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Abstract

The study of k−smoothness of operators between Banach spaces is relatively new area of re-

search in the geometry of Banach spaces. The study of k−smoothness and Birkhoff-James

orthogonality plays an important role in the geometry of Banach spaces. One of the most inter-

esting aspects of Birkhoff-James orthogonality is the relation between orthogonality of operators

and that of norm attainment set in the ground space. We first characterize k−smoothness of an

element on the unit sphere of a finite-dimensional polyhedral Banach space and k-smoothness

of an operator T ∈ L(ℓn∞,Y), where Y is a two-dimensional Banach space with the additional

condition that T attains norm at each extreme point of the unit ball Bℓn∞ . Then we character-

ize k−smoothness of an operator defined between ℓ3∞ and ℓ31. Next we study k−smoothness of

bounded linear operators defined between infinite-dimensional Hilbert spaces. We also charac-

terize k−smoothness of operators on some particular spaces, namely L(X, ℓn∞), L(ℓ3∞,Y), where

X is a finite-dimensional Banach space and Y is a two-dimensional Banach space. Study of

k−smoothness is deeply related to extreme contractions, the characterization of which is still

elusive, in the general setting of Banach spaces. As an application of the study of k-smoothness

of operators, we characterize extreme contractions defined between ℓ3∞ and Y, where Y is a two-

dimensional polygonal Banach space. Then we obtain extreme contractions defined between

finite dimensional polyhedral Banach spaces using k−smoothness of operators. We explicitly

compute the number of extreme contractions in some special Banach spaces. Next we explore

the connections between the numerical radius norm and operator norm under certain condi-

tions. We characterize nu-smoothness of order k for a bounded linear operator defined on a

finite-dimensional Banach space. Also we characterize nu-extreme contractions defined on two-

dimensional polygonal Banach spaces. Next we obtain the structure of the set of extreme points

in the dual of L(X)w, where X is a two-dimensional polygonal Banach space. Then we move our

attention to the study of Birkhoff-James orthogonality of bounded linear operators. We explore

the relation between the orthogonality of bounded linear operators in the space of operators

and that of elements in the ground space. We continue exploring the validity of the BŠ (Bhatia-

Šemrl) Property in the setting of different Banach spaces. We characterize the space ℓ3∞ among

all 3-dimensional polyhedral Banach spaces whose unit ball have exactly eight extreme points.
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CHAPTER 1

INTRODUCTION

The study of k−smoothness is relatively a new area of research in the geometric theory of

Banach space. The concept of k−smoothness has evolved out of smoothness, the study of

which is classical area of research in Banach space theory. Throughout we assume that X, Y

are real Banach spaces and H is a real Hilbert space. Let SX and BX denote the unit sphere

and unit ball of the space X, i.e., SX = {x ∈ X : ∥x∥ = 1} and BX = {x ∈ X : ∥x∥ ≤ 1}. By
L(X,Y)(K(X,Y)), we denote the collection of all bounded(compact) linear operators defined

between X and Y. In case X = Y, we write L(X,Y) = L(X) and K(X,Y) = K(X). Let X∗ denote

the Banach space of all bounded linear functionals on X, which is known as the dual space of

X. An element x of the unit sphere SX is said to be a smooth element if there exists unique

linear functional x∗ ∈ SX∗ such that x∗(x) = 1. The question that arises naturally is if x is not

a smooth element then how many such norm one linear functionals can be there which attain

norm at x and out of them how many will be linearly independent. This concept sowed a seed of

motivation to study the order of smoothness of an element x if it is not a smooth element. The

major part of the thesis focuses on the study of smoothness of a bounded linear operator defined

between two Banach or Hilbert spaces. Several Mathematicians have studied k−smoothness on

various type of Banach spaces. Readers can look at the following papers [14, 24, 32, 67]. Let

us first interpret the geometric notions of smoothness and k−smoothness.

Definition 1.1 (Smoothness). An element x ∈ SX is said to be a smooth point if there is

a unique linear functional f ∈ X∗ such that ∥f∥ = 1 and f(x) = ∥x∥ = 1. Equivalently, a

geometric definition of a smooth point is as follows: An element x ∈ SX is said to be a smooth

point if there is a unique hyperplane H supporting the unit ball BX at x. A Banach space is said

1



Chapter 1. Introduction

to be smooth if every element of the unit sphere is smoooth.

Every element of the unit sphere of ℓ32(R) is a smooth element whereas in ℓ3∞(R), (1, 0, 0) is

a smooth point but (1, 1, 0) and (1, 1, 1) are non-smooth points.

Smooth point

Unit sphere of ℓ32

non-Smooth

Smooth

non-Smooth

Unit sphere of ℓ3∞

Consider J(x) = {x∗ ∈ SX∗ : x∗(x) = 1}. It is easy to see that J(x) is a weak*-compact

convex subset of SX∗ . The notion of smoothness has been generalized by Khalil and Saleh [24]

in 2005. They introduced the notion of multi-smoothness or k−smoothness depending on the

“size” of J(x) as follows:

Definition 1.2 (k−smoothness). [24] Let X be a Banach space and x ∈ SX. Then x is said to

be k−smooth or smooth of order k if J(x) contains exactly k linearly independent elements. In

particular, x is 1−smooth or simply smooth if J(x) is singleton.

3−Smooth

1−Smooth

2−Smooth

Unit sphere of ℓ3∞

We will study k−smoothness of operators defined between finite-dimensional real polyhedral

Banach spaces, the definition of which goes as follows.

Definition 1.3. A polyhedron P is a non-empty compact subset of X which is the intersection

of finitely many closed half-spaces of X, that is, P = ∩r
i=1Mi, where Mi are closed half-spaces

in X and r ∈ N. The dimension dim(P ) of the polyhedron P is defined as the dimension of the

subspace generated by the differences v − w of vectors v, w ∈ P.

Definition 1.4. A polyhedron Q is said to be a face of the polyhedron P if either Q = P or if

we can write Q = P ∩δM, where M is a closed half-space in X containing P and δM denotes the

2



Chapter 1. Introduction

boundary of M. If dim(Q) = i, then Q is called an i-face of P . If dim(P ) = n, then (n−1)-faces

of P are called facets of P and 1-faces of P are called edges of P.

Let S be a convex subset of the space X. An element x ∈ S is said to be an extreme point

of the set S if whenever x = (1− t)y + tz for some t ∈ (0, 1) and y, z ∈ S then x = y = z. The

collection of all extreme points of S is denoted by Ext (S) or ExtS. The space X is said to be

strictly convex if Ext (BX) = SX. An operator T ∈ L(X,Y) is said to be an extreme contraction

if T is an extreme point of the unit sphere of L(X,Y). The extreme contractions for operators

defined on Hilbert spaces is well-known, they are the maximal partial isometries [13]. However

the same for operators defined between Banach spaces is yet to be completely understood,

even for finite-dimensional spaces it is still elusive. Here we will try to apply the notion of

k−smoothness to study the extreme contractions for operators defined between Banach spaces.

We need the following well-known results.

Theorem 1.1. [68, Theorem 2.1] Let X,Y be Banach spaces over the field K(= R orC), then

Ext BK(X,Y)∗ = {x∗∗ ⊗ y∗ ∈ K(X,Y)∗ : x∗∗ ∈ Ext BX∗∗ , y∗ ∈ Ext BY∗}, where x∗∗ ⊗ y∗ :

K(X,Y) → K, (x∗∗ ⊗ y∗)(T ) = x∗∗(T ∗y∗) for every T ∈ K(X,Y).

Theorem 1.2. [68, Corollary 2.2] Let X be a reflexive Banach space over the field K(= R orC),

then Ext BK(X,Y)∗ = {y∗⊗x ∈ K(X,Y)∗ : x ∈ Ext BX, y
∗ ∈ Ext BY∗}, where y∗⊗x : K(X,Y) →

K, (y∗ ⊗ x)(T ) = y∗(Tx) for every T ∈ K(X,Y).

Motivated by the work of Lindenstrauss and Perles in [33], the following two definitions were

introduced recently in [51, 58], to study extreme contractions.

Definition 1.5. [58] Let X,Y be Banach spaces. We say that the pair (X,Y) has L-P (abbre-

viated from Lindenstrauss-Perles) property if T ∈ SL(X,Y) is an extreme contraction if and only

if T (Ext(BX)) ⊆ Ext(BY).

Definition 1.6. [51] Let X,Y be Banach spaces. We say that the pair (X,Y) has weak L-P

property if for each extreme contraction T ∈ SL(X,Y), T (Ext(BX)) ∩ Ext(BY) ̸= ∅.

In due course of time we show that some of the results obtained in [58, 51] follows easily

from the results obtained by us. The notion of M -ideal plays a very important role in our

scheme of things.

Definition 1.7. Let X be a Banach space and V is a closed subspace of X. The subspace V is

said to be an M -ideal in X if X∗ = V ∗ ⊕1 V
⊥, where V ⊥ = {x∗ ∈ X∗ : V ⊆ ker(x∗)} and if

x∗ = x∗1 + x∗2 is the unique decomposition of x∗ then ∥x∗∥ = ∥x∗1∥+ ∥x∗2∥.

3



Chapter 1. Introduction

The role of norm attainment set [60] is essential in our study. For an operator T ∈ L(X,Y),

the norm attainment set, denoted by MT , is defined as

MT = {x ∈ SX, ∥Tx∥ = ∥T∥}.

Again the structure of norm attainment set is well-known if the operators are defined between

Hilbert spaces and the same is still unknown and intriguing for Banach spaces. To study

k−smoothness of an operator T we have to investigate how many norm one linearly independ-

ednt linear functionals are there which attain its norm at T. In this connection the following

result describing the Ext J(T ) under some assumptions on the space and operator is very useful

in our study.

Lemma 1.1. [68, Lemma 3.1] Suppose that X is a reflexive Banach space. Suppose that K(X,Y)

is an M−ideal in L(X,Y). Let T ∈ L(X,Y), ∥T∥ = 1 and dist(T,K(X,Y)) < 1. Then MT ∩
Ext(BX) ̸= ∅ and

Ext J(T ) = {y∗ ⊗ x ∈ K(X,Y)∗ : x ∈ MT ∩ Ext(BX), y
∗ ∈ Ext J(Tx)},

where y∗ ⊗ x : K(X,Y) → R is defined by y∗ ⊗ x(S) = y∗(Sx) for every S ∈ K(X,Y).

The numerical range of a bounded linear operator T on a complex Hilbert space H, denoted

by W (T ), is defined as W (T ) = {⟨Tx, x⟩ : x ∈ SH}. The numerical radius of a bounded linear

operator T , to be denoted by w(T ), is defined as w(T ) = sup{|⟨Tx, x⟩| : x ∈ SH}. If H is

a complex Hilbert space then w(T ) defines a norm on L(H). The natural generalization of

numerical radius for the Banach space X is as follows:

w(T ) = sup{|x∗(Tx)| : x∗ ∈ SX∗ , x ∈ SX, x
∗(x) = 1}.

The numerical radius w(T ) does not always define a norm on L(X). We consider only those real

finite-dimensional Banach spaces X such that numerical radius defines a norm on L(X) and use

the symbol L(X)w to denote the space of bounded linear operators endowed with the numerical

radius norm. Motivated by the notion of smooth operator of order k or k−smooth operator, we

generalize the notion of nu-smooth operator in the following way.

Definition 1.8. Let X be a Banach space. A non-zero operator T ∈ L(X)w is said to be nu-

smooth of order k if there exist exactly k linearly independent elements f1, f2, . . . , fk ∈ Jw(T ),

where Jw(T ) = {f ∈ SL(X)∗w : f(T ) = w(T )}. In other words, T is said to be nu-smooth of order

k if

k = dim span Jw(T ) = dim span Ext Jw(T ).

4



Chapter 1. Introduction

We study nu-smooth operators of order k for some special Banach spaces. We also study

nu-extreme contractions for some special Banach spaces. Note that an operator T ∈ L(X)w
is said to be nu-extreme contraction if T is an extreme point of the unit sphere of L(X)w.

Last two chapters of the thesis deals with the study of some important properties of Birkhoff-

James orthogonality [3, 20, 21] for bounded linear operators. The notion of Birkhoff-James

orthogonality in a Banach space is well-known and is used extensively in the study of the

geometry of Banach spaces. For x, y ∈ X, x is said to be orthogonal to y in the sense of

Birkhoff-James, written as x⊥By, if ∥x+λy∥ ≥ ∥x∥ for all λ ∈ R. Similarly, for T,A ∈ L(X,Y),

T is said to be Birkhoff-James orthogonal to A, written as T⊥BA, if ∥T + λA∥ ≥ ∥T∥ for

all λ ∈ R. For the n-dimensional Euclidean space En, Bhatia and Šemrl [2] and Paul [49]

independently proved that for T,A ∈ L(En), T⊥BA if and only if there exists x ∈ SEn such that

∥Tx∥ = ∥T∥ and Tx⊥BAx. Note that the sufficient part of the above theorem is true whenever

the domain space and the co-domain space are any normed linear spaces of any dimension, i.e.,

if there exists x ∈ MT such that Tx⊥BAx then T⊥BA. On the other hand, the necessary part

of the said theorem is not true in general Banach spaces, even if dim(X) is finite [31, 63, 62].

Sain and Paul [63] proved that if T is a linear operator on a finite-dimensional Banach space X

with MT = D∪ (−D), where D is a connected subset of SX then T⊥BA imples that there exists

x ∈ MT such that Tx⊥BAx. An operator T is said to satisfy BŠ (Bhatia-Šemrl) Property [62] if

for an operator A, T⊥BA implies that there exists x ∈ MT such that Tx⊥BAx. The following

theorem characterises BŠ Property when the space is of dimension 2.

Theorem 1.3. [62, Th. 2.4] A linear operator T on a 2-dimensional Banach space X satisfies

the Bhatia-Šemrl Property if and only if T attains its norm only on D ∪ (−D), where D is a

non-empty connected subset of SX.

The validity of the above result remains unknown, when the dimension of X is strictly

greater than 2. The following conjecture remains open to the best of our knowledge.

Conjecture 1.1. [62, Conj. 2.5] A linear operator T on a finite-dimensional Banach space

X satisfies the Bhatia-Šemrl Property if and only if MT = D ∪ (−D), where D is a connected

subset of SX.

We observe that the sufficient part of the above conjecture is true, but the validity of the

necessary part remains unknown. In view of this, the authors [62] defined the Bhatia-Šemrl

(BŠ) Property of a bounded linear operator T ∈ L(X). It is possible to extend the definition of

the BŠ Property in a more general way, without giving the restriction that the domain space

and the co-domain space are identical. We now state the following definition of the BŠ Property

in more general way.

5



Chapter 1. Introduction

Definition 1.9. [50] Let X,Y be Banach spaces and let T ∈ L(X,Y). We say that T satisfies

the Bhatia-Šemrl (BŠ) Property if for any A ∈ L(X,Y), T⊥BA implies that there exists x ∈ MT

such that Tx⊥BAx.

Next we introduce the definition of BŠ pair which plays a crucial role in the whole scheme

of things.

Definition 1.10. Let X,Y be Banach spaces. We say that the pair (X,Y) is a BŠ pair if for

every T ∈ L(X,Y), T satisfies the BŠ Property if and only if MT = D ∪ (−D), where D is a

non-empty connected subset of SX.

We focus on the study of BŠ Property and BŠ pair of spaces in our last two chapters. We

note that the study further indicates that the conjecture 1.1 most likely to be true. We next

give a brief outline of the thesis.

1.1 Outline of the thesis

The thesis consists of eight chapters including the introductory one. In the introductory chapter

we provide a brief history of k−smoothness of elements and operators and also the history of

BŠ Property in the context of Birkhoff-James orthogonality of bounded linear operators. We

mention some definitions and notations to be used throughout the thesis.

In Chapter 2, we characterize k−smoothness of an element on the unit sphere of a finite-

dimensional polyhedral Banach space. Then we study k−smoothness of an operator T ∈
L(ℓn∞,Y), where Y is a two-dimensional Banach space with the additional condition that MT ⊆
Bℓn∞ . We also characterize k−smoothness of an operator T ∈ L(ℓ3∞, ℓ31).

In Chapter 3, we investigate k−smoothness of bounded linear operators defined between

arbitrary Hilbert spaces. We then study the problem in the setting of both finite and infinite-

dimensional Banach spaces. We also characterize k−smoothness of operators on some particular

spaces. As an application, we characterize extreme contractions on L(ℓ3∞,Y), where Y is a two-

dimensional polygonal Banach space.

In Chapter 4, we characterize extreme contractions defined between finite dimensional poly-

hedral Banach spaces using k−smoothness of operators. Using this we explicitly compute the

number of extreme contractions in some special Banach spaces. Our approach in this paper in

studying extreme contractions lead to the improvement and generalization of previously known

results.

In Chapter 5, we completely characterize the k−smoothness of bounded linear operators

defined on ℓ3∞ the proof of which is given explicitly.

6



Chapter 1. Introduction

In Chapter 6, we explore the connections between the numerical radius norm and operator

norm under certain conditions. Then we characterize nu-smoothness of order k for a bounded

linear operator defined on a finite-dimensional Banach space. Also we characterize nu-extreme

contractions defined on two-dimensional polygonal Banach spaces. Finally we obtain the struc-

ture of the set of extreme points in the dual of L(X)w, where X is a two-dimensional polygonal

Banach space.

Chapter 7 and 8 deals with the study of some important properties of Birkhoff-James or-

thogonality of bounded linear operators. In Chapter 7, we explore the relation of Birkhoff-James

orthogonality between the elements in operator space and ground space. In this context, we

introduce the notion of Property Pn for a Banach space and illustrate its connection with or-

thogonality of a bounded linear operator between Banach spaces. We further study Property

Pn for various polyhedral Banach spaces. In Chapter 8, we study operators satisfying Bhatia-

Šemrl(BŠ) Property. We show that (ℓn1 ,Y) is a BŠ pair for any normed linear space Y and also

obtain that (ℓ3∞, ℓ3∞) is a BŠ pair. Finally, we characterize the space ℓ3∞ among all 3-dimensional

polyhedral Banach spaces whose unit ball have exactly eight extreme points.

Before we end this section we would like to mention that in the beginning of each of the

following chapters, we provide a brief motivation and for the convenience of the reader we

provide the relevant notations and terminology to keep each chapter independent.
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CHAPTER 2

STUDY OF K−SMOOTHNESS ON

FINITE-DIMENSIONAL POLYHEDRAL

BANACH SPACES

2.1 Introduction

The study of k−smoothness plays an important role to identify the structure of the unit ball of

a Banach space. The papers [14, 15, 24, 32] contain the study of k−smooth points of many of

the Banach spaces. There are several papers including [14, 24, 32, 38, 39, 36, 67] that contain

the study of k−smoothness of operators on different spaces. In [36], authors have obtained a

relation between k−smoothness and extreme points of the unit ball of a polyhedral Banach

space. The purpose of this chapter is to characterize the order of smoothness of an element on

the unit sphere of a finite-dimensional polyhedral Banach space. We also study k−smoothness

of an operator defined between polyhedral Banach spaces. Let us first fix the notation and

terminology.

Letters X, Y denote Banach spaces. Throughout the chapter we assume the Banach spaces

Content of this chapter is based on the following paper:
S. Dey, A. Mal and K. Paul; k−smoothness on polyhedral Banach spaces, Colloq. Math., 169 (2022),
no. 1, 25-37.
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Chapter 2. Study of k−smoothness on finite-dimensional polyhedral Banach spaces

to be real. We denote the unit ball and the unit sphere of X respectively by BX and SX, i.e.,

BX = {x ∈ X : ∥x∥ ≤ 1}, SX = {x ∈ X : ∥x∥ = 1}. Let L(X,Y) denote the space of all bounded

linear operators between X and Y. For T ∈ L(X,Y), MT denotes the collection of all unit

vectors of X at which T attains its norm, i.e., MT = {x ∈ SX : ∥Tx∥ = ∥T∥}. For a set A, the

cardinality of A is denoted by |A|. The dual space of X is denoted by X∗. An element x ∈ SX is

said to be an extreme point of the convex set BX if and only if x = (1−t)y+tz for some y, z ∈ BX

and t ∈ (0, 1) implies that y = z = x. For x, y ∈ X, let L[x, y] = {tx + (1 − t)y : 0 ≤ t ≤ 1}
and L(x, y) = {tx + (1 − t)y : 0 < t < 1}. The set of all extreme points of BX is denoted

by Ext(BX). An element x∗ ∈ SX∗ is said to be a supporting linear functional of x ∈ SX, if

x∗(x) = 1. For a unit vector x, let J(x) denote the set of all supporting linear functionals of x,

i.e., J(x) = {x∗ ∈ SX∗ : x∗(x) = 1}. The set J(x) for x ∈ SX plays a significant role to study the

k−smoothness. By the Hahn-Banach Theorem, it is easy to verify that J(x) ̸= ∅, for all x ∈ SX.

We would like to mention that J(x) is a weak*-compact convex subset of SX∗ . A unit vector x

is said to be a smooth point if J(x) is singleton. X is said to be a smooth Banach space if every

unit vector of X is smooth. The set of all extreme points of J(x) is denoted by Ext J(x), where

x ∈ SX. In 2005, Khalil and Saleh [24] defined k−smooth points as follows: An element x ∈ SX is

said to be k−smooth or the order of smoothness of x is k, if J(x) contains exactly k linearly inde-

pendent supporting linear functionals of x. In other words, x is k−smooth, if dim span J(x) = k.

Moreover, from [32, Prop. 2.1], we get that x is k−smooth, if k = dim span Ext J(x). Similarly,

for T ∈ L(X,Y) with ∥T∥ = 1, J(T ) = {F ∈ L(X,Y)∗ : ∥F∥ = 1, F (T ) = 1} and T is said to

be k−smooth operator, if k = dim span J(T ) = dim span Ext J(T ). Observe that, 1−smooth

points of SX are the smooth points of SX. The spaces that we are dealing with in this chapter

are mostly finite-dimensional polyhedral Banach spaces. A finite-dimensional Banach space X is

said to be polyhedral if the unit ball BX of X contains only finitely many extreme points. Equiv-

alently, a finite-dimensional Banach space X is a polyhedral Banach space, if BX is a polyhedron.

In particular, a two-dimensional polyhedral Banach space is said to be a polygonal Banach space.

For a convex set C, intr(C) denotes the relative interior of the set C, i.e., x ∈ intr(C) if

there exists ϵ > 0 such that B(x, ϵ) ∩ affine(C) ⊆ C, where affine(C) is the intersection of all

affine sets containing C and an affine set is defined as the translation of a vector subspace.

A non-empty convex subset F of C is said to be a face of C, if for x, y ∈ C and t ∈ (0, 1),

(1− t)x+ ty ∈ F ⇒ x, y ∈ F.

In this chapter, we first prove that a point on the relative interior of an i-face of the unit ball

of an n-dimensional polyhedral Banach space is (n− i)−smooth. In [39], the authors completely

characterized the k−smoothness of an operator defined between two Banach spaces X and Y,

9
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where dim(X) = dim(Y) = 2 and in [38], the authors characterized the k−smoothness of a

bounded linear operator defined between ℓ3∞ and a two-dimensional Banach space. We continue

our study in this direction and characterize the k−smoothness of a bounded linear operator

defined between ℓn∞ and a two-dimensional Banach space with the assumption that the linear

operator attains its norm at all the extreme points of the unit ball of ℓn∞. Then we characterize

k−smoothness of a bounded linear operator defined between ℓ3∞ and ℓ31.

We state the following lemma [68, Lemma 3.1], characterizing Ext J(T ), which will be used

often. For simplicity we state the lemma for finite-dimensional Banach spaces.

Lemma 2.1. [68, Lemma 3.1] Suppose that X,Y are finite-dimensional Banach spaces. Let

T ∈ L(X,Y) and ∥T∥ = 1 Then

Ext J(T ) = {y∗ ⊗ x ∈ L(X,Y)∗ : x ∈ MT ∩ Ext(BX), y
∗ ∈ Ext J(Tx)},

where y∗ ⊗ x : L(X,Y) → R is defined by y∗ ⊗ x(S) = y∗(Sx) for every S ∈ L(X,Y).

2.2 k−smooth points of polyhedral Banach

spaces and operators spaces

We begin this section with a relation between the order of smoothness of a unit vector x in a

polyhedral Banach space and the dimension of the face F such that x is in the relative interior

of F.

Theorem 2.1. Let X be an n-dimensional polyhedral Banach space. Let F be an i-face of BX.

Let x ∈ intr(F ). Then x is (n− i)−smooth.

Proof. Let f ∈ Ext J(x). Since x ∈ intr(F ), we have for all y ∈ F, f(y) = 1. Therefore,

F ⊆ ∩f∈Ext J(x){y ∈ SX : f(y) = 1} = A (say).

Clearly, A is a face of BX. If possible, suppose that F ⫋ A. Then there exists z ∈ A \ F. Now,
x ∈ F ⊆ A and z ∈ A ⇒ tx + (1 − t)z ∈ A for all t ∈ [0, 1], since A is a face. Using convexity

argument of norm, it is easy to observe that ∥x+ λ(z − x)∥ ≥ ∥x∥ for all scalars λ. Moreover,

we have ∥x+ (z − x)∥ = ∥z∥ = 1. If possible, let ∥x+ λ0(z − x)∥ = 1 for some λ0 < 0. Then

x = tz + (1− t){x+ λ0(z − x)}, where t =
−λ0

1− λ0
∈ (0, 1).
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Since F is a face and x ∈ F, we get z ∈ F, a contradiction. Thus ∥x + λ(z − x)∥ > 1

for all λ < 0. Let Y = span{x, z}. Then dim(Y ) = 2 and Y is a polygonal Banach space.

Using ∥x + (z − x)∥ = 1 and ∥x + λ(z − x)∥ > 1 for all λ < 0, it is easy to observe that

x ∈ Ext(BY ). Thus, by [39, Th. 3.5], we get x is 2−smooth in Y. Let h, g be two linearly

independent elements of Ext(BY ∗) such that h(x) = g(x) = 1. If h(z) = g(z) = 1, then

h(x − z) = g(x − z) = 0 ⇒ ker(h) = ker(g) ⇒ h = λg, for some scalar λ, a contradiction.

Without loss of generality, suppose that g(z) ̸= 1. By [66, Lemma 1.2, Page 168], there exists

g1 ∈ Ext(BX∗) such that g1|Y = g. Now, g1(x) = 1 and g1 ∈ Ext(BX∗) ⇒ g1 ∈ Ext J(x). Thus,

g1(z) ̸= 1 contradicts that z ∈ A. Therefore, A \ F = ∅ ⇒ A = F, i.e.,

F = ∩f∈Ext J(x){y ∈ SX : f(y) = 1} = ∩f∈Ext J(x) (x+ ker(f)) ∩ SX.

This implies that i = dim(F ) = dim(∩f∈Ext J(x)ker(f)). Now, let x be k−smooth. Let

{f1, f2, . . . , fk} be the set of all linearly independent vectors of Ext J(x). Then

f ∈ Ext J(x) ⇒ f =
k∑

j=1

ajfj , (aj ∈ R)

⇒ ∩k
j=1 ker(fj) ⊆ ker(f)

⇒ ∩k
j=1 ker(fj) ⊆ ∩f∈Ext J(x)ker(f) ⊆ ∩k

j=1 ker(fj)

⇒ ∩f∈Ext J(x) ker(f) = ∩k
j=1 ker(fj)

⇒ i = dim(∩k
j=1 ker(fj)) = n− k

⇒ k = n− i.

This completes the proof of the theorem.

Remark 2.2. Note that, if X is an n-dimensional polyhedral Banach space and F is a facet of

BX, then from Theorem 2.1, we get for each x ∈ intr(F ), x is smooth. On the other hand, if

F is a 0-face, i.e., F = {x}, then x is n−smooth. In this case, clearly x is an extreme point of

BX. It is worth mentioning that Theorem 2.1 generalizes [39, Th. 3.5].

Now, we focus on the space of all operators defined between some particular polyhedral Ba-

nach spaces. First we study k−smoothness of an operator defined between ℓn∞ and an arbitrary

two-dimensional Banach space. To do so we need the following two lemmas.

Lemma 2.2. [39, Lemma 2.1] Suppose X,Y are finite-dimensional Banach spaces. If {x1, x2, . . . , xm}
is a linearly independent subset of X and {y∗1, y∗2, . . . , y∗n} is a linearly independent subset of Y∗

then {y∗i ⊗ xj : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a linearly independent subset of L(X,Y)∗.
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Lemma 2.3. Let X = ℓn∞ and Y be a two-dimensional Banach space. Let T ∈ SL(X,Y) be such

that Rank(T ) = 2 and Ext(BX) ⊆ MT . Then the followings hold:

(i) T (BX) is a convex set with 4 extreme points.

(ii) If T (BX) is the convex hull of {±z1,±z2}, then either for each x ∈ Ext(BX), Tx ∈ ±L[z1, z2]

or for each x ∈ Ext(BX), Tx ∈ ±L[z1,−z2].

Proof. (i) Follows from [36, Remark 2.13].

(ii) Suppose ei = (0, 0, . . . , 1, 0, . . . , 0) with 1 at the i−th coordinate and 0 at the re-

maining places. Since, Rank(T ) = 2, T ei ̸= 0 for some i ∈ {1, 2, . . . , n}. Without loss of

generality, we assume i = 1, i.e., Te1 ̸= 0. It is well-known that BX = conv(K ∪ −K), where

K = {(1, u2, . . . , un) : |ui| ≤ 1, 2 ≤ i ≤ n}. Now, K can be expressed as K = e1 + F,

where e1 = (1, 0, . . . , 0) and F = {(0, u2, . . . , un) : |ui| ≤ 1, 2 ≤ i ≤ n}. Observe that

x ∈ Ext(BX) if and only if there exists u ∈ Ext(F ) such that either x = e1 + u or x = −e1 + u.

Clearly, T (BX) = conv
(
T (K) ∪ T (−K)

)
, where T (K) = T (e1 + F ) = Te1 + T (F ) and

T (−K) = T (−e1 + F ) = −Te1 + T (F ). Now, T (F ) must be a symmetric convex set about

origin, since F is so. If T (F ) has more than four extreme points then proceeding similarly

as in [36, Lemma 2.11], it can be shown that there exists v ∈ Ext(BX) such that v /∈ MT , a

contradiction. Thus, T (F ) has at most four extreme points.

First suppose T (F ) has only two extreme points say ±y, i.e., T (F ) is the convex hull of {y,−y}.
Clearly, T (BX) is the convex hull of ±Te1±y. Now, for each x ∈ Ext(F ), Tx ∈ L[y,−y]. There-

fore, for each z ∈ Ext(BX), T z ∈ ±L[Te1 + y, Te1 − y] and hence we are done.

Next, suppose T (F ) has four distinct extreme points say ±y1,±y2. We prove the rest of the

lemma in the following two steps.

Step 1. We claim that T (BX) is of the form conv{±(Te1−y2),±(Te1+y1)} or conv{±(Te1−
y1),±(Te1 + y2)} or conv{±(Te1 + y1),±(Te1 + y2)} or conv{±(Te1 − y1),±(Te1 − y2)}.

Since y1, y2 ∈ Ext(T (F )), there exist x1, x2 ∈ Ext(F ) such that Tx1 = y1, Tx2 = y2. Now,

T (F ) = conv{±y1,±y2} gives that T (BX) = conv{±Te1±y1,±Te1±y2}. Note that ±Te1±yi =

±Te1±Txi, for i = 1, 2 and ±e1±xi ∈ Ext(BX). Therefore, ∥±Te1±yi∥ = 1, for i = 1, 2. Since

Y is two-dimensional and {y1+y2, y1−y2} is linearly independent, Te1 = a(y1+y2)+b(y1−y2),

where a, b ∈ R. We assert that either a = 0, b ̸= 0 or a ̸= 0, b = 0. Clearly, a and b can not be
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simultaneously zero as Te1 ̸= 0. If possible, suppose that a ̸= 0, b ̸= 0. If a > 0, b > 0, then

Te1 − y1

=
2a

2a+ 2b+ 1
(Te1 + y2) +

2b

2a+ 2b+ 1
(Te1 − y2)

+
1

2a+ 2b+ 1
(−Te1 − y1)

and 2a
2a+2b+1 ,

2b
2a+2b+1 ,

1
2a+2b+1 ∈ (0, 1). Moreover, we have, ∥Te1 + y2∥ = ∥Te1 − y2∥ = ∥Te1 +

y1∥ = 1. Using this, it can be easily observed that ∥Te1 − Tx1∥ = ∥Te1 − y1∥ < 1, which

contradicts that e1 − x1 ∈ Ext(BX) ⊆ MT . Similarly, considering the other possible cases

a < 0, b < 0 or a < 0, b > 0 or a > 0, b < 0, we get a contradiction. This establishes our

assertion. Assume that a = 0, b > 0.

Then we have

Te1 − y1 =
2b

2b+ 1
(Te1 − y2) +

1

2b+ 1
(−Te1 − y1) and (2.1)

−Te1 − y2 =
1

2b+ 1
(Te1 − y2) +

2b

2b+ 1
(−Te1 − y1). (2.2)

Thus, the only extreme points of T (BX) are ±(Te1 − y2) and ±(Te1 + y1), i.e, T (BX) =

conv{±(Te1 − y2),±(Te1 + y1)}. Similarly considering other cases, we can show that T (BX) is

of the form as claimed in Step 1.

Step 2. Claim that either Tz ∈ ±L[Te1 + y1,−Te1 + y2] for each z ∈ Ext(BX) or Tz ∈
±L[Te1 + y2,−Te1 + y1] for each z ∈ Ext(BX) or Tz ∈ ±L[Te1 + y1,−Te1 − y2] for each

z ∈ Ext(BX) or Tz ∈ ±L[Te1 − y1,−Te1 + y2] for each z ∈ Ext(BX).

Suppose that T (BX) = conv{±(Te1 − y2),±(Te1 + y1)}. Let z ∈ Ext(BX) be arbitrary.

We show that Tz ∈ ±L[Te1 + y1,−Te1 + y2]. Now, there exists x ∈ Ext(F ) such that either

z = x + e1 or z = x − e1. First let z = x + e1. Now, if Tx is an interior point of T (F ), then

Tz = Tx + Te1 will be an interior point of T (BX) and hence ||Tz|| < ||T ||, a contradiction

as z ∈ Ext(BX). Thus, Tx is on the boundary of T (F ), i.e., Tx ∈ ±L[y1, y2] ∪ ±L[y1,−y2]. If

Tx ∈ ±L[y1, y2], then clearly Tz = Tx+ Te1 ∈ ±L[Te1 + y1,−Te1 + y2] and we are done.

If possible, let Tx ∈ L(y1,−y2), i.e., Tx = (1−λ)y1+λ(−y2), 0 < λ < 1. Then by Equation
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(2.2), we have

−Tx+ Te1

= (1− λ)(Te1 − y1) + λ(Te1 + y2)

= (1− λ)(Te1 − y1) + λ
( 1

2b+ 1
(−Te1 + y2) +

2b

2b+ 1
(Te1 + y1)

)

= (1− λ)(Te1 − y1) +
λ

2b+ 1
(−Te1 + y2) +

2bλ

2b+ 1
(Te1 + y1).

Since 0 < λ < 1, we have, 1− λ, λ
2b+1 ,

2bλ
2b+1 ∈ (0, 1). Moreover, we have, ∥Te1 − y1∥ = ∥− Te1 +

y2∥ = ∥Te1 + y1∥ = 1. Using this, it can be easily observed that ∥ − Tx + Te1∥ < ∥T∥, where
−x+ e1 ∈ Ext(BX), a contradiction.

Similarly, if Tx ∈ −L(y1,−y2), then we can show that ∥Tz∥ = ∥Tx + Te1∥ < ∥T∥, where
z = x + e1 ∈ Ext(BX), a contradiction. Therefore, we must have Tx ∈ ±L[y1, y2], i.e., Tz =

Tx+ Te1 ∈ ±L[Te1 + y1,−Te1 + y2].

Now if z = x − e1, following the same line of arguments, we can show that Tz ∈ ±L[Te1 +

y1,−Te1 + y2].

Considering the other possibilities of T (BX) and proceeding similarly we can establish our claim

stated in Step 2. This completes the proof of the lemma.

The following lemma is needed to prove the desired theorem.

Lemma 2.4. Any face of ℓn∞ having exactly 2k extreme points contains exactly k + 1 linearly

independent extreme points.

Now, we are ready to prove our desired result. We completely characterize k−smoothness

of an operator defined between ℓn∞ and any two-dimensional Banach space with the condition

that the operator attains its norm at each element of Ext(Bℓn∞). We solve the problem in the

following two theorems. In the following theorem, we consider the case in which image of each

extreme point of Bℓn∞ is smooth.

Theorem 2.3. Let X = ℓn∞ and Y be a two-dimensional Banach space. Let T ∈ SL(X,Y) be such

that Ext(BX) ⊆ MT and Tx is smooth for all x ∈ Ext(BX). Then the followings hold:

(i) If Rank(T ) = 1, then T is n−smooth.

(ii) Let Rank(T ) = 2. If Tx is an interior point of some line segment of T (BX) for some

x ∈ Ext(BX), then T is n−smooth. Otherwise, T is (2n− 2)−smooth.

Proof. Let us write Ext(BX) = {±x1,±x2, . . . ,±x2n−1}, where {x1, x2, . . . , xn} is linearly in-

dependent.

(i) Suppose Rank(T ) = 1. Then Txi = ±Tx1 for all 2 ≤ i ≤ 2n−1. Let J(Tx1) = {y∗}. Then
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for any i ∈ {1, 2, . . . , 2n−1}, either J(Txi) = {y∗} or J(Txi) = {−y∗}. Now, if T is k−smooth,

then

k = dim span J(T )

= dim span Ext J(T )

= dim span {y∗ ⊗ xi : 1 ≤ i ≤ 2n−1}

= dim span {y∗ ⊗ xi : 1 ≤ i ≤ n}

= n,

as {y∗ ⊗ xi : 1 ≤ i ≤ n} is linearly independent by Lemma 2.2. Hence, T is n−smooth.

(ii) Suppose Rank(T ) = 2. Then by Lemma 2.3, T (BX) is a convex set with four extreme

points. Let ±y1,±y2 be four distinct extreme points of T (BX).

First suppose Tx is an interior point of some line segment of T (BX) for some x ∈ Ext(BX),

i.e., Txj ∈ L(y1, y2) for some 1 ≤ j ≤ 2n−1. Again by Lemma 2.3, we get Txi ∈ ±L[y1, y2] for

all 1 ≤ i ≤ 2n−1. Let J(Txj) = {y∗}. Then it is clear that for any i ∈ {1, 2, . . . , 2n−1}, either
J(Txi) = {y∗} or J(Txi) = {−y∗}. Then as in case (i) it is easy to show that T is n−smooth.

Next, suppose that Tx is not an interior point of any line segment of T (BX) for any x ∈
Ext(BX). Then Txi /∈ L(±y1,±y2) for any 1 ≤ i ≤ 2n−1. Thus, Txi ∈ {±y1,±y2} for all 1 ≤
i ≤ 2n−1. Since, Rank(T ) = 2, without loss of generality, we may assume Tx1 = y1, Tx2 = y2.

Let J(Tx1) = {z∗1} and J(Tx2) = {z∗2}. Then for any i ∈ {1, 2, . . . , 2n−1},

J(Txi) = {z∗1} or {−z∗1} or {z∗2} or {−z∗2}.

Let S1 = {xi ∈ Ext(BX) : Txi = Tx1} and S2 = {xi ∈ Ext(BX) : Txi = Tx2}. Thus, we have

S1 ∩ S2 = ∅, ±S1 ∪ ±S2 = Ext(BX) and |S1 ∪ S2| = |S1| + |S2| = 2n−1. Therefore, for any

i ∈ {1, 2, . . . , 2n−1},

J(Txi) = {z∗1}, if xi ∈ S1

= {z∗2}, if xi ∈ S2.

Now, it is clear that S1 as well as S2 cannot contain n linearly independent vectors. For

otherwise, we get Rank(T ) = 1, a contradiction. Thus, maximal linearly independent subsets

of S1 and S2 contain at most n− 1 elements. Now, we show that |S1| = 2n−2 and |S2| = 2n−2.

If possible, let |S1| < 2n−2. Then we must have |S2| > 2n−2. Observe that conv(S2) is a face of

BX. Clearly, Ext(conv(S2)) = S2, i.e., |Ext(conv(S2))| = |S2| > 2n−2. Hence, the face conv(S2)
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of BX contains at least 2n−1 extreme points and hence by Lemma 2.4, conv(S2) contains at

least n linearly independent extreme points. Thus, S2 contains at least n linearly independent

vectors. This gives that Rank(T ) = 1, a contradiction. Therefore, |S1| ≥ 2n−2. Similarly,

|S2| ≥ 2n−2. Thus, |S1| = |S2| = 2n−2, i.e., |Ext(conv(S1))| = |Ext(conv(S2))| = 2n−2. Now, by

Lemma 2.4, S1 and S2 has exactly n−1 linearly independent vectors. Without loss of generality,

suppose that the set of all linearly independent vectors of S1 and S2 are {u1, u2, . . . , un−1} and

{un, un+1, . . . , u2n−2} respectively. Now, if T is k−smooth, then

k = dim span J(T )

= dim span Ext J(T )

= dim span {z∗1 ⊗ ui, z
∗
2 ⊗ uj : ui ∈ S1, uj ∈ S2}

= dim span {z∗1 ⊗ ui, z
∗
2 ⊗ uj : 1 ≤ i ≤ n− 1, n ≤ j ≤ 2n− 2}

= 2n− 2,which can be easily verified.

Therefore, T is (2n− 2)−smooth. This completes the proof.

In addition to Theorem 2.3, if we assume that the range space is strictly convex and smooth,

then we obtain the following corollary.

Corollary 2.1. Let X = ℓn∞ and Y be a two-dimensional strictly convex, smooth Banach space.

Let T ∈ SL(X,Y) be such that Ext(BX) ⊆ MT . Then the followings hold:

(i) If Rank(T ) = 1, then T is n−smooth.

(ii) If Rank(T ) = 2, then T is (2n− 2)−smooth.

Proof. (i) follows clearly from Theorem 2.3. We only prove (ii). Let Rank(T ) = 2. Then

by Lemma 2.3, T (BX) is a convex set with four extreme points. Without loss of generality,

let ±Tx1,±Tx2 be four distinct extreme points of T (BX). If possible, suppose that there exists

x ∈ Ext(BX) such that Tx is an interior point of some line segment of T (BX). Suppose that Tx ∈
L(Tx1, Tx2). Since x ∈ MT , ∥Tx∥ = 1. Thus, it is clear that ∥y∥ = 1 for all y ∈ L[Tx1, Tx2],

i.e., L[Tx1, Tx2] ⊆ SY. This contradicts that Y is strictly convex. Therefore, there does not

exist any x ∈ Ext(BX) such that Tx is an interior point of some line segment of T (BX). Hence,

from Theorem 2.3, we conclude that if Rank(T ) = 2, then T is (2n− 2)−smooth.

In the next theorem, we consider the remaining case in which the image of at least one

extreme point of Bℓn∞ is not a smooth point. Note that in a two-dimensional Banach space, a

non-zero vector is either smooth or 2−smooth.
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Theorem 2.4. Let X = ℓn∞ and Y be a two-dimensional Banach space. Let T ∈ SL(X,Y) be

such that Ext(BX) ⊆ MT . Let S = {x ∈ Ext(BX) : Tx is not smooth} be non-empty and

S1 be the subset of S containing all linearly independent vectors of S. If |S1| = k, then T is

(n+ k)−smooth.

Proof. Let Ext(BX) = {±x1,±x2, . . . ,±x2n−1}. First suppose that Rank(T ) = 1. Since S ̸= ∅,
assume x1 ∈ S. Then for all 2 ≤ i ≤ 2n−1, Txi = ±Tx1. Let Ext J(Tx1) = {z∗1 , z∗2} for

some z∗1 , z
∗
2 ∈ SY∗ . Then either Ext J(Txi) = {z∗1 , z∗2} or Ext J(Txi) = {−z∗1 ,−z∗2} for all

2 ≤ i ≤ 2n−1. Clearly, |S1| = n. Now,

dim span Ext J(T )

= dim span {z∗1 ⊗ xi, z
∗
2 ⊗ xi : 1 ≤ i ≤ 2n−1}

= dim span {z∗1 ⊗ xi, z
∗
2 ⊗ xi : 1 ≤ i ≤ n}

= 2n, using Lemma 2.2.

Thus, in this case T is 2n−smooth and we are done.

Next, suppose that Rank(T ) = 2. Then by Lemma 2.3, T (BX) is a convex set with four extreme

points. Without loss of generality, let ±y1,±y2 be four distinct extreme points of T (BX). We

consider the following two cases:

Case I : S = Ext(BX).

Clearly, in this case |S1| = n. Let S1 = {x1, x2, . . . , xn}. Observe that if Txi ∈ L(±y1,±y2),

for any 1 ≤ i ≤ 2n−1, then Txi will be smooth, which contradicts that S = Ext(BX). Thus,

Txi ∈ {±y1,±y2} for all 1 ≤ i ≤ 2n−1. Since Rank(T ) = 2, Txi = y1, Txj = y2 for some

1 ≤ i ̸= j ≤ 2n−1. Therefore, y1, y2 are not smooth. Suppose that Ext J(y1) = {z∗1 , z∗2} and

Ext J(y2) = {z∗3 , z∗4}. Then for each 1 ≤ i ≤ 2n−1, Ext J(Txi) is either {z∗1 , z∗2} or {−z∗1 ,−z∗2}
or {z∗3 , z∗4} or {−z∗3 ,−z∗4}. Observe that z∗3 , z

∗
4 ∈ span{z∗1 , z∗2}, since dim(Y) = 2. Hence, for any

x ∈ X, z∗3 ⊗ x, z∗4 ⊗ x ∈ span {z∗1 ⊗ x, z∗2 ⊗ x}. Therefore,

dim span Ext J(T )

= dim span {z∗1 ⊗ xi, z
∗
2 ⊗ xi : 1 ≤ i ≤ 2n−1}

= dim span {z∗1 ⊗ xi, z
∗
2 ⊗ xi : 1 ≤ i ≤ n}

= 2n.

Thus, in this case T is 2n−smooth and we are done.

Case II : S ⫋ Ext(BX).

Without loss of generality, we may assume that S1 = {x1, x2, . . . , xk} and S = {±x1,±x2, . . . ,±xk,
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±xk+1, . . . ,±xm}, (1 ≤ m < 2n−1, 1 ≤ k ≤ n). As in Case I, Txi ∈ {±y1,±y2} for all 1 ≤ i ≤ m.

Clearly, at least one of y1, y2 is not smooth. First we assume both of y1, y2 are not smooth.

Using Lemma 2.3, we get either Txi ∈ ±L[y1, y2] for each m < i ≤ 2n−1 or Txi ∈ ±L[−y1, y2]

for each m < i ≤ 2n−1. Without loss of generality, assume that Txi ∈ ±L[y1, y2] for each

m < i ≤ 2n−1. Since, y1, y2 are not smooth and Txi are smooth, Txi /∈ {±y1,±y2} for

m < i ≤ 2n−2. Therefore, Txi ∈ ±L(y1, y2) for each m < i ≤ 2n−1. Now, it is easy to

observe that either J(Txi) = {y∗} or J(Txi) = {−y∗} for each m < i ≤ 2n−1. Suppose

Ext J(y1) = {y∗, z∗1} and Ext J(y2) = {y∗, z∗2}. Then for each 1 ≤ i ≤ m, Ext J(Txi) is

either {y∗, z∗1} or {−y∗,−z∗1} or {y∗, z∗2} or {−y∗,−z∗2}. Observe that z∗2 ∈ span{y∗, z∗1}, since
dim(Y) = 2. Hence, for any x ∈ X, z∗2 ⊗ x ∈ span {y∗ ⊗ x, z∗1 ⊗ x}. Therefore,

dim span Ext J(T )

= dim span {y∗ ⊗ xi, z
∗
1 ⊗ xj : 1 ≤ i ≤ 2n−1, 1 ≤ j ≤ m}

= dim span {y∗ ⊗ xi, z
∗
1 ⊗ xj : 1 ≤ i ≤ 2n−1, 1 ≤ j ≤ k}

= n+ k, (by Lemma 2.2),

since {xi : 1 ≤ i ≤ 2n−1} contains only n linearly independent vectors. Therefore, T is

(n+ k)−smooth.

Now, if we consider exactly one of y1, y2 is not smooth, then following same line of arguments,

we can prove that T is (n+ k)−smooth. This completes the proof of the theorem.

We would like to mention that Theorem 2.3 and Theorem 2.4 improves on [38, Th. 3.10]. The

study of k−smoothness of an operator defined between ℓn∞ and Y becomes more complicated

when dimY ≥ 3. The rest of the chapter is devoted to the study of k−smoothness of an

operator defined between two particular spaces ℓ3∞ and ℓ31. We denote the extreme points of

Bℓ3∞ by ±x1 = ±(1, 1, 1),±x2 = ±(−1, 1, 1),±x3 = ±(−1,−1, 1),±x4 = ±(1,−1, 1). |MT ∩
Ext(Bℓ3∞)| plays an important role in determining the order of smoothness of T. Observe that

if |MT ∩Ext(Bℓ3∞)| ≤ 6, then the order of smoothness of T can be obtained using [39, Th. 2.2].

Therefore, we only consider the case for which |MT ∩ Ext(Bℓ3∞)| = 8, i.e., MT ∩ Ext(Bℓ3∞) =

{±x1,±x2,±x3,±x4}. Note that, for 1 ≤ i ≤ 4, Txi is k−smooth, where k ∈ {1, 2, 3}. Suppose
Sk = {x ∈ MT ∩Ext(Bℓ3∞) : Tx is k−smooth}, where k ∈ {1, 2, 3}. Clearly, |S1|+|S2|+|S3| = 8.

In the following theorem, we consider the case when |S1| = 8.

Theorem 2.5. Let X = ℓ3∞ and Y = ℓ31. Let T ∈ SL(X,Y) be such that MT ∩ Ext(BX) =

{±x1,±x2,±x3,±x4}. Let |S1| = 8. Then the followings hold:

(i) If ±J(Txi) = ±J(Txj) for all xi, xj ∈ S1, then T is 3−smooth.

(ii) Otherwise, T is 4−smooth.
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Proof. (i) Suppose the given condition is satisfied. Let ±J(Txi) = {±y∗} for 1 ≤ i ≤ 4. Now,

if T is k−smooth, then

k = dim span J(T )

= dim span Ext J(T )

= dim span {y∗ ⊗ x1, y
∗ ⊗ x2, y

∗ ⊗ x3, y
∗ ⊗ x4}

= dim span {y∗ ⊗ x1, y
∗ ⊗ x2, y

∗ ⊗ x3}

= 3, (using Lemma 2.2).

Hence, T is 3−smooth.

(ii) Let ±J(Txi) = {±y∗i } for 1 ≤ i ≤ 4. Since (i) is not satisfied, without loss of generality, we

assume y∗1 ̸= ±y∗2, i.e., {y∗1, y∗2} is linearly independent. Let y∗3 = ay∗1 + by∗2 and y∗4 = cy∗1 + dy∗2,

where a, b, c, d ∈ R. Since ∥y∗3∥ = 1, a and b cannot be zero simultaneously. Similarly, c and d

cannot be zero simultaneously. Now, if T is k−smooth, then

k = dim span J(T )

= dim span Ext J(T )

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x2, y

∗
3 ⊗ x3, y

∗
4 ⊗ x4}.

Using the relations x4 = x1 − x2 + x3, y
∗
3 = ay∗1 + by∗2, y

∗
4 = cy∗1 + dy∗2 and Lemma 2.2, it is easy

to verify that {y∗1 ⊗ x1, y
∗
2 ⊗ x2, y

∗
3 ⊗ x3, y

∗
4 ⊗ x4} is linearly independent. Therefore, k = 4 and

T is 4−smooth.

Proceeding similarly we can find the k−smoothness of operator T for other feasible cases. We

skip the details of proof to avoid monotonicity. The following two tables illustrates the various

possible cases of k−smoothness under different conditions on S1, S2 and S3. The first table

contains the cases when S3 = ∅, i.e., Txi is either 1−smooth or 2−smooth but not 3−smooth.
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|S1| |S2| |S3| Further conditions on the operator T T is

k−smooth

with k =

8 0 0
±J(Txi) = ±J(Txj) ∀ xi, xj ∈ S1 3

Otherwise 4

6 2 0
±J(Txi) = ±J(Txj) ∀ xi, xj ∈ S1 and

±J(Txi) ⊆ ±Ext J(Txk), ∀xi ∈ S1, xk ∈ S2 4

Otherwise 5

4 4 0
±J(Txi) = ±J(Txj) ∀ xi, xj ∈ S1 and

±J(Txi) ⊆ ±Ext J(Txk),∀xi ∈ S1, ∀xk ∈ S2 5

Otherwise 6

2 6 0
| ∩xk∈S2 ±J(Txk)| ≥ 2 and

±J(Txi) ⊆ ±Ext J(Txk),∀xi ∈ S1,∀xk ∈ S2 6

Otherwise 7

0 8 0

| ∩4
i=1 ±J(Txi)| = 4 6

Either | ∩4
i=1 ±J(Txi)| = 2 or

| ± Ext J(Txi) ∩ ±Ext J(Txj)| ≠ 2,

for 1 ≤ i ̸= j ≤ 4 7

Otherwise 8

The next table exhibits the cases when S3 ̸= ∅.
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|S1| |S2| |S3| Further conditions on the operator T T is

k−smooth

with k =

6 0 2
±J(Txi) = ±J(Txj),∀ xi, xj ∈ S1 5

Otherwise 6

4 2 2
±J(Txi) = ±J(Txj),∀ xi, xj ∈ S1 and

±J(Txi) ⊆ ±Ext J(Txj), ∀ xi ∈ S1, xj ∈ S2 6

Otherwise 7

2 4 2 - 7

0 6 2
| ∩xi∈S2 ±Ext J(Txi)| = 4 7

Otherwise 8

4 0 4 - 7

0 4 4 - 8

0 0 8 - 9

Finally we would like to note that the following possibilities are not feasible: (i) |S1| = 2, |S2| =
2, |S3| = 4, (ii) |S1| = 2, |S3| = 6 and (iii) |S2| = 2, |S3| = 6.
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CHAPTER 3

CHARACTERIZATION OF

K−SMOOTHNESS OF BOUNDED

LINEAR OPERATORS

3.1 Introduction

The problem of characterizing k−smooth operators defined between arbitrary Banach or Hilbert

spaces is relatively new but an important area of research in the field of geometry of Banach

spaces. Characterization of smoothness of bounded linear operators has been studied in [56].

There are several papers including [14, 15, 24, 32, 39, 67] that contain the study of k−smoothness

of operators on different spaces. In this chapter, our objective is to study the k−smoothness of

bounded linear operators defined between infinite-dimensional spaces. We first fix the notations

and terminologies to be used throughout the chapter.

Let X, Y denote Banach spaces and H denote Hilbert space. Throughout the chapter we

assume that the spaces are real unless otherwise mentioned. The unit ball and the unit sphere

of X are denoted by BX and SX respectively, i.e., BX = {x ∈ X : ∥x∥ ≤ 1}, SX = {x ∈ X :

Content of this chapter is based on the following paper:
A. Mal, S. Dey and K. Paul; Characterization of k−smoothness of operators defined between infinite-
dimensional spaces, Linear Multilinear Algebra (2021). DOI:10.1080/03081087.2020.1844130
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∥x∥ = 1}. The space of bounded (compact) linear operators between X and Y is denoted by

L(X,Y) (K(X,Y)). If X = Y, then we write L(X,Y) := L(X) and K(X,Y) := K(X). X∗ denotes

the dual space of X. An element x ∈ SX is said to be an extreme point of the convex set BX if and

only if x = (1− t)y + tz for some y, z ∈ BX and t ∈ (0, 1) implies that y = z = x. The set of all

extreme points of BX is denoted by Ext(BX). For x, y ∈ X, let L[x, y] = {tx+(1−t)y : 0 ≤ t ≤ 1}
and L(x, y) = {tx + (1 − t)y : 0 < t < 1}. A Banach space X is said to be a strictly convex

Banach space if every element of the unit sphere SX is an extreme point of the unit ball BX,

equivalently, X is said to be a strictly convex Banach space, if the unit sphere of X does not

contain non-trivial straight line segment. A face E of a convex set C is said to be an edge if for

each z ∈ E, there exist extreme points x, y in C such that z ∈ L[x, y]. An element x∗ ∈ SX∗ is

said to be a supporting linear functional of x ∈ SX, if x
∗(x) = 1. For a unit vector x, let J(x)

denote the set of all supporting linear functionals of x, i.e., J(x) = {x∗ ∈ SX∗ : x∗(x) = 1}.
By the Hahn-Banach Theorem, J(x) ̸= ∅, for all x ∈ SX. We would like to note that J(x) is

a weak*-compact convex subset of SX∗ . The set of all extreme points of J(x) is denoted by

Ext J(x), where x ∈ SX. A unit vector x is said to be a smooth point if J(x) is singleton. X is

said to be a smooth Banach space if every unit vector of X is smooth.

In 2005, Khalil and Saleh [24] generalized the notion of smoothness and introduced the notion

of multi-smoothness or k−smoothness depending on the “size” of J(x).An element x ∈ SX is said

to be k−smooth or the order of smoothness of x is k, if J(x) contains exactly k linearly indepen-

dent supporting linear functionals of x. In other words, x is k−smooth, if dim span J(x) = k.

Moreover, from [32, Prop. 2.1], we get that x is k−smooth, if k = dim span Ext J(x). Similarly,

T ∈ L(X,Y) is said to be k−smooth operator, if k = dim span J(T ) = dim span Ext J(T ).

Observe that, 1−smooth points of SX are actually the smooth points of SX. In our study, the

norm attainment set of an operator plays an important role which will be clear in due time. The

norm attainment set of T, denoted as MT , is defined as the collection of all unit vectors x at

which T attains its norm, i.e., MT = {x ∈ SX : ∥Tx∥ = ∥T∥}. The notion of k−smoothness has a

nice connection with extreme contraction which will be explored later. An operator T ∈ L(X,Y)

is said to be an extreme contraction, if T is an extreme point of the unit ball of L(X,Y). A

two-dimensional Banach space X is said to be a polygonal Banach space, if BX contains only

finitely many extreme points. Equivalently, a two-dimensional Banach space X is a polygonal

Banach space, if BX is a polygon.

From [32, Th. 3.8], we know that there is a large class of Banach spaces which does not

contain k−smooth point, where k ∈ N. The papers [14, 15, 24, 32, 39, 67] contain extensive

study on multi-smoothness in Banach space and in operator space. In [67, Th. 2.4] Wójcik

studied k−smoothness of compact operators defined between complex (real) Hilbert spaces. In
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this chapter, we obtain a complete characterization of k−smoothness of bounded linear opera-

tors defined between complex (real) Hilbert spaces. We prove that a bounded linear operator

T defined on a complex (real) Hilbert space H is n2−smooth (
(
n+1
2

)
−smooth) if and only if

MT = SH0 , where dim(H0) = n and ∥T∥H⊥
0

< ∥T∥. Moving onto Banach spaces, the com-

plete characterization of k−smooth operators defined between arbitrary Banach spaces is still

not known, in fact it is elusive even for finite-dimensional Banach spaces. In [39], the authors

characterized the k−smoothness of a bounded linear operator defined between two-dimensional

Banach spaces. In this chapter, we continue our study in this direction and obtain sufficient

conditions for k−smoothness of bounded linear operators defined between infinite-dimensional

Banach spaces. We also obtain a relation between the order of smoothness of the operators T

and T ∗, where T is defined between finite-dimensional Banach spaces and T ∗ is the adjoint of

T . Using this relation, we characterize the order of smoothness of an operator defined from a

finite-dimensional Banach space to ℓn∞, (n ∈ N). We also obtain a characterization of the order

of smoothness of T ∈ L(ℓ3∞,Y), where Y is a two-dimensional Banach space. As an application

of this result, we characterize the extreme contractions in the space L(ℓ3∞,Y), where Y is a

two-dimensional polygonal Banach space.

We state the following lemma [68, Lemma 3.1], characterizing Ext J(T ), which will be used

often.

Lemma 3.1. [68, Lemma 3.1] Suppose that X is a reflexive Banach space. Suppose that K(X,Y)

is an M−ideal in L(X,Y). Let T ∈ L(X,Y), ∥T∥ = 1 and dist(T,K(X,Y)) < 1. Then MT ∩
Ext(BX) ̸= ∅ and

Ext J(T ) = {y∗ ⊗ x ∈ K(X,Y)∗ : x ∈ MT ∩ Ext(BX), y
∗ ∈ Ext J(Tx)},

where y∗ ⊗ x : K(X,Y) → R is defined by y∗ ⊗ x(S) = y∗(Sx) for every S ∈ K(X,Y).

We end this section with the following definition: A subspace M of a Banach space X is said

to be an M−ideal if there exists a projection P on X∗ such that P (X∗) = {x∗ ∈ X∗ : x∗(m) =

0 ∀ m ∈ M} and for all x∗ ∈ X∗,

∥x∗∥ = ∥P (x∗)∥+ ∥x∗ − P (x∗)∥.

It is well known that for a Hilbert space H, K(H) is anM−ideal in L(H) and for each 1 < p < ∞,

K(ℓp) is an M−ideal in L(ℓp). Interested readers are referred to [16] for more information in

this topic.
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3.2 k−smoothness of operators defined be-

tween Hilbert spaces

We begin this section with the study of k−smooth operators defined between arbitrary Hilbert

spaces. We use the notion of Birkhoff-James orthogonality to prove the theorem. Recall that,

for x, y ∈ X, x is said to be Birkhoff-James orthogonal [3, 20] to y, written as x ⊥B y, if

∥x + λy∥ ≥ ∥x∥ for each scalar λ. Similarly, for T,A ∈ L(X,Y), we say that T ⊥B A if

∥T + λA∥ ≥ ∥T∥ for each scalar λ.

Theorem 3.1. Let H1,H2 be Hilbert spaces. Let T ∈ SL(H1,H2) be such that MT = SH0 , where

H0 is a finite-dimensional subspace of H1 with dim(H0) = n and ∥T∥H⊥
0

< 1. Then T is

n2−smooth, if H1,H2 are considered to be complex and it is
(
n+1
2

)
−smooth, if the spaces are

considered to be real.

Proof. We claim that dist(T,K(H1,H2)) < 1. If possible, suppose that this is not true. Then

for every S ∈ K(H1,H2), dist(T, Span{S}) ≥ dist(T,K(H1,H2)) ≥ 1, i.e., for every scalar

λ, ∥T − λS∥ ≥ dist(T, Span{S}) ≥ 1. Therefore, T ⊥B S. Define S : H → H by Sx = Tx

whenever x ∈ H0 and Sx = 0, whenever x ∈ H⊥
0 . Then clearly, S ∈ K(H1,H2), since H0 is

finite-dimensional. Hence, T ⊥B S. By [46, Th. 3.1], there exists x ∈ MT = SH0 such that

Tx ⊥ Sx, i.e., Tx ⊥ Tx, a contradiction. This establishes our claim. We note that K(H1,H2) is

an M−ideal in L(H1,H2) and dist(T,K(H1,H2)) < 1, so by Lemma 3.1, Ext J(T ) = {y∗ ⊗ x :

x ∈ MT , y
∗ ∈ Ext J(Tx)}, where y∗⊗x(S) = y∗(Sx) = ⟨Sx, Tx⟩ for every S ∈ L(H1,H2). So we

can write Ext J(T ) = {x⊗Tx : x ∈ MT }, where x⊗Tx(S) = ⟨Sx, Tx⟩ for every S ∈ L(H1,H2).

Suppose that {e1, e2, . . . , en} is an orthonormal basis of H0. Assume that H1,H2 are complex

Hilbert spaces. Then

dim span Ext J(T )

= dim span {x⊗ Tx : x ∈ MT }

= dim span
{ n∑

i,j=1

aiajei ⊗ Tej :
n∑

i=1

|ai|2 = 1
}

= dim span {ei ⊗ Tej : 1 ≤ i, j ≤ n}

= n2.
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Next assume that the Hilbert spaces are real, then

dim span Ext J(T )

= dim span
{ n∑

i,j=1

aiajei ⊗ Tej :

n∑

i=1

|ai|2 = 1
}

=

(
n+ 1

2

)
.

Thus, T is n2−smooth, if H1,H2 are considered to be complex and it is
(
n+1
2

)
−smooth, if the

spaces are considered to be real.

Noting that for a compact operator T, dist(T,K(H1,H2)) = 0 < 1, we get the following

corollary which provides a sufficient condition for the k−smoothness of a compact operator [67,

Th. 2.4] defined between Hilbert spaces.

Corollary 3.1. Let H1,H2 be Hilbert spaces. Let T ∈ SK(H1,H2) be such that MT = SH0 , where

H0 is a finite-dimensional subspace of H1 with dim(H0) = n. Then T is n2−smooth, if H1,H2

are considered to be complex and it is
(
n+1
2

)
−smooth, if the spaces are considered to be real.

Next we show that the conditions mentioned in Theorem 3.1 are necessary for k−smoothness.

To do so, we need the following theorem on Birkhoff-James orthogonality for complex Hilbert

spaces, in case of real Hilbert spaces an analogous theorem can be obtained from [40, Th. 3.2].

Theorem 3.2. Let H1,H2 be complex Hilbert spaces. Let T ∈ SL(H1,H2) be such that

dist(T,K(H1,H2)) < 1. Then for A ∈ L(H1,H2), T ⊥B A if and only if there exists x ∈ MT

such that Tx ⊥ Ax.

Proof. If there exists x ∈ MT such that Tx ⊥ Ax, then it is easy to observe that T ⊥B A.

Conversely, suppose that T ⊥B A. Then by [66, Th. 1.1, Page 170], there exists λi ≥ 0, fi ∈
Ext J(T ) for 1 ≤ i ≤ 3 such that λ1+λ2+λ3 = 1 and (λ1f1+λ2f2+λ3f3)(A) = 0. By Lemma

3.1, there exists xi ∈ MT , y
∗
i ∈ Ext J(Txi) for 1 ≤ i ≤ 3 such that fi = y∗i ⊗ xi. Since Txi is

smooth, it is easy to observe that y∗i ⊗ xi(A) = ⟨Axi, Txi⟩. Thus,

3∑

i=1

λifi(A) = 0

⇒
3∑

i=1

λiy
∗
i ⊗ xi(A) = 0

⇒
3∑

i=1

λi⟨Axi, Txi⟩ = 0. (3.1)
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Consider the set W = {⟨Ax, Tx⟩ : x ∈ SH0} = {⟨Ax, Tx⟩ : x ∈ MT }. Since H0 is a subspace

of H1, following the idea of [8, Th. 1], it can be easily verified that the set W is convex. Now, it

follows from (3.1) that 0 is in the convex hull of W, i.e., 0 ∈ W. Therefore, there exists x ∈ MT

such that ⟨Ax, Tx⟩ = 0 and so Tx ⊥ Ax. This completes the proof of the theorem.

Now, we are ready to prove our desired theorem.

Theorem 3.3. Let H be a separable complex Hilbert space and T ∈ SL(H). Then T is n2−smooth

if and only if MT = SH0 , where H0 is a finite-dimensional subspace of H with dim(H0) = n and

∥T∥H⊥
0
< 1.

In case the Hilbert space is real then the result still holds good with n2−smoothness replaced by
(
n+1
2

)
−smoothness.

Proof. First suppose that H is a complex Hilbert space. The sufficient part of the theorem

follows from Theorem 3.1. We only prove the necessary part. Suppose that T is n2−smooth.

Since H is separable, by [32, Th. 3.8], L(H)/K(H) has no operator whose order of smoothness

is finite. Hence, by [32, Remark 3.7], dist(T,K(H)) < 1. Thus, by Lemma 3.1, MT ̸= ∅. From
[63, Th. 2.2], we get MT = SH0 for some subspace H0 of H. Now, let A ∈ L(H) be such that

T ⊥B A. Then using Theorem 3.2, we get x ∈ MT such that Tx ⊥ Ax. Thus, by [46, Th. 3.1],

H0 is a finite-dimensional subspace of H and ∥T∥H⊥
0
< 1. Let dim(H0) = k. Then from Theorem

3.1, we get T is k2−smooth. Therefore, k2 = n2, i.e., k = n. Thus, dim(H0) = n.

The proof of the theorem for a real Hilbert space follows similarly using [40, Th. 3.2].

3.3 k−smoothness of operators defined be-

tween Banach spaces

In this section, we study k−smoothness of operators defined between Banach spaces. We begin

with the following simple lemma, the proof of which is given for the sake of completeness.

Lemma 3.2. Suppose X,Y are Banach spaces. If {x1, x2, . . . , xm} and {y∗1, y∗2, . . . , y∗n} are

linearly independent subsets of X and Y∗ respectively, then {y∗i ⊗ xj : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is

a linearly independent subset of L(X,Y)∗.

Proof. Let cij be scalars such that

∑

1≤i≤n,1≤j≤m

cijy
∗
i ⊗ xj = 0. (3.2)
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Choose y ∈ Y, ϕ ∈ X∗. Define S ∈ L(X,Y) by Sx = ϕ(x)y for all x ∈ X. Now, from (3.2) we get,

∑

1≤i≤n,1≤j≤m

cijy
∗
i ⊗ xj(S) = 0

⇒
∑

1≤i≤n,1≤j≤m

cijy
∗
i S(xj) = 0

⇒
∑

1≤i≤n,1≤j≤m

cijϕ(xj)y
∗
i (y) = 0

⇒ ϕ

( ∑

1≤i≤n,1≤j≤m

cijxjy
∗
i (y)

)
= 0

⇒
∑

1≤i≤n,1≤j≤m

cijxjy
∗
i (y) = 0, (since ϕ ∈ X∗ is arbitrary)

⇒
∑

1≤i≤n

cijy
∗
i (y) = 0 for all 1 ≤ j ≤ m

⇒
∑

1≤i≤n

cijy
∗
i = 0 (since y ∈ Y is arbitrary)

⇒ cij = 0 for all 1 ≤ j ≤ m, 1 ≤ i ≤ n.

Thus, {y∗i ⊗ xj : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a linearly independent subset of L(X,Y)∗.

We are in a position to prove the following theorem which gives a sufficient condition for

k−smoothness of operators defined between infinite-dimensional Banach spaces, which improves

on [39, Th. 2.2].

Theorem 3.4. Suppose X is a reflexive Banach space and Y is an arbitrary Banach space. Let

K(X,Y) be an M−ideal in L(X,Y). Suppose that T ∈ SL(X,Y) is such that dist(T,K(X,Y)) < 1

and MT ∩Ext(BX) = {±x1,±x2, . . . ,±xr}, where {x1, x2, . . . , xr} is linearly independent in X.

Let Txi be mi−smooth for each 1 ≤ i ≤ r. Then T is k−smooth, where m1+m2+ . . .+mr = k.

Proof. Since Txi is mi−smooth, we have, mi = dim span Ext J(Txi), for each 1 ≤ i ≤ r. Let

{y∗ij ∈ Ext J(Txi) : 1 ≤ j ≤ mi} be a basis of span Ext J(Txi) for each 1 ≤ i ≤ r. Using

similar arguments as in Lemma 3.2, it can be shown that {y∗ij ⊗ xi : 1 ≤ i ≤ r, 1 ≤ j ≤ mi} is

linearly independent. Now, using Lemma 3.1, we get,

span Ext J(T )

= span {y∗ij ⊗ xi : y
∗
ij ∈ Ext J(Txi), 1 ≤ i ≤ r}

= span {y∗ij ⊗ xi : 1 ≤ i ≤ r, 1 ≤ j ≤ mi}.

Therefore, dim span Ext J(T ) = m1 + m2 + . . . + mr. Thus, T is k−smooth, where k =

m1 +m2 + . . .+mr. This completes the proof of the theorem.
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The following corollary now easily follows from Theorem 3.4. Once again, we recall that

K(ℓp) is an M−ideal in L(ℓp), where 1 < p < ∞.

Corollary 3.2. Let T ∈ SL(ℓp), where 1 < p < ∞. Suppose that dist(T,K(ℓp)) < 1 and

MT = {±x1,±x2, . . . ,±xk}, where {x1, x2, . . . , xk} is linearly independent in ℓp. Then T is

k−smooth.

Proof. For 1 < p < ∞, ℓp is strictly convex, smooth space. Hence, xi ∈ Ext(Bℓp) and Txi is

smooth for each 1 ≤ i ≤ k. Thus, by Theorem 3.4, T is k−smooth.

Now, we exhibit an easy example to show that the converse of Corollary 3.2 is not true, i.e.,

there exists k−smooth operator T ∈ L(ℓp) such thatMT is not of the form {±x1,±x2, . . . ,±xk},
where {x1, x2, . . . , xk} is linearly independent in ℓp.

Example 3.5. Consider the operator T ∈ L(ℓp), (1 < p < ∞) defined by T (
∑

i aiei) = a1e1 +

a2e2, where {ei : i ∈ N} is the canonical basis of ℓp. Then MT = span{e1, e2}. Let x = ae1+be2,

where a, b ̸= 0. Then x ∈ MT and so by Lemma 3.1, e∗1⊗ e1, e
∗
2⊗ e2, x

∗⊗x ∈ Ext J(T ). Now, it

is easy to show that {e∗1⊗e1, e
∗
2⊗e2, x

∗⊗x} is linearly independent. Therefore, T is k−smooth,

where k ≥ 3. But MT does not contain 3 linearly independent vectors.

Remark 3.6. Example 3.5 illustrates the fact that one part of the Theorem [24, Th. 2.3],

namely (i) ⇒ (ii), is not correct and Theorem 3.4 improves on the other part of the same

theorem.

Next, we study the k−smoothness of a bounded linear operator T for which MT ∩Ext(BX)

may contain linearly dependent vectors.

Theorem 3.7. Let X be a reflexive Banach space and Y be a finite-dimensional Banach

space with dim(Y) = m. Let T ∈ SL(X,Y) be such that {x1, x2, . . . , xr} ⊆ MT ∩ Ext(BX) ⊆
span{x1, x2, . . . , xr}, where {x1, x2, . . . , xr} is linearly independent. Suppose Txi is m−smooth

for i = 1, 2, . . . , r. Then T is mr−smooth.

Proof. For each 1 ≤ i ≤ r, Txi is m−smooth. Suppose {y∗ij : 1 ≤ j ≤ m} is a linearly

independent subset of Ext J(Txi) for each 1 ≤ i ≤ r. We first show that dim span Ext J(T ) ≤
mr. Since Y is finite-dimensional, L(X,Y) = K(X,Y). Hence, T is compact operator and K(X,Y)

is trivially an M−ideal in L(X,Y). Thus, by Lemma 3.1,

Ext J(T ) = {y∗ ⊗ x ∈ K(X,Y)∗ : x ∈ MT ∩ Ext(BX), y
∗ ∈ Ext J(Tx)}.
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Let x ∈ MT ∩ Ext(BX). Then there exist scalars ci, i = 1, 2, ..., r such that x = c1x1 + c2x2 +

...+ crxr. Now, let y
∗ ∈ Ext J(Tx). Since {y∗1j : 1 ≤ j ≤ m} is linearly independent, and hence

forms a basis of Y∗, there exist scalars dj (1 ≤ j ≤ m) such that y∗ =
∑

1≤j≤m djy
∗
1j . Thus,

y∗ ⊗ x = y∗ ⊗ (c1x1 + c2x2 + ...+ crxr)

=
( ∑

1≤j≤m

djy
∗
1j

)
⊗
( ∑

1≤i≤r

cixi

)

=
∑

1≤i≤r,1≤j≤m

cidjy
∗
1j ⊗ xi

∈ span{y∗1j ⊗ xi : 1 ≤ i ≤ r, 1 ≤ j ≤ m}.

Since x ∈ MT ∩Ext(BX) and y∗ ∈ Ext J(Tx) are arbitrary, we have Ext J(T ) ⊆ span{y∗1j⊗xi :

1 ≤ i ≤ r, 1 ≤ j ≤ m}. Now,

dim span Ext J(T )

≤ dim span {y∗1j ⊗ xi : 1 ≤ i ≤ r, 1 ≤ j ≤ m}

= mr, (by Lemma 3.2).

Therefore, T is k−smooth, where k ≤ mr. Now, y∗ij ⊗ xi ∈ Ext J(T ) for all 1 ≤ i ≤ r, 1 ≤
j ≤ m. Using similar arguments as in Lemma 3.2, it can be shown that {y∗ij ⊗ xi : 1 ≤ i ≤
r, 1 ≤ j ≤ m} is linearly independent subset of Ext J(T ). Thus, dim span Ext J(T ) ≥ mr, i.e.,

k ≥ mr. Therefore, k = mr and T is mr−smooth. This completes the proof of the theorem.

To illustrate the usefulness of Theorem 3.7 we cite the following example for which k−smooth

-ness of the operator can not be obtained using Theorem 3.4 or [39, Th. 2.2] but can be obtained

using above theorem.

Example 3.8. Let X = ℓ4∞ and Y be a two-dimensional Banach space such that BY is the

convex hull of {±(2, 1),±(2,−1)}. Define T ∈ L(X,Y) by T (x, y, z, w) = (y + w, x). Then

MT ∩ Ext(BX) = {±(1, 1, 1, 1),±(1, 1,−1, 1),±(−1, 1, 1, 1),±(1,−1, 1,−1)}.

Clearly, {(1, 1, 1, 1), (1, 1,−1, 1), (−1, 1, 1, 1), (1,−1, 1,−1)} is linearly dependent. Therefore, the

order of smoothness of T cannot be obtained from Theorem 3.4 or [39, Th. 2.2]. Observe that,

MT ∩ Ext(BX) ⊆ span {±(1, 1,−1, 1),±(−1, 1, 1, 1), ±(1,−1, 1,−1)}, where {(1, 1,−1, 1),

(−1, 1, 1, 1), (1,−1, 1,−1)} is linearly independent. Moreover, T (1, 1,−1, 1), T (−1, 1, 1, 1),

T (1,−1, 1,−1) are 2−smooth. Therefore, using Theorem 3.7 we get, T is 6−smooth.

We now turn our attention to the study of k−smoothness of operators in the setting of
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special Banach spaces. We characterize the k−smoothness of an operator defined from a finite-

dimensional Banach space to ℓn∞, (n ∈ N). To do so we need [39, Cor. 2.3] and the following

proposition which gives a nice relation between the order of smoothness of an operator and its

adjoint.

Proposition 3.1. Let X,Y be finite-dimensional Banach spaces. Let T ∈ SL(X,Y). Then T is

k−smooth if and only if T ∗ is k−smooth.

Proof. We first show that Ext J(T ) = Ext J(T ∗). Let y∗ ⊗ x ∈ Ext J(T ). Then x ∈ MT ∩
Ext(BX) and y∗ ∈ Ext J(Tx). Now,

y∗ ⊗ x(T ) = 1 ⇒ y∗(Tx) = 1 ⇒ x(T ∗y∗) = 1 ⇒ ∥T ∗y∗∥ = 1.

Thus, y∗ ∈ MT ∗ and x ∈ J(T ∗y∗). Moreover, x ∈ Ext(BX) and Ext J(Tx) ⊆ Ext(BY∗).

Therefore, x ∈ Ext J(T ∗y∗) and y∗ ∈ MT ∗ ∩ Ext(BY∗) and so y∗ ⊗ x ∈ Ext J(T ∗). Hence,

Ext J(T ) ⊆ Ext J(T ∗). Now, replacing T by T ∗, we get Ext J(T ∗) ⊆ Ext J(T ). Thus,

Ext J(T ) = Ext J(T ∗), i.e., dim span Ext J(T ) = dim span Ext J(T ∗). Therefore, T is

k−smooth if and only if T ∗ is k−smooth.

Corollary 3.3. Let X be a finite-dimensional Banach space. Let T ∈ SL(X,ℓn∞). Then T is

k−smooth if and only if MT ∗ ∩ Ext(Bℓn1
) = {±e1,±e2, . . . ± er} for some 1 ≤ r ≤ n, T ∗ei is

mi−smooth for each 1 ≤ i ≤ r and m1 +m2 + . . .+mr = k.

Proof. From Proposition 3.1, T is k−smooth if and only if T ∗ is k−smooth. Now, T ∗ ∈ SL(ℓn1 ,X∗).

Moreover, from [39, Cor. 2.3], we get that T ∗ is k−smooth if and only if MT ∗ ∩ Ext(Bℓn1
) =

{±e1,±e2, . . .± er} for some 1 ≤ r ≤ n, T ∗ei is mi−smooth for each 1 ≤ i ≤ r and m1 +m2 +

. . .+mr = k. This completes the proof of the corollary.

We next determine the order of smoothness of T ∈ L(ℓ3∞,Y), where Y is an arbitrary two-

dimensional Banach space, depending on |MT∩Ext(Bℓ3∞)|. Observe that if |MT∩Ext(Bℓ3∞)| ≤ 6,

then the order of smoothness of T can be obtained using Theorem 3.4. Therefore, we only

consider the case for which |MT ∩Ext(Bℓ3∞)| = 8, i.e., MT ∩Ext(Bℓ3∞) = {±x1,±x2,±x3,±x4},
where x1 = (1, 1, 1), x2 = (−1, 1, 1), x3 = (−1,−1, 1), x4 = (1,−1, 1). Note that, for each

1 ≤ i ≤ 4, Txi is either smooth or 2−smooth.

Theorem 3.9. Let X = ℓ3∞ and Y be two-dimensional Banach space. Let T ∈ SL(X,Y) be such

that MT ∩ Ext(BX) = {±x1,±x2,±x3,±x4}. Suppose S1 = {xi : 1 ≤ i ≤ 4, Txi is smooth}.
Then the following hold:

(I) Let |S1| = 4.
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(a) If either Rank(T ) = 1 or for each i, j(1 ≤ i ̸= j ≤ 4) either Txi, Txj or Txi,−Txj belong

to the same straight line contained in SY, then T is 3−smooth.

(b) Otherwise, T is 4−smooth.

(II) If |S1| = 3, then T is 4−smooth.

(III) If |S1| = 2, then T is 5−smooth.

(IV) If |S1| < 2, then S1 = ∅ and T is 6−smooth.

Proof. Clearly, T is k−smooth for 1 ≤ k ≤ 6, since dim(X) = 3 and dim(Y) = 2.

(I) Let |S1| = 4. Then Txi is smooth for 1 ≤ i ≤ 4.

(a) If the given condition is satisfied, then it is clear that there exists y∗ ∈ SY∗ such that

for all i(1 ≤ i ≤ 4), J(Txi) = {y∗} or {−y∗}. Now, if T is k−smooth, then

k = dim span J(T )

= dim span Ext J(T )

= dim span {y∗ ⊗ x1, y
∗ ⊗ x2, y

∗ ⊗ x3, y
∗ ⊗ x4}

= dim span {y∗ ⊗ x1, y
∗ ⊗ x2, y

∗ ⊗ x3}

= 3, (by Lemma 3.2).

Hence, T is 3−smooth.

(b) Suppose the condition (a) is not satisfied. Thus, there exist 1 ≤ i, j ≤ 4 such that

Txi ̸= ±Txj and neither Txi, Txj nor Txi,−Txj belong to the same straight line contained in

SY. Without loss of generality, we assume i = 1, j = 2. Let J(Txi) = {y∗i }, (1 ≤ i ≤ 4). Then it

is easy to observe that {y∗1, y∗2} is linearly independent. Let y∗3 = ay∗1 + by∗2 and y∗4 = cy∗1 + dy∗2,

where a, b, c, d ∈ R. Since ∥y∗3∥ = 1, a and b cannot be zero simultaneously. Similarly, c and d

cannot be zero simultaneously. Now, if T is k−smooth, then

k = dim span J(T )

= dim span Ext J(T )

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x2, y

∗
3 ⊗ x3, y

∗
4 ⊗ x4}.

We show that {y∗1 ⊗ x1, y
∗
2 ⊗ x2, y

∗
3 ⊗ x3, y

∗
4 ⊗ x4} is linearly independent. Let ci(1 ≤ i ≤ 4) ∈ R

be such that

c1y
∗
1 ⊗ x1 + c2y

∗
2 ⊗ x2 + c3y

∗
3 ⊗ x3 + c4y

∗
4 ⊗ x4 = 0.

Then

c1y
∗
1 ⊗ x1 + c2y

∗
2 ⊗ x2 + c3(ay

∗
1 + by∗2)⊗ x3 + c4(cy

∗
1 + dy∗2)⊗ (x1 − x2 + x3) = 0.
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⇒ (c1 + c4c)y
∗
1 ⊗ x1 + (c2 − c4d)y

∗
2 ⊗ x2 + (c3a+ c4c)y

∗
1 ⊗ x3 + (c3b+ c4d)y

∗
2 ⊗ x3 − c4cy

∗
1 ⊗ x2 +

c4dy
∗
2 ⊗ x1 = 0.

Since {x1, x2, x3} is linearly independent subset of X and {y∗1, y∗2} is linearly independent subset

of Y∗, from Lemma 3.2, we get that {y∗1⊗x1, y
∗
2⊗x1, y

∗
1⊗x2, y

∗
2⊗x2, y

∗
1⊗x3, y

∗
2⊗x3} is linearly

independent subset of L(X,Y)∗. Therefore,

c1 + c4c = 0, c2 − c4d = 0, c3a+ c4c = 0, c3b+ c4d = 0, c4c = 0, c4d = 0.

Now, solving these equations, we obtain ci = 0 for all 1 ≤ i ≤ 4. Hence, {y∗1 ⊗ x1, y
∗
2 ⊗ x2, y

∗
3 ⊗

x3, y
∗
4 ⊗ x4} is linearly independent. Thus, k = 4 and T is 4−smooth.

(II)Without loss of generality, assume that S1 = {x2, x3, x4}, i.e., Tx2, Tx3, Tx4 are smooth

points of SY and Tx1 is 2−smooth point of SY. Clearly, Rank(T ) = 2. Now, by [36, Lemma 2.11],

T (BX) is a polygon with 4 extreme points. Since Tx1 is a 2−smooth point of SY, by [24, Th. 4.1],

±Tx1 must be two extreme points of BY. Since ∥T∥ = 1, T (BX) ⊆ BY, i.e., Ext(BY)∩T (BX) ⊆
Ext(T (BX)). Therefore, ±Tx1 ∈ Ext(T (BX)). Suppose that the other two extreme points of

the polygon T (BX) are ±Tx2. Then L[Tx2,−Tx1] is an edge of the polygon T (BX). Now,

L[x2,−x1] ∩ L[x3,−x4] = {(−1, 0, 0)}. Therefore, T (−1, 0, 0) ∈ L[Tx2,−Tx1] ∩ L[Tx3,−Tx4].

This implies that Tx3,−Tx4 ∈ L[Tx2,−Tx1]. Since Tx3, Tx4 are smooth points and Tx1 is

2−smooth point, Tx3 ̸= −Tx1 and −Tx4 ̸= −Tx1. Now, Rank(T ) = 2 implies that either

Tx3 ̸= Tx2 or −Tx4 ̸= Tx2. Without loss of generality, let us assume that Tx3 ̸= Tx2. Then

Tx3 ∈ L(Tx2,−Tx1). Since ∥Tx3∥ = 1, L[Tx2,−Tx1] ⊆ SY. Now, let J(Tx3) = {y∗}. Then it

is easy to see that J(Tx2) = {y∗} and J(Tx4) = {−y∗}. Since Tx1 is 2−smooth, it is clear that

Ext J(Tx1) = {y∗1, y∗2}, where {y∗1, y∗2} is a linearly independent subset of Y∗. Let y∗ = ay∗1+by∗2.

Now, if T is k−smooth, then

k = dim span J(T )

= dim span Ext J(T )

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗ ⊗ x2, y
∗ ⊗ x3, y

∗ ⊗ x4}

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗ ⊗ x2, y
∗ ⊗ x3}.

Now, using Lemma 3.2 it can be observed that {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗ ⊗ x2, y
∗ ⊗ x3} is a linearly

independent subset of L(X,Y)∗. Hence, k = 4 and T is 4−smooth.

(III) Without loss of generality, we assume S1 = {x3, x4}. Then ±Tx3,±Tx4 are smooth

points of SY and ±Tx1,±Tx2 are 2−smooth points of SY. Clearly, Rank(T ) = 2. By [24, Th.
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4.1], ±Tx1,±Tx2 ∈ Ext(BY). Since ∥T∥ = 1, T (BX) ⊆ BY. This gives that Ext(BY)∩T (BX) ⊆
Ext(T (BX)). Thus, we get, ±Tx1,±Tx2 ∈ Ext(T (BX)). If possible, suppose that Tx1 = −Tx2.

Then x4 = x1 − x2 + x3 implies that Tx1 = Tx4−Tx3
2 . Since Tx1 ∈ Ext(BY), we must have

Tx1 = Tx4 = −Tx3. Thus, Rank(T ) = 1, a contradiction. Therefore, Tx1 ̸= −Tx2. First

assume that Tx1 = Tx2. Then from x4 = x1 − x2 + x3, we get Tx3 = Tx4. Let J(Tx3) =

J(Tx4) = {y∗} and Ext J(Tx1) = Ext J(Tx2) = {y∗1, y∗2}. Then it is easy to see that T is

5−smooth. Now, assume that Tx1 ̸= Tx2. Then ±Tx1,±Tx2 are 4 distinct extreme points of

the polygon T (BX) and L[Tx2,−Tx1] is an edge of T (BX). Now, as in (II), it can be shown that

Tx3,−Tx4 ∈ L[Tx2,−Tx1]. Since Tx3,−Tx4 are smooth points, Tx3,−Tx4 ∈ L(Tx2,−Tx1).

From ∥Tx3∥ = 1, we can show that L[Tx2,−Tx1] ⊆ SY. Let J(Tx4) = {y∗}. Then J(Tx3) =

{−y∗}. Let Ext J(Tx1) = {y∗1, y∗2} and Ext J(Tx2) = {y∗3, y∗4}. Clearly, {y∗1, y∗2} and {y∗3, y∗4}
are linearly independent. Now, if T is k−smooth, then

k = dim span J(T )

= dim span Ext J(T )

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
3 ⊗ x2, y

∗
4 ⊗ x2, y

∗ ⊗ x3, y
∗ ⊗ x4}

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
3 ⊗ x2, y

∗
4 ⊗ x2, y

∗ ⊗ x3}

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
1 ⊗ x2, y

∗
2 ⊗ x2, y

∗ ⊗ x3}

= 5,by simple calculation.

Hence, T is 5−smooth.

(IV) Since |S1| < 2, at least 3 points of Txi, 1 ≤ i ≤ 4 are 2−smooth. Without loss of

generality, suppose that Tx1, Tx2, Tx3 are 2−smooth. If Rank(T ) = 1, then it is easy to see

that Tx4 is 2−smooth. Suppose Rank(T ) = 2. Then by [36, Lemma 2.11], T (BX) is a polygon

with 4 extreme points. First let Ext (T (BX)) = {±Tx1,±Tx2}. Then using similar arguments

as in (III) we can show that Tx3, −Tx4 ∈ L[Tx2,−Tx1]. Since Tx3 is 2−smooth, we must

have either Tx3 = Tx2 or Tx3 = −Tx1. If Tx3 = Tx2, then from x4 = x1 − x2 + x3, we get

Tx4 = Tx1. If Tx3 = −Tx1, then similarly, we get Tx4 = −Tx2. In each case, Tx4 is 2−smooth.

Similarly, considering other cases, we can conclude that if |S1| < 2, then Txi are 2−smooth

for all 1 ≤ i ≤ 4, i.e., S1 = ∅. Using Theorem 3.7, we can now say that T is 6−smooth. This

completes the proof of the theorem.

In Theorem 3.9, if we further assume that Y is a two-dimensional strictly convex, smooth

Banach space, then we obtain the following corollary.
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Corollary 3.4. Let X = ℓ3∞ and Y be a two-dimensional strictly convex, smooth Banach space.

Let T ∈ SL(X,Y) and MT ∩ Ext(BX) = {±x1,±x2,±x3,±x4}. Then the following hold:

(i) If Rank(T ) = 1 then T is 3−smooth.

(ii) If Rank(T ) = 2, then T is 4−smooth.

Proof. Observe that, since Y is strictly convex, SY does not contain non-trivial straight line

segment. Now, since Y is smooth, Txi is smooth for all 1 ≤ i ≤ 4. Thus, the corollary follows

from case (I) of Theorem 3.9.

As an immediate application of Theorem 3.9, we can characterize the extreme contractions

defined from ℓ3∞ to arbitrary two-dimensional polygonal Banach space.

Theorem 3.10. Let X = ℓ3∞ and Y be a two-dimensional polygonal Banach space. Let T ∈
SL(X,Y). Then T is an extreme contraction if and only if |MT ∩ Ext(BX)| ≥ 6 and T (MT ∩
Ext(BX)) ⊆ Ext(BY).

Proof. First let T be an extreme contraction. Then by [36, Th. 2.2], T is 6−smooth. From [58,

Th. 2.2], we get span(MT ∩Ext(BX)) = X, i.e., |MT ∩Ext(BX)| ≥ 6. Let |MT ∩Ext(BX)| = 6.

Then MT ∩Ext(BX) is of the form {±x1,±x2,±x3}, where {x1, x2, x3} is linearly independent.

Now, from Theorem 3.4 it is clear that Txi is 2−smooth for each 1 ≤ i ≤ 3. Therefore, by

[24, Th. 4.1], Txi ∈ Ext(BY) for all 1 ≤ i ≤ 3. Now, suppose that |MT ∩ Ext(BX)| = 8.

Then from Theorem 3.9, we can conclude that for all x ∈ MT ∩Ext(BX), Tx is 2−smooth, i.e.,

Tx ∈ Ext(BY).

Conversely, suppose that |MT ∩ Ext(BX)| ≥ 6 and T (MT ∩ Ext(BX)) ⊆ Ext(BY). If |MT ∩
Ext(BX)| = 6, then from Theorem 3.4, we get, T is 6−smooth. Hence, by [36, Th. 2.2], T is an

extreme contraction. If |MT ∩ Ext(BX)| = 8, then from Theorem 3.9, we get T is 6−smooth.

Thus, again by [36, Th. 2.2], T is an extreme contraction. This completes the proof of the

theorem.

We end this article with the following question:

Question 3.11. Suppose X and Y are Banach spaces and T ∈ SL(X,Y), then what are the

necessary and sufficient conditions for T to be multi-smooth point of finite order? One can

consider the case X = ℓn∞,Y = ℓn1 , (n ≥ 3). There are many more cases where the question is

still unanswered.
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CHAPTER 4

STUDY OF EXTREME CONTRACTIONS

THROUGH K−SMOOTHNESS OF

OPERATORS

4.1 Introduction

The study of extreme contractions and smoothness of operators between Banach spaces are

two classical and fertile areas of research in Banach space theory. While the characterization

of extreme contractions defined between Hilbert spaces is well known [11, 23, 44, 66], the

characterization of the same is still elusive, in the general setting of Banach spaces. There are

several papers including [1, 6, 7, 12, 19, 25, 30, 29, 33, 51, 54, 58, 64, 65], that deal with the

study of extreme contractions of operators defined between some special Banach spaces. The

purpose of this chapter is to study extreme contractions between polyhedral Banach spaces and

explore interesting connections between the order of smoothness of an operator and extreme

contraction. In particular, we generalize and improve on the results obtained in [51] in an

elegent way. Before proceeding further, we first establish the notations and terminologies.

Content of this chapter is based on the following paper:
A. Mal, K. Paul and S. Dey; Characterization of extreme contractions through k−smoothness of oper-
ators, Linear Multilinear Algebra, (2021), DOI:10.1080/03081087.2021.1913086
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We denote the Banach spaces by the letters X and Y. Throughout the chapter, we assume

that the Banach spaces are real. |A| denotes the cardinality of a set A. An element x of a

convex set A is said to be an extreme point of A, if x = ty + (1 − t)z for some t ∈ (0, 1) and

y, z ∈ A implies that x = y = z. The set of all extreme points of a convex set A is denoted by

Ext(A). The unit ball and the unit sphere of X are denoted by BX and SX respectively, that is,

BX = {x ∈ X : ∥x∥ ≤ 1} and SX = {x ∈ X : ∥x∥ = 1}. L(X,Y) denotes the space of all bounded

linear operators defined from X to Y endowed with the usual operator norm. MT denotes the

set of all unit vectors at which T attains its norm, that is, MT = {x ∈ SX : ∥Tx∥ = ∥T∥}. For
x1, x2 ∈ X, L[x1, x2], L(x1, x2) and L[x1, x2[ represent the following sets:

L[x1, x2] = {tx1 + (1− t)x2 : 0 ≤ t ≤ 1},

L(x1, x2) = {tx1 + (1− t)x2 : 0 < t < 1} and

L[x1, x2[= L[x1, x2] ∪ {tx2 − (t− 1)x1 : t > 1}.

X∗ denotes the dual space of X. A bounded linear functional x∗ ∈ SX∗ is said to be a support-

ing linear functional of a non-zero vector x ∈ X, if x∗(x) = ∥x∥. For x ∈ SX, the set of all

supporting linear functionals of x is denoted by J(x), that is, J(x) = {x∗ ∈ SX∗ : x∗(x) = 1}.
Note that, J(x) is a non-empty, weak*-compact, convex subset of SX∗ . x ∈ SX is said to

be a smooth point if J(x) is singleton. x ∈ SX is said to be a k−smooth point [24] or the

order of smoothness of x is said to be k, if J(x) contains exactly k linearly independent func-

tionals, that is, k = dim span J(x). From [32, Prop. 2.1], we get, if x is k−smooth, then

k = dim span Ext J(x). Likewise an operator T ∈ SL(X,Y) is said to be k−smooth operator, if

k = dim span J(T ) = dim span Ext J(T ). For more information on k−smoothness in Banach

space, the readers may go through [14, 15, 24, 32, 38, 39, 68]. An operator T ∈ L(X,Y) is said

to be an extreme contraction, if T is an extreme point of the unit ball of L(X,Y). Observe that,

if T is an extreme contraction, then ∥T∥ = 1. Recall that, a finite-dimensional Banach space

is said to be a polyhedral Banach space, if the unit ball contains only finitely many extreme

points. Equivalently, a finite-dimensional Banach space is said to be polyhedral if BX is a poly-

hedron. In particular, a two-dimensional polyhedral Banach space is said to be a polygonal

Banach space. Note that by [27, Th. 2.11] a finite-dimensional Banach space is polyhedral if

and only if its dual is polyhedral. Motivated by the work of Lindenstrauss and Perles in [33], the

following two definitions have been introduced recently in [51, 58], to study extreme contractions.

In this chapter, we first obtain a characterization of extreme contractions defined between

finite-dimensional polyhedral Banach spaces in terms of k−smoothness of the operators. As
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an immediate application of this result, we characterize the extreme contractions defined be-

tween two-dimensional polygonal Banach spaces. Next, we obtain a sufficient condition for a

pair of finite-dimensional polyhedral Banach spaces to satisfy weak L-P property. This result

generalizes [51, Th. 2.1] and also improves on [51, Th. 2.5]. Then we show that the sufficient

condition for a pair (X,Y) to satisfy weak L-P property, given in Theorem 4.3 of this chapter,

is also a necessary condition, if X is two-dimensional polygonal Banach space and Y = ℓ2∞.

However, by exhibiting proper examples, we show that this is not true in general. As a final

result of this chapter, we explicitly compute the exact number of extreme contractions defined

on X, where SX is a regular hexagon. All the results obtained here, highlight the pivotal role

of the order of smoothness of an operator in the study of extreme contractions defined between

finite-dimensional polyhedral Banach spaces.

We will use [68, Lemma 3.1] in describing the structure of Ext J(T ). For simplicity we state

the lemma for finite-dimensional Banach spaces.

Lemma 4.1. [68, Lemma 3.1] Suppose that X,Y are finite-dimensional Banach spaces. Let

T ∈ SL(X,Y). Then MT ∩ Ext(BX) ̸= ∅ and

Ext J(T ) = {y∗ ⊗ x ∈ L(X,Y)∗ : x ∈ MT ∩ Ext(BX), y
∗ ∈ Ext J(Tx)},

where y∗ ⊗ x : L(X,Y) → R is defined by y∗ ⊗ x(S) = y∗(Sx) for every S ∈ L(X,Y).

4.2 Role of k−smoothness to extreme con-

tractions

We begin this section with the characterization of exposed points of the unit ball of a finite-

dimensional polyhedral Banach space, which clearly follows from [39, Th. 3.5] and [68, Th. 4.2].

Recall that an element x ∈ SX is said to be an exposed point of the unit ball BX, if there exists

a supporting linear functional x∗ of x such that x∗ attains norm only at ±x. We also observe

that in a finite-dimensional polyhedral Banach space, a point is an extreme point of the unit

ball if and only if it is an exposed point of the same. We write these observations in the form

of the following proposition.

Proposition 4.1. Let X be a polyhedral Banach space of dimension n. Let x ∈ SX. Then the

following are equivalent:

(a) x is an exposed point of BX.
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(b) x is an extreme point of BX.

(c) x is n−smooth.

In the next theorem, we prove a characterization of extreme contractions defined between

finite-dimensional polyhedral Banach spaces in terms of k−smoothness.

Theorem 4.1. Let X,Y be polyhedral Banach spaces such that dim(X) = n and dim(Y) = m.

Then T ∈ SL(X,Y) is an extreme contraction if and only if T is mn−smooth.

Proof. Since X,Y are finite-dimensional Banach spaces, from [28, Th. 1], we get

Ext(BL(X,Y)∗) = Ext(BY∗)⊗ Ext(BX).

Since Ext(BY∗) and Ext(BX) are finite sets, there are only finitely many extreme points in the

unit ball of L(X,Y)∗. Therefore, L(X,Y)∗ is a polyhedral Banach space. Moreover, L(X,Y)∗ is

a finite-dimensional Banach space. Therefore, L(X,Y) is also a finite-dimensional polyhedral

Banach space. Now, dim(L(X,Y)) = mn. Hence, from Proposition 4.1, we can conclude that

T ∈ SL(X,Y) is an extreme contraction if and only if T is mn−smooth.

Using Theorem 4.1, we can now characterize the extreme contractions between two-dimensional

polygonal Banach spaces.

Theorem 4.2. Let X,Y be polygonal Banach spaces such that dim(X) = dim(Y) = 2. Let

T ∈ SL(X,Y). Then T is an extreme contraction if and only if either of the following holds:

(i) MT ∩ Ext(BX) = {±x1,±x2} and Tx1, Tx2 ∈ Ext(BY).

(ii) MT ∩ Ext(BX) = {±x1,±x2,±x3} and |{xi : Txi ∈ Ext(BY), 1 ≤ i ≤ 3}| ≥ 2.

(iii) MT ∩ Ext(BX) = {±x1,±x2,±x3}, Tx1 ∈ Ext(BY), Tx2, Tx3 /∈ Ext(BY) and there exist

edges F,G of BY such that Tx2 ∈ F, Tx3 ∈ G and F ̸= ±G.

(iv) |MT ∩ Ext(BX)| ≥ 8 and there exists x ∈ MT ∩ Ext(BX) such that Tx ∈ Ext(BY).

(v) |MT ∩ Ext(BX)| ≥ 8 and for each x ∈ MT ∩ Ext(BX), Tx /∈ Ext(BY). Moreover, there

exist xi ∈ MT ∩ Ext(BX) and y∗i ∈ Ext J(Txi) for 1 ≤ i ≤ 4 such that x2 = ax1 + bx3, x4 =

cx1 + dx3, y
∗
2 = α1y

∗
1 + α2y

∗
3, y

∗
4 = β1y

∗
1 + β2y

∗
3 and β1α2ad− β2α1bc ̸= 0.

Proof. From Theorem 4.1, we can say that T is an extreme contraction if and only if T is

4−smooth. If T is an extreme contraction, then from [58, Th. 2.2], we get, span(MT ∩
Ext(BX)) = X, that is, |MT ∩Ext(BX)| ≥ 4. Hence, we only assume that |MT ∩Ext(BX)| ≥ 4.

First let |MT ∩Ext(BX)| = 4. In this case, we show that T is an extreme contraction if and

only if (i) holds. Let MT ∩ Ext(BX) = {±x1,±x2} for some x1, x2 ∈ SX. Clearly, {x1, x2} is
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linearly independent. Therefore, from [39, Th. 2.2], we can conclude that T is extreme contrac-

tion, that is, T is 4−smooth if and only if Tx1 and Tx2 are 2−smooth. Thus, by Proposition

4.1, Tx1, Tx2 ∈ Ext(BY). Therefore, if |MT ∩ Ext(BX)| = 4, then T is an extreme contraction

if and only if (i) holds.

Now, let |MT ∩Ext(BX)| = 6. In this case, we show that T is an extreme contraction if and

only if either (ii) or (iii) holds. Let MT ∩Ext(BX) = {±x1,±x2,±x3} for some x1, x2, x3 ∈ SX.

In this case, from [39, Th. 3.1], renaming vectors x1, x2 and x3 if necessary, we get, T is an

extreme contraction, that is, T is 4−smooth if and only if Tx1 is non-smooth, Tx2, Tx3 are

not interior point of same line segment of SY and Tx2,−Tx3 are not interior point of same

line segment of SY. Since Tx1 is non-smooth, Tx1 is 2−smooth. Hence, Tx1 ∈ Ext(BY). Now,

if at least one of Tx2, Tx3 ∈ Ext(BY), then (ii) holds. Suppose Tx2, Tx3 /∈ Ext(BY). Then

Tx2, Tx3 are interior points of line segments of SY. So there exist edges F,G of BY such that

Tx2 ∈ F, Tx3 ∈ G. Since Tx2, Tx3 are not interior point of same line segment of SY and

Tx2,−Tx3 are not interior point of same line segment of SY, we get that F ̸= ±G. Thus, (iii)

holds. Therefore, if |MT ∩Ext(BX)| = 6, then T is an extreme contraction if and only if either

(ii) or (iii) holds.

Next, let |MT ∩Ext(BX)| ≥ 8. Then from [39, Th. 3.3], we can easily conclude that T is an

extreme contraction if and only if either (iv) or (v) holds.

We now turn our attention to the study of weak L-P property of a pair of Banach spaces.

Note that, if X is a reflexive Banach space, then each functional f ∈ X∗ attains its norm at

an extreme point of BX. As a consequence, the pair (X,R) satisfies weak L-P property. The

following lemma will be used in the next theorem.

Lemma 4.2. Let X,Y be Banach spaces. Suppose ∅ ≠ E1 ⊆ X, ∅ ≠ E2 ⊆ Y∗ and Bi ⊆ Ei is a

basis of span Ei for i = 1, 2. Then {y∗ ⊗ x : x ∈ B1, y
∗ ∈ B2} is a basis of span {y∗ ⊗ x : x ∈

E1, y
∗ ∈ E2}.

Proof. We first show that the set {y∗ ⊗ x : x ∈ B1, y
∗ ∈ B2} is linearly independent. Suppose

{y∗i ⊗xj : xj ∈ B1, y
∗
i ∈ B2, 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a finite subset of {y∗⊗x : x ∈ B1, y

∗ ∈ B2}.
Let cij be scalars such that

∑

1≤i≤n,1≤j≤m

cijy
∗
i ⊗ xj = 0. (4.1)
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Choose y ∈ Y, ϕ ∈ X∗. Define S ∈ L(X,Y) by Sx = ϕ(x)y for all x ∈ X. Now, from (4.1) we get,

∑

1≤i≤n,1≤j≤m

cijy
∗
i ⊗ xj(S) = 0

⇒
∑

1≤i≤n,1≤j≤m

cijy
∗
i S(xj) = 0

⇒
∑

1≤i≤n,1≤j≤m

cijϕ(xj)y
∗
i (y) = 0

⇒ ϕ

( ∑

1≤i≤n,1≤j≤m

cijxjy
∗
i (y)

)
= 0

⇒
∑

1≤i≤n,1≤j≤m

cijxjy
∗
i (y) = 0, (since ϕ ∈ X∗ is arbitrary)

⇒
∑

1≤i≤n

cijy
∗
i (y) = 0 for all 1 ≤ j ≤ m

⇒
∑

1≤i≤n

cijy
∗
i = 0 (since y ∈ Y is arbitrary)

⇒ cij = 0 for all 1 ≤ j ≤ m, 1 ≤ i ≤ n.

Thus, {y∗i ⊗ xj : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is linearly independent and hence the set {y∗ ⊗ x : x ∈
B1, y

∗ ∈ B2} is linearly independent.

Now, let y∗ ∈ E2 and x ∈ E1. Then there exists scalars ai, bj and xj ∈ B1, y
∗
i ∈ B2 for

1 ≤ i ≤ n, 1 ≤ j ≤ m such that y∗ =
∑n

i=1 aiy
∗
i , x =

∑m
j=1 bjxj . Thus,

y∗ ⊗ x =
∑

1≤i≤n,1≤j≤m

aibjy
∗
i ⊗ xj .

This shows that y∗⊗x ∈ span {y∗⊗x : x ∈ B1, y
∗ ∈ B2}. Therefore, {y∗⊗x : x ∈ B1, y

∗ ∈ B2}
is a basis of span {y∗ ⊗ x : x ∈ E1, y

∗ ∈ E2}. This completes the proof of the lemma.

In the next theorem, we obtain a sufficient condition for a pair of finite-dimensional poly-

hedral Banach spaces to satisfy weak L-P property.

Theorem 4.3. Let X,Y be polyhedral Banach spaces and dim(X) = n, dim(Y) = m. Let

|Ext(BX)| = 2(n+ p). If mp < n+ p, then the pair (X,Y) satisfies weak L-P property.

Proof. Let T ∈ SL(X,Y) be an extreme contraction. We show that there exists x ∈ MT ∩Ext(BX)

such that Tx ∈ Ext(BY). From [58, Th. 2.2], we get span(MT ∩ Ext(BX)) = X, that is,

MT ∩ Ext(BX) contains at least n linearly independent elements. Let MT ∩ Ext(BX) = {±xi :

1 ≤ i ≤ r} such that {x1, x2, . . . , xn} is linearly independent. Then r ≤ n + p. If possible,

suppose that Txi /∈ Ext(BY), for any i, 1 ≤ i ≤ r. Then by Proposition 4.1, Txi is not

m−smooth for each 1 ≤ i ≤ r. Let Txi be ki−smooth for all 1 ≤ i ≤ r. Then ki ≤ (m− 1) for
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all 1 ≤ i ≤ r. Clearly, ki = dim span Ext J(Txi). Let {y∗ij ∈ Ext J(Txi) : 1 ≤ j ≤ ki} be a

basis of span Ext J(Txi) for each 1 ≤ i ≤ r. Let

Wi = span {y∗ ⊗ xi : y
∗ ∈ Ext J(Txi)} for each 1 ≤ i ≤ r.

It now follows from Lemma 4.2 that Bi = {y∗ij ⊗ xi : 1 ≤ j ≤ ki} is a basis of Wi and so

dim(Wi) = ki for each 1 ≤ i ≤ r. Now, let T be k−smooth. Then

k = dim span J(T )

= dim span Ext J(T )

= dim span{y∗ ⊗ xi : y
∗ ∈ Ext J(Txi), 1 ≤ i ≤ r}

= dim W, where,

W = span {y∗ ⊗ xi : y
∗ ∈ Ext J(Txi), 1 ≤ i ≤ r}.

Clearly, W ⊆ W1 +W2 + . . .+Wr. Therefore,

k = dim(W ) ≤ dim(

r∑

i=1

Wi) ≤
r∑

i=1

dim(Wi) =

r∑

i=1

ki ≤ (m− 1)r ≤ (m− 1)(n+ p).

Now, mp < n+p implies that (m−1)(n+p) < mn, and thus, k < mn. Therefore, from Theorem

4.1, we conclude that T is not an extreme contraction. This is a contradiction. Thus, there

exists 1 ≤ i ≤ r such that Txi ∈ Ext(BY). Hence, the pair (X,Y) satisfies weak L-P property.

This completes the proof of the theorem.

The following corollary now follows easily from Theorem 4.3.

Corollary 4.1. Let X,Y be polyhedral Banach spaces such that dim(X) = n,dim(Y) = m. Let

|Ext(BX)| = 2n+ 2 and m ≤ n. Then the pair (X,Y) satisfies weak L-P property.

Remark 4.4. (i) In [51, Th. 2.1], Ray et al. proved that if X is an n-dimensional polyhedral

Banach space with exactly (2n + 2) extreme points and m ≤ n, then the pair (X, ℓn∞) satisfies

weak L-P property. Clearly, Corollary 4.1 improves on [51, Th. 2.1].

(ii) In [51, Th. 2.5], Ray et al. proved that if X is an n-dimensional polyhedral Banach space

with exactly (2n+2) extreme points and m(m−1) ≤ n, then the pair (X, ℓm1 ) satisfies weak L-P

property. Observe that if m > 1 and m(m − 1) ≤ n, then m ≤ m(m − 1) ≤ n. Therefore, for

m > 1, Corollary 4.1 improves on [51, Th. 2.5].

(iii) Our Theorem 4.3 unifies Theorems [51, Th. 2.1] and [51, Th. 2.5] and holds for the pair

(X,Y) with Y as m-dimensional polyhedral Banach space instead of the special Banach spaces

ℓm∞ ( [51, Th. 2.1] ) and ℓm1 ( [51, Th. 2.5] ).
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The natural question that arises now is whether the sufficient condition given in Theorem

4.3 for a pair of Banach spaces to satisfy weak L-P property is also a necessary condition or

not. In the next theorem, we show that the condition is both necessary and sufficient for the

pair (X, ℓ2∞), where X is a two-dimensional polygonal Banach space.

Theorem 4.5. Let X be a two-dimensional polygonal Banach space. Then the pair (X, ℓ2∞)

satisfies weak L-P property if and only if |Ext(BX)| ≤ 6.

Proof. Let |Ext(BX)| ≤ 6. Then from Theorem 4.3, we conclude that the pair (X, ℓ2∞) satisfies

weak L-P property. Conversely, suppose that |Ext(BX)| ≥ 8. We show that the pair (X, ℓ2∞)

does not satisfy weak L-P property. Clearly, X∗ is a two-dimensional polygonal Banach space

such that |Ext(BX∗)| ≥ 8. So we can choose {x1, x2, x3, x4} ⊆ Ext(BX∗) such that L[x1, x3] and

L[x1,−x3] are not edges of BX∗ . Now, define T ∈ L(ℓ21,X∗) by Te1 = x1 and Te2 = x3, where

e1 = (1, 0) and e2 = (0, 1). Then MT = {±e1,±e2}. Since x1, x3 are extreme points of BX∗ and

X∗ is polygonal Banach space, by Proposition 4.1, x1, x3 are 2−smooth points. Thus, by [39, Th.

2.2], T is 4−smooth. Hence, by Theorem 4.1, T is an extreme contraction. It is easy to observe

that T ∗ : X → ℓ2∞ is also an extreme contraction. We claim that T ∗(Ext(BX))∩Ext(Bℓ2∞) = ∅.
If possible, suppose that there exists u ∈ Ext(BX) such that T ∗u ∈ Ext(Bℓ2∞). Then T ∗u is

2−smooth. Clearly, Ext J(T ∗u) ⊂ Ext(Bℓ21
) = {±e1,±e2} and so without loss of generality,

we may assume that Ext J(T ∗u) = {e1, e2}. Thus,

e1(T
∗u) = e2(T

∗u) = 1

⇒ u(Te1) = u(Te2) = 1

⇒ u(x1) = u(x3) = 1

⇒ u(tx1 + (1− t)x3) = 1 for all t ∈ [0, 1]

⇒ ∥tx1 + (1− t)x3∥ = 1 for all t ∈ [0, 1].

Hence, L[x1, x3] is an edge of BX∗ , a contradiction. Therefore, T ∗(Ext(BX)) ∩ Ext(Bℓ2∞) = ∅.
Thus, if |Ext(BX)| ≥ 8, then the pair (X, ℓ2∞) does not satisfy weak L-P property. This completes

the proof of the theorem.

Remark 4.6. If (X,Y) and (X0,Y0) are pair of Banach spaces such that X is isometrically

isomorphic to X0 and Y is isometrically isomorphic to Y0, it is clear that (X,Y) satisfies L-P

property (or weak L-P property) if and only if the same happens with (X0,Y0). Thus, Theorem

4.5 is also true if ℓ2∞ is replaced by a two-dimensional Banach space Y such that |Ext(BY)| = 4.

In the next theorem, we show that, given a two-dimensional polygonal Banach space X with

|Ext(BX)| ≥ 8, there exists a two-dimensional polygonal Banach space Y with |Ext(BY)| ≥ 6,
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such that the pair (X,Y) does not satisfy weak L-P property.

Theorem 4.7. Let X be a two-dimensional polygonal Banach space such that |Ext(BX)| ≥ 8.

Then for each n ∈ N\{1, 2}, there exists a two-dimensional polygonal Banach space Y such that

|Ext(BY)| = 2n and the pair (X,Y) does not satisfy weak L-P property.

Proof. Suppose {x1, x2, x3, x4} ⊆ Ext(BX) such that xi ̸= ±xj for all 1 ≤ i, j ≤ 4 with i ̸= j

and L[xi, xi+1] is an edge of BX for each 1 ≤ i ≤ 3. Let L[x1, x2[ ∩ L[x4, x3[= {y1} and

L[x2, x1[ ∩ L[−x3,−x4[= {y2}. Let z1 = y1+x2

2 and zn−1 =
y1+x3

2 . Now, for each 2 ≤ i ≤ n− 2,

we can easily choose vectors zi = aiz1 + bizn−1, where ai, bi > 0 such that the convex hull of

{±y2,±zj : 1 ≤ j ≤ n − 1} is a symmetric convex set with 2n extreme points {±y2,±zj : 1 ≤
j ≤ n − 1}. Let Y be the Banach space such that BY is the convex hull of {±y2,±zj : 1 ≤
j ≤ n − 1}. Then |Ext(BY)| = 2n. It is clear that xi (1 ≤ i ≤ 4) are smooth points of Y.

Now, consider the operator I : X → Y defined by Ix = x for all x ∈ X. Then MI ∩ Ext(BX) =

{±x1,±x2,±x3,±x4}. Observe that, x1, x2 ∈ L[z1, y2] and x3, x4 ∈ L[−y2, zn−1]. So there exist

f, g ∈ SY∗ such that J(x1) = J(x2) = {f} and J(x3) = J(x4) = {g}. Let k be the order of

smoothness of I, where 1 ≤ k ≤ 4. Then

k = dim span J(I)

= dim span Ext J(I)

= dim span {f ⊗ x1, f ⊗ x2, g ⊗ x3, g ⊗ x4}

= 4.

Therefore, I is 4−smooth. Hence, by Theorem 4.1, I is an extreme contraction. Now, observe

that if x ∈ Ext(BX) \MI , then ∥Ix∥ < ∥I∥ = 1, that is, x /∈ Ext(BY). If x ∈ MI ∩ Ext(BX),

then Ix is smooth point of BY. Therefore, I(Ext(BX)) ∩ Ext(BY) = ∅. Thus, the pair (X,Y)

does not satisfy weak L-P property. This completes the proof of the theorem.

Although the above theorem indicates that the condition stated in Theorem 4.3 may be nec-

essary for arbitrary two-dimensional polygonal Banach spaces X,Y to satisfy weak L-P property,

the answer is still not known in its full generality. However, if dim(X) > 2, then the condition

is not necessary. We exhibit polyhedral Banach spaces X,Y that satisfy weak L-P property but

dim(X) = n, dim(Y) = m, |Ext(BX)| = 2(n + p) and mp ≥ n + p hold. To do so we need the

following two lemmas.

Lemma 4.3. Let X = ℓ3∞ and Y be a two-dimensional Banach space. Let T ∈ SL(X,Y) be such

that Rank(T ) = 2 and Ext(BX) ⊆ MT . Then T (BX) is a convex set with 4 extreme points.
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Proof. Let us consider the facets ±G1 of BX, where G1 = {(1, y, z) : |y|, |z| ≤ 1}. Now, G1 can

be expressed as

G1 = x+ F,

where x = (1, 0, 0) and F = {(0, y, z) : |y|, |z| ≤ 1}. Then

−G1 = −x+ F.

It is clear that BX is the convex hull of the sets G1 = x+F and −G1 = −x+F. Therefore, T (BX)

is the convex hull of T (x+F ) = Tx+T (F ) and T (−x+F ) = −Tx+T (F ). Here, F is the convex

hull of {±(0, 1, 1),±(0, 1,−1)}, and thus, T (F ) is the convex hull of {±T (0, 1, 1),±T (0, 1,−1)}.
Hence, T (F ) must be a symmetric set having at most four extreme points. If T (F ) has two

extreme points say ±z, then Tx ̸= 0 and the extreme points of T (BX) are ±Tx± z and we are

done.

Now, let T (F ) be a symmetric set having exactly four distinct extreme points ±T (0, 1, 1) and

±T (0, 1,−1). We denote T (0, 1, 1) and T (0, 1,−1) by y1 and y2 respectively. Clearly, T (BX) is

the convex hull of {±Tx ± y1,±Tx ± y2}. Since Y is two-dimensional and {y1 + y2, y1 − y2}
is linearly independent, we have, Tx = a(y1 + y2) + b(y1 − y2), where a, b ∈ R. We claim that

either a = 0 or b = 0. If possible, let a ̸= 0, b ̸= 0. First assume that a > 0, b > 0. Then

Tx− y1 =
2a

2a+ 2b+ 1
(Tx+ y2) +

2b

2a+ 2b+ 1
(Tx− y2) +

1

2a+ 2b+ 1
(−Tx− y1).

Since a > 0, b > 0, we have, 2a
2a+2b+1 ,

2b
2a+2b+1 ,

1
2a+2b+1 ∈ (0, 1). Moreover, we have, ∥Tx+ y2∥ =

∥Tx − y2∥ = ∥Tx + y1∥ = 1. Since the vectors Tx + y2, Tx − y2,−Tx − y1 are not collinear,

we get, ∥Tx − y1∥ < 1, that is, ∥T (1,−1,−1)∥ < 1, which contradicts that Ext(BX) ⊆ MT .

Similarly, considering a < 0, b < 0, or a < 0, b > 0 or a > 0, b < 0, we get a contradiction. This

proves our claim. Now, the possible alternatives are as follows:

(i) a = b = 0. (ii) a = 0, b ̸= 0, (iii) a ̸= 0, b = 0.

The proof would end with the discussion of these alternatives.

(i) Let a = b = 0. Then Tx = 0. Thus, T (BX) is the convex hull of {±y1,±y2}. So the extreme

points of T (BX) are ±y1,±y2 and we are done.

(ii) Let a = 0, b ̸= 0. Then

Tx− y1 =
2b

2b+ 1
(Tx− y2) +

1

2b+ 1
(−Tx− y1)

and

−Tx− y2 =
1

2b+ 1
(Tx− y2) +

2b

2b+ 1
(−Tx− y1).
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Thus, if a = 0 and b > 0, then the only extreme points of T (BX) are ±(Tx−y2) and ±(Tx+y1).

We can also write

Tx− y2 =
2b

2b− 1
(Tx− y1) +

−1

2b− 1
(−Tx− y2)

and

−Tx− y1 =
−1

2b− 1
(Tx− y1) +

2b

2b− 1
(−Tx− y2).

Thus, if a = 0 and b < 0, then the only extreme points of T (BX) are ±(Tx−y1) and ±(Tx+y2).

Hence, we are done.

(iii) Let a ̸= 0, b = 0. Then

Tx− y1 =
2a

2a+ 1
(Tx+ y2) +

1

2a+ 1
(−Tx− y1)

and

−Tx+ y2 =
1

2a+ 1
(Tx+ y2) +

2a

2a+ 1
(−Tx− y1).

Thus, if a > 0 and b = 0, then the only extreme points of T (BX) are ±(Tx+y2) and ±(Tx+y1).

We can also write

Tx+ y2 =
2a

2a− 1
(Tx− y1) +

−1

2a− 1
(−Tx+ y2)

and

−Tx− y1 =
−1

2a− 1
(Tx− y1) +

2a

2a− 1
(−Tx+ y2).

Thus, if a < 0 and b = 0, then the only extreme points of T (BX) are ±(Tx−y1) and ±(Tx−y2).

Hence, we are done.

This completes the proof of the lemma.

Lemma 4.4. Let X = ℓ4∞ and Y be a two-dimensional Banach space. Let T ∈ SL(X,Y) be such

that Rank(T ) = 2 and Ext(BX) ⊆ MT . Then T (BX) is a convex set with 4 extreme points.

Proof. Let us consider the facets ±G1 of BX, where G1 = {(1, y, z, w) : |y|, |z|, |w| ≤ 1}. Now,
G1 can be expressed as

G1 = x+ F,

where x = (1, 0, 0, 0) and F = {(0, y, z, w) : |y|, |z|, |w| ≤ 1}. Then

−G1 = −x+ F.

Observe that, there exist xi ∈ F (1 ≤ i ≤ 4) such that ±x+ xi ∈ Ext(BX) and F is the convex

hull of {±xi : 1 ≤ i ≤ 4}. It is clear that BX is the convex hull of the sets G1 = x + F
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and −G1 = −x + F. Therefore, T (BX) is the convex hull of T (x + F ) = Tx + T (F ) and

T (−x+F ) = −Tx+T (F ). Here, F is a symmetric cube about the origin and T (F ) has at most

eight extreme points.

If T (F ) has eight extreme points or T (F ) has six extreme points and the two remaining points

(say ±y4, where yj = Txj , for j = 1, 2, 3, 4) belong to the boundary of T (F ), then the operator

T0 : ℓ3∞ → Y0 given by T0(t1, t2, t3) = T (0, t1, t2, t3), where Y0 is the space Y endowed with

a norm whose unit ball is T (F ), satisfies the hypothesis but not the thesis of Lemma 4.3.

Since this is not possible, |Ext(T (F ))| ≤ 6 and if the equality holds, the remaining two points

(say, as before, ±y4) necessarily belong to the interior of T (F ). However, the latter implies that

Tx+y4 belongs to the interior of BY, which contradicts the hypothesis of the lemma. Therefore,

|Ext(T (F ))| ≤ 4. From now on, arguing similarly as in Lemma 4.3, we can show that T (BX)

has exactly four extreme points. This completes the proof of the lemma.

Remark 4.8. Following the same line of arguments we can show that Lemma 4.4 holds for

X = ℓn∞, i.e., if T ∈ SL(ℓn∞,Y) with Rank(T ) = 2 and Ext(BX) ⊆ MT , then T (BX) is a convex

set with 4 extreme points.

Next, we obtain a bound of the order of smoothness of a class of bounded linear operators

defined between ℓ4∞ and a two-dimensional Banach space.

Theorem 4.9. Let X = ℓ4∞ and Y be any two-dimensional Banach space. Suppose T ∈ SL(X,Y)

is such that Ext(BX) ⊆ MT and Tx is smooth for all x ∈ Ext(BX). Then T is k−smooth where

k ≤ 6.

Proof. Let us write Ext(BX) = {±x1,±x2, . . . ,±x8}, where {x1, x2, x3, x4} is linearly indepen-

dent. Let S = {x1, x2, . . . , x8}.
First suppose Rank(T ) = 1. Then there exists y∗ ∈ SY∗ such that for any i ∈ {1, 2, . . . , 8},
J(Txi) = {y∗} or {−y∗}. Now, if T is k−smooth, then

k = dim span J(T )

= dim span Ext J(T )

= dim span {y∗ ⊗ xi : 1 ≤ i ≤ 8}

= dim span {y∗ ⊗ xi : 1 ≤ i ≤ 4}

= 4,

as {y∗ ⊗ xi : 1 ≤ i ≤ 4} is linearly independent by [39, Lemma 2.1]. Hence T is 4−smooth.

Let Rank(T ) = 2. Then by Lemma 4.4, T (BX) is a convex set with four extreme points.

Without loss of generality, let ±Tx1,±Tx2 be four distinct extreme points of T (BX). Suppose
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Txi ∈ L(Tx1, Tx2) for some 3 ≤ i ≤ 8. We claim that for each 3 ≤ j ≤ 8, Txj ∈ L[Tx1, Tx2] ∪
L[−Tx1,−Tx2]. Since ∥Txi∥ = 1, L[Tx1, Tx2] ⊆ SY. Let J(Txi) = {y∗}. Then for each y ∈
L[Tx1, Tx2], y

∗(y) = 1. If possible, let there exist 3 ≤ j( ̸= i) ≤ 8 such that Txj ∈ L(Tx1,−Tx2).

Let J(Txj) = {z∗}. Then y∗ ̸= ±z∗. Now, for all y ∈ L[Tx1,−Tx2], z
∗(y) = 1. Thus, y∗, z∗ ∈

J(Tx1), contradicts that Tx1 is smooth. Therefore, Txj /∈ L(Tx1,−Tx2). Similarly, it can be

shown that Txj /∈ L(−Tx1, Tx2). Therefore, for any i ∈ {1, 2, . . . , 8}, J(Txi) = {y∗} or {−y∗}.
Now, it is easy to observe that T is 4−smooth.

Now, suppose that Txi /∈ L(±Tx1,±Tx2) for any 3 ≤ i ≤ 8. Then Txi ∈ {±Tx1,±Tx2} for all

3 ≤ i ≤ 8. Let J(Tx1) = {y∗1} and J(Tx2) = {y∗2}. Then for any i ∈ {1, 2, . . . , 8},

J(Txi) = {y∗1} or {−y∗1} or {y∗2} or {−y∗2}.

Thus, there exist two subsets S1 and S2 (S1∩S2 = ∅, S1∪S2 = S) of S such that T (S1) = ±Tx1

and T (S2) = ±Tx2. Therefore, we have for any i ∈ {1, 2, . . . , 8},

J(Txi) = {y∗1} or {−y∗1}, if xi ∈ S1

= {y∗2} or {−y∗2}, if xi ∈ S2.

Now, it is clear that any 4 elements of S1 as well as S2 are linearly dependent. Otherwise, if

{x11, x12, x13, x14} is a linearly independent subset of S1, then for any x ∈ X,

x =

4∑

i=1

λix1i, where λi are scalars,

⇒ Tx =
4∑

i=1

λiTx1i ∈ span{Tx1}.

Hence, Rank(T ) = 1, a contradiction. Thus, maximal linearly independent subsets of S1 and

S2 contain at most 3 elements. Let us write those linearly independent subsets of S1 and S2

respectively by A1 = {x1i : 1 ≤ i ≤ n1} and A2 = {x2i : 1 ≤ i ≤ n2}, where n1, n2 ≤ 3. Now, if

T is k−smooth, then

k = dim span J(T )

= dim span Ext J(T )

= dim span {y∗1 ⊗ x, y∗2 ⊗ z : x ∈ S1, z ∈ S2}

= dim span {y∗1 ⊗ x1i, y
∗
2 ⊗ x2i : 1 ≤ i ≤ n1, 1 ≤ j ≤ n2}

≤ n1 + n2 ≤ 6.
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Therefore, T is k−smooth, where k ≤ 6. This completes the proof of the theorem.

Now, we are in a position to show that although the pair (ℓ4∞,Y) does not satisfy the

condition given in Theorem 4.3, the pair (ℓ4∞,Y) satisfies weak L-P property, where Y is a

two-dimensional polygonal Banach space.

Theorem 4.10. Let Y be a two-dimensional polygonal Banach space. Then the pair (ℓ4∞,Y)

satisfies weak L-P property.

Proof. Let X = ℓ4∞. Then |Ext(BX)| = 16 = 2(4 + 4). Observe that, comparing with Theorem

4.3, here we have m = 2, n = 4 and p = 4. Thus, mp < n + p is not satisfied. We now show

that the pair (X,Y) satisfies weak L-P property. Let T ∈ SL(X,Y) be an extreme contraction.

First let us assume |MT ∩ Ext(BX)| = 16. If Tx ∈ Ext(BY) for some x ∈ MT ∩ Ext(BX),

then we are done. If possible, let Tx /∈ Ext(BY) for any x ∈ MT ∩ Ext(BX). Then from

Proposition 4.1, we get Tx is smooth for all x ∈ MT ∩Ext(BX). Now, from Theorem 4.9, we see

that T is k−smooth, where k ≤ 6. Hence, by Theorem 4.1, T is not an extreme contraction, a

contradiction. Thus, Tx ∈ Ext(BY) for some x ∈ MT ∩Ext(BX). Now, let |MT ∩Ext(BX)| = 2q,

where 1 ≤ q ≤ 7. Suppose Tx /∈ Ext(BY) for any x ∈ MT ∩Ext(BX). Thus, Tx is smooth for all

x ∈ MT ∩ Ext(BX). Let MT ∩ Ext(BX) = {±x1,±x2, . . . ,±xq} and J(Txi) = {y∗i }, 1 ≤ i ≤ q.

Now, if T is k−smooth, then

k = dim span J(T )

= dim span Ext J(T )

= dim span {y∗i ⊗ xi : 1 ≤ i ≤ q}

≤ q ≤ 7.

So, T can not be 8−smooth and hence not an extreme contraction, a contradiction. Therefore,

Tx ∈ Ext(BY) for some x ∈ MT ∩ Ext(BX). Thus, the pair (X,Y) satisfies weak L-P property.

This completes the proof of the theorem.

As an immediate application of Theorem 4.2 (or Theorem 4.3), we can compute the number

of extreme contractions defined on X, where SX is a regular hexagon.

Theorem 4.11. Let X be a two-dimensional polygonal Banach space such that SX is a regular

hexagon. Then |Ext(BL(X,X))| = 30.

Proof. Without loss of generality, we may assume that the vertices of SX are±x1 = ±(1, 0),±x2 =

±(12 ,
√
3
2 ),±x3 = ±(−1

2 ,
√
3
2 ). Let T ∈ Ext(BL(X,X)). Then from Theorem 4.2, we can say that
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either (i) |MT ∩ Ext(BX)| = 4 or (ii) |MT ∩ Ext(BX)| = 6.

(i) First consider the case |MT ∩ Ext(BX)| = 4. Let MT ∩ Ext(BX) = {±x1,±x2}. Then
by Theorem 4.2, we get Tx1, Tx2 ∈ Ext(BX). Observe that, if x, y are two distinct extreme

points of BX, then ∥x − y∥ ≥ 1. Now, x3 = x2 − x1 and x3 /∈ MT ensures that Tx1 and Tx2

cannot be distinct extreme points of BX. Therefore, Tx1 = Tx2. Now, there are 6 possibilities

for Tx1. Hence, there are 6 extreme contractions T ∈ L(X,X) such that MT ∩ Ext(BX) =

{±x1,±x2}. Similarly, it can shown that there are 6 extreme contractions T ∈ L(X,X) such

that MT ∩ Ext(BX) = {±x2,±x3}. Now, suppose that MT ∩ Ext(BX) = {±x1,±x3}. Since
x2 = x1 + x3 and ∥T∥ = 1, Tx1 ̸= Tx3. Observe that, if x, y are two linearly independent ex-

treme points of BX, then ∥x+ y∥ ≥ 1. Therefore, taking into account that Tx1, Tx3 ∈ Ext(BX)

and x2 /∈ MT , we conclude that Tx1, Tx3 are not linearly independent. Hence, Tx1 = −Tx3.

Now, there are 6 possibilities for Tx1. Thus, there are 6 extreme contractions T ∈ L(X,X)

such that MT ∩ Ext(BX) = {±x1,±x3}. So we get 18 extreme contractions T such that

|MT ∩ Ext(BX)| = 4.

(ii) Now, consider the case |MT ∩Ext(BX)| = 6, that is, MT ∩Ext(BX) = {±x1,±x2, ±x3}.
We show that in this case, T is an isometry. By Theorem 4.2 (or Theorem 4.3), Txi ∈ Ext(BX)

for some 1 ≤ i ≤ 3. Without loss of generality, let Tx1 ∈ Ext(BX) and Tx1 = x1. Now, the

following cases may hold:

(1) Tx3 ∈L[x1, x2], (2) Tx3 ∈L[x2, x3], (3) Tx3 ∈ L[x3,−x1],

(4) Tx3 ∈L[−x1,−x2], (5) Tx3 ∈L[−x2,−x3], (6) Tx3 ∈ L[−x3, x1].

We consider each case separately.

(1) Let Tx3 ∈ L[x1, x2]. Then Tx3 = tx1+(1−t)x2, for some t ∈ [0, 1]. Then Tx2 = Tx1+Tx3 =

x1+tx1+(1−t)x2 = (1+t)x1+(1−t)x2 =
(
3
2+

t
2 , (1−t)

√
3
2

)
. Thus, ∥Tx2∥ > 1, a contradiction.

(2) Let Tx3 ∈ L[x2, x3]. Then Tx3 = tx2+(1− t)x3, for some t ∈ [0, 1]. Thus, Tx2 = tx1+x2 =

(t+ 1
2 ,

√
3
2 ). Since ∥Tx2∥ = 1, we must have t = 0, that is, Tx3 = x3.

(3) Let Tx3 ∈ L[x3,−x1]. Then Tx3 = tx3 − (1 − t)x1 for some t ∈ [0, 1]. Thus, Tx2 = tx2.

Since ∥Tx2∥ = 1, we have t = 1. Thus, Tx3 = x3.

(4) Let Tx3 ∈ L[−x1,−x2]. Then Tx3 = −tx1 − (1 − t)x2 for some t ∈ [0, 1]. Thus, Tx2 =

−(1− t)x3. Since ∥Tx2∥ = 1, we have t = 0. Thus, Tx3 = −x2.

(5) Let Tx3 ∈ L[−x2,−x3]. Then Tx3 = −tx2 − (1 − t)x3 for some t ∈ [0, 1]. Thus, Tx2 =

(1− t)x1 − x3 =
(
3
2 − t,−

√
3
2

)
. Since ∥Tx2∥ = 1, we have t = 1. Thus, Tx3 = −x2.

(6) Let Tx3 ∈ L[−x3, x1]. Then Tx3 = tx1 − (1− t)x3 for some t ∈ [0, 1]. Similarly as case (1),
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we can show that ∥Tx2∥ > 1, a contradiction.

Therefore, if Tx1 = x1, then considering all possibilities for Tx3, we get that either Tx3 = x3

or Tx3 = −x2. In each case, T is an isometry. Clearly, an isometry is an extreme contraction.

Now, it is easy to observe that there are 12 isometries on X. Therefore, there are 12 extreme

contractions T such that |MT ∩ Ext(BX)| = 6.

Combining (i) and (ii), we get total 18 + 12 = 30 extreme contractions on X.
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CHAPTER 5

COMPLETE CHARACTERIZATION OF

K−SMOOTHNESS OF OPERATORS

DEFINED ON ℓ3∞

5.1 Introduction

The problem of characterizing k−smooth operators defined between arbitrary Banach spaces

is relatively new but an important area of research which plays an important role to identify

the structure of the unit ball of a Banach space. There are several papers including [14, 15,

24, 32, 39, 67] that contain the study of k−smoothness of operators on different spaces. In this

chapter, our objective is to study the k−smoothness of bounded linear operators defined on ℓ3∞.

Let us first fix the notation and terminology.

We denote X as real Banach space throughout the chapter. The unit sphere and the unit

ball of X respectively denoted by SX and BX. Let L(X) denote the space of all bounded linear

operators defined on X endowed with the usual operator norm. For T ∈ L(X), MT denotes the

collection of all unit vectors of X at which T attains its norm, i.e., MT = {x ∈ SX : ∥Tx∥ = ∥T∥}.
For a set A, the cardinality of A is denoted by |A|. The dual space of X is denoted by X∗. An

element x ∈ SX is said to be an extreme point of the convex set BX if and only if x = (1−t)y+tz

for some y, z ∈ BX and t ∈ (0, 1) implies that y = z = x. The set of all extreme points of BX is

denoted by Ext(BX). An element x∗ ∈ SX∗ is said to be a supporting linear functional of x ∈ SX,

if x∗(x) = 1. For a unit vector x, let J(x) denote the set of all supporting linear functionals of
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x, i.e., J(x) = {x∗ ∈ SX∗ : x∗(x) = 1}. The set J(x) for x ∈ SX plays a significant role to study

the k−smoothness of x. By the Hahn-Banach Theorem, it is easy to verify that J(x) ̸= ∅, for
all x ∈ SX. We would like to mention that J(x) is a weak*-compact convex subset of SX∗ . A

unit vector x is said to be a smooth point if J(x) is singleton. X is said to be a smooth Banach

space if every unit vector of X is smooth. The set of all extreme points of J(x) is denoted by

Ext J(x), where x ∈ SX.

In 2005, Khalil and Saleh [24] defined k−smooth points as follows: An element x ∈ SX is said to

be k−smooth or the order of smoothness of x is k, if J(x) contains exactly k linearly independent

supporting linear functionals of x. In other words, x is k−smooth, if dim span J(x) = k.

Moreover, from [32, Prop. 2.1], we get that x is k−smooth, if k = dim span Ext J(x). Similarly,

for T ∈ L(X,Y) with ∥T∥ = 1, J(T ) = {F ∈ L(X,Y)∗ : ∥F∥ = 1, F (T ) = 1} and T is said to

be k−smooth operator, if k = dim span J(T ) = dim span Ext J(T ). Observe that, 1−smooth

points of SX are the smooth points of SX. For a convex set C, intr(C) denotes the relative

interior of the set C, i.e., x ∈ intr(C) if there exists ϵ > 0 such that B(x, ϵ) ∩ affine(C) ⊆ C,

where affine(C) is the intersection of all affine sets containing C and an affine set is defined as

the translation of a vector subspace. A non-empty convex subset F of C is said to be a face of

C, if for x, y ∈ C and t ∈ (0, 1), (1− t)x+ ty ∈ F ⇒ x, y ∈ F.

We state the following lemma [68, Lemma 3.1], characterizing Ext J(T ), which will be used

often. For simplicity we state the lemma for finite-dimensional Banach space Y = X.

Lemma 5.1. [68, Lemma 3.1] Suppose that X is a finite-dimensional Banach space. Let T ∈
L(X) and ∥T∥ = 1 Then

Ext J(T ) = {y∗ ⊗ x ∈ L(X)∗ : x ∈ MT ∩ Ext(BX), y
∗ ∈ Ext J(Tx)},

where y∗ ⊗ x : L(X) → R is defined by y∗ ⊗ x(S) = y∗(Sx) for every S ∈ L(X).

We state the following useful lemma which will be used often to prove maximum the theorems

of the chapter. We give the statement in more simplified form (considering Y = X.)

Lemma 5.2. [39, Lemma 2.1] Suppose X is a finite-dimensional Banach space. If {x1, x2, . . . , xm}
is a linearly independent subset of X and {y∗1, y∗2, . . . , y∗n} is a linearly independent subset of X∗,

then {y∗i ⊗ xj : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a linearly independent subset of L(X)∗.
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5.2 Complete characterization of k−smooth

elements of L(ℓ3∞)

We denote the extreme points of ℓ3∞ by±x1 = ±(1, 1, 1),±x2 = ±(−1, 1, 1),±x3 = ±(−1,−1, 1),

± x4 = ±(1,−1, 1). |MT ∩ Ext(Bℓ3∞)| plays an important role in determining the order of

smoothness of T. Observe that if |MT ∩ Ext(Bℓ3∞)| ≤ 6, then the order of smoothness of

T can be obtained using [39, Th. 2.2]. Therefore, we only consider the case for which

|MT ∩ Ext(Bℓ3∞)| = 8, i.e., MT ∩ Ext(Bℓ3∞) = {±x1,±x2,±x3,±x4}. We denote the facets

{(x, y, z) : x = 1}, {(x, y, z) : y = 1} and {(x, y, z) : z = 1} of SX respectively by F1, F2 and F3.

Let us denote the supporting functionals corresponding to the factes F1, F2 and F3 respectively

by y∗1, y
∗
2 and y∗3.

Note that, for 1 ≤ i ≤ 4, Txi is k−smooth, where k ∈ {1, 2, 3}. Suppose Sk = {x ∈
MT ∩ Ext(Bℓ3∞) : Tx is k − smooth}, where k ∈ {1, 2, 3}. Clearly, |S1|+ |S2|+ |S3| = 8.

In the following theorem, we consider the case when |S1| = 8.

Theorem 5.1. Let X = ℓ3∞ and let T ∈ SL(X) be such that MT∩Ext(BX) = {±x1,±x2,±x3,±x4}.
Let |S1| = 8. Then the following hold:

(i) If ±J(Txi) = ±J(Txj) for all xi, xj ∈ S1, then T is 3−smooth.

(ii) Otherwise, T is 4−smooth.

Proof. (i) Suppose the given condition is satisfied. Let ±J(Txi) = {±y∗} for 1 ≤ i ≤ 4. Now,

if T is k−smooth, then

k = dim span J(T )

= dim span Ext J(T )

= dim span {y∗ ⊗ x1, y
∗ ⊗ x2, y

∗ ⊗ x3, y
∗ ⊗ x4}

= dim span {y∗ ⊗ x1, y
∗ ⊗ x2, y

∗ ⊗ x3}

= 3, (using Lemma 5.2).

Hence, T is 3−smooth.

(ii) Let ±J(Txi) = {±y∗i } for 1 ≤ i ≤ 4. Since (i) is not satisfied, without loss of generality, we

assume y∗1 ̸= ±y∗2, i.e., {y∗1, y∗2} is linearly independent. Let y∗3 = ay∗1 + by∗2 and y∗4 = cy∗1 + dy∗2,

where a, b, c, d ∈ R. Since ∥y∗3∥ = 1, a and b cannot be zero simultaneously. Similarly, c and d
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can not be zero simultaneously. Now, if T is k−smooth, then

k = dim span J(T )

= dim span Ext J(T )

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x2, y

∗
3 ⊗ x3, y

∗
4 ⊗ x4}.

We show that {y∗1 ⊗ x1, y
∗
2 ⊗ x2, y

∗
3 ⊗ x3, y

∗
4 ⊗ x4} is linearly independent. Let ci(1 ≤ i ≤ 4) ∈ R

be such that

c1y
∗
1 ⊗ x1 + c2y

∗
2 ⊗ x2 + c3y

∗
3 ⊗ x3 + c4y

∗
4 ⊗ x4 = 0.

Then

c1y
∗
1 ⊗ x1 + c2y

∗
2 ⊗ x2 + c3(ay

∗
1 + by∗2)⊗ x3 + c4(cy

∗
1 + dy∗2)⊗ (x1 − x2 + x3) = 0.

⇒ (c1 + c4c)y
∗
1 ⊗ x1 + (c2 − c4d)y

∗
2 ⊗ x2 + (c3a+ c4c)y

∗
1 ⊗ x3 + (c3b+ c4d)y

∗
2 ⊗ x3

−c4cy
∗
1 ⊗ x2 + c4dy

∗
2 ⊗ x1 = 0.

Since {x1, x2, x3} is linearly independent subset of X and {y∗1, y∗2} is linearly independent subset

of X∗, from Lemma 5.2, we get that {y∗1⊗x1, y
∗
2⊗x1, y

∗
1⊗x2, y

∗
2⊗x2, y

∗
1⊗x3, y

∗
2⊗x3} is linearly

independent subset of L(X)∗. Therefore,

c1 + c4c = 0, c2 − c4d = 0, c3a+ c4c = 0, c3b+ c4d = 0, c4c = 0, c4d = 0.

Now, solving these equations, we obtain ci = 0 for all 1 ≤ i ≤ 4. Therefore, {y∗1 ⊗ x1, y
∗
2 ⊗

x2, y
∗
3 ⊗ x3, y

∗
4 ⊗ x4} is linearly independent. Hence, k = 4 and T is 4−smooth.

In the following theorem, we consider the case when |S1| = 6 and |S2| = 2.

Theorem 5.2. Let X = ℓ3∞ and let T ∈ SL(X) be such that MT∩Ext(BX) = {±x1,±x2,±x3,±x4}.
Let |S1| = 6 and |S2| = 2. Then the following hold:

(i) If ±J(Txi) = ±J(Txj) for all xi, xj ∈ S1 and ±J(Txi) ⊆ ±Ext J(Txk) for all xi ∈ S1 and

xk ∈ S2, then T is 4−smooth.

(ii) Otherwise, T is 5−smooth.

Proof. Without loss of generality, we assume Tx1 is 2−smooth and Txi are smooth for 2 ≤ i ≤ 4.
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(i) Let the given condition be satisfied. Without loss of generality, we may assume Tx1

belongs to the edge {(1, 1, z) : |z| ≤ 1} and Tx2, Tx3, Tx4 belong to the facet F1. Thus

Ext J(Tx1) = {y∗1, y∗2} and J(Txi) = {y∗1} for i = 2, 3, 4. Now, if T is k−smooth, then

k = dim span J(T )

= dim span Ext J(T )

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
1 ⊗ x2, y

∗
1 ⊗ x3, y

∗
1 ⊗ x4}

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
1 ⊗ x2, y

∗
1 ⊗ x3}

= 4, (by Lemma 5.2).

Hence T is 4−smooth.

(ii) Suppose the condition (i) is not satisfied. Without loss of generality, we may assume

Tx1 belongs to the edge {(1, 1, z) : |z| ≤ 1}, Tx2, Tx3 belong to the facet F1 and Tx4 belongs

to the facet F2. Thus J(Tx1) = {y∗1, y∗2}, J(Txi) = {y∗1} for i = 2, 3 and J(Tx4) = {y∗2}. Now,
if T is k−smooth, then

k = dim span J(T )

= dim span Ext J(T )

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
1 ⊗ x2, y

∗
1 ⊗ x3, y

∗
2 ⊗ x4}.

We now show that {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
1 ⊗ x2, y

∗
1 ⊗ x3, y

∗
2 ⊗ x4} is linearly independent. Let us

consider the relation

c1y
∗
1 ⊗ x1 + c2y

∗
2 ⊗ x1 + c3y

∗
1 ⊗ x2 + c4y

∗
1 ⊗ x3 + c5y

∗
2 ⊗ x4 = 0, where c1, c2, c3, c4 ∈ R.

Then

c1y
∗
1 ⊗ x1 + c2y

∗
2 ⊗ x1 + c3y

∗
1 ⊗ x2 + c4y

∗
1 ⊗ x3 + c5y

∗
2 ⊗ (x1 − x2 + x3) = 0,

i.e.,

c1y
∗
1 ⊗ x1 + (c2 + c5)y

∗
2 ⊗ x1 + c3y

∗
1 ⊗ x2 − c5y

∗
2 ⊗ x2 + c4y

∗
1 ⊗ x3 + c5y

∗
2 ⊗ x3 = 0.

By Lemma 5.2, {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
1 ⊗ x2, y

∗
2 ⊗ x2, y

∗
1 ⊗ x3, y

∗
2 ⊗ x3} is linearly independent.

Therefore, c1 = c2 = c3 = c4 = c5 = 0. Thus, k = 5 and hence T is 5−smooth. In all the other
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cases, exactly in a similar manner, we can show that T is 5−smooth. This completes the proof

of the theorem.

Next, we consider the case when |S1| = |S2| = 4.

Theorem 5.3. Let X = ℓ3∞ and let T ∈ SL(X) be such that MT∩Ext(BX) = {±x1,±x2,±x3,±x4}.
Let |S1| = |S2| = 4. Then the following hold:

(i) If ±J(Txi) = ±J(Txj) for all xi, xj ∈ S1 and ±J(Txi) ⊆ ±Ext J(Txk) for all xi ∈ S1 and

xk ∈ S2, then T is 5−smooth.

(ii) Otherwise, T is 6−smooth.

Proof. Without loss of generality, we assume Tx1, Tx2 are 2−smooth points and Tx3, Tx4 are

smooth points.

(i) Let the given condition be satisfied, i.e., either Tx3, Tx4 or Tx3,−Tx4 belong to the same

facet which is adjacent to both of the edges El, where El contains Txl or −Txl for l = 1, 2.

Without loss of generality, we assume Tx1 belongs to the edge {(1, 1, z) : |z| ≤ 1}, Tx2 belongs

to the edge {(1, y, 1) : |y| ≤ 1}, Tx3, Tx4 belong to the facet F1. Thus, Ext J(Tx1) = {y∗1, y∗2},
Ext J(Tx2) = {y∗1, y∗3} and J(Tx3) = J(Tx4) = {y∗1}. Now, if T is k−smooth, then

k = dim span J(T )

= dim span Ext J(T )

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
1 ⊗ x2, y

∗
3 ⊗ x2, y

∗
1 ⊗ x3, y

∗
1 ⊗ x4}

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
1 ⊗ x2, y

∗
3 ⊗ x2, y

∗
1 ⊗ x3}

= 5 (by Lemma 5.2).

Hence T is 5−smooth. In all the other cases, similarly we can show that T is 5−smooth.

(ii) Let the condition (a) be not satisfied. Then one of the following conditions hold:

(1) neither Tx3, Tx4 nor Tx3,−Tx4 belong to the same facet.

(2) either one of the pairs of Tx3, Tx4 and Tx3,−Tx4 belongs to the same facet which is not

the common adjacent facet of the edges El, where El contains Txl or −Txl for l = 1, 2.

Let (1) be true. Without loss of generality, we assume Tx1, Tx2 belong to the edge {(1, 1, z) :
|z| ≤ 1}, Tx3 belongs to the facet F1 and Tx4 belongs to the facet F2. Thus, J(Tx1) = J(Tx2) =
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{y∗1, y∗2}, J(Tx3) = {y∗1} and J(Tx4) = {y∗2}. Now, if T is k−smooth, then

k = dim span J(T )

= dim span Ext J(T )

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
1 ⊗ x2, y

∗
2 ⊗ x2, y

∗
1 ⊗ x3, y

∗
2 ⊗ x4}

= 6,by simple calculation.

Hence T is 6−smooth. If (2) is true, then similarly we can show that T is 6−smooth. This

completes the proof of the theorem.

In the following theorem, we show that if |S1| = 2 and |S2| = 6, then T is 6−smooth.

Theorem 5.4. Let X = ℓ3∞ and let T ∈ SL(X) be such that MT∩Ext(BX) = {±x1,±x2,±x3,±x4}.
Let |S1| = 2, |S2| = 6. Then T is 6−smooth.

Proof. Without loss of generality, we assume Tx1, Tx2, Tx3 are 2−smooth points and Tx4 is

smooth point. If possible, let the edges El, l = 1, 2, 3 have no common adjacent facet, where El

contains Txl or −Txl.

Without loss let us assume Tx1 = (±1,±1, a), Tx2 = (±1, a′,±1), Tx3 = (a′′,±1,±1), where

|a|, |a′|, |a′′| < 1. Then

Tx4

= Tx1 − Tx2 + Tx3

= (±1,±1, a)− (±1, a′,±1) + (a′′,±1,±1),

which shows thar either ∥Tx4∥ > 1 or ∥Tx4∥ < 1, a contradiction. Therefore, the edges

El, l = 1, 2, 3 have common adjacent facet, where El contains Txl or −Txl.

If possible let Tx4 does not belong to the common adjacent facet of El, l = 1, 2, 3. Without loss

let Tx1 = (±1,±1, a), Tx2 = (±1,±1, a′), Tx3 = (±1, b,±1), where |a|, |a′|, |b| < 1. Then

Tx4

= Tx1 − Tx2 + Tx3

= (±1,±1, a)− (±1,±1, a′) + (±1, b,±1)

= (±1, b, a− a′ ± 1),

otherwise ∥Tx4∥ > 1, which shows that either Tx4 or−Tx4 must belong to the common adjacent

facet of El, l = 1, 2, 3.
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Without loss of generality we assume Tx1, Tx2 belong to the edge {(1, 1, z) : |z| ≤ 1}, Tx3
belongs to the edge {(1, y, 1) : |y| ≤ 1}, Tx4 belongs to the facet F1. Thus, Ext J(Tx1) =

Ext J(Tx2) = {y∗1, y∗2}, Ext J(Tx3) = {y∗1, y∗3} and J(Tx4) = {y∗1}. Now, if T is k−smooth,

then

k = dim span J(T )

= dim span Ext J(T )

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
1 ⊗ x2, y

∗
2 ⊗ x2, y

∗
1 ⊗ x3, y

∗
3 ⊗ x3, y

∗
1 ⊗ x4}

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
1 ⊗ x2, y

∗
2 ⊗ x2, y

∗
1 ⊗ x3, y

∗
3 ⊗ x3}

= 6, (by Lemma 5.2).

Hence T is 6−smooth. In all the other cases, similarly we can show that T is 6−smooth.

Theorem 5.5. Let X = ℓ3∞ and let T ∈ SL(X) be such that MT∩Ext(BX) = {±x1,±x2,±x3,±x4}.
Let |S2| = 8. Then the following hold:

(i) If
∣∣ ∩4

i=1 ±Ext J(Txi)
∣∣ = 4, then T is 6−smooth.

(ii) Otherwise, T is 7−smooth.

Proof. (i) Suppose the given condition is satisfied. Without loss of generality we assume Tx1

belongs to the edge {(1, 1, z) : |z| ≤ 1}, , Tx2 belongs to the edge {(−1, 1, z) : |z| ≤ 1}, Tx3
belongs to the edge {(−1,−1, z) : |z| ≤ 1} and Tx4 belongs to the edge {(1,−1, z) : |z| ≤
1}. Thus, Ext J(Tx1) = {y∗1, y∗2}, Ext J(Tx2) = {y∗2,−y∗1}, Ext J(Tx3) = {−y∗1,−y∗2} and

Ext J(Tx4) = {y∗1,−y∗2}. Now, if T is k−smooth, then

k = dim span J(T )

= dim span Ext J(T )

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
2 ⊗ x2, y

∗
1 ⊗ x2, y

∗
1 ⊗ x3, y

∗
2 ⊗ x3, y

∗
1 ⊗ x4,

y∗2 ⊗ x4}

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
1 ⊗ x2, y

∗
2 ⊗ x2, y

∗
1 ⊗ x3, y

∗
2 ⊗ x3}

= 6 (by Lemma 5.2).

Hence, T is 6−smooth. In all the other cases, similarly we can show that T is 6−smooth.

(ii) Suppose the condition of (a) is not satisfied. We first show that the edges El, l = 1, 2, 3

have a common adjacent facet, where El contains Txl or −Txl. If possible, let the edges El, l =

1, 2, 3 have no common adjacent facet, where El contains Txl or −Txl. Let Tx1 = (±1,±1, a),
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Tx2 = (±1, a′,±1), Tx3 = (a′′,±1,±1), where |a|, |a′|, |a′′| < 1. Then

Tx4

= Tx1 − Tx2 + Tx3

= (±1,±1, a)− (±1, a′,±1) + (a′′,±1,±1),

which shows that either ∥Tx4∥ > 1 or ∥Tx4∥ < 1, a contradiction. Now, let exactly four points

of the 2−smooth points belong to parallel edges. Let Tx1 = (±1,±1, a), Tx2 = (±1,±1, a′),

Tx3 = (±1, b,±1), where |a|, |a′|, |b| < 1. Then

Tx4

= Tx1 − Tx2 + Tx3

= (±1,±1, a)− (±1,±1, a′) + (±1, b,±1)

= (±1, b, a− a′ ± 1),

otherwise ||Tx4|| > 1. So we must have a = a′ as Tx4 is 2−smooth and then {(x, y, z) : x = 1}
is the common facet which is adjacent to the edges containing Txi, or −Txi, i = 1, 2, 3, 4.

The other cases are similar. Without loss of generality, we assume Tx1, Tx2 belong to the

edge {(1, 1, z) : |z| < 1}, Tx3 belongs to the edge {(x, 1, 1) : |x| < 1}, Tx4 belongs to the

edge {(x,−1, 1) : |x| < 1}. Therefore, F2 is the required common facet. Thus, Ext J(Tx1) =

J(Tx2) = {y∗1, y∗2}, Ext J(Tx3) = {y∗2, y∗3} and Ext J(Tx4) = {−y∗2, y
∗
3}. Now, if T is k−smooth,

then

k = dim span J(T )

= dim span Ext J(T )

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
1 ⊗ x2, y

∗
2 ⊗ x2, y

∗
2 ⊗ x3, y

∗
3 ⊗ x3,−y∗2 ⊗ x4,

y∗3 ⊗ x4}

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
1 ⊗ x2, y

∗
2 ⊗ x2, y

∗
2 ⊗ x3, y

∗
3 ⊗ x3, y

∗
3 ⊗ x4}

= 7, ( by simple calculation).

Hence T is 7−smooth. In all the other cases, similarly we can show that T is 7−smooth. This

completes the proof of the theorem.

Now, we turn our attention to the case S3 ̸= ∅. In Theorem 5.6 we assume |S3| = 2, S2 = ∅
and in Theorem 5.7, we consider S3 = 2, S2 ̸= ∅.
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Theorem 5.6. Let X = ℓ3∞ and let T ∈ SL(X) be such that MT∩Ext(BX) = {±x1,±x2,±x3,±x4}.
Let |S1| = 6, |S3| = 2. Then the following hold:

(i) If ±J(Txi) = ±J(Txj) for all xi, xj ∈ S1, then T is 5−smooth.

(ii) Otherwise, T is 6−smooth.

Proof. Without loss of generality we assume ±Tx1 are 3−smooth.

(i) Suppose the given condition is satisfied. Without loss of generality, we may assume Tx1 =

(1, 1, 1) and Tx2, Tx3, Tx4 belong to the facet F1. Thus, Ext J(Tx1) = {y∗1, y∗2, y∗3} and J(Txi) =

{y∗1} for i = 2, 3, 4. Now, if T is k−smooth, then

k = dim span J(T )

= dim span Ext J(T )

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
3 ⊗ x1, y

∗
1 ⊗ x2, y

∗
1 ⊗ x3, y

∗
1 ⊗ x4}

= dim span {y∗ ⊗ x1, y
∗
2 ⊗ x1, y

∗
1 ⊗ x1, y

∗
1 ⊗ x2, y

∗
1 ⊗ x3}

= 5 (by Lemma 5.2).

Hence T is 5−smooth. In all the other cases, similarly we can show that T is 5−smooth.

(ii) Suppose the condition (a) is not satisfied. Without loss of generality, we may assume

Tx1 = (1, 1, 1), and Tx2, Tx3 belong to the facet F1 and Tx4 belongs to the facet F2. Thus,

J(Tx1) = {y∗1, y∗2, y∗3} and J(Tx2) = J(Tx3) = {y∗1} and J(Tx4) = {y∗2}. Now, if T is k−smooth,

then

k = dim span J(T )

= dim span Ext J(T )

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
3 ⊗ x1, y

∗
1 ⊗ x2, y

∗
1 ⊗ x3, y

∗
2 ⊗ x4}

= 6, (by simple calculation).

Hence T is 6−smooth. In all the other cases, similarly we can show that T is 6−smooth.

Theorem 5.7. Let X = ℓ3∞ and let T ∈ SL(X) be such that MT∩Ext(BX) = {±x1,±x2,±x3,±x4}.
Let |S3| = 2, S2 ̸= ∅. Then the following hold:

(I) If |S2| = 2, then T is 6−smooth.

(II) If |S2| = 4, then T is 7−smooth.

(III) If |S2| = 6, then T is 7−smooth.
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Proof. Without loss of generality we assume Tx1 is 3−smooth. So, Tx1 = (±1,±1,±1).

(I) Let |S2| = 2. Without loss of generality, we assume Tx2 is 2−smooth and Tx2 =

(±1,±1, c), where |c| < 1. Then Txi are smooth for 3 ≤ i ≤ 4. If possible, suppose that

Tx3 = (l,m,±1), where |l|, |m| < 1. Then

Tx4

= Tx1 − Tx2 + Tx3

= (±1,±1,±1)− (±1,±1, c) + (l,m,±1)

= (l,m, c),

otherwise ∥Tx4∥ > 1. So ∥Tx4∥ < 1, which is a contradiction. Therefore, either Tx3 = (±1, a, b),

where |a|, |b| < 1 or Tx3 = (p,±1, q), where |p|, |q| < 1. Without loss of generality, let Tx3 =

(±1, a, b), where |a|, |b| < 1. Then

Tx4

= Tx1 − Tx2 + Tx3

= (±1,±1,±1)− (±1,±1, c) + (±1, a, b)

= (±1, a,±1− c+ b),

otherwise ∥Tx4∥ > 1. If b = c, then Tx4 will be 2−smooth, a contradiction. Therefore, b ̸= c and

Tx3, Tx4 belong to the same facet which is one of the adjacent facet of the edge containing Tx2.

For simplicity, suppose Tx1 = (1, 1, 1), Tx2 belongs to the edge {(1, 1, z) : |z| ≤ 1} and Tx3, Tx4

belong to the facet F1. Thus, we have Ext J(Tx1) = {y∗1, y∗2, y∗3}, Ext J(Tx2) = {y∗1, y∗2} and

J(Tx3) = J(Tx4) = {y∗1}. Now, if T is k−smooth, then

k = dim span J(T )

= dim span Ext J(T )

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
3 ⊗ x1, y

∗
1 ⊗ x2, y

∗
2 ⊗ x2, y

∗
1 ⊗ x3, y

∗
1 ⊗ x4}

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
3 ⊗ x1, y

∗
1 ⊗ x2, y

∗
2 ⊗ x2, y

∗
1 ⊗ x3}

= 6 (by Lemma 5.2).

Hence T is 6−smooth. Considering other cases, we can similarly show that T is 6−smooth.

(II) Let |S2| = 4. Without loss of generality, we assume Tx2, Tx3 are 2−smooth and Tx4
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is smooth. Without loss we may assume Tx2 = (±1,±1, c), |c| < 1. If possible, suppose that

Tx3 = (±1,±1, c′), where |c′| < 1. Then

Tx4

= Tx1 − Tx2 + Tx3

= (±1,±1,±1)− (±1,±1, c) + (±1,±1, c′)

= (±1,±1,±1− c+ c′),

otherwise ∥Tx4∥ > 1. So Tx4 is at least 2−smooth, which is a contradiction. Therefore, either

Tx3 = (±1, b,±1), where |b| < 1 or Tx3 = (a,±1,±1), where |a| < 1. Let Tx3 = (±1, b,±1),

where |b| < 1. Then

Tx4

= Tx1 − Tx2 + Tx3

= (±1,±1,±1)− (±1,±1, c) + (±1, b,±1)

= (±1, b,−c),

otherwise ∥Tx4∥ > 1. So Tx4 or −Tx4 belongs to the facet which is the common adjacent

facet to the edges containing Tx2, Tx3 or Tx2,−Tx3. Similarly, considering Tx3 = (a,±1,±1),

where |a| < 1, we can show that either Tx4 or −Tx4 belongs to the facet which is the common

adjacent facet to the edges containing Tx2, Tx3 or Tx2,−Tx3. For simplicity, let Tx1 = (1, 1, 1),

Tx2 belongs to the edge {(1, 1, z) : |z| ≤ 1}, Tx3 belongs to the edge {(1, y, 1) : |y| ≤ 1}
and Tx4 belongs to the facet {(x, y, z) : x = 1}. Thus, we have Ext J(Tx1) = {y∗1, y∗2, y∗3},
Ext J(Tx2) = {y∗1, y∗2}, Ext J(Tx3) = {y∗1, y∗3} and J(Tx4) = {y∗1}. Now, if T is k−smooth,

then

k = dim span J(T )

= dim span Ext J(T )

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
3 ⊗ x1, y

∗
1 ⊗ x2, y

∗
2 ⊗ x2, y

∗
1 ⊗ x3, y

∗
3 ⊗ x3,

y∗1 ⊗ x4}

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
3 ⊗ x1, y

∗
1 ⊗ x2, y

∗
2 ⊗ x2, y

∗
1 ⊗ x3, y

∗
3 ⊗ x3}

= 7 (by Lemma 5.2).

Hence T is 7−smooth. Considering other cases, similarly we can show that T is 7−smooth.
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(III) Let |S2| = 6. Then Tx2, Tx3, Tx4 are 2−smooth. Following the same argument used in

(II), we can conclude that all 2−smooth points Txi, i = 2, 3, 4 belong to the parallel edges, that

is, if Tx2 = (±1,±1, c), |c| < 1, then Tx3 = (±1,±1, c′), where |c′| < 1 and Tx4 = (±1,±1,±1−
c+ c′). For simplicity, let Tx1 = (1, 1, 1), Tx2, Tx3, Tx4 belong to the edge {(1, 1, z) : |z| ≤ 1}.
Thus, we have Ext J(Tx1) = {y∗1, y∗2, y∗3}, Ext J(Tx2) = Ext J(Tx3) = Ext J(Tx4) = {y∗1, y∗2}.
Now, if T is k−smooth, then

k = dim span J(T )

= dim span Ext J(T )

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
3 ⊗ x1, y

∗
1 ⊗ x2, y

∗
2 ⊗ x2, y

∗
1 ⊗ x3, y

∗
2 ⊗ x3,

y∗1 ⊗ x4, y
∗
2 ⊗ x4}

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
3 ⊗ x1, y

∗
1 ⊗ x2, y

∗
2 ⊗ x2, y

∗
1 ⊗ x3, y

∗
2 ⊗ x3}

= 7 (by Lemma 5.2).

Hence T is 7−smooth. Considering other cases, similarly we can show that T is 7−smooth.

This completes the proof of the theorem.

To completely determine the order of smoothness of T ∈ L(X), the only remaining case to

study is |S3| ≥ 4. Now, we consider this case.

Theorem 5.8. Let X = ℓ3∞ and let T ∈ SL(X) be such that MT∩Ext(BX) = {±x1,±x2,±x3,±x4}.
Let |S3| ≥ 4. Then the following hold:

(I) If |S3| = 4 and S2 = ∅, then T is 7−smooth.

(II) If |S3| = 4 and S2 ̸= ∅, then T is 8−smooth.

(III) If |S3| > 4 then |S3| = 8 and T is 9−smooth.

Proof. (I) Let |S3| = 4 and S2 = ∅. Then |S1| = 4. Without loss of generality, we assume

Tx1, Tx2 are 3−smooth and Tx3, Tx4 are smooth. So, Tx1 = Tx2 = (±1,±1,±1). First

assume that Tx3 = (±1, a, b), where |a|, |b| < 1. Then

Tx4

= Tx1 − Tx2 + Tx3

= (±1,±1,±1)− (±1,±1,±1) + (±1, a, b)

= (±1, a, b),

otherwise ||Tx4|| > 1. So Tx3, Tx4 belong to the facet F1 or −F1. Similarly, Tx3 = (a,±1, b),

where |a| < 1, |b| < 1, implies that Tx3, Tx4 belong to the facet F2 or −F2 and Tx3 = (a, b,±1),
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where |a| < 1, |b| < 1, implies that Tx3, Tx4 belong to the facet F3 or −F3. For simplicity,

we assume that Tx1 = Tx2 = (1, 1, 1), Tx3, Tx4 belong to {(x, y, z) : x = 1}. Thus, we have

Ext J(Tx1) = Ext J(Tx2) = {y∗1, y∗2, y∗3} and J(Tx3) = J(Tx4) = {y∗1}. Now, if T is k−smooth,

then

k = dim span J(T )

= dim span Ext J(T )

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
3 ⊗ x1, y

∗
1 ⊗ x2, y

∗
2 ⊗ x2, y

∗
3 ⊗ x2, y

∗
1 ⊗ x3,

y∗1 ⊗ x4}

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
3 ⊗ x1, y

∗
1 ⊗ x2, y

∗
2 ⊗ x2, y

∗
3 ⊗ x2, y

∗
1 ⊗ x3}

= 7 (by Lemma 5.2).

Hence T is 7−smooth. Similarly, considering other cases, we can show that T is 7−smooth.

(II) Let |S3| = 4 and S2 ̸= ∅. Without loss of generality, we assume Tx1, Tx2 are 3−smooth.

So, Tx1 = Tx2 = (±1,±1,±1). Suppose Tx3 is 2−smooth and Tx3 = (±1,±1, a), where |a|, < 1.

Then

Tx4

= Tx1 − Tx2 + Tx3

= (±1,±1,±1)− (±1,±1,±1) + (±1,±1, a)

= (±1,±1, a),

otherwise ||Tx4|| > 1. So Tx4 must be 2−smooth and Tx3, Tx4 belong to the parallel edges.

Similarly, considering other cases, we can show that Tx4 must be 2−smooth and Tx3, Tx4

belong to the parallel edges. Now, for simplicity, assume that Tx1 = Tx2 = (1, 1, 1), Tx3, Tx4

belongs to the edge {(1, 1, z) : |z| ≤ 1}. Thus, we have Ext J(Tx1) = Ext J(Tx2) = {y∗1, y∗2, y∗3}
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and J(Tx3) = J(Tx4) = {y∗1, y∗2}. Now, if T is k−smooth, then

k = dim span J(T )

= dim span Ext J(T )

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
3 ⊗ x1, y

∗
1 ⊗ x2, y

∗
2 ⊗ x2, y

∗
3 ⊗ x2, y

∗
1 ⊗ x3,

y∗2 ⊗ x3, y
∗
1 ⊗ x4, y

∗
2 ⊗ x4}

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
3 ⊗ x1, y

∗
1 ⊗ x2, y

∗
2 ⊗ x2, y

∗
3 ⊗ x2, y

∗
1 ⊗ x3,

y∗2 ⊗ x3}

= 8 (by Lemma 5.2).

Hence T is 8−smooth. Similarly, considering other cases we can show that T is 8−smooth.

(III) Let |S3| > 4. Suppose Tx1, Tx2, Tx3 are 3−smooth. So, we must have Tx1 = Tx2 =

Tx3 = (±1,±1,±1). Then

Tx4

= Tx1 − Tx2 + Tx3

= (±1,±1,±1)− (±1,±1,±1) + (±1,±1,±1)

= (±1,±1,±1),

otherwise ||Tx4|| > 1. Thus, Tx4 is also 3−smooth and |S3| = 8. Then we have ±Ext J(Tx1)± =

Ext J(Tx2) = ±Ext J(Tx3) = ±Ext J(Tx4) = {±y∗1,±y∗2,±y∗3}. Now, if T is k−smooth, then

k = dim span J(T )

= dim span Ext J(T )

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
3 ⊗ x1, y

∗
1 ⊗ x2, y

∗
2 ⊗ x2, y

∗
3 ⊗ x2, y

∗
1 ⊗ x3,

y∗2 ⊗ x3, y
∗
3 ⊗ x3, y

∗
1 ⊗ x4, y

∗
2 ⊗ x4, y

∗
3 ⊗ x4}

= dim span {y∗1 ⊗ x1, y
∗
2 ⊗ x1, y

∗
3 ⊗ x1, y

∗
1 ⊗ x2, y

∗
2 ⊗ x2, y

∗
3 ⊗ x2, y

∗
1 ⊗ x3,

y∗2 ⊗ x3, y
∗
3 ⊗ x3}

= 9 (by Lemma 5.2).

Hence T is 9−smooth. In all the other cases, similarly we can show that T is 9−smooth. This

completes the proof of the theorem.
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CHAPTER 6

NUMERICAL RADIUS NORM AND

NU-SMOOTHNESS OF ORDER K

6.1 Introduction

The purpose of this chapter is to study a generalized notion of smoothness and extreme con-

traction in the space of bounded linear operators endowed with numerical radius norm. We

also obtain necessary and sufficient conditions on operators having equal operator norm and

numerical radius norm. Let us first fix the notations and terminologies.

Let H and X denote respectively Hilbert space and Banach space over the field R. Suppose

BX = {x ∈ X : ∥x∥ ≤ 1} and SX = {x ∈ X : ∥x∥ = 1} respectively denote the unit ball and

the unit sphere of X. X∗ is the dual space of X. For a set A, the cardinality of A is denoted

by |A|. An element x ∈ SX is said to be an extreme point of the convex set BX if and only if

x = (1− t)y+ tz for some y, z ∈ BX and t ∈ (0, 1) implies that y = z = x. The set of all extreme

points of BX is denoted by Ext(BX). For x, y ∈ X, let L[x, y] = {tx+ (1− t)y : 0 ≤ t ≤ 1} and

L(x, y) = {tx + (1 − t)y : 0 < t < 1}. An element x∗ ∈ SX∗ is said to be a supporting linear

functional of x ∈ SX, if x
∗(x) = 1. For a unit vector x, let J(x) = {x∗ ∈ SX∗ : x∗(x) = 1}.

The set J(x) for x ∈ SX plays a significant role in our study. By the Hahn-Banach Theorem,

it is easy to verify that J(x) ̸= ∅, for all x ∈ SX. We would like to mention that J(x) is a

weak*-compact, convex subset of SX∗ . A unit vector x is said to be a smooth point if J(x) is

singleton. X is said to be a smooth Banach space if every unit vector of X is smooth.

Let L(H) and L(X) denote the set of all bounded linear operators on H and X respectively,
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endowed with the usual operator norm. For T ∈ L(H), the numerical range and numerical

radius of T, respectively denoted by W (T ) and w(T ) are defined as

W (T ) = {⟨Tx, x⟩ : x ∈ SH}.

w(T ) = sup{|⟨Tx, x⟩| : x ∈ SH}.

Readers can look into [41]. The natural generalization of numerical radius of an operator T on

a Banach space X is as follows:

w(T ) = sup{|x∗(Tx)| : x∗ ∈ SX∗ , x ∈ SX, x
∗(x) = 1}.

Numerical radius always defines a norm on the corresponding space if the underlying scalar field

is complex. However, there are some real Banach spaces X such that numerical radius defines a

norm on L(X). In this context, readers may follow [5, 4, 43] for further details. Here we consider

only those real finite-dimensional Banach spaces X such that numerical radius defines a norm

on L(X) and throughout the chapter we use the symbol L(X)w to denote the space of bounded

linear operators endowed with the numerical radius norm. For a bounded linear operator T on

X, its norm attainment set MT and numerical radius attainment set VT are defined as follows:

MT = {x ∈ SX : ∥Tx∥ = ∥T∥}.

VT = {x ∈ SX : ∃ x∗ ∈ J(x) such that |x∗(Tx)| = w(T )}.

Note that both the sets MT and VT are non-empty when X is finite-dimensional. We refers the

reader [55] for numerical radius attainment set. Suppose that

J(T ) = {f : SL(X)∗ : f(T ) = ∥T∥} and

Jw(T ) = {f : SL(X)∗w : f(T ) = w(T )}.

A non-zero operator T is said to be a smooth operator if J(T ) is singleton and T is said to be

k−smooth operator if k = dim span J(T ). Following [53], we call smooth operators of L(X)w as

nu-smooth operators. Clearly, for any non-zero T ∈ L(X)w, T is nu-smooth if and only if Jw(T )

is singleton. Motivated by the notion of smooth operator of order k or k-smooth operator, we

generalize the notion of nu-smooth operator in the following way.

Definition 6.1. Let X be a Banach space. A non-zero operator T ∈ L(X)w is said to be nu-

smooth of order k if there exist exactly k linearly independent elements f1, f2, . . . , fk ∈ Jw(T ).
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In other words, T is said to be nu-smooth of order k if

k = dim span Jw(T ) = dim span Ext Jw(T ).

Recall that an operator T ∈ SL(X) is called an extreme contraction if T is an extreme point

of BL(X). Similarly, we say that T ∈ SL(X)w is an nu-extreme contraction if T is an extreme

point of BL(X)w . For x
∗ ∈ X∗ and x ∈ X, the symbol x∗ ⊗ x denotes a linear functional on the

space of operators defined as (x∗ ⊗ x)(S) = x∗(Sx) for every operator S on X.

After this introductory part, the chapter has three sections. In Section 6.2, we characterize

those operators which have equal operator norm and numerical radius norm. Then in Section

6.3, we find the structure of span Ext Jw(T ) for a bounded linear operator T on a finite-

dimensional Banach space. With the help of this structure, we obtain the order of nu-smoothness

of some class of operators. Moreover, we completely characterize the nu-smooth operators of

order k on two-dimensional Banach spaces. We devote Section 6.4 to study the nu-extreme

contraction on a Banach space. Furthermore, we completely characterize the set of extreme

points of BL(X)∗w , where X a two-dimensional polygonal Banach space. To serve our purpose,

we need the following definition.

Definition 6.2. Let X be a Banach space. An element x ∈ SX is said to be nu-smooth of order

k with respect to T if there exist exactly k linearly independent elements x∗1, x
∗
2, . . . , x

∗
k ∈ J(x)

such that |x∗i (Txi)| = w(T ), i.e., x is said to be nu-smooth of order k with respect to T, if

k = dim span Jw(Tx), where Jw(Tx) = {x∗ ∈ J(x) : |x∗(Tx)| = w(T )}.

6.2 Operators with equal operator norm and

numerical radius norm

We begin this section with an easy observation.

Proposition 6.1. Suppose X is a Banach space. Let T ∈ L(X) be such that ±J(Tx)∩±J(x) ̸= ∅
for some x ∈ MT . Then ∥T∥ = w(T ).

Proof. Let x ∈ MT be such that±J(Tx)∩±J(x) ̸= ∅.As x ∈ MT , Tx belongs to the boundary of

the sphere centered at 0 of radius ∥T∥. Let x∗ ∈ ±J(Tx)∩±J(x). Then |x∗(Tx)| = ∥Tx∥ = ∥T∥.
Thus by the definition of w(T ), we have ∥T∥ = w(T ).

We would like to mention the following remark.
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Remark 6.1. If X is a finite-dimensional strictly convex Banach space then it is easy to observe

that ±J(Tx0) ∩ ±J(x0) ̸= ∅ for some x0 ∈ MT implies that Tx0 = x0 and hence clearly

∥T∥ = w(T ).

Next, we prove the converse of Proposition 6.1, when X is finite-dimensional.

Proposition 6.2. Suppose X is a finite-dimensional Banach space and T ∈ L(X) be such that

||T || = w(T ). Then ±J(Tx) ∩ ±J(x) ̸= ∅ for some x ∈ MT .

Proof. Without loss of generality, we may assume that ∥T∥ = 1. Let w(T ) = ∥T∥, i.e.,

sup{|x∗(Tx)| : x∗ ∈ J(x), x ∈ SX} = ||T ||. Then there exist a sequence {xn} ⊆ SX and x∗n ∈
J(xn) for each n ∈ N, such that |x∗n(Txn)| → ∥T∥. Since X is finite-dimensional, SX and SX∗ are

compact. Thus {xn} and {x∗n} have convergent sequences. Without loss of generality, we assume

xn → x and x∗n → x∗. Thus x ∈ SX and x∗ ∈ SX∗ . Now, |x∗n(xn)− x∗(x)| ≤ |x∗n(xn)− x∗n(x)|+
|x∗n(x)−x∗(x)| ≤ ∥xn−x∥+∥x∗n−x∗∥ → 0 and so x∗(x) = 1. This implies that x∗ ∈ J(x). Also,

|x∗n(Txn)−x∗(Tx)| ≤ |x∗n(Txn)−x∗n(Tx)|+ |x∗n(Tx)−x∗(Tx)| ≤ ∥Txn−Tx∥+ ∥x∗n−x∗∥ → 0.

Then x∗n(Txn) → x∗(Tx) so that |x∗(Tx)| = ∥T∥ and hence |x∗(Tx)| = w(T ). Now x∗ ∈ J(x)

forces ∥Tx∥ = ∥T∥ so that x ∈ MT . Thus x∗ ∈ ±J(Tx) ∩ ±J(x), where x ∈ MT . This proves

the proposition.

The following example shows the necessity of the assumption that dim(X) is finite.

Example 6.2. Let X = ℓp, 1 < p < ∞ and en be the sequence whose n-th coordinate is 1 and

all other coordinates are zero. Let T : X → X be defined by

T (x1, x2, x3, x4, . . . ) = (x2, 0,
2

3
x3,

3

4
x4, . . . ).

Then it is easy to observe that T is a linear operator, ∥T∥ = 1 and MT = {±e2}. Now to

find ±J(Te2) ∩ ±J(e2), let y∗ ∈ ±J(Te2) ∩ ±J(e2). If y∗ = (y1, y2, y3, . . . ), then |y∗(e2)| =
1 ⇒ |(y1, y2, y3, . . . )(0, 1, 0, . . . )| = 1 ⇒ |y2| = 1. Thus y∗ = (0,±1, 0, . . . ). Again |y∗(Te2)| =
|y∗(e1)| = |(0,±1, 0, . . . )(1, 0, 0, . . . )| = 0 ⇒ y∗ /∈ ±J(Te2). Therefore, ±J(Te2) ∩ ±J(e2) = ∅.
Clearly ∥T∥ = w(T ), which follows from the fact that

1 = ∥T∥ ≥ w(T ) ≥ supn∈N |e∗n(Ten)| = 1.

Combining Proposition 6.1 and Proposition 6.2, we get the following characterization of a

bounded linear operator on a finite-dimensional Banach space with equal operator norm and

numerical radius norm.
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Theorem 6.3. Suppose X is a finite-dimensional Banach space. Then for any T ∈ L(X),

∥T∥ = w(T ) if and only if ±J(Tx) ∩ ±J(x) ̸= ∅ for some x ∈ MT .

The following example illustrates the above theorem.

Example 6.4. Consider the two-dimensional Banach space X such that SX is a regular octagon

having vertices ±x1 = ±(1, 0),±x2 = ±( 1√
2
, 1√

2
),±x3 = ±(0, 1), ±x4 = ±(− 1√

2
, 1√

2
). Let

T ∈ L(X) be defined by T (1, 0) = ( 1√
2
, 1√

2
), T (0, 1) = (0, 0). Here ±J(Tx1) ∩±J(x1) ̸= ∅ where

x1 ∈ MT and hence by Theorem 6.3, ∥T∥ = w(T ).

We end this section with the following theorem which gives another sufficient condition for

the equality of operator norm and numerical radius norm of a bounded linear operator defined

on a Banach space.

Theorem 6.5. Let X be any Banach space and T ∈ SL(X). If for any ϵ > 0, there exists x ∈ SX

such that ∥Tx− x∥ < ϵ, then ∥T∥ = w(T ).

Proof. For each n ∈ N, there exists xn ∈ SX satisfying ∥Txn − xn∥ < 1
n . Consider the sequence

{x∗n} ∈ SX∗ such that x∗n(xn) = 1. So we have |x∗n(Txn − xn)| ≤ ∥x∗n∥∥Txn − xn∥ → 0. Thus

limn→∞ x∗n(Txn−xn) = 0 ⇒ limn→∞ x∗n(Txn) = limn→∞ x∗n(xn) = 1. Hence w(T ) = ∥T∥.

Let us give an example to see the role of the above theorem to find the equality of two norms

on operator space.

Example 6.6. Let X = ℓp, 1 ≤ p < ∞ and T ∈ L(X) be defined by

Ten = (1− 1

n
)en, n ∈ N,

where en is an element of ℓp whose n-th coordinate is 1 and all other coordinates are 0 for

n ∈ N. Then it is easy to observe that ∥T∥ = 1 and for any ϵ > 0, there exists x ∈ SX such that

∥Tx− x∥ < ϵ. Thus by above Theorem we conclude that ∥T∥ = w(T ).

6.3 Nu-smoothness of order k in the space

of bounded linear operators

We begin this section with a lemma which will be used to obtain the order of nu-smoothness of

operators.
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Lemma 6.1. Suppose X is a finite-dimensional Banach space and let T ∈ L(X)w. Then

(i) span (Jw(Tx) ∩ Ext(BX∗)) = span Jw(Tx), for each x ∈ SX.

(ii) span {x∗ ⊗ x : x ∈ VT ∩ Ext(BX), x
∗ ∈ Jw(Tx) ∩ Ext(BX∗)} = span {x∗ ⊗ x : x ∈

VT ∩ Ext(BX), x
∗ ∈ Jw(Tx)}.

(iii) span Ext Jw(T ) = span S, where S = {x∗ ⊗ x : x ∈ Ext(BX), x
∗ ∈ Ext(BX∗), x∗(x) =

1, |x∗(Tx)| = w(T )}.

Proof. (i) Observe that Jw(Tx)∩Ext(BX∗) ̸= ∅. Let x∗ ∈ Jw(Tx). First we show that span Jw(Tx) ⊆
span (Jw(Tx) ∩ Ext(BX∗)). If x∗ ∈ Jw(Tx) ∩ Ext(BX∗), we are done. Suppose x∗ is not an

extreme point of BX∗ . Then there exist x∗1, x
∗
2, . . . , x

∗
n ∈ Ext(BX∗) such that x∗ =

∑n
i=1 λix

∗
i ,

where λi ≥ 0 and
∑n

i=1 λi = 1. Now,

1 = x∗(x) = (
n∑

i=1

λi x
∗
i )(x) =

n∑

i=1

λi x
∗
i (x) ≤

n∑

i=1

λi = 1.

Thus x∗i (x) = 1 for all 1 ≤ i ≤ n, i.e., x∗i ∈ J(x) for all 1 ≤ i ≤ n. Also w(T ) = |x∗(Tx)| =
|(∑n

i=1 λi x
∗
i )(Tx)| = |∑n

i=1 λi x
∗
i (Tx)| ≤

∑n
i=1 λi |x∗i (Tx)| ≤

∑n
i=1 λiw(T ) = w(T ). Thus

|x∗i (Tx)| = w(T ) for all 1 ≤ i ≤ n, and so x∗i ∈ Jw(Tx)∩Ext(BX∗) for all 1 ≤ i ≤ n. Therefore,

x∗ ∈ span (Jw(Tx) ∩ Ext(BX∗)) and hence span Jw(Tx) ⊆ span (Jw(Tx) ∩ Ext(BX∗)). The

other inclusion is obvious. This completes the proof.

(ii) The proof is based on analogous arguments used in (i).

(iii) Let f ∈ Ext Jw(T ). Since Jw(T ) is the extremal subset of Ext(BL(X)∗w), f ∈ Ext(BL(X)∗w).

From [34, Th. 2.3] it follows that f = x∗ ⊗ x, where x ∈ Ext(BX), x
∗ ∈ Ext(BX∗), |x∗(x)| = 1.

Also, |x∗(Tx)| = |(x∗⊗x)(T )| = |f(T )| = w(T ). If x∗(x) = 1, then x∗⊗x ∈ S. Let x∗(x) = −1.

Then −x ∈ Ext(BX), x
∗ ∈ Ext(BX∗), x∗(−x) = 1 and also |x∗(T (−x))| = w(T ). So, −f =

−(x∗ ⊗ x) = x∗ ⊗ (−x) ∈ S and hence Ext JW (T ) ⊆ span S. Thus span Ext JW (T ) ⊆ span S.

For the reverse inclusion, let x∗ ⊗ x ∈ S, where x ∈ Ext(BX), x
∗ ∈ Ext(BX∗) with x∗(x) = 1

and |x∗(Tx)| = w(T ). We show that x∗⊗x ∈ span Ext Jw(T ). Now clearly x∗⊗x ∈ ±Jw(T ) ⊆
span Jw(T ). Also span Jw(T ) = span Ext Jw(T ). Thus x∗ ⊗ x ∈ span Ext Jw(T ). This

completes the proof of the lemma.

Using Lemma 6.1, we now obtain the order of nu-smoothness for a class of operators defined

on a finite-dimensional Banach space. The idea of the proof is motivated by [39, Th. 2.2]. For

the convenience of the reader, we give a sketch of the proof here.
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Theorem 6.7. Suppose X is a finite-dimensional Banach space. Let T ∈ L(X)w be such that

VT ∩Ext(BX) = {±x1,±x2, . . . ,±xr}, where {x1, x2, . . . , xr} is a linearly independent set in X.

Suppose xi is nu-smooth of order mi with respect to T for each 1 ≤ i ≤ r. Then T is nu-smooth

of order k, where m1 +m2 + . . .+mr = k.

Proof. Let dim(X) = n. Then r ≤ n. We extend the linearly independent set {x1, x2, . . . , xr} to

a basis {x1, x2, . . . , xn} of the space X, if r < n and in the case r = n the set {x1, x2, . . . , xr}
is already a basis. Suppose that T is nu-smooth of order k and each xi is nu-smooth of or-

der mi with respect to T. By Lemma 6.1, we have span Ext Jw(T ) = span {x∗ ⊗ x : x ∈
Ext(BX), x

∗ ∈ Ext(BX∗), x∗(x) = 1, |x∗(Tx)| = w(T )} = span {x∗⊗x : x ∈ VT ∩Ext(BX), x
∗ ∈

Jw(Tx) ∩ Ext(BX∗)}. Since, xi is nu-smooth of order mi with respect to T, we have, mi =

dim span Jw(Txi), for each 1 ≤ i ≤ n. Let {x∗ij ∈ Jw(Txi) : 1 ≤ j ≤ mi} be a basis of

span Jw(Txi) for each 1 ≤ i ≤ n. Let Wi = span {x∗ij ⊗ xi : x
∗
ij ∈ Jw(Txi)} for each 1 ≤ i ≤ n.

Clearly Bi = {x∗ij ⊗ xi : 1 ≤ j ≤ mi} is a basis of Wi. So, dim(Wi) = mi, 1 ≤ i ≤ n. Now,

k = dim span Ext Jw(T )

= dim span {x∗ ⊗ x : x ∈ VT ∩ Ext(BX), x
∗ ∈ Jw(Tx) ∩ Ext(BX∗)}

= dim span {x∗ ⊗ x : x ∈ VT ∩ Ext(BX), x
∗ ∈ Jw(Tx)}

= dim span {x∗ij ⊗ xi : x
∗
ij ∈ Jw(Txi), 1 ≤ i ≤ r}

= dim(W ),

where W = span {x∗ij ⊗ xi : x
∗
ij ∈ Jw(Txi), 1 ≤ i ≤ r}. Proceeding similarly as in [39, Th. 2.2],

we can show that W = ⊕r
i=1Wi. Hence,

k = dim(W ) = dim(⊕r
i=1Wi) = ⊕r

i=1 dim(Wi) = m1 +m2 + · · ·+mr.

This completes the proof of the theorem.

We now exhibit an example to show the role of above theorem to find the order of nu-

smoothness of an operator on a finite-dimensional Banach space.

Example 6.8. Consider the three-dimensional Banach space X such that SX is a polyhedron

having vertices ±x1,±x2, . . . ,±x6, where x1 = (1, 0, 1), x2 = (12 ,
√
3
2 , 1), x3 = (−1

2 ,
√
3
2 , 1), x4 =

(−1, 0, 1), x5 = (−1
2 ,−

√
3
2 , 1), x6 = (12 ,−

√
3
2 , 1). Let T ∈ L(X) be defined by

T (x, y, z) = (0,−y +

√
3

2
z,− 1√

3
y +

1

2
z).

Then Tx1 = (0,
√
3
2 , 12). It is easy to verify that w(T ) = 1

2 and VT ∩ Ext(BX) = {±x1}. Now,
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Jw(Tx1) = {x∗1,−x∗3, x
∗
4}, where x∗1(x, y, z) = x+ 1√

3
y, x∗3(x, y, z) = −x+ 1√

3
y and x∗4(x, y, z) = z.

Now, x1 is nu-smooth of order 3 with respect to T. Therefore, from Theorem 6.7, we conclude

that T is nu-smooth of order 3.

Let us now state the following easy lemma which will be used to prove some of the theorems.

We omit the proof to avoid monotonicity.

Lemma 6.2. Suppose X is a finite-dimensional Banach space. If {x1, x2, . . . , xm} is a linearly

independent subset of X and {x∗1, x∗2, . . . , x∗n} is a linearly independent subset of X∗ then {x∗i⊗xj :

1 ≤ i ≤ n, 1 ≤ j ≤ m} is a linearly independent subset of L(X)∗.

In the next theorem, we obtain the order of nu-smoothness of another class of operators de-

fined on a finite-dimensional Banach space. Here, we remove the assumption of Theorem 6.7 that

the set {x1, x2, . . . , xm} is linearly independent, where VT ∩ Ext(BX) = {±x1,±x2, . . . ,±xm}.
Instead we assume that span(VT ∩ Ext(BX)) = X.

Theorem 6.9. Let X be a finite-dimensional Banach space with dim(X) = n. Let T ∈ L(X)w
be such that VT ∩ Ext(BX) = {±x1,±x2, . . . ,±xm} where, span{x1, x2, . . . , xm} = X. Suppose

xi is nu-smooth of order n with respect to T for i = 1, 2, . . . ,m. Then T is nu-smooth of order

n2.

Proof. Clearly m ≥ n. If m = n, then {x1, x2, . . . , xm} is linearly independent and by Theorem

6.7 we get that T is nu-smooth of order n2. Now suppose that {x1, x2, . . . , xm} is linearly

dependent. When m > n there exists a subset of {x1, x2, . . . , xm} containing n elements which

is a basis of X. Without loss of generality, we may assume the subset as {x1, x2, . . . , xn}. Now, as
xi is nu-smooth of order n with respect to T for i = 1, 2, . . . ,m, we have dim span Jw(Tx) = n.

Suppose, {x∗ij : 1 ≤ j ≤ n} is a linearly independent subset of span Jw(Txi) for each 1 ≤ i ≤ m.

Now by Lemma 6.1,

span Ext Jw(T )

= span {x∗ ⊗ x : x ∈ Ext(BX), x
∗ ∈ Ext(BX∗), x∗(x) = 1, |x∗(Tx)| = w(T )}

= span {x∗ ⊗ x : x ∈ VT ∩ Ext(BX), x
∗ ∈ Jw(Tx)}.

Let x ∈ VT ∩ Ext(BX). Then there exist scalars ai, i = 1, 2, ..., n such that x = a1x1 + a2x2 +

...+ anxn. Now, let x∗ ∈ Jw(Tx). Since {x∗1j : 1 ≤ j ≤ n} is a basis of X, x∗ =
∑

1≤j≤n bjx
∗
1j for
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scalars bj (1 ≤ j ≤ n). Therefore,

x∗ ⊗ x = x∗ ⊗ (a1x1 + a2x2 + ...+ anxn)

=
( ∑

1≤j≤n

bjx
∗
1j

)
⊗
( ∑

1≤i≤n

aixi

)

=
∑

1≤i≤n,1≤j≤n

aibjx
∗
1j ⊗ xi

∈ span{x∗1j ⊗ xi : 1 ≤ i ≤ n, 1 ≤ j ≤ n}.

Since x ∈ VT ∩Ext(BX) and x∗ ∈ Jw(Tx) are arbitrary, we have span Ext Jw(T ) = span{x∗1j ⊗
xi : 1 ≤ i, j ≤ n}. Thus

dim span Ext Jw(T )

= dim span {x∗1j ⊗ xi : 1 ≤ i, j ≤ n}

= n2, (by Lemma 6.2).

Therefore, T is nu-smooth of order n2. This completes the proof of the theorem.

The following example shows the applicability of Theorem 6.9 over Theorem 6.7.

Example 6.10. Consider the two-dimensional polygonal Banach space X such that SX is a

polygon having vertices ±(1, 0),±(12 ,
√
3
2 ),±(−1

2 ,
√
3
2 ). Let T ∈ L(X) be defined by

T (1, 0) = (0,

√
3

2
), T (

1

2
,

√
3

2
) = (−3

4
,

√
3

4
).

Then

T (−1

2
,

√
3

2
) = (−3

4
,−

√
3

4
).

An easy calculation shows that

w(T ) =
1

2
, and VT ∩ Ext(BX) = {±(1, 0),±(

1

2
,

√
3

2
),±(−1

2
,

√
3

2
)}.

Clearly, for each x ∈ VT ∩Ext(BX), x is nu-smooth of order 2 with respect to T. Now by Theorem

6.9, we conclude that T is nu-smooth of order 4.

Note that, if X is a two-dimensional Banach space, T ∈ L(X)w and |VT ∩ Ext(BX)| ≤ 4,

then using Theorem 6.7, we get the order of nu-smoothness of the operator T. Whenever,

|VT ∩ Ext(BX)| > 4, we have to consider two separate cases, namely |VT ∩ Ext(BX)| = 6 and

|VT ∩Ext(BX)| > 8 to get the order of nu-smoothness of the operator T. We consider these two
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cases in the next two theorems. The proofs can be completed proceeding similarly as [39, Th.

3.1 & Th. 3.3]. We only state the theorems here.

Theorem 6.11. Suppose X is a two-dimensional Banach space and T ∈ L(X)w is such that

VT ∩ Ext(BX) = {±x1,±x2,±x3}. Then the following holds:

(i) If xi is nu-smooth with respect to T for each 1 ≤ i ≤ 3, then T is nu-smooth of order 3.

(ii) Let x1 be not nu-smooth with respect to T.

(a) If x2, x3 are nu-smooth with respect to T and ±Jw(Tx2) = ±Jw(Tx3), then T is nu-smooth

of order 3.

(b) Otherwise, T is nu-smooth of order 4.

Theorem 6.12. Suppose X is a two-dimensional Banach space. Let T ∈ L(X)w be such that

|VT ∩ Ext(BX)| ≥ 8. Then the following holds:

(i) If x is not nu-smooth with respect to T for some x ∈ VT ∩Ext(BX), then T is nu-smooth of

order 4.

(ii) Suppose x is nu-smooth with respect to T for each x ∈ VT ∩ Ext(BX). If xi ∈ VT ∩
Ext(BX), x∗i ∈ Jw(Txi) for i = 1, 2, 3, 4 are such that x2 = λ1x1 + λ3x3, x4 = µ1x1 + µ3x3

and x∗2 = γ1x
∗
1 + γ3x

∗
3, x

∗
4 = δ1x

∗
1 + δ3x

∗
3 with δ1γ3λ1µ3 − δ3γ1λ3µ1 ̸= 0, then T is nu-smooth of

order 4. Otherwise T is nu-smooth of order 3.

We end this section with the following interesting theorem which gives us the relation of the

order of nu-smoothness of an operator with its adjoint operator.

Theorem 6.13. Suppose X is a finite-dimensional Banach space and T ∈ L(X)w. Then T is

nu-smooth of order k if and only if T ∗ is nu-smooth of order k.

Proof. We first show that span Ext Jw(T ) = span Ext Jw(T
∗). Let f ∈ Ext Jw(T ). Then

f ∈ Ext(BL(X)∗w). Now by [34, Th. 2.3], there exist x ∈ Ext(BX) and x∗ ∈ Ext(BX∗) with

|x∗(x)| = 1 such that f = x∗ ⊗ x. Let x∗(x) = 1. Here,

f(T ) = w(T )

⇒ (x∗ ⊗ x)(T ) = w(T )

⇒ x∗(Tx) = w(T )

⇒ (T ∗x∗)(x) = w(T )

⇒ x(T ∗x∗) = w(T ∗).

Now, x∗ ∈ VT ∗ ∩ Ext(BX∗). Also x∗(x) = 1 ⇒ x(x∗) = 1 and hence x ∈ Jw(T
∗x∗). Thus
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x∗ ⊗ x ∈ span Ext Jw(T
∗). If x∗(x) = −1 then x∗(−x) = 1 and

|f(T )| = w(T )

⇒ |(x∗ ⊗ (−x))(T )| = w(T )

⇒ |x∗(Tx)| = w(T )

⇒ |(T ∗x∗)(x)| = w(T )

⇒ |x(T ∗x∗)| = w(T ∗)

⇒ | − x(T ∗x∗)| = w(T ∗).

Now, x∗ ∈ VT ∗ ∩Ext(BX∗). Also x∗(−x) = 1 ⇒ (−x)(x∗) = 1 and hence −x ∈ Jw(T
∗x∗). Thus

−(x∗⊗x) = x∗⊗ (−x) ∈ span Ext Jw(T
∗) which implies that f ∈ span Ext Jw(T

∗). Therefore,

Ext Jw(T ) ⊆ span Ext Jw(T
∗) and hence span Ext Jw(T ) ⊆ span Ext Jw(T

∗). Replacing T

by T ∗ we get span Ext Jw(T
∗) ⊆ span Ext Jw(T ). Thus span Ext Jw(T ) = span Ext Jw(T

∗)

and hence

dim span Ext Jw(T ) = dim span Ext Jw(T
∗).

Therefore, T is nu-smooth of order k if and only if T ∗ is nu-smooth of order k.

6.4 Nu-extreme contractions on finite

-dimensional polyhedral Banach spaces

We first recall that a finite-dimensional Banach space is said to be a polyhedral Banach space if

its unit ball has only finitely many extreme points. In particular, a two-dimensional polyhedral

Banach space is said to be a polygonal Banach space. The following proposition is necessary in

our study.

Proposition 6.3. [36, Proposition 2.1] Let X be a polyhedral Banach space of dimension n.

Let x ∈ SX. Then the following are equivalent:

(a) x is an exposed point of BX.

(b) x is an extreme point of BX.

(c) x is n−smooth.

In the next theorem, we obtain a relation between the order of nu-smoothness and nu-

extreme contraction on finite-dimensional polyhedral Banach spaces.

Theorem 6.14. Let X be a polyhedral Banach space such that dim(X) = n. Then T ∈ SL(X)w

is an nu-extreme contraction if and only if T is nu-smooth of order n2.
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Proof. Since X is finite-dimensional, we have from [34, Th. 2.3],

Ext(BL(X)∗w) ⊆ {x∗ ⊗ x : x ∈ Ext(BX), x
∗ ∈ Ext(BX∗), |x∗(x)| = 1}

⊆ {x∗ ⊗ x : x ∈ Ext(BX), x
∗ ∈ Ext(BX∗)}

= Ext(BX∗)⊗ Ext(BX).

Since Ext(BX∗) and Ext(BX) are finite sets, there are only finitely many extreme points in the

unit ball of L(X)∗w. Therefore, L(X)∗w is a polyhedral Banach space. Moreover, L(X)∗w is a finite-

dimensional Banach space. Therefore, L(X)w(= L(X)∗∗w ) is also a finite-dimensional polyhedral

Banach space. Now, dim(L(X)w) = n2. Hence, from Proposition 6.3, we can conclude that

T ∈ SL(X)w is an nu-extreme contraction if and only if T is nu-smooth of order n2.

With the help of above theorem we now completely characterize nu-extreme contractions

on a two-dimensional polygonal Banach space.

Theorem 6.15. Let X be a two-dimensional polygonal Banach space. Let T ∈ SL(X)w . Then T

is an nu-extreme contraction if and only if either of the following holds:

(i) VT ∩ Ext(BX) = {±x1,±x2} and x1, x2 are not nu-smooth with respect to T.

(ii) VT ∩ Ext(BX) = {±x1,±x2,±x3} and

|{xi : xi is not nu-smooth with respect to T}| ≥ 2.

(iii) VT ∩ Ext(BX) = {±x1,±x2,±x3}, x1 is not nu-smooth with respect to T , x2, x3 are nu-

smooth with respect to T, and Jw(Tx2) ̸= ±Jw(Tx3).

(iv) |VT ∩ Ext(BX)| ≥ 8 and there exists x ∈ VT ∩ Ext(BX) such that x is not nu-smooth with

respect to T.

(v) |VT ∩ Ext(BX)| ≥ 8 and x is nu-smooth with respect to T for each x ∈ VT ∩ Ext(BX).

Moreover, there exist xi ∈ VT ∩ Ext(BX), x∗i ∈ Jw(Txi) for i = 1, 2, 3, 4 such that x2 = λ1x1 +

λ3x3, x4 = µ1x1 + µ3x3 and x∗2 = γ1x
∗
1 + γ3x

∗
3, x

∗
4 = δ1x

∗
1 + δ3x

∗
3 with δ1γ3λ1µ3 − δ3γ1λ3µ1 ̸= 0.

Proof. From Theorem 6.14, we find that T is an nu-extreme contraction if and only if T is

nu-smooth of order 4. Observe that, if |VT ∩ Ext(BX)| < 4, then from Theorem 6.7, we can

conclude that T is not nu-smooth of order 4. Therefore, if T is nu-smooth of order 4, then

|VT ∩ Ext(BX)| ≥ 4. Hence, we only assume that |MT ∩ Ext(BX)| ≥ 4.

First let |VT ∩ Ext(BX)| = 4. In this case, we show that T is an nu-extreme contraction if

and only if (i) holds. Let VT ∩ Ext(BX) = {±x1,±x2} for some x1, x2 ∈ SX. Clearly, {x1, x2}
is linearly independent. Therefore, from Theorem 6.7, we can conclude that T is nu-extreme

contraction, that is, T is nu-smooth of order 4 if and only if x1 and x2 are nu-smooth of order
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2 with respect to T. Therefore, if |VT ∩ Ext(BX)| = 4, then T is an nu-extreme contraction if

and only if (i) holds.

Now, let |VT ∩Ext(BX)| = 6. In this case, we show that T is an nu-extreme contraction if and

only if either (ii) or (iii) holds. Let VT ∩Ext(BX) = {±x1,±x2,±x3} for some x1, x2, x3 ∈ SX.

Clearly if each xi is nu-smooth with respect to T, for 1 ≤ i ≤ 3, then by Theorem 6.7, T

is an nu-smooth of order 3 and hence T can not be an nu-extreme contraction. Thus T is an

nu-extreme contraction if and only if |{xi : xi is not nu-smooth with respect to T}| ≥ 1. Now

it is easy to observe that T is an nu-extreme contraction if and only either (ii) or (iii) holds.

Next, let |MT ∩ Ext(BX)| ≥ 8. Then from Theorem 6.12, we can easily conclude that T is

an nu-extreme contraction if and only if either (iv) or (v) holds.

Let us now study some examples to see the relation between the order of smoothness and

the order of nu-smoothness of an element of the unit sphere of a finite-dimensional Banach space

with respect to some linear operator defined on that Banach space and also see the connection

between the extreme points and nu-smoothness of order k for an element with respect to some

linear operator defined on that Banach space.

Example 6.16. Consider the two-dimensional Banach space X such that SX is a regular

hexagon having vertices ±x1,±x2,±x3, where x1 = (1, 0), x2 = (12 ,
√
3
2 ), x3 = (−1

2 ,
√
3
2 ). Let

T ∈ L(X) be defined by T (1, 0) = (12 ,
√
3
2 ), T (0, 1) = (0, 0). Here ±J(Tx1) ∩ ±J(x1) ̸= ∅ and

hence ∥T∥ = w(T ) = 1. Now, Tx1 = (12 ,
√
3
2 ) is an extreme point of BX but x1 is not nu-smooth

of order 2 with respect to T . In fact x1 is nu-smooth with respect to T as Jw(Tx1) = {x∗1},
where x∗1(x, y) = x+ 1√

3
y. Clearly x1 is 2−smooth.

Example 6.17. Consider the two-dimensional Banach space X such that SX is a regular

hexagon having vertices ±x1,±x2,±x3, where x1 = (1, 0), x2 = (12 ,
√
3
2 ), x3 = (−1

2 ,
√
3
2 ). Let

T ∈ L(X) be defined by T (1, 0) = (0,
√
3
2 ), T (0, 1) = (0, 0). It is easy to verify that w(T ) = 1

2

and x1 ∈ VT ∩ Ext(BX). Now Jw(Tx1) = {x∗1,−x∗3}, where x∗1(x, y) = x + 1√
3
y and x∗3(x, y) =

−x+ 1√
3
y. Thus x1 is not nu-smooth with respect to T , in fact it is nu-smooth of order 2 with

respect to T.

In [34, Th. 2.3] author studies the structure of extreme points in the dual of the space of

bounded linear operators defined on a finite-dimensional Banach space. We here obtain the exact

structure of the set of extreme points of BL(X)∗w using Theorem 6.14 when X is a two-dimensional

polygonal Banach space. For this we need the notion of Birkhoff-James orthogonality. Recall
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that for x, y ∈ X, x is said to be Birkhoff-James orthogonal [3, 20] to y, written as x ⊥B y if

∥x+ λy∥ ≥ ∥x∥ for all scalars λ.

Theorem 6.18. Suppose X is a two-dimensional polygonal Banach space. Then

Ext(BL(X)∗w) = {x∗ ⊗ x : x ∈ Ext(BX), x∗ ∈ Ext(BX∗), |x∗(x)| = 1}.

Proof. By [34, Th. 2.3], we get

Ext(BL(X)∗w) ⊆ {x∗ ⊗ x : x ∈ Ext(BX), x∗ ∈ Ext(BX∗), |x∗(x)| = 1}.

Here we prove only the reverse inclusion. Let x ∈ Ext(BX), x∗ ∈ Ext(BX∗) with |x∗(x)| = 1.

Then x and x∗ both are 2−smooth points as dim(X) = dim(X∗) = 2. Now let us take Ext J(x) =

{x∗, y∗} and Ext J(x∗) = {x, y}. Let (0 ̸=)z ∈ ker(x∗) and (0 ̸=)z1 ∈ ker(y∗). Then from [20,

Th. 2.1] it follows that x ⊥B z and x ⊥B z1. Observe that {z, z1} is linearly independent. Now

L(X)∗w is a 4-dimensional polyhedral Banach space. Thus by Proposition 6.3, f ∈ Ext(BL(X)∗w)

if and only if f is 4−smooth. For 1 ≤ i ≤ 4, we now define Ti ∈ L(X) by:

T1x = x T2x = y T3x = x T4x = x

T1z = 0 T2z = 0 T3z =
1

2
z T4z1 = 0.

Using Proposition 6.1, it is easy to observe that w(Ti) = ∥Ti∥ = 1 for all 1 ≤ i ≤ 4. Also we

have |(x∗⊗x)(Ti)| = |x∗(Ti(x)| = 1, where Ti ∈ L(X)w = L(X)∗∗w , i.e., Ti ∈ ±J(x∗⊗x). Let y =

ax+bz, z = cx+dz1. Then T4(z) = cT4(x) = cx. Finally performing an easy calculation it can be

proved that the set {Ti : 1 ≤ i ≤ 4} is linearly independent. Thus dim span J(x∗ ⊗ x) = 4 and

hence x∗⊗x is a 4−smooth point in the polyhedral Banach space L(X)∗w, where dim(L(X)∗w) = 4.

Therefore, by Proposition 6.3, we conclude that x∗⊗x ∈ Ext(BL(X)∗w). This completes the proof

of the theorem.

Finally, we end this section with following nice observation which gives a connection between

the number of extreme points of BX and the number of extreme points of BL(X)∗w , when X is a

two-dimensional polygonal Banach space.

Corollary 6.1. Suppose X is a two-dimensional polygonal Banach space such that |Ext(BX)| =
2n. Then |Ext(BL(X)∗w)| = 4n.

Proof. Let Ext(BX) = {±x1,±x2, . . . ,±xn}. Then |Ext(BX∗)| = 2n. By Theorem 6.18 and [34,
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Th. 2.3], we have

Ext(BL(X)∗w) = {x∗ ⊗ x : x ∈ Ext(BX), x
∗ ∈ Ext(BX∗), |x∗(x)| = 1}.

As |{x∗ ∈ Ext(BX∗) : |x∗(x)| = 1}| = 4 for each x ∈ Ext(BX), we have

|Ext(BL(X)∗w)| = 4n. This completes the proof.

81



CHAPTER 7

BIRKHOFF-JAMES ORTHOGONALITY

OF BOUNDED LINEAR OPERATORS

7.1 Introduction

The purpose of the present chapter is to continue the study of orthogonality properties of

bounded linear operators between Banach spaces, in light of the seminal result obtained by

Bhatia and Šemrl [2] regarding orthogonality of linear operators on Euclidean spaces. Let us

first establish the relevant notations and the terminologies in this context.

Letters X and Y denote Banach spaces. Throughout the chapter, we work only with real

Banach spaces. Let BX = {x ∈ X : ∥x∥ ≤ 1} and SX = {x ∈ X : ∥x∥ = 1} denote the

unit ball and the unit sphere of X respectively. Let Ext BX denotes the set of all extreme

points of BX. For a set S ⊂ X, |S| denotes the cardinality of S. Let L(X,Y) denote the Banach

space of all bounded linear operators from X to Y, endowed with the usual operator norm. We

write L(X,Y) = L(X), if X = Y. For a bounded linear operator T ∈ L(X,Y), let MT denote

Content of this chapter is based on the following paper:
A. Ray, D. Sain, S. Dey and K. Paul; Some remarks on orthogonality of bounded linear operators, J.
Convex Anal., 29 (2022) no. 1, 165-181.
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the norm attainment set of T, i.e., MT = {x ∈ SX : ∥Tx∥ = ∥T∥}. The notion of Birkhoff-

James orthogonality in a Banach space is well-known and is used extensively in the study of the

geometry of Banach spaces. For x, y ∈ X, x is said to be orthogonal to y in the sense of Birkhoff-

James [20], written as x⊥By, if ∥x+λy∥ ≥ ∥x∥ for all λ ∈ R. Similarly, for T,A ∈ L(X,Y), T is

said to be Birkhoff-James orthogonal to A, written as T⊥BA, if ∥T + λA∥ ≥ ∥T∥ for all λ ∈ R.

For the n-dimensional Euclidean space En, Bhatia and Šemrl [2] proved that for T,A ∈ L(En),

T⊥BA if and only if there exists x ∈ SEn such that ∥Tx∥ = ∥T∥ and Tx⊥BAx. For initial ideas

readers can look into [21, 22]. We refer the readers to [49, 48] for another approach in this

context. The characterization of Birkhoff-james orthogonality of compact operators on complex

reflexive banach spaces has been studied in [45]. In recent times, various generalizations of this

remarkable theorem has been obtained [61, 63] in the setting of Banach spaces. Our aim is to

study the BŠ Property of bounded linear operators between Banach spaces, especially when the

domain space and the co-domain spaces are polyhedral. X is said to be a polyhedral Banach

space if BX has only finitely many extreme points. Equivalently, X is a polyhedral Banach space

if BX is a polyhedron. Readers can go through [42] for details. In this context, let us mention

the following formal definition:

Definition 7.1. [57] Let X be a finite-dimensional polyhedral Banach space. Let F be a facet of

the unit ball BX of X. A functional f ∈ SX∗ is said to be a supporting functional corresponding

to the facet F of the unit ball BX if the following two conditions are satisfied:

(1) f attains norm at some point v of F,

(2) F = (v + ker f) ∩ SX.

We also make use of the concept of normal cones in a Banach space in our study.

Definition 7.2. A subset K of X is said to be a normal cone in X if

(i) K +K ⊂ K, (ii) αK ⊂ K for all α ≥ 0, and (iii) K ∩ (−K) = {θ}.

Normal cones are important in the study of the geometry of Banach spaces, because there

is a natural partial ordering ≥ associated with a normal cone K. Namely, for any two elements

x, y ∈ X, x ≥ y if x − y ∈ K. It is easy to observe that in a two-dimensional Banach space

X, any normal cone K is completely determined by the intersection of K with the unit sphere

SX. Keeping this in mind, when we say that K is a normal cone in X, determined by v1, v2,

what we really mean is that K ∩ SX =
{

(1−t)v1+tv2
∥(1−t)v1+tv2∥ : t ∈ [0, 1]

}
. Of course, in this case K =

{αv1 + βv2 : α, β ≥ 0}.
We are interested in the following: If dimX > 2 and MT ̸= D ∪ (−D), where D is a closed

connected subset of SX, then whether T ∈ L(X,Y) satisfies the BŠ Property, where Y is any

Banach space. With this motivation in mind, we introduce the following definition for a Banach

space X, which plays a significant role in our study.

83



Chapter 7. Birkhoff-James orthogonality of bounded linear operators

Definition 7.3. Let X be a Banach space. Given n ∈ N, we say that X has Property Pn if for

every choice of n vectors x1, x2, . . . , xn ∈ SX,
n⋃

i=1
x⊥i ⫋ X.

It is clear from the above definition that if X has Property Pn then X has Property Pm for

all m ∈ N, with m ≤ n. We illustrate the connection between Property Pn for a Banach space

and bounded linear operators not satisfying the BŠ Property. We further explore Property Pn

for different polyhedral Banach spaces.

7.2 Connection between Pn Property and

Bhatia-Šemrl Property

We begin this section with the observation that Theorem 2.3 of [62] holds true even if the co-

domain space is any Banach space with dimension at least two. Indeed, the said theorem can

be stated in the following more general form, by using essentially the same arguments presented

in the proof of the original result.

Theorem 7.1. Let X be a two-dimensional Banach space and let Y be a Banach space of

dimension greater than or equal to two. Let T ∈ L(X,Y) be such that MT has more than two

components. Then T does not satisfy the BŠ Property.

As a corollary to Theorem 7.1, we can provide an elementary condition on MT so that T

does not satisfy the BŠ Property, when X is a two-dimensional Banach space.

Corollary 7.1. Let X be a two-dimensional Banach space and let Y be a Banach space of

dimension greater than or equal to two. Let T ∈ L(X,Y) be such that there exist x, y ∈ MT with

x ̸= ±y and x+y
∥x+y∥ ,

x−y
∥x−y∥ /∈ MT . Then T does not satisfy the BŠ Property.

Proof. We claim that MT has more than two components. Let u1 = x+y
∥x+y∥ and u2 = x−y

∥x−y∥ .

Consider the following subsets of SX :

S1 =

{
(1− t)u1 + tu2
∥(1− t)u1 + tu2∥

: t ∈ (0, 1)

}
,

S2 =

{
(1− t)u1 + t(−u2)

∥(1− t)u1 − tu2∥
: t ∈ (0, 1)

}
,

S3 = −S1 and S4 = −S2.

Then clearly Si, i = 1, 2, 3, 4, are connected subsets of SX and by the construction of Si we

have, x ∈ S1, y ∈ S2, − x ∈ S3 and −y ∈ S4. Also, Si ∩ Sj = ϕ for all i, j ∈ {1, 2, 3, 4} with
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i ̸= j. As SX \ {± x+y
∥x+y∥ ,±

x−y
∥x−y∥} =

4⋃
i=1

Si, MT ⊆
4⋃

i=1
Si. Also for each disjoint connected set Si,

Si ∩MT ̸= ϕ. Therefore, MT must have more than two components. Hence using Theorem 7.1,

we conclude that T does not satisfy the BŠ Property.

The following example illustrates the applicability of Theorem 7.1 in studying the BŠ Prop-

erty of a bounded linear operator between Banach spaces.

Example 7.2. Consider a bounded linear operator T : ℓ21 → ℓ3∞, defined by T (x, y) = (x, y, x+y
2 )

for all (x, y) ∈ ℓ21. Then it is easy to see that ∥T∥ = 1 and MT = {±(1, 0),±(0, 1)}. Therefore
by using Theorem 7.1, we conclude that T does not satisfy the BŠ Property.

If X is a two-dimensional Banach space, then from Theorem 2.1 of [63] and Theorem 2.3 of

[62], it follows that T ∈ L(X) satisfies the BŠ Property if and only if MT = D ∪ (−D), where

D is a connected subset of SX. If dimX ≥ 3 and MT has more than two components then it is

not known whether T will satisfy the BŠ Property. Our next result gives some insight in that

direction, under certain assumptions on the co-domain space Y and the norm attainment set

MT , for a bounded linear operator T ∈ L(X,Y).

Theorem 7.3. Let X be an n-dimensional Banach space, where n ≥ 3 and let Y be any Banach

space. Let T ∈ L(X,Y), with |MT | ≥ 4, be such that the following conditions are satisfied:

(a) There exists a basis {x1, x2, x3, . . . , xn} of X such that x1, x2 ∈ MT .

(b) There exist scalars α3, α4, . . . , αn and β3, β4, . . . , βn such that for each w = c1wx1+ c2wx2+

. . .+ cnwxn ∈ MT , we have,

c1w + c2w + α3c3w + . . .+ αncnw ̸= 0 and c1w − c2w + β3c3w + . . .+ βncnw ̸= 0.

Then at least one of the following is true:

(i)
⋃

x∈MT

(Tx)⊥ = Y.

(ii) T does not satisfy the BŠ Property.

Proof. Assuming (i) is not true, we show that T does not satisfy the BŠ Property. Under this

assumption,
⋃

x∈MT

(Tx)⊥ ⫋ Y. Let us take z ∈ Y \ ⋃
x∈MT

(Tx)⊥. We note that it follows from

Proposition 2.1 of [61] that for each i = 1, 2, either z ∈ (Txi)
+ or z ∈ (Txi)

−.

Case I: Let z ∈ (Tx1)
+ ∩ (Tx2)

+ or z ∈ (Tx1)
− ∩ (Tx2)

−. Let us define A : X → Y by

Ax1 = z,Ax2 = −z and Axi = βiz for i = 3, 4, . . . , n.
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If z ∈ (Tx1)
+ ∩ (Tx2)

+, then Ax1 ∈ (Tx1)
+ and Ax2 ∈ (Tx2)

−. On the other hand, if

z ∈ (Tx1)
− ∩ (Tx2)

−, then Ax1 ∈ (Tx1)
− and Ax2 ∈ (Tx2)

+. Therefore, using Theorem

2.2 of [61], we have T⊥BA, in both the cases. We claim that Tu ̸⊥B Au for any u ∈ MT . Let

u = c1ux1+c2ux2+ . . .+cnuxn ∈ MT . Then, Au = (c1u−c2u+c3uβ3+ . . .+cnuβn)z = γz, (say).

As γ ̸= 0 and Tu ̸⊥B z, so we conclude that Tu ̸⊥B Au. Thus T does not satisfy the BŠ Property.

Case II: Let z ∈ (Tx1)
+ ∩ (Tx2)

− or z ∈ (Tx1)
− ∩ (Tx2)

+. Let us define A : X → Y by

Ax1 = z, Ax2 = z and Axi = αiz for i = 3, 4, . . . , n. Proceeding in a similar manner, we can

conclude that T⊥BA but there exists no u ∈ MT such that Tu⊥BAu. Therefore T does not

satisfy the BŠ Property. This completes the proof of the theorem.

The above theorem indirectly hints at the importance of the notion of Property Pn for a

Banach space in the study of the BŠ Property of a bounded linear operator. We state this

formally in the following corollary.

Corollary 7.2. Let X be an n-dimensional Banach space, where n ≥ 3 and let Y be a Banach

space such that Y has Property Pm, for some m ∈ N. Let T ∈ L(X,Y) be such that the following

conditions are satisfied:

(a) |MT | ≥ 4 and |T (MT )| ≤ 2m,

(b) There exists a basis {x1, x2, x3, . . . , xn} of X such that x1, x2 ∈ MT ,

(c) There exist scalars α3, α4, . . . , αn and β3, β4, . . . , βn such that for each w = c1wx1+ c2wx2+

. . .+ cnwxn ∈ MT , we have that

c1w + c2w + α3c3w + . . .+ αncnw ̸= 0 and c1w − c2w + β3c3w + . . .+ βncnw ̸= 0.

Then T does not satisfy the BŠ Property.

Proof. As T (MT ) contains at most 2m elements which are pairwise scalar multiples of one

another and the co-domain space Y has Property Pm, we must have
⋃

x∈MT

(Tx)⊥ ⫋ Y. Then

from Theorem 7.3, we conclude that T does not satisfy the BŠ Property.

We now give an example to illustrate the applicability of the Corollary 7.2 in studying the BŠ

Property of a bounded linear operator between Banach spaces. Here we would like to mention

that every smooth Banach space of dimension at least 2, has Property Pn, for each n ∈ N.

Example 7.4. Consider a bounded linear operator T : ℓ3∞ → ℓ32, defined by Tx = x√
3
for all

x ∈ ℓ3∞. Then it is easy to see that ∥T∥ = 1, MT = {±(1, 1, 1),±(−1, 1, 1),

±(−1,−1, 1),±(1,−1, 1)} and T (MT ) = {±( 1√
3
, 1√

3
, 1√

3
),±(−1√

3
, 1√

3
, 1√

3
),
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±(−1√
3
, −1√

3
, 1√

3
),±( 1√

3
, −1√

3
, 1√

3
)}. Consider x1 = (1, 1, 1), x2 = (−1, 1, 1), x3 =

(−1,−1, 1) and x4 = (1,−1, 1). Clearly {x1, x2, x3} forms a basis of ℓ3∞. If we choose α = β = 1,

then condition (c) of Corollary 7.2 is satisfied. Also, ℓ32 has Property Pn, for any n ∈ N, as ℓ32

is a smooth space. Therefore, by using Corollary 7.2, we conclude that T does not satisfy the

BŠ Property.

It is worth mentioning that Theorem 2.2 of [62] holds true when the domain space is any

finite-dimensional Banach space and the co-domain space is any smooth Banach space of di-

mension at least two. Indeed, the said theorem can be stated in the following more general

form, by using the same arguments presented in the proof of the original result.

Theorem 7.5. Let X be a finite-dimensional Banach space and Y be a smooth Banach space

of dimension greater than or equal to two. Let T ∈ L(X,Y) be such that MT is a countable set

with more than two points. Then T does not satisfy the BŠ Property.

7.3 Study of Pn Property on finite-dimensional

polyhedral Banach spaces

In the remaining part of this Chapter, we focus on Property Pn for polyhedral Banach spaces.

Our first observation reveals that given any polyhedral Banach space X, there exists a natural

number n0 such that X does not have Property Pn, for any n ≥ n0.

Theorem 7.6. Let X be a finite-dimensional polyhedral Banach space such that BX has exactly

2n extreme points. Then X does not have Property Pn.

Proof. Let us denote the extreme points of BX by ±u1,±u2, . . . ,±un. We claim that
n⋃

i=1
u⊥i = X.

Let y ∈ X be arbitrary. Given z ∈ X there exists a scalar a ∈ R such that ay+z⊥By, by Theorem

2.3 of [20]. Take x = ay+z
∥ay+z∥ , then x⊥By. If x is an extreme point of BX, then we have nothing

more to show. Now, suppose that x is not an extreme point of BX. As x⊥By, by using Theorem

2.1 of [20], there exists a linear functional f ∈ SX∗ such that f(x) = ∥x∥ = 1 and f(y) = 0.

Since f attains norm, it is easy to see that there exists an extreme point ui of BX such that

|f(ui)| = ∥f∥ = 1. Therefore, by Theorem 2.1 of [20], we have ui⊥By. Thus
n⋃

i=1
u⊥i = X. This

completes the proof of the theorem.

Our next theorem shows that we have a definitive answer for two-dimensional polyhedral

Banach spaces, regarding Property Pn. To prove the theorem, we need the following lemma:

87



Chapter 7. Birkhoff-James orthogonality of bounded linear operators

Lemma 7.1. Let X be a two-dimensional polyhedral Banach space. Then for any x ∈ Ext BX,

there exists a normal cone K of X such that x⊥ = K∪(−K). In addition, if the normal cone K is

determined by v1, v2 ∈ SX, then {(1−t)v1+tv2 : t ∈ (0, 1)}∩y⊥ = ϕ for each y ∈ Ext BX\{±x}.

Proof. Let g ∈ SX∗ and g(x) = ∥x∥ = 1, i.e., g is a supporting functional of BX at x. Let f1

and f2 be the two supporting functionals corresponding to the two edges of SX meeting at x.

Now, x+ ker g is a supporting line to BX at x, that lies entirely within the cone formed by the

straight lines x+ ker f1 and x+ ker f2. For i = 1, 2, let

f+
i = {z ∈ X : fi(z) ≥ 0} and f−

i = {z ∈ X : fi(z) ≤ 0}.

We note that each f+
i (f−

i ) is a closed half-space in X. Let u ∈ ker g be arbitrary. The sit-

O

ker f1

ker f2
ker g

x

x+ker f1

x+ker f2

x+ker g

x

u

Y

X
.
o

Figure 7.1

uation is illustrated in Figure 1. It follows immediately that either of the following must be true:

(i) u ∈ f+
1 and u ∈ f−

2 , (ii) u ∈ f−
1 and u ∈ f+

2 .

Taking K = f+
1 ∩ f−

2 , it is easy to see that −K = f−
1 ∩ f+

2 . Thus for any u ∈ X, with x⊥Bu,

we have u ∈ K ∪ (−K). Therefore, x⊥ = {w ∈ X : x ⊥B w} = K ∪ (−K). This completes the

proof of the first part of the lemma.

Next, suppose K is determined by v1, v2 ∈ SX. From the construction of K it is clear that

v1 ∈ ker f1 ∩ SX and v2 ∈ ker f2 ∩ SX. Let V = {(1 − t)v1 + tv2 : t ∈ (0, 1)}. We show that

V ∩ y⊥ = ϕ, for each y ∈ Ext BX \ {±x}. If possible, suppose that V ∩ y⊥ ̸= ϕ, for some

y ∈ Ext BX \ {±x}. Then there exists v = (1− t)v1 + tv2 ∈ V such that v ∈ y⊥. Since x ⊥B v,

there exists f ∈ SX∗ such that f(x) = ∥x∥ = 1 and f(v) = 0. On the other hand, since y ⊥B v,

there exists h ∈ SX∗ such that h(y) = ∥y∥ = 1 and h(v) = 0. Since X is two-dimensional, it

is easy to deduce that f = ±h. Therefore, either x, y are adjacent vertices and f = h is an
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extreme supporting functional corresponding to the facet L[x, y] = {(1− t)x+ ty : t ∈ [0, 1]}, or,
x,−y are adjacent vertices and f = −h is an extreme supporting functional corresponding to

the facet L[x,−y] = {(1− t)x+ t(−y) : t ∈ [0, 1]}. As f1 and f2 are two supporting functionals

corresponding to the two edges of SX meeting at x, f is equal to either f1 or f2. Therefore, v is

equal to either v1 or v2, which is a contradiction to our assumption that v ∈ V. This completes

the proof of the lemma.

We now prove the desired theorem.

Theorem 7.7. Let X be a two-dimensional polyhedral Banach space such that BX has exactly

2n extreme points for some n ∈ N. Then X has Property Pn−1.

Proof. If x ∈ SX is a non-extreme point of BX, then there exist x1, x2 ∈ SX such that x =

(1 − t)x1 + tx2 for some t ∈ (0, 1) and x1, x2 are extreme points of BX. It is easy to observe

that x⊥ ⫋ x⊥1 and x⊥ ⫋ x⊥2 . Therefore, without loss of generality we may consider any (n− 1)

extreme points of BX, instead of any (n− 1) points in SX, to prove that X has Property Pn−1.

Let Ext BX = {±x1,±x2, . . . ,±xn}. Then from Lemma 7.1, for each i ∈ {1, 2, . . . , n}, there
exists normal cone Ki of X such that x⊥i = Ki ∪ (−Ki). If the normal cone Ki is determined by

vi1, vi2 ∈ SX, then {(1 − t)vi1 + tvi2 : t ∈ (0, 1)} ∩
n⋃

j=1
j ̸=i

x⊥j = ϕ. Since xi is any extreme point of

BX, we conclude that the union of the Birkhoff-James orthogonality sets of any (n− 1) extreme

points of BX must be a proper subset of X. However, this is clearly equivalent to the fact that

X has Property Pn−1. This establishes the theorem.

As an application of Corollary 7.2, we next give an example of a bounded linear operator

T between a three-dimensional polyhedral Banach space X and a two-dimensional polyhedral

Banach space Y such that T does not satisfy the BŠ Property.

Example 7.8. Let X = ℓ3∞ and let Y be a two-dimensional real polyhedral Banach space such

that SY is regular decagon with vertices (cos jπ
5 , sin jπ

5 ), j ∈ {0, 1, 2, . . . , 9}. Consider the linear

operator T : X → Y, defined by

T (x, y, z) =
(x+ y

2
+

(y − x) cos 2π
5

2
,
(y − x) sin 2π

5

2

)
.

It is easy to check that ∥T∥ = 1, MT = {±(1, 1, z),±(−1, 1, z) : z ∈ [−1, 1]} and T (MT ) =

{±(1, 0),±(cos 2π
5 , sin 2π

5 )}. Consider x1 = (1, 1, 1), x2 = (−1, 1, 1) and x3 = (−1,−1, 1). Clearly

{x1, x2, x3} forms a basis of X. If we choose α = −10 and β = −3
2 , then condition (c) of

Corollary 7.2 is satisfied. From Theorem 7.7, we know that Y has Property P4. Therefore, by

using Corollary 7.2, we conclude that T does not satisfy the BŠ Property.
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For any two Banach spaces X,Y, it is easy to see that X × Y, equipped with the norm

∥(x, y)∥ = max{∥x∥, ∥y∥} for all (x, y) ∈ X×Y, is a Banach space. Let us denote this space by

X⊕∞ Y. Similarly, X× Y, equipped with the norm ∥(x, y)∥ = ∥x∥+ ∥y∥ for all (x, y) ∈ X× Y,

is a Banach space which is denoted by X ⊕1 Y. In the following theorems, we study Property

Pn for Banach spaces X⊕∞ Y and X⊕1 Y, where X is a polyhedral Banach space.

Theorem 7.9. Let X be a polyhedral Banach space such that X does not have Property Pn, for

some n ∈ N. Then X ⊕∞ Y does not have Property Pn, for any Banach space Y. Moreover, if

Y is a polyhedral Banach space such that Y does not have Property Pm, for some m ∈ N, then

X⊕∞ Y does not have Property Pr, where r = min{m,n}.

Proof. As X does not have Property Pn, there exist x1, x2, . . . , xn ∈ SX such that
n⋃

i=1
x⊥i = X.

Now we claim that
n⋃

i=1
(xi, 0)

⊥ = X⊕∞ Y.

Let us first show that x⊥i × Y ⊆ (xi, 0)
⊥, for each i ∈ {1, 2, . . . , n}. Let (x, y) ∈ x⊥i × Y. Then

for any scalar λ,

∥(xi, 0) + λ(x, y)∥ = ∥(xi + λx, λy)∥

= max{∥xi + λx∥, ∥λy∥}

≥ ∥xi + λx∥

≥ ∥xi∥ = ∥(xi, 0)∥,

as x ∈ x⊥i . Therefore, (x, y) ∈ (xi, 0)
⊥. Hence x⊥i × Y ⊆ (xi, 0)

⊥.

Therefore,
n⋃

i=1
(xi, 0)

⊥ ⊇
n⋃

i=1
(x⊥i × Y) = X⊕∞ Y. Hence

n⋃
i=1

(xi, 0)
⊥ = X⊕∞ Y.

Further if Y does not have Property Pm, then as before we can show that X ⊕∞ Y does not

possess Property Pm. Thus X ⊕∞ Y does not have Property Pr, where r = min{m,n}. This
completes the proof of the theorem.

Corollary 7.3. Let X = ℓn∞, for any n (≥ 2) ∈ N. Then X does not have Property P2.

Proof. From Theorem 7.6, it follows that ℓ2∞ does not have Property P2. Also, we know that

ℓ3∞ = ℓ2∞ ⊕∞ R. Therefore, by using Theorem 7.9, we conclude that ℓ3∞ does not have Property

P2. Continuation of this argument proves that ℓn∞, for any n (≥ 2) ∈ N does not have Property

P2.

Applying similar arguments, the proofs of the following results are now apparent:

Theorem 7.10. Let X be a polyhedral Banach space such that X does not have Property Pn,

for some n ∈ N. Then X⊕1Y does not have Property Pn, for any Banach space Y. Moreover, if
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Y is a polyhedral Banach space such that Y does not have Property Pm, for some m ∈ N, then

X⊕1 Y does not have Property Pr, where r = min{m,n}.

Corollary 7.4. Let X = ℓn1 , where n(≥ 2) ∈ N. Then X does not have Property P2.

Let X be a three-dimensional polyhedral Banach space such that BX is a prism with vertices

(cos jπ
n , sin jπ

n ,±1), j ∈ {0, 1, 2, . . . , 2n − 1}, n ≥ 2. Then it is trivial to see that X = Y ⊕∞ R,

where Y is a two-dimensional polyhedral Banach space so that the extreme points of BY are

given by (cos jπ
n , sin jπ

n ), j ∈ {0, 1, 2, . . . , 2n − 1}, n ≥ 2. Therefore, by using Theorem 7.6 and

Theorem 7.9, we can conclude that X does not have Property Pn. However, in the next theorem

we show that X does not have Property P2, for any n ≥ 2.

Theorem 7.11. Let X be a three-dimensional polyhedral Banach space such that BX is a prism

with vertices (cos jπ
n , sin jπ

n ,±1), j ∈ {0, 1, 2, . . . , 2n−1}, n ≥ 2. Then X does not have Property

P2.

Proof. Let the vertices ofBX be v±(j+1), j ∈ {0, 1, 2, . . . , 2n−1}, where v±(j+1) = (cos jπ
n , sin jπ

n ,±1).

The unit sphere SX is shown in Figure 2.

A simple computation reveals the explicit expression for the norm function on X. Given any

O
X

Z

Y

v1

v2 n

v2

vH3 n+3L�2vH3 n+1L�2

vn+1 G2 n

G1

GH3 n+1L�2

v-1

v-2 n

v-2

vHn+3L�2 vHn+1L�2

vn+2

Figure 7.2
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(x, y, z) ∈ X, we have,

∥(x, y, z)∥ = max
0≤j≤2n−1

{
| cos (2j+1)π

2n ||x|
cos π

2n

+
| sin (2j+1)π

2n ||y|
cos π

2n

, |z|
}
.

We claim that v⊥1 ∪ v⊥n+1 = X. Let (x, y, z) ∈ X be such that x ≥ 0, z ≤ 0 and y is arbitrary.

Now, for any scalar λ ≥ 0,

∥(1, 0, 1) + λ(x, y, z)∥ = ∥(1 + λx, λy, 1 + λz)∥

= max
0≤j≤2n−1

{ | cos (2j+1)π
2n ||1 + λx|
cos π

2n

+
| sin (2j+1)π

2n ||λy|
cos π

2n

,

|1 + λz|
}

≥ |1 + λx|+ tan
π

2n
|λy|

≥ 1 = ∥(1, 0, 1)∥.

Also, for any scalar λ ≤ 0,

∥(1, 0, 1) + λ(x, y, z)∥ = ∥(1 + λx, λy, 1 + λz)∥

= max
0≤j≤2n−1

{ | cos (2j+1)π
2n ||1 + λx|
cos π

2n

+
| sin (2j+1)π

2n ||λy|
cos π

2n

,

|1 + λz|
}

≥ |1 + λz|

≥ 1 = ∥(1, 0, 1)∥.

Therefore, (1, 0, 1)⊥B(x, y, z), for all x ≥ 0, z ≤ 0 and for any y. From the homogeneity

property of Birkhoff-James orthogonality, it follows that (1, 0, 1)⊥B(x, y, z), for all x ≤ 0, z ≥ 0

and for any y.

Let (x, y, z) ∈ X be such that x ≥ 0, z ≥ 0. Now for any λ ≥ 0,

∥(−1, 0, 1) + λ(x, y, z)∥ = ∥(−1 + λx, λy, 1 + λz)∥

= max
0≤j≤2n−1

{ | cos (2j+1)π
2n || − 1 + λx|
cos π

2n

+
| sin (2j+1)π

2n ||λy|
cos π

2n

,

|1 + λz|
}

≥ |1 + λz|

≥ 1 = ∥(−1, 0, 1)∥.
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Also, for any λ ≤ 0,

∥(−1, 0, 1) + λ(x, y, z)∥ = ∥(−1 + λx, λy, 1 + λz)∥

= max
0≤j≤2n−1

{ | cos (2j+1)π
2n || − 1 + λx|
cos π

2n

+
| sin (2j+1)π

2n ||λy|
cos π

2n

,

|1 + λz|
}

≥ | − 1 + λx|+ tan
π

2n
|λy|

≥ 1 = ∥(−1, 0, 1)∥.

Therefore, (−1, 0, 1)⊥B(x, y, z), for all x ≥ 0, z ≥ 0 and for any y. From the homogeneity

property of Birkhoff-James orthogonality, it follows that (−1, 0, 1)⊥B(x, y, z), for all x ≤ 0, z ≤ 0

and for any y.

Hence for any (x, y, z) ∈ X, either (x, y, z) ∈ v⊥1 or (x, y, z) ∈ v⊥n+1, i.e., v
⊥
1 ∪v⊥n+1 = X. Therefore,

X does not have Property P2. This completes the proof of the theorem.

Remark 7.12. Theorem 7.11 shows that the space X⊕∞ Y may not have Property Pn even if

one of space has Property Pn.

Our Previous results point to the fact that there is a large family of three-dimensional

polyhedral Banach spaces not having Property P2. The concerned spaces have been constructed

by taking ℓ∞ sum of two-dimensional polyhedral Banach spaces with R. In the next theorem, we

give another such example of a three-dimensional Polyhedral Banach space, not having Property

P2, which cannot be constructed by taking ℓ∞ sum of lower dimensional Banach space.

Theorem 7.13. Let X be a three-dimensional polyhedral Banach space such that BX is a poly-

hedron obtained by gluing two pyramids at the opposite base faces of a right prism having square

base, with vertices ±(1, 1, 1),±(−1, 1, 1),±(−1,−1, 1), ±(1,−1, 1),±(0, 0, 2). Then X does not

have Property P2.

Proof. Let the vertices of BX be v±j , j ∈ {1, 2, 3, 4} and w±1, where v±1 = (1, 1,±1), v±2 =

(−1, 1,±1), v±3 = (−1,−1,±1), v±4 = (1,−1,±1) and w±1 = (0, 0,±2). The unit sphere SX is

shown in Figure 3.

Given any (x, y, z) ∈ X, the expression for the norm function on X turns out to be the

following:

∥(x, y, z)∥ = max

{
|x|, |y|, |x|

2
+

|z|
2
,
|y|
2

+
|z|
2

}
.
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O X
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Figure 7.3

We claim that, v⊥1 ∪ v⊥4 = X. Let (x, y, z) ∈ X be such that x ≥ 0, y ≥ 0. Now, for any λ ≥ 0,

∥(1,−1, 1) + λ(x, y, z)∥ = ∥(1 + λx,−1 + λy, 1 + λz)∥

= max
{
|1 + λx|, | − 1 + λy|, |1 + λx|

2
+

|1 + λz|
2

,

| − 1 + λy|
2

+
|1 + λz|

2

}

≥ |1 + λx|

≥ 1 = ∥(1,−1, 1)∥.

Also, for any λ ≤ 0,

∥(1,−1, 1) + λ(x, y, z)∥ = ∥(1 + λx,−1 + λy, 1 + λz)∥

= max
{
|1 + λx|, | − 1 + λy|, |1 + λx|

2
+

|1 + λz|
2

,

| − 1 + λy|
2

+
|1 + λz|

2

}

≥ | − 1 + λy|

≥ 1 = ∥(1,−1, 1)∥.

Therefore, (1,−1, 1)⊥B(x, y, z), for all x ≥ 0, y ≥ 0 and for any z. From the homogeneity

property of Birkhoff-James orthogonality, it follows that (1,−1, 1)⊥B(x, y, z), for all x ≤ 0, y ≤ 0

and for any z.
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Let (x, y, z) ∈ X be such that x ≥ 0, y ≤ 0. For any λ ≥ 0,

∥(1, 1, 1) + λ(x, y, z)∥ = ∥(1 + λx, 1 + λy, 1 + λz)∥

= max
{
|1 + λx|, |1 + λy|, |1 + λx|

2
+

|1 + λz|
2

,

|1 + λy|
2

+
|1 + λz|

2

}

≥ |1 + λx|

≥ 1 = ∥(1, 1, 1)∥.

Also, for any λ ≤ 0,

∥(1, 1, 1) + λ(x, y, z)∥ = ∥(1 + λx, 1 + λy, 1 + λz)∥

= max
{
|1 + λx|, |1 + λy|, |1 + λx|

2
+

|1 + λz|
2

,

|1 + λy|
2

+
|1 + λz|

2

}

≥ |1 + λy|

≥ 1 = ∥(1, 1, 1)∥.

Therefore, (1, 1, 1)⊥B(x, y, z), for all x ≥ 0, y ≤ 0 and for any z. From the homogeneity property

of Birkhoff-James orthogonality, it follows that (1, 1, 1)⊥B(x, y, z), for all x ≤ 0, y ≥ 0 and for

any z.

Hence for any (x, y, z) ∈ X, either (x, y, z) ∈ v⊥1 or (x, y, z) ∈ v⊥4 , i.e., v
⊥
1 ∪ v⊥4 = X. Therefore,

X does not have Property P2. This completes the proof of the theorem.

We next give an example of a three-dimensional polyhedral Banach space which has Property

P2 but does not have Property P3.

Theorem 7.14. Let X be a three-dimensional polyhedral Banach space such that BX is a poly-

hedron with vertices (cos jπ
n , sin jπ

n ,±1), (0, 0,±2), j ∈ {0, 1, 2, . . . , 2n− 1}, n ≥ 3. Then X has

Property P2 but X does not have Property P3.

Proof. We prove the theorem by assuming that n is an odd integer. Similar calculations hold

true, when n is an even integer. Let the vertices of BX be v±(j+1), j ∈ {0, 1, 2, . . . , 2n− 1} and

w±1, where v±(j+1) = (cos jπ
n , sin jπ

n ,±1) and w±1 = (0, 0,±2). The unit sphere SX is shown in

Figure 4. Let Gj+1 denote the facet of BX containing vj+1, v−j−1, vj+2, v−j−2, where v2n+1 = v1

and v−2n−1 = v−1. Let F±(j+1) denote the facet of BX containing v±(j+1), v±(j+2), w±1. For

each j ∈ {0, 1, 2, . . . , 2n−1}, let gj+1, f±(j+1) be the supporting functionals corresponding to the

facets Gj+1, F±(j+1) respectively, i.e., (vj+1+ker gj+1)∩SX = Gj+1 and (v±(j+1)+ker f±(j+1))∩
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O X

Z

Y

w1

w-1

v1

v2 n

v2

vH3 n+3L�2
vH3 n+1L�2

vn+1 G2 n

G1

GH3 n+1L�2

v-1

v-2 n

v-2

vHn+3L�2 vHn+1L�2

vn+2

Figure 7.4

SX = F±(j+1).

For every vj+1 ∈ SX, j = 0, 1, 2, . . . , 2n − 1, there are four adjacent facets Gj , Gj+1, Fj , Fj+1.

Here we assume that G0 = G2n and F0 = F2n. Therefore by Lemma 2.1 of [57], extreme

supporting functionals corresponding to the vertices vj+1,

j = 0, 1, 2, . . . , 2n − 1, are gj , gj+1, fj , fj+1. Here also we assume that g0 = g2n and f0 = f2n.

Now consider the following subsets of SX∗ :

Hj+1 =
{
h ∈ SX∗ : h = λ1gj + λ2gj+1 + λ3fj + λ4fj+1, λk ≥ 0 ∀ k ∈ {1, 2, 3, 4}

and
4∑

k=1

λk = 1
}
, for each j = 0, 1, 2, . . . , 2n− 1. Then by using Theorem 2.1 of [20] and Lemma

2.1 of [57], we conclude that v⊥j+1 =
⋃

h∈Hj+1

kerh, for each j = 0, 1, 2, . . . , 2n − 1. Again, for

w1, there are 2n adjacent facets Fj+1, j = 0, 1, 2, . . . , 2n − 1. Therefore, as before, extreme

supporting functionals corresponding to the vertex w1 are fj+1, j = 0, 1, 2, . . . , 2n − 1. Now,

consider the following subset of SX∗ .
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H =
{
h ∈ SX∗ : h =

2n−1∑
k=0

λk+1fk+1, λk+1 ≥ 0 ∀ k ∈ {0, 1, 2, . . . , 2n− 1}

and
2n−1∑
k=0

λk+1 = 1
}
. From this, we conclude that w⊥

1 =
⋃

h∈H
kerh. Now, for any (x, y, z) ∈ X,

we have,

∥(x, y, z)∥ = max
0≤j≤n−1

2

{
cos

(2j+1)π
2n

|x|
cos π

2n
+

sin
(2j+1)π

2n
|y|

cos π
2n

,
cos

(2j+1)π
2n

|x|
2 cos π

2n
+

sin
(2j+1)π

2n
|y|

2 cos π
2n

+ |z|
2

}
. Using the above

expression of the norm function, we can compute the Birkhoff-James orthogonality set of the

extreme points of BX. For the extreme points of BX, lying above the plane z = 0, we have,

v⊥1 = (1, 0, 1)⊥ = ±
[
{(x, y, z) ∈ X : x ≥ 0, y ≥ 0, z ≥ 0, x− tan( π

2n)y ≤ 0}
∪ {(x, y, z) ∈ X : x ≤ 0, y ≥ 0, z ≥ 0, x2 +

tan( π
2n

)y

2 + z
2 ≥ 0}

∪ {(x, y, z) ∈ X : x ≤ 0, y ≤ 0, z ≥ 0, x2 − tan( π
2n

)y

2 + z
2 ≥ 0}

∪ {(x, y, z) ∈ X : x ≥ 0, y ≤ 0, z ≥ 0, x+ tan( π
2n)y ≤ 0}

]
.

Now, for each j ∈ {1, 2, . . . , n−1
2 }, we have

v⊥(j+1) = (cos jπ
n , sin jπ

n , 1)⊥ = ±
[
{(x, y, z) ∈ X : x ≤ 0, y ≥ 0, z ≥ 0,

cos
(2j+1)π

2n
2 cos π

2n
x+

sin
(2j+1)π

2n
2 cos π

2n
y + z

2 ≥ 0,
cos

(2j−1)π
2n

cos π
2n

x+
sin

(2j−1)π
2n

cos π
2n

y ≤ 0}

∪ {(x, y, z) ∈ X : x ≤ 0, y ≤ 0, z ≥ 0,
cos

(2j+1)π
2n

2 cos π
2n

x+
sin

(2j+1)π
2n

2 cos π
2n

y + z
2 ≥ 0}

∪ {(x, y, z) ∈ X : x ≤ 0, y ≤ 0, z ≥ 0,
cos

(2j−1)π
2n

2 cos π
2n

x+
sin

(2j−1)π
2n

2 cos π
2n

y + z
2 ≥ 0}

∪ {(x, y, z) ∈ X : x ≥ 0, y ≤ 0, z ≥ 0,
cos

(2j−1)π
2n

2 cos π
2n

x+
sin

(2j−1)π
2n

2 cos π
2n

y + z
2 ≥ 0,

cos
(2j+1)π

2n
cos π

2n
x+

sin
(2j+1)π

2n
cos π

2n
y ≤ 0}

]
.

Again, for each j ∈ {1, 2, . . . , n−1
2 }, we have

v⊥
(j+n+1

2
)
= (− cos jπ

n , sin jπ
n , 1)⊥ = ±

[
{(x, y, z) ∈ X : x ≥ 0, y ≥ 0, z ≥ 0,

− cos
(2j+1)π

2n
2 cos π

2n
x+

sin
(2j+1)π

2n
2 cos π

2n
y + z

2 ≥ 0,− cos
(2j−1)π

2n
cos π

2n
x+

sin
(2j−1)π

2n
cos π

2n
y ≤ 0}

∪ {(x, y, z) ∈ X : x ≤ 0, y ≤ 0, z ≥ 0,− cos
(2j−1)π

2n
2 cos π

2n
x+

sin
(2j−1)π

2n
2 cos π

2n
y + z

2 ≥ 0,

− cos
(2j+1)π

2n
cos π

2n
x+

sin
(2j+1)π

2n
cos π

2n
y ≤ 0}

∪ {(x, y, z) ∈ X : x ≥ 0, y ≤ 0, z ≥ 0,− cos
(2j+1)π

2n
2 cos π

2n
x+

sin
(2j+1)π

2n
2 cos π

2n
y + z

2 ≥ 0}

∪ {(x, y, z) ∈ X : x ≥ 0, y ≤ 0, z ≥ 0,− cos
(2j−1)π

2n
2 cos π

2n
x+

sin
(2j−1)π

2n
2 cos π

2n
y + z

2 ≥ 0}
]
.

Now, v⊥(n+1) = (−1, 0, 1)⊥ = ±
[
{(x, y, z) ∈ X : x ≥ 0, y ≥ 0, z ≥ 0,

−x
2 +

tan( π
2n

)y

2 + z
2 ≥ 0}

∪ {(x, y, z) ∈ X : x ≤ 0, y ≥ 0, z ≥ 0,−x− tan( π
2n)y ≤ 0}

∪ {(x, y, z) ∈ X : x ≤ 0, y ≤ 0, z ≥ 0,−x+ tan( π
2n)y ≤ 0}

∪ {(x, y, z) ∈ X : x ≥ 0, y ≤ 0, z ≥ 0,−x
2 − tan( π

2n
)y

2 + z
2 ≥ 0}

]
.

Again, for each j ∈ {1, 2, . . . , n−1
2 }, we have

v⊥(j+n+1) = (− cos jπ
n ,− sin jπ

n , 1)⊥ = ±
[
{(x, y, z) ∈ X : x ≥ 0, y ≥ 0, z ≥ 0,
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− cos
(2j+1)π

2n
2 cos π

2n
x− sin

(2j+1)π
2n

2 cos π
2n

y + z
2 ≥ 0}

∪ {(x, y, z) ∈ X : x ≥ 0, y ≥ 0, z ≥ 0,− cos
(2j−1)π

2n
2 cos π

2n
x− sin

(2j−1)π
2n

2 cos π
2n

y + z
2 ≥ 0}

∪ {(x, y, z) ∈ X : x ≤ 0, y ≥ 0, z ≥ 0,− cos
(2j−1)π

2n
2 cos π

2n
x− sin

(2j−1)π
2n

2 cos π
2n

y + z
2 ≥ 0,

− cos
(2j+1)π

2n
cos π

2n
x− sin

(2j+1)π
2n

cos π
2n

y ≤ 0}

∪ {(x, y, z) ∈ X : x ≥ 0, y ≤ 0, z ≥ 0,− cos
(2j+1)π

2n
2 cos π

2n
x− sin

(2j+1)π
2n

2 cos π
2n

y + z
2 ≥ 0,

− cos
(2j−1)π

2n
cos π

2n
x− sin

(2j−1)π
2n

cos π
2n

y ≤ 0}
]
.

Also, for each j ∈ {1, 2, . . . , n−1
2 }, we have

v⊥
(j+ 3n+1

2
)
= (cos jπ

n ,− sin jπ
n , 1)⊥ = ±

[
{(x, y, z) ∈ X : x ≥ 0, y ≥ 0, z ≥ 0,

cos
(2j−1)π

2n
2 cos π

2n
x− sin

(2j−1)π
2n

2 cos π
2n

y + z
2 ≥ 0,

cos
(2j+1)π

2n
cos π

2n
x− sin

(2j+1)π
2n

cos π
2n

y ≤ 0}

∪ {(x, y, z) ∈ X : x ≤ 0, y ≥ 0, z ≥ 0,
cos

(2j+1)π
2n

2 cos π
2n

x− sin
(2j+1)π

2n
2 cos π

2n
y + z

2 ≥ 0}

∪ {(x, y, z) ∈ X : x ≤ 0, y ≥ 0, z ≥ 0,
cos

(2j−1)π
2n

2 cos π
2n

x− sin
(2j−1)π

2n
2 cos π

2n
y + z

2 ≥ 0}

∪ {(x, y, z) ∈ X : x ≤ 0, y ≤ 0, z ≥ 0,
cos

(2j+1)π
2n

2 cos π
2n

x− sin
(2j+1)π

2n
2 cos π

2n
y + z

2 ≥ 0,

cos
(2j−1)π

2n
cos π

2n
x− sin

(2j−1)π
2n

cos π
2n

y ≤ 0}
]
.

Now, w⊥
1 = (0, 0, 2)⊥ = ±

[
A ∪ B ∪ C ∪ D

]
, where A =

n−1
2⋃

j=0
Aj , Aj = {(x, y, z) ∈ X : x ≥

0, y ≥ 0, z ≥ 0,− cos
(2j+1)π

2n
2 cos π

2n
x − sin

(2j+1)π
2n

2 cos π
2n

y + z
2 ≤ 0}, B =

n−1
2⋃

j=0
Bj , Bj = {(x, y, z) ∈ X : x ≤

0, y ≥ 0, z ≥ 0,
cos

(2j+1)π
2n

2 cos π
2n

x − sin
(2j+1)π

2n
2 cos π

2n
y + z

2 ≤ 0}, C =

n−1
2⋃

j=0
Cj , Cj = {(x, y, z) ∈ X : x ≤ 0, y ≤

0, z ≥ 0,
cos

(2j+1)π
2n

2 cos π
2n

x +
sin

(2j+1)π
2n

2 cos π
2n

y + z
2 ≤ 0}, D =

n−1
2⋃

j=0
Dj , Dj = {(x, y, z) ∈ X : x ≥ 0, y ≤

0, z ≥ 0,− cos
(2j+1)π

2n
2 cos π

2n
x+

sin
(2j+1)π

2n
2 cos π

2n
y + z

2 ≤ 0}. From the above expressions of the Birkhoff-James

orthogonality sets of extreme points of BX, it follows that, for any two extreme points u, v ∈ SX,

u⊥ ∪ v⊥ ⫋ X. Therefore X has Property P2.

Again, by using the same expressions, we can show that (1, 0, 1)⊥ ∪ (−1, 0, 1)⊥ ∪ (0, 0, 2)⊥ = X.

Therefore, X does not have Property P3. This completes the proof of the theorem.

Finally, we give an example of a linear operator T between a three-dimensional polyhedral

Banach space and a three-dimensional polyhedral Banach space having Property P2, such that

T does not satisfy the BŠ Property.

Example 7.15. Let X = ℓ3∞ and let Y be a three-dimensional polyhedral Banach space such

that BY is a polyhedron with vertices (1, 0,±1), ( 1√
2
, 1√

2
,±1),

(0, 1,±1), (−1√
2
, 1√

2
,±1), (−1, 0,±1), (−1√

2
, −1√

2
,±1), (0,−1,±1), ( 1√

2
, −1√

2
,±1),
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(0, 0,±2). Consider a bounded linear operator T : X → Y, defined by

T (x, y, z) =
(x+ y

2
,
y − x

2
, y
)
.

Then it is easy to check that ∥T∥ = 1, MT = {±(1, 1, z),±(−1, 1, z) : z ∈ [−1, 1]} and T (MT ) =

{±(1, 0, 1),±(0, 1, 1)}. Consider x1 = (1, 1, 1), x2 = (−1, 1, 1) and x3 = (−1,−1, 1). Clearly

{x1, x2, x3} forms a basis of X. If we choose α = −10 and β = −3
2 , then condition (c) of

Corollary 7.2 is satisfied. From Theorem 7.14, we know that Y has Property P2. Therefore, by

using Corollary 7.2, we conclude that T does not satisfy the BŠ Property.

In view of the methods employed to study the BŠ Property of linear operators and the

results obtained in the present chapter, it is perhaps appropriate to end it with the following

remark:

Remark 7.16. We have illustrated the important role played by Property Pn in determining

the BŠ Property of linear operators. Indeed, using this concept, we have extended the previously

obtained results in [62]. It is worth mentioning in this connection that Example 7.4, Example

7.8 and Example 7.15 provided in this article are beyond the scope of the Proposition 2.1 of

[62]. We note that Property Pn is essentially a structural concept, associated especially with

polyhedral Banach spaces. Therefore, it might be interesting to further study various polyhedral

Banach spaces in light of the newly introduced concept of Property Pn.
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CHAPTER 8

BIRKHOFF-JAMES ORTHOGONALITY

OF BOUNDED LINEAR OPERATORS-II

8.1 Introduction

Birkhoff-James orthogonality plays a central role in determining the geometry of normed linear

spaces in general, and spaces of operators, in particular. One of the most interesting aspects

of Birkhoff-James orthogonality is the relation between orthogonality of operators and that of

norming elements in the ground space. The purpose of this chapter is to continue the investi-

gation of a certain property from [50]. Before proceeding further, let us fix the notations and

the terminologies.

Letters X and Y denote normed linear spaces. Throughout the present chapter, we will

assume the underlying scalar field to be R. LetBX = {x ∈ X : ∥x∥ ≤ 1} and SX = {x ∈ X : ∥x∥ =

1} denote the unit ball and the unit sphere of X, respectively. Let B[x, r] = {z ∈ X : ∥x−z∥ ≤ r}
and B(x, r) = {z ∈ X : ∥x− z∥ < r} denote the closed ball and the open ball centered at x and

Content of this chapter is based on the following paper:
D. Sain, A. Ray, S. Dey and K. Paul, Some remarks on orthogonality of bounded linear operators-II,
Acta Sci. Math. (Szeged) (2022). https://doi.org/10.1007/s44146-022-00044-9.
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radius r > 0, respectively. For a subset A of X, let |A| denote the cardinality of A. Let L(X,Y) be

the normed space of all bounded linear operators from X to Y, endowed with the usual operator

norm. We write L(X,Y) = L(X), if X = Y. An element x(̸= 0) is said to be smooth point of X if

there is unique f ∈ SX∗ such that f(x) = ||x||. A normed linear space X is said to be smooth if

every non-zero element of X is a smooth point. Let Ext BX denote the collection of all extreme

points of the unit ball BX. For a bounded linear operator T ∈ L(X,Y), let MT denote the norm

attainment set of T, i.e. MT = {x ∈ SX : ∥Tx∥ = ∥T∥}. For any two points x1, x2 ∈ X, L[x1, x2]

denotes the closed line segment joining x1 and x2, i.e. L[x1, x2] = {(1− t)x1 + tx2 : t ∈ [0, 1]}.
For x, y ∈ X, x is said to be orthogonal to y in the sense of Birkhoff-James [20], written as x⊥By,

if ∥x + λy∥ ≥ ∥x∥ for all λ ∈ R. Similarly, for T,A ∈ L(X,Y), T is said to be Birkhoff-James

orthogonal to A, written as T⊥BA, if ∥T + λA∥ ≥ ∥T∥ for all λ ∈ R. For an element x ∈ X, by

x⊥ we mean the collection of all elements y ∈ X such that x ⊥B y, i.e., x⊥ = {y ∈ X : x ⊥B y}.
For studying orthogonality of operators between Banach spaces, the following definition from

[61] is very helpful. Given x, y ∈ X, we say that y ∈ x+ if ∥x+λy∥ ≥ ∥x∥ for all λ ≥ 0. Similarly,

we say that y ∈ x− if ∥x + λy∥ ≥ ∥x∥ for all λ ≤ 0. For an immediate application of these

notions towards studying bounded linear operators, which is also relevant to the present work,

we refer the readers to [60]. In connection to the conjecture proposed by Bhatia and Šemrl,

the term “Bhatia-Šemrl (BŠ) Property” was first coined in [62] and then extended in [50]. We

mention the same, for the convenience of the readers.

Our main objective is the continuation of the study in [50]. Indeed, we focus on the following

problem: If X is a finite-dimensional Banach space with dim X > 2 and if T ∈ L(X,Y) is such

that MT ̸= D ∪ (−D), where D is a connected subset of SX, then whether T satisfies the BŠ

Property or not, for any normed linear space Y. In this connection, Property Pn was introduced

in [50].

Definition 8.1. [50, Defn. 1.6] Let X be a Banach space. Given n ∈ N, we say that X has

Property Pn if for every choice of n vectors x1, x2, . . . , xn ∈ SX,
n⋃

i=1
x⊥i ⫋ X.

Trivially, if X has Property Pn then X has Property Pm for all m ∈ N, with m ≤ n. Let us

now introduce the definition of BŠ pair which plays a crucial role in the whole scheme of things.

Definition 8.2. Let X,Y be normed linear spaces. We say that the pair (X,Y) is a BŠ pair if

for every T ∈ L(X,Y), T satisfies the BŠ Property if and only if MT = D ∪ (−D), where D is

a non-empty connected subset of SX.

Observe that the existence of BŠ pairs substantiates the Conjecture 1.1 to be true. In this

chapter, we investigate operators T which satisfy the BŠ Property. We also exhibit BŠ pairs of

spaces (X,Y). Indeed, we show that (ℓn1 ,Y) is a BŠ pair for any normed linear space Y. This
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proves the validity of Conjecture 1.1, whenever the domain space is ℓn1 . Further, we study the

BŠ Property of operators on polyhedral Banach spaces. We also characterize the space ℓ3∞

among all 3-dimensional polyhedral Banach spaces having exactly eight extreme points in the

unit ball. Recall that a finite-dimensional Banach space X is said to be polyhedral if BX has

only finitely many extreme points.

8.2 Bhatia-Šemrl Property with norm at-

tainment set of a bounded linear oper-

ator

We begin with the following theorem which gives a nice connection between Property Pn and

the BŠ Property.

Theorem 8.1. Let T ∈ L(X,Y), where dim X = n ≥ 2 and Y has Property Pm, for some

m ≥ 2. If 4 ≤ |MT | ≤ 2m, then T does not satisfy the BŠ Property.

Proof. Let MT = {±x1,±x2, . . . ,±xk}, where 2 ≤ k ≤ m. Clearly, as any two elements

xp, xq, p ̸= q, p, q ∈ {1, 2, . . . , k}, are linearly independent, we can extend {x1, x2} to a

basis {x1, x2, y3, . . . , yn} of X. Then for each xi ∈ MT , i = 1, 2, . . . , k, we can write xi =

ci1x1 + ci2x2 + ci3y3 + . . . + cinyn, where cij ’s are real scalars. Claim that we can find n scalars

αj > 0, j = 1, 2, . . . , n, such that ci1α1+ci2α2+. . .+cinαn ̸= 0 and ci1α1−ci2α2+. . .+cinαn ̸= 0, for

all i = 1, 2, . . . , k. Otherwise, if ci1α1+ci2α2+ . . .+cinαn = 0, then (α1, α2, . . . , αn) belongs to the

hyperspaceH i
1 = {(z1, z2, . . . , zn) : ci1z1+ci2z2+. . .+cinzn = 0} and if ci1α1−ci2α2+. . .+cinαn = 0,

then (α1, α2, . . . , αn) belongs to the hyperspace H i
2 = {(z1, z2, . . . , zn) : ci1z1−ci2z2+ . . .+cinzn =

0}. These collections of hyperspaces are finite and so X ̸= ⋃k
i=1(H

i
1 ∪H i

2). Therefore, our claim

is established.

Now,
⋃

x∈MT

(Tx)⊥ =
k⋃

i=1
(Txi)

⊥ ⫋ Y, as Y has property Pm and k ≤ m. Let us take z ∈

Y \
k⋃

i=1
(Txi)

⊥. From [61, Prop. 2.1], it follows that z ∈ (Tx1)
+ or z ∈ (Tx1)

− and z ∈ (Tx2)
+

or z ∈ (Tx2)
−. Accordingly we consider the following cases.

Case I: Let z ∈ (Tx1)
+ ∩ (Tx2)

+ or z ∈ (Tx1)
− ∩ (Tx2)

−. Let us define a linear operator

A : X → Y by

Ax1 = α1z,Ax2 = −α2z and Ayj = αjz for j = 3, 4, . . . , n.
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If z ∈ (Tx1)
+ ∩ (Tx2)

+, then Ax1 ∈ (Tx1)
+ and Ax2 ∈ (Tx2)

−. Also, if z ∈ (Tx1)
− ∩ (Tx2)

−,

then Ax1 ∈ (Tx1)
− and Ax2 ∈ (Tx2)

+. In both the cases, it follows from [61, Th. 2.2] that

T⊥BA. Clearly Axi = (ci1α1 − ci2α2 + . . . + cinαn)z, for all i = 1, 2, . . . , k. As ci1α1 − ci2α2 +

. . . + cinαn ̸= 0 and Txi ̸⊥B z, for all i = 1, 2, . . . , k, we conclude that Txi ̸⊥B Axi, for all

i = 1, 2, . . . , k. Thus T does not satisfy the BŠ Property.

Case II: Let z ∈ (Tx1)
+ ∩ (Tx2)

− or z ∈ (Tx1)
− ∩ (Tx2)

+. Let us define a linear operator

A : X → Y by Ax1 = α1z, Ax2 = α2z and Ayj = αjz for j = 3, 4, . . . , n. Proceeding similarly

as in Case I, we can conclude that T⊥BA but there exists no x ∈ MT such that Tx⊥BAx.

Therefore, T does not satisfy the BŠ Property.

Remark 8.2. We note that Theorem 8.1 improves [50, Cor. 2.5].

Our next example illustrates the applicability of Theorem 8.1 in studying the BŠ Property

of bounded linear operators.

Example 8.3. Let X = ℓn∞ and let Y = ℓn2 . Consider a bounded linear operator T : X → Y,

defined by

Tx =
x√
n
, x ∈ X.

Then it is easy to check that ∥T∥ = 1 and MT = Ext BX. Clearly Y has Property Pm for any

m ∈ N. Therefore, by using Theorem 8.1, we conclude that T does not satisfy the BŠ Property.

We next present a generalized version of [62, Lemma 2.1], which will be essential for our

purpose of studying orthogonality of bounded linear operators.

Lemma 8.1. Let M be a countable subset of a Banach space X of dimension n ≥ 2. Then for

any given m ∈ {1, 2, . . . , n}, there exist (n−m) linearly independent vectors ym+1, ym+2, . . . , yn

such that {x1, x2, . . . , xm, ym+1, ym+2, . . . , yn} is a basis of X, whenever {x1, . . . , xm} is any

linearly independent set in M.

Proof. For m = 2, the proof of the lemma directly follows from the proof of Lemma 2.1 of [62].

All the other cases can be proved similarly.

We next obtain another class of operators not satisfying the BŠ Property.

Theorem 8.4. Let X be an n-dimensional Banach space and let Y be any smooth Banach space.

Let T ∈ L(X,Y) be such that MT satisfies the following conditions:

(1) MT has more than two and countably many components.

(2) MT has at most two non-singleton components ±Di, for some i ∈ N. If Di = −Di, then MT
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has exactly one non-singleton component. All other components of MT are singleton.

(3) MT contains at least one pair of singleton components ±Dj , j( ̸= i) ∈ N such that ±Dj ∩
span{Di} = ϕ.

Then T does not satisfy the BŠ Property.

Proof. IfMT does not contain any non-singleton component, then the desired result follows from

[50, Th. 2.7]. Without loss of generality, we assume that MT =
∞⋃
j=1
j ̸=i

(±Dj)
⋃
(±Di), where Di

is the non-singleton component and Dj , j ̸= i, are the singleton components of MT . Without

loss of generality we assume that ±D1 are the non-singleton components and ±D2 are the

singleton components such that ±D2 ∩ span{D1} = ϕ. Let us assume that dim (span D1) = l,

where l < n. Let x1, x2, . . . , xl ∈ D1 be linearly independent and let ±D2 = {±xl+1} ⊆
SX. We would like to apply Lemma 8.1 in our present setting. Let M = {x1, x2, . . . , xl} ∪
{z ∈ MT : z /∈ span{x1, x2, . . . , xl}} = P ∪Q, where P = {x1, x2, . . .
. . . , xl} and Q = {z ∈ MT : z /∈ span{x1, x2, . . . , xl}} . Clearly M is a countable set, as ±D1 ⊆
span{x1, x2, . . . , xl} andMT \{±D1} is a countable set. Letm = l+1. Therefore, by Lemma 8.1,

we can fix n−(l+1) elements zl+2, zl+3, . . . , zn ∈ X such that {x1, x2, . . . , xl, z, zl+2, zl+3, . . . , zn}
is a basis of X for all z ∈ Q. Then {x1, x2, . . . , xl,
xl+1, zl+2, zl+3, . . . , zn} is a basis of X and so we can fix scalars cx,k(x ∈ X, 1 ≤ k ≤ n) such that

for each x ∈ X,

x =
l+1∑

i=1

cx,ixi +
n∑

j=l+2

cx,jzj .

Also it follows that if z ∈ Q, then cz,l+1 ̸= 0. For each v ∈ Y, let Av be the linear operator

defined by

Avxk = Txk, k = 1, 2, . . . , l,

Avxl+1 = v,

and Avzk = Tzk, k = l + 2, l + 3, . . . , n.

We will show that there is a non-zero v ∈ Y such that T⊥BAv but Tx ̸⊥B Avx for each x ∈ MT .

For any λ ≥ 0 and v ∈ B(−Txl+1, ∥T∥), we have

∥T + λAv∥ ≥ ∥(T + λAv)x1∥ = ∥(1 + λ)Tx1∥ = (1 + λ)∥T∥ ≥ ∥T∥
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and

∥T − λAv∥ ≥ ∥(T − λAv)xl+1∥ = ∥Txl+1 − λv∥

≥ ∥(1 + λ)Txl+1 − λ(Txl+1 + v)∥

≥ (1 + λ)∥Txl+1∥ − λ∥(Txl+1 + v)∥

≥ (1 + λ)∥T∥ − λ∥T∥ = ∥T∥.

Therefore, T⊥BAv for each v ∈ B(−Txl+1, ∥T∥). We next show that there is at least one

v ∈ B(−Txl+1, ∥T∥) such that Tx ̸⊥B Avx for each x ∈ MT . Firstly, Tx ̸⊥B Avx for each

x ∈ MT ∩ span{x1, x2, . . . , xl}, since Avx = Tx ̸= 0 for all x ∈ MT ∩ span{x1, x2, . . . , xl}. Let
x ∈ MT \ span{x1, x2, . . . , xl}, i.e., x ∈ Q. Define Hx = {y ∈ Y : Tx⊥By}. By smoothness of Y,

Hx is an unique closed hyperspace of Y. Hence Hx is nowhere dense set of Y. Put Px = {v ∈
Y : Avx ∈ Hx}. Since Avx = cx,1Tx1 + cx,2Tx2 + . . .+ cx,l+1v+ cx,l+2Tzl+2 + . . .+ cx,nTzn and

cx,l+1 ̸= 0, we have

Px =
1

cx,l+1
(Hx − (cx,1Tx1 + cx,2Tx2 + . . .+ cx,l+2Tzl+2 + . . .+ cx,nTzn)) ,

for each x ∈ Q. The set Px = {v ∈ Y : Tx⊥BAvx}, being homeomorphic to Hx, is also nowhere

dense. As Q is countable, it follows from Baire category theorem that the non-empty open

set B(−Txl+1, ∥T∥) contains an element v such that v /∈ Px for each x ∈ Q. Thus we found

v ∈ B(−Txl+1, ∥T∥) such that T⊥BAv but Tx ̸⊥B Avx for all x ∈ MT . Hence T does not

satisfy the BŠ Property.

Remark 8.5. We note that Theorem 8.4 improves on [50, Th. 2.7].

For linear operators between a polyhedral Banach space and a smooth Banach space, we

have the following corollary.

Corollary 8.1. Let X be an n-dimensional polyhedral Banach space and let Y be any smooth

Banach space. Let T ∈ L(X,Y) be such that MT satisfies the following conditions:

(1) MT has more than two components.

(2) MT has at most two non-singleton components ±Di, for some i ∈ N. If Di = −Di, then MT

has exactly one non-singleton component. All the other components of MT are singleton.

(3) MT contains at least one pair of singleton components ±Dj , j( ̸= i) ∈ N such that ±Dj ∩
span{Di} = ϕ.

Then T does not satisfy the BŠ Property.

Proof. We note that in a finite-dimensional polyhedral Banach space X, BX contains finitely

many extreme points and each component of MT contains extreme points of BX. Therefore, MT
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has finitely many components. Thus MT satisfies all the conditions of Theorem 8.4 and so, T

does not satisfy the BŠ Property.

8.3 Classification of spaces which are BŠ

pairs

In the remaining section of this chapter we obtain some of the pairs of spaces which satisfied

the condition to be BŠ pairs. First we present one of the main results of the chapter that shows

that X = ℓn1 acts as universal domain space for the pair (X,Y) to be a BŠ pair.

Theorem 8.6. Given any normed linear space Y, the pair (ℓn1 ,Y) is a BŠ pair.

Proof. If dimY = 1 then given any T ∈ L(ℓn1 ,Y), it is easy to check that MT = D ∪ (−D),

where D is a connected subset of Sℓn1
. From this it follows that the pair (ℓn1 ,Y) is a BŠ pair.

Let us assume that dimY > 1. Let T ∈ L(ℓn1 ,Y) be such that MT ̸= D ∪ (−D), where D is a

connected subset of Sℓn1
. We prove that T does not satisfy the BŠ Property. Since MT is not

of the form D ∪ (−D), it must be of the form MT =

(
k⋃

i=1
D′

i

)
∪
(

l⋃
j=1

Ej

)
, where Di and Ej

are components of MT , D
′
i = Di ∪ (−Di), Ej = −Ej and Di ̸= −Di. Let us now complete the

proof of the theorem by considering the following three exhaustive cases.

Case I: l = 0. If k = 1, then MT = D1 ∪ (−D1), which contradicts our hypothesis. So we

assume k ≥ 2. Then MT =
k⋃

i=1
D′

i. Since Di is a connected subset of SX, where X = ℓn1 , an easy

application of the Krein-Milman theorem shows that each Di must contain at least one extreme

point of BX. LetDi∩EX = {ei1, ei2, . . . eimi}, 1 ≤ i ≤ k, i.e.,
∣∣Di∩EX

∣∣ = mi. Clearly,
k∑

i=1
mk ≤ n.

Let us write X1 = span{e11, e12, ..., e1m1} and X2 = span{e21, e22, ..., e2m2 , ..., ek1, ek2, .., ekmk
}.

It is easy to see that D1 ∪ (−D1) = D′
1 ⊆ X1 and

k⋃
i=2

D′
i ⊆ X2. Thus we have MT ⊆ X1 ∪X2

and moreover it is immediate that X1 ∩ X2 = {θ}, as X = ℓn1 . Therefore, MT is partitioned

into two non-empty subsets Y1 = MT ∩ X1 and Y2 = MT ∩ X2 of X, which are contained in

complementary subspaces of X. Then by [62, Prop. 2.1], we conclude that T does not satisfy

the BŠ Property.

Case II: k = 0. If l = 1, then MT = E1, a contradiction to our hypothesis. So we assume

l ≥ 2. In this case MT =
⋃l

i=1Ej . Proceeding similarly as in Case I, we can show that that T

does not satisfy BŠ property.
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Case III: l ≥ 1, k ≥ 1. In this case MT =

(
k⋃

i=1
D′

i

)
∪
(

l⋃
j=1

Ej

)
and once again proceeding

as above, we conclude that T does not satisfy the BŠ property.

Thus, in all the possible cases, we can conclude that T ∈ L(ℓn1 ,Y) satisfies the BŠ Property

if and only if MT = D ∪ (−D), where D is a connected subset of Sℓn1
.

Remark 8.7. Observe that ℓn1 is the unique (upto isometric isomorphisms) n-dimensional Ba-

nach space having the minimum possible number of extreme points of its unit ball. This is the

fundamental reason that the above theorem works exclusively for ℓn1 spaces.

In the next theorem, we obtain another class of BŠ pairs of Banach spaces, when the domain

space is ℓ3∞. For the sake of convenience of the reader, we give the definition of adjacent edges

of the unit sphere of a finite-dimensional polyhedral Banach space.

Definition 8.3. Let X be finite-dimensional polyhedral Banach space. Two edges E1, E2 of SX

are said to be adjacent if E1∩E2 = {v}, where v is an extreme point of BX. Similarly, the edges

E1, E2, . . . En are said to be adjacent if E1 ∩E2 · · · ∩En = {v}. An extreme point of BX is also

called a vertex of SX. If v is a vertex and v ∈ E1 ∩ E2 · · · ∩ En, then we also say that the edges

E1, E2, . . . En are adjacent to the vertex v.

Theorem 8.8. Given any strictly convex and smooth Banach space Y, the pair (ℓ3∞,Y) is a BŠ

pair.

Proof. Observe that Bℓ3∞ has eight vertices ±v1 = ±(1, 1, 1),±v2 = ±(−1, 1, 1),

± v3 = (−1,−1, 1) and ±v4 = ±(1,−1, 1) and twelve edges ±E12 = ±L[v1, v2],

± E23 = ±L[v2, v3],±E34 = ±L[v3, v4],±E41 = ±L[v4, v1],±E1(−3) = ±L[v1,−v3],

± E2(−4) = ±L[v2,−v4]. We prove that if MT is not of the form D ∪ (−D), where D is a con-

nected subset of Sℓ3∞ , then T does not satisfy the BŠ Property. Given any T ∈ L(ℓ3∞,Y), if

MT is not of the formD∪(−D), then it is easy to see thatMT must be one of the following forms:

(i) MT contains exactly two pairs of vertices of Bℓ3∞ and no other points of Bℓ3∞ .

(ii) MT contains exactly three pairs of vertices of Bℓ3∞ and no other points of Bℓ3∞ .

(iii) MT contains exactly four pairs of vertices of Bℓ3∞ and no other points of Bℓ3∞ .

(iv) MT contains exactly one pair of vertices and exactly one pair of edges of Bℓ3∞ such that

the vertices do not belong to the concerned edges. MT contains no other points of Bℓ3∞ .

(v) MT contains exactly two pairs of vertices and exactly one pair of edges of Bℓ3∞ such that

the vertices do not belong to any of the concerned edges. MT contains no other points of Bℓ3∞ .

(vi) MT contains exactly two pairs of non-adjacent edges of Bℓ3∞ and no other points of Bℓ3∞ .
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(-1,1,-1)

v4 = (1,−1, 1)

v2 = (−1, 1, 1)

v3 = (−1,−1, 1)

(-1,-1,-1) (1,-1,-1)

(1,1,-1)

v1 = (1, 1, 1)
E12

E23 E41

E34

Figure 8.1: Unit sphere of ℓ3∞

If MT is of the form described in either of the Cases (i), (ii), (iii), then T does not satisfy

the BŠ Property and the proof of it follows directly from [50, Th. 2.7]. Also, if MT is of

the form described in either of the Cases (iv), (v), then T does not satisfy the BŠ Property

and the proof of it follows directly form Corollary 8.1. Here we only consider the Case (vi).

Without loss of generality, we may assume that MT = ±E12 ∪ ±E34, for some T ∈ L(ℓ3∞,Y).

As Y is strictly convex, we must have T (±E12) = ±u1, T (±E34) = ±u2, where u1, u2 ∈ Y

are linearly independent and ∥u1∥ = ∥u2∥. Now we define a linear operator A : ℓ3∞ → Y by

A(±E12) = T (±E12) = ±u1, A(±v3) = −T (±v3) = ∓u2. Then A(±E34) = −T (±E34) = ∓u2,

since v4 = v1− v2+ v3. Here Av1 ∈ (Tv1)
+ and Av3 ∈ (Tv3)

−. Therefore, using [61, Th. 2.2] we

get T⊥BA. From the construction of the operator A, it is clear that Tx ̸⊥B Ax, for all x ∈ MT .

This completes the proof of the theorem.

In order to obtain further examples of BŠ pairs of polyhedral Banach spaces (X,Y), we

require the following lemma.

Lemma 8.2. Let X be any finite-dimensional Banach space and let Y be any polyhedral Banach

space such that BY has exactly 2m facets. Let T ∈ L(X,Y) be such that MT is not of the form

D ∪ (−D), where D is a connected subset of SX. Then MT can have at most 2m components.

Proof. Suppose on the contrary that MT has (2m+ 1) components, say D1, D2, . . . ,

D2m+1. Let us consider a subset {x1, x2, . . . , x2m+1} of MT , where xi ∈ Di for i = 1, 2, . . . , 2m+

1. Let Tx1 ∈ F, where F is a facet of BY. Then we must have Txi /∈ F for i ∈ {2, 3, . . . , 2m+1}.
If not then, (1−λ)x1+λxi ∈ MT , for all λ ∈ [0, 1], contradicting the fact that D1 and Di(i > 1)
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are distinct components of MT . Thus Txi and Txj (i ̸= j) can not belong to the same facet of

BY. Let us denote the facets of BY as F1, F2, . . . , F2m such that Txi ∈ Fi for i = 1, 2, . . . , 2m.

Thus Tx2m+1 can not belong to any facet of BY, which is a contradiction to the fact that

x2m+1 ∈ MT . This completes the proof of the lemma.

Using the above lemma, we obtain the following theorem:

Theorem 8.9. (ℓ3∞, ℓ2∞) is a BŠ pair.

Proof. Bℓ3∞ has eight vertices ±v1 = ±(1, 1, 1),±v2 = ±(−1, 1, 1),±v3 = (−1,−1, 1) and

±v4 = ±(1,−1, 1) and twelve edges ±E12 = ±L[v1, v2],±E23 = ±L[v2, v3],±E34

= ±L[v3, v4],±E41 = ±L[v4, v1],±E1(−3) = ±L[v1,−v3],±E2(−4) = ±L[v2,−v4]. Let T ∈
L(ℓ3∞, ℓ2∞) be such that MT is not of the form D ∪ (−D), where D is a connected subset

of SX. Then by Lemma 8.2, MT must be one of the following forms:

(i) MT contains exactly two pairs of vertices of Bℓ3∞ and no other points of Bℓ3∞ .

(ii) MT contains exactly one pair of edges and exactly one pair of vertices of Bℓ3∞ such that the

concerned vertices do not belong to the concerned edges. MT contains no other points of Bℓ3∞ .

(iii) MT contains exactly two pairs of edges of Bℓ3∞ and no other points of Bℓ3∞ .

If MT is of the form described in either of the Cases (i) and (ii), then T does not satisfy

the BŠ Property and the proof of it follows directly from [62, Prop. 2.1]. We only consider the

case (iii) in which MT contains exactly two pairs of edges of Bℓ3∞ . Without loss of generality,

we may and do assume that MT = ±E12∪±E34. Clearly, we have T (MT )∩Eℓ2∞ = ϕ and hence

Tx ∈ Sm(Sℓ2∞) for any x ∈ MT , where Sm(Sℓ2∞) denotes the collection of all smooth points of

Sℓ2∞ . As E12 ⊆ MT and E34 ⊆ MT , we have Tv1 and Tv2 belong to the same edge of Bℓ2∞ and

also Tv3 and Tv4 belong to the same edge of Bℓ2∞ . Let us define an operator A ∈ L(ℓ3∞, ℓ2∞) as

follows:

Av1 = Tv1, Av2 = Tv1, Av3 = −Tv3.

Clearly, Av1 ∈ (Tv1)
+ and Av3 ∈ (Tv3)

−. Therefore, using [61, Th. 2.2], we get that

T⊥BA. Now, we have A(E12) = Tv1 and A(E34) = −Tv3, as v4 = v1 − v2 + v3. Then it is easy

to check that Tu ̸⊥B Au for any u ∈ MT . Hence T does not satisfy the BŠ Property.

Therefore, the pair (ℓ3∞, ℓ2∞) is a BŠ pair.

Using similar arguments, we can also prove the next result, the proof of which is omitted as

it follows in similar spirit to the above theorem.

Theorem 8.10. (ℓ3∞, ℓ3∞) is a BŠ pair.
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Remark 8.11. Given m,n ∈ N such that m,n > 3, it is still unknown whether the pair (ℓm∞, ℓn∞)

is a BŠ pair.

We would like to end the chapter with a related result that characterizes the unit cube among

all 3-dimensional convex polyhedrons having eight vertices. This is of independent interest and

illustrates the connection between operator norm attainment and geometries of the domain

space and the co-domain space.

Theorem 8.12. Let X be a three-dimensional polyhedral Banach space such that BX has exactly

eight vertices. Then X is isometrically isomorphic with ℓ3∞ if and only if given any strictly convex

Banach space Y and given any two pairs of non-adjacent edges ±E1 and ±E2 of SX, there is a

rank two linear operator T ∈ L(X,Y) such that MT = ±E1 ∪ ±E2.

Proof. Let us first prove the necessary part of the theorem. We use the notations for the ver-

tices and the edges of Bℓ3∞ as used in Theorem 2.4 (see Figure 1). Now for any two pairs of

non-adjacent edges of Bℓ3∞ , the following three cases may arise:

(i) ±E12 = ±L[v1, v2] and ±E34 = ±L[v3, v4].

(ii) ±E14 = ±L[v1, v4] and ±E23 = ±L[v2, v3].

(iii) ±E1(−3) = ±L[v1,−v3] and ±E2(−4) = ±L[v2,−v4].

We only consider the Case (i), as the other two cases will follow similarly. Define a linear

operator T : ℓ3∞ → Y by T (v1) = T (v2) = u1, T (v3) = u2, where u1, u2 ∈ SY are linearly

independent. So, we have T (±E12) = ±u1 and T (±E34) = ±u2. Hence it can be easily shown

that ∥T∥ = 1,MT = ±E12 ∪ ±E34 and T is a rank two linear operator.

Next we prove the sufficient part of the theorem. Let ±v1,±v2,±v3,±v4 be the eight ver-

tices of BX. Using the Krein-Milman theorem, we conclude that the set {v1, v2, v3, v4} contains

a basis of X. Therefore, the following two cases arise in this context:

Case(i). Any three elements of the set {v1, v2, v3, v4} are linearly independent.

Case(ii). Case (i) is not satisfied.

Case (i) : Let {v1, v2, v3} be a basis of X and let v4 = α1v1 + α2v2 + α3v3, where αi ∈
R, i = 1, 2, 3. Then each αi is non-zero, as any three elements of the set {v1, v2, v3, v4} are

linearly independent. In a three-dimensional polyhedral Banach space every vertex has at least

two adjacent edges. Let ±E1 = ±L[v1, v2] and ±E2 = ±L[v3, v4]. Let T1 be a rank two linear
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operator such that MT1 = ±E1 ∪±E2. As Y is a strictly convex Banach space and ±E1 ⊆ MT1 ,

T1(±E1) = ±u1 for some non-zero u1 ∈ Y. Also T1(±E2) = ±u2, for some non-zero u2 ∈ Y.

As T1 is of rank two, u1, u2 are linearly independent. As v4 = α1v1 + α2v2 + α3v3, we have

u2 = T1(v4) = (α1 + α2)u1 + α3u2. Therefore, (1 − α3)u2 = (α1 + α2)u1. So we must have

α1 = −α2 and α3 = 1, as u1, u2 are linearly independent. Hence v4 = α1(v1− v2)+ v3. Without

loss of generality, we assume that L[v1, v3], L[v2, v4] are two edges of BX. Now for this two

pairs of non-adjacent edges ±E
′
1 = ±L[v1, v3] and ±E

′
2 = ±L[v2, v4], there is a rank two linear

operator T2 ∈ L(X,Y) such that MT2 = ±E
′
1 ∪ ±E

′
2. In a similar argument like above, we have

T2(±E
′
1) = u

′
1 for some non-zero u

′
1 ∈ Y and T2(±E

′
2) = u

′
2 for some non-zero u

′
2 ∈ Y. Therefore,

we have u
′
2 = T2(v4) = α1u

′
1−α1u

′
2+u

′
1. So α1 = −1, as u

′
1, u

′
2 are linearly independent. Hence

v4 = −v1 + v2 + v3. Now we define a linear map S : X → ℓ3∞ by

S(v1) = (1, 1, 1), S(v2) = (−1, 1, 1), S(v3) = (1, 1,−1).

Then S(v4) = (−1, 1,−1). Clearly, S is an isomorphism, as it maps a basis to a basis and

∥S∥ = 1, as S(Ext BX) = Ext Bℓ3∞ . Also ∥S−1∥ = 1, as S−1(Ext Bℓ3∞) = Ext BX. Thus we

have

∥x∥ = ∥S−1S(x)∥ ≤ ∥S(x)∥ ≤ ∥x∥.

Therefore, S is an isometric isomorphism.

Case (ii) : Without loss of generality, we assume that v1, v2, v3 are linearly dependent.

Consider the subspace spanned by v1, v2. Let Z = span{v1, v2}. Then dimZ = 2 and ±v4 ̸∈ Z,

otherwise dimX = 2, which is a contradiction. Now, ±v1,±v2,±v3 ∈ SX ∩ Z. Therefore, BX

is of the form of hexagonal pyramid, where ±v1,±v2,±v3 are the vertices of the hexagonal

base. Now for any two edges E1 and E2 on the hexagonal base, either E1 and E2 are adjacent

or E1 and −E2 are adjacent. Therefore, two pairs of non-adjacent edges ±E1 and ±E2 are

not possible from hexagonal base of BX. Also any two edges, which are not in the subspace

Z, are adjacent as they have a common vertex, either v4 or −v4. Hence there is only one

possibility for two pairs of non-adjacent edges, one edge is in the two-dimensional subspace Z

and one edge is not in the two-dimensional subspace Z. Without loss of generality, we assume

±E1 = ±L[v1, v2] and ±E2 = ±L[v3, v4]. Now we claim that for any operator T ∈ L(X,Y), with

±E1 ∪ ±E2 ⊆ MT , T is a rank one linear operator. As Y is strictly convex and ±E1 ⊆ MT ,

we must have T (±E1) = ±u1 for some non-zero u1 ∈ Y. Also for similar reason T (±E2) = ±u2

for some non-zero u2 ∈ Y. As v1, v2, v3 are linearly dependent, we have v3 = α1v1 + α2v2, for

some non-zero α1, α2 ∈ R. Then T (v3) = (α1 + α2)u1. As ∥Tv3∥ = ∥T∥ = ∥u1∥, we must have
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|α1 + α2| = 1. Hence u2 = ±u1. Therefore, T is a rank one linear operator. So there dost not

exist any rank two linear operator T ∈ L(X,Y) such that MT = ±E1 ∪ ±E2, where ±E1 and

±E2 are any two pairs of non-adjacent edges and hence Case-(ii) is not possible.

This establishes the theorem.
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