3} for some x1, z9, 23 € Sx.
In this case, from [39, Th. 3.1], renaming vectors z1,x9 and x3 if necessary, we get, T is an
extreme contraction, that is, T' is 4—smooth if and only if T'z; is non-smooth, Txo, Tx3 are
not interior point of same line segment of Sy and Txo, —Tx3 are not interior point of same
line segment of Sy. Since Tz is non-smooth, Tz is 2—smooth. Hence, T'z1 € Ext(By). Now,
if at least one of Txe, Txs € Ext(By), then (i7) holds. Suppose Tx2,Txzs ¢ Ext(By). Then
Txy,Tx3 are interior points of line segments of Sy. So there exist edges F,G of By such that
Txo € F,Txs € G. Since Txo,Tx3 are not interior point of same line segment of Sy and
Tx9, —Tx3 are not interior point of same line segment of Sy, we get that F' # +G. Thus, (i4i)
holds. Therefore, if |Mr N Ext(Bx)| = 6, then T is an extreme contraction if and only if either
(1) or (4i%) holds.

Next, let |My N Ext(Bx)| > 8. Then from [39, Th. 3.3], we can easily conclude that T is an

extreme contraction if and only if either (iv) or (v) holds. O

We now turn our attention to the study of weak L-P property of a pair of Banach spaces.
Note that, if X is a reflexive Banach space, then each functional f € X* attains its norm at
an extreme point of Bx. As a consequence, the pair (X, R) satisfies weak L-P property. The

following lemma will be used in the next theorem.

Lemma 4.2. Let X,Y be Banach spaces. Suppose ) # E1 CX, 0 # E> CY* and B; C E; is a
basis of span E; fori=1,2. Then {y* @ z : x € By,y* € Ba} is a basis of span {y* @z : x €
E17 y* S EQ}

Proof. We first show that the set {y* ® x : x € By,y* € Bs} is linearly independent. Suppose
{yy @z 25 € Bi,y; € By,1 <i<n,1 <j<m}isafinite subset of {y*®@x : v € By,y* € Ba}.

Let ¢;; be scalars such that

Z cijyf (4 Tj = 0. (4.1)
1<i<n,1<j<m
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Choose y € Y, ¢ € X*. Define S € L(X,Y) by Sz = ¢(x)y for all z € X. Now, from (4.1) we get,

Z cijy; ®x;(5) =0

I<i<n,1<j<m

= Z cijny(xj) =0

1<i<n,1<5<m

= Yo eyl (y) =0
1<i<n, 1<j<m

= ¢< > Cz‘jxjyf(y)>—0
1<i<n, 1<j<m

= Z cijziy;i (y) = 0, (since ¢ € X* is arbitrary)
1<i<n,1<j<m

= Z cijyi (y) =0forall 1 <j<m

1<i<n

= Z cijy; =0 (since y € Y is arbitrary)
1<i<n
= ¢y=0foralll1 <j<m,1<i<n.

Thus, {yf @ z; : 1 <i<n,1<j<m} is linearly independent and hence the set {y* ® z : z €
B, y* € By} is linearly independent.

Now, let y* € Eo and z € FEj. Then there exists scalars a;,b; and x; € By,y] € By for
1<i<n,1<j<msuchthat y* =>", ayf,z= Z;n:l bjz;. Thus,

Y or= Z a;bjy; @ x;j.
1<i<n,1<j<m
This shows that y* ® € span {y* ®x : € By, y* € Ba}. Therefore, {y* @z : x € By, y* € Ba}
is a basis of span {y* ® x : x € E1,y* € Es}. This completes the proof of the lemma. O

In the next theorem, we obtain a sufficient condition for a pair of finite-dimensional poly-

hedral Banach spaces to satisfy weak L-P property.

Theorem 4.3. Let X,Y be polyhedral Banach spaces and dim(X) = n,dim(Y) = m. Let
|Ext(Bx)| = 2(n+p). If mp < n+ p, then the pair (X,Y) satisfies weak L-P property.

Proof. Let T' € Syx,y) be an extreme contraction. We show that there exists z € MrNEzt(Bx)
such that Tz € Exzt(By). From [58, Th. 2.2], we get span(My N Ext(Bx)) = X, that is,
My N Ext(Bx) contains at least n linearly independent elements. Let My N Ext(Bx) = {£x; :
1 < i < r} such that {z1,z9,...,2,} is linearly independent. Then r < n + p. If possible,
suppose that Tax; ¢ FEuxt(By), for any i, 1 < ¢ < r. Then by Proposition 4.1, Tz; is not
m—smooth for each 1 < i < r. Let Ta; be k;—smooth for all 1 <4 < r. Then k; < (m — 1) for
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all 1 <4 < r. Clearly, k; = dim span Ext J(Tz;). Let {y;; € Ext J(T'x;) : 1 < j < k;} be a
basis of span Ext J(Tx;) for each 1 <14 < r. Let

W; = span {y* @ z; : y* € Ext J(Tx;)} for each 1 <i <.

It now follows from Lemma 4.2 that B; = {y;‘J @x; : 1 < j <k} is a basis of W; and so
dim(W;) = k; for each 1 <14 <. Now, let T be k—smooth. Then

k= dim span J(T)
= dim span Ext J(T)
= dim span{y* @ z; : y* € Ext J(Tx;),1 <i<r}
= dim W, where,

W = span{y*®@uz;:y* € Ext J(Tx;),1 <i<r}

Clearly, W C W1 4+ Wy + ... + W,.. Therefore,

k =dim(W) < dim(i wW;) < zr:dim(VVi) = ikl <(m-1r<(m-1)(n+p).
i=1 i=1 i=1

Now, mp < n+p implies that (m—1)(n+p) < mn, and thus, k¥ < mn. Therefore, from Theorem

4.1, we conclude that T is not an extreme contraction. This is a contradiction. Thus, there

exists 1 < ¢ < 7 such that Tx; € Ext(By). Hence, the pair (X,Y) satisfies weak L-P property.

This completes the proof of the theorem. O

The following corollary now follows easily from Theorem 4.3.

Corollary 4.1. Let X, Y be polyhedral Banach spaces such that dim(X) = n,dim(Y) = m. Let
|Ext(Bx)| = 2n+ 2 and m < n. Then the pair (X,Y) satisfies weak L-P property.

Remark 4.4. (i) In [51, Th. 2.1], Ray et al. proved that if X is an n-dimensional polyhedral
Banach space with exzactly (2n + 2) extreme points and m < n, then the pair (X, 02%) satisfies
weak L-P property. Clearly, Corollary 4.1 improves on [51, Th. 2.1].

(i) In [51, Th. 2.5], Ray et al. proved that if X is an n-dimensional polyhedral Banach space
with exactly (2n+2) extreme points and m(m —1) < n, then the pair (X, (") satisfies weak L-P
property. Observe that if m > 1 and m(m — 1) < n, then m < m(m — 1) < n. Therefore, for
m > 1, Corollary 4.1 improves on [51, Th. 2.5].

(i41) Our Theorem 4.3 unifies Theorems [51, Th. 2.1] and [51, Th. 2.5] and holds for the pair
(X,Y) with Y as m-dimensional polyhedral Banach space instead of the special Banach spaces
o ([51, Th. 2.1] ) and €7 ( [51, Th. 2.5] ).
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The natural question that arises now is whether the sufficient condition given in Theorem
4.3 for a pair of Banach spaces to satisfy weak L-P property is also a necessary condition or
not. In the next theorem, we show that the condition is both necessary and sufficient for the

pair (X, £2,), where X is a two-dimensional polygonal Banach space.

Theorem 4.5. Let X be a two-dimensional polygonal Banach space. Then the pair (X,Kgo)
satisfies weak L-P property if and only if |Ext(Bx)| < 6.

Proof. Let |Ext(Bx)| < 6. Then from Theorem 4.3, we conclude that the pair (X, ¢%) satisfies
weak L-P property. Conversely, suppose that |Ezt(Bx)| > 8. We show that the pair (X, /%)
does not satisfy weak L-P property. Clearly, X* is a two-dimensional polygonal Banach space
such that |Ezt(Bx-)| > 8. So we can choose {z1, %2, 3,24} C FExt(Bx~) such that L[z, x3] and
L[z, —x3] are not edges of Byx~. Now, define T' € L(¢2,X*) by Te; = x1 and Tey = x3, where
e1 = (1,0) and ey = (0,1). Then My = {+e1, +es}. Since x1,x3 are extreme points of Bx+ and
X* is polygonal Banach space, by Proposition 4.1, 21, x3 are 2—smooth points. Thus, by [39, Th.
2.2], T is 4—smooth. Hence, by Theorem 4.1, T is an extreme contraction. It is easy to observe
that 7" : X — (2 is also an extreme contraction. We claim that 7*(Ext(Bx)) N Ext(By ) = 0.
If possible, suppose that there exists u € Ext(Bx) such that T*u € Ext(Byz ). Then T*u is
2—smooth. Clearly, Ext J(T"u) C Ext(Bgz) = {+e1,+ez} and so without loss of generality,
we may assume that Ext J(T*u) = {e1, e2}. Thus,

e1(T*u) = ea(T*u) =1
u(Ter) = u(Teg) =1
u(z1) = u(xz) =1

u(tzy + (1 —t)xs) =1 for all t € [0, 1]

L

[tz1 + (1 — t)zs]| = 1 for all ¢ € [0, 1].

Hence, L[z1, 73] is an edge of Bx«, a contradiction. Therefore, T*(Ext(Bx)) N Ext(By_ ) = 0.
Thus, if | Ext(Bx)| > 8, then the pair (X, £2) does not satisfy weak L-P property. This completes
the proof of the theorem. 0

Remark 4.6. If (X)Y) and (Xo,Yo) are pair of Banach spaces such that X is isometrically
isomorphic to Xo and Y is isometrically isomorphic to Yo, it is clear that (X,Y) satisfies L-P
property (or weak L-P property) if and only if the same happens with (Xo,Yo). Thus, Theorem
4.5 is also true if €% is replaced by a two-dimensional Banach space Y such that |Ext(By)| = 4.

In the next theorem, we show that, given a two-dimensional polygonal Banach space X with

|Ext(Bx)| > 8, there exists a two-dimensional polygonal Banach space Y with |Ext(By)| > 6,
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such that the pair (X,Y) does not satisfy weak L-P property.

Theorem 4.7. Let X be a two-dimensional polygonal Banach space such that |Ext(Bx)| > 8.
Then for each n € N\ {1, 2}, there exists a two-dimensional polygonal Banach space Y such that
|Ext(By)| = 2n and the pair (X,Y) does not satisfy weak L-P property.

Proof. Suppose {1, 2, 23,24} C Ext(Bx) such that x; # +a; for all 1 < 4,5 <4 with i # j
and L[z;,x;41] is an edge of Bx for each 1 < i < 3. Let L{z1,z2[ N Liz4,z3[= {y1} and
Llzo,z1[ N L[—x3, —x4[= {y2}. Let z1 = WT””Z and zp,_1 = ’“JFTQ“"?’ Now, for each 2 < i <n — 2,
we can easily choose vectors z; = a;2z1 + b;z—1, where a;,b; > 0 such that the convex hull of
{£y2,£2; : 1 < j < n — 1} is a symmetric convex set with 2n extreme points {£ys, +2; : 1 <
j < n—1}. Let Y be the Banach space such that By is the convex hull of {+ys,+z; : 1 <
j < n—1}. Then |Ext(By)| = 2n. It is clear that x; (1 < i < 4) are smooth points of Y.
Now, consider the operator I : X — Y defined by Iz = z for all € X. Then M; N Ext(Bx) =
{tx1, tx9, +x3,+24}. Observe that, x1,x9 € L[z1, 42| and x3, 24 € L[—y2, 2,—1]. So there exist
f,g € Sy+ such that J(x1) = J(x2) = {f} and J(z3) = J(z4) = {g}. Let k be the order of
smoothness of I, where 1 < k < 4. Then

k= dim span J(I)
= dim span Ext J(I)
= dim span {f @ x1, f @ 22,9 ® 3,9 ® 14}
= 4.

Therefore, I is 4—smooth. Hence, by Theorem 4.1, I is an extreme contraction. Now, observe
that if x € Ext(Bx) \ My, then ||[Iz| < ||I|| = 1, that is, ¢ Ext(By). If x € M; N Ext(Bx),
then Iz is smooth point of By. Therefore, I(Ext(Bx)) N Ext(By) = 0. Thus, the pair (X,Y)
does not satisfy weak L-P property. This completes the proof of the theorem. |

Although the above theorem indicates that the condition stated in Theorem 4.3 may be nec-
essary for arbitrary two-dimensional polygonal Banach spaces X, Y to satisfy weak L-P property,
the answer is still not known in its full generality. However, if dim(X) > 2, then the condition
is not necessary. We exhibit polyhedral Banach spaces X, Y that satisfy weak L-P property but
dim(X) = n,dim(Y) = m, |[Ext(Bx)| = 2(n + p) and mp > n + p hold. To do so we need the

following two lemmas.

Lemma 4.3. Let X = 3 and Y be a two-dimensional Banach space. Let T € SLx,y) be such
that Rank(T) = 2 and Ext(Bx) C My. Then T(Bx) is a convex set with 4 extreme points.
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Proof. Let us consider the facets £G1 of Bx, where G1 = {(1,y,2) : |y|,|2| < 1}. Now, G; can
be expressed as

Gi=x+F,

where z = (1,0,0) and F = {(0,y,2) : |y|, |z] < 1}. Then
-G1=—-xz+F.

It is clear that By is the convex hull of the sets G1 = x+F and —G; = —z+ F. Therefore, T'(Bx)
is the convex hull of T(z+F) = Tx+T(F) and T(—x+F) = —Tx+T(F). Here, F is the convex
hull of {£(0,1,1),£(0,1,—1)}, and thus, T'(F') is the convex hull of {+7°(0,1,1), £7°(0,1,—1)}.
Hence, T'(F) must be a symmetric set having at most four extreme points. If T(F) has two
extreme points say +z, then Tz # 0 and the extreme points of T'(Bx) are £7Tx + z and we are
done.

Now, let T(F') be a symmetric set having exactly four distinct extreme points +7°(0,1, 1) and
+7(0,1,—1). We denote 7(0,1,1) and T(0,1,—1) by y1 and yo respectively. Clearly, T'(Bx) is
the convex hull of {+Tx + y;,£Tx + yo}. Since Y is two-dimensional and {y1 + y2,y1 — y2}
is linearly independent, we have, Tz = a(y1 + y2) + b(y1 — y2), where a,b € R. We claim that
either a = 0 or b = 0. If possible, let a # 0,b # 0. First assume that a > 0,b > 0. Then

2a 2b 1
To—y = —— (T — = (Tx- — — (-Tz—w).
T = et g T ) g T )
Since a > 0,b > 0, we have, 2af§b+1, 2a+22bb+1, 2a+§b+1 € (0,1). Moreover, we have, |Tx + y2| =
1Tz — y2|| = [Tz + y1]| = 1. Since the vectors Tx + yo, Tx — yo, =Tz — y; are not collinear,

we get, [Tz — y1|| < 1, that is, ||T(1,—1,—1)|| < 1, which contradicts that Ezt(Bx) C Mry.
Similarly, considering a < 0,b < 0, or a < 0,b> 0 or a > 0,b < 0, we get a contradiction. This
proves our claim. Now, the possible alternatives are as follows:

(i) a=b=0. (ii)) a=0,b #£0, (iii) a # 0,b = 0.

The proof would end with the discussion of these alternatives.

(i) Let a = b= 0. Then Tx = 0. Thus, T'(Bx) is the convex hull of {£y;,£y2}. So the extreme
points of T'(Bx) are +y;, +y, and we are done.

(ii) Let @ = 0,b # 0. Then

2b 1
Te —y) = —(Tx — e (T —
v =g (T =)+ 5mg ((Te—y)
and
1 2b
Ty =g (Tr—y) + g (CTe = ).
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Thus, if a = 0 and b > 0, then the only extreme points of T(Bx) are +(Tx —y2) and £(Tz+y;).

We can also write

Tz —ys = (Tz —y1) + 5p— (=T — y2)

26 —1
and
—1

—Te =y =5

Tz —1y1) (=Txz — y9).

+ 2b—1
Thus, if a = 0 and b < 0, then the only extreme points of T(Bx) are +(Tx—y1) and £(Tz+y2).

Hence, we are done.

(ifi) Let a # 0,b = 0. Then

2a

To — oy — T T

v =g Trty) 45— (=Tr—n)
and

T4y = —— (Ta + 1) + —2 (=T — 1)

T =g T ) Ty T e

Thus, if @ > 0 and b = 0, then the only extreme points of T'(Bx) are +(Tz+y2) and +(Tz+y).

We can also write

2a -1
T = Tx — =T
ety2 =5 ——= (T2 —y1) + 5 —(-Tw +y2)
and
— a
—Tx —y = Tx — T .
v—y1 =5 (T2 —y1) + 5—=(-Tw+ 1)

Thus, if a < 0 and b = 0, then the only extreme points of T'(Bx) are £(Tx —y;) and £(Tz —y2).
Hence, we are done.

This completes the proof of the lemma.
O

Lemma 4.4. Let X = 2 and Y be a two-dimensional Banach space. Let T € SLex,y) be such
that Rank(T) = 2 and Ext(Bx) € Myp. Then T(Bx) is a convex set with 4 extreme points.

Proof. Let us consider the facets £G1 of Bx, where G1 = {(1,y,z,w) : |y|, |z, |w] < 1}. Now,
(GG can be expressed as

Gi=xz+F,
where z = (1,0,0,0) and F' = {(0,y, z,w) : |y, |z|, |w| < 1}. Then
—G1=—xz+ F.

Observe that, there exist z; € F(1 < i < 4) such that +2 + z; € Ext(Bx) and F is the convex
hull of {£z; : 1 < i < 4}. It is clear that Bx is the convex hull of the sets G; = =z + F
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and —G; = —x + F. Therefore, T'(Bx) is the convex hull of T'(x + F) = Tx + T(F) and
T(—x+F)=—-Tx+T(F). Here, F is a symmetric cube about the origin and T'(F’) has at most
eight extreme points.

If T(F) has eight extreme points or T'(F') has six extreme points and the two remaining points
(say ty4, where y; = T'xj, for j = 1,2,3,4) belong to the boundary of T'(F), then the operator
Ty : 03, — Yq given by Tp(t1,ta,t3) = T(0,t1,t2,t3), where Yq is the space Y endowed with
a norm whose unit ball is T(F), satisfies the hypothesis but not the thesis of Lemma 4.3.
Since this is not possible, |Ext(T(F))| < 6 and if the equality holds, the remaining two points
(say, as before, +y4) necessarily belong to the interior of T'(F'). However, the latter implies that
Tx+y4 belongs to the interior of By, which contradicts the hypothesis of the lemma. Therefore,
|Ext(T(F))| < 4. From now on, arguing similarly as in Lemma 4.3, we can show that T'(Bx)

has exactly four extreme points. This completes the proof of the lemma. |

Remark 4.8. Following the same line of arguments we can show that Lemma 4.4 holds for
X'= 100, e, if T € Syn vy with Rank(T) = 2 and Ext(Bx) C Mr, then T(Bx) is a convex

set with 4 extreme points.

Next, we obtain a bound of the order of smoothness of a class of bounded linear operators

defined between ¢4 and a two-dimensional Banach space.

Theorem 4.9. Let X = ¢4 and Y be any two-dimensional Banach space. Suppose T € SL(X,Y)
is such that Ext(Bx) C M7 and Tz is smooth for all x € Ext(Bx). Then T is k—smooth where
k <6.

Proof. Let us write Ext(Bx) = {£x1,*x2,...,+xs}, where {1, x2,x3,24} is linearly indepen-
dent. Let S = {z1,z2,...,28}.

First suppose Rank(T) = 1. Then there exists y* € Sy« such that for any i € {1,2,...,8},
J(Tz;) = {y*} or {—y*}. Now, if T is k—smooth, then

k= dim span J(T)
= dim span Ext J(T')

IN

= dim span {y* ®z; : 1 <i < 8}
4

}

IA

= dim span {y* @x; : 1 <1

as {y* ® z; : 1 <i <4} is linearly independent by [39, Lemma 2.1]. Hence T' is 4—smooth.
Let Rank(T) = 2. Then by Lemma 4.4, T(Bx) is a convex set with four extreme points.
Without loss of generality, let £Tx1, £Tx9 be four distinct extreme points of T'(Bx). Suppose
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Tx; € L(Txy,Txg) for some 3 < i < 8. We claim that for each 3 < j < 8,Tx; € L[Txy,Tas) U
L[—Tx1,—Txs]. Since ||[Tz;|| = 1, L[Tx1,Tz2] C Sy. Let J(Tz;) = {y*}. Then for each y €
LTz, Txs), y*(y) = 1. If possible, let there exist 3 < j(# i) < 8 such that Tx; € L(Tx1, —Tx2).
Let J(Tz;) = {2*}. Then y* # +2*. Now, for all y € L[Tx,—Tzs],2*(y) = 1. Thus, y*,2* €
J(T'z1), contradicts that T'zy is smooth. Therefore, Tx; ¢ L(Tx1,—Tx2). Similarly, it can be
shown that T'z; ¢ L(—T'z1,Tx2). Therefore, for any ¢ € {1,2,...,8}, J(Tx;) = {y*} or {—y*}.
Now, it is easy to observe that T is 4—smooth.

Now, suppose that Tz; ¢ L(+Tx1,+Tx9) for any 3 <i < 8. Then Tx; € {£Tx1,£Txo} for all
3<i<8. Let J(Tz1) ={yi} and J(Tz2) = {y4}. Then for any ¢ € {1,2,...,8},

J(Tzi) = A{yi} or {—yi} or {y3} or {—y3}.

Thus, there exist two subsets S; and Sy (S1NSy = 0,51 USy = S) of S such that T'(Sy) = +Tx;
and T'(S2) = £Txo. Therefore, we have for any i € {1,2,...,8},

J(Tx;) = {yi}or {—yi}, ifxi €51

= {wa} or {-u2}, if zi € 5.

Now, it is clear that any 4 elements of S; as well as Sy are linearly dependent. Otherwise, if
{x11, 12, 13, 14} is a linearly independent subset of S7, then for any z € X
4

r = E A\ix1;, where \; are scalars,
i=1

4
= Tx= Z NiT'z1; € span{Tx1}.
i=1
Hence, Rank(T) = 1, a contradiction. Thus, maximal linearly independent subsets of S; and
So contain at most 3 elements. Let us write those linearly independent subsets of S; and Ss
respectively by Ay = {z1;: 1 <i<mi} and Ay = {x9; : 1 < i < na}, where n1,ny < 3. Now, if
T is k—smooth, then

k = dim span J(T)
= dim span Ext J(T)

dim span {y] @,y @ z:x € S1,2 € Sz}

dim span {y] @ r15,y5 @22 : 1 < i <ny, 1 < j <na}

IN

ny +ng < 6.
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Therefore, T is k—smooth, where k < 6. This completes the proof of the theorem. O

Now, we are in a position to show that although the pair (é‘éo,Y) does not satisfy the
condition given in Theorem 4.3, the pair (¢2,Y) satisfies weak L-P property, where Y is a

two-dimensional polygonal Banach space.

Theorem 4.10. Let Y be a two-dimensional polygonal Banach space. Then the pair (¢2,,Y)
satisfies weak L-P property.

Proof. Let X = ¢4 . Then |Ext(Bx)| = 16 = 2(4 + 4). Observe that, comparing with Theorem
4.3, here we have m = 2,n = 4 and p = 4. Thus, mp < n + p is not satisfied. We now show
that the pair (X,Y) satisfies weak L-P property. Let T" € Spxy) be an extreme contraction.
First let us assume |Mp N Ezt(Bx)| = 16. If Tx € Ext(By) for some z € My N Ext(Bx),
then we are done. If possible, let Tx ¢ FExt(By) for any x € Mp N Exzt(Bx). Then from
Proposition 4.1, we get Tz is smooth for all x € Mp N Ext(Bx). Now, from Theorem 4.9, we see
that T is k—smooth, where k < 6. Hence, by Theorem 4.1, T is not an extreme contraction, a
contradiction. Thus, Tz € Ext(By) for some x € MrNExt(Bx). Now, let [MrNExt(Bx)| = 2¢,
where 1 < ¢ < 7. Suppose Tz ¢ Ext(By) for any © € MpN Exzt(Bx). Thus, Tz is smooth for all
x € Mr N Ext(Bx). Let My N Ext(Bx) = {xx1,xx9,...,£24} and J(T'z;) = {y;},1 <i < q.
Now, if T' is k—smooth, then

k = dim span J(T)

dim span Ext J(T)

dim span {y; ® z; : 1 <i<gq}

< ¢q<T.

So, T can not be 8—smooth and hence not an extreme contraction, a contradiction. Therefore,
Tz € Ext(By) for some x € My N Ext(Bx). Thus, the pair (X,Y) satisfies weak L-P property.
This completes the proof of the theorem. O

As an immediate application of Theorem 4.2 (or Theorem 4.3), we can compute the number

of extreme contractions defined on X, where Sx is a regular hexagon.

Theorem 4.11. Let X be a two-dimensional polygonal Banach space such that Sx is a reqular

hezagon. Then |Ext(Byxx))| = 30.

Proof. Without loss of generality, we may assume that the vertices of Sx are +x1 = +(1,0), 29 =
+(1, @), a3 = (-3, @) Let T € Ext(Byxx))- Then from Theorem 4.2, we can say that
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either (7) |My N Ext(Bx)| = 4 or (i) |Mp N Ext(Bx)| = 6.

(1) First consider the case |Mp N Ext(Bx)| = 4. Let My N Ext(Bx) = {+x1,+x2}. Then
by Theorem 4.2, we get Tx1,Txy € Ext(Bx). Observe that, if z,y are two distinct extreme
points of By, then ||z — y|| > 1. Now, x3 = z2 — x1 and x3 ¢ My ensures that Tx; and Txo
cannot be distinct extreme points of Bx. Therefore, Txy = T'xs. Now, there are 6 possibilities
for Tzy. Hence, there are 6 extreme contractions 7' € L(X,X) such that My N Ext(Bx) =
{*x1, £xo}. Similarly, it can shown that there are 6 extreme contractions 7' € L(X, X) such
that My N Ext(Bx) = {£x2,txz3}. Now, suppose that Mr N Ext(Bx) = {£x1,tx3}. Since
xo = 11 + 3 and ||T|| = 1, Tx1 # Txs. Observe that, if z,y are two linearly independent ex-
treme points of Bx, then ||z 4+ y|| > 1. Therefore, taking into account that Tzq,Tz3 € Ext(Bx)
and x2 ¢ My, we conclude that Tz, Tx3 are not linearly independent. Hence, Tx1 = —T'z3.
Now, there are 6 possibilities for Tz;. Thus, there are 6 extreme contractions 7" € L(X,X)
such that Mp N Ext(Bx) = {xx1,*txs}. So we get 18 extreme contractions T such that
|Mp N Ext(Bx)| = 4.

(i4) Now, consider the case | My N Ext(Bx)| = 6, that is, MpN Ext(Bx) = {+x1, £x9, +23}.
We show that in this case, T' is an isometry. By Theorem 4.2 (or Theorem 4.3), T'z; € Ext(Bx)
for some 1 < 4 < 3. Without loss of generality, let Ta; € Ext(Bx) and Tz = x;. Now, the

following cases may hold:

(1) Txs EL[l'l,l'Q], (2) Txs GL[I’Q,.%’;J,], (3) Txs € L[xg, *1'1],
(4) Tz3 EL[—.’IZ1, —.%‘2]7 (5) Txs3 EL[—CEQ, —583], (6) Tz € L[—xg,xl].

We consider each case separately.

(1) Let Tx3 € L[xy, x2]. Then Txg = to1+(1—t)za, for some t € [0, 1]. Then Tzy = Ta1+Txz =
ri+tri+(1—t)ze = (1+t)x1+(1—t)ze = (%—i—%, (1—t)§). Thus, | Tx2|| > 1, a contradiction.
(2) Let Txs € L[z, x3). Then Txg = twg + (1 —t)xs, for some ¢ € [0,1]. Thus, Tzg =tz + 9 =
(t+1, @) Since ||Tz2|| = 1, we must have ¢ = 0, that is, Tx3 = 3.

(3) Let Txs € L[xs, —x1]. Then Txz = tag — (1 — t)x; for some ¢ € [0,1]. Thus, Txy = txs.
Since ||Tz3|| = 1, we have t = 1. Thus, Tx3 = z3.

(4) Let Txs € L[—x1,—x2]. Then Tasz = —tx; — (1 — t)zg for some ¢t € [0,1]. Thus, Txy =
—(1 —t)x3. Since ||Tx2|| = 1, we have t = 0. Thus, Txz = —z2.

5) Let Txs € L[—x2, —x3]. Then Txg = —taxs — (1 — t)x3 for some t € [0,1]. Thus, Tzy =
1—t)xy —x3 = (% —t, —@) Since ||T'z2|| = 1, we have t = 1. Thus, Txsz = —z3.

6) Let Txs € L[—x3,21]. Then Txg =tz — (1 — t)x3 for some ¢ € [0,1]. Similarly as case (1),

(
(
(
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we can show that ||T'z2]| > 1, a contradiction.

Therefore, if Tx1 = x1, then considering all possibilities for Tz, we get that either Tz = x3
or Txs = —x9. In each case, T is an isometry. Clearly, an isometry is an extreme contraction.
Now, it is easy to observe that there are 12 isometries on X. Therefore, there are 12 extreme
contractions T" such that |Mr N Ext(Bx)| = 6.

Combining (7) and (i7), we get total 18 + 12 = 30 extreme contractions on X. O
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CHAPTER 5

COMPLETE CHARACTERIZATION OF
K —SMOOTHNESS OF OPERATORS
DEFINED ON 3

5.1 Introduction

The problem of characterizing k—smooth operators defined between arbitrary Banach spaces
is relatively new but an important area of research which plays an important role to identify
the structure of the unit ball of a Banach space. There are several papers including [14, 15,
24, 32, 39, 67] that contain the study of k—smoothness of operators on different spaces. In this
chapter, our objective is to study the k—smoothness of bounded linear operators defined on Ego.
Let us first fix the notation and terminology.

We denote X as real Banach space throughout the chapter. The unit sphere and the unit
ball of X respectively denoted by Sx and Bx. Let L(X) denote the space of all bounded linear
operators defined on X endowed with the usual operator norm. For T' € L(X), Mt denotes the
collection of all unit vectors of X at which 7" attains its norm, i.e., My = {a € Sx : | Tz| = ||T|}.
For a set A, the cardinality of A is denoted by |A|. The dual space of X is denoted by X*. An
element x € Sx is said to be an extreme point of the convex set By if and only if z = (1—t)y+tz
for some y, 2z € Bx and t € (0, 1) implies that y = z = x. The set of all extreme points of By is
denoted by Fzt(Bx). An element z* € Sx- is said to be a supporting linear functional of z € Sx,

if z*(z) = 1. For a unit vector z, let J(z) denote the set of all supporting linear functionals of
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z, le., J(z) = {a* € Sx+ : x*(x) = 1}. The set J(x) for x € Sx plays a significant role to study
the k—smoothness of x. By the Hahn-Banach Theorem, it is easy to verify that J(z) # (), for
all x € Sx. We would like to mention that J(z) is a weak*-compact convex subset of Sx». A
unit vector x is said to be a smooth point if J(z) is singleton. X is said to be a smooth Banach
space if every unit vector of X is smooth. The set of all extreme points of J(z) is denoted by
Ext J(x), where x € Sx.

In 2005, Khalil and Saleh [24] defined k—smooth points as follows: An element x € Sx is said to
be k—smooth or the order of smoothness of x is k, if J(x) contains exactly k linearly independent
supporting linear functionals of . In other words, z is k—smooth, if dim span J(z) = k.
Moreover, from [32, Prop. 2.1], we get that z is k—smooth, if k = dim span Ezt J(z). Similarly,
for T € L(X,Y) with ||[T|| =1, J(T) = {F e LIX,Y)* : |[F|| = 1,F(T) = 1} and T is said to
be k—smooth operator, if k = dim span J(T) = dim span Ext J(T'). Observe that, 1—smooth
points of Sx are the smooth points of Sx. For a convex set C, int,(C) denotes the relative
interior of the set C, i.e., z € int,(C) if there exists € > 0 such that B(z,€) N affine(C) C C,
where affine(C) is the intersection of all affine sets containing C' and an affine set is defined as
the translation of a vector subspace. A non-empty convex subset F' of C' is said to be a face of

C,ifforz,ye Candt€ (0,1), 1 —t)z+ty € F = z,y € F.

We state the following lemma [68, Lemma 3.1], characterizing Fxt J(T'), which will be used

often. For simplicity we state the lemma for finite-dimensional Banach space Y = X.

Lemma 5.1. [68, Lemma 3.1] Suppose that X is a finite-dimensional Banach space. Let T €
L(X) and ||T|| =1 Then

Ext J(T)={y" @z € L(X)": x € Mp N Ext(Bx),y* € Ext J(Tx)},

where y* @ x : L(X) — R is defined by y* @ x(S) = y*(Sx) for every S € L(X).

We state the following useful lemma which will be used often to prove maximum the theorems

of the chapter. We give the statement in more simplified form (considering Y = X.)

Lemma 5.2. [39, Lemma 2.1] Suppose X is a finite-dimensional Banach space. If {x1,z2,...,2m}
is a linearly independent subset of X and {yi,v5,...,y5} is a linearly independent subset of X*,

then {yf ® x; : 1 <i<n,1 <j<m} is a linearly independent subset of L(X)*.
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5.2 Complete characterization of k—smooth
elements of L(/2 )

We denote the extreme points of £3_ by +a1 = +£(1,1,1), £a9 = £(—1,1,1), 23 = £(-1,-1,1),
+ 24 = £(1,-1,1). [Mp N Ext(Byg )| plays an important role in determining the order of
smoothness of 7. Observe that if [Mr N Ext(By )| < 6, then the order of smoothness of
T can be obtained using [39, Th. 2.2]. Therefore, we only consider the case for which
|Mr N Ext(Bg_)| = 8, i.e., My N Ext(Bys ) = {&x1, a9, a3, +24}. We denote the facets
{(z,y,2) : 2 =1}, {(z,y,2) : y =1} and {(x,y, 2) : z = 1} of Sx respectively by Fy, F» and Fj.
Let us denote the supporting functionals corresponding to the factes Fy, Iy and F3 respectively
by y1, y3 and y3.

Note that, for 1 < ¢ < 4, Twx; is k—smooth, where k € {1,2,3}. Suppose Sy = {z €
Mr 0 Ext(Bgs,y : Tx is k — smooth}, where k € {1,2,3}. Clearly, [S1|+ [S2| + |S3| = 8.

In the following theorem, we consider the case when |S;| = 8.

Theorem 5.1. Let X = Ego and let T' € Sy (x) be such that MrNExt(Bx) = {+x1, a9, a3, x4}
Let |S1]| = 8. Then the following hold:

(i) If £J(Tx;) = £J(Txj) for all x;,x; € Si, then T is 3—smooth.

(73) Otherwise, T is 4—smooth.

Proof. (i) Suppose the given condition is satisfied. Let +J(Tx;) = {£y*} for 1 < i < 4. Now,
if T'is k—smooth, then

k = dim span J(T)
= dim span Ext J(T)
= dim span {y" @ x1,y" @ x2,y" @ x3,y" @ 24}
= dim span {y* @ r1,y" @ x2,y" ® w3}
= 3, (using Lemma 5.2).

Hence, T is 3—smooth.
(13) Let £J(Tz;) = {£y;} for 1 < i < 4. Since (i) is not satisfied, without loss of generality, we
assume yj # +ys, i.e., {y],y5} is linearly independent. Let y3 = ay] + bys and y; = cyi + dys,

where a,b,c,d € R. Since ||y5]| = 1, a and b cannot be zero simultaneously. Similarly, ¢ and d
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can not be zero simultaneously. Now, if T is k—smooth, then

k= dim span J(T)
= dim span Ext J(T)

= dim span {yi @ x1,y5 @ T2, Y3 ® T3,Y; @ T4}.

We show that {y] ® z1,95 ® 2, y35 @ x3,y; ® x4} is linearly independent. Let ¢;(1 <i<4) e R
be such that
* * * *
Y] @1+ c2ys @ T2 + c3y3 @ w3 + cayy @ x4 = 0.

Then

1y ® 11 + coys @ xo + cs(ay] + byy) @ xs + ca(cy] + dys) ® (1 — x2 + x3) = 0.

= (c1+ c40)y; @ 21 + (c2 — cad)ys @ xo + (c3a + ca¢)yy @ x3 + (c3b + cad)ys @ 3

—cqcy] @ T + cady; @z = 0.

Since {x1, x2, z3} is linearly independent subset of X and {y},y3} is linearly independent subset
of X*, from Lemma 5.2, we get that {y; @ x1,y5 @21, yf Qx2, Y5 @ x2, yf @ x3, ys @3} is linearly
independent subset of L(X)*. Therefore,

c1+cuec=0, cg—cyd=0, csa+csc=0, cgb+c4d =0, c4c =0, c4d = 0.
Now, solving these equations, we obtain ¢; = 0 for all 1 < i < 4. Therefore, {yf ® z1,y5 @
T2, Y3 ® x3,ys @ x4} is linearly independent. Hence, k = 4 and T' is 4—smooth. O
In the following theorem, we consider the case when |S1| = 6 and |S2| = 2.

Theorem 5.2. Let X = ¢3_ and let T € Spx) be such that MprNEzxt(Bx) = {£x1, £x9, +13, x4}
Let |S1] = 6 and |S2| = 2. Then the following hold:

(i) If £J(Tx;) = £J(Txj) for all x;,x; € Sy and £J(Tx;) C £Ext J(Txy) for all x; € S1 and
T € So, then T is 4—smooth.

(i3) Otherwise, T is 5—smooth.

Proof. Without loss of generality, we assume T'x; is 2—smooth and T'z; are smooth for 2 < ¢ < 4.
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(i) Let the given condition be satisfied. Without loss of generality, we may assume Tx;
belongs to the edge {(1,1,z) : |z| < 1} and Txg,Tx3,Tx4 belong to the facet Fy. Thus
Ext J(Tz1) ={yf,y5} and J(Tz;) = {yi} for i = 2,3,4. Now, if T is k—smooth, then

k = dim span J(T)
= dim span Exzt J(T)
= dim span {y] @ x1,¥5 @ x1,y] @ T2,Y] @ T3,y] @ T4}
= dim span {y] @ x1,y5 @ x1,y] @ T2,y @ T3}
= 4, (by Lemma 5.2).

Hence T is 4—smooth.

(73) Suppose the condition (¢) is not satisfied. Without loss of generality, we may assume
Tz belongs to the edge {(1,1,2) : |z| < 1}, Tz, Tz3 belong to the facet Fy and Tz belongs
to the facet Fy. Thus J(Tx1) = {y},y5}, J(Tx;) = {yf} for i = 2,3 and J(Tz4) = {y3}. Now,
if T is k—smooth, then

k = dim span J(T)
= dim span Ext J(T)

= dim span {y] @ x1,y3 ® T1, Y] ® T2, Y] @ T3, Y5 ® Ta}.

We now show that {y; ® z1,y5 ® 21,y ® x2,y] ® x3,y5 ® x4} is linearly independent. Let us

consider the relation

1Y) @ x1 + coys @ x1 + c3y] ® To + 4yl ® x3 + csys @ x4 = 0, where ¢y, 9, ¢3,¢4 € R.

Then
1y @ x1 + cays ® T1 + c3y] @ w2 + cuyf @ 3+ c5y3 @ (11 — x2 +x3) =0,

i.e.,

cy] @1+ (2 + ¢5)y5 @ 1 + c3y] @ Ta — C5Ys @ Ta + c4y] ® T3 + c5y5 @ x3 = 0.

By Lemma 5.2, {yf ® 21,95 ® z1,y] ® x2,y5 @ x2,y; @ x3,y5 ® x3} is linearly independent.

Therefore, ¢; = ¢ = ¢3 = ¢4 = ¢5 = 0. Thus, k£ = 5 and hence T is 5—smooth. In all the other
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cases, exactly in a similar manner, we can show that T" is 5—smooth. This completes the proof

of the theorem. OJ
Next, we consider the case when |S1| = |S2| = 4.

Theorem 5.3. Let X = (3 and let T € Sy (x) be such that MpNExt(Bx) = {+x1, 22, 213, £14}.
Let |S1] = |So| = 4. Then the following hold:

(i) If £J(Tx;) = £J(Txj) for all v;,x; € Sy and £J(Tx;) C £Ext J(Txy) for all x; € Si and
x € So, then T is 5—smooth.

(i3) Otherwise, T is 6—smooth.

Proof. Without loss of generality, we assume Tx1,Txzo are 2—smooth points and Tz, Txy are

smooth points.

() Let the given condition be satisfied, i.e., either T'z3, T'x4 or Txs, —Tz4 belong to the same
facet which is adjacent to both of the edges Ej, where E; contains T'x; or —Tx; for [ = 1,2.
Without loss of generality, we assume Tx1 belongs to the edge {(1,1, 2) : |z| < 1}, T'z3 belongs
to the edge {(1,v,1) : |y| <1}, Txs, Tx4 belong to the facet Fy. Thus, Ext J(Tx1) = {y},ys},
Ext J(Txz2) = {y},y5} and J(Tz3) = J(Txs) = {yi}. Now, if T is k—smooth, then

k = dim span J(T)
= dim span Exzt J(T)
= dim span {y] @ x1,y5 @ T1,y] @ T2,Y3 @ T2, y] @ x3,y] @ T4}
= dim span {4} ® 1,55 ® 21, 5] ® T2, 45 ® T2, 4 ©® 73}
= 5 (by Lemma 5.2).

Hence T is 5—smooth. In all the other cases, similarly we can show that 7" is 5—smooth.

(1) Let the condition (a) be not satisfied. Then one of the following conditions hold:
(1) neither Tz, Ty nor Tz, —Tx4 belong to the same facet.
(2) either one of the pairs of T3, Tzy and Txzs, —Tx4 belongs to the same facet which is not
the common adjacent facet of the edges Fj, where F; contains Tx; or —Tx; for [ =1, 2.
Let (1) be true. Without loss of generality, we assume Tx1, Tx2 belong to the edge {(1,1, 2) :
|z| < 1}, Txs belongs to the facet Fy and T'z4 belongs to the facet Fy. Thus, J(T'z1) = J(Tx2) =
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{yf,y5}, J(Tx3) = {yi} and J(Tx4) = {y5}. Now, if T" is k—smooth, then

k = dim span J(T)
= dim span Exzt J(T)
= dim span {y] @ 21,y5 ® 21,y @ T2,Y5 @ T2, Y| @ 3,Y3 ® T4}

= 6, by simple calculation.

Hence T is 6—smooth. If (2) is true, then similarly we can show that T' is 6—smooth. This

completes the proof of the theorem.
O

In the following theorem, we show that if |[S1]| = 2 and |S2| = 6, then T is 6—smooth.

Theorem 5.4. Let X = (3 and letT € Spx) be such that MprNEzt(Bx) = {£x1, £z, tx3, T24}.
Let |S1] = 2,|S2| = 6. Then T is 6—smooth.

Proof. Without loss of generality, we assume Tz, Txo, Tx3 are 2—smooth points and Txy is
smooth point. If possible, let the edges Ej,l = 1,2,3 have no common adjacent facet, where Ej
contains T'z; or —T'x;.
Without loss let us assume Tz = (+1,+1,a), Txe = (+1,d/,+1), Txs = (a”,+1,+1), where
lal, |a'|,]a"| < 1. Then

T:L‘4
= Taxy —Txg+Tx3
= (il,:l:l,a) — (:I:l,a’,:l:l)—l—(a”,j:l,il),

which shows thar either [|[Tz4]] > 1 or ||[Tz4|| < 1, a contradiction. Therefore, the edges
Ep,l =1,2,3 have common adjacent facet, where E; contains Tx; or —T'x;.

If possible let T'x4 does not belong to the common adjacent facet of E;, 1 = 1,2,3. Without loss
let Txy = (£1,+1,a), Tee = (£1,+1,d"), Txs = (£1,b, £1), where |al,|d’|, |b| < 1. Then

TEL’4

Txy —Txo+ Txs
(£1,£1,a) — (£1,+1,d") + (£1,b,£1)

(£1,b,a —d £1),

otherwise || Tx4| > 1, which shows that either Tx4 or —Tx4 must belong to the common adjacent

facet of E;,1=1,2,3.
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Without loss of generality we assume Tx1,Tzo belong to the edge {(1,1,2) : |z] < 1}, T3
belongs to the edge {(1,y,1) : |y| < 1}, Tx4 belongs to the facet Fy. Thus, Fzt J(Tx1) =
Ext J(Txz2) = {y],ys5}, Ext J(Txz3) = {yf,y5} and J(Txs) = {y}}. Now, if T is k—smooth,
then

k = dim span J(T)
= dim span Ext J(T)
= dim span {y] @ x1,Y5 @ T1,y] @ T2,Y5 @ T2, Y] @ T3,Y3 @ T3,Y] @ T4}
= dim span {y; @ r1,y5 @ 1,y] ® T2,Ys @ T2,y; @ 3,y3 @ 3}
= 6, (by Lemma 5.2).

Hence T is 6—smooth. In all the other cases, similarly we can show that T is 6—smooth. O

Theorem 5.5. Let X = 3 and let T € Spx) be such that MprNEzt(Bx) = {£x1, £xe, tx3, T24}.
Let |Sa| = 8. Then the following hold:

(i) If | N}y £Ext J(T;)| = 4, then T is 6—smooth.

(i3) Otherwise, T is T—smooth.

Proof. (i) Suppose the given condition is satisfied. Without loss of generality we assume T'z;
belongs to the edge {(1,1,2) : |z] < 1}, , Tzo belongs to the edge {(—1,1,2) : |2|] < 1}, T3
belongs to the edge {(—1,—-1,2) : |z|] < 1} and Tz4 belongs to the edge {(1,—1,2) : |2| <
1}. Thus, Ext J(Tx1) = {y7,y5}, Ext J(Tz2) = {y3,—yi}, Ext J(Tws) = {—yj, —y5} and
Ext J(Tz4) = {y}, —ys}. Now, if T is k—smooth, then

k = dim span J(T)
= dim span Ext J(T)
= dim span {y] @ x1,y5 @ T1,y5 @ T2, Y] ® T2, Y} Q 3,5 @ T3, Y] ® T4,
Y @ x4}
= dim span {y] @ x1,Y5 R T1,Y] ® T2,y @ T2, Y] ® T3,y @ T3}
= 6 (by Lemma 5.2).

Hence, T is 6—smooth. In all the other cases, similarly we can show that T is 6—smooth.

(#4) Suppose the condition of (a) is not satisfied. We first show that the edges F;,l =1,2,3
have a common adjacent facet, where Ej contains T'x; or —T'x;. If possible, let the edges Ej, [ =

1,2,3 have no common adjacent facet, where E; contains Tx; or —Tx;. Let Ty = (+1,+1,a),
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Txy = (£1,d,£1), Tag = (a”,£1, £1), where |a|,|d’|, |a”] < 1. Then

Tl‘4

= Txy—Txo+ Txs

(£1,41,a) — (£1,d’, £1) + (a’, £1, £1),

which shows that either || Txz4]| > 1 or ||[Tx4]| < 1, a contradiction. Now, let exactly four points
of the 2—smooth points belong to parallel edges. Let Tx1 = (£1,+1,a), Tze = (+1,+1,4d'),
Txs = (£1,b,£1), where |al,|d’[, |b| < 1. Then

TLL‘4
= Txy —Taxo+Tx3
= (£1,%+1,a) — (il,il,a') + (£1,b,£1)

(£1,b,a —a' £1),

otherwise ||T'z4|| > 1. So we must have a = a' as T4 is 2—smooth and then {(z,y,2) : x = 1}
is the common facet which is adjacent to the edges containing Tx;, or —Tz;, i = 1,2,3,4.
The other cases are similar. Without loss of generality, we assume T'x1,Tx2 belong to the
edge {(1,1,2) : |z| < 1}, Tz3 belongs to the edge {(x,1,1) : |z| < 1}, Tx4 belongs to the
edge {(z,—1,1) : |z| < 1}. Therefore, F» is the required common facet. Thus, Ext J(Tx1) =
J(Tx2) ={y],y5}, Ext J(Tx3) = {y3,y3} and Ext J(Txs) = {—vy5,y3}. Now, if T is k—smooth,
then

k = dim span J(T)
= dim span Ezt J(T)
= dim span {y] @ 1,5 @ 1,y @ T2,Ys @ T2, Ys @ T3,Y3 ® T3, —Y5 @ T4,
Y3 ® 4}
= dim span {y] @ x1,Y5 @ 1, Y] @ T2,Ys @ T2,Ys @ T3,Y3 ® T3,Y3 @ T4}

= 7, ( by simple calculation).

Hence T is 7—smooth. In all the other cases, similarly we can show that T is 7—smooth. This

completes the proof of the theorem. |

Now, we turn our attention to the case S3 # ). In Theorem 5.6 we assume |S3| = 2,5, =0

and in Theorem 5.7, we consider S3 = 2, So # 0.
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Theorem 5.6. Let X = (3 and let T € Spx) be such that MprNEzt(Bx) = {£x1, £xe, tx3, Tx4}.
Let |S1| = 6,|Ss| = 2. Then the following hold:

(0) If £J(Tx;) = £J(Txj) for all z;,xj € S1, then T is 5—smooth.

(i3) Otherwise, T is 6—smooth.

Proof. Without loss of generality we assume +7T'z; are 3—smooth.

(i) Suppose the given condition is satisfied. Without loss of generality, we may assume Tz =
(1,1,1) and Twe, T'x3, T4 belong to the facet Fy. Thus, Ext J(Tz1) = {y}, y5,y5} and J(T'z;) =
{y7} for i = 2,3,4. Now, if T is k—smooth, then

k = dim span J(T)
= dim span Ext J(T)
= dim span {y] @ x1,y5 @ x1,y3 R X1, Y] @ T2,y @ T3,Y] @ T4}
= dim span {y" @ 1,y5 © x1,y] © T1,Y1 @ T2, Y7 © T3}
= 5 (by Lemma 5.2).

Hence T' is 5—smooth. In all the other cases, similarly we can show that 7" is 5—smooth.

(#i) Suppose the condition (a) is not satisfied. Without loss of generality, we may assume
Tzy = (1,1,1), and Tza, Txs belong to the facet F; and Tz belongs to the facet Fy. Thus,
J(Tzx1) ={y],y5,y3} and J(Tx2) = J(Tx3) = {yj} and J(T'z4) = {y5}. Now, if T is k—smooth,
then

k = dim span J(T)
= dim span Ezt J(T)
= dim span {y; @ v1,y3 @ 21,93 @ T1,y; @ T2,y @ X3,Y5 @ T4}

= 6, (by simple calculation).

Hence T is 6—smooth. In all the other cases, similarly we can show that T is 6—smooth.

O

Theorem 5.7. Let X = (3 and let T € Spex) be such that MrNEwxt(Bx) = {4z, 72, 73, £14}.
Let |S3] = 2,59 # 0. Then the following hold:

(I) If |Sa| = 2, then T is 6—smooth.

(II) If |So| = 4, then T is T—smooth.

(III) If |Sa| = 6, then T is T—smooth.
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Proof. Without loss of generality we assume Tz is 3—smooth. So, Tx; = (£1,£1,+1).

(I) Let |S2] = 2. Without loss of generality, we assume Tzg is 2—smooth and Tzy =
(£1,+1,¢), where |c¢| < 1. Then Tx; are smooth for 3 < i < 4. If possible, suppose that
Txs = (I,m,+1), where |l|,|m| < 1. Then

Tx4
= Txy—Txo+Txj

(£1,+1,£1) — (£1,+1,¢) + (I, m, £1)

= (l)m7 C)’

otherwise ||Txz4|| > 1. So ||Tz4]| < 1, which is a contradiction. Therefore, either T'z3 = (%1, a,b),
where |a|, |b] < 1 or Tzg = (p, %1, q), where |p|, |g| < 1. Without loss of generality, let Txs =
(£1,a,b), where |al, |b] < 1. Then

Txy
= Txy—Txo+ Txs
= (£1,£1,41) — (£1,£1,¢) + (£1,a,b)
= (£l,a,£1 —c+V),

otherwise ||Tz4]| > 1. If b = ¢, then Tx4 will be 2—smooth, a contradiction. Therefore, b # ¢ and
Txs3,Tx4 belong to the same facet which is one of the adjacent facet of the edge containing T'zs.
For simplicity, suppose Tx1 = (1,1, 1), Tzo belongs to the edge {(1,1,2) : |2| < 1} and T3, Tx4
belong to the facet Fy. Thus, we have Ext J(Tx1) = {y},y5,y5}, Ext J(Tx2) = {y},y5} and
J(Tx3) = J(Txq) = {yj}. Now, if T is k—smooth, then

k= dim span J(T)
= dim span Ext J(T')
= dim span {y] @ x1,y3 @ 1,3 © 1, Y] @ T2, Y5 @ T2, Y] @ T3, Y] @ T4}
= dim span {y] @ x1,y5 R x1,Y5 @ X1, Y] @ T2,y5 @ T2,y] @ w3}
= 6 (by Lemma 5.2).

Hence T is 6—smooth. Considering other cases, we can similarly show that T' is 6—smooth.

(IT) Let |So| = 4. Without loss of generality, we assume T'xg, Tz3 are 2—smooth and T'z4
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is smooth. Without loss we may assume Tzy = (£1,+1,¢),|c| < 1. If possible, suppose that
Txs = (£1,£1,c), where |¢/| < 1. Then

Txy
= Tz —Taxo+Txs
= (&1,£1,41) — (£1,£1,¢) + (£1,%1,¢)
= (£1,£1,+1 —c+ ),

otherwise ||Tx4| > 1. So Txy is at least 2—smooth, which is a contradiction. Therefore, either
Txz = (£1,b,£1), where |b| < 1 or Txg = (a,£1,£1), where |a| < 1. Let Txg = (£1,b, £1),
where |b| < 1. Then

Tx4
= Txy—Txo+ Txg
= (il,il,il) — (il,il,c)+(i1,b,i1)

(:l:17 ba _C)7

otherwise ||Tx4| > 1. So Txy or —Tx4 belongs to the facet which is the common adjacent
facet to the edges containing Txq, Txg or Tz, —Tx3. Similarly, considering Txs = (a, +1,£1),
where |a| < 1, we can show that either T'z4 or —T'z4 belongs to the facet which is the common
adjacent facet to the edges containing Tz, Tx3 or T'zo, —T'x3. For simplicity, let Txy = (1,1, 1),
Tzy belongs to the edge {(1,1,2) : |z| < 1}, Txz belongs to the edge {(1,y,1) : |y| < 1}
and Tz4 belongs to the facet {(z,y,z) : « = 1}. Thus, we have Ext J(Tx1) = {y},y5,y5},
Ext J(Tx2) = {y7,y5}, Ext J(Tz3) = {y},y5} and J(T'z4) = {yi}. Now, if T is k—smooth,
then

k= dim span J(T)
= dim span Ext J(T')
= dim span {y] @ x1,y5 @ T1,Y3 @ T1,Y] @ T2, Y5 Q T2, Y] Q@ T3, Y3 Q T3,
Y ® T4}
= dim span {y] @ x1,Y5 R x1,y3 @ 1, Y] ® T2,y @ T2,y] @ T3,Y3 @ 3}
= 7 (by Lemma 5.2).

Hence T is 7—smooth. Considering other cases, similarly we can show that 7" is 7—smooth.
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(IITI) Let |S2| = 6. Then Txo, Txs, T'x4 are 2—smooth. Following the same argument used in
(IT), we can conclude that all 2—smooth points Tx;,7 = 2, 3, 4 belong to the parallel edges, that
is, if Two = (£1,+1,¢),|c| < 1, then Tag = (£1,£1,¢), where || < 1 and Txg = (£1,+1,+1—
¢+ ). For simplicity, let Txy = (1,1,1), Txa, Txs, Ty belong to the edge {(1,1,2) : |z| < 1}.
Thus, we have Ext J(Tz1) = {y}, y5,y5}, Ext J(Txo) = Ext J(Tx3) = Ext J(Txza) = {y7,ys}.
Now, if T' is k—smooth, then

k = dim span J(T)
= dim span Ext J(T')
= dim span {y] @ x1,y3 ® 1, Y3 @ T1, Y] @ T2, Y5 ® T2, Y] @ T3, Y5 ® T3,
Y1 @ T4, y5 @ T4}
= dim span {y] @ x1,y5 R x1,y3 @ X1, Y] ® T2,y @ T2,y] @ T3,Y5 @ 3}
= 7 (by Lemma 5.2).

Hence T is 7T—smooth. Considering other cases, similarly we can show that T is 7—smooth.

This completes the proof of the theorem. |

To completely determine the order of smoothness of T' € I.(X), the only remaining case to

study is |S3| > 4. Now, we consider this case.

Theorem 5.8. Let X = (3 andlet T € Sp(x) be such that MrNEwxt(Bx) = {4x1, 22, 73, 14},
Let |S3| > 4. Then the following hold:

(I) If |S3| = 4 and S = 0, then T is T—smooth.

(I1) If |Ss3| = 4 and Sz # 0, then T is 8—smooth.

(III) If |Ss| > 4 then |S3| =8 and T is 9—smooth.

Proof. (I) Let |Ss| = 4 and Sy = 0. Then |S;| = 4. Without loss of generality, we assume
Tz, Txe are 3—smooth and Tas, Txy are smooth. So, Taxy = Taxy = (£1,+1,+1). First
assume that Tzz = (1, a,b), where |a|, |b] < 1. Then

Taxy
= Txy—Txo+ Txg
= (£1,£1,41) — (£1,£1,£1) + (£1,a,b)
= (£1,a,b),

otherwise ||Tx4|| > 1. So Tz3, Tz4 belong to the facet Fy or —Fj. Similarly, Tz3 = (a, £1,b),
where |a| < 1,]b] < 1, implies that Txzg, Tx4 belong to the facet Fy or —F5 and Tx3 = (a,b, £1),
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where |a] < 1,]b] < 1, implies that Tx3, Tx4 belong to the facet F3 or —F3. For simplicity,
we assume that Tzy = Txo = (1,1,1), Twg,Tz4 belong to {(x,y,2) : £ = 1}. Thus, we have
Ext J(Tx1) = Ext J(Tx2) = {y7,v5,y5} and J(Tx3) = J(T'z4) = {yj}. Now, if T' is k—smooth,
then

k= dim span J(T)
= dim span Ext J(T)
= dim span {y; @ x1,y5 @ 1, Y3 © L1, Y7 ® T2, Y5 © T2, Y3 ® T2, Y| @ T3,
Yl ® x4}
= dim span {y] @ 1,5 @ 1,3 @ 1,y Q@ T2, Y5 @ T2, Y3 @ T2,y; @ x3}
= 7 (by Lemma 5.2).

Hence T is 7—smooth. Similarly, considering other cases, we can show that T' is 7—smooth.

(IT) Let |S5| = 4 and Sy # 0. Without loss of generality, we assume T'z1, Txo are 3—smooth.
So, Txy = Txe = (£1,+1,£1). Suppose T'z3 is 2—smooth and Tzg = (£1,+1, a), where |a|, < 1.
Then

Ty
= Txy—Txo+ Txg
= (£1,£1,41) — (£1,+1,£1) + (£1,£1,a)
= (£1,+£1,a),

otherwise |[Tz4|| > 1. So Tz4 must be 2—smooth and Tz, Tx4 belong to the parallel edges.
Similarly, considering other cases, we can show that T'z4 must be 2—smooth and Tx3,Txz4
belong to the parallel edges. Now, for simplicity, assume that Taxy = Taxg = (1,1,1), Tas, Txy
belongs to the edge {(1,1, 2) : |z| < 1}. Thus, we have Exzt J(Tx1) = Ext J(Tx2) = {y},v3,va}
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and J(T'z3) = J(Tx4) = {y],y5}. Now, if T'is k—smooth, then

k = dim span J(T)
= dim span Ext J(T)
= dim span {y; ® T1,Y5 @ T1,y3 @ T1, Y] @ T2,Y5 @ T, Y3 @ T2, y] @ T3,
Y3 ® T3, Y] @ T4, Y3 @ Ta}
= dim span {y; ® T1,¥5 @ T1,y3 @ T1, Y] @ T2,Y5 @ Ta, Y3 @ T2, y] @ T3,
Ys ® w3}
= 8 (by Lemma 5.2).

Hence T is 8—smooth. Similarly, considering other cases we can show that T' is 8 —smooth.

(ITII) Let |S3| > 4. Suppose Tz, Txe, Tz are 3—smooth. So, we must have Ta; = Txg =
Txs = (£1,£1,41). Then

Tx4
= Tx1—Txo+ Tx3

(£1,41,41) — (£1, £1, +1) + (£1, +1, +1)
= (&1,+1,+1),

otherwise ||T'z4|| > 1. Thus, T'z4 is also 3—smooth and |S3| = 8. Then we have £ Ezt J(Tx1)+ =
Ext J(Txo) = £Ext J(Tx3) = £Ext J(Txs) = {xy], £y5, £y3}. Now, if T is k—smooth, then

k = dim span J(T)
= dim span Ext J(T)
= dim span {y] @ 1,5 R x1,Y3 @ X1, y] @ T2, Y5 ® T2,Y3 @ T2, Y] @ T3,
Y3 ® x3,Y5 @ T3, Y] @ T4, Y5 @ Ta, Y3 © T4}
= dim span {y] @ x1,Y5 @ T1,Y3 @ T1,Y] @ T2, Y5 Q Ta,Ys @ T2,y] @ T3,
Yo @ 3, Y3 @ v3}
= 9 (by Lemma 5.2).

Hence T is 9—smooth. In all the other cases, similarly we can show that T is 9—smooth. This

completes the proof of the theorem.
O
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CHAPTER 6

NUMERICAL RADIUS NORM AND
NU-SMOOTHNESS OF ORDER K

6.1 Introduction

The purpose of this chapter is to study a generalized notion of smoothness and extreme con-
traction in the space of bounded linear operators endowed with numerical radius norm. We
also obtain necessary and sufficient conditions on operators having equal operator norm and
numerical radius norm. Let us first fix the notations and terminologies.

Let H and X denote respectively Hilbert space and Banach space over the field R. Suppose
Bx = {z € X:|jz|| <1} and Sx = {z € X : ||z| = 1} respectively denote the unit ball and
the unit sphere of X. X* is the dual space of X. For a set A, the cardinality of A is denoted
by |A|. An element = € Sx is said to be an extreme point of the convex set Bx if and only if
x = (1—t)y+tz for some y, z € Bx and t € (0, 1) implies that y = z = x. The set of all extreme
points of Bx is denoted by Ext(Bx). For z,y € X, let L[z,y] = {tz + (1 —t)y : 0 <t < 1} and
L(z,y) ={tx+ (1 —t)y : 0 <t < 1}. An element z* € Sx~ is said to be a supporting linear
functional of z € Sk, if *(z) = 1. For a unit vector z, let J(z) = {z* € Sx« : z*(z) = 1}.
The set J(z) for x € Sx plays a significant role in our study. By the Hahn-Banach Theorem,
it is easy to verify that J(z) # 0, for all x € Sx. We would like to mention that J(z) is a
weak*-compact, convex subset of Sx«. A unit vector z is said to be a smooth point if J(x) is
singleton. X is said to be a smooth Banach space if every unit vector of X is smooth.

Let L(H) and L(X) denote the set of all bounded linear operators on H and X respectively,
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endowed with the usual operator norm. For T' € L(H), the numerical range and numerical

radius of T, respectively denoted by W (T') and w(T) are defined as
W(T) ={(Tz,x): x € Su}.

w(T) = sup{[(Tx,z)| : v € Sy}.

Readers can look into [41]. The natural generalization of numerical radius of an operator T on

a Banach space X is as follows:
w(T) = sup{|z*(Tz)| : * € Sx+,x € Sx,z"(x) = 1}.

Numerical radius always defines a norm on the corresponding space if the underlying scalar field
is complex. However, there are some real Banach spaces X such that numerical radius defines a
norm on L(X). In this context, readers may follow [5, 4, 43] for further details. Here we consider
only those real finite-dimensional Banach spaces X such that numerical radius defines a norm
on L(X) and throughout the chapter we use the symbol L(X),, to denote the space of bounded
linear operators endowed with the numerical radius norm. For a bounded linear operator T on

X, its norm attainment set M7 and numerical radius attainment set Vi are defined as follows:
My ={z € Sx : |Tz|| = T}

Vr={z e Sx: 32" € J(z) such that |2*(Tx)| = w(T)}.

Note that both the sets My and Vi are non-empty when X is finite-dimensional. We refers the

reader [55] for numerical radius attainment set. Suppose that
J(T) =A{f : Sy = f(T) = |IT|} and

Ju(T) ={f : Sy f(T) =w(T)}.

A non-zero operator T is said to be a smooth operator if J(7T') is singleton and T is said to be
k—smooth operator if k = dim span J(T'). Following [53], we call smooth operators of L(X),, as
nu-smooth operators. Clearly, for any non-zero T' € L(X),,, T' is nu-smooth if and only if J,,(T)
is singleton. Motivated by the notion of smooth operator of order k or k-smooth operator, we

generalize the notion of nu-smooth operator in the following way.

Definition 6.1. Let X be a Banach space. A non-zero operator T € L(X),, is said to be nu-
smooth of order k if there exist exactly k linearly independent elements fi, fa,..., fx € Ju(T).
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In other words, T is said to be nu-smooth of order k if
k =dim span J,(T) = dim span Ext J,(T).

Recall that an operator T' € Spx) is called an extreme contraction if 7' is an extreme point
of By x). Similarly, we say that 7' € Syx), is an nu-extreme contraction if 7' is an extreme
point of By, . For z* € X* and z € X, the symbol z* ® = denotes a linear functional on the
space of operators defined as (z* ® x)(S) = 2*(Sz) for every operator S on X.

After this introductory part, the chapter has three sections. In Section 6.2, we characterize
those operators which have equal operator norm and numerical radius norm. Then in Section
6.3, we find the structure of span Ezxt J,(T) for a bounded linear operator T on a finite-
dimensional Banach space. With the help of this structure, we obtain the order of nu-smoothness
of some class of operators. Moreover, we completely characterize the nu-smooth operators of
order k on two-dimensional Banach spaces. We devote Section 6.4 to study the nu-extreme
contraction on a Banach space. Furthermore, we completely characterize the set of extreme
points of By x): , where X a two-dimensional polygonal Banach space. To serve our purpose,

we need the following definition.

Definition 6.2. Let X be a Banach space. An element x € Sx is said to be nu-smooth of order
k with respect to T' if there exist exactly k linearly independent elements x7,x3,...,x} € J(z)
such that |z} (Txz;)| = w(T), i.e., x is said to be nu-smooth of order k with respect to T, if
k =dim span J,(Tz), where J,(Tx) = {z* € J(x) : |[«*(Tz)| = w(T)}.

6.2 Operators with equal operator norm and

numerical radius norm

We begin this section with an easy observation.

Proposition 6.1. Suppose X is a Banach space. Let T € L(X) be such that £J(Tx)NxJ(z) #
for some x € Mp. Then ||T| = w(T).

Proof. Let x € My be such that £J(Tx)N+J(x) # 0. As x € My, Tz belongs to the boundary of
the sphere centered at 0 of radius ||T'||. Let z* € £J(Txz)N£J(x). Then |z*(Tz)| = | Tz| = ||T|.
Thus by the definition of w(T"), we have ||T|| = w(T). O

We would like to mention the following remark.
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Remark 6.1. If X is a finite-dimensional strictly convex Banach space then it is easy to observe
that +J(Txo) N +J(xg) # O for some xg € My implies that Tzog = xo and hence clearly
1T = w(T).

Next, we prove the converse of Proposition 6.1, when X is finite-dimensional.

Proposition 6.2. Suppose X is a finite-dimensional Banach space and T € IL(X) be such that
||| = w(T). Then £J(Tz) N+J(x) # O for some z € Mrp.

Proof. Without loss of generality, we may assume that ||T]| = 1. Let w(T) = ||T|, i.e.,
sup{|z*(Tz)| : * € J(x),x € Sx} = ||T||- Then there exist a sequence {z,} C Sx and z} €
J(zy) for each n € N, such that |z} (Tx,,)| — ||T||. Since X is finite-dimensional, Sx and Sx- are
compact. Thus {x,} and {z}} have convergent sequences. Without loss of generality, we assume
xn, — x and z} — x*. Thus z € Sx and x* € Sx«. Now, |z} (z,,) — z*(z)| < |z} (zy,) — 2k (2)]| +
|z}t () —x*(z)| < ||zn — 2| + ||2f —2*|] — 0 and so z*(x) = 1. This implies that z* € J(z). Also,
25 (Ton) — " (T2)| < |&(Ta) — w(T2)| + |w3(T2) — 2* (T2)| < [T — T + 7, — *]) — 0.
Then z%(Tx,) — x*(Tz) so that |z*(Tz)| = ||T|| and hence |z*(Tz)| = w(T). Now z* € J(z)
forces | Tx|| = ||T|| so that x € Myp. Thus z* € £J(Tz) N +£J(x), where © € Myp. This proves
the proposition. |

The following example shows the necessity of the assumption that dim(X) is finite.

Example 6.2. Let X ={,, 1 <p < oo and e, be the sequence whose n-th coordinate is 1 and

all other coordinates are zero. Let T : X — X be defined by

2 3
T(x1, 22, 23,24, ...) = (22,0, §m3, 1:34, S

Then it is easy to observe that T is a linear operator, ||T|| = 1 and My = {+es}. Now to
find £J(Teq) N £J(e2), let y* € £J(Tex) N £J(e2). If y* = (y1,Y2,¥3,--.), then |y*(e2)| =
1= |(y1,92,y3,.-.)(0,1,0,...)| =1 = |y2| = 1. Thus y* = (0,£1,0,...). Again |y*(Tes)| =
ly*(e1)] = [(0,%£1,0,...)(1,0,0,...)| = 0 = y* ¢ £J(Tez). Therefore, £J(Tez) N £J(e2) = 0.
Clearly ||T|| = w(T'), which follows from the fact that

L= |IT[| =2 w(T) = supnen |e;(Ten)| = 1.

Combining Proposition 6.1 and Proposition 6.2, we get the following characterization of a
bounded linear operator on a finite-dimensional Banach space with equal operator norm and

numerical radius norm.
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Theorem 6.3. Suppose X is a finite-dimensional Banach space. Then for any T € L(X),
IT| = w(T) if and only if £J(Txz) N +J(x) # O for some x € Mrp.

The following example illustrates the above theorem.

Example 6.4. Consider the two-dimensional Banach space X such that Sx is a reqular octagon
having vertices +x1 = +(1,0), x5 = :I:(%, %),il‘g = 4(0,1), x4 = :l:(—\%7 %) Let

T € L(X) be defined by T(1,0) = (%, %), T(0,1) = (0,0). Here £J(Tx1) N+J(x1) # 0 where

x1 € My and hence by Theorem 6.3, ||T|| = w(T).

We end this section with the following theorem which gives another sufficient condition for
the equality of operator norm and numerical radius norm of a bounded linear operator defined

on a Banach space.

Theorem 6.5. Let X be any Banach space and T € Syx). If for any € > 0, there exists x € Sx
such that ||Tx — z|| <€, then |T|| = w(T).

Proof. For each n € N, there exists z,, € Sx satisfying | Tz, — x| < % Consider the sequence
{z*} € Sx» such that z}(z,) = 1. So we have |z} (Tx, — x,)| < [|[z5]|[|Txy — zn]| — 0. Thus

limy, oo ) (Tap—xn) = 0= limy, oo ) (Tay,) = limy, oo 2 (2y,) = 1. Hence w(T) = ||T)|. O

Let us give an example to see the role of the above theorem to find the equality of two norms

on operator space.

Example 6.6. Let X =/{,, 1 <p < oo and T € L(X) be defined by
1
Te,=(1——)en,n €N,
n

where ey, is an element of £, whose n-th coordinate is 1 and all other coordinates are O for
n € N. Then it is easy to observe that ||T'|| = 1 and for any € > 0, there exists x € Sx such that
1Tz — z|| < e. Thus by above Theorem we conclude that ||T|| = w(T).

6.3 Nu-smoothness of order k£ in the space

of bounded linear operators

We begin this section with a lemma which will be used to obtain the order of nu-smoothness of

operators.
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Lemma 6.1. Suppose X is a finite-dimensional Banach space and let T € L(X),,. Then

(i) span (Jy(Tz) N Ext(Bx+)) = span J,(Tx), for each x € Sx.

(ii) span {z* @ x : © € Vp N Ext(Bx),z* € J,(Tz) N Ext(Bx+)} = span {z* @z : © €
Vir N Ext(Bx),x* € Ju(Tx)}.

(i1i) span Ext J,(T) = span S, where S = {z* @z : x € Ext(Bx),z* € Ext(Bx+),2"(z) =
1, |z*(Tx)| = w(T)}.

Proof. (i) Observe that J,(Tx)NExt(Bx+) # 0. Let 2* € J,(Tx). First we show that span J,,(Tx) C
span (Jw(Tx) N Ext(Bx+)). If 2* € J,(Tx) N Ext(Bx+), we are done. Suppose z* is not an
extreme point of Bx«. Then there exist a3, z3,..., 2} € Ext(Bx-) such that 2* = > | \a?,

where \; > 0 and > " ;| A; = 1. Now,

n

T=a (@)= (3 AaD@) =3 Mai@) <> A=t
i=1 i=1 i=1
Thus z}(z) =1 for all 1 <i < n,ie, zf € J(z) for all 1 < i < n. Also w(T) = |2*(Tx)| =
(i A @) (To)| = [ 2250 A 2 (To)| < 3050, A 27 (To)| < 3052, Aiw(T) = w(T). Thus
|z} (T'z)| = w(T) for all 1 <1i < n, and so x} € J,(T'z) N Ext(Bx~) for all 1 <14 < n. Therefore,
xz* € span (Jy(Tx) N Ext(Bx+)) and hence span Jy,(Tx) C span (J,(Tx) N Ext(Bx-)). The

other inclusion is obvious. This completes the proof.
(ii) The proof is based on analogous arguments used in (i).

(iii) Let f € Ext J,(T). Since J,,(T') is the extremal subset of Ext(Byx): ), f € Ext(Byx)s )-
From [34, Th. 2.3] it follows that f = z* ® x, where x € Fzt(Bx),z* € Ext(Bx-), |z*(z)] = 1.
Also, |2*(T2)| = |(z* @x)(T)| = |f(T)| = w(T). If *(z) = 1, then 2* @z € S. Let z*(x) = —1.
Then —x € Ext(Bx), z* € Ext(Bx+), 2*(—x) = 1 and also |2*(T(—z))| = w(T). So, —f =
—(z*®2x) =2*®(—x) € S and hence Ext Jyw (T) C span S. Thus span Ext Jy (T) C span S.
For the reverse inclusion, let 2* @ © € S, where € Ext(Bx),x* € Ext(Bx+) with 2*(z) = 1
and |z*(Tz)| = w(T). We show that z* @z € span Ext J,(T). Now clearly z* @z € £J,(T) C
span Jy(T). Also span J,(T) = span Ext J,(T). Thus 2* ® © € span Ext J,(T). This

completes the proof of the lemma. O

Using Lemma 6.1, we now obtain the order of nu-smoothness for a class of operators defined
on a finite-dimensional Banach space. The idea of the proof is motivated by [39, Th. 2.2]. For

the convenience of the reader, we give a sketch of the proof here.
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Theorem 6.7. Suppose X is a finite-dimensional Banach space. Let T € L(X),, be such that
VrN Ezt(Bx) = {xz1, £x9, ..., xx,}, where {1, x9,...,2,} is a linearly independent set in X.
Suppose x; is nu-smooth of order m; with respect to T for each 1 < i <r. Then T is nu-smooth

of order k, where mi +mo + ...+ m, = k.

Proof. Let dim(X) = n. Then r < n. We extend the linearly independent set {x1,z2,...,2,} to
a basis {z1,z2,...,2,} of the space X, if » < n and in the case r = n the set {z1,z2,...,2,}
is already a basis. Suppose that T is nu-smooth of order k& and each x; is nu-smooth of or-
der m; with respect to T. By Lemma 6.1, we have span FEzt J,(T) = span {z* @z : x €
Ext(Bx),x* € Ext(Bx+),z*(z) = 1, |2*(Tz)| = w(T)} = span {z*@x : x € VPN Ext(Bx),z* €
Juw(Tx) N Ext(Bx+)}. Since, z; is nu-smooth of order m; with respect to T, we have, m; =
dim span Jy,(Tz;), for each 1 < i < n. Let {z}; € Jy(Tz;) : 1 < j < m;} be a basis of
span Jy(T'z;) for each 1 <i < n. Let W; = span {z}; ® x; : 2j; € Jy(T'z;)} for each 1 <i <n.
Clearly B; = {mfj ®x; : 1 < j<m;}is a basis of W;. So, dim(W;) = m;,1 < i < n. Now,

k= dim span Ext J,(T)
= dim span {z* @z :x € Vp N Ext(Bx),x* € Jy(Tz) N Ext(Bx+)}
= dim span {z* @z :x € Vpr N Ext(Bx), 2" € Jy,(Tz)}
= dim span {x;‘] R x; : mfj € Jy(Tx;), 1 <i<r}

= dim(W),

where W = span {z}; ® x; : x; € Ju(Tx;),1 < i < r}. Proceeding similarly as in [39, Th. 2.2],
we can show that W = @]_, W;. Hence,

k=dim(W) = dim(®]_;W;) = @]_; dim(W;) = mq + ma + -+ - + m,..

This completes the proof of the theorem. |

We now exhibit an example to show the role of above theorem to find the order of nu-

smoothness of an operator on a finite-dimensional Banach space.

Example 6.8. Consider the three-dimensional Banach space X such that Sx is a polyhedron
having vertices +x1,+xo, ..., txg, where 1 = (1,0,1), 29 = (%, @,1), T3 = (—%, @,1),:1:4 =
(—=1,0,1), 25 = (—%, —@, 1),z¢ = (%, —@, 1). Let T € L(X) be defined by

3 1 1
T(x,y,2z) = (0,—y + \2[2, ~ 7Y + 52)-

Then Tzy = (0,%2,%). It is easy to verify that w(T) = & and Vp N Ext(Bx) = {+x1}. Now,
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Juw(Txy) = {xF, —x5, x4}, where 27 (x,y,2) = $+%y, vy(z,y, 2) = for%y and zj(x,y,2) = 2.
Now, 1 is nu-smooth of order 3 with respect to T. Therefore, from Theorem 6.7, we conclude

that T is nu-smooth of order 3.

Let us now state the following easy lemma which will be used to prove some of the theorems.

We omit the proof to avoid monotonicity.

Lemma 6.2. Suppose X is a finite-dimensional Banach space. If {x1,x2,...,xm} is a linearly
independent subset of X and {x7, x5, ..., x}} is a linearly independent subset of X* then {x}®x; :

1<i<n,1<j<m}isalinearly independent subset of L(X)*.

In the next theorem, we obtain the order of nu-smoothness of another class of operators de-
fined on a finite-dimensional Banach space. Here, we remove the assumption of Theorem 6.7 that
the set {z1,z2,..., %} is linearly independent, where Vi N Ext(Bx) = {£x1, t22,..., £z}
Instead we assume that span(Vyr N Ext(Bx)) = X.

Theorem 6.9. Let X be a finite-dimensional Banach space with dim(X) = n. Let T € L(X),,
be such that Vi N Ext(Bx) = {+x1, +x9, ..., txy} where, span{zi,xa, ..., xm}t = X. Suppose

x; 18 nu-smooth of order n with respect to T for i =1,2,...,m. Then T is nu-smooth of order
n?.

Proof. Clearly m > n. If m = n, then {x1,x9,...,2,} is linearly independent and by Theorem
6.7 we get that T is nu-smooth of order n?. Now suppose that {z1,2o,...,2,,} is linearly
dependent. When m > n there exists a subset of {z1,z2,..., %} containing n elements which
is a basis of X. Without loss of generality, we may assume the subset as {x1,z9, ..., x,}. Now, as
x; is nu-smooth of order n with respect to T for i = 1,2,...,m, we have dim span J,(Tz) = n.

Suppose, {x;‘] : 1 < j < n}is alinearly independent subset of span J,,(Tx;) for each 1 < i < m.
Now by Lemma 6.1,

span Ext J,(T)
= span {z* @z :x € Ext(Bx),2" € Ext(Bx-),z"(x) =1, |z*(Tz)| = w(T)}
= span {z* @z :x € Vp N Ext(Bx),z" € J,(Tx)}.

Let © € Vp N Ext(Bx). Then there exist scalars a;,7 = 1,2,...,n such that © = a121 + asx2 +

-t apzy. Now, let 2* € J,(Tz). Since {z7; : 1 <j <n}isabasis of X, 2" = 7, ;. b;z]; for
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scalars b; (1 < j < n). Therefore,

¥er = " ®(a1x1 + asxe + ... + apy)

( Z bjx’{j) ®< Z aixi)

1<j<n 1<i<n
= Z aibjl‘ikj & x;
1<i<n1<j<n
€ span{z]; ®@z;: 1<i<n,1<j<n}

Since x € Vr N Ext(Bx) and 2* € Jy,(T'x) are arbitrary, we have span Ext J,(T) = span{z]; ®
x;: 1 <4,5 <n}. Thus

dim span Ezt J,(T)

dim span {z7; @ x;: 1 <i,j <n}

= n? (by Lemma 6.2).

Therefore, T is nu-smooth of order n?. This completes the proof of the theorem. 0
The following example shows the applicability of Theorem 6.9 over Theorem 6.7.

Example 6.10. Consider the two-dimensional polygonal Banach space X such that Sx is a

polygon having vertices +(1,0), £(3, @), +(—13, @) Let T € L(X) be defined by

V3,1 V3 3 V3

T(l,O) = (07 7)7 2’ 9 ) = (_Za T)

Then

An easy calculation shows that

w(T) = %, and Vp N Ezt(Bx) = {1(1,0),1(%’ @

1 V3
5k

4L(—=
2 ) & 2’
Clearly, for each x € VrNExt(Bx), x is nu-smooth of order 2 with respect to T. Now by Theorem

6.9, we conclude that T is nu-smooth of order 4.

Note that, if X is a two-dimensional Banach space, T' € L(X),, and |V N Ext(Bx)| < 4,
then using Theorem 6.7, we get the order of nu-smoothness of the operator T. Whenever,
|V N Ext(Bx)| > 4, we have to consider two separate cases, namely |Vr N Ext(Bx)| = 6 and
|V N Ext(Bx)| > 8 to get the order of nu-smoothness of the operator 7. We consider these two
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cases in the next two theorems. The proofs can be completed proceeding similarly as [39, Th.
3.1 & Th. 3.3]. We only state the theorems here.

Theorem 6.11. Suppose X is a two-dimensional Banach space and T € L(X),, is such that
Vir N Ext(Bx) = {£x1, £x9, £x3}. Then the following holds:

(i) If z; is nu-smooth with respect to T for each 1 < i < 3, then T is nu-smooth of order 3.

(i) Let x1 be not nu-smooth with respect to T.

(a) If xa, x5 are nu-smooth with respect to T and +Jy,(Txo) = £Jw(Tx3), then T is nu-smooth
of order 3.

(b) Otherwise, T is nu-smooth of order 4.

Theorem 6.12. Suppose X is a two-dimensional Banach space. Let T € 1L(X),, be such that
|V N Ext(Bx)| > 8. Then the following holds:

(1) If = is not nu-smooth with respect to T for some x € Vp N Ext(Bx), then T is nu-smooth of
order 4.

(i) Suppose x is nu-smooth with respect to T for each x € Vpr N Ext(Bx). If x; € VN
Ext(Bx), zf € Jy(Tx;) for i = 1,2,3,4 are such that xo = Mz + \3w3,24 = p1x1 + pU3x3
and x5 = yia] + 1325, &) = 1] + 0325 with 613 13 — 03 y1Aspr # 0, then T is nu-smooth of

order 4. Otherwise T is nu-smooth of order 3.

We end this section with the following interesting theorem which gives us the relation of the

order of nu-smoothness of an operator with its adjoint operator.

Theorem 6.13. Suppose X is a finite-dimensional Banach space and T € 1L(X),,. Then T is

nu-smooth of order k if and only if T* is nu-smooth of order k.

Proof. We first show that span Ext J,(T) = span Ext J,(T*). Let f € Ext J,(T). Then
[ € Ext(Byrx): ). Now by [34, Th. 2.3], there exist v € Ext(Bx) and 2* € Ext(Bx~) with

*
w

|z*(x)| = 1 such that f = z* ® z. Let z*(z) = 1. Here,

F(T) =w(T)

(2" @ z)(T) = w(T)
2 (T) = w(T)
(T"z")(z) = w(T)
o(T*z*) = w(T™).

L

Now, z* € Vp« N Exzt(Bx+). Also z*(z) = 1 = z(2*) = 1 and hence x € J,(T*z*). Thus
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z* ® x € span Ext J,(T*). If 2*(x) = —1 then z*(—z) = 1 and

[f(T)| = w(T)

(2" @ (=2))(T)| = w(T)
2% (T2)| = w(T)
[(T"2%)(2)| = w(T)
|2(T"2")| = w(T™)

| —a(T"a")| = w(T™).

e

Now, z* € Vp- N Ext(Bx+). Also z*(—z) = 1 = (—z)(z*) = 1 and hence —z € J,(T*z*). Thus
—(z*®z) =2*®(—x) € span Ext J,(T*) which implies that f € span Ext J,(T*). Therefore,
Ext J,(T) C span Ext J,(T*) and hence span Ext J,(T) C span Ext J,(T*). Replacing T
by T* we get span Ext J,(T*) C span Ext J,(T'). Thus span Ext J,(T) = span Ext J,(T*)
and hence

dim span Ezt J,(T) = dim span Ext J,(T").

Therefore, T is nu-smooth of order k if and only if T is nu-smooth of order k. O

6.4 Nu-extreme contractions on finite

-dimensional polyhedral Banach spaces

We first recall that a finite-dimensional Banach space is said to be a polyhedral Banach space if
its unit ball has only finitely many extreme points. In particular, a two-dimensional polyhedral
Banach space is said to be a polygonal Banach space. The following proposition is necessary in

our study.

Proposition 6.3. [36, Proposition 2.1] Let X be a polyhedral Banach space of dimension n.
Let x € Sx. Then the following are equivalent:

(a) x is an exposed point of Bx.

(b) z is an extreme point of Bx.

(¢) x is n—smooth.

In the next theorem, we obtain a relation between the order of nu-smoothness and nu-

extreme contraction on finite-dimensional polyhedral Banach spaces.

Theorem 6.14. Let X be a polyhedral Banach space such that dim(X) = n. Then T € SL(x)

w

is an nu-extreme contraction if and only if T is nu-smooth of order n?.
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Proof. Since X is finite-dimensional, we have from [34, Th. 2.3],

Ext(Brx)y:) € {z"®2:z € Ext(Bx), 2" € Ext(Bx-), |v"(z)| = 1}

N

{z* @z :2 € Ext(Bx),2" € Ext(Bx~)}

Ezxt(Bx+) ® Ext(Bx).

Since Fxt(Bx«) and Ext(Bx) are finite sets, there are only finitely many extreme points in the
unit ball of L(X)? . Therefore, L(X)? is a polyhedral Banach space. Moreover, L(X)? is a finite-
dimensional Banach space. Therefore, L(X),,(= L(X)#¥) is also a finite-dimensional polyhedral
Banach space. Now, dim(IL(X),) = n?. Hence, from Proposition 6.3, we can conclude that

T € Sy(x), is an nu-extreme contraction if and only if 7" is nu-smooth of order n?. O

With the help of above theorem we now completely characterize nu-extreme contractions

on a two-dimensional polygonal Banach space.

Theorem 6.15. Let X be a two-dimensional polygonal Banach space. Let T' € Sy x),,. Then T
is an nu-extreme contraction if and only if either of the following holds:

(i) Vr N Ext(Bx) = {£x1, Xx2} and z1,x2 are not nu-smooth with respect to T.

(i) Vpr N Ext(Bx) = {£x1, £x2, T3} and

{z; : x; is not nu-smooth with respect to T}| > 2.

(i1i) Vi N Ext(Bx) = {£x1, 22, £23}, 21 is not nu-smooth with respect to T, x,x3 are nu-
smooth with respect to T, and Jy,(Tx2) # £Jy(Tx3).

() |Vr N Ext(Bx)| > 8 and there exists x € Vp N Ext(Bx) such that x is not nu-smooth with
respect to T.

(v) |Vr N Ext(Bx)| > 8 and x is nu-smooth with respect to T for each x € Vp N Ext(Bx).
Moreover, there exist z; € Vr N Ext(Bx), xf € Jyu(Tx;) for i =1,2,3,4 such that xo = M1 +
A3T3, 24 = 121 + psxs and x5 = 127 + 1375, o) = 0127 + 63w with d1y3Apus — d3y1Asp # 0.

Proof. From Theorem 6.14, we find that T is an nu-extreme contraction if and only if T is
nu-smooth of order 4. Observe that, if |Vr N Ezt(Bx)| < 4, then from Theorem 6.7, we can
conclude that T is not nu-smooth of order 4. Therefore, if T is nu-smooth of order 4, then

|Vr N Ext(Bx)| > 4. Hence, we only assume that |Mp N Ext(Bx)| > 4.

First let |V N Ext(Bx)| = 4. In this case, we show that T is an nu-extreme contraction if
and only if (¢) holds. Let Vp N Ext(Bx) = {£x1, £z} for some x1, 29 € Sx. Clearly, {z1,z2}
is linearly independent. Therefore, from Theorem 6.7, we can conclude that T is nu-extreme

contraction, that is, T' is nu-smooth of order 4 if and only if 21 and 9 are nu-smooth of order
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2 with respect to T. Therefore, if |V N Ext(Bx)| = 4, then T is an nu-extreme contraction if
and only if (¢) holds.

Now, let |VpN Ext(Bx)| = 6. In this case, we show that T is an nu-extreme contraction if and
only if either (i7) or (¢ii) holds. Let VN Ext(Bx) = {£x1, £x2, 23} for some x1, z2, z3 € Sx.
Clearly if each x; is nu-smooth with respect to T, for 1 < ¢ < 3, then by Theorem 6.7, T
is an nu-smooth of order 3 and hence T'can not be an nu-extreme contraction. Thus T is an
nu-extreme contraction if and only if [{x; : x; is not nu-smooth with respect to T'}| > 1. Now

it is easy to observe that T is an nu-extreme contraction if and only either (iz) or (i¢i) holds.

Next, let [Mp N Ext(Bx)| > 8. Then from Theorem 6.12, we can easily conclude that 7" is

an nu-extreme contraction if and only if either (iv) or (v) holds. O

Let us now study some examples to see the relation between the order of smoothness and
the order of nu-smoothness of an element of the unit sphere of a finite-dimensional Banach space
with respect to some linear operator defined on that Banach space and also see the connection
between the extreme points and nu-smoothness of order k for an element with respect to some

linear operator defined on that Banach space.

Example 6.16. Consider the two-dimensional Banach space X such that Sx is a reqular

hezagon having vertices +x1, £xo, £x3, where x1 = (1,0),12 = ( \/5),3:3 = (-4 ﬁ) Let

2072 27072
T € L(X) be defined by T(1,0) = (4,%2), T(0,1) = (0,0). Here +J(Ta1) N +J(21) # O and
hence | T|| = w(T) = 1. Now, Txy = (3, @) is an extreme point of Bx but x1 is not nu-smooth

of order 2 with respect to T. In fact x1 is nu-smooth with respect to T as J,(Tz1) = {z}},

where x}(x,y) = x + %y Clearly x; is 2—smooth.

Example 6.17. Consider the two-dimensional Banach space X such that Sx is a regular
hexagon having vertices tx1,tx9, tx3, where 1 = (1,0), 29 = (%,@),xg = (f%,g) Let
T € L(X) be defined by T(1,0) = (0, ?), T(0,1) = (0,0). It is easy to verify that w(T) = %
and x1 € Vp N Ext(Bx). Now Jy(Tx1) = {z7, —x3}, where 27(x,y) = x + %y and z5(z,y) =
—x + %y Thus x1 is not nu-smooth with respect to T, in fact it is nu-smooth of order 2 with

respect to T.

In [34, Th. 2.3] author studies the structure of extreme points in the dual of the space of
bounded linear operators defined on a finite-dimensional Banach space. We here obtain the exact
structure of the set of extreme points of By x)» using Theorem 6.14 when X is a two-dimensional

polygonal Banach space. For this we need the notion of Birkhoff-James orthogonality. Recall
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that for =,y € X, z is said to be Birkhoff-James orthogonal [3, 20] to y, written as x Lp y if
|l + Ay|| > ||z| for all scalars A.

Theorem 6.18. Suppose X is a two-dimensional polygonal Banach space. Then
Ext(Brix):) = {z" @z : x € Ext(Bx), »* € Ext(Bx+), |2 (z)| =1}
Proof. By [34, Th. 2.3], we get
Ext(Brx):) C{z" ®z: 2 € Ext(Bx), »* € Ext(Bx-), |¢*(x)| = 1}.

Here we prove only the reverse inclusion. Let z € Ext(Bx), z* € Ext(Bx+) with |z*(x)| = 1.
Then z and z* both are 2—smooth points as dim(X) = dim(X*) = 2. Now let us take Ext J(x) =
{z*,y*} and Ezt J(z*) = {z,y}. Let (0 #)z € ker(z*) and (0 #)z1 € ker(y*). Then from [20,
Th. 2.1] it follows that L g z and x L 21. Observe that {z, 21} is linearly independent. Now
L(X);, is a 4-dimensional polyhedral Banach space. Thus by Proposition 6.3, f € Ext(Byx): )
if and only if f is 4—smooth. For 1 <i < 4, we now define T; € L(X) by:

Tx=x Tox =1y Tse==x Tyx=x
1
Tiz=0 Toz=0 T3z = 52 Tyz1 = 0.

Using Proposition 6.1, it is easy to observe that w(T;) = || T3] = 1 for all 1 < i < 4. Also we
have |(z* @ z)(T;)| = |z*(Ti(x)| = 1, where T; € L(X),, = L(X)}, ie., T; € £J(z* ®x). Let y =
ar+bz,z = cx+dzy. Then Ty(z) = ¢Ty(z) = cx. Finally performing an easy calculation it can be
proved that the set {T; : 1 < i < 4} is linearly independent. Thus dim span J(z* ® z) = 4 and
hence x*®x is a 4—smooth point in the polyhedral Banach space L(X)? , where dim(L(X)*) = 4.
Therefore, by Proposition 6.3, we conclude that z*®z € Ea:t(B]L(X)I*U). This completes the proof
of the theorem. O

Finally, we end this section with following nice observation which gives a connection between
the number of extreme points of Bx and the number of extreme points of By, )., when X is a

two-dimensional polygonal Banach space.

Corollary 6.1. Suppose X is a two-dimensional polygonal Banach space such that |Ext(Bx)| =
2n. Then |Ext(Byx): )| = 4n.

Proof. Let Ext(Bx) = {£+x1,+x2,...,£tx,}. Then |Ext(Bx+)| = 2n. By Theorem 6.18 and [34,
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Th. 2.3], we have

Ea:t(B]L(X) )={2"®z:z € Ext(Bx),z" € Ext(Bx~), |z*(x)| = 1}.

*
w

As [{z* € Ext(Bx~) : |[z*(z)| = 1}| = 4 for each x € Ext(Bx), we have
|Ext(Brx): )| = 4n. This completes the proof.

*
w

81



CHAPTER 7

BIRKHOFF-JAMES ORTHOGONALITY
OF BOUNDED LINEAR OPERATORS

7.1 Introduction

The purpose of the present chapter is to continue the study of orthogonality properties of
bounded linear operators between Banach spaces, in light of the seminal result obtained by
Bhatia and Semrl [2] regarding orthogonality of linear operators on Euclidean spaces. Let us

first establish the relevant notations and the terminologies in this context.

Letters X and Y denote Banach spaces. Throughout the chapter, we work only with real
Banach spaces. Let Bx = {z € X : [jz|| < 1} and Sx = {z € X : ||z|| = 1} denote the
unit ball and the unit sphere of X respectively. Let Ext Bx denotes the set of all extreme
points of Bx. For a set S C X, |S| denotes the cardinality of S. Let (X, Y) denote the Banach
space of all bounded linear operators from X to Y, endowed with the usual operator norm. We

write L(X,Y) = L(X), if X = Y. For a bounded linear operator T' € L(X,Y), let My denote

Content of this chapter is based on the following paper:
A. Ray, D. Sain, S. Dey and K. Paul; Some remarks on orthogonality of bounded linear operators, J.
Convex Anal., 29 (2022) no. 1, 165-181.
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the norm attainment set of 7, i.e., My = {x € Sx : || Tz|| = ||T||}. The notion of Birkhoff-
James orthogonality in a Banach space is well-known and is used extensively in the study of the
geometry of Banach spaces. For x,y € X, x is said to be orthogonal to y in the sense of Birkhoff-
James [20], written as zL gy, if ||z 4+ Ay|| > ||z|| for all A € R. Similarly, for T, A € L(X,Y), T is
said to be Birkhoff-James orthogonal to A, written as T LA, if |T 4+ XA| > ||T|| for all A € R.
For the n-dimensional Euclidean space E", Bhatia and Semrl [2] proved that for T, A € L(E"),
T 1 pA if and only if there exists x € Sgn such that ||Tz|| = ||| and Tz L g Az. For initial ideas
readers can look into [21, 22]. We refer the readers to [49, 48] for another approach in this
context. The characterization of Birkhoff-james orthogonality of compact operators on complex
reflexive banach spaces has been studied in [45]. In recent times, various generalizations of this
remarkable theorem has been obtained [61, 63] in the setting of Banach spaces. Our aim is to
study the BS Property of bounded linear operators between Banach spaces, especially when the
domain space and the co-domain spaces are polyhedral. X is said to be a polyhedral Banach
space if Bx has only finitely many extreme points. Equivalently, X is a polyhedral Banach space
if Bx is a polyhedron. Readers can go through [42] for details. In this context, let us mention

the following formal definition:

Definition 7.1. [57] Let X be a finite-dimensional polyhedral Banach space. Let F be a facet of
the unit ball Bx of X. A functional f € Sx~ is said to be a supporting functional corresponding
to the facet F' of the unit ball Byx if the following two conditions are satisfied:

(1) f attains norm at some point v of F,

(2) F = (v+ker f) N Sx.

We also make use of the concept of normal cones in a Banach space in our study.

Definition 7.2. A subset K of X is said to be a normal cone in X if
(i) K+ K C K, (it) oK C K for all « > 0, and (iti) KN (—K) = {0}.

Normal cones are important in the study of the geometry of Banach spaces, because there
is a natural partial ordering > associated with a normal cone K. Namely, for any two elements
z,y € X, x >yifx —y € K. It is easy to observe that in a two-dimensional Banach space
X, any normal cone K is completely determined by the intersection of K with the unit sphere
Sx. Keeping this in mind, when we say that K is a normal cone in X, determined by vy, vs,
what we really mean is that K N Sx = {Miif:;” 1t e|o, 1]} . Of course, in this case K =
{av; + Bvg : a0, B > 0}.

We are interested in the following: If dimX > 2 and My # D U (—D), where D is a closed
connected subset of Sy, then whether T € L(X,Y) satisfies the BS Property, where Y is any
Banach space. With this motivation in mind, we introduce the following definition for a Banach

space X, which plays a significant role in our study.
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Definition 7.3. Let X be a Banach space. Given n € N, we say that X has Property P, if for
n

every choice of n vectors x1,Ta,...,x, € Sx, |J zi S X
i=1

It is clear from the above definition that if X has Property P, then X has Property P,, for
all m € N, with m < n. We illustrate the connection between Property P, for a Banach space
and bounded linear operators not satisfying the BS Property. We further explore Property P,
for different polyhedral Banach spaces.

7.2 Connection between P, Property and

Bhatia-Semrl Property

We begin this section with the observation that Theorem 2.3 of [62] holds true even if the co-
domain space is any Banach space with dimension at least two. Indeed, the said theorem can
be stated in the following more general form, by using essentially the same arguments presented

in the proof of the original result.

Theorem 7.1. Let X be a two-dimensional Banach space and let Y be a Banach space of
dimension greater than or equal to two. Let T € L(X,Y) be such that My has more than two
components. Then T does not satisfy the BS Property.

As a corollary to Theorem 7.1, we can provide an elementary condition on My so that T

does not satisfy the BS Property, when X is a two-dimensional Banach space.

Corollary 7.1. Let X be a two-dimensional Banach space and let Y be a Banach space of
dimension greater than or equal to two. Let T € L(X,Y) be such that there exist x,y € Mp with

x # +y and ﬁ, ﬁ ¢ Mrp. Then T does not satisfy the BS Property.

=Y
lz—yll”

Proof. We claim that Mp has more than two components. Let u; = ﬁ and ug =

Consider the following subsets of Sx :

(l—t)ul+tUQ }
S1 = :te(0,1) ¢,
! {||<1—t>u1+tu2|| ©.1)

= (1 —t)uy + t(—u2) .
%= { (1 —t)uy — tus|| t € (0, 1)},

Sg = *Sl and 54 = *SQ.

Then clearly S;, i = 1,2,3,4, are connected subsets of Sx and by the construction of S; we

have, x € S1, y € S2, —x € Sz and —y € S4. Also, S;NS; = ¢ for all i,j € {1,2,3,4} with
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i#j. As Sx \ {£ uifén , i”x y”} U Si, M C U S;. Also for each disjoint connected set S;,
Si N Mt # ¢. Therefore, M must have more than two components. Hence using Theorem 7.1,

we conclude that T does not satisfy the BS Property. O

The following example illustrates the applicability of Theorem 7.1 in studying the BS Prop-

erty of a bounded linear operator between Banach spaces.

Example 7.2. Consider a bounded linear operator T : {2 — (3., defined by T(z,y) = (=, v, Ier)

for all (x,y) € £2. Then it is easy to see that |T| = 1 and My = {#(1,0),4(0,1)}. Therefore
by using Theorem 7.1, we conclude that T does not satisfy the BS Property.

If X is a two-dimensional Banach space, then from Theorem 2.1 of [63] and Theorem 2.3 of
[62], it follows that T € LL(X) satisfies the BS Property if and only if Mz = D U (—D), where
D is a connected subset of Sx. If dim X > 3 and My has more than two components then it is
not known whether 7 will satisfy the BS Property. Our next result gives some insight in that
direction, under certain assumptions on the co-domain space Y and the norm attainment set

My, for a bounded linear operator T' € L(X, Y).

Theorem 7.3. Let X be an n-dimensional Banach space, where n > 3 and let Y be any Banach
space. Let T € L(X,Y), with |Mr| > 4, be such that the following conditions are satisfied:

(a) There exists a basis {x1,x2,23,...,2n} of X such that x1,z9 € Mrp.

(b) There exist scalars az, oy, ..., op and B3, By, . .., Bn such that for each w = c1px1 + Cowa +

..+ cpwn € Mp, we have,
Clw + Cow + @3C3 + - .. + Qpcpw 0 and 1y — Cow + B3¢30w + - - + Bncnw # 0.

Then at least one of the following is true:

() U (To)t=.

rEMp
(i3) T does not satisfy the BS Property.

Proof. Assuming () is not true, we show that T does not satisfy the BS Property. Under this

assumption, |J (Tz)* S Y. Let us take z € Y\ U (Tz)*. We note that it follows from
rEMp zEMT

Proposition 2.1 of [61] that for each i = 1,2, either z € (Tz;)" or z € (Tx;)~.

Case I: Let z € (Tx1)" N (Ta2)t or 2 € (Tz1)” N (Tx3)” . Let us define A: X — Y by

Axy = z,Aro = —z and Ax; = Biz fori =3,4,...,n
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If z € (Tz1)™ N (Tx2)t, then Azy € (Tx1)" and Axs € (Tx2)”. On the other hand, if
2z € (Tz1)” N (Txz)~, then Azy € (Tx1)” and Axg € (Tz2)". Therefore, using Theorem
2.2 of [61], we have T L g A, in both the cases. We claim that Tu fp Au for any u € Mp. Let
u = c1u21 +C2uT2+ . . .+ Cpyn € Mp. Then, Au = (c1y — cou+C3uf3+ ...+ Cnufin)z = vz, (say).
Asvy # 0and Tu [p z, so we conclude that Tu £ p Au. Thus T does not satisfy the BS Property.

Case II: Let z € (Tz1)T N (Tx2)” or z € (Tx1)” N (Tx)t. Let us define A : X — Y by
Axy = 2z, Axg = z and Ax; = ayz for ¢ = 3,4,...,n. Proceeding in a similar manner, we can
conclude that T'1 gA but there exists no u € My such that Tul gAu. Therefore T' does not
satisfy the BS Property. This completes the proof of the theorem. O

The above theorem indirectly hints at the importance of the notion of Property P, for a
Banach space in the study of the BS Property of a bounded linear operator. We state this

formally in the following corollary.

Corollary 7.2. Let X be an n-dimensional Banach space, where n > 3 and let Y be a Banach
space such that Y has Property Py, for some m € N. Let T € L(X,Y) be such that the following
conditions are satisfied:

(a) |Mp| > 4 and |T(M7)| < 2m,

(b) There exists a basis {x1,22,x3,...,Tn} of X such that x1,19 € My,

(¢) There exist scalars az, oy, ..., op and B3, B4, . .., Bn such that for each w = c1w®1 + Cow2 +

.o+ CpwTn € M, we have that
Cly + C2u + Q3C3y + -+« + AnCnow ?é 0 and Cly — Cow + ﬁBCBu) +...+ Bncnw 7é 0.

Then T does not satisfy the BS Property.

Proof. As T(Mr) contains at most 2m elements which are pairwise scalar multiples of one

another and the co-domain space Y has Property P,,, we must have |J (T2)* S Y. Then
zeMrp

from Theorem 7.3, we conclude that T' does not satisfy the BS Property. OJ

We now give an example to illustrate the applicability of the Corollary 7.2 in studying the BS
Property of a bounded linear operator between Banach spaces. Here we would like to mention

that every smooth Banach space of dimension at least 2, has Property P, for each n € N.

Example 7.4. Consider a bounded linear operator T : (3, — (3, defined by Tz = % for all
x € 3., Then it is easy to see that |T| =1, My = {+(1,1,1),+(—1,1,1),
+(-1,-1,1), £(1, -1, 1)} and T(Mr) = {£(5. 75, 75)- (T 5 75);

86



Chapter 7. Birkhoff-James orthogonality of bounded linear operators

+(=4, ;—% %),1(%, % %)}. Consider x1 = (1,1,1), 29 = (—1,1,1), 23 =

(=1,-1,1) and x4 = (1,—1,1). Clearly {z1,x2, 23} forms a basis of £3,. If we choose o = 3 = 1,
then condition (c) of Corollary 7.2 is satisfied. Also, £3 has Property Py, for any n € N, as (3
is a smooth space. Therefore, by using Corollary 7.2, we conclude that T does not satisfy the

BS Property.

It is worth mentioning that Theorem 2.2 of [62] holds true when the domain space is any
finite-dimensional Banach space and the co-domain space is any smooth Banach space of di-
mension at least two. Indeed, the said theorem can be stated in the following more general

form, by using the same arguments presented in the proof of the original result.

Theorem 7.5. Let X be a finite-dimensional Banach space and Y be a smooth Banach space
of dimension greater than or equal to two. Let T € L(X,Y) be such that My is a countable set
with more than two points. Then T does not satisfy the BS Property.

7.3 Study of P, Property on finite-dimensional
polyhedral Banach spaces

In the remaining part of this Chapter, we focus on Property P, for polyhedral Banach spaces.
Our first observation reveals that given any polyhedral Banach space X, there exists a natural

number ng such that X does not have Property P, for any n > ng.

Theorem 7.6. Let X be a finite-dimensional polyhedral Banach space such that Bx has exactly

2n extreme points. Then X does not have Property P,.

Proof. Let us denote the extreme points of Bx by +ui, tus, ..., +u,. We claim that Lnj ulL =X
Let y € X be arbitrary. Given z € X there exists a scalar a € R such that ay+2z_1py, tl);lTheorem
2.3 of [20]. Take z = H’;Zy’iiz”, then x| gy. If x is an extreme point of By, then we have nothing
more to show. Now, suppose that x is not an extreme point of Bx. As x 1 gy, by using Theorem
2.1 of [20], there exists a linear functional f € Sx- such that f(z) = ||z|]| = 1 and f(y) = 0.
Since f attains norm, it is easy to see that there exists an extreme point u; ?Lf Byx such that

|f(wi)| = |||l = 1. Therefore, by Theorem 2.1 of [20], we have u; Lgy. Thus |J ui- = X. This
=1

1

completes the proof of the theorem. O

Our next theorem shows that we have a definitive answer for two-dimensional polyhedral

Banach spaces, regarding Property P,. To prove the theorem, we need the following lemma:
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Lemma 7.1. Let X be a two-dimensional polyhedral Banach space. Then for any x € Ext By,
there exists a normal cone K of X such that v+ = KU(—K). In addition, if the normal cone K is

determined by vy, ve € Sx, then {(1—t)v;+tvg : t € (0,1)}Ny* = ¢ for eachy € Ext Bx\{+x}.

Proof. Let g € Sx» and g(z) = ||z|| = 1, i.e., g is a supporting functional of Bx at z. Let f;
and fo be the two supporting functionals corresponding to the two edges of Sx meeting at x.
Now, x + ker g is a supporting line to Bx at x, that lies entirely within the cone formed by the
straight lines x + ker f1 and = + ker fo. For i = 1,2, let

fi ={z€X: fi(z) > 0} and f; = {z€X: fi(2) < 0}.

We note that each f;' (f;) is a closed half-space in X. Let u € ker g be arbitrary. The sit-

"X+ker g

o x+ker fy

Figure 7.1

uation is illustrated in Figure 1. It follows immediately that either of the following must be true:
(iue fir andu€e fy, (id) ue f; andu€ fy.

Taking K = f1+ N fy , it is easy to see that —K = f| ﬂf2+. Thus for any v € X, with = 1 gu,
we have u € K U (—K). Therefore, 2+ = {w € X: z Lp w} = K U (—K). This completes the
proof of the first part of the lemma.

Next, suppose K is determined by wvi,ve € Sx. From the construction of K it is clear that
v1 € ker f1 N Sx and vy € ker fo N Sx. Let V = {(1 — t)vy + tvg : t € (0,1)}. We show that
V Nyt = ¢, for each y € Ext Bx \ {£x}. If possible, suppose that V Nyt # ¢, for some
y € Ext Bx \ {£x}. Then there exists v = (1 — t)v; + tvg € V such that v € y*. Since = L g v,
there exists f € Sx» such that f(z) = ||z|| =1 and f(v) = 0. On the other hand, since y L p v,
there exists h € Sx~ such that h(y) = |ly|| = 1 and h(v) = 0. Since X is two-dimensional, it

is easy to deduce that f = +h. Therefore, either z,y are adjacent vertices and f = h is an
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extreme supporting functional corresponding to the facet L[z, y] = {(1—t)z+ty : ¢t € [0,1]}, or,
x,—y are adjacent vertices and f = —h is an extreme supporting functional corresponding to
the facet Lz, —y| = {(1 —t)z +t(—y) : t € [0,1]}. As f1 and f2 are two supporting functionals
corresponding to the two edges of Sx meeting at x, f is equal to either f; or fs. Therefore, v is
equal to either vy or v, which is a contradiction to our assumption that v € V. This completes

the proof of the lemma. O
We now prove the desired theorem.

Theorem 7.7. Let X be a two-dimensional polyhedral Banach space such that Bx has exactly
2n extreme points for some n € N. Then X has Property Pp,_1.

Proof. If x € Sx is a non-extreme point of By, then there exist z1,22 € Sx such that x =
(1 — t)x1 + txg for some ¢t € (0,1) and z1,x2 are extreme points of Bx. It is easy to observe
that 2+ G r{ and ozt G ry . Therefore, without loss of generality we may consider any (n — 1)
extreme points of By, instead of any (n — 1) points in Sx, to prove that X has Property P,_1.
Let Ext Bx = {+z1,%x9,...,*2,}. Then from Lemma 7.1, for each i« € {1,2,...,n}, there
exists normal cone K; of X such that :vf- = K;U(—K;). If the normal cone K; is determined by
vi1, Vg € Sx, then {(1 —t)vi1 +tvig : t € (0,1)} N Lnj x]L = ¢. Since x; is any extreme point of
pei
Bx, we conclude that the union of the Birkhoff-James orthogonality sets of any (n — 1) extreme

points of Bx must be a proper subset of X. However, this is clearly equivalent to the fact that

X has Property P,_1. This establishes the theorem. O

As an application of Corollary 7.2, we next give an example of a bounded linear operator
T between a three-dimensional polyhedral Banach space X and a two-dimensional polyhedral

Banach space Y such that 7' does not satisfy the BS Property.

Example 7.8. Let X = (3, and let Y be a two-dimensional real polyhedral Banach space such
that Sy is regular decagon with vertices (cos X, sin %), j € {0,1,2,...,9}. Consider the linear

5 5
operator T : X — Y, defined by

r+y (y—x)cosZT (y—ax)sin 2"
T(a.y,2) = (57 + S5, >).

It is easy to check that |T|| = 1, My = {£(1,1,2),£(-1,1,2) : z € [-1,1]} and T(Mr) =
{£(1,0), £(cos Z,sin 2*)}. Consider z1 = (1,1,1), 23 = (—1,1,1) and x3 = (-1, —1,1). Clearly
{1, 32,23} forms a basis of X. If we choose o = —10 and B = =, then condition (c) of
Corollary 7.2 is satisfied. From Theorem 7.7, we know that Y has Property Py. Therefore, by

using Corollary 7.2, we conclude that T does not satisfy the BS Property.
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For any two Banach spaces X,Y, it is easy to see that X x Y, equipped with the norm
Iz, y)|| = max{||z]|, ||y||} for all (z,y) € X x Y, is a Banach space. Let us denote this space by
X @ Y. Similarly, X x Y, equipped with the norm ||(z,y)| = ||z|| + ||y| for all (z,y) € X X Y,
is a Banach space which is denoted by X @1 Y. In the following theorems, we study Property
P, for Banach spaces X @ Y and X @1 Y, where X is a polyhedral Banach space.

Theorem 7.9. Let X be a polyhedral Banach space such that X does not have Property P,, for
somen € N. Then X @ Y does not have Property P,, for any Banach space Y. Moreover, if
Y s a polyhedral Banach space such that Y does not have Property Py, for some m € N, then
X @ Y does not have Property P, where r = min{m,n}.
n
Proof. As X does not have Property P,, there exist x1,xo,...,x, € Sx such that (J le =X.
i=1
n
Now we claim that |J (z;,0)" = X @4 Y.
i=1
Let us first show that ;- x Y C (z;,0)*, for each i € {1,2,...,n}. Let (z,y) € ;- x Y. Then

for any scalar A,

1(zi,0) + Az, )l = [l(zi + Az, Ay)]|
max{||z; + Az, |y}

> |z + Az
> il = (i, 0],

as & € xj. Therefore, (z,y) € (2;,0)*. Hence z;- x Y C (z;,0)*.

Therefore, G (74,0)*+ D O (x5 x Y) = X @oo Y. Hence CJ (74,0)F = X ®o Y.

Further if gf:ldoes not h;\:zé Property P,,, then as befo;glwe can show that X @, Y does not
possess Property P,. Thus X @ Y does not have Property P, where r = min{m,n}. This

completes the proof of the theorem. O
Corollary 7.3. Let X = /{7, for anyn (> 2) € N. Then X does not have Property Ps.

Proof. From Theorem 7.6, it follows that £2, does not have Property P;. Also, we know that
03 = (%, @ R. Therefore, by using Theorem 7.9, we conclude that ¢3, does not have Property
P,. Continuation of this argument proves that £, for any n (> 2) € N does not have Property
Ps. O

Applying similar arguments, the proofs of the following results are now apparent:

Theorem 7.10. Let X be a polyhedral Banach space such that X does not have Property P,
for somen € N. Then X®1Y does not have Property Py, for any Banach space Y. Moreover, if
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Y is a polyhedral Banach space such that Y does not have Property P,,, for some m € N, then
X®1Y does not have Property P, where r = min{m,n}.

Corollary 7.4. Let X = {7, where n(> 2) € N. Then X does not have Property Ps.

Let X be a three-dimensional polyhedral Banach space such that By is a prism with vertices
(cos %,sin %T, +1), 7 €{0,1,2,...,2n — 1}, n > 2. Then it is trivial to see that X = Y & R,
where Y is a two-dimensional polyhedral Banach space so that the extreme points of By are

given by (cos j%,sin %), j€40,1,2,...,2n — 1}, n > 2. Therefore, by using Theorem 7.6 and
Theorem 7.9, we can conclude that X does not have Property P,,. However, in the next theorem

we show that X does not have Property P», for any n > 2.

Theorem 7.11. Let X be a three-dimensional polyhedral Banach space such that Bx is a prism
with vertices (cos %,sin %, +1),5€4{0,1,2,...,2n—1}, n > 2. Then X does not have Property
Ps.

Proof. Let the vertices of Bx be vy (j11y,j € {0,1,2,...,2n—1}, where vy ;1) = (cos %, sin %, +1).
The unit sphere Sx is shown in Figure 2.

A simple computation reveals the explicit expression for the norm function on X. Given any

N
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(z,y,2) € X, we have,

| cos CLEUT| 13| |sin GIEDT) )y
||(:v,y,z)|| = max { 2n + |Z| .

B s
0<j<2n—1 COS 5~ cos 2n

We claim that vi- Uvy,; = X. Let (z,y,2) € X be such that > 0,z < 0 and y is arbitrary.
Now, for any scalar A > 0,

1(1,0,1) + Az, g, 2) = [[(1+ Az, Ay, 1+ Az)|
_ | cos (Zjﬂ)”Hl + /\a:| | sin (2]+1)7r||/\ |

)
COS 2 COS 2n

|1+/\z|}

Y

|1+ Az| + tan 21|/\y|
n

v

1=(1,0,1)].
Also, for any scalar A <0,

1(1,0,1) + Az, . 2)[| = [[(1+ Az, Ay, 1+ A2)f
| cos <2f+1>”|\1+m| | sin (2]+1)”||)\ |

max
0<j<2n—1 COS 5 cOS

]1+/\z|}

2n

Y

11+ Az

Y

1=|(1,0,1)].

Therefore, (1,0,1)Lp(z,y,z2), for all x > 0,z < 0 and for any y. From the homogeneity
property of Birkhoff-James orthogonality, it follows that (1,0,1) Lp(x,y, 2), for all x < 0,2 > 0
and for any y.

Let (x,y,2) € X be such that x > 0,z > 0. Now for any A > 0,

I(=1,0,1) + Az, y, 2) | = [[(=1+ Az, Ay, 1+ Az)|
o {|cos<21'+1>“|| 1+ Azl mm%nm
0<j<2n—1 cos 7- CoS 5 ’
|1+)\z|}
> |1+ Az
> 1=(=1,0,1)]
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Also, for any A < 0,

I(=1,0,1) + Az, 9, 2)| = [I(=1+ Az, Ay, 1 + Az))
27+1 . (25+1
i {|cos(];;)7r||—1+)\x|+|sm(]2tl)7r||)\y|
0<j<2n—1 Cos 7 Cos 5 ’
|1+>\z|}

v

| — 1+ Az +tan1|)\y|
2n
> 1=[[(=1,0,1)[.

Therefore, (—1,0,1)Lp(z,y,2), for all z > 0,z > 0 and for any y. From the homogeneity
property of Birkhoff-James orthogonality, it follows that (—1,0,1) Lp(z,y,2), forallz <0,z <0
and for any y.

Hence for any (z, v, z) € X, either (x,y, z) € v or (z,y,2) € Ui+1, ie., vaviH = X. Therefore,

X does not have Property P». This completes the proof of the theorem. O

Remark 7.12. Theorem 7.11 shows that the space X ©oo Y may not have Property P, even if
one of space has Property P,.

Our Previous results point to the fact that there is a large family of three-dimensional
polyhedral Banach spaces not having Property P». The concerned spaces have been constructed
by taking £, sum of two-dimensional polyhedral Banach spaces with R. In the next theorem, we
give another such example of a three-dimensional Polyhedral Banach space, not having Property

P,, which cannot be constructed by taking /., sum of lower dimensional Banach space.

Theorem 7.13. Let X be a three-dimensional polyhedral Banach space such that Bx is a poly-
hedron obtained by gluing two pyramids at the opposite base faces of a right prism having square
base, with vertices £(1,1,1),£(-1,1,1),£(-1,-1,1), £(1,-1,1),£(0,0,2). Then X does not
have Property Ps.

Proof. Let the vertices of Bx be vij,j € {1,2,3,4} and w4y, where vy = (1,1,£1), vig =
(—=1,1,£1), ve3 = (=1, —-1,£1), vay = (1,—-1,+£1) and w1 = (0,0,£2). The unit sphere Sx is

shown in Figure 3.

Given any (x,y,z) € X, the expression for the norm function on X turns out to be the

following;:

. ol Il ol I
o2l = a1l bl 51 B I
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We claim that, v{- Uvji = X. Let (x,y, 2) € X be such that > 0,y > 0. Now, for any A > 0,

1L =11+ A,y 2) = [T+ Az, =1+ Ay, 1+ Az)|
+ Az |1+ Az
2 * 2

1
= max{|l+)\a:|,|—l—|—)\y|,|

—14+A 1+ Az
EIESYIIEEEN

2 2
> |1+ Az
Also, for any A <0,
(1, —=1,1) + Xz, y,2)|| = (14 Az, =1+ Ay, 1+ Az
1+ A 1+ A
= max{|1—|—)\x|,|—1+)\y|,| —|—2x|+| +2 Z|,
| — 14+ Ayl |1+)\z|}
2 + 2
z [ =14yl

> 1= =L

Therefore, (1,—1,1)Lg(z,y, %), for all x > 0,y > 0 and for any z. From the homogeneity
property of Birkhoff-James orthogonality, it follows that (1, —1,1) Lg(x,y, 2), forallz <0,y <0

and for any z.
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Let (x,y,2) € X be such that > 0,y < 0. For any A > 0,

I(LLY) + My, 2)[ = [[(14+ Az, 1+ Ay, 1+ Az)||
14+ Ax| |14 Az
P A wa

- max{|1+m, 11+ Ay

1+ A 1+ Xz
IEZYIIESEN

2 2
> |1+ Az
> 1=, 1,1
Also, for any A < 0,
1L 1,10+ Mz, g, 2) = (14 Az, 14 Ay, 1+ A2)||
1+ A 1
_ max{|1+Ax\,\1+Ay|,| +2“‘"|+| J;”',
1+ Ay |1+)\z|}
2 + 2
> 1+ Xy
> 1= L1

Therefore, (1,1,1) Lg(x,y, 2), for all z > 0,y < 0 and for any z. From the homogeneity property
of Birkhoff-James orthogonality, it follows that (1,1,1) Lg(z,y, 2), for all z < 0,y > 0 and for
any z.

Hence for any (z,y,2) € X, either (z,y,2) € vi or (2,9, 2) € vy, i.e., vi Uvy = X. Therefore,

X does not have Property P,. This completes the proof of the theorem. O

We next give an example of a three-dimensional polyhedral Banach space which has Property

P, but does not have Property Ps.

Theorem 7.14. Let X be a three-dimensional polyhedral Banach space such that Bx is a poly-
hedron with vertices (cos %,sin %, +1),(0,0,£2), j € {0,1,2,...,2n — 1}, n > 3. Then X has
Property Py but X does not have Property Ps.

Proof. We prove the theorem by assuming that n is an odd integer. Similar calculations hold
true, when n is an even integer. Let the vertices of Bx be vi(ji1), j € {0,1,2,...,2n— 1} and
w41, where vy (1) = (cos %, sin %T, +1) and wx; = (0,0,£2). The unit sphere Sx is shown in
Figure 4. Let G ;41 denote the facet of By containing vj1,v_;_1,vj42,v_;_2, where vop11 = v1
and v_gn—1 = v—_1. Let FL(; 1) denote the facet of Bx containing vi(ji1),v4(jt2), ws1. For
each j € {0,1,2,...,2n—1}, let gj 41, J+(j+1) be the supporting functionals corresponding to the

facets Gjy1, Fip(j41) respectively, i.e., (vj41+ker gj11)NSx = Gjy1 and (vi(jq1) +ker fij11))N
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Sx = Fi(ji)-

For every vj11 € Sx, j = 0,1,2,...,2n — 1, there are four adjacent facets G;,Gj41, Fj, Fj41.
Here we assume that Gy = Ga, and Fy = Fj,. Therefore by Lemma 2.1 of [57], extreme
supporting functionals corresponding to the vertices v;41,

j=0,1,2,...,2n — 1, are g, g;+1, fj, fj+1. Here also we assume that go = go, and fo = fon.
Now consider the following subsets of Sk :

Hyi1 = {h € Sxe i b= Mg + hagjsn + Aafs + Aafyin, A 2 0¥ k € {1,2,3,4}

4
and > A\ = 1}, for each j = 0,1,2,...,2n— 1. Then by using Theorem 2.1 of [20] and Lemma
k=1

2.1 of [57], we conclude that U]J‘_—H = . g ker h, for each j = 0,1,2,...,2n — 1. Again, for
S 1

wy, there are 2n adjacent facets Fjy1, j = 0,1,2,...,2n — 1. Therefore, as before, extreme

supporting functionals corresponding to the vertex w; are fj+1, 7 = 0,1,2,...,2n — 1. Now,

consider the following subset of Sx-.
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2n—1

H= {heSX* ch= 3 Mepifert e >0V ke {0,1,2,...,2n— 1}
k=0

2n—1
and > Agy1 = 1}. From this, we conclude that wi- = |J ker h. Now, for any (z,y,2) € X,

k=0 heH
we have,

@+ 1)m L (2i+Dm (2j+D)m (25407
B cos == x| | osin Syl cos S ] osin Syl |2 .

||(x7 Y, Z)H - ogrgnga% { oS 55— + oS 5 ’ 2cos 5 2cos 5 +7 . USll’lg the above

expression of the norm function, we can compute the Birkhoff-James orthogonality set of the
extreme points of Bx. For the extreme points of By, lying above the plane z = 0, we have,

v = (1,0,1)+ = j:{{(m,y,z) €X:x>0,y>0,2z>0,z—tan(g. )y <0}
U{(x,y,z)EX:xSO,yZO,zZO,%—F%—F%zO}
U{(x,y,z)GX:xSO,ySO,zZO,%—%+§ZO}

U{(z,y,2) €X:2>0,y <0,2> 0,2+ tan(g, )y < 0}}

Now, for each j € {1,2,..., ”T_l}, we have
1 j s 1 .
Vi1 = (cos LT, sin L% 1)+ = £ |{(z,y,2) € X: 2 <0,y > 0,2 >0,
L (2i+ D) b (20417 (25— i (20w
CcOos on sSin on z CcOSs on Sin on
2cos 5, T+ 2cos 5 y+220’ cos 5- T+ cos 5 - y§0}
cos (Qj;l)” sin (2j2+1>” 5
U{(z,y,2) eX:2<0,y <0,z >0, Toos T+ “gem Y T 3 >0}
cos (Qj;nl)" sin (zj;nl)w o
U{(z,y,2) eX:2<0,y <0,z >0, Teos L+ g Y+ 3 >0}
cos (2j;1)" sin (2j;1)w P
U{(z,y,2) eX:2>0,y <0,z >0, Yoos %+ ook y+35>0,
(2417 (24 D)7
Ccos on Sin on
oS 5 T+ oS 5 ySO}}
Again, for each j € {1,2,..., "T_l}, we have
U(J;Jrﬂ) = (_COS%>Sin%71)J— = :I:[{(x,y,z) eX:iz > an > 07Z > 07
2
(2j+1)m - (2j+)n (2j—1)m . (2j—D)m
. CcOoSs “on Sin on z . CcOos on sin on
2cos 5 T+ 2cos 5 y+2207 oS 5 - z+ oS 5 ySO}
cos (2j;1>77 sin (ngl)" .
U{(#,9,2) €X:2 <0,y <0220, —58—r+ 555y + 5 20,
2+ )m (24 D)m
_COST Sin on
cos 5 T+ oS 5 - y§0}
cos 20T sin 20T
U{(z,y,2) €X:02>20,y<0,2 >0, -5 22+ 52—y +5 >0}
2n 2n
. cos (2j2_7ll>7{ sin (2j2_"1)“ >
U{(x,y,z) GXJ’. ZO,yS O,Z 2077 2(:05% x+ QCOS% y+§ ZO} .

Now, vty = (=10, 1) = %[ {(z,9,2) € X122 0,y > 0,220,

tan(g-)y
S L ALY

U{(z,y,2) €eX:2<0,y>0,2>0,—z — tan(g)y < 0}
U{(z,9,2) €eX:2<0,y <0,2>0,—2+ tan(g; )y < 0}
U{(x,y,z)EX:xZO,ySO,ZEO,—%—taH(%y—i—g20}}

Again, for each j € {1,2,..., "T_l}, we have
v(J-jJrnH) = (fcos%,fsin%,l)J— ::l:[{(a:,y,z) €EX:z>0,y>0,2>0,
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(@j+1)n (2441
CcOoSs on Sin on z
- 2cos 5~ T = 2cos 5 y+ 2 2 O}
cos i1~ gin 217 .
U{(z,y,2) €eX:2>0,y>0,2>0,— 2005223 T — 2cos2:l, y+35 >0}
cos 7(%2 L sin (ngl)” 2
U{(%yaz)EXixﬁoayZO,ZZU,— QCOS;LL QCOS?;L" y+§>07
2+ )7 . (2j+ D)
COST Sin on
T cos - T — cos 7 y <0}
cos ZitD)m sin (ZitD)m
U{(x Y,z )€X'9€>0 Y<0,220, -5 71— 5%y +5>0,
2n 2n
os (2i=1)m o 2i=bm
2n _ 2n
cos2 z cos% yﬁO}}
Also, for each j € {1,2,..., ”7_1}, we have
(J-;+3n+l) (COSH _Sln%71)L = i[{(‘r?sz) € X ‘T > O,Z/ Z 07Z Z 0?
(2j-1)m n 2i=Um 2j+1)m (2j+1)m
cos =L . o z cos =L _sin 2
2cos 5, ZL‘ 20052— y+220’ cos 5 z cos 5- ySO}
cos (2i+D)7 sin (2t D)™ .
U{(z,y,2) eX:2 <0,y 20,2 >0, 2005:l T = 2C082:L y+§20}
cos (ngl)" sin (Zj;I)W o
U{(z,y,2) eX:2<0,y>0,2>0, oo L~ gem i Y+ 3 >0}
cos 2iED)m i 204D B
U{(w Y:2) €X:w <0,y <0,220, 58 —r — 55—y + 5 >0,
g (20=1)7 s (26—
2n _ s 2n
cosi CL' cos 5 - yﬁO}}
n—1
2
Now, wi = (0,0,2)% = i[AUBUCUD}, where A = (J Aj, A = {(z,9,2) € X : 2 >
Jj=0
n—1
cos GIHT sin @I0 . N
0,y > 0,z > 0,— 2(:03% € — Qcoszln y+3 < 0}7 B = 'UOBj’ B] = {(l‘ y,z) €eX <
]:
cos 2iT1IT gin GitDm it
0,y >0,z >0, 20052:% T — QCOSQ;‘L" y+5<0},C= U Cj, Cj ={(z,y,2) e X:2 <0,y <
]_
cos 2I+0T sin (20 . 2t
0,2 > 0, Toos i LT e YT 3 S 0}, D = 'UODJ" Dj; = {(z,9,2) € X1z > 0,y <
]:
cos 21D sin 24+ . .
0,z>0,— 2c052;in x4+ QCOSQ;% y + 5 < 0}. From the above expressions of the Birkhoff-James

orthogonality sets of extreme points of By, it follows that, for any two extreme points u, v € Sk,
ut Uvt G X. Therefore X has Property P.

Again, by using the same expressions, we can show that (1,0,1)* U (—1,0,1)* U (0,0,2)* = X.
Therefore, X does not have Property Ps. This completes the proof of the theorem. |

Finally, we give an example of a linear operator 1" between a three-dimensional polyhedral
Banach space and a three-dimensional polyhedral Banach space having Property Ps, such that

T does not satisfy the BS Property.

Example 7.15. Let X = £3 and let Y be a three-dimensional polyhedral Banach space such

that By is a polyhedron with vertices (1,0,41), (\f f,:tl)
(0,1,£1),(Z, 75> £1), (=1,0,£1), (5, 75, £1), (0, =1, £1), (5, 75, £1),
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(0,0,42). Consider a bounded linear operator T : X — Y, defined by

r+y y—x )

T(Iayvz): ( 5 ' 9

Then it is easy to check that | T|| = 1, My = {£(1,1,2),£(-1,1,2) : z € [-1,1]} and T(Mr) =
{£(1,0,1),£(0,1,1)}. Consider x; = (1,1,1),29 = (—1,1,1) and z3 = (—1,—1,1). Clearly
{z1,22,23} forms a basis of X. If we choose « = —10 and f = %3, then condition (c) of
Corollary 7.2 is satisfied. From Theorem 7.14, we know that Y has Property Ps. Therefore, by

using Corollary 7.2, we conclude that T does not satisfy the BS Property.

In view of the methods employed to study the BS Property of linear operators and the
results obtained in the present chapter, it is perhaps appropriate to end it with the following

remark:

Remark 7.16. We have illustrated the important role played by Property P, in determining
the BS Property of linear operators. Indeed, using this concept, we have extended the previously
obtained results in [62]. It is worth mentioning in this connection that Example 7.4, Example
7.8 and FExample 7.15 provided in this article are beyond the scope of the Proposition 2.1 of
[62]. We note that Property P, is essentially a structural concept, associated especially with
polyhedral Banach spaces. Therefore, it might be interesting to further study various polyhedral
Banach spaces in light of the newly introduced concept of Property P,.
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CHAPTER 8

BIRKHOFF-JAMES ORTHOGONALITY
OF BOUNDED LINEAR OPERATORS-II

8.1 Introduction

Birkhoff-James orthogonality plays a central role in determining the geometry of normed linear
spaces in general, and spaces of operators, in particular. One of the most interesting aspects
of Birkhoff-James orthogonality is the relation between orthogonality of operators and that of
norming elements in the ground space. The purpose of this chapter is to continue the investi-
gation of a certain property from [50]. Before proceeding further, let us fix the notations and

the terminologies.

Letters X and Y denote normed linear spaces. Throughout the present chapter, we will
assume the underlying scalar field tobe R. Let Bx = {zx € X: ||z]| < 1} and Sx = {z € X : ||z|] =
1} denote the unit ball and the unit sphere of X, respectively. Let Blz,r] = {z € X: |lz—z| < r}
and B(z,r) = {z € X: ||z — z|| < r} denote the closed ball and the open ball centered at x and

Content of this chapter is based on the following paper:
D. Sain, A. Ray, S. Dey and K. Paul, Some remarks on orthogonality of bounded linear operators-II,
Acta Sci. Math. (Szeged) (2022). https://doi.org/10.1007/s44146-022-00044-9.
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radius r > 0, respectively. For a subset A of X let | A| denote the cardinality of A. Let L(X,Y) be
the normed space of all bounded linear operators from X to Y, endowed with the usual operator
norm. We write L(X,Y) = L(X), if X =Y. An element (3 0) is said to be smooth point of X if
there is unique f € Sx+ such that f(z) = ||z||. A normed linear space X is said to be smooth if
every non-zero element of X is a smooth point. Let Ext Bx denote the collection of all extreme
points of the unit ball Bx. For a bounded linear operator T' € L(X,Y), let M denote the norm
attainment set of T, i.e. My = {x € Sx : ||Tz| = ||T||}. For any two points x1,z9 € X, L[z1, x2]
denotes the closed line segment joining z1 and xg, i.e. Lz, xo] = {(1 —t)z1 + tzo : t € [0,1]}.
For z,y € X, x is said to be orthogonal to y in the sense of Birkhoff-James [20], written as z L gy,
if ||z + A\y|| > ||z|| for all A € R. Similarly, for T, A € L(X,Y), T is said to be Birkhoff-James
orthogonal to A, written as T LgA, if | T+ AA|| > ||T|| for all A € R. For an element x € X, by
x+ we mean the collection of all elements y € X such that z Lg ¥, ie, 2t ={yeX:z Ly}
For studying orthogonality of operators between Banach spaces, the following definition from
[61] is very helpful. Given z,y € X, we say that y € T if ||z +Ay|| > ||| for all A > 0. Similarly,
we say that y € =7 if ||z + Ay|| > ||z|| for all A < 0. For an immediate application of these
notions towards studying bounded linear operators, which is also relevant to the present work,
we refer the readers to [60]. In connection to the conjecture proposed by Bhatia and Semrl,
the term “Bhatia-Semrl (BS) Property” was first coined in [62] and then extended in [50]. We
mention the same, for the convenience of the readers.

Our main objective is the continuation of the study in [50]. Indeed, we focus on the following
problem: If X is a finite-dimensional Banach space with dim X > 2 and if T € L(X,Y) is such
that My # D U (—D), where D is a connected subset of Sx, then whether T satisfies the BS
Property or not, for any normed linear space Y. In this connection, Property P,, was introduced

in [50].
Definition 8.1. [50, Defn. 1.6] Let X be a Banach space. Given n € N, we say that X has

Property P, if for every choice of n vectors x1,x2,...,2, € Sx, U xf- g X.
i=1

Trivially, if X has Property P, then X has Property P, for all m € N, with m < n. Let us

now introduce the definition of BS pair which plays a crucial role in the whole scheme of things.

Definition 8.2. Let X,Y be normed linear spaces. We say that the pair (X,Y) is a BS pair if
for every T € L(X,Y), T satisfies the BS Property if and only if My = D U (—D), where D is

a non-empty connected subset of Sx.

Observe that the existence of BS pairs substantiates the Conjecture 1.1 to be true. In this
chapter, we investigate operators T which satisfy the BS Property. We also exhibit BS pairs of
spaces (X,Y). Indeed, we show that (£7,Y) is a BS pair for any normed linear space Y. This
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proves the validity of Conjecture 1.1, whenever the domain space is 7. Further, we study the
BS Property of operators on polyhedral Banach spaces. We also characterize the space =8
among all 3-dimensional polyhedral Banach spaces having exactly eight extreme points in the
unit ball. Recall that a finite-dimensional Banach space X is said to be polyhedral if Bx has

only finitely many extreme points.

~

8.2 Bhatia-Semrl Property with norm at-
tainment set of a bounded linear oper-

ator

We begin with the following theorem which gives a nice connection between Property P, and

the BS Property.

Theorem 8.1. Let T € L(X,Y), where dim X = n > 2 and Y has Property P, for some
m > 2. If 4 < |Mrp| < 2m, then T does not satisfy the BS Property.

Proof. Let My = {£mx1,%x9,..., L2}, where 2 < k < m. Clearly, as any two elements
Tp,Tq, P #F ¢, D,q € {1,2,...,k}, are linearly independent, we can extend {z1,z2} to a
basis {z1,%2,y3,...,yn} of X. Then for each x; € My, i = 1,2,...,k, we can write z; =
cilxl + Cél‘g + cgyg + ...+ cﬁlyn, where c§~’s are real scalars. Claim that we can find n scalars
aj >0, j=1,2,...,n,such that ¢l a;+chas+...+c oy, # 0 and cias —chao+. . .+t o, # 0, for

alli =1,2,..., k. Otherwise, if ciaj +chag+...+cha, = 0, then (a1, as, ..., a,) belongs to the
hyperspace Hi = {(21, 22,...,2n) : ¢t 21+Ch20+. . .+ 2, = 0} and if ¢ty —chan+. . .+t ay, = 0,
then (a1, g, . . ., ay ) belongs to the hyperspace Hs = {(z1,22,...,2n) : ¢iz1 —chzo+. ..+ 2 =

0}. These collections of hyperspaces are finite and so X # Ule(H ¢t U HY). Therefore, our claim
is established.

k
Now, U (Tx): = U (Tz;)* S Y, as Y has property P, and k < m. Let us take z €
zeMr i=1

k
Y\ U (Tz;)*. From [61, Prop. 2.1], it follows that z € (Tx1)* or z € (Tw1)” and z € (Tx2)*
i=1
or z € (Tx2)~. Accordingly we consider the following cases.

Case I: Let z € (Tz1)t N (Tag)" or z € (Tx1)” N (Txs)”. Let us define a linear operator
A:X Y by

Az = oz, Arg = —apz and Ay; = ajz for j =3,4,...,n.

102



Chapter 8. Birkhoff-James orthogonality of bounded linear operators-11

If z € (Tz1)" N (Txe)t, then Azy € (Tx1)t and Azg € (Txa)™. Also, if z € (Tz1)” N (Txs)™,
then Axy € (Tz1)” and Axg € (T'z2)". In both the cases, it follows from [61, Th. 2.2] that
T1pA. Clearly Ax; = (cﬁal — c’éag + ...+ cay)z, forall i = 1,2,...,k. As ciloq — céozg +
cootcay #0and Tz; [p z, for all i = 1,2,... k, we conclude that Tx; fp Ax;, for all
i=1,2,...,k Thus T does not satisfy the BS Property.

Case II: Let z € (Tx1)t N (Txe)” or z € (Tz1)” N (Tx2)". Let us define a linear operator
A:X =Y by Az; = aqz, Azg = azz and Ay; = «a;z for j = 3,4,...,n. Proceeding similarly
as in Case I, we can conclude that T L gA but there exists no x € My such that TxlgAx.
Therefore, T does not satisfy the BS Property. O

Remark 8.2. We note that Theorem 8.1 improves [50, Cor. 2.5].

Our next example illustrates the applicability of Theorem 8.1 in studying the BS Property

of bounded linear operators.

Example 8.3. Let X = (2 and let Y = £5. Consider a bounded linear operator T' : X = Y,
defined by

Tmz%,xex.

Then it is easy to check that ||T|| =1 and My = Ext Bx. Clearly Y has Property P, for any
m € N. Therefore, by using Theorem 8.1, we conclude that T does not satisfy the BS Property.

We next present a generalized version of [62, Lemma 2.1], which will be essential for our

purpose of studying orthogonality of bounded linear operators.

Lemma 8.1. Let M be a countable subset of a Banach space X of dimension n > 2. Then for
any given m € {1,2,...,n}, there exist (n —m) linearly independent vectors Ym+1, Ym+2, - - -, Yn
such that {x1,22, ..., Tm, Ym+1 Ym+2s--->Yn} 1S a basis of X, whenever {x1,...,xm} is any

linearly independent set in M.

Proof. For m = 2, the proof of the lemma directly follows from the proof of Lemma 2.1 of [62].

All the other cases can be proved similarly. O
We next obtain another class of operators not satisfying the BS Property.

Theorem 8.4. Let X be an n-dimensional Banach space and let Y be any smooth Banach space.
Let T € L(X,Y) be such that My satisfies the following conditions:
(1) My has more than two and countably many components.

(2) My has at most two non-singleton components £D;, for some i € N. If D; = —D;, then My
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has exactly one non-singleton component. All other components of My are singleton.

(3) Mt contains at least one pair of singleton components =D;, j(# i) € N such that £D; N
span{D;} = ¢.

Then T does not satisfy the BS Property.

Proof. If Mr does not contain any non-singleton component, then the desired result follows from
oo

[50, Th. 2.7]. Without loss of generality, we assume that My = |J (£D;)J(£D;), where D;
j=1
J#
is the non-singleton component and D;, j # ¢, are the singleton components of M7. Without
loss of generality we assume that £D; are the non-singleton components and +Dy are the
singleton components such that +Dy N span{D1} = ¢. Let us assume that dim (span D1) =1,
where I < n. Let x1,29,...,2; € D; be linearly independent and let +Dy = {£x;11} C
Sx. We would like to apply Lemma 8.1 in our present setting. Let M = {z1,z2,...,2} U
{z € My : z ¢ span{zx1,z2,...,21}} = PUQ, where P = {x1,z9,...
o and Q = {z € My : z ¢ span{x1,za,...,2}}. Clearly M is a countable set, as +=D; C
span{x1, za,...,x;} and Mp\{xD1} is a countable set. Let m = [+1. Therefore, by Lemma 8.1,
we can fix n— (I4+1) elements 249, 2143, . - ., 2n € X such that {z1,22,..., 2,2, 2112, 2143, - - -, Zn }

is a basis of X for all z € Q. Then {z1,x2, ..., 2,

Ti41, 2142, 2143, - - - Zn} 15 & basis of X and so we can fix scalars ¢, (2 € X,1 < k < n) such that
for each = € X
+1 n
xr = Zcmxi + Z Cg,j%5-
i=1 j=1+2

Also it follows that if z € @, then c, ;41 # 0. For each v € Y, let A, be the linear operator
defined by

Avxk = Txk,k:LQ,...,l,
Av{EH_l =

and Ayzy = Tz, k=14+2,1+3,...,n.

We will show that there is a non-zero v € Y such that T 1L g A, but Tx Y p A,z for each x € Mrp.
For any A > 0 and v € B(—Tx;41, ||T]|), we have

IT + A = (T + Ay)za || = (1 + ATl = A+ )T = T
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and

T~ Al > (T~ Mol = [Tare — ol
> [T+ MNT2ip1 — ATz +0)|
= (L +M[Txpa = ATz + 0) |
> (L+N[T] = AT = [T

Therefore, T LgA, for each v € B(—Tx;41,||T]|). We next show that there is at least one
v € B(=Tx41,||T||) such that Tz [p A,z for each x € Mry. Firstly, Tz fp A,z for each
x € My N span{xy,xa,...,21}, since A,z = Tx # 0 for all x € My N span{x1,x2,...,2;}. Let
x € My \ span{z1,za,..., 2}, 1.e., x € Q. Define H, = {y € Y : Tz L py}. By smoothness of Y,
H, is an unique closed hyperspace of Y. Hence H, is nowhere dense set of Y. Put P, = {v €
Y : Ayx € Hy}. Since Ay = cpnTax1 + ez 0T+ ...+ Cp 1V + o pp2T 2142+ - .. + o n T2, and

cz+1 7 0, we have

1

Cel+1

P, = (Hy — (czaTxr +cpoTaxo+ ...+ cgiroTzipo+ .o+ canT2y)),

for each z € Q. The set P, = {v € Y : TxLpA,x}, being homeomorphic to Hy, is also nowhere
dense. As @ is countable, it follows from Baire category theorem that the non-empty open
set B(—=Tzyy1,||T||) contains an element v such that v ¢ P, for each z € Q. Thus we found
v € B(=Tx41,||T]|) such that TLpA, but Te Lp A,z for all x € Mp. Hence T does not
satisfy the BS Property. OJ

Remark 8.5. We note that Theorem 8.4 improves on [50, Th. 2.7].

For linear operators between a polyhedral Banach space and a smooth Banach space, we

have the following corollary.

Corollary 8.1. Let X be an n-dimensional polyhedral Banach space and let Y be any smooth
Banach space. Let T € L(X,Y) be such that My satisfies the following conditions:

(1) My has more than two components.

(2) Mr has at most two non-singleton components +D;, for some i € N. If D; = —D;, then My
has exactly one non-singleton component. All the other components of My are singleton.

(3) Mt contains at least one pair of singleton components +Dj, j(# i) € N such that £D; N
span{D;} = ¢.

Then T does not satisfy the BS Property.

Proof. We note that in a finite-dimensional polyhedral Banach space X, Bx contains finitely

many extreme points and each component of My contains extreme points of Bx. Therefore, My
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has finitely many components. Thus Mz satisfies all the conditions of Theorem 8.4 and so, T’

does not satisfy the BS Property. OJ

8.3 Classification of spaces which are BS
pairs

In the remaining section of this chapter we obtain some of the pairs of spaces which satisfied
the condition to be BS pairs. First we present one of the main results of the chapter that shows

that X = ¢7 acts as universal domain space for the pair (X,Y) to be a BS pair.
Theorem 8.6. Given any normed linear space Y, the pair (¢1,Y) is a BS pair.

Proof. If dimY = 1 then given any 7' € L(¢},Y), it is easy to check that My = D U (—D),
where D is a connected subset of Sgr. From this it follows that the pair (1Y) is a BS pair.
Let us assume that dimY > 1. Let T € L(¢},Y) be such that My # D U (—D), where D is a
connected subset of Sgp. We prove that T' does not satisfy the BS Property. Since My is not

k l
of the form D U (—D), it must be of the form My = <U Di) U (U Ej>, where D; and E;
=1 j=1

are components of My, D} = D; U (—D;), E; = —E; and D; # —D;. Let us now complete the

proof of the theorem by considering the following three exhaustive cases.

Case I: | = 0. If £ = 1, then My = D; U (—Dy), which contradicts our hypothesis. So we
k

assume k > 2. Then My = |J D). Since D; is a connected subset of Sx, where X = /7, an easy
i=1

application of the Krein-Milman theorem shows that each D; must contain at least one extreme

point of Bx. Let D;NEx = {ei1,€ia, .- €im, }, 1 < i <k, ie., ’DZﬂEX‘ = m. Clearly, Zk: mg < n.
Let us write X1 = span{ei, e12, ..., e1m; t and Xo = span{ea1, €22, ..., €2my, -+, €K1, e;zg_,l..,ekmk}.
It is easy to see that Dy U (—=D;) = D] C X; and ij D! C X,. Thus we have My C X7 U X,
and moreover it is immediate that X; N Xy = {Q}Z,ZQas X = (7. Therefore, My is partitioned
into two non-empty subsets Y7 = Mpr N X; and Yo = M7y N Xy of X, which are contained in
complementary subspaces of X. Then by [62, Prop. 2.1], we conclude that T does not satisfy
the BS Property.

Case II: £ =0. If [ = 1, then My = E1, a contradiction to our hypothesis. So we assume

[ > 2. In this case Mr = Uﬁzl E;. Proceeding similarly as in Case I, we can show that that T
does not satisfy BS property.
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k !
Case III: | > 1,k > 1. In this case My = <U D;) U (U Ej> and once again proceeding
i=1 j=1

as above, we conclude that T does not satisfy the BS property.

Thus, in all the possible cases, we can conclude that T' € L(¢7,Y) satisfies the BS Property
if and only if My = D U (—D), where D is a connected subset of Sep. O

Remark 8.7. Observe that (7 is the unique (upto isometric isomorphisms) n-dimensional Ba-
nach space having the minimum possible number of extreme points of its unit ball. This is the

fundamental reason that the above theorem works exclusively for (7 spaces.

In the next theorem, we obtain another class of BS pairs of Banach spaces, when the domain
space is £3,. For the sake of convenience of the reader, we give the definition of adjacent edges

of the unit sphere of a finite-dimensional polyhedral Banach space.

Definition 8.3. Let X be finite-dimensional polyhedral Banach space. Two edges E71, Fo of Sx
are said to be adjacent if F1 N Ey = {v}, where v is an extreme point of Bx. Similarly, the edges
Ey, Es, ... E, are said to be adjacent if By N Ey---NE, = {v}. An extreme point of Bx is also
called a vertex of Sx. If v is a vertex and v € E1 N Ey--- N E,, then we also say that the edges

Fh, Es, ... E, are adjacent to the vertex v.

Theorem 8.8. Given any strictly convex and smooth Banach space Y, the pair (¢3,,Y) is a BS

pair.

Proof. Observe that By has eight vertices +v1 = £(1,1,1), ve = +(-1,1,1),
twv3=(-1,-1,1) and +vq4 = £(1,—1,1) and twelve edges £F12 = £ L[v1,v9],

+ Fo3 = +L[vg,v3], £ F34 = +L[vs, v4], + E4yq = +L[vg, v1], TEy 3 = +L[vy, —vs),

+ Fy(_4) = £L[v2, —v4]. We prove that if M7 is not of the form D U (—D), where D is a con-
nected subset of Sy , then 7' does not satisfy the BS Property. Given any T € L(63,,Y), if
Mo is not of the form DU(—D), then it is easy to see that My must be one of the following forms:

(1) Mr contains exactly two pairs of vertices of Bys_ and no other points of Bys .

(#4) My contains exactly three pairs of vertices of By and no other points of Bys .

(#44) M contains exactly four pairs of vertices of Bys and no other points of Bys .

(<v) Mr contains exactly one pair of vertices and exactly one pair of edges of By such that
the vertices do not belong to the concerned edges. My contains no other points of Bys .

(v) Mt contains exactly two pairs of vertices and exactly one pair of edges of Bys_ such that
the vertices do not belong to any of the concerned edges. M7 contains no other points of Bys .

(vi) M7 contains exactly two pairs of non-adjacent edges of By and no other points of By .
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U3 = (_]-7 _17 1) TE34 Vg = (17 _17 ]-)

E23 E’ E41
T 12
ve = (—1,1,1 0 =(L,1,1)
(LA 1,-1,-1)
(-1,1,-1) (1,1,-1)

Figure 8.1: Unit sphere of ¢3_

If My is of the form described in either of the Cases (i), (i7), (iii), then T' does not satisfy
the BS Property and the proof of it follows directly from [50, Th. 2.7]. Also, if My is of
the form described in either of the Cases (iv), (v), then T does not satisfy the BS Property
and the proof of it follows directly form Corollary 8.1. Here we only consider the Case (vi).
Without loss of generality, we may assume that My = £E1 U +E34, for some T € L(£3,,Y).
As Y is strictly convex, we must have T(+F13) = tuy, T(+E34) = fug, where uj,ug € Y
are linearly independent and [|ui]| = ||uz||. Now we define a linear operator A : 3, — Y by
A(xE12) = T(£E12) = tu1, A(twvs) = —T(£vs) = Fug. Then A(+E3y) = —T(£FE34) = Fug,
since vy = vy — vy +v3. Here Avy € (Tw1)" and Avs € (T'ws)~. Therefore, using [61, Th. 2.2] we
get T'1 pA. From the construction of the operator A, it is clear that Tx [/ p Az, for all z € My.
This completes the proof of the theorem. O

In order to obtain further examples of BS pairs of polyhedral Banach spaces (X,Y), we

require the following lemma.

Lemma 8.2. Let X be any finite-dimensional Banach space and let Y be any polyhedral Banach
space such that By has exactly 2m facets. Let T € L(X,Y) be such that My is not of the form

D U (—D), where D is a connected subset of Sx. Then My can have at most 2m components.

Proof. Suppose on the contrary that My has (2m + 1) components, say Dy, Da, ...,

Doppt1- Let us consider a subset {x1, %2, ..., Tom+1} of My, where x; € D; fori=1,2,...,2m+
1. Let Tx1 € F, where F' is a facet of By. Then we must have Tx; ¢ F fori € {2,3,...,2m+1}.
If not then, (1 —X)z1+Az; € My, for all A € [0, 1], contradicting the fact that D; and D;(i > 1)
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are distinct components of M. Thus T'z; and Tx; (i # j) can not belong to the same facet of
By. Let us denote the facets of By as Fi, Fy,..., Fo,, such that Tx; € F; for i =1,2,...,2m.
Thus Tx2m+1 can not belong to any facet of By, which is a contradiction to the fact that

Zom+1 € Mrp. This completes the proof of the lemma. O
Using the above lemma, we obtain the following theorem:
Theorem 8.9. (¢3_, (%) is a BS pair.

Proof. Bygs has eight vertices +v; = £(1,1,1),+vy = £(-1,1,1),+v3 = (=1,-1,1) and
toy = +(1,—1,1) and twelve edges +FE19 = +L[v1, va], £ Fa3 = +L[vg, v3], £ F34

= *L[vs,va], £ En = £L[vg, 1], £E_3) = £L[v1, ~v3], B4 = £L[vz,~v4]. Let T €
L(¢3,,¢%) be such that My is not of the form D U (—D), where D is a connected subset
of Sx. Then by Lemma 8.2, M7 must be one of the following forms:

() Mr contains exactly two pairs of vertices of By and no other points of Bys .
(ii) M contains exactly one pair of edges and exactly one pair of vertices of Bys_ such that the
concerned vertices do not belong to the concerned edges. My contains no other points of Bys .

(iii) My contains exactly two pairs of edges of Bys and no other points of By .

If My is of the form described in either of the Cases (i) and (ii), then T' does not satisfy
the BS Property and the proof of it follows directly from [62, Prop. 2.1]. We only consider the
case (4i7) in which My contains exactly two pairs of edges of By . Without loss of generality,
we may and do assume that Mp = £FE12 U+ Fs3y. Clearly, we have T'(M7)N Eggo = ¢ and hence
Tx € Sm(Sg ) for any x € My, where Sm(S_) denotes the collection of all smooth points of
Sez._ - As E19 € My and E34 € M7, we have Tv; and Tvs belong to the same edge of By and
also T'vz and T'vg belong to the same edge of Byz . Let us define an operator A € L(¢3,,02) as

follows:

Avl = TUl, A'UQ = Tvl, Avg = 7TU3.

Clearly, Avy € (Twy)" and Avs € (Tws)~. Therefore, using [61, Th. 2.2], we get that
T1pA. Now, we have A(F12) = Tv; and A(F34) = —T'vs, as vg = v; — va + v3. Then it is easy
to check that Tu [ p Au for any u € My. Hence T does not satisfy the BS Property.
Therefore, the pair (£2,, (%) is a BS pair. O

Using similar arguments, we can also prove the next result, the proof of which is omitted as

it follows in similar spirit to the above theorem.

Theorem 8.10. (¢3_,¢3) is a BS pair.

o0 oo
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Remark 8.11. Given m,n € N such that m,n > 3, it is still unknown whether the pair ({2, (%)

is a BS pair.

We would like to end the chapter with a related result that characterizes the unit cube among
all 3-dimensional convex polyhedrons having eight vertices. This is of independent interest and
illustrates the connection between operator norm attainment and geometries of the domain

space and the co-domain space.

Theorem 8.12. Let X be a three-dimensional polyhedral Banach space such that Bx has exactly
eight vertices. Then X is isometrically isomorphic with (3. if and only if given any strictly conver
Banach space Y and given any two pairs of non-adjacent edges £E1 and £FEy of Sk, there is a
rank two linear operator T € IL(X,Y) such that My = +F; U £F,.

Proof. Let us first prove the necessary part of the theorem. We use the notations for the ver-
tices and the edges of Bys as used in Theorem 2.4 (see Figure 1). Now for any two pairs of

non-adjacent edges of By , the following three cases may arise:

(Z) :|:E12 = :EL[Ul,’I)Q] and :|:E34 = :EL[Ug,’I}4].
(ZZ) :|:E14 = :EL[’Ul,1)4] and :|:E23 = :EL[UQ,Q)g].
(ZZZ) :|:E1(,3) = :tL[’Ul, —Ug] and :|:E2(,4) = :tL[UQ, —U4].

We only consider the Case (i), as the other two cases will follow similarly. Define a linear
operator T : Ego = Y by T(v1) = T(ve) = uy, T(vs) = ug, where uj,us € Sy are linearly
independent. So, we have T'(+FE12) = tuy and T(+FE34) = tug. Hence it can be easily shown
that ||T|| = 1, My = £E12 U +FE34 and T is a rank two linear operator.

Next we prove the sufficient part of the theorem. Let 4wy, +v9, tvs, v4 be the eight ver-
tices of Bx. Using the Krein-Milman theorem, we conclude that the set {v1, v, v3,v4} contains

a basis of X. Therefore, the following two cases arise in this context:

Case(i). Any three elements of the set {v1, v, v3, v4} are linearly independent.

Case(ii). Case (i) is not satisfied.

Case (i) : Let {v1,v2,v3} be a basis of X and let vg = ayv1 + agve + asvs, where a; €
R,i = 1,2,3. Then each «; is non-zero, as any three elements of the set {vi,ve,vs,v4} are
linearly independent. In a three-dimensional polyhedral Banach space every vertex has at least

two adjacent edges. Let +F7 = £L[v1,v2] and £Fy = +L[vs,v4]. Let T be a rank two linear
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operator such that My, = £F) U+F>. As Y is a strictly convex Banach space and +E; C Mp,,
T)(+Fy) = t+uy for some non-zero u; € Y. Also Tj(+Fs) = fus, for some non-zero uy € Y.
As Ty is of rank two, ui,ue are linearly independent. As vy = a1v1 + aovg + agvs, we have
uz = T1(vg) = (1 + a9)uy + azuy. Therefore, (1 — ag)ug = (a1 + az)us. So we must have
a1 = —a and ag = 1, as ug, ug are linearly independent. Hence vy = a3 (v — v2) + v3. Without
loss of generality, we assume that L[vi,vs], L[va, v4] are two edges of Bx. Now for this two
pairs of non-adjacent edges +F| = +L[vy,v3] and +E, = 4+ L[vy, v4], there is a rank two linear
operator T € L(X,Y) such that Mp, = :I:E; U :tEé. In a similar argument like above, we have
To(+E;) = u) for some non-zero u; € Y and Ty(£FE,) = us for some non-zero u, € Y. Therefore,
we have uy = Th(vq) = aqu] — ayug +1u;. So o = —1, as u), uy are linearly independent. Hence

vy = —v1 + v2 + v3. Now we define a linear map S : X — Ego by
S(v1) = (1,1,1),S(v2) = (=1,1,1),S(v3) = (1,1, -1).

Then S(vg) = (—1,1,—1). Clearly, S is an isomorphism, as it maps a basis to a basis and
S|l = 1, as S(Ext Bx) = Ext By . Also S~ =1, as S~ (Ext By ) = Ext Bx. Thus we
have

[l = 1S~ S (@)l < [|1S(@)| < |-

Therefore, S is an isometric isomorphism.

Case (i1) : Without loss of generality, we assume that vy, ve,vs are linearly dependent.
Consider the subspace spanned by vy, vy. Let Z = span{vi,ve}. Then dimZ = 2 and +vy ¢ Z,
otherwise dim X = 2, which is a contradiction. Now, vy, tve, +v3 € Sx N Z. Therefore, Bx
is of the form of hexagonal pyramid, where 4wv1,+tvo, £vs are the vertices of the hexagonal
base. Now for any two edges F4 and E3 on the hexagonal base, either Fy and FEy are adjacent
or F1 and —F5 are adjacent. Therefore, two pairs of non-adjacent edges +F; and +FE5 are
not possible from hexagonal base of Byx. Also any two edges, which are not in the subspace
Z, are adjacent as they have a common vertex, either vy or —wvy. Hence there is only one
possibility for two pairs of non-adjacent edges, one edge is in the two-dimensional subspace Z
and one edge is not in the two-dimensional subspace Z. Without loss of generality, we assume
+FE) = £L[vy,v] and £FE5 = +L[vs, v4]. Now we claim that for any operator T' € L(X, Y), with
+F1 U+FEy C My, T is a rank one linear operator. As Y is strictly convex and +F; C Mrp,
we must have T(£F1) = tuy for some non-zero u; € Y. Also for similar reason T'(+F3) = tuq
for some non-zero ug € Y. As v1,v9,v3 are linearly dependent, we have vs = ajvy + aavs, for

some non-zero ai, &z € R. Then T'(v3) = (aq + a2)uyi. As | Tvs|| = ||T|| = ||u1]|, we must have
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|og + a2| = 1. Hence ug = tuy. Therefore, T is a rank one linear operator. So there dost not
exist any rank two linear operator T' € L(X,Y) such that My = +F; U +F5, where +FE; and
+F, are any two pairs of non-adjacent edges and hence Case-(ii) is not possible.

This establishes the theorem. ]
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