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Preface 

Most of overhead line insulators are employed for outdoor 

applications, due to which environmental pollutants accumulate on the 

surface of outdoor insulators. Notably, incremental surface 

contamination reduces surface insulation resistance. As a result, the 

surface conductivity of overhead line insulators also changes. The outer 

surface of overhead line insulators is mainly affected by different 

climatic conditions like fog, raindrops, dew, sea salt, sand, dust, soil, 

and air pollution. In coastal areas, predominant environmental 

contaminants such as sand, dirt, and soluble salt (NaCl) accumulate on 

the surface of overhead line insulators. In rainforest regions, the 

pollutant is mainly Kaolin (Al2Si2O5(OH)4), which accumulates on 

the surface of overhead line insulators. The clean surface of overhead 

line insulators cannot form a conductive path with water particles in 

humid conditions because the water particles are deposited on the clean 

surface as a droplet instead of making a water film. 

On the other hand, accumulated pollutants degrade the surface 

insulating property of overhead line insulators. Soluble pollutants can 

easily mix with molecules of water and then develop conduction paths 

on the surface of overhead line insulators. As a result, the surface 

leakage current flows through the contaminated housing of overhead 

line insulators. The amplitude of the surface leakage current relies 

mainly on the dissolved soluble pollutants. It is worth noting that higher 

levels of contamination increase the leakage current flow at the 

insulators' surface. The surface temperature of the overhead line 

insulator is also increased due to the joule-heating effect. As a result, 

the water molecules partially evaporate from the wet surface, causing 

dry bands to form, followed by dry band discharge phenomena on the 

surface of the overhead line insulators. Because of the localize dry band 

formation, the voltage is not uniformly distributed across the surface of 

the insulator. Ultimately, flashover events occur in overhead line 

insulators for the reasons mentioned above, leading to the premature 

failure of overhead line insulators. Therefore, scheduled condition 

monitoring of overhead line insulators for an uninterrupted power 

supply is essential.  



In order to address the surface condition of the overhead line 

insulators and prevent them from premature failure, it is essential to 

establish techniques which correlate with the surface contamination 

levels of overhead line insulators. To identify the degree of surface 

contamination, different methods are implemented, such as Non-

soluble Salt Deposit Density or NSDD, equivalent salt deposit density 

or ESDD, leakage current measurement, flashover voltage test, and air 

pollution. Among them, the surface leakage current signal is a dynamic 

parameter because it varies with changes in pollution intensity. It is 

noteworthy that surface leakage current measurements are more 

consistent and effective than traditional methods. In this reported thesis 

work, based on the measurement of leakage current approach helps to 

identify the severity of the surface degradation of overhead line 

insulators. Different advanced approaches to assessing the surface 

condition of overhead line insulators are demonstrated in various 

chapters of the thesis.  

In the second chapter of the thesis work, an experimental setup has 

been used to acquire the surface leakage current (SLC) signals in the 

laboratory. Additionally, an elaborate discussion of the different 

components of the hardware setup is presented in this chapter. In this 

regard, artificially contaminated samples of overhead line insulators are 

prepared in the laboratory. Besides that, the severity of surface 

contamination is classified as per the IEC 60815 standard. The detailed 

procedure to acquire the surface leakage current signals using an 

experimental setup according to the IEC 60507 standard is 

demonstrated in this chapter. Notably, experimental observation reveals 

that leakage current becomes distorted and non-stationary as the surface 

contamination severity increases. After the SLC data acquisition, that 

data is stored on the computer for data analysis purposes. 

In the third chapter, a framework has been presented that applies 

mathematical morphology on surface leakage current signals in order 

to extract significant features about surface contamination severity. In 

this regard, the SLC signals corresponding to the different 

contamination levels are recorded. It is noteworthy to mention that the 

signature of the SLC is dependent on the input voltage magnitude and 

sensitive to the degradation level of the surface contamination. 

Mathematical morphology is applied in the proposed model to capture 



local features of SLC leakage current, which can be useful to classify 

the SLC of overhead line insulators corresponding to different surface 

contamination levels. Apart from this, the proposed filter technique can 

efficiently eliminate unwanted features and provide optimal features, 

which improve the proposed framework's prediction accuracy. After 

that, the extracted features are fed to a Random Forest (RF) classifier to 

identify the contamination level of overhead line insulators based on 

the morphological features. The results show that extracted features of 

mathematical morphology can predict overhead line insulators' surface 

contamination severity with satisfactory results for the RF classifier. 

Although the mathematical morphology-aided approach shows very 

satisfactory performance on the nonlinear SLC signals, but framework 

requires additional information about the input voltage profile. 

However, on field measurement of input voltage is a very difficult task, 

which requires more protective measures and apparatus. It is 

noteworthy to mention that employing the proposed filter model with 

mathematical morphology operation for acquiring features from SLC 

signals is time-consuming and cumbersome. In addition, the process of 

mathematical morphological technique depends on structural element 

dimensions. On the opposite side, assigning the dimension of the 

structural elements depends on the signature of the input signal, which 

is complicated. Notably, the proposed model's success rate has been 

examined with only one machine learning classifier (i.e., Random 

Forest). With respect to this, it is impractical to validate the proposed 

framework for the identification of surface contamination levels of 

overhead line insulators. 

In chapter four, an integrated time-frequency signal processing 

technique has been applied to SLC signals to overcome the flaws 

mentioned in the mathematical metaphorical-based model. Using a data 

acquisition experimental setup, SLC signals of different contamination 

classes are acquired and converted into a joint time-frequency image 

data bank by Hyperbolic Stockwell Transform (HST). In addition, HST 

provides different statistical features from the image bank as output 

features. Optimal features are extracted using the LASSO regression 

technique to improve the model's outcome. Notable, the framework's 

performance is validated in comparison with four benchmark classifiers 

such as Support Vector Machine (SVM), Random Forest (RF), 



Gaussian Naïve Bayes (GNB) and k-Nearest Neighbor (k-NN). The 

outcome indicates that the proposed framework returns satisfactory 

performance regarding the surface contamination severity assessment 

of overhead line insulators. In contrast, the proposed framework's 

feature classification process is a supervised learning approach, which 

is cumbersome. The generated features matrix from the HST method 

can only be utilized if it is arranged as input and output variables for 

supervised feature classification. Also, the process of feature extraction 

in HST aided approach is handcrafted. Besides that, the classifier 

models must perform iterative operations based on the training dataset 

to predict the correct contamination level. It has been observed that the 

proposed model's algorithm is terminated when it reaches an acceptable 

performance level. That is why it is time-consuming to predict the 

contamination class of the overhead line insulators. 

In chapter five of the thesis, a deep learning-aided framework has 

been implemented to extract features from cross time-frequency 

spectrum of SLC signals automatically. By using the cross hyperbolic 

Stockwell transform (XHST) approach, the distinct characteristics of 

surface leakage current (SLC) signal at different surface contamination 

levels of overhead line insulator samples have been revealed. Notably, 

the extracted features are not affected by external noise and the aliasing 

effects. Furthermore, the XHST method is a powerful tool for detecting 

surface contamination because it is cross-correlated with a reference 

signal (i.e., the SLC at the clean surface of the overhead line insulator). 

In addition, time-frequency cross-spectrum images are fed to a pre-

trained CNN architecture (i.e., VGGNet-16). Automatic feature 

extraction and classification are achieved using the transfer learning 

strategy with fine-tuning techniques to train VGGNet-16 architecture. 

The performance of the proposed model is validated for any dimension 

of the overhead line insulators. In a deep learning framework, feature 

extraction is fully automated, and the abundant features are eliminated 

without any supervision. The cross-spectrum deep learning framework 

described here is simple, accurate, and robust, which makes it 

potentially suitable for predicting overhead line insulators' surface 

contamination severity. The pre-trained deep VGGNet-16 architectures' 

major advantage is the process of feature extraction and the prediction 

of the contamination classes is automatic. This significantly reduces the 



effort and time needed to develop a model for a specific task. 

Furthermore, the pre-conditioned deep learning models can be further 

fine-tuned over a few epochs to validate the model performance for any 

dimension's overhead line insulators. 

Chapter six summarizes the thesis work, such as research gaps, 

findings and comparison between existing research work and the 

proposed research model. The author describes the possible research 

opportunities and developments in the condition assessment study of 

overhead line insulators. 
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D(j) Dilation Operator 
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E(j) Erosion Operator 
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F1 Variance of D(j) 

F2 Variance of E(j) 
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F17 Skewness of δXDE (j) 
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F19 Average of dilated signal Davg(j) 

F20 Average of eroded signal Eavg(j) 

F-1 Maximum value of magnitude spectrum ,m lM  of 

HS matrix 

F-2 Mean value of the column corresponds to max value 

of magnitude spectrum ,m lM of HS matrix 
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Chapter 1 

Condition Assessment of Overhead Line Insulators 

1.1 Introduction 

Overhead line conductors are employed on transmission and distribution 

power system networks. They have not been covered with any insulation 

coating. Insulators are therefore used to secure conductors to support 

structures. In addition, they ensure no leakage current flows from the 

insulator's surface to the earth. The cross arm and the live conductors are 

separated by insulators. Moreover, the insulators provide enough space 

between the wires and metal structures as well as proper insulation. The 

insulators must provide proper insulation and necessary clearance against 

high voltage in the most adverse atmospheric conditions to which the line will 

likely be subjected. The insulators also prevent short-circuiting between 

different phase conductors and provide essential mechanical support for line 

conductors [1] – [4]. When it comes to transmission and distribution of power 

networks, the insulator is unquestionably regarded as crucial and highly 

esteemed. In this regard, it is vital to select the appropriate components in 

order to ensure the smooth operation of overhead transmission and 

distribution systems. The key properties of an overhead line insulator are: 

• The insulator possesses great strength in order to bear the load of 

conductors, wind, ice, and additional conductors resting upon it. 

• The insulators have a high relative permittivity and high 

dielectric strength.  

• It has a strong insulation resistance to prevent electricity from 

flowing into the ground. 

• The rapture strength is much higher than the voltage to cause a 

flashover. 

• The ability to handle drastic changes in temperature. In other 

words, it should not break when it gets very hot in the summer 

or very cold in the winter.  

The dielectric strength should remain unaffected under different 

conditions of temperature and pressure [5]. The material used should not be 

porous and impervious to fluids as well as gases in the atmosphere. Moreover, 

it should be free of internal impurities, cracks, and other defects since these 

lower the dielectric strength. To ensure power system stability, overhead line 

insulators must be maintained on a regular schedule. Condition Monitoring 

(CM) techniques are used to investigate overhead line insulators' life span. 

CM techniques provide information about the condition of the insulators and 

can detect problems before they lead to stochastic failure. This can help to 

prevent outages and reduce maintenance costs. CM techniques also provide 

valuable data that can be used to improve the design of future insulators. In 
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other words, condition monitoring refers to a method or process by which 

overhead line insulators are monitored in such a way that identifies the 

changes in their electrical characteristics. This can be used to assess overhead 

line insulators' longevity and predict maintenance needs before serious 

deterioration or breakdown occurs. As part of the CM process, data must be 

gathered for analysis, and identification the trends [5], [7]. A detailed 

discussion of various condition assessment techniques for overhead line 

insulators is illustrated in section 1.6. 

1.2 Importance of Overhead Line Insulators 

Power system network experiences different levels of voltage stress due 

to power transmission and distribution demands. Due to high electric field 

stresses, deterioration of insulation properties in power equipment can result 

in destructive failure of the entire electrical system [1] – [6]. Overhead line 

insulators play a crucial role in power systems by providing electrical 

insulation and mechanical support for transmission and distribution lines. 

These insulators are typically made of porcelain, glass, or composite polymer. 

Overhead power lines are designed to handle high-voltage stress and harsh 

environmental conditions. The main functions of overhead line insulators are: 

• Electrical insulation: Insulators prevent electrical current flow 

through the transmission or distribution line to the ground. This 

helps to ensure that electrical power is efficiently transmitted and 

distributed to end-users without losses due to leakage or faults in 

circuits. 

• Mechanical support: Insulators support the weight of power lines 

and other components such as conductors, fittings, and other metal 

parts of power lines. They also help maintain proper spacing 

between the conductors and prevent them from coming into contact 

with each other or the supporting structure. 

• Protection against lightning: Overhead line insulators protect 

against lightning strikes. They can help provide a low-impedance 

path for lightning-induced electrical discharge to the ground. As a 

result, power lines and other components of the power system will 

not be damaged. 

• Reduced power losses:  Overhead line insulators reduce power 

losses by preventing electrical power leakage to the ground. This 

ensures maximum power is transmitted from the power source to the 

end user, improving efficiency. 

In summary, overhead line insulators are integral to electricity transmission 

and distribution. They reduce interference with power flow, fire hazards, and 

ionization risks. The power system would have suffered from dangerous and 

costly problems without overhead line insulators. 
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1.3 Types of Overhead line insulators 

Overhead line insulators play a crucial role in power system transmission 

and distribution networks [7] – [10]. In power networks, two types of 

insulators are used. These are mainly composite polymers and non-polymer 

insulators [10]. Insulators made from glass or porcelain are non-polymeric 

insulators. In contrast, composite polymer insulators (i.e., silicone Rubber 

(SiR)) are also utilized in power system networks. The following sections 

discuss various types of overhead line insulators in detail. 

1.3.1 Silicone Rubber (SiR) Insulators 

Silicone rubber (SiR) insulators are preferred for power grid transmission 

and distribution line applications. There are three main reasons why silicone 

rubber composite insulators are widely used in the power grid: first, they are 

light, easy to install, and their mechanical strength is no less than that of 

porcelain or glass insulators. Second, the manufacturing process is relatively 

simple. The shade configuration can be changed according to the mold to 

meet the requirements of different projects for creepage distance. Third and 

most importantly, when it comes to mitigating flashovers caused by pollution, 

silicone rubber composite insulators are superior to porcelain or glass 

insulators. Additionally, the silicone rubber composite insulator is capable of 

resisting the formation of the water film on its surface [1] – [3], [6] – [8]. 

 

Fig. 1.1 Image of Silicone Rubber (SiR) Insulators (i.e., 11 kV and 33 kV). 

The performance advantages of SiR composite insulators are further 

enhanced when they apply power lines with voltage levels above 220 kV [5], 
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[10] and railway-yard substations [11] – [13]. It has been found that healthy 

SiR insulators can work satisfactorily near about 8 to 20 years [7], [8], [10]. 

In Fig. 1.1, two different ratings of SiR insulators are shown (i.e., 11 kV and 

33 kV). 

 

Fig. 1.2 Image of Chemical Construction of Polydimethylsiloxane (PDMS) 

(a) PDMS Solo unit monomer, (b) Cyclic PDMS molecule [13]. 

The type of material used in SiR is an elastomer. This elastomer is made 

of mainly silicon and oxygen atoms. According to the chemical structure, 

methyl groups are in the side chain (as shown in Fig. 1.2). SiR is colorless 

and it looks like oil or rubber type of substance. SiR is used in electrical 

insulation, heat insulators and medical science applications [2], [8]. SiR 

insulators have long-term reliable performance, but they are affected by 

electrical discharge, natural or artificial aging and environmental stresses [3], 

[6] – [8], [10]. 

The chemical composition of silicone elastomer or Silicone Rubber (SiR) 

is explained in detail in this section. Organic fillers (i.e., Organically Modified 

Montmorillonite (OMMT), nano-fibrillated cellulose (NCF) etc.) and 

inorganic fillers (i.e., Calcium Carbonate (CaCO3), Silica, Zinc oxide (ZnO) 

etc.) are mainly used in SiR polymers [13]. These fillers provide the more 

rigid structure of SiR polymer through the vulcanization process [14], [15]. 

A fundamental form of SiR is made up of Polydimethylsiloxane (PDMS) with 

organic methyl groups of silicon-oxygen structure. The PDMS is expressed 

as CH3[Si(CH3)2O]n Si(CH3)3, where the letter n indicates the quantity of 

monomers [16]. The chemical structure of the single monomer unit (linear) 

and general ring structure of PDMS is shown in Fig. 1.2. Due to the Si - O 

bond in the SiR chemical structure, SiR insulators exhibit good thermal 

conductivity, hydrophobicity and anti-oxidant properties. The thermal 

stability range of the SiR insulators is from +180℃ to –50℃. The reason for 
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having such a wide thermal range is due to the stable Si - O bond [8]. Si - O 

bonds are much stronger than conventional C - O and C - H bonds [7], [40]. 

In addition, Si - O's bond energy is 8.3 eV. Chakraborty et al. reported that 

the base material in any SiR insulator is PDMS, where the primary molecular 

components are composed of carbon (50%), oxygen (25%) and silicon (25%) 

[5]. 

Table 1.1 Various types of filler elements and their characteristics [8]. 

Filler 

Elements 
Effective Features 

ATH 
Increase the tracking and erosion resistance. 

Improve the thermal and electrical conductivity. 

SiO2 
Increase the ability to overcome erosion and tracking.  

Improve the thermal conductivity. 

Al2O3 
Enhance the thermal conductivity.  

Increase the tracking and erosion resistance. 

TiO2 
The relative permittivity and the thermal stability 

increased. 

ZnO 
Improve the mechanical power and the thermal strength.  

Boost the relative permittivity. 

CaCO3 
Improve the hydrophobicity and the ability to hinder 

fires. 

BaTiO3 
Boost up the relative permittivity and the thermal 

constancy. 

Carbon Black 
Properties of the mechanical and electrical are 

improved. 

Graphite The thermal conductivity is boosted significantly. 

Boron Nitride 
Erosion get decreases and increases in tracking 

endurance. 

Silicon 

Carbide 

Increment of the tracking endurance and resistance to 

erosion is increased. 

 

The mass of the cyclic molecule in SiR is 341. Methyl groups of the 

chemical structure of PDMS have the inherent quality of water repellence 
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[16]. Two fundamental characteristics are viscosity and volatility, determined 

by the molecule chain's length [14], [16]. Because of crosslinking events on 

the chemical structures of the material, the outer surface of the aged SiR 

insulator becomes hard [17]. The study [18] said that the surface of the SiR 

insulator becomes rougher after continuous aging. The SiR insulator is 

enhanced in terms of electrical conductivity, mechanical strength, and 

temperature withstand capability by incorporating fillers. SiR primarily 

consists of pure Polydimethylsiloxane (PDMS), a substance known for its 

reduced intermolecular energy and limited mechanical strength [2], [7] – [8]. 

The Silica (SiO2 nH2O) [9], [19] or Alumina Trihydrate (ATH) (Al2O3 

0.3H2O) [19] – [22], feldspar, Kaolin [23] and others substances, are 

commonly utilized as fillers of SiR insulators. Different types of filler 

elements and their advantages are summarized in Table 1.1. The SiR 

insulators contain four parts in their physical structure [12], [24] – [26]. These 

are: (1) two end fittings (metal), (2) FRP rod, (3) Silicone Rubber made of 

polymeric housing and (4) Edge between the FRP rod and SiR housing 

(Shown in Fig. 1.3) [6]. The interface condition between the FRP rod and SiR 

polymer housing is the most vital factor in determining the insulator's 

longevity. The Steep forward impulse voltage and water diffusion test help to 

determine the volume and surface resistance at the interface of SiR polymers 

and FRP rods by the IEC 60093 standard [27]. Fig. 1.3 shows a cross-

sectional view of the SiR insulator's physical structure. Also, the technical 

specification of the 11 kV and 33 kV outdoor SiR insulators is illustrated in 

Table 1.2 [28] – [29]. 

 

 

Fig. 1.3 Cross-sectional image of physical structure of Silicone Rubber (SiR) 

insulator [6], [24]. 
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Table 1.2 Technical Specifications of 11 kV and 33 kV SiR insulators. 

Technical 

Parameters 
11 kV SiR Insulator 33 kV SiR Insulator 

Housing Material Silicone Rubber (SiR) Silicone Rubber (SiR) 

Rated Voltage 11 kVrms 33 kVrms 

Total Creepage 

Distance 
320 mm 900 mm 

No of Disc 3 8 

Disc Diameter 124 mm 124 mm 

Sectional Length 250 mm mm 

Weight 730 g 1024 g 

1.3.2 Non-Polymeric Insulators 

Non-polymeric insulators are classified into two categories: porcelain 

insulators and glass insulators. Porcelain insulators are composed of ceramic 

material and a steel core, while glass insulators are composed of glass 

reinforced with fiberglass and a metal cap. Both insulators are designed to 

withstand harsh outdoor environments and ensure safe power transmission. 

All types of non-polymeric insulators are described in the following sections. 

1.3.2.1 Porcelain Insulator 

At controlled temperatures, the mixture of feldspar, kaolin, and quartz 

produces porcelain insulators by firing [30] – [34]. The porcelain insulator is 

stronger than glass, but not homogeneous, as each component shell is glazed 

during the manufacturing process. It does not allow too much leakage current 

to flow on its surface during operation. Moreover, porcelain insulators are not 

affected by changes in temperature and due to smooth surface, they do not get 

dirty easily [30] – [34]. However, it is difficult to find faults because they are 

not transparent. During mechanical stretching, porcelain is often not strong 

and cannot handle pulling forces higher than 5 kg/mm2. The insulator can 

withstand a voltage of about 6.5 kV/mm of its thickness. In addition, it can 

handle a pressure of about 700 kg/mm2 [30] – [34]. Normally it is difficult to 

manufacture homogeneous porcelain in the thickness required for some types 

of insulators and, therefore, for a particular operating voltage, a two or more-

piece construction is adopted in which each piece is fired and glazed 

separately and then they are cemented together. 

The mechanical qualities of this insulating material increase when it is 

produced at a lower temperature, but the material is still porous, so it may 

degrade after it is used. This material's porous is minimized when produced 

at a high temperature, but the substance becomes fragile. The porosity of this 

insulating material also reduces its dielectric strength. In addition, any 

impurities or bubbles left within the material result in a lower dielectric 
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strength. Therefore, a compromise is made between the mechanical strength 

and the porosity of the material and a suitable temperature of the kiln is 

designed. The picture of a 11 kV porcelain insulator disc is show in Fig. 1.4.  

 

Fig. 1.4 Picture of a 11 kV Porcelain Insulator Disc. 

Porcelain insulators can withstand high thermal impact on its surface as it 

has high thermal resistance. This type of insulator can withstand high levels 

of compressive stress. Moreover, the porcelain insulator's surface is not easily 

degraded by environmental pollutants. Therefore, surface leakage current 

activity cannot be detected. In the electrical transmission and distribution 

network, porcelain insulators are preferred for on-load applications due to 

their aforesaid advantages. The major disadvantages of this type of non-

polymeric insulator are that they are heavy, which adds additional weight to 

the overhead line system. However, they are vulnerable and for this reason, 

mishandling damages their surface. Apart from this, porcelain insulators have 

low tensile strength. The technical specification of the 11 kV porcelain 

insulators disc is illustrated in Table 1.3. 
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Table 1.3 Technical Specifications of 11 kV Porcelain Insulator Disc [34]. 

Technical Specifications Parameters 

Housing Material  Porcelain  

Rated Voltage 11 kVrms 

Total Creepage Distance 338 mm 

No of Disc 1 

Disc Diameter 257 mm 

Axial Height 145 mm 

Weight 4298 g 

 

1.3.2.2 Glass Insulator 

With suitable toughening and annealing, glass has a higher resistivity and 

dielectric strength (i.e., 14 kV/mm of material thickness) than porcelain and 

is less expensive in simpler designs [35]. Porcelain cannot sustain the higher 

compressive forces than glass can, despite being a more uniform material. It 

has a smaller index of thermal expansion than other materials, which reduces 

stresses brought on by temperature fluctuations. Additionally, the material is 

translucent in nature, making it easy to see if there are any defects.  

 

Fig. 1.5 Picture of a 11 kV Glass Insulator Disc. 
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The glass Insulator's principal drawback is that moisture condenses more 

easily on its surface, making it easier for dust deposition as layers. This causes 

surface leakage current to flow [35]. Glass insulators, on the other hand, are 

effective up to 50 kV in a dirty and dry environment and up to 25 kV under 

normal atmospheric circumstances. The picture of the 11 kV glass insulator 

disc is shown in Fig. 1.5. Noticeably, the tensile strength of glass insulators 

varies from 5.34 kg/mm2 to 8.35 kg/mm2. Moreover, the breakdown strength 

varies from 70 kV/mm to 120 kV/mm, and the glass insulators' dielectric 

constant is nearly 6.8. The technical details about the 11kV glass insulator 

disc are illustrated in table 1.4.  

Table 1.4 Technical Specifications of 11 kV Glass Insulator Disc [35]. 

Technical Specifications Parameters 

Housing Material  Glass 

Rated Voltage 11 kVrms 

Total Creepage Distance 380 mm 

No of Disc 1 

Disc Diameter 420 mm 

Axial Height 146 mm 

Weight 7200 g 

1.4 Factors for Degradation of Overhead Line Insulators 

Overhead line insulators lose their insulation properties due to various 

factors. Overhead line insulators are mostly used in outdoor applications. That 

is why they are affected by various environmental factors at a greater rate. 

This includes extreme weather conditions, such as temperature fluctuations, 

humidity variation, rainfall, snow or ice deposition, and the deposition of dust. 

Apart from this, thermal, chemical, mechanical, electrical stresses and UV 

radiation also weaken the material's properties over time. As a result, regular 

maintenance and inspection are necessary to ensure insulators remain in an 

efficient working order. An elaborate discussion about overhead line 

insulator's degradation is presented in the following sections. 

1.4.1 Effect of Environmental Factors 

Environmental factors play an essential role in the deterioration of 

overhead line insulators. Outdoor insulators remain exposed to various 

climatic conditions. According to CIGRE Task Force 33.04.01, pollutants are 

classified based on four primary ecological circumstances [36]. These are 

desert, marine, agricultural and industrial environments. Under harsh 

environmental conditions, overhead line insulators degrade very quickly. 

Furthermore, they are susceptible to breakage due to heavy mechanical 
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shocks or lightning strikes. This is causing significant damage to the power 

supply network, leading to disruptions in economic growth and costly 

maintenance. To combat this issue, it is critical to use insulators with high 

hydrophobicity, chemical stability, and mechanical strength. In this regard, 

preventative maintenance strategies should also be employed to ensure these 

insulators' longevity. In Table 1.5, various types of environmental pollutants 

and their sources are illustrated. The following sections are discussed 

elaborately about the various types of environmental factors responsible for 

affecting overhead line insulators. 

Table 1.5 Various types of Environmental Pollinating Sources for the 

Overhead Line Insulators [36]. 

SI. 

No. 

Types of 

Pollutants 
Source of Pollutants 

1 Sea Salt 

• Sea side areas. 

• Industries areas. 

• Roads side areas. 

• Hilly areas where salt get utilized for 

melting snow. 

2 Cement 

• Constructional areas. 

• Rock excavations areas. 

• Ploughed fields. 

3 Fertilizer 

• Plants for fertilising. 

• Recurrent utilization of fertilizers in 

agricultural fields. 

4 Coal 

• Coal mine areas. 

• Thermal power plant areas. 

• Brick Kilns areas / Coal burning. 

5 Metallic 
• Mining handling processes. 

• Mineral handling processes. 

6 Volcanic Ash 
• Areas where volcanic activity occur. 

• Ash handling areas. 

7 Chemical 

• Oil refineries, process industries areas 

where wide varieties of chemical are 

used. 

• Plants fertilising areas. 

8 Smog 

• From diesel engine emissions. 

• Railway crossing, yards and 

automobile at highways crossing 

areas. 
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1.4.1.1 Effect of Temperature 

Temperature can affect overhead line insulators' performance and life 

expectancy, as high temperatures can accelerate degeneration. Therefore, it is 

worthwhile to consider temperature when selecting the type of insulator and 

designing the installation. As the temperature of the insulator rises, it will 

become less effective at conducting electricity. This can lead to increased 

arcing, which can cause the insulator to break down, resulting in power 

outages or other issues. The results show that the temperature changes the 

internal molecular configuration [37] – [38]. The permeability of temperature 

rise was more significant at the HV end because of the concentration of 

electric fields.  

Which may lead to increased insulator polarization loss. A combination of 

strong field strength, high relative humidity, and quick temperature rise led to 

decay-like defects in composite insulators reported by Zhong et al. [37]. In 

addition, the biggest element influencing the environment's temperature, 

according to the research, is excessive relative humidity [38] – [39]. Notably, 

incremental temperature mostly affects the SiR insulators' surface and 

degrades the quality of the insulators. Consequently, dielectric losses increase 

in the presence of an alternating electric field, leading to SLC flow on the 

surface of the SiR insulator. For this reason, polarization loss appears in the 

molecular structure [38]. Rainfall, temperature, humidity, and other 

environmental factors also affect the performance of the overhead line 

insulator. At high environmental temperatures with a contaminated 

atmosphere, overhead insulators deteriorate faster and show low 

contamination flashover voltage under normal operating conditions. The 

reason is surface conductivity changes due to temperature rise and surface 

contamination. IEC 60507 [41] states that temperature change can alter 

solution conductivity, as detailed in Chapter 2 (section 2.3).  

In [40], it was stated that the highest temperature value in thermal and 

dynamic testing for SiR insulators was 50˚C ± 5˚C. The temperature rise 

mostly affects the composite insulators' lower fittings, so the insulators lose 

their radial tension. It is important to note that the optimum operating 

temperature range at the end fittings of composite insulators as per CIGRE is 

85˚C to 100˚C [40]. Under that range, composite insulators retain mechanical 

strength (i.e., radial stress). It has been reported by Bielecki et al. that when 

the fitting's temperature rises, an additional radial burden occurs in the 

compact region of the SiR insulator's glass-epoxy resin core [39]. Moreover, 

the operational durability of composite insulators might be impacted by this 

20% increase in radial stress with respect to ambient temperature. Mizuno et 

al. reported that when the temperature goes down, the contamination 

flashover voltage increases [41]. On the other hand, when the pressure 

decreases, the contamination flashover voltage decreases. They also reported 

that pressure and temperature decrease at high altitudes. As a result, they 

predicted that the contamination flashover voltage would be 5% lower at 

2000m altitude than at sea level [41]. Therefore, the atmospheric temperature 
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variation is one of the crucial characters to control the performance of 

overhead line insulators. 

1.4.1.2 Effect of Moisture 

Overhead Line insulators are exposed to various environmental 

conditions, including humidity. Humidity, or the existence of water particles 

in the atmosphere, can influence the surface degradation of these insulators 

in several ways. 

• Leakage Current: High humidity can increase the leakage current 

along the surface of insulators. When moisture condenses on the 

insulator's surface, it forms a thin layer of conductive water film. 

This can lead to an increase in leakage current, which may result in 

partial discharges or corona activity [42] – [43]. 

• Pollutant Deposition: Humidity can facilitate the deposition of 

airborne pollutants on the insulator's surface. Moisture acts as a 

carrier for these contaminants, such as dust, salt, and industrial 

pollutants. The accumulation of these pollutants on the insulator's 

surface can lead to the formation of conductive paths, promoting 

surface degradation and eventually flashover events during electrical 

operation [38], [45]. 

• Hydrophobicity Reduction: Many insulators are designed with a 

hydrophobic (i.e., water-repellent) surface coating to maintain their 

insulating properties. High humidity levels can cause a reduction in 

the hydrophobicity of the coating, making the insulator more 

susceptible to moisture absorption and increased surface 

conductivity [43]. 

As a result of ambient humidity, composite insulators experience a 

temperature rise, making it difficult to screen the decay of composite 

insulators. The impact of change in humidity on temperature increase is 

essential for the study of investigation. Tu et al. mentioned that relative 

humidity (RH) increases the surface leakage current (SLC) flowing through 

the housing of the insulator which causes localized temperature rises on the 

surface of insulators [42]. Further, the dielectric loss of the insulating material 

of overhead line insulators contributes to local heating. It is noteworthy to 

mention that high RH along with high AC electric field intensity stimulates 

dielectric loss in overhead line insulators [44]. Yuan et al. reported a decay-

like insulator generates heat when the humidity is high (i.e., 72% ±7% RH) 

or low (35% ±7% RH), thus generates heat under both conditions [38], [45]. 

It is noticeable that the moisture content of the overhead line insulator surface 

is different at various relative humidity. Consequently, there are variations in 

dielectric loss observed that are the primary source of local heating [46]. In 

this regard, rapid growth of the local heating may lead to the flashover event 

on the overhead line insulators [45].  Therefore, preventative maintenance is 

the most effective way to deal with this issue. Insulators should be regularly 

inspected for any signs of physical abnormality which may cause the 

breakdown of the insulators. 
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1.4.1.3 Effect of Rain falls 

Rainfall is a key environmental factor impacting the performance and 

degradation of overhead line insulators. Overhead line insulators are typically 

made of glass, ceramic, or composite polymers. Their surface properties are 

essential for electrical insulation and preventing flashover events. The Effect 

of rainfalls on the surface degradation of Overhead Line Insulators are [47]: 

• Water Absorption: Rain water can be absorbed by the surface of 

insulators, leading to increased surface conductivity. This can 

facilitate the formation of leakage currents and increase the 

likelihood of flashovers, particularly in polluted or contaminated 

environments. 

• Wetting and Drying Cycles: During rainy periods, insulators can 

be subjected to wetting and drying cycles. These cycles can cause 

mechanical stresses on the insulator’s surface. The reason of 

mechanical stress is due to thermal expansion and shrinkage, leading 

to micro-cracks or defects that could accelerate aging and 

degradation. 

• Pollution Deposition: In regions with high levels of airborne 

pollutants, rain water can act as a solvent, washing the contaminants 

off the air and depositing them on the insulator surface. This 

pollution layer can form a conductive path, leading to partial 

discharge and flashovers. 

On the other hand, heavy rainfalls may clean the insulator surface 

effectively. Jiang et al. reported in their research that mist, dew, fog, and light 

rain circumstances are ineffective for contaminated surfaces [46]. In addition, 

light rainy conditions caused surface leakage current (SLC) to flow rapidly, 

leading to flashover in overhead line insulators. They also reported that a 

period of five years was used to determine the amount of contamination 

accumulating on insulators. This was done based on climatological data, non-

soluble deposit density (NSDD) and equivalent salt deposit density (ESDD) 

analysis. Notably, in dry seasons (i.e., January – April), contamination 

accumulates, while in wet seasons (i.e., June – October), contamination is 

washed off. In [47], it was reported that value of NSDD changed slower with 

increasing rainfall intensity because NSDD solely depends on non-dissolved 

contamination. Alternatively, the estimation of ESDD uniquely depends on 

soluble pollutants and does not change with rainfall duration. Therefore, 

rainfall plays a major role in the contamination of the surface of overhead line 

insulators. 
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1.4.1.4 Effect of Salt and Dust 

Salt and dust can significantly affect overhead line insulators, especially 

in outdoor environments. As stated above environmental contaminants can 

lead to changes in the surface properties of the insulators, impacting their 

electrical characteristics.  

Effect of Salt: Salt deposition on overhead line insulators can occur in 

coastal regions or areas with marine aerosols [48], [49]. When salt 

accumulates on insulator surfaces, it attracts moisture from the atmosphere 

and forms a conductive layer. This conductive layer can create a path for 

leakage currents to flow. In addition, localized partial discharge appears 

which can reduce the electrical resistance of the insulator and compromise its 

ability to withstand voltage stress, potentially leading to flashovers and power 

interruptions [48]. Sharma et al. investigated the impact of salt contamination 

on outdoor polymer insulators using artificial pollution tests. Moreover, the 

authors stated that the deposited salt contamination evaluated the 

performance of overhead line insulators under various voltage and weather 

conditions [49]. Notably, when the insulator becomes coated with salt, it can 

lead to "salt-fog tracking" [50]. This occurs especially during periods of high 

humidity or fog and when the salt layer absorbs moisture from the air and 

forms a conductive path for allowing current leakage across the insulator 

surface. Salt-fog tracking can eventually lead to flashovers, where arcs 

through the air between the insulator and the conductor, causing a temporary 

short circuit [50], [51]. 

Effect of Dust: Dust accumulation on overhead line insulators is common 

in arid and dusty environments. Dust particles deposition on the insulator 

surface can create a layer to reduce surface resistance. This layer can facilitate 

the formation of a conductive path between the line conductor and the ground, 

leading to leakage currents and partial discharges. As a result, the insulator's 

dielectric strength may be compromised, and the risk of breakdown increases. 

Moreover, dust can deposit on the insulator surface, forming a layer that 

reduces surface hydrophobicity. As a result, the insulator may be less 

effective in repelling water, which leaves it prone to surface contamination 

by pollutants. Similar to the salt-fog tracking effect, the dust layer may 

develop a conductive track for SLC when paired with water particles [52]. 

Additionally, dust accumulation can reduce flashover voltage, leading to 

electrical failures. Notably, particle size distribution features are substantially 

influenced by air velocity, relative humidity, and the charge deposited on 

insulators' housing [53]. All three factors have a significant influence on 

particle size distribution characteristics, including relative humidity, air 

velocity, and charges accumulated on the surface [54]. In contrast, the 

difference in particle bonding concentrations mostly reflects the impact of 

electric field distribution [54] – [55].  

In conclusion, both salt and dust can affect overhead line insulators' 

performance. Proper maintenance, natural and artificial cleaning, condition 

assessment techniques and selection of appropriate insulator materials are 

essential to mitigate the impact of these environmental factors and ensure the 

reliable operation of power transmission and distribution systems. 
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1.4.2 Effect of Thermal Stress 

Thermal stresses have several potential sources. Thermal strains can be 

caused in overhead line insulators by lightning strikes, short circuits, forest 

fires and overloads [56]. The aforementioned factors might have a substantial 

impact on the insulation's effectiveness. It is significant to mention that 

polymeric insulators can be deteriorated mechanically and chemically by 

thermochemical strains. Most thermal strains are caused by a combination of 

electrical and environmental factors. Corona, dry band arcing, partial 

discharge and UV radiation are influential factors resulting in overhead line 

insulator thermochemical degradation. Thermochemical depolymerization 

occurs more frequently in polymeric insulators than in non-polymeric 

insulators [3], [56]. 

1.4.3 Effect of Electrical Stress 

Overhead line insulators are experienced typically two types of electrical 

stress on them. The overvoltage brought on by various electrical loading 

effects, which can result in flashovers, is referred to as power frequency 

electrical stresses [57]. Power frequency electrical stresses refer to continuous 

electrical stresses on an insulator that can resist such stresses. Impulse stresses 

can be attributed to lightning and switching effects on electrical systems. 

Energized overhead line conductors pose a large electric field in their 

circumference, which causes electrical stress in overhead line insulators [58]. 

As the voltage increases, the electric field strength around the conductor and 

insulator surface also increases, leading to higher electrical stress on the 

insulator. 

Electrical stress on overhead line insulators can be influenced by the 

following factors such as [57] – [58]: 

• Voltage level: Higher voltages result in higher electrical stress on 

the insulator. 

• Insulator design and material: Different insulator designs and 

materials have varying resistance to electrical stress. 

• Contamination: Contaminants like dust, dirt, salt, or pollution can 

alter the electrical properties of the insulator surface, affecting 

electrical stress. 

• Line geometry: The configuration of the overhead lines and the 

arrangement of insulators can impact the distribution of electrical 

stress. 

• Weather conditions: Humidity and temperature can affect the 

electrical properties of the insulator material and influence electrical 

stress. 

• Electrical loading: Electrical stress may vary with the load on the 

power line. 

 



 

 

 

 

 

 

                                                                                                          Chapter 1          

17 

 

 

 

 

 

 

1.4.4 Effect of Mechanical Stress 

Mechanical stresses can result from factors such as wind direction, ice 

deposition, snowfalls, vibrations, sagging and even occasional physical 

impacts [58]. Wind flow may produce downward, horizontal, and vertical 

stresses on the conductor's catenary in the case of overhead lines [58]. The 

conductor's weight in the vertical position is increased by the load.  

The combination of solar radiation and environmental temperature during 

warm weather may increase the insulator's temperature [58] - [59]. Notably, 

temperature increases cause the majority of insulators to deteriorate their 

mechanical durability. In addition, high wind conditions linked to maximum 

electrical loads cannot cause temperatures to rise [59]. Some of the common 

mechanical stresses that affect overhead line insulators include [59]: 

• Vibration: Vibrations caused by wind, conductor movement, or 

nearby machinery can lead to fatigue and wear of the insulator 

material. 

• Tension and Compression: The insulator experiences tension and 

compression force due to the weight of the conductor and the 

conductors' sag. 

• Ice and Snow Loading: Accumulation of ice and snow on the 

insulators can increase their weight and introduce additional 

mechanical stress. 

• Aeolian Vibrations: These are wind-induced vibrations that can 

cause significant stress on the insulators. 

• Dynamic Loads: Sudden changes in mechanical loads, such as 

those caused by short circuits or line faults, can impact the insulators. 

The degradation of insulators due to mechanical stress can result in a 

variety of failure modes, such as cracks, fractures, surface erosion, and 

reduced electrical performance. Prolonged exposure to mechanical stress can 

weaken the insulator's structural integrity, increasing the risk of catastrophic 

failures and power outages [58] – [59]. 

1.4.5 Effect of Chemical Reaction 

Outdoor insulators are crucial elements of electrical power networks that 

prevent current leakage and ensure safe and efficient power transmission. 

These insulators are typically made of porcelain, glass, or composite 

polymers. However, they are exposed to various environmental conditions, 

including air pollution and chemical pollutants. These conditions can lead to 

chemical reactions on their surfaces and affect their performance. It is 

worthwhile to mention that a chemical pollution layer is formed on the 

insulator surface by the wind [60] – [61]. This pollution layer becomes 

conducting when water molecules from the atmosphere come into the vicinity 

of the insulators surface [60]. Then, surface leakage current (SLC) starts 

flowing through these layers day by day, and as a consequence, a flashover 

event appears on overhead line insulators [60].  
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The effects of chemical reactions on overhead line insulators can be 

summarized as follows [62]: 

• Surface Contamination [62] – [63]: Chemical pollutants, such as 

sulfur oxides (SOx), nitrogen oxides (NOx), and other acidic gases 

present in the atmosphere due to industrial emissions and vehicle 

exhaust, can deposit on the surface of insulators. These contaminants 

can form a layer of pollution on the insulator's surface, leading to 

reduced electrical performance. The detailed explanation is 

addressed in (section 1.6.2.1.2). 

• Hydrophobicity Reduction [63]: Surface contamination can reduce 

the hydrophobicity of insulators. Hydrophobicity is the property that 

allows the insulator to repel water. When hydrophobicity is reduced, 

water can form a non-discrete path on the circumference of insulator, 

which increases localized electrical discharges and flashovers during 

rainy or humid conditions. An elaborate explanation is demonstrated 

in (section 1.6.2.1.1) 

• Corrosion [61]: Chemical reactions between the insulator's material 

and environmental pollutants can lead to corrosion of the surface. 

Corrosion can weaken the insulator's structure and compromise its 

electrical insulation properties. The detailed explanation is 

addressed in (section 1.6.2.1.2). 

• Tracking and Erosion: Chemical reactions on the insulator's 

surface can create conductive paths for leakage currents, known as 

"tracking." Tracking can lead to erosion of the insulator's surface and 

eventually result in electrical failure. The detailed explanation is 

addressed in (section 1.6.2.3.4). 

Notably, over time, the cumulative effects of chemical reactions can cause 

a gradual degradation of the insulator's electrical performance, increasing the 

risk of power outages and compromising the reliability of the power 

transmission system. 

1.4.6 Effect of Aging 

The effects of aging on the insulation's performance are a crucial aspect. 

Prolonged aging can degrade insulator conditions, leading to overhead line 

insulator failure. It is noteworthy to mention that the effect of aging on 

polymeric insulators is much greater than that of non-polymeric insulators. 

Ageing is categorized into two categories: thermal aging and ultraviolet (UV) 

aging. A detailed discussion of the various types of aging is presented in the 

following sections. 

1.4.6.1 Effect of Thermal Aging 

Thermal aging refers to the process by which materials are exposed to 

elevated temperatures for an extended period. In the case of overhead line 
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insulators, they are often subjected to varying temperature conditions due to 

weather fluctuations. Over time, thermal aging can lead to physical and 

chemical changes in the material, potentially affecting its mechanical 

properties and electrical performance. Thermal aging refers to materials 

deteriorating due to elevated temperatures. In the case of overhead line 

insulators, usually made of polymeric materials, thermal aging can cause 

several adverse effects. These effects include mechanical properties [8], 

hydrophobicity properties [64], tracking and erosion [26], [65] of overhead 

line insulators' surface. 

In [65], it was reported artificial thermal degradation experiments were 

performed on HTV silicone rubber (SiR) shed sample insulators to examine 

thermal deterioration properties. In addition, the aged HTV insulator samples 

were subjected to examine the status of physical degradation, which was 

investigated by following techniques such as FTIR processes, 

thermogravimetric (TG) analysis, and scanning electron microscopy (SEM) 

methods. In the first stage of the pyrolysis process, Al(OH)3 flame retardant 

is dehydrated and decomposed, followed by polydimethylsiloxane (PDMS) 

molecule decomposition [65]. Gradually, crack size and number increase on 

sample surfaces as thermal aging time increases. Moreover, the thermally 

aged HTV SiR insulators accelerate the aging process significantly because 

the internal molecular bonding structure, such as, Si – O - Si main chain, Si -

C side chain, and O-H group, absorbed the peaks of UV rays. 

1.4.6.2 Effect of Ultraviolet (UV) Aging 

The term Ultraviolet (UV) Aging refers to the degradation of materials 

caused by prolonged exposure to UV radiation from the sunlight. For 

overhead line insulators installed outdoors, UV exposure is inevitable, and it 

can lead to surface degradation and changes in the insulator's material 

properties. Effects of UV aging on overhead line insulators: UV aging refers 

to the degradation of materials caused by prolonged exposure to ultraviolet 

(UV) radiation. For overhead line insulators, which are often installed 

outdoors, exposure to UV radiation can cause: 

• Polymer Degradation: UV radiation breaks down the polymer 

material's molecular structure, decreasing its mechanical properties 

and durability. 

• Surface Degradation: UV aging can cause surface cracks, 

oxidation, and erosion, leading to a reduction in the insulator's 

hydrophobicity and an increased risk of tracking and surface 

wetting. 

• Color Fading: Many polymeric insulators have color additives to 

protect against UV radiation. However, prolonged exposure to UV 

rays can cause these colors to fade, indicating potential degradation. 

Qiao et al. discovered that UV radiation can cause damage to the silicone 

rubber by breaking down its methyl side chain, which makes the material 

surface age [67]. As part of their research, they also investigated how oxygen 
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in the atmosphere reacts with reactive compounds to yield hydrophilic -OH 

particles and produce methane gases [67]. In addition, silicone rubber may 

degrade chemically due to acidic and alkaline conditions, as well as nitrogen 

oxides (NOx). After absorbing moisture, NOx is converted into nitric acid. The 

acid substance causes the Si-O bonds in silicone rubber to break, turning them 

into Si-OH bonds. The performance of silicone rubber composite insulators 

can be influenced by sunny weather and high electric fields [66] – [67]. Hedir 

et al. mentioned that Silicone rubber's performance is significantly affected 

by UV aging for prolonged exposure under various environmental conditions, 

which causes physical and chemical degradation [66]. 

1.5 Parameters to Determine the Condition of Overhead 

Line Insulators 

Pollution severity is a widely used parameter to quantify contamination 

levels of overhead line insulators. It considers the type and quantity of 

contamination present on the insulator surface. There are various parameters 

to assess contamination levels, including: Equivalent Salt Deposit Density 

(ESDD), Non-soluble Salt Deposit Density (NSDD), Flashover Voltage 

(FOV), Puncture Voltage and Surface Leakage Current (SLC). An elaborate 

discussion of the parameters is discussed in the following sections. 

1.5.1 Equivalent Salt Deposit Density (ESDD) 

An effective way to monitor insulator pollution levels is Equivalent Salt 

Deposit Density (ESDD) [68]. In order to determine ESDD, it is necessary to 

estimate the equivalent quantities of NaCl deposited over the surface area of 

an insulator. In accordance with IEC 60507, the conductivity of the salt 

deposited has been determined [68]. Moreover, the measuring unit of ESDD 

is mg/cm2. The process of the ESDD method requires collecting pollutants 

from the surface of the insulator and mixing them in a specific volume of 

water to calculate the conductivity of the solutions at room temperature [68]. 

The elaborate discussion along with the mathematical expression of ESDD 

has been discussed in Chapter 2 (section 2.3). 

1.5.2 Non-soluble Salt Deposit Density (NSDD) 

It is another effective technique to evaluate contamination levels of 

insulators. The NSDD describes the amount of inert, non-soluble 

contaminants deposited on the surfaces of the insulators on a unit area [68, 

69]. The calculation of NSDD is generally conducted similarly to ESDD 

measurement [68]. Maraaba et al. reported that the process of estimated 

amounts of non-soluble contaminants among the NaCl, KCl and Kaolin was 

present on the surface of overhead line insulators [69]. 
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1.5.3 Electrical Parameters 

To determining the surface contamination levels of overhead line 

insulators there are basic three electrical parameters are responsible to 

estimate the surface condition of the overhead line insulators. These 

parameters are flashover voltage, puncture voltage and surface leakage 

current (SLC). In the following sections, an elaborate discussion has been 

reported about electrical parameters. 

1.5.3.1 Flashover Voltage 

In essence, flashover occurs when electricity discharges over an 

insulator's surface [34]. Additionally, the air insulation around the insulator 

surface breaks down during flashover. The flashover voltage depends on 

several factors, including the type and material of the insulator. It also 

depends on the distance between conductive surfaces, humidity, temperature, 

and atmospheric pressure. It is designed to withstand specific flashover 

voltages to prevent damage and maintain surrounding environment safety. 

1.5.3.2 Puncture Voltage 

Puncture voltage typically refers to the voltage at which an insulating 

material breaks down and allows current to flow through it, resulting in 

electrical breakdown. When the voltage across an insulator reaches puncture 

voltage, it exceeds the material's dielectric strength. This causes it to lose its 

insulation properties and become conductive [70] – [71]. Consequently, the 

insulators become permanently damaged in this situation. It is noteworthy that 

insulator flashover voltage is lesser than puncture voltage [70] – [71]. 

Moreover, it is a critical parameter in determining the maximum voltage 

which insulators can withstand before failing and potentially causing 

electrical faults or hazards. 

1.5.3.3 Surface Leakage Current (SLC) 

It has been observed that the surface leakage current (SLC) of overhead 

line insulators flows under humid environmental conditions from the surface 

of the insulator towards the ground [60]. It is noteworthy to mention that the 

ground should be referred to as zero potential [60]. Moreover, the prolonged 

flow of surface leakage current (SLC) degrades the insulator's surface 

properties which can lead to a complete breakdown of power flow [60]. 

Therefore, it is imperative to monitor the surface leakage current of overhead 

line insulators to determine their condition. An elaborate discussion is 

reported in Chapter 1 (section 1.6.2.3.1).  

In [57], Khattak et al. reported that two types of external causes (such as 

environmental and electrical factors) are responsible for the overall 

deterioration of SiR insulators. The different types of stresses and their overall 

effect on SiR insulators are summarized in Table 1.6. 
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Table 1.6 Summary of various external factors and their effects on SiR 

Insulators [57]. 
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1.6 Condition Assessment Techniques of Overhead Line 

Insulators 

Any defects or surface deterioration may appear in any type of insulator 

after an extended period of service. This may ultimately threaten the stability 

of the power system. Overhead line insulators faults and degradation events 

are classified based on where defects occur. Three different analysis processes 
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are used to assess the degradation of overhead line insulators. Condition 

monitoring of overhead line insulators is the most effective way to deal with 

surface condition investigation of overhead line insulators. These are physical 

properties analysis, chemical analysis and electrical analysis [2, 8]. An 

elaborate study of the aforesaid events has been given in [72]. Notably, the 

impact of surface degradation due aforesaid factors has been observed 

predominantly on polymeric insulators rather than non-polymeric insulators.  

1.6.1 Importance of Condition Assessment Techniques of 

Overhead Line Insulators 

It has already been mentioned that surface deterioration increases the 

likelihood of insulator failures. Power lines transmit electricity over long 

distances and are supported by an insulator framework. Consequently, the 

insulators are situated in various geographical regions, each with distinct 

environmental conditions suitable for their operation. This can lead to various 

stress levels imposed on different line insulators by the environment, 

consequently affecting the likelihood of failure in each case. As a result, up 

to 70% of all line outages can be attributed to insulator failure [73]. All the 

insulators in the same location of the same transmission tower perform 

differently. Their performance may vary depending on the condition of their 

surfaces. If an insulator in any tower fails, the entire system will be shut down. 

The idea is to divide the transmission line into smaller parts to avoid power 

cuts caused by environmental, electrical and mechanical stresses. The power 

grid's reliability is at risk if any overhead line insulators fail. In this regard, it 

is essential to perform condition assessments of overhead line insulators in 

each section of transmission and distribution lines. Therefore, assessing the 

overhead line insulators' condition is extremely worthwhile. 

Environmental or atmospheric conditions like humidity and temperature 

deeply impact overhead line insulators. Environmental conditions vary from 

country to country. Because of changing atmospheric conditions, the analysis 

of surface leakage current for a particular insulator can vary from location to 

location. So, there must be some techniques that can establish a relationship 

between surface contamination levels of overhead line insulators and any 

changes in the environment. In this regard, modern research is addressed with 

the help of Artificial Intelligence-based classifiers which are extremely useful 

for forecasting insulators' condition assessment [29], [73] – [75]. 

1.6.2 Types of Condition Assessment Techniques of Overhead 

Line Insulators 

As mentioned previously, it is necessary to regularly assess the condition 

of overhead line insulators to ensure the system's safety and performance. 

Condition assessment of overhead line insulators is classified into three 

categories. The following sections discuss the three categories of condition 

assessment techniques in detail. 
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1.6.2.1 Analysis of Physical Properties 

After exposure to the aforesaid factors, the physical properties of overhead 

line insulators can be investigated using (i) hydrophobicity and (ii) 

accumulation of pollutants on the insulator surface. 

1.6.2.1.1 Hydrophobicity 

Hydrophobicity is a physical characteristic of overhead line insulator’s 

chemical structure. In compression with non-polymeric insulators, SiR 

molecules inhibit water film formation on its surface because of their 

hydrophobic properties. As a result, the SiR insulators create water droplets 

on the surface instead of forming a continuous water film. This signature 

characteristic is called Water Repellence [2], [8], [10]. On the contrary, water 

molecules attract hydrophilic molecules [2]. Composite polymeric insulators 

like SiR are made of low hydrophilic properties-based materials; That is why 

they show superior performance. Moreover, SiR insulators can recover their 

lost hydrophobicity even after the aging event due to their durable material 

structure. The following factors such as hydrophobicity, carbonization, 

effects of arcing on insulator sheds, insulator design, penetration of the water 

molecule in the FRP rod, tracking and erosion resistance of SiR insulators 

assist to predict the longevity of performance. It is noteworthy that the most 

dangerous agent is water molecules that initially enter the SiR housing and 

then the FRP rod. After the molecules of water penetrate in FRP rod, the 

temperature rise, localized discharge and then arcing phenomena are started. 

Ultimately, this degrades the interface resistance between the FRP rod and 

the SiR housing and cause punctures of the insulators. It was reported in [72] 

that the brittle and decay-like fractures have all occurred due to interface 

failure and poor adhesive application between the FRP rod and SiR housing. 

In [76], it is reported that in 500 kV transmission line insulators, after the 

water enters the core of the composite insulators, either nitric acid is formed 

due to the surface discharge phenomenon or sulfuric acid is generated due to 

acid rain. This acidic reaction ultimately leads to Stress Corrosion Cracking 

(SCC) in the FRP rod. It is also reported that the SCC is formed due to three 

main factors: humidity, the impact of the electric field, and surface 

contamination of the SiR insulator's housing.  

Hydrophobicity is determined by measuring the contact angle of deposited 

water droplets on the surface of the insulator. Four methods are used to 

calculate hydrophobicity. These are the contact angle (CA) measurements 

[49], sliding angle measurement [76], Swedish Transmission Research 

Institute Index (STRI-I) [76] and water-soaked test [77] – [78]. The static and 

dynamic contact angle measurement [8], [79] is the most popular technique 

for estimating hydrophobicity. Ethylene iodide or distilled water is applied to 

the surface of the SiR insulator to measure the contact angle [76], [80].  
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Fig. 1.6 A schematic representation of Contact Angle (CA) (a) Static Contact 

Angle, (b) Dynamic Contact Angle [80]. 

The contact angle (θC) depends on the three interfacial force factors. These 

interfacial forces exist between water and air (ϝwa), solid and water (ϝsw), air 

and solid (ϝas) (i.e., shown in Fig. 1.6 (a) and 1.6 (b)). These three interfacial 

forces are represented by Young Dupre's mathematical expression [8]: 

cosas sw wa CF F F = +
     (1.1) 

The contact angle (static) is measured with the assistance of the 

goniometer, magnifying instrument, or computerized photography [2], [8]. 

The static-contact angle measurement schematic representation is shown in 

Fig. 1.6 (a). Hydrophobicity is the dynamic property of any material. 

Therefore, the dynamic contact angle measurement is essential, but the 

procedure is more complex than the measurement of static-contact angle. The 

dynamic contact angle is measured either by advancing the slope (i.e., 

increasing the water droplet mass) or using a receding slope (i.e., decreasing 

the water drop volume). The schematic of the dynamic contact angle is shown 

in Fig. 1.6 (b). 

If a water drop is placed on the slope of the polymeric material, then the 

advancing angle (θadv) is formed at its bottom. Similarly, a receding angle 

(θrec) is formed at the upper side. These two angles are essential for 

quantifying dynamic contact angles. A logarithmic relationship is found 

between the recovery time and the receding angle [79]. In [81], it has been 

reported that SiR insulators can be considered an excellent dielectric strength 

with good aging resistance if the value of the contact angle (CA) is close to 

110° after hydrophobicity testing. The slope creates a sliding angle (θS) with 

the horizontal axis (as shown in Fig. 1.6 (b)) and its measurement is essential 

to determine hydrophobicity. As reported in [80], the sliding angle is directly 

proportional to the surface wetness. The measurement of contact angle is 

affected by various factors. These are droplet size, water droplets addition or 

subtraction rate, the interval between the tests and slope angle range [80]. The 

authors suggest that measurements should be made frequently and average 

results should be considered to achieve good precision. For testing, the droplet 
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volume range should be from 5 µl to 150 µl [2]. The hydrophobicity of SiR 

insulators is inversely proportional to the soluble electrolytes of the 

contaminant surface. The contact angle (i.e., static or dynamic) measurement 

is more effective than other conventional methods such as Electron 

Spectroscopy for Chemical Analysis (ESCA) and the examination of Cross 

Over Voltage (COV) [81].  

It has been reported in [79] that prolonged artificial UV aging reduces the 

hydrophobicity of SiR insulators and can lead to quick flashover. The surface 

accumulated water molecules get blocked by resistance at the interface 

between the FRP rod and the SiR insulator housing. The impact of prolonged 

aging can degrade the interfacial resistance between the SiR insulator housing 

and the FRP rod. Consequently, the hydrophilic (i.e., -OH) group appears on 

the surface of HTV-SiR insulators and reduces the hydrophobic condition 

[76] – [82]. This article reports a relationship among the four parameters: 

angle of contact, surface condition of the insulator, surface contamination and 

pollutants accumulations degree (ESDD). The relationship among the above 

parameters is presented in Table 1.7.  

Table 1.7 Relationship among the Contact Angle, surface condition of the 

insulator, physical condition of the insulator and contamination level 

(ESDD). 

Contact 

Angle 

Physical 

Condition 

Insulator's 

Surface 

Condition 

Contamination 

Level (ESDD) 

θC > = 90ᵒ 
Hydrophobic 

Condition 
Less rough surface 

Very Light or Light 

 

θC < 90ᵒ 
Hydrophilic 

Condition 

Roughness 

increases 
Heavy or Medium 

1.6.2.1.2 Accumulation of Pollutants on the Insulators Surface 

Environmental pollutants are the leading cause of corrosion of overhead 

line insulator surfaces. These contaminants come from a variety of sources. 

For example, salt is a polluting factor found in coastal and industrial areas. 

Similarly, manure, coal, and smog come from the fertilizer industry, 

harvesting fields, coal mills and automobile emissions. According to the 

literatures, high relative humidity, rising temperatures, accumulation of 

hydroxide ions on the surface, acid rain and thermal aging reduce SiR 

insulators' life than porcelain and glass insulators [83] – [84]. In addition, 

according to the reported works [84] – [85], aforesaid contaminants 

introduced the dry band arcing on the surface of SiR insulators. Subsequently, 

they can cause a complete flashover of SiR insulators in the worst 

environmental conditions [83] – [84].  

In the coastal area, the soluble salts are mainly NaCl and Na2SO4. These 

salts are deposited on the insulator's surface and make a persistent conductive 
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path with the assistance of water molecules. Surface Leakage current (SLC) 

flows through this conductive path to the surface of the insulator. Finally, the 

constant flow of LC leads to the complete breakdown of the SiR insulators 

[85]. In addition, the degradation of the SiR insulators is similar in the tropical 

rainforest continents [85]. In the tropical rainforest areas, the pollutant is 

primarily Kaolinite (AlSi2O5(OH)4) [85]. The performance of SiR insulators 

in desert areas has been analyzed under frequent sandstorms and temperature 

fluctuations [84], [86]. The authors have reported in their work [86] that due 

to an electric field, sand particles become charged and begin to discharge on 

the surface of SiR insulators. RTV-SiR and HTV-SiR insulators work well in 

coastal areas but also degrade due to high contamination [84]. The Equivalent 

Salt Deposit Density (ESDD) scheme [86] determines the contamination 

based on the average concentration of dissolved salt. The Non-Soluble 

Deposit Density (NSDD) [85] – [86] is another parameter for measuring 

surface contamination. As per the recent study, the SiR insulator surface 

contamination can be classified into five categories using ESDD values. The 

classification of contamination levels is shown in Table 1.8. 

Table 1.8 A description of the different categories of contamination classes 

[85]. 

Types of 

Pollution 

Sodium 

Chloride 

(NaCl) (gm) 

Kaolin 

[AlSi2O5(OH)] 

(gm) 

Distilled 

water 

(ml) 

ESDD 

(mg/cm2) 

Very Light 0.05 15 20 0.0562 

Light 0.25 15 20 0.1133 

Moderate 0.41 15 20 0.1795 

High 0.90 15 20 0.3733 

Very High 1.70 15 20 0.6277 

The procedure for preparing artificial contaminants in the laboratory is 

described below. According to IEC-60507, the slurry is prepared by mixing 

Kaolin, sodium chloride and distilled water for research [85]. The slurry of 

this artificial contaminant is applied as a layer on the insulating surface and 

dried for 24 hours. Thereafter, the intensity of the contamination is 

determined by the amount of salt available in the slurry. Table 1.9 shows 

changes in salinity levels and ESDD values of SiR insulators before and after 

UV aging [87]. The effect of contaminants on the surface of a SiR insulator 

depends on where the insulator is installed. 
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Table 1.9 Pollution parameters before and after UV aging of SiR insulators 

[87]. 

SI. 

No. 

Pollution 

Levels of SiR 

Insulator  

Before UV aging After UV aging 

Sa 

(mg/cm3) 

ESDD 

(mg/cm2) 

Sa 

(mg/cm3) 

ESDD 

(mg/cm2) 

1 Low 0.2703 0.1976 0.4413 0.3227 

2 Moderate 0.2445 0.1371 0.3626 0.1977 

3 High 0.2575 0.2531 0.3526 0.3465 

In addition, the algae, parasitic bacteria and fungi in rainforest areas may 

appear on the insulator surface [88] – [90]. Notably, the build-up of algae on 

the polymeric insulator's surface reduces the SiR insulator's hydrophobicity. 

The development of any organic layer on the surface of composite polymeric 

insulators can be reduced by applying flame-retardant fillers, e.g., Zine Borate 

[88]. The physical properties of the SiR insulators are investigated by visual 

inspection methods, such as cracks in the surface, surface irregularities, 

surface color change, surface erosion, and shade puncture [91]. In addition, 

the optical inspection method or scanning electron microscope (SEM) has 

been used to assess the physical degradation of SiR insulators [91]. 

1.6.2.2 Analysis of Chemical Properties 

The significant changes in the chemical properties of SiR insulators as a 

result of aging effects are measured using the following techniques.  

1.6.2.2.1 Fourier Transform Infrared (FT-IR) Spectroscopy 

FT-IR spectroscopy technique is used to detect organic and inorganic 

substances in polymers. FT-IR spectroscopy is employed to obtain a range of 

wavelengths of electromagnetic radiation from solid, liquid and gaseous 

substances. The various chemical bonds present in the polymeric insulator 

material can also be analyzed by Fourier transform infrared (FT-IR) 

Spectroscopy. In addition, the Attenuated Total Internal Reflection (ATR) 

method detects increasing depolymerization on the surface of SiR insulators 

after aging [87], [92]. The chemical bonding of each substance and 

component type has a unique infrared (IR) signal absorption frequency. 

According to the process, if the ratio of the light energy falling on an object 

to the light energy transmitted through the object is zero, it means that the 

object has absorbed all the light energy. This ratio analysis determines the 

condition of the substances present in the insulator [93].  

The depth of the insulator surface is obtained from the following Equation 

(2) i.e.,  
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=


 −



     (1.2) 

Where, λ = wavelength (cm); ∂c = crystal’s refractive index (KRS5 = 

2.38); ∂s = Sample’s Refractive index (SRI = 1.43); θ = angle of incident 

(45ᵒ); δp = penetration depth (µ-m). In the research works [8], the depth of the 

SiR surface was measured using an IR frequency and the range of the IR 

wavelengths was found to be 400 cm-1 to 4000 cm-1. Gour et al. [23] reported 

that after the UV-A aging, the modifications in the chemical elements in the 

SiR polymers were observed. Similarly, Ethylene-Propylene-Diene Monomer 

(EPDM) has been studied by artificial weather exposure for 90 days, and 

changes in EPDM's mechanical properties, chemical properties, tensile 

strength and structural appearance have been observed using the FTIR 

spectroscopy method [92].  

In [94], the investigation said that after 2000h, UV-B aging in HTV-SiR 

insulators, visible changes have been observed in the FT-IR spectrum in 

proportion to Si - CH3, C - H bond. In [76], authors analyzed the changes in 

chemical structure after the aging of FRP rods of SiR insulators by FTIR 

method. The study's results suggest that the FRP rod's aging directly affects 

the number of waves within the chemical group. Here, changes in wave 

number have been identified from FTIR analysis. 

1.6.2.2.2 Energy Dispersive X-Ray (EDX) Technique 

The output of the EDX method is the spectrum that can identify the exact 

change in the chemical composition of any polymeric sample. It has been 

reported in [12] that due to the aging of SiR insulators, changes in the ratios 

of aluminum (Al) and silicon (Si) (filler material) have been satisfactorily 

evaluated with EDX analysis. Also, the results showed that the amount of low 

molecular weight (LMW) SiR polymer chains decreased due to the aging 

impact. Reynders et al. [2] reported in their article that the density of silicon 

molecules decreases to a depth of 100 nm from the surface of aged and 

contaminated SiR insulators. The physicochemical analysis is performed on 

aged SiR insulators to understand the surface morphology of the insulators 

[85]. The outcome of the EDX measurement depends on the surface depth of 

the SiR insulator. The thickness of the surface is measured by the increased 

voltage of the electron beam [12]. The penetration depth of the X-ray beam is 

calculated using the following formula [12]. 

( )1.7 1.70.033 w
c

n Si

A
D e e

Z 
= −      (1.3) 

Where D is the penetration depth of the X-Ray beam, e is the beam of the 

electron energy (i.e., keV), ec is the binding energy to excite the X-Ray line 

of activity, Aw is the atom's weight, Zn is the atomic number, ρsi is the 

material's density. The article reported [94] that the SEM-EDX technique 
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analyzed the changes in their chemical compositions after the aging of SiR 

insulators, and the test outcomes are shown in Table 1.10.  

Table 1.10 Comparison study of SEM-EDX results [94]. 

Types of SiR Insulator 

Sample 

Percentage of Chemical Components 

(%) 

Si C O 

Virgin 40.9 13.3 45.8 

Aged 24.7 17.2 58.1 

Similarly, the development of biological microorganisms on the surface 

of HV polymeric insulators can be effectively observed by EDX-based 

analysis [88] – [89]. 

1.6.2.2.3 X-Ray Diffraction (XRD) Technique 

The XRD technique can analyze the polymeric materials' crystal structure 

[95]. The fundamental law behind the XRD method is Bragg's Diffraction 

Law. In the XRD event, X-rays fall on an element, then the intensity of the 

radiation emitted from the component and the scattered angle of the irradiated 

ray is measured. From these values, the material's crystal structure can be 

analyzed. The RTV-coated SiR polymers are physically corroded due to 

thermal aging and dry band arcing [56]. The detailed XRD analysis has been 

reported in [92], [95]. A comparison study was conducted by Verma et al. 

between two types of HTV-SiR insulators (i.e., HTV1S1 (fresh) and HTV2S2 

(aged)) and they implemented artificial UV-C aging on two HTV-SiR 

variants [96]. After the XRD analysis plot, the result indicates that the 

samples became more crystalline after aging.  

1.6.2.2.4 X-Ray Photoelectron Spectroscopy (XPS) Technique 

The XPS method helps to measure the basic structure of the spectrum of 

photoelectrons emitted from the surface of an aged sample. A detailed 

discussion on the XPS measurement procedure has been reported in [3], [97] 

(shown in Table 1.11). It has been reported in [98] that with prolonged 

artificial aging, the concentration of the chemical elements of SiR insulators 

such as silicon (Si) and carbon (C) has been decreased. In contrast, the 

concentration of oxygen (O2) has increased. Chakraborty et al. performed the 

aging test on three different specimens under three external conditions and 

the result of the XPS analysis is shown in Table 1.11 [3]. Moreover, from 

Table 1.11, it is concluded that the oxidation process occurs in the outer layer 

of the SiR insulator, increasing the concentration of oxygen elements. 
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Table 1.11 Results for HTV-SiR insulator samples after the aging test using 

XPS analysis under different conditions [97]. 

SI. 

No. 
Samples 

Percentage 

Composition (%) 

Si C O 

1 
Not Polluted and no external stressed 

applied 
23 53 24 

2 
Not Polluted but thermal stressed 

applied  
19 45 35 

3 
Not Polluted but electro-thermal 

stressed applied 
18 48 34 

1.6.2.2.5 Secondary Ion Mass Spectroscopy (SIMS) 

Methodology 

The method is utilized for analyzing the modification in the synthetic 

Structure of SiR protectors after aging like XPS analysis. The photoelectron 

effect plays an essential role in this process [99]. Secondary Ion Mass 

Spectroscopy (SIMS) is used to examine the emitted photoelectron's amount 

and energy from the elements of SiR insulators (i.e., excluding hydrogen) 

after aging. It is noted that each element has a unique bond energy value and 

that bond energy depends on the electron induction present in that element. 

This technique can also estimate the nature of the chemical bonds between 

the elements. In [99], Xilin et al. conducted an aging experiment on HTV-

SiR samples and the chemical analysis of insulators' samples was performed 

using SIMS methodology. Test results showed that Si, C and Al molecules 

disappeared from the surface of the SiR insulator after the aging process. In 

addition, the aging process causes the Si - O bond to become fragile and as a 

result, the Si molecules begin to loosen rapidly. Similarly, the amount of C 

molecules decreases, and CO2 is released due to oxidation. The Al particles 

migrate from the surface of the insulator as they begin to react with acidic 

substances in the environment after aging, resulting in the formation of Al2O3 

particles.  

1.6.2.2.6 Surface Roughness Methodology / Scanning Electron 

Microscopy (SEM) Technique 

The morphology of the harshness of the surface of SiR insulators is 

analyzed by scanning electron microscope (SEM). Pollutants deposited on the 

surface of the SiR insulators also deteriorate the surface's chemical contents 

[13]. In [92], after artificial UV-C radiation, the changes in the SiR insulator 

were investigated by SEM spectroscope between pure and aged samples. It is 

noteworthy that the surface degradation of the sample of aged SiR insulators 

was greater than that of the pure sample because oxidation occurred in aged 
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SiR samples. Moreover, the Surface degradation of SiR insulator samples is 

higher in UV-C radiation than in other UV radiation [92]. The authors 

reported that the SEM technique was performed on the SiR samples at high 

vacuum mode to avoid charging [13]. Similarly, Chakraborty et al. reported 

that the gold sputtering method helped to eliminate the charging effects [3]. 

The findings revealed that the SiR insulators' sample was smooth, 

homogeneous, and had less porosity on the surface before UV aging. But the 

overall structural morphology has changed after aging. In addition, in [100], 

investigations have shown that any type of brittle fracture and decay-like 

fracture of the FRP rod of 500 kV composite insulator due to aging and 

corrosion-like fractures can be analyzed through the SEM method. 

1.6.2.2.7 Gas Chromatography (GC) / Mass Spectroscopy 

Technique 

The procedure of Gas chromatography (GC) is the technique for isolating 

chemical compounds in analytical chemistry. The Chemical compounds used 

to analyze in gas chromatography are those compounds that can evaporate 

without decomposition. This method also helps to determine the mass of 

molecules of various chemical elements of a gas. The GC method can analyze 

the impact of surface pollution levels on SiR insulators' LMW elements [101]. 

Gustavsson et al. [101] reported that the spot discharge on the SiR surface 

directly depends on LMW dimethyl-siloxanes. The GC method has been used 

in studies [7] to understand the properties of LMW molecules scattered from 

SiR insulator polymers due to contamination. 

In [102], gas chromatography assessed the RTV-coated SiR insulator's 

surface erosion. The GC test was performed using two RTV-coated SiR 

insulators (i.e., aged sample and unaged sample). After the GC test, it was 

found that the aged sample had a continuous peak of LMW siloxane due to 

depolymerization. As a result of aging, these LMW siloxanes move away 

from the surface of the insulator, causing the RTV-coated SiR insulator 

surface to deteriorate. 

1.6.2.2.8 Solvent Extraction (SEx) Technique 

Solvent Extraction (SEx) is the widely used procedure to determine the 

chemical analysis of the aged SiR substance. SEx method is conducted 

through four stages. Initially, the solvent enters the solid Structure; Then the 

dissolved substances are diffused into the solvent; Subsequently, the 

dissolved material is spread around the surface of the SiR insulator. Finally, 

the extracted solution is collected for analysis [7] – [8]. In this technique, the 

LMW components are extracted from the surface of the SiR insulator. A more 

accurate idea of surface erosion of the aged SiR insulator can be obtained 

using these extracted components in the FT-IR and GC methods [101, 102].  

In [103], the post-aging properties of the surface of the HTV-SiR insulator 

were analyzed by the solvent extraction method. The HTV-SiR component 

comprises two groups of materials: HCR (High Compatible Rubber) and LSR 
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(Liquid Silicone Rubber). In this process, at room temperature, the sample 

was immersed in toluene for 96 hours. Afterward, the LMW particles were 

extracted once the solvent had evaporated entirely. The change in sample 

weight before and after evaporation measures LMW. After the SEx technique, 

a comparative analysis of LMW between HCR and LSR has been shown in 

Table 1.12. Also, the aged surface of the SiR insulator sometimes contains 

negatively charged or positively charged particles. These particles can be 

detected by Cross-Over voltage (COV) analysis [104]. 

Table 1.12 Results of the Solvent Extraction method of HTV-SiR [104]. 

SI No. 
HTV-SiR  

material Group 
LMW (%) 

1 HCR 0.0236 

2 LSR 0.0396 

1.6.2.2.9 Terahertz and Laser-Induced Spectroscopy 

Technique 

The aging conditions of the composite insulators can be assessed after 

measuring dielectric properties by the terahertz technique. Research from the 

last decades revealed another diagnostic tool, Terahertz spectroscopy, which 

can predict material aging, potential defects in the insulators, etc. [105] – 

[106]. Terahertz spectroscopy is based on the Terahertz wave, which ranges 

from 0.1 THz to 10 THz (i.e., wavelengths range from 3 mm to 30 μm) [107]. 

Reasons behind the use of Terahertz spectroscopy are good resolution both in 

time and frequency domain than other Non-destructive Testing (NDT), easy 

to operate, suitable for complex test structural material, less ionizing effect, 

strong penetrability and that is why this spectroscopy can be used for aging 

assessment of SiR composite insulators [107]. Despite the advantages, only 

independent terahertz spectroscopy analysis is not suitable for minor errors 

due to its bipolar pulse and limited pulse width that creates overlapping of the 

signals [105]. Three types of artificially made defects, such as single air gap 

defect, inclusion defect and double-layer air gap defect, were investigated and 

their impacts on composite insulators were analyzed by terahertz 

spectroscopy with the combination of deconvolution method (to overcome 

the overlap), reported in [107]. The authors also suggested that these methods 

can be used for the internal defects of the composite insulators. Mei et al. 

reported in their article that the properties of five types of composite 

insulators (i.e., epoxy resin, epoxy glass fiber, XLPE, porcelain and HTV-

SiR) were measured using terahertz spectroscopy and the broadband 

dielectric spectrometer (with the relatively low-frequency band (i.e., 1 Hz to 

1 MHz) and a comparative analysis was carried out for both the techniques 

[107].  

Nowadays, it is an area of concern for the researcher to diagnosis of 

degradation of the insulators remotely. For this purpose, Laser-Induced 

Breakdown Spectroscopy (LIBS) can be employed to estimate the 
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degradation of the insulator electrically and chemically [108]. This 

spectroscopy has some advantages like non-contact analysis, high spatial 

resolution and multi-element analysis, and Qualitative and Quantitative 

Analysis can be carried out [108], [109]. The application of this spectroscopy 

includes detecting contaminants present in insulator surfaces and identifying 

structural morphology changes after aging. Therefore, early flashover of the 

insulator can be predicted by detecting accurate contamination on the 

insulator surface [109]. Laser-Induced Breakdown Spectroscopy (LIBS) was 

reported in [109]. Wang et al. investigated the spectral properties of extinct 

components of HTV-SiR insulators from its surface after aging and the 

change in temperature properties from plasma was also reported. That will 

help predict HTV-SiR insulators' service life [109]. Also, the spread of fungi 

and algae on the surface of SiR insulators is clearly understood by applying 

laser-made Florence spectroscopy [107], [109]. 

1.6.2.3 Analysis of Electrical Properties 

Different electrical methods help to analyze the electrical properties of 

SiR insulators. These are (a) surface leakage current (b) partial discharge (c) 

corona discharge and (d) flashover voltage analysis. A detailed description of 

these aforesaid analyses is described in the following sections. 

1.6.2.3.1 Surface Leakage Current Analysis 

Surface Leakage Current (LC) investigation is a well-recognized strategy 

for identifying the differences within the electrical parameters of the overhead 

line insulators. The surface condition of the overhead line outdoor insulator 

has been responsible for the amount of LC flow [110]. It is noteworthy that 

due to high hydrophobicity, leakage currents become negligible in the early 

stages of aging. As the aging progresses, the hydrophobicity of the insulator 

decreases and the flow of leakage currents increases [110].  

Mostly, overhead line insulators are installed in outdoor applications. The 

environmental impact on them is also severe. At the early stage of service of 

outdoor insulators, the insulator’s surface behaves as non-conductive. 

Whenever the surface of the insulator becomes contaminated, it becomes 

conductive. As a development conductive path on the surface of insulators, 

the surface LC begins to flow, and the waveshape of the surface LC current 

is distorted as time progresses [111]. It has been observed that the deformation 

of LC is related to the surface condition, chemical property of the contaminant 

layer, environmental temperature, humidity, and acid rain [111]. The optimal 

approach to determine the level of contamination on an insulator is to employ 

a method that remains unaffected by external factors. To comprehend the 

lifespan of insulators, it is imperative to investigate and analyze the leakage 

current signals on the insulator's surface. 
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1.6.2.3.1.1 Factors for Estimating the Surface Degradation of 

Overhead Line Insulators 

According to the various literatures [57], [60], [72], [110], it is noteworthy 

to mentioned that the factors are responsible to estimate the surface 

degradation of overhead line insulators are: magnitude of the surface leakage 

current (SLC), ratio of 5th to 3rd harmonic components of SLC, estimation of 

total harmonics distortion (THD) and estimation of phase angle between SLC 

and input voltage profile. The detailed discussion on aforesaid factors which 

help to estimate the surface quality of overhead line insulators using SLC 

signals is illustrated below.  

1.6.2.3.1.1.1 Amplitude of Surface Leakage Current 

The insulator surface gradually becomes contaminated due to the 

deposition of dust and salt particles which are originating from different 

geographical locations [112] – [113]. When moisture is present in the air, 

surface leakage current initiates a flow around the exterior of the insulators. 

Analyzing the magnitude of the leakage currents provides significant insights 

into the performance of the insulator's surface. Notably, Surface leakage 

current proceeds through a sequence of three stages [114]. The first stage is 

called the security stage where the allowable limit of surface leakage is less 

than 50 mA. The second stage is the forecast stage where less than 150 mA 

of surface leakage current can flow through it. The last stage is a dangerous 

stage where more than 150 mA of surface leakage current can pass through 

the surface [114]. During the forecast and danger periods, the amount of 

leakage current is higher compared to the security period, and it can be easily 

noticed [114]. The duration of current leakage in these two stages is 

insufficient to provide adequate warning time. The security stage, which 

occurs prior to the flashover event, has a longer duration and can be observed 

in advance [114].  

In addition, peak value of leakage currents can be used as an indicator to 

evaluate the state of insulator surfaces. Prior to the flashover event, the peak 

value indicated the highest intensity of leakage current [112] – [113]. The 

occurrence of this peak value of leakage current (LC) is associated with 

partial electrical discharge that occurs on an insulator's moistened surface. It 

is noteworthy that the maximum value of the surface leakage current varies 

proportionally with the growth of partial discharge on the surface of the 

insulator [114]. Moreover, under the influence of wet conditions, the 

magnitude of LC in Ethylene Propylene Diene Monomer (EPDM), glass and 

porcelain type insulators are significantly lower [110]. The flow of LC current 

in SiR insulators is higher in humid environments in comparison with dry 

environments [29]. The magnitude of the LC for both porcelain (IP) and SiR 

insulators (ISiR) depends on three environmental factors like illuminance, 

temperature, and relative humidity [115]. The comparative findings among 

the aforesaid factors are shown in Table 1.13. 
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Table 1.13 Porcelain and SiR insulators Leakage Current's deviations with 

environmental constraints [115]. 

SI 

No. 

Leakage 

Current 

(mA) 

Illuminance 

(L) 

Temperature 

(ᵒ C) 

Relative 

Humidity 

(%) 

1 IP -0.727 -0.853 0.885 

2 ISiR -0.495 -0.614 0.671 

3 IP  / ISiR 0.106 0.199 -0.185 

In addition, in Fig. 1.7, the LC waveform’s magnitude variation for 11 kV-

rated outdoor SiR insulators under five types of contamination levels (as per 

IEC 60507) is shown [29]. Pylarinos et al. showed that in their study, any 

progressive LC waveform could ultimately lead to the flashover of the SiR 

insulators [116]. 

 

Fig. 1.7 The patterns of the LC waveform vary with the contamination levels: 

(a) Very Light, (b) Light, (c) Moderate, (d) High and (e) Extremely High 

contamination, respectively [29]. 
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1.6.2.3.1.1.2 Ratio of 5th to 3rd Harmonics Components of 

Surface Leakage Current 

Overhead line outdoor insulator's surface degradation can be inferred from 

the connection between the 5th and 3rd harmonic components of the surface 

leakage current [73]. In [117], reported that the amount of the fifth harmonic 

component in a clean insulator surface is greater than that of the third 

harmonic component of surface leakage current. Moreover, if the 5th 

harmonic component is larger than the 3rd harmonic component of the surface 

leakage current then, the insulator remains in a normal state, or at a low 

contamination level state [73], [117]. The contamination surface conditions 

of overhead line insulators are primarily determined by the third harmonic 

component's analysis. The increase of the third harmonic component in 

leakage currents is usually because of higher humidity and pollution levels. 

Moreover, the presence of moisture and impurities make it easier for 

electricity to flow through the surface of the insulator [117]. The presence of 

irregular resistance on the surface of the insulators causes the surface leakage 

current to exhibit a non-sinusoidal wave pattern that is distinct from a regular 

waveform [117]. The expansion of leakage current leads to the creation of dry 

bands on the insulator's surface, potentially resulting in partial discharges. 

Because of this, the shape of the leakage current waveform changes [117]. In 

this situation, the third harmonic component of the surface leakage current 

increases. The degradation of leakage current waveforms is a direct 

consequence of the escalation of partial discharge [117]. It was reported in 

literatures that the presence of odd harmonics in the LC signal distorts the 

nature of the signal, which is related to the poor condition of the surface of 

the SiR insulator [87], [89], [110]. Flashover is never observed in 

situations where the clean surface of overhead line insulators, provided that 

the 5th harmonic component exceeds the 3rd harmonic component by a 

magnitude of over 100%. Whenever the ratio decreases to less than 30%, a 

flashover occurs. Predicting the occurrence of a flashover holds immense 

significance using the 5th to 3rd harmonic ratio [117]. In [118], under humid 

conditions, the permeation of water molecules in the FRP rod and SiR 

interface has been studied through rotation wheel tests and analysis of surface 

LC flow. Also, the authors performed an FFT analysis on LC data to 

understand the development of the arc. The impact of arcing was analyzed by 

calculating the relative magnitudes of the 3rd and 5th harmonic components of 

LC. A comparative study among the three parameters from the initial period 

to the final period of aging is shown in Table 1.14. 
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Table 1.14 Comparative Analysis of Leakage Current Flow, Power 

Dissipation and Surface Resistance of Aged SiR Insulators [118]. 

SI. 

No. 
Condition 

Leakage 

Current 

Power 

Dissipated 

Surface 

Resistance 

1 
Initial Part of 

Aging Period 
Low Low High 

2 
End of the Aging 

Period 
High High Less / Low 

1.6.2.3.1.1.3 Calculation of Total Harmonic Distortion (THD) 

Analysis of distortion in leakage current can be achieved through Total 

Harmonic Distortion (THD) [73]. Mathematical equation (1.4) gives the THD 

expression as: 

2

2

1

n

n

i

THD
i



=
=


      (1.4) 

Where, 𝑖1 is fundamental component of the surface leakage current and 𝑖𝑛 

is nth order harmonic component of the surface leakage current. Heavily 

corroded insulator housing drastically decreases electrical performance due 

to contaminant deposition [73]. In humid conditions, contamination layers on 

the surface of the insulators increase the current density which leads to an 

increase in leakage current to flow through the surface [73]. Consequently, a 

non-uniform voltage distribution appears on the surface of the insulators 

followed by localized dry bands. This causes a distorted waveform of leakage 

currents as shown in Fig. 1.7. The aforesaid phenomena can be analyzed by 

total harmonic distortions [73]. Additionally, with an increase in input 

voltages and humidity levels in the atmosphere, total harmonic distortion 

(THD) also rises [73]. The magnitude of leakage currents at higher humidity 

conditions is higher, as is the distortion of the waveforms, especially at the 

peak of the leakage current waveforms. In the presence of high moisture 

levels, insulators are prone to generating sparks due to the occurrence of a 

surface leakage current having a predominant odd harmonic pattern. When 

voltage levels are decreased, the distortion of the leakage current shape 

becomes almost symmetric. In Addition, overall distortion is greatly 

influenced by the fifth and seventh harmonic components [73]. In contrast, 

the third harmonic component becomes larger with the application of higher 

voltages [119]. Notably, THD rises in the presence of more humidity, 

increased voltage, and additional contamination, which plays an utmost 

importance during the LC study. 
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1.6.2.3.1.1.4 Calculation of Phase Angle 

Understanding the insulator surface's condition can be achieved through 

the application of phase angles to analyze leakage currents and supply voltage 

[33]. If the surface is free from dirt or moisture, the leakage current serves as 

an indicator of the existence of an RC circuit [31]. Notably, if there are only 

minor electric current leakages, the angle between the supply voltage and 

LC will be nearly 72 degrees [31]. As a result, insulators that are dry on the 

exterior can function as high-resistance RC circuits, even in the presence of 

limited contamination layers. Less than 1 mA of current is able to be 

discharged as a result of this situation [31]. The presence of moisture and 

slight contamination in the vicinity of the insulator's surface causes a 

significant drop in the phase angle between LC and input voltage, i.e., nearly 

29 degrees [31]. Also, a substantial rise in surface leakage current has been 

noticed. The reason for the increment in surface leakage current flow and 

localized surface discharge is because of the decrement in surface resistance 

of outdoor insulators in humid atmospheres. Notably, under that condition, 

the phase angle falls in the range of 6 to 16 degrees [31]. In a study, 

researchers found that under humid conditions and high surface 

contamination, the electrical behaviour of insulators is similar to that of a 

circuit with high resistance [31]. Therefore, according to phase angle 

inspection, wet and clear contaminated insulators can be clearly distinguished 

[31]. It is relevant to mention that the aging condition of any types of 

insulators can be analyzed by observing the actual displacement of the phase 

angle of LC and the nature of the LC.  

1.6.2.3.2 Partial Discharge (PD) and Corona Analysis 

It has been reported that the onset of partial discharge event is due to 

uneven voltage stress, production error, contamination intensity, humidity, 

dry band effect and accumulation of water droplets on the surface of SiR 

insulators. Compared with the HVDC system, the PD inception Electric field 

strength intensifies for the High Voltage AC (HVAC) system. The time 

duration of the PD event lies in-between nanoseconds to microseconds [120]. 

Using suitable micro or nano-fillers can enhance the electrical properties of 

SiR insulators, such as dielectric strength, tolerance to induction voltage, and 

preventing partial discharge (PD) [120].  

Chandrasekar et al. reported in [120] that the surface degradation of SiR 

insulators could be determined by analyzing the nature of the partial 

discharge. In [121], the authors performed a PD test in the laboratory (i.e., 

according to IEC-60507 standards) on an 11 kV rated SiR insulator with 

variable ESDD values. The test consequences exhibited that the magnitude of 

PD raised with increasing values of ESDD, but during the experiment, the 

relative humidity value was unchanged. Ullah et al. [121] observed that the 

average PD value for artificial UV-aged HTV-SiR insulator samples 

increased with increasing applied voltage. Also, the authors reported a 

comparative PD analysis between the pure and aged (UV aged approx. 5000 

h) HTV-SiR samples, and the results showed that surface degradation was 
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more pronounced in the aged samples [121]. Similarly, the nature of the PD 

pulses can be measured by video apparatus [122], image strengthening UV 

videography [2], [8], and thermographic video recorder [2], [8], [9]. 

Sometimes PD can be detected using audio amplifiers [121] and 

communication devices [123]. In addition, the video thermography 

measurement helps to calculate the power loss from different types of surface 

discharges [124]. The arc resistance measurement is another methodology to 

analyze the SiR insulator's localized discharges [123]. It is reported [124] that 

an alternating electric field under the HVAC system predominates in the 

perimeter of the insulator and this helps to strengthen the PD phenomenon 

even faster. Physical degradation of the insulator begins when PD begins. The 

authors suggest that analyzing the PD event at the early stage of aging with 

the clean surface of the SiR insulators is very difficult. Another symptom of 

local discharge on the surface of the insulator is corona discharge. It is also 

worth noting that corona or surface discharge problems are more severe in 

HVAC systems than in HVDC [125]. Similarly, the other factors, relative 

humidity, temperature, deposited water droplet's size on the surface of SiR 

insulators, the diameter of conductors, and the surface area of SiR insulators 

[126], intensify corona discharge. At higher relative humidity, the frequency 

of corona events increases rapidly; corona emission power also increases. Lan 

et al. reported in their article [32] that RTV-SiR insulators had better corona 

resistance than HTV-SiR insulators. Extensive research has been conducted 

on the effect of electrical discharge on HTV-SiR insulators, and it has been 

found that adding nano/micro silica or ATH fillers can reduce the effect of 

electrical discharge on SiR insulators [126]. Studies have shown that the 

effect of the corona is first seen in water droplets that accumulate on the 

surface of the insulator [126]. Zhu et al. [127] reported in their article that the 

corona discharge phenomenon was investigated on HTV-SiR insulators by a 

laboratory-made parallel needle plate electrode system, and the changes in the 

Physico-chemical properties of the HTV-SiR insulators were reported in this 

work. After corona discharge, the hydrophilic state of the SiR insulator 

develops, resulting in erosion on the surface of the insulators [128]. It has 

been reported in [125] – [127] that any surface discharge phenomenon 

degrades the surface resistance of SiR insulators. The surface discharge is one 

of the most threatening agents that creates the depletion of the surface 

elements (i.e., up to 20 nm depth) [128]. Any long-term surface discharge 

permanently damages the SiR insulator's properties [128]. The chemical 

analysis of corona aged surface of SiR insulators can be analyzed using 

Nuclear Magnetic Resonance (NMR) detection, scanning electron 

microscopy (SEM), gas chromatography and FT-IR techniques [128]. It is 

clearly understood that the corona/surface discharge analysis depends on 

various uncontrollable factors.  
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1.6.2.3.3 Analysis of Flashover Voltage (FOV) 

Flashover Voltage (FOV) analysis is the most common electrical 

diagnosis method to measure the aging state of SiR insulators. The power 

frequency pollution FOV test can be performed either at the AC or DC voltage 

level [106]. The insulator's power frequency pollution flashover test is greatly 

affected by the insulator's surface properties. Any electrical discharge on the 

surface of the overhead line insulator can ultimately lead to the flashover 

event. After the flashover event, insulators start losing their physical, 

chemical and electrical properties [79].  

Khatun et al. reported in their article [130] that the value of FOV obtained 

after testing at AC-voltage levels was higher than that of DC-voltage levels 

and performed a comparative analysis of pollution FOV measurement in dry 

and wet type porcelain and SiR insulators. After the pollution FOV test, the 

result said that the SiR insulator performs well (i.e., 5% better) under a highly 

polluted climate than the porcelain insulator. Ahmadi-Jonidi et al. reported 

[79] that the surface of SiR deteriorates after artificial UV-aging and the long-

term effects of artificial UV-aging lead to the complete breakdown of the SiR 

insulator. In [79], The authors performed three types of FOV tests on the 

effect of artificial UV exposure. The comparative analysis based on odd LC 

harmonic values is shown in Table 1.15.  

There are two types of FOV testing methods used to analyze the electrical 

properties of SiR insulators such as the Rapid-Flashover Clean Fog (RFOCF) 

method and the Quick-Flashover Salt Fog (QFOSF) method [131]. It has been 

reported [129], [131] that salinity levels are directly correlated with the 

surface resistivity and aging condition of SiR insulators. Due to the high 

salinity level, a uniform conductive layer is formed on the surface of the SiR 

insulator. As a result, the dry band is created around the circumference of the 

insulators. After the dry band arcing, the Si – CH3 and C – H bonds of the SiR 

insulator become fragile. Also, the filler particles (i.e., mainly ATH) 

disappear from the surface after the dry band arcing, resulting in degradation 

of the hydrophobicity property. The combined effect of all types of surface 

discharge eventually leads to the FOV event [79]. Albano et al. investigated 

the dry band flashover phenomena on SiR insulators by the clean-fog test 

along with the Infrared image analysis and surface Leakage current 

measurement [132]. They highlighted some of the information that artificially 

contaminated and wet surfaces of SiR insulators are the leading cause of dry 

band formation. Also, they concluded that the rapid formation of dry bands 

might cause a flashover event. 
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Table 1.15 Representation of odd LC harmonics in surface flashover before 

and after UV exposure [79]. 

SI. 

No. 

LC 

Types 

Magnitude of LC (mA) 

Test 1 Test 2 Test 3 

Before 

UV 

After 

UV 

Before 

UV 

After 

UV 

Before 

UV 

After 

UV 

1 Imax 10.531 14.9 13.341 15.011 15.132 19.895 

2 I1st 1.638 2.05 3.278 2.784 2.543 5.183 

3 I3rd 0.872 0.931 1.575 1.335 1.232 2.592 

4 I5th 0.201 0.128 0.122 0.162 0.112 0.318 

5 I7th 0.0772 0.049 0.183 0.119 0.154 0.331 

6 I9th 0.033 0.003 0.014 0.022 0.040 0.049 

7 I11th 0.035 0.005 0.036 0.021 0.055 0.010 

8 I13th 0.011 0.017 0.026 0.017 0.005 0.053 

1.6.2.3.4 Analysis of Erosion and Tracking Resistance 

Erosion and tracking resistance are the two essential parameters for 

investigating the electrical characteristics of SiR insulators. These two tests 

can be used in SiR polymeric insulators as per IEC TR 62730:2012 standard 

[123]. The eroded SiR insulator means reducing the weight of the materials 

during the manufacturing process. On the other hand, the carbonization 

process helps to construct conductive paths on the surface of the insulator 

through electrical tracking. It has been observed that LC flows in the tracks, 

which causes insulation breakdown. The continuous surface discharges cause 

thermal degradation, leading to the erosion and tracking of SiR insulators. 

The comparative index and dry band arcing tests are the two well-known 

techniques used to analyze the tracking and erosion properties of SiR 

insulators [133]. Ghunem et al. [134] proposed an inclined-Plane Test (IPT) 

method that can measure the resistance of erosion and tracking of the SiR 

insulators. The standards of IEC-60587 and ASTM-D-2303 were followed 

during the IPT measurement [135]. Dutta et al. described the IPT method step 

by step in their article [136]. The minimum voltage for conducting the test 

should be more than 6 kV [135]. Schmidt et al. in [137] presented a 

comparative analysis among ATH, Silica and Melamine Cyanurate filler-

based SiR samples for investigating the tracking and erosion resistance. They 

also reported that silica (i.e., 100 phr) and melamine cyanurate (i.e., 15 phr) 

filler-based SiR samples hold good tracking and erosion resistance. The 

findings of the aforesaid assessment are tabulated in Table 1.16. 
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Table 1.16 Comparative analysis of Tracking and Erosion properties of 

various SiR additives [137]. 

SiR additives in phr 

Erosion 

Depth 

(nm) 

Surface 

Hardness 

(Shore A) 

Density 

(gm/cm2) 

Silica - 100 1.3 87 1.61 

Silica - 25 and ATH - 75 2.1 88 1.58 

Silica – 100 and 

Ammonium 

Polyphosphate – 30 

3.5 89 1.91 

Silica – 100 and 

Melamine Cyanurate - 

15 

0.9 87 1.62 

Also, it has been found that samples made of melamine can extinguish 

electrical arcing. Frang et al. reported that Ureido-modified MQ silicone resin 

(DIPUPES-MQ) could perform better than Addition-cure Liquid Silicone 

Rubber (ALSR) because DIPUPES-MQ has boosted tracking and erosion 

resistance [133]. The aforesaid techniques are not applicable in low voltage 

applications [8] but are used to analyze the tracking and erosion properties as 

well as to analyze the impact of dry-band arcing on SiR insulators [134]. The 

fillers play a vital role in controlling erosion and tracking event in SiR 

insulators. Applying nano-scale fillers such as alumina makes SiR insulators 

better surface resistant to contaminant circumstances [124]. In [139], the 

authors investigated and concluded that SiR insulators are made with three 

types of economical fillers. These are Alumina Trihydrate (ATH), 

Aluminium Nitride (AlN) and Boron Nitride (BN) [22], [26] – [27]. A way to 

add more silicone bonds to the crosslinking fashion that improves the tracking 

and erosion resistance properties of SiR insulators [139].  

Similarly, the nano doping of silica (SiO2) is used in the SiR insulator to 

improve AC corona resistance, enhance the tracking resistance and decrease 

erosion [124] – [125]. Adding barium titanate as a filler to the RTV-SiR 

component may reduce erosion and increase tracking resistance [133]. Bian 

et al. observed that the SiR insulators could achieve higher tracking and 

corrosion resistance if the insulator material were fabricated by the 

electrospinning method [140]. In addition, the tracking and erosion resistance 

of SiR insulators can be improved by adding BN fillers with ATH 

components [141]. The effectiveness of inorganic fillers in SiR insulators can 

be evaluated based on thermal conductivity, thermal resistance, mechanical 

strength, electrical conductivity, hydrophobicity and electrical trace 
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resistance. The detailed evaluation study on the effectiveness of inorganic 

fillers is tabulated in Table 1.17.  

Table 1.17 Comparative analysis of various Inorganic Fillers of SiR 

Insulators [133] – [141]. 

SI. 

No.  

Effective 

Properties 

Change in the properties after application 

of Filler Elements 

1 
Electrical 

Conductivity 

Improved by: Boron Nitride (BN), 

Graphite. 

Degrade by: Al2O3, CaCO3 

2 
Thermal 

Conductivity 

Improved by: Boron Nitride (BN), ATH, 

SiO2, Silicon Carbide, Al2O3, ZnO, BaTiO3, 

TiO2, Graphite 

3 Hydrophobicity Improved by: ATH, SiO2, CaCO3. 

4 

Mechanical 

Strength 

(Tensile Strength) 

Improved by: ATH, SiO2, TiO2, ZnO, 

BaTiO3, Carbon Black. 

Degrade by: Boron Nitride (BN), Silicon 

Carbide. 

5 

Electric 

Trace Resistance 

Improved by: Al2O3, CaCO3 

Degrade by: Boron Nitride (BN), Graphite. 

6 Heat Resistance 
Improved by: ATH, SiO2, Al2O3, ZnO, 

BaTiO3, Graphite, CaCO3 
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1.7 Scope of the Thesis 

In this thesis, various data analysis models of leakage current have been 

implemented for forecasting the condition of in-service overhead line 

insulators. The thesis model is segregated into three sections: data acquisition, 

feature extraction from the acquired data and feature classification from the 

available feature sets to identify the contamination class of overhead line 

insulators. In this thesis work, different signal processing models such as 

mathematical morphology, hyperbolic Stockwell transforms, and cross-

hyperbolic Stockwell transforms have been used to identify the condition of 

overhead line insulators of any dimension, which will help to avoid premature 

failure of the insulator and power. This thesis is organized as follows: 

Chapter 1: Chapter 1 of the thesis discusses ongoing research into various 

condition assessment methods for overhead line insulators. Moreover, this 

chapter highlights the proposed research problem related to overhead line 

insulator surface degradation.  

Chapter 2: Chapter 2 describes the operation of the overall experimental 

setup used in this work. In addition, the process of constructing a synthetic 

sample preparation as per IEC standards and the process of data acquisition 

are elaborately demonstrated in this chapter. 

Chapter 3: In Chapter 3, mathematical morphology and machine learning-

based Random Forest classifiers are employed to identify suitable features 

from the raw surface leakage current data. It is noteworthy that surface 

leakage currents provide useful information about the surface health of 

porcelain insulators. In addition, the aforesaid methods optimized acquired 

features using a filter algorithm. This proposed model can precisely detect 

different surface contamination levels of overhead line porcelain insulators 

using a non-stationary surface leakage current signal. 

Chapter 4: Chapter 4 represents hyperbolic Stockwell transform-aided 

time-frequency domain surface leakage current analysis to predict the surface 

contamination of overhead line Silicone Rubber (SiR) insulators. In this 

framework, the time domain surface leakage current is transformed into a 

time-frequency domain image using Hyperbolic Stockwell Transform 

(HSWT). Moreover, the most suitable features are extracted from the 

aforesaid model and fed to four machine-learning classifiers to identify the 

surface contamination class of SiR insulators. In terms of determining the 

insulator's condition, the proposed method shows satisfactory results. 

Chapter 5: Chapter 5 presents a cross-spectrum-aided deep learning 

framework to predict Silicone Rubber (SiR) insulators' surface 

contamination. In this framework, the surface leakage current (SLC) of SiR 

insulators at different surface contaminations has been cross-correlated in a 

time-frequency plane with a reference signal to identify non-stationary 
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changes with respect to surface contamination. In this regard, the cross 

hyperbolic Stockwell transform technique has been implemented on SLC to 

convert the time domain information into time-frequency domain images. In 

addition, CNN-based deep learning algorithms have been used in this chapter 

to extract the most optimal information from the cross-time-frequency 

spectrum of SLC, which can automatically predict SiR insulators' 

contamination severity. The effectiveness of the proposed model has been 

verified on SiR insulator samples of different dimensions. 

Chapter 6: This chapter summaries an overview of the thesis work, which 

includes a discussion of the research gaps, findings, and comparisons of the 

proposed research model with existing research. Moreover, the author 

addresses possible research opportunities and developments in the condition 

assessment study of overhead line insulators. 

1.8 Originality of the Thesis 

To the best of the author's knowledge, the following are original 

contributions to the present work: 

Modern power system networks are concerned about the potential dangers 

posed by overhead lines and outdoor insulators. In polluted insulators, the 

leakage current that flows on the surface increases quickly when there is 

moisture. Ultimately, it will trigger a discharge in a dry band, subsequently 

resulting in a flashover incident. It is necessary to clean and repair insulators 

that are dirty consistently. Researchers have suggested different ways to 

check the condition of the surface of the overhead line insulators, like 

measuring phase angle, partial discharge analysis, and analyzing the impact 

of the odd harmonic on leakage current signature due to contamination. The 

success of these techniques is contingent upon the voltage being employed. 

Therefore, it is important to have the precise information about voltage in 

order to use those techniques. Determining the actual state of an insulator can 

be challenging due to the fluctuation of input voltage during testing.  

In light of this, it is recommended to employ a technique that can identify 

the pollution level on insulators, without considering the voltage applied. This 

is why studying the surface leakage current signature is the best approach for 

analyzing the insulators' life span. Based on the information mentioned above, 

the following developments in this thesis work are: 

• A method has been suggested to develop Mathematical Morphology 

aided Random Forest classifier-based model to analyze surface 

leakage current signals and determine the pollution levels on 

overhead line insulators. 

• Development of machine learning classifiers based a time-frequency 

domain model for estimating the contamination severity of 

insulators using surface leakage current signatures.  
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• Development of a cross-spectrum aided deep learning and transfer 

learning-based CNN model for prediction of contamination severity 

automatically employing surface leakage current signals of overhead 

line insulators. 
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Chapter 2 

Experimental Setup for Surface Leakage Current 

Signal Acquisition and Procedure of Artificially 

Contaminated Sample Preparation 

2.1   Introduction 

Most overhead line insulators are employed for outdoor applications, due 

to which pollutants accumulate on the surface of outdoor insulators. It is 

noteworthy that incremental surface contamination reduces surface insulation 

resistance. As a result, the surface conductivity of overhead line insulators 

also changes. It has been reported in various research articles [31], [142] – 

[143] that the outer surface of overhead line insulators is mainly affected by 

different climatic conditions like fog, raindrops, dew, sea salt, sand, dust, soil, 

and air pollution. In coastal areas, predominant environmental contaminants 

such as sand, dirt, and soluble salt (NaCl) accumulate on the surface of 

overhead line insulators. In rainforest regions, the pollutant is mainly Kaolin 

(Al2Si2O5(OH)4) that accumulates on the surface of overhead line insulators.   

The clean surface of overhead line insulators cannot form a conductive 

path with water particles in humid conditions because the water particles are 

deposited on the clean surface as a droplet instead of making a water film (as 

shown in Fig. 2.1).  

 
Fig. 2.1 Images of deposited water droplets on the surface of overhead line 

insulators [13]. 

On the other hand, accumulated pollutants degrade the surface insulating 

property of overhead line insulators. Soluble pollutants can easily mix with 

molecules of water and then develop conduction paths on the surface of 

overhead line insulators. It was noticed that at the junction of the water 
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droplets, air, and overhead lines insulators' surface the electric field severity 

is highest [7], [145]. In addition, the deformation in the shape of the water 

droplets is more prominent towards the applied electric field. The surface 

leakage current flows through the contaminated housing of overhead line 

insulators. The amplitude of the surface leakage current relies mainly on the 

dissolved pollutants. It is worth noting that higher levels of contamination 

increase the leakage current flow at the insulators' surface. The surface 

temperature of the overhead line insulator is also increased due to the joule-

heating effect. As a result, the water molecules evaporate from the wet 

surface, causing dry bands to form, followed by dry band discharge 

phenomena on the surface of the overhead line insulators noticed. Due to the 

dry band effect, the voltage is not uniformly distributed across the surface of 

the insulator. Subsequently, this dry band discharge phenomenon causes 

erosion as well as tracking phenomena on the surface of outdoor insulators. 

Ultimately, flashover events occur in overhead line insulators for the reasons 

mentioned above, leading to the failure of overhead line insulators. Therefore, 

scheduled condition monitoring of overhead line insulators for an 

uninterrupted power supply is essential.  
According to the published literature [31], [124], [142] – [143], the surface 

leakage current signal is a dynamic parameter because it varies with changes 

in pollution intensity. It is noteworthy that surface leakage current 

measurements are more consistent and effective than traditional methods such 

as equivalent salt deposit density or ESDD [7], [142] – [143]. The 

disadvantages of ESDD are time-consuming and laborious procedures. In 

addition, ESDD is practically not feasible.  

Another important parameter to detect outdoor insulators' surface 

contamination severity is by the odd harmonic component analysis of the 

surface leakage current signal. In [144], to identify the degree of surface 

contamination of outdoor insulators, the ratio proportion of the 3rd and 5th 

harmonic components of the SLC was used as an indicator. However, the 

surface leakage current analysis using odd harmonic analysis has several 

limitations; These are:  

(i) Perturbation appears in the surface leakage current signature 

because of supply voltage fluctuations and impact of odd 

harmonics, which may lead to inaccurate information about the 

surface contamination assessment [144], [146]. 

(ii) However, on a clean surface, the nature of leakage current through 

overhead line insulators is almost static. But on contaminated 

surfaces, the nature of surface leakage currents becomes highly 

distorted, and their profile has a partial arc which is not able to 

provide precise information about the contamination level by using 

the odd harmonics ratio method [144]. It has been found that, ratio 

analysis of 3rd to 5th harmonic signals is mostly favourable for 

stationary signals [144]. 

Another condition assessment indicator is Fast Fourier Transform (FFT) 

which utilities for analysing the harmonic profile in stationary signals [146]. 

In this regards, FFT analysis is unable to provide precise information after 

analysing odd harmonics components from the surface leakage current signal. 
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Surface leakage current signal measurement and analysis is the better 

approach for determining outdoor insulators' surface contamination due to the 

aforementioned facts.  

2.2 Experimental Procedure 

The experimental procedure for the condition assessment study of outdoor 

insulators has been divided into two segments in this work using surface 

leakage current signals: (i) preparation of samples and (ii) data acquisition 

setup for the measurement of surface leakage current (SLC) signal. A detailed 

discussion is described in section 2.2.1.  

2.2.1 Preparation of Samples 

Measuring surface leakage current from overhead line insulators currently 

in service is challenging. Similarly, surface contamination of outdoor 

insulators is also tough to detect by seeing them. For this reason, The Solid 

Layer Method (SLM) is used in the laboratory to prepare a variety of 

artificially contaminated samples [145], [146]. In the presented work, some 

overhead line insulators were collected from the power substation to prepare 

artificial contaminated samples in the laboratory. Basically, two types of 

overhead line insulators were employed in this work, these are Silicone 

Rubber (SiR) insulators and porcelain insulators disc. The technical 

specifications of overhead line insulator samples collected from power 

substations are illustrated in Table 2.1. 

Table 2.1 Technical properties of both SiR and Porcelain disc insulators. 

S
iR

 I
n

su
la

to
r 

Parameters Technical Details  

Housing Material Silicone Rubber (SiR) 

Rated Voltage 11 kVrms 

Total Creepage Distance 320 mm 

No of Disc 3 

Disc Diameter 124 mm 

Sectional Length 250 mm 

Weight 730 g 

Rated Voltage 33 kVrms 

Total Creepage Distance 900 mm 

No of Disc 8 

Disc Diameter 124 mm 

Sectional Length 400 mm 

Weight 1024 g 
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Housing Material  Porcelain  

Rated Voltage 11 kVrms 

Total Creepage Distance 338 mm 

No of Disc 1 

Disc Diameter 257 mm 

Axial Height 145 mm 

Weight 4298 g 

Generally, in the SLM method, overhead line insulators are artificially 

contaminated by providing a coating on their housing or surface. Distilled 

water, NaCl or KCl salt and kaolin (Al2Si2O5(OH)4) were used to prepare a 

slurry. Kaolin serves as a non-conductive component and NaCl salt acts as a 

conductive component in the chemical composition of slurry. Then, the 

surface of the overhead line insulators was painted with laboratory made 

slurry and they were left in the open air to dry at room temperature for 24 

hours. Images of artificially contaminated samples of SiR and porcelain 

insulators are shown in Fig 2.2. 

 

Fig. 2.2 Images of different types of contaminated overhead line insulators. 

In addition, during the preparation of artificially contaminated samples, 

the room temperature was varied from 28°C to 32°C. It is noteworthy, the 

samples were washed by employing isopropyl alcohol and deionized water 

before preparation of the artificially contaminated samples. In order to get rid 

of the dirt that accumulated on the surface of overhead line insulators needed 

to be cleaned the surface first. In [70], it was reported that both NaCl and KCl 

salts are key components of natural contamination. In this work, NaCl was 

used in the slurry preparation. The amount of NaCl salt in the slurry has an 
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effect on the artificial contamination layer's conductivity. Thus, by varying 

the amount of NaCl salt, the severity of artificial contamination was varied 

[70], [145]. It is pertinent to mention here that artificial contaminated 

insulators samples were prepared according to the IEC 60507 standard for 

experimental purposes [149]. The schematic of the artificial contamination 

sample preparation of overhead line insulators is shown in Fig. 2.3. 

Fig. 2.3 Flowchart of artificial surface contamination process using solid layer 

method. 

2.2.2 Experimental Setup for Data Acquisition of Surface 

Leakage Current (SLC) 

An experimental arrangement was established to obtain information on 

the leakage current on several contaminated specimens' surfaces. The 

laboratory setup consists of a 3-ph, 50 Hz, 500 V/250 kV, 150 kVA testing 

transformer from which the high voltage is supplied to the test specimens. 

The Schematic diagram and actual hardware setup are illustrated in the Fig. 

2.4 (a) as well as Fig. 2.4 (b).  

 

Fig 2.4 (a) Schematic diagram of Surface Leakage Current (SLC) data 

acquisition system. 
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Fig. 2.4 (b) Actual Hardware setup for Surface Leakage Current (SLC) 

measuring system. 

2.2.2.1 Major Components used in the Experimental Setup 

This section discusses the significant hardware components used for 

surface leakage current measurement in the experimental setup. The major 

components are discussed below.  

• High Voltage (HV) Power Supply Arrangement 

An experimental setup was developed in the laboratory to measure 

surface leakage current data from contaminated overhead line 

insulator samples.  

 

Fig. 2.5 (a) High Voltage on-load Voltage Regulator (VR). 
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A HV power arrangement of 3-phase, 50 Hz, 500 V/250 kV, 150 kVA 

provides the main power for the experiential setup. The HV power 

supply arrangement includes an on-load Voltage Regulator (VR), 

Auto-transformer and High Voltage Testing Transformer. Fig 2.5 (a), 

(b) and (c) show the high-voltage on-load Voltage Regulator (VR), 

Auto-transformer and HV testing transformer, respectively. 

 

Fig. 2.5 (b) High Voltage Auto-transformer. 

 

Fig. 2.5 (c) High Voltage Testing Transformer. 

• High Voltage Potential Divider 

This part of the experimental setup is also known as measuring unit. 

In this experimental setup high voltage potential divide was used to 
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measure the system voltage in reduced level. According to Fig 2.4 (a), 

C1 is a high-voltage capacitor with a rating of 62.5 pF. The image of 

C1 is shown in Fig. 2.6. C2 has been installed inside the control panel, 

and its value is 62.45 nF. 

 

Fig. 2.6 High Voltage Potential Divider. 

• Control Room’s Control Panel 

The input voltage is controlled through a control panel inside the 

control room. In the control panel, input voltage increments and 

decrements are maintained by push-button switches, as shown in Fig. 

2.7 (a) and (b).  

 

Fig. 2.7 (a) Image of Actual Control Panel. 
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Fig. 2.7 (b) Schematic diagram of Actual Control Panel. 

Also, the start and stop of power are controlled by dedicated “Start” 

and “Stop” push button switches. Various meters like voltmeter, 

Ammeter, energy meter and digital multimeter are also used to 

monitor different input parameters. 

• Water Resistance 

A 180 kΩ protective resistor named water resistance (as shown in 

Fig. 2.8) has been connected in series to the experimental setup's 

high-voltage terminal. This arrangement provides short-circuit 

protection for the entire HV circuit. It contains distilled water which 

offers maximum resistance during normal operating conditions. 

 

Fig. 2.8 Image of the Water Resistance. 

• Current Shunt and Digital Storage Oscilloscope (DSO)  

The path of surface leakage current is from the high-voltage terminal 

through the overhead line insulator’s surface via the cross-arm 

towards the ground. A 10 kΩ current shunt was used to obtain SLC 
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signals. A current shunt connected to a protective circuit bypasses the 

DSO from inrush current flow during a flashover. The schematic and 

actual image of the current shunt is shown in Fig. 2.9 (a). 

 

Fig. 2.9 (a) Pictures of Protective Current Shunt Circuit.  

Similarly, a capacitor-based voltage divider was used to record the 

output voltage signature after the voltage level was stepped down in 

the laboratory. The voltage profile was monitored on a Digital 

Storage Oscilloscope (DSO), and data was recorded using a USB 

device. 

 

Fig. 2.9 (b) Image of Digital Storage Oscilloscope (DSO) during the SLC 

experiment. 

Notably, the testing transformer's output characteristics are maintained by 

the standard described in [145], [148]. The output voltage signature was 

recorded using a Digital Storage Oscilloscope (DSO) after the stepped-down 

voltage level in the laboratory using a capacitor-based voltage divider as 

stated above. As illustrated in Fig. 2.4 (a) and Fig. 2.8, to protect the entire 

HV circuit from a short circuit, a 180 kΩ protective resistor has been 

connected in series to the experimental setup's high-voltage terminal. This 

protective resistance is called water resistance because it contains distilled 

water which provides maximum resistance during normal operating 

condition. The path of the surface leakage current is basically from the high-
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voltage terminal through the surface of the overhead line insulator towards 

the ground. A 10 kΩ current shunt has been used to acquire the raw SLC data 

using DSO. In addition, a protective circuit is connected with a 10 kΩ current 

shunt to bypass the DSO from inrush current flow during flashover events. 

The components connected inside the protective circuit are illustrated in 

Table 2.2 and Fig 2.9 (a). 

Table 2.2 Technical specification and function of current shunt protective 

device. 

Connected 

Elements 
Qty.  Specifications Functions 

Measuring 

Resistor 
1 10 kΩ, 10 W ± 5% 

For measuring the 

Surface Leakage Current 

of the overhead line 

insulators. 

Gas 

Discharge 

Tube (GDT) 

1 90 V, 2 A 

Limits the voltage level 

and protect the DSO 

from the over voltage 

event occurs.  

Protective 

Resistor 
1 220 kΩ, 1 W ± 5% To protect the DSO 

From the above-mentioned setup, the surface leakage current of different 

levels of contaminated overhead line insulators was acquired by DSO and the 

sampling frequency of 50 kHz was maintained during data acquisition. 

During the SLC data acquisition process, transients were present in the early 

part of the SLC data. That part can generate analysis errors; For that reason, 

the initial portion of the SLC data was discarded and only the steady state 

portion of the SLC signal was considered for data analysis purposes. Aging, 

as well as high levels of contamination, play an essential role in changing the 

SLC profile of overhead line insulators. Therefore, field-aged overhead line 

insulator samples were used for data acquisition. Also, artificial contaminated 

slurries were prepared in the laboratory using the solid layer method on the 

surface of overhead line insulators. Finally, SLC signals for each pollutant 

class were measured for data analysis. 

It is worth noting that during the SLC current measurement of each 

sample, the ambient temperature was also monitored. Also, each sample was 

repeatedly used for measuring SLC at different temperatures for precise data 

analysis. 

2.2.2.2 Extraction of Surface Leakage Current (SLC) Signals 

and Input Voltage 

Using the data-acquisition setup, as shown in Fig. 2.4 (a) and Fig. 2.4 (b), 

surface leakage current (SLC) signals were recorded for different pollutant 

classes. In this work, a total of 1500 SLC signals (300 signals per pollution 

level) were acquired at ambient temperature for five distinct contamination 
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classes. According to the IEC 60815 standard, the contamination classes are 

very light, light, moderate, high and very high pollution [70], [147]. A 

detailed discussion regarding contamination categories, has been done in the 

following section. Fig. 2.10 (a) represents the surface leakage current (SLC) 

waveforms for five distinct contamination classes of overhead line insulators. 

With increasing surface contamination level of overhead line insulators, 

significant change on stationary behaviour is observed in the leakage current 

signature. It is worth noting that the SLC waveform at very low contamination 

contains less distortion than the SLC profile at very high contamination. The 

SLC signals were captured via DSO and then transferred to the computer via 

a USB device. To make a prediction regarding the contamination category of 

the overhead line insulator's samples, the recorded SLC data were employed 

for analysis. It is noteworthy that the system voltage profile for each 

contamination class was also monitored through DSO. In Fig. 2.6 (b), the 

waveforms of input voltage of each contamination category are illustrated. 

 

Fig. 2.10 (a) Waveform of acquired Surface Leakage Current (SLC) signals 

of five different classes of contamination such as (a) Very Light, (b) Light, 

(c) Moderate, (d) High and (e) Very High contamination. 
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Fig. 2.10 (b) Waveform of input voltage profile of five different classes of 

contamination such as (a) Very High, (b) High, (c) Moderate, (d) Light and 

(e) Very Light contamination. 

2.3 Estimation of Equivalent Salt Deposit Density (ESDD) 

As stated in this chapter, the amount of NaCl in artificially contaminated 

layers directly influences the surface conductivity of overhead line insulators. 

The Contamination level can be quantified using Equivalent Salt Deposit 

Density (ESDD) [7], [145]. For this reason, ESDD was measured after 

acquiring of SLC signals from various artificially contaminated samples. The 

authors followed the procedure illustrated in the IEC 60815 standard for 

estimating ESDD values from various artificially contaminated specimens 

[70], [147]. For this objective, the artificially contaminated coating was 

collected from the surface of different samples (as shown in Fig. 2.2). The 

collected coatings were then dissolved into the 100 ml distilled water and 

stirred for 1-2 minutes for better mixing. After that, at room temperature, the 

conductivity of the mixture was determined using the HANNA conductivity 

meter (HI-98188, EC/TDS/NaCl/Resistivity meter), as shown in Fig. 2.11. 
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Fig. 2.11 Conductivity Meter (HANNA). 

Then, the measured conductivity values were converted at 200C 

temperature’s equivalent value using the following expression for each 

sample [7], [145]. 

( )20 1 20tp  = − −                                              (2.1) 

Where, 20 is mean volume conductivity at 20°C (S/m),   is mean volume 

conductivity at θt°C (S/m), θt is ambient temperature, and p is a factor that 

changes with the solution's temperature. The mathematical formulation of 

factor p has been expressed in following equation [7], [144] – [145]. 

( ) ( ) ( ) ( )8 3 5 2 4 23.2 10 1.032 10 8.272 10 3.544 10t t tp   − − − − = −   +   −   + 
 

      (2.2) 

Next, the salinity (Sa) of the coating layer of the insulator sample were 

evaluated using the given equation [7], [144] – [145]: 

 
1.031.03 4

20 205.7 5.7 10aS   − =  =   
                  (2.3) 

Based on the aforesaid equation (2.3), The following formula was used to 

estimate the Equivalent Salt Deposit Density, or ESDD (mg/cm2) [145]: 

a

a

S V
ESDD

A

 
=  
 

                   (2.4) 

Where, V = volume of the solution (cm3), Aa = area of the contaminated 

insulator (cm2) and Sa = salinity of the coating of the overhead line insulators 

(S/m). In this study, several surface contamination samples of overhead line 

insulators were created by adjusting the NaCl and Kaolin concentration ratio. 

It has been reported that the range of ESDD values varied from 0 to 0.4 for 

different classes of contamination [145], [146]. According to the calculated 

value of ESDD, the five different contamination classes have been 
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segmented. In Table 2.3, the range of ESDD values corresponding to different 

surface contamination severity has been shown. 

Table 2.3 Classification of contamination level based on ESDD range and 

amount of NaCl salt. 

Level of 

Contamination 

Amount of 

NaCl (gm) 

ESDD Range 

(mg/cm2) 

Contamination 

Class 

CL-1 0.05 0 – 0.08 Very light (VL) 

CL-2 0.25 0.08 – 0.16 Light (L) 

CL-3 0.42 0.16 – 0.24 Medium (M) 

CL-4 0.91 0.24 – 0.32 High (H) 

CL-5 1.74 > 0.32 Very High (VH) 

2.4 Conclusion 

In this chapter, surface leakage current signals for five types of 

contaminated classes of overhead line insulators were acquired using a 

developed hardware model. The important points of this chapter are 

summarized as follows: 

• The hardware developed was a simulated model of the overhead line 

and it is an effective and fast data acquisition system.  

• The method for the preparation of artificially contaminated samples 

is simple. During sample preparation, IEC 60815 standards were 

followed.  

• According to IEC 60507 standards, leakage current measurement 

was performed. The raw data acquired from the hardware setup was 

stored in excel format for further investigation.  

The proposed experimental setup helps to record the surface leakage 

current, which provides essential knowledge about the health status of 

overhead line insulators. During the SLC measurement, the system voltage 

profile was monitored. It is noteworthy that significant changes in the SLC 

waveform were observed due to the increase in surface contamination levels. 

But in the input voltage profile, no such change was observed. The SLC 

signals can be used to exactly identify the contamination classes of outdoor 

insulators. This analytical review can further assess the life expectancy of the 

overhead line insulators. In this regard, a detailed discussion has been carried 

out in the following chapters.  
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Chapter 3 

Mathematical Morphology Aided Random Forest 

Classifier Based Contamination Level Prediction of 

Overhead Transmission Line Insulator 

3.1   Introduction 

Overhead line insulators are an essential part of transmission and 

distribution lines. They provide mechanical support and insulation of 

overhead transmission lines. Overhead line insulators are contaminated 

mainly due to geographical location. Environmental pollutants contaminate 

the surface of any overhead line insulator. Mainly, Sodium chloride (NaCl) 

and kaolin (Al Si2O5(OH)4) damage the housing of overhead line insulators in 

coastal and tropical rainforest areas, respectively. Apart from the mentioned 

factors, other factors such as fog, rain, ocean sand, dust, soil and air pollution 

mainly erode the outer perimeter of the overhead line insulators. Primarily, 

the mixture of water droplets and contaminants changes the surface 

conductivity of the overhead insulators. As a result, surface leakage current 

(SLC) begins to flow, from which a non-uniform voltage distribution appears 

throughout the insulator surface. Localized dry bands appear on the insulator's 

surface because of the SLC's exponential growth. As a result, the above-

mentioned cumulative effects may lead to flashover and a complete 

breakdown of overhead line insulators [31], [142] – [143]. Therefore, the 

measurement of surface leakage current (SLC), as well as the analysis of the 

SLC data, is the essential parameter to investigate the surface condition of 

overhead line insulators. To analyze the nonlinearity of SLC signals, 

mathematical morphology is the most suitable tool in comparison to other 

time domain analyses like Fourier transforms (FT), Short Time Fourier 

Transform (STFT), Wavelet Transforms (WT) and harmonic analysis [144] – 

[145], [150]. The cause of the nonlinearity that affects the SLC signal's 

signature cannot be determined directly by aforesaid time domain techniques. 

In contrast, Mathematical morphology is the most effective and efficient tool 

[153] – [154]. It can help to detect small changes in the SLC signal due to 

overhead line insulators' surface contamination. Because of the above 

reasons, the mathematical morphology tool was used in this study. 

In this work, 11 kVrms rated porcelain insulator discs were used to 

investigate the surface conditions. In this regard, the SLC signal was acquired 

using a hardware setup for different contamination classes. Chapter 2 (section 

2.2.1) provides a detailed discussion regarding the experimental setup. The 

same setup was used to acquire the SLC data from different samples, in this 

work. The acquired data was further utilized for analyzing the surface 

condition of the porcelain insulator disc. According to the artificial 

contamination guidelines i.e., IEC 60507, five different contamination classes 
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were artificially prepared in the laboratory and corresponding surface leakage 

current was measured for each contamination class [7], [124]. After all 

leakage current data were acquired, these data were fed to a mathematical 

morphology tool to extract the most significant features. The insignificant 

features were eliminated using a proposed filter algorithm from the acquired 

feature matrix. Then, the sorted features were further utilized to detect the 

surface contamination stages of porcelain insulators using a machine learning 

classifier (i.e., Random Forest (RF)). In addition, the precision level of the 

classifier was reported. A detailed explanation of the proposed methodology 

has been discussed in the following sections.  

3.2   Classification of Artificial Surface Contamination of 

Porcelain Insulators 

In this work, the disc of porcelain insulators was employed to assess the 

severity of the contamination of overhead line insulators. The development 

of distinct artificial surface contamination samples in accordance with IEC 

60507 standards is the primary requirement [7]. It is noteworthy that 

collecting in-field outdoor insulators with various surface contamination 

severity is challenging. Therefore, the artificial contamination method makes 

it relatively simple to develop surface-contamination of outdoor insulators in 

the laboratory. For this reason, a few outdoor porcelain disc insulator 

specimens were used to measure the SLC. An 11 kVrms rated porcelain 

insulator disc was used in this study to investigate the insulator's housing 

condition. In chapter 1, Table 1.3 illustrates the detailed technical properties 

of 11kV porcelain insulator disc.  

In this work, the solid layer method (SLM) has been utilized to 

contaminate the exterior of the outdoor insulators sample [145] – [146]. It is 

possible to create an artificial contaminated layer over the surface of an 

outdoor insulator sample using the SLM. To prepare the slurry in SLM, kaolin 

(AlSi2O5(OH)4), salt, and distilled water were utilized. It is notable, the 

mixture of salt and Kaolin (AlSi2O5(OH)4) is utilized as conductive and non-

conductive materials in this slurry, respectively. In this study, samples of 

overhead line insulators were coated at room temperature and allowed to dry 

for at least 24 hours. It was reported that natural contamination is primarily 

caused by salts like NaCl and KCl [146]. Because of this, NaCl is selected as 

the primary component for preparing artificially contaminated slurry and the 

NaCl's quality directly controls the conductivity of the contaminated slurry 

[7]. Fig. 3.1 shows a picture of a porcelain disc insulator sample artificially 

contaminated for SLC experimentation. Based on the range of equivalent salt 

deposited density or ESDD and the amount of NaCl are utilized in artificial 

contamination samples to categorize the degree of contamination, in this work 

[7], [146]. The proportional change in ESDD value, along with NaCl quality, 

is used to classify outdoor insulators' surface contamination level. The 

detailed description has already been illustrated in Table 2.3 (in Chapter 2, 

section 2.3). Moreover, in Chapter 2 (section 2.2.1), the procedure for making 

artificial surface contamination is briefly discussed. 
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Fig. 3.1 Photography of artificially surface contaminated and uncontaminated 

porcelain insulators. 

3.3   Surface Leakage Current Signals Acquisition Setup 

A laboratory experimental setup was built to record surface leakage 

current data from various contaminated samples. The high voltage is supplied 

to test specimens by a transformer with the following specifications: 1-ϕ, 50 

Hz, 500 V / 250 kV, and 150 kVA. The real hardware configuration schematic 

diagram has already been reported in Chapter 2 (i.e., Section 2.2.2, Fig. 2.4 

(a) and 2.4 (b)). In compliance with the standard [148], the testing 

transformer's output characteristics have been maintained. By stepping down 

the voltage through a capacitive voltage divider, the output voltage has been 

recorded on a digital oscilloscope (DSO). In order to prevent high current 

flow during an accidental fault, Between the test sample and the terminal of 

the high voltage experimental transformer, there is a protective resistance of 

180 kΩ. Using a digital oscilloscope (DSO), it is possible to measure the 

leakage current flowing through the sample via 10 kΩ (i.e., Chapter 2, section 

2.2.2, Fig. 2.4 (a) and 2.4 (b)). In [145], [150], the procedure of surface 

leakage current data acquisition for each artificially contamination samples 

are briefly discussed. 
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3.3.1 Effect of Contamination Severity on Surface Leakage 

Current Signal 

In this work, the surface leakage current (SLC) was acquired from the 

experimental setup for each class of contaminated samples. In the process of 

acquiring SLC data, the sampling frequency was maintained 50 kHz. The 

measured SLC data was stored using DSO and then the data was transferred 

to the computer via USB device. The complete ESDD calculation steps are 

presented in the previous chapter 2 (i.e., section 2.2.2.2).  

 

Fig 3.2 The waveform of the acquired Surface Leakage Current (SLC) signals 

representing five distinct categories of contamination, including (a)Very 

Light, (b) Light, (c) Moderate, (d) High, and (e) Extremely High. 

It is found that the nature of the SLC waveforms is also distorted due to high 

pollution levels. For each contamination level of this present work, 600 

samples were recorded from the leakage current signal and a total of 3000 

leakage current signals samples were acquired. For each category of 

contamination, the waveforms of SLC are illustrated in Fig 3.2. 
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3.4 Features Extraction from Surface Leakage Current 

Signal 

After achieving surface leakage current data, complete data has been 

analyzed on the MATLAB platform. In this work, an advanced frequency 

signal conditioning method, i.e., mathematical morphology (MM), was used 

to extract features from the leakage current signal of the surface. The MM 

function can provide satisfactory consequences regarding the power system, 

sound filtering and real-time signal processing. 

3.4.1   Fundamental Concept of Mathematical Morphology 

Mathematical Morphology (MM) is a set theory-based time domain 

analysis. It is preferred for nonlinear time signal analysis. Serra and Matheron 

have first introduced the MM technique [151], [154]. MM is advanced signal 

processing tool. It solely performs within the time domain signal. In addition, 

it is utilized for image as well as time domain signal de-noising. It is 

noteworthy that with the help of mathematical morphology, the complex input 

signal can be split into various sub-signals, including different physical 

significance. From there most suitable features are achieved. An essential 

aspect of the morphological filter is the Structural Element (SE) function, 

which regulates the shape of the input time domain signal as well as 

eliminates the noise from the input signal [153]. The signal's characteristics 

determine whether the SE is discrete or continuous. Structure Element (SE) 

dimensions and shapes are determined by the input signal's sampling 

frequency and geometrical characteristics [151], [155]. In addition, this SE 

assists to drag features from the input signal. In this case, linear SE is an 

appropriate selection to pull out essential features from SLC signals of 

overhead line insulators. 

3.4.2 Extracted Features after Mathematical Morphology 

Operation 

It is possible to perform several mathematical operations in mathematical 

morphology, including the four basic morphological operators for single-

dimensional signals: dilation, erosion, opening, and closing. The definitions 

of the above-mentioned terminology and the mathematical expression are 

described as follow:  

Let, the 1D time domain input signal is p(j) with the dimension of the 

signal is P = (0, 1, 2, … j-1). The Structure Element (SE) s(k) is discrete and 

linear and expressed as S = (0, 1, 2, … k-1), where (j > k) and j and k are 

represented as integer. Therefore, the expression of Dilation D(j) of input 

signal p(j) by SE s(k) can be written as: 
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Similarly, the Erosion E(j) of the given input signal p(j) by SE s(k) can be 

defined as: 

( )E j =  [p ⊝ s] ( )j
 

( ) ( )
min

0 ( ) , 0

p j k s k

j k j k

+ −  
=  

 +    
  (3.2) 

Generally, dilation makes any sharp deviation in the signal's boundary bigger, 

whereas erosion makes a signal's outline smaller [153]. In addition, sharp 

edges are converted into smooth boundary by opening operation. Similarly, 

narrow gaps present in any signal are filled up by closing operation. The 

opening operation of any input signal O(j) can be identified as an increase in 

decaying signals. In contrast, the closing operation of any input signal C(j) 

can be described as shrinking of the stretch signal. The mathematical 

expression of opening operation of the input signal p(j) by s(k) is illustrated 

as: 

( ) ( )( )pO s jj = = [(p ⊝ 𝑠) ⊕ 𝑠] (j)    (3.3) 

Similarly, the mathematical expression of closing operation of the input signal 

p(j) by s(k) is: 

•( ) ( ( ))C p sj j= = [(p ⊕ s) ⊝ s] (j)       (3.4) 

Apart from this, two hybrid functions have been presented in this work 

employing the MM operator. These are the Dilation Erosion Difference 

( )DEX j and the Opening Closing Difference ( )OCY j operators. The 

opening-closing difference operator derives from the discrepancy between 

opening and closing signals, whereas the dilation-erosion difference operator 

is the dissimilarity between dilated and eroded signals. The mathematical 

equations of the above-mentioned terminology are presented below.  

( )DEX j = [p ⊕ s] (j) – [p ⊝ s] (j)     (3.5) 

( )OCY j = [p ∘ s] (j) – [p •⃘ s] (j)    (3.6) 

A total of 20 features have been extracted using the proposed MM operator. 

In the feature extraction process, SE has been utilized to extract the most 

significant features from the input SLC of overhead line insulators. It is 

important to note that the selected dimensions SE are perfectly suited for 

analyzing a leakage current signal in the 1D time domain. The current study 

uses s(k) = [1 0 1] as the structure element (SE). As shown in Table 3.1, the 

name of extracted MM features (F1 to F20). 
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Table 3.1 Features Description. 

Name of Features Description 

F1 Variance of D(j) 

F2 Variance of E(j) 

F3 Variance of O(j) 

F4 Variance of C(j) 

F5 Variance of δXDE (j) 

F6 Variance of δXOC (j) 

F7 Kurtosis of D(j)  

F8 Kurtosis of E(j) 

F9 Kurtosis of O(j) 

F10 Kurtosis of C(j) 

F11 Kurtosis of δXDE (j) 

F12 Kurtosis of δXOC (j) 

F13 Skewness of D(j) 

F14 Skewness of E(j) 

F15 Skewness of O(j) 

F16 Skewness of C(j) 

F17 Skewness of δXDE (j) 

F18 Skewness of δXOC (j) 

F19 Average of dilated signal Davg(j) 

F20 Average of eroded signal Eavg(j) 

3.5   Procedure of Features Classification 

A forecast for the lifespan of overhead line insulators relies heavily on the 

classification of features. Features selection is the prior function of feature 

classification. After MM operation, features must be filtered to obtain 

accurate outcomes. A feature classification procedure can be divided into two 

categories. First, feature reduction using the filter method and, second, 

prediction of contamination classes using a machine learning classifier. The 

detailed description of the aforesaid methods is described in the following 

sections.  

3.5.1   Feature Selection using Filter Method 

In this work, five different classes of contaminated porcelain insulators 

samples were used for the SLC data acquisition. After using the MM 

operation, 20 numbers of features were achieved and those features carried 
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vital information regarding contamination classes. The size of the acquired 

features matrix is (20   25). Acquired features are illustrated in the Table 

3.2.  Moreover, the acquired feature matrix is displayed in a compact 

arrangement in the following Table 3.2. 

Table 3.2 Acquired Features after Mathematical Morphology operation. 

Contamination 

Classes 

Acquired Features 

F1 F2 F3 -- F20 

Very Light 

1.003 -1.003 1.525 -- 101.483 

0.993 -1.013 1.525 -- 101.587 

--- --- --- -- --- 

Light 

1.004 -1.008 1.516 -- 89.109 

1.007 -1.006 1.511 -- 88.952 

--- --- --- -- --- 

Moderate 

1.008 -1.006 1.521 -- 96.788 

1.007 -1.007 1.531 -- 96.501 

--- --- --- -- --- 

High 

1.005 -1.006 1.417 -- 107.946 

1.004 -1.007 1.440 -- -0.7884 

--- --- --- -- --- 

Very High 

1.091 -0.930 1.376 -- 140.498 

1.059 -0.960 1.500 -- 136.197 

--- --- --- -- --- 

The proposed filter method is utilized in this work for feature reduction 

and selection purposes. Using this method, the most significant features were 

selected and undesirable and constant features were eliminated. This method 

is used to increase feature sorting precision. The Python software platform 

was employed to perform the entire filter method. The steps of filter method 

are discussed below.  

In the first phase of the filter method, constant features are removed from the 

available features matrix. Three primary conditions help to eliminate constant 

features. Only features that meet the following conditions are used in the next 

stage. The conditions are: 

• All features that had constant value were eliminated. 

• It removed those features whose variance marginal value was 

below 0.01. 

• A constant value feature was removed from two consecutive 

features in the available features set. 

A cross-correlation operation on the residual features was performed in the 

subsequent stage to assist in identifying significant features and eliminating 

undesirable ones. After the cross-correlation operation, the acquired features 
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were allotted to different groups according to their similarity. It is noteworthy 

that this grouping operation helps to improve the features' classification 

accuracy. As a result, the computational burden on the classifier model can 

be reduced. To remove undesirable features, a marginal value of the cross-

correlation was assigned in this work, i.e., greater than and equal to 0.9. Apart 

from this, only features that properly pass the marginal value of the cross-

correlation were chosen. The outcome of the conditional loop (as shown in 

Fig. 3.3) provides suitable features for both true and false conditions. After 

the loop conditions were satisfied, the obtained features were again tested 

with the help of the three aforementioned conditions. This was done to 

eliminate unwanted features from the residue. Significantly, after examining 

the various conditions for feature extraction in the filter method, the residue 

features were fed to a machine-learning classifier. The flowchart of the filter 

method is illustrated in the Fig. 3.3. It is noteworthy that the Random Forest 

(RF) classifier was used for the purpose of features classification. The 

following section discusses the details of the feature classification process 

using RF classifier.  

 

Fig. 3.3 Infographics of the Filter Method. 

3.5.2   Features Classification using Random Forest (RF) 

Classifier 

In this study, features were extracted by a mathematical morphology tool 

from raw SLC data. After that, the extracted features were sent to a filter 

model to select suitable features. After picking significant features, the sorted 

features were fed to a well-known machine learning classifier (i.e., Random 

Forest (RF)) for feature classification. To identify significant contamination 
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classes on overhead line insulators, classification features are used. It is 

noteworthy to mention that the overall acquired dataset has been divided into 

two parts: the training data set and the testing dataset. In this case, 75 % of 

the overall data was determined for training and the remaining 25 % was used 

for testing. A broad discussion about the working strategy of random forest 

(RF) classifier is stated below. 

3.5.2.1 Working Strategy of Random Forest (RF) Classifier 

 A machine learning classifier for classification algorithm called random 

forest (RF) was developed by Briemen [156]. An enormous number of 

independent decision tree classifiers work together in RF. All these decision 

tree classifiers combined voted to make the final decision in RF [156] – [158]. 

The working procedure of the RF classifier is categorized into three stages. 

The detailed procedure of an RF-based classifier is described below.  

Initially, according to the available input dataset, several numbers of 

decision trees are created. The number of decision trees varies according to 

the input dataset. The training operation is performed on individual decision 

trees. From this process, each of the decision trees can work as base 

classifiers. It is important to mention here each base classifiers have been 

trained using random sample with repetition during the training period. In 

order to obtain optimal training results, repetition of the random data is 

controlled, so that it contributes roughly one-third of the training dataset. The 

random data that are supplied to each base classifier are referred to as in-bag 

data and the preceding process is referred to as bagging. Notably, roughly 
2

3
 

of the training data have been used to teach each base classifier. It has been 

observed that the training precision of the created decision tree can be 

validated using the remaining data, called out-of-bag data [156] – [158]. 

In the next stage, Once the in-bag dataset has been finalized, decision tree 

construction begins. During the construction of the decision tree, a feature 

(attribute) is chosen at the root node. The training data is then divided into 

subsets for each attribute's possible value [157]. This creates a branch for each 

feature's possible value. A split feature resulted in an increase in information, 

which was then used to select the root node. In this regard, root nodes have 

been defined as features that provide maximum information gain [157]. As 

per the operation of RF, the information gain (Ign) helps to divide the training 

dataset (Ts) into various subsets (
iST ). The mathematical expression of 

information gain (Ign) is represented as [157]: 

( )
1

i

i

s

gn n S

i s

T
I E T

T=

= −         (3.7) 

Where, the entropy of the training sub-dataset (
iST ) is expressed as [157]: 



 

 

 

 

 

 

 

 

Mathematical Morphology aided Random Forest Classifier based 

Contamination Level Prediction of Overhead Transmission Line Insulator 

73 

 

 

 

 

 

 

( ) ( )2

1

log
s

i j j

n

n S p p

j

E T S S
 

=

= −      (3.8) 

Assume that ns denotes the number of sleep stages and ( )
jpS


denotes the 

number of the jth sleep stage in the training subset (
iST ). In the case of positive 

Ign, the node has divided, otherwise it remains unchanged and becomes a leaf 

node [157]. Features are collected based on the highest information gain's 

value (Ign) of residual features. Until features are chosen, the splitting process 

continues [157] – [158]. It is noteworthy to mention that the splitting function 

continues until all features are chosen [157]. 

Finally, in the final round, all trees were grouped and a vote was taken 

based on the decisions made by all trees. In addition, the final decision is 

considered based on the maximum number of votes [156] – [158]. The 

schematic diagram of the random forest (RF) operation is depicted in Fig. 3.4. 

 

Fig. 3.4 Schematic of Random Forest Classifier. 

3.6   Results and Discussions 

In this work, in-service overhead line insulators have been selected to 

determine their contamination level using surface leakage current data. 

According to the IEC standard (i.e., IEC 60507), artificially contaminated 

surfaces of insulating samples in the laboratory were prepared. With the help 

of the laboratory-made simulated transmission line model, the surface leakage 

current data was measured. The stored SLC data was further analyzed in the 

software platform. Therefore, the acquired data was tested using 
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mathematical morphology to extract the significant features and 20 features 

were extracted from this method. It is noteworthy that feature selection was 

performed with the help of the filter method. At the end of the filter method, 

achieved optimal features were fed to one machine learning classifier (i.e., 

random forest) and from there, contamination classes were identified.  

In this work, features were selected using various method combinations 

and each feature class precision level was tested via an RF classifier. The 

combination of the feature classes is shown in Table 3.3. According to Table 

3.3 reports four types of feature classification combinations based on the 

available extracted features set. The accuracy of every stage of the feature 

classification process was tested using an RF classifier and is reported in 

Table 3.3. Some noticeable outcomes have been observed in this stage, which 

has been reported below. 

• By using only mathematical morphology operation model was 

able to execute 20 numbers of unique features set. The related 

accuracy measurement has been reported in the Table 3.3 by 

using classification technique. 

• After removing redundant features, the most optimal features 

were achieved using feature removal without the correlation 

method. After this stage, a total of 11 sets of features were 

extracted. 

• It is significant to mention that only three sets of features were 

achieved using the cross-correlation and redundant feature-

removal operation (as reported in Table 3.3).  

• Lastly, with the help of cross-correlation and grouping operations 

on the residual features, five sets of features were executed at the 

end of the filter method.  

As shown in Table 3.3, the corresponding accuracy is reported at every step 

of the classification procedure. 

Table 3.3 Result of Filter Methodology. 

Classifier Accuracy (%) 

Random 

Forest 

Extracted 

features from 

Mathematical 

Morphology 

operation 

(20 sets of 

features) 

Removing 

the constant 

features and 

without 

Correlation 

(11 sets of 

features) 

After 

preforming 

Cross-

correlation 

and without 

grouping 

(3 sets of 

features) 

With 

Correlation 

and 

Grouping 

(5 sets of 

features) 

95 95 95.3 95.6 
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3.7   Conclusion 

Initially, the porcelain insulator disc surface was created to be artificially 

contaminated as per the IEC standard. Then, the leakage current (LC) was 

measured and recorded in the laboratory with an experimental setup. 

Subsequently, the recorded surface LC data was used to extract features using 

a mathematical morphology technique and filter model. Notably, the most 

appropriate features were selected using the filter method. The extracted 

features were further fed to a machine learning classifier for porcelain 

insulator contamination class prediction with extracted features. For the 

feature classification, a random forest classifier was used in this work. 

Corresponding accuracy for predicting contamination using classification 

techniques is also reported in this chapter. In this chapter, the following 

conclusions have been drawn as follows: 

• There are several advantages to the proposed framework, 

including its simplicity, speed, accuracy, and robustness. 

• The proposed framework achieves acceptable accuracy under 

different combination of features classes. In addition, the 

accuracy level was tested individually for each class of feature 

set.  

• The filter method helps reduce the unnecessary features from the 

large feature set. It is an efficient and uncomplicated technique. 

In addition, it is referred to as the feature reduction method. The 

outcomes of the filter method provide optimal features for feature 

classification, which boost the classification accuracy.  

• There is no impact on the classification performance of the 

suggested framework if voltage fluctuations are within an 

acceptable range. 

It is essential to mention that this proposed methodology will help identify 

the overhead line insulators' surface contamination using the SLC analysis to 

avoid the failure of the overhead line insulators.  

Using this proposed filter model and Mathematical Morphology operation, 

acquiring features from the SLC signal is cumbersome and time-consuming. 

Apart from this, with the help of mathematical morphological signal 

processing filter features were extracted from SLC signals. The operation of 

the mathematical morphological technique depends on structural element 

dimensions. Assigning structural elements depends on the input signal 

signature, which is the trickiest. In addition, the proposed model's success rate 

was examined with only one machine learning classifier (i.e., Random 

Forest). Testing the model's performance by one classifier may not provide a 

precise prediction of surface contamination of overhead line insulators. Due 

to the aforesaid limitations, a joint time-frequency signal processing 

framework has been implemented on the SLC signals and a detailed 

discussion has been reported in the next chapter. In addition, different types 

of machine-learning classifiers have been used to test the new framework's 

precision level. 
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Chapter 4 

Condition Assessment of Overhead Line Silicone 

Rubber Insulators by Employing Surface Leakage 

Current Signal and Hyperbolic Stockwell Window 

Transform 

4.1   Introduction 

In Chapter 3, a proposed framework was developed with the help of a 

mathematical morphological signal processing filter. It is a nonlinear signal 

transformation technique used in feature extraction from surface leakage 

current signals. The basis of this technique depends on structural element 

dimensions. However, the main drawback of this technique is that its 

performance changes with the characteristics of the input signal, since the 

structural element's dimension solely depends on the input signal's nature. 

Apart from this, assigning new structural elements to update the input dataset 

is cumbersome and time-consuming. In the previous chapter, the proposed 

framework's performance was tested only with a random forest classifier, 

which may not be able to provide a precise prediction to identify the degree 

of surface contamination of overhead line insulators. Therefore, it is essential 

to compare the proposed model's performance with other classifiers to predict 

the contamination class of overhead line insulators with the utmost accuracy.  

In this proposed framework, the Silicone Rubber (SiR) insulator samples 

were taken for surface leakage current measurement. It is noteworthy to 

mention that in the recent scenario, Silicone Rubber (SiR) insulators play 

essential roles in reliable power flow from power generation to the consumer 

end. It has to be mentioned here that one of the significant reasons behind 

power outages is the breakdown of overhead transmission line insulators 

[159] – [160]. These overhead line insulators have been preferred over 

ceramic and glass insulators for the last two decades because of their 

lightweight, self-restoring hydrophobicity properties, better pollution 

performance etc [161] – [162]. Despite the benefits mentioned above, the 

surface of SiR insulators is more affected by environmental pollutants than 

ceramic insulators. Due to the impurity mixing in the SiR insulator housing, 

it experiences uneven voltage distribution and thermal imbalance on the SiR 

insulators’ surface. The flashover event is also noticed, followed by their 

complete breakdown. It is entirely undesirable from the power system and 

countries' economic perspectives. It is noteworthy to mention that due to the 

rapid growth of the contamination level on the surface of overhead line 

insulators, frequent failure of insulators has been observed. That is why it is 

challenging and necessary for engineers to investigate the overhead line 

insulators' condition regularly. 
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To monitor the surface condition of SiR insulators, different parameters 

such as equivalent salt deposit density (ESDD), air pollution condition, and 

surface leakage current monitoring have been advised over the years [68]. It 

is noteworthy that calculating ESDD can provide a closer view of the surface 

condition of the SiR insulator. However, the applicability of ESDD process 

is not feasible due to the time-consuming process and facing some practical 

constraints [31], [150]. Thus, surface leakage current analysis has been widely 

accepted as a convenient and reliable technique for the assessment of 

overhead line insulators’ surface condition [144] – [146], [150]. As stated in 

[144], the third and fifth harmonic content ratio of the surface leakage current 

can be a marker of the insulator surface condition. The major limitation of the 

aforesaid techniques is that they depend on the input voltage signature. It has 

also been found that the change in supply voltage profiles due to the 

fluctuating load demands [160]. In addition, regular monitoring of voltage 

from high voltage side is very problematic and costly. 

It has been revealed in [145] – [146] that, the deviation of the surface 

contamination level is the main cause behind the nonlinearity of the surface 

leakage current’s signature [145] – [146]. It is noteworthy to mention that the 

SLC signature is not stationary in nature. Non-stationary is incorporated into 

the SLC profile due to artificial surface contamination of overhead line 

insulators. Besides that, the distortion levels in the SLC's signature are higher 

at a higher level of surface contamination. Notably, few observable sharp 

impulse peaks appear at irregular intervals in the SLC waveforms, as shown 

in Fig. 4.1. They are predominant at higher contamination levels in 

comparison with lower levels of surface contamination. The reason for 

appearing the irregular patterns on the SLC waveform is due to the surface 

discharge phenomenon. Notably, the surface discharge happens because of 

surface contamination and the continuous flow of the SLC on the surface of 

overhead line insulators. For this reason, the irregular partial arc incorporates 

non-stationary in time-varying SLC signals [143]. Therefore, the Fast Fourier 

transform (FFT) analysis is ineffective for determining the non-stationary 

profile of the time-varying input signals. Moreover, FFT analysis allows 

examining the harmonic profile of stationary signals [146]. In this regard, FFT 

analysis cannot provide precise information after analyzing odd harmonic 

components from leakage current signals of overhead line insulators [144]. 

Apart from this, non-stationary signals do not adhere to the linearity 

assumption, as they can exhibit interactions and coupling between different 

frequency components that violate the principles of superposition. A non-

stationary signal, such as SLC signals from overhead line insulators, may 

generate new frequency components due to the interaction between the 

original signals and noise signals. FFT analysis may not accurately capture 

these additional frequency components, leading to inaccurate frequency 

domain representations of the input signals [165].  

Additionally, the FFT may not adequately resolve non-stationary SLC 

signals with rapidly changing frequency components concerning the surface 

contamination variation or fine-scale details of the SLC signals, leading to a 

loss of information. Due to surface discharge and surface contamination, SLC 

signals can produce complex frequency spectra with a mixture of harmonics, 
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subharmonics, and other components. Therefore, it is challenging to interpret 

using traditional FFT techniques to identify the complex frequency spectra of 

SLC signals. Due to the limitations, the non-stationary signal processing tool, 

i.e., mathematical morphology, has been applied to the time-varying non-

linear SLC signals to extract the relevant features. Moreover, using 

mathematical morphology, complex and non-linear time-varying SLC signals 

can be split into various sub-signals, including their different physical 

significance [153]. This signal processing tool can easily identify irregular 

changes in the waveform of SLC signals due to the surface contamination of 

overhead line insulators. In contrast, the operation of the mathematical 

morphological technique depends on structural element dimensions. Besides 

that, assigning structural elements depends on the signature of input signal, 

which is the trickiest. Therefore, only the time domain analysis methods are 

not effective in investigating the surface status of the overhead line insulators. 

 

Fig. 4.1 Waveforms of surface leakage current signal for (a) High and (b) 

Extremely high contamination level. 

With the help of SLC signal analysis in the time-frequency domain, 

overhead line insulators can be monitored more effectively. For the last two 

decades, the Stockwell Transform (ST) is very well known for analysing the 
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non-stationary signals in the time-frequency domain [165] – [170]. The 

advantage of the Stockwell transforms over the Short Time Fourier transform 

(STFT) and Wavelet Transform (WT) is mainly the determination of the 

phase information at each frequency and shows better performance with the 

presence of noise [165] – [170]. There have been many studies demonstrating 

the effectiveness of the Stockwell transform in biomedical engineering for 

EEG signal processing [166] – [167], power quality detection [168], gearbox 

fault analysis [169], and power transformer fault analysis [170], but this 

method has not been extensively studied in the context of SLCs until now. 

Stockwell Transform (ST) has been used to analyze the SLC signal of SiR 

insulators at different contamination levels in this work. Additionally, a 

Hyperbolic Gaussian window has been applied to improve the time-frequency 

resolution of the Stockwell Transform. Hyperbolic windows provide better 

resolution for the high and low-frequency components of non-linear signals, 

in comparison with classical Gaussian windows. That is why, to analyze non-

linear SLC signals with different contamination levels, the hyperbolic 

window Stockwell transform is more appropriate. 

This study aimed to investigate the SLC signals obtained from an 11 kV 

silicon rubber (SiR) insulator with different degrees of surface contamination. 

By employing the Hyperbolic Stockwell transforms (HST) technique in the 

time-frequency domain, these signals were analyzed. A special kind of 2D 

features matrix namely the Hyperbolic Stockwell (HS) matrix, was created 

using a combination of magnitude and frequency analysis. This was done by 

analyzing the SLC signals. In order to separate the magnitude spectrum from 

the phase spectrum, HS matrix (i.e., complex time-frequency matrix) has been 

segmented into two parts. Based on the phase and magnitude spectrum, 15 

numbers of HST features have been extracted. After that, a total of 5 

significant HST features were chosen through the Least Absolute Shrinkage 

and Selection Operator (LASSO) feature selection method. Finally, four 

machine-learning classifiers are chosen to predict the contamination degree 

of overhead line insulators based on these relevant HST features. The 

proposed framework shows better classification accuracy than previously 

reported in existing standard time-frequency analyses. 

4.2 Artificial Contamination of SiR Insulator 

4.2.1 Preparation of Samples 

In this paper, a commercially available 11 kV SiR insulators were used for 

experimental purposes. Technical specifications of SiR insulator are already 

illustrated in Table 1.2 in chapter 1 (section 1.3.1). To contaminate the surface 

of SiR insulator, solid layer method (reported on IEC 60507) was adopted in 

this work [171]. In the solid layer method, the insulator surface is coated with 

a slurry prepared with the help of kaolin, salt (NaCl) and distilled water [150], 

[145] – [146], [172]. It should be mentioned here that the contamination 

severity can be varied through varying the quantity of salt. A detailed 

explanation of preparing artificially contaminated samples is discussed in 
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chapter 2 (section 2.2.1). Photographs of artificially contaminated (surface) 

samples of SiR insulators are depicted in Fig 4.2. 

 

Fig 4.2. Image of artificially contaminated SiR insulator (11 kV). 

4.2.2 Description of Contamination Classes 

In this study, insulators surface contamination severity was evaluated by 

ESDD or equivalent salt deposit density method. For this purpose, the steps 

were followed as per the IEC 60815 standard [70]. In this work, it has been 

noticed that the ESDD quality range varies from 0 - 0.5 mg/cm2. According 

to the ESDD range and quantity of NaCl salt, the surface contamination of 

SiR insulators has been divided into five classes. The contamination classes 

are: Very Light (CL-1), Light (CL-2), Medium (CL-3), High (CL-4) and Very 

High (CL-5). In Chapter 2 (section 2.3), an elaborated discussion on the 

calculation of the ESDD method has been demonstrated. Similarly, according 

to the ESDD value, the five pollution classifications are shown in Table 2.3 

in chapter 2. 

4.3 Acquisition of Surface Leakage Current (SLC) Signal 

To accruing SLC data, a setup was developed for the experiment in the 

laboratory from the several artificially contaminated samples at room 

temperature. Again, the SLC data of different contamination categories was 

acquired employing an experimental setup mentioned in Chapter 2 (Section: 

2.2.2). To measure SLC data, the IEC 60507 standard was followed and the 

experimental setup’s schematic diagram is presented in Chapter 2 at Section 

2.2.2 in Fig. 2.4 (a) and Fig. 2.4 (b) [144] – [146], [150]. The data was 

acquired and stored on a USB device via a Digital Storage Oscilloscope 

(DSO). Following that, the obtained data was transferred to a computer to be 

analyzed. Using this setup, SLC signals from SiR insulators were recorded at 

three different voltage levels (i.e., 10 kV, 11 kV, and 12 kV). Through DSO, 

the profiles of different system voltages (i.e., 10 kV, 11 kV, and 12 kV) were 

also measured during leakage current measurements. The waveforms of the 



 

 

 

 

 

      

    

 

 

                                                                                                          Chapter 4 

82 

 

 

 

 

 

 

supply voltages are already illustrated in Chapter 2 (Section: 2.2.2.2, Fig. 2.10 

(b)). 

4.4 Features Extraction using Hyperbolic Stockwell 

Transform (HST) 

4.4.1 Fundamentals of Hyperbolic Stockwell Transform (HST) 

 Hyperbolic Stockwell Transform (HST) is an enhanced version of 

Stockwell Transform (ST). The S-transform can be used to analyze the non-

linear behaviour of real-time signals. Before ST, the Fourier transform (FT) 

was used as a very popular signal-processing tool. But in the present situation, 

the Fourier transform has several limitations. The main drawback of FT is 

that it cannot provide any information on spectral components of the entire 

time series. The FT cannot detect the time distribution for the influences of 

different frequencies, which affects the performance during signal processing 

of non-linear signals. Moreover, the Short Time Fourier Transform (STFT) is 

also not compatible with non-linear signals because the width of the window 

of STFT is fixed, and the output of the STFT gets affected due to the presence 

of noise signal [165]. For that reason, the time-frequency analysis such that 

S-transform and HST are preferred.  

Stockwell Transform (ST) and Hyperbolic Stockwell Transform (HST) 

have frequency dependent time-frequency domain’s resolution. A hyperbolic 

Gaussian window is implemented for time-frequency analysis in place of the 

conventional Gaussian window of the ST [172]. Due to its suitability for 

analyzing SLC signals of different contamination levels, the hyperbolic 

window Stockwell transform provides better flexibility than the classical 

Gaussian window at both low and high frequencies [168]. While maintaining 

a direct correlation with the Wavelet Transform (WT) and Short Time Fourier 

Transform (STFT), the classical Stockwell Transform (ST) delivers 

frequency-dependent signal resolution [165] – [166], [168]. The 

mathematical expression of the classical Stockwell Transform (ST) is 

represented as follows [166], [168] – [169], [188]:   

2
( , ) ( ) ( , ) sif t

SLC s sw sS f p t w t f e dt
 

+
−

−

= −
   (4.1) 

In the aforesaid equation (4.1), Classical Stockwell Transformation (ST) is 

represented as ( , )SLC sS f , ( )p t is the time varying surface leakage current 

signal and Gaussian Window function of ST is represented ( , )sw sw t f − . 

Moreover, the Gaussian window function ( , )sw sw t f −  can be further 

expressed as [168] – [169]: 

2 2( )

2( , )
2

sf t

s
sw s

f
w t f e






− −

− =     (4.2) 
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In equation (4.1 and 4.2), the Gaussian window parameter is  , which can 

control the position of the window [165]. The resolution of a time event can 

normally be improved with a narrow gaussian window in classical stockwell 

transforms [166]. Frequency resolution is poor when the time domain window 

is thin, but it improves its resolution in the frequency domain when the time 

domain window is narrowed. An alternate solution is introduced a sharper 

front taper and a slower back taper in the Gaussian window to compensate the 

window's resolution. It is possible to improve event initiation time resolution 

by using this asymmetric window. The window function of the Hyperbolic 

Stockwell Transform (HST) is scalable and frequency dependent that is 

different from the conventional Gaussian window of ST [170]. In addition, 

the hyperbolic window is flexible with frequency variation. It is noteworthy 

that the hyperbolic window becomes an asymmetric window at low 

frequencies. In contrast, this hyperbolic window has a symmetric Gaussian 

window at high frequencies. The symmetrical window provides good 

frequency resolution at high frequencies and the hyperbolic window's 

asymmetricity is advantageous for analyzing the phenomenon very far in the 

time-frequency domain [166]. With its inherent flexibility in the window 

function, HST is more valuable than classical ST when predicting 

contamination degrees from SLC signatures. The mathematical 

representation of the hyperbolic window is shown below [172]: 

2 2[C { ,( , , )}]
( )

2
2

2 ( )

F B
s H H H Hf t

s
H F B

H H

f
w e

   

  

−
−

=
+

  (4.3) 

In equation (4.3), the mathematical expression of hyperbola 
HC is 

represented as:  

( ) ( )
2

2

2 2

F B F B
H HH H H H

H HF B F B

H H H H

C t t
   

    
   

   + +
= − − + − − +   

    

 (4.4) 

The following parameters can control the shape of the hyperbola: (i) positive 

curvature parameters 
H , (ii) front tapper F

H  and (iii) back tapper B

H . 

Apart from this, the translation factor 
H  helps to make sure that the peak of 

the hyperbola always arises at: ( ) 0t − = . Mathematical expression of 

translation factor 
H is given below: 

2( )

4

F B
H H H

HF B

H H

 
 

 

−
= 


     (4.5) 

It should be mention here that, the nature of the non-stationary surface leakage 

current signal was discrete, and due to this fact, discrete HST was selected in 

this work. Mathematical expression of the hyperbolic window S-transform is 

as follows [168]:  
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1
2

0

( , ) ( ) ( , )
N

i lj

S SLC AH

l

H m l p l m w l m e 
−

=

= +    (4.6) 

In the above equation (4.6), SLC signal’s shifted form of discrete Fourier 

Transform (FT) is represented as ( )SLCp l m+ and asymmetric hyperbolic 

window’s FT is denoted ( , )AHw l m . In this work, HST provides the output 

of a two-dimensional complex hyperbolic stockwell (HS) matrix. The HS 

matrix contains two components such as the amplitude and phase spectrum 

of HS matrix. In equation (4.7), expression of HS matrix is given below: 

,

,( , ) m l

S m lH m l M e


=       (4.7) 

In the matrix, columns correspond to sample points for the signal, whereas 

rows represent frequency. 

4.4.2 Tuning of Hyperbolic Stockwell Window Parameters 

The selection of the precise window parameter is essential to enhance the 

characteristics of SLC signals with HST. SLC signals are nonstationary with 

different contamination levels, so setting a fixed window parameter for a 

different type of SLC signals is technically inappropriate. As a result, grid 

search optimization was used in this work to select the front tapper, back 

tapper, as well as the positive curvature parameter value for the HST window 

function. 

Grid Search Optimization (GSO) is a technique used in machine learning 

and optimization to catch the best combination of hyperparameters for a 

model. Those parameters are fixed before the training of the model, like 

learning rate, regularization strength, and number of hidden layers. Grid 

Search Optimization (GSO) involves specifying a grid of possible 

hyperparameter values and training the model for each combination of 

hyperparameters in the grid. The model performance is assessed using a 

validation set or cross-validation. The combination of hyperparameters that 

give the most satisfactory performance is chosen as the optimal set. The main 

advantage of grid search optimization is that, it is simple and easy to 

implement. 

However, the drawback of grid search optimization is that it can be 

computationally expensive, especially when the number of hyperparameters 

and the size of the grid are large. The flowchart that outlines the steps 

involved in performing grid search optimization is presented in Fig 4.3. For 

the most optimized HST window parameters, three basic hyperparameters 

were used in Grid Search Optimization (GSO). These three hyperparameters 

are the front taper ( F

H ), back taper ( B

H ) and positive curvature (
H ) of the 

window, which are assigned as P, Q and R, respectively. A notable aspect is 
that the parameters were tuned using HS matrix ( ( , )SH m l ) Energy 

Concentration (EC) measurements [167]. 
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In this work, the optimal range of front taper ( F

H ) and back taper ( B

H ) 

was identified by GSO as 0 1F B

H H    . Similarly, the finest range of 

positive curvature value for HST window was assigned by GSO as 

300 500H  . Consideration has been given to the HS matrix, which yields 

maximum energy concentration. Notably, the front and back taper values 

have been kept low for narrowing the window width. In addition, higher 

values of positive curvature parameters can accelerate the transition from 

asymmetric to symmetric windows. 

 

Fig 4.3. Outline of Grid Search Optimization. 

4.4.3 Time-Frequency Domain’s Extracted HST Features 

A magnitude and phase spectrum of the HS matrix was used to extract 17 

time-frequency statistical features. These features will also be referred to as 

the HST features set. Table 4.1 illustrates the aforementioned features in 

detail. All obtained 17 features were used to identify the contamination class 

of SiR insulator using four machine learning classifiers. The details of the 

feature classification process have been described in section 4.5. 
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Table 4.1. Features extracted from the HS matrix. 

Features Features Description 

F-1 Maximum value of magnitude spectrum
,m lM of HS matrix. 

F-2 
Mean value of the column corresponds to max value of 
magnitude spectrum

,m lM of HS matrix. 

F-3 
Power of the column corresponding to max value of 
magnitude spectrum

,m lM of HS matrix. 

F-4 
Standard Deviation of the column corresponding to max 
value of magnitude spectrum

,m lM of HS matrix. 

F-5 
Skewness of the column corresponding to max value of 

magnitude spectrum 
,m lM of HS matrix. 

F-6 
Kurtosis of the column corresponding to max value of 

magnitude spectrum 
,m lM of HS matrix. 

F-7 
Mean value of the row corresponds to max value of 
magnitude spectrum

,m lM of HS matrix. 

F-8 
Power of the row corresponding to max value of magnitude 
spectrum

,m lM of HS matrix. 

F-9 
Standard Deviation of the row corresponding to max value of 
magnitude spectrum

,m lM of HS matrix. 

F-10 
Skewness of the row corresponding to max value of 

magnitude spectrum
,m lM of HS matrix. 

F-11 
Kurtosis of the row corresponding to max value of 

magnitude spectrum
,m lM of HS matrix. 

F-12 
Mean value of the column corresponds to max value of phase 

spectrum ,m le


of HS matrix. 

F-13 
Power of the column corresponds to max value of phase 

spectrum ,m le


of HS matrix. 

F-14 
Standard Deviation of the column corresponds to max value 

of phase spectrum ,m le


of HS matrix. 

F-15 
Mean of the row corresponds to max value of phase 

spectrum ,m le


of HS matrix. 

F-16 
Power of the row corresponds to max value of phase 

spectrum ,m le


of HS matrix. 

F-17 
Standard Deviation of the row corresponds to max value of 

phase spectrum ,m le


of HS matrix. 
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4.5 Machine Learning Classifiers 

This work used four machine learning classifiers to estimate 

contamination levels employing time-frequency HST features of SLC signals. 

A concise discussion of the classifiers mentioned above is given in section 

4.5.1. 

4.5.1 Support Vector Machine (SVM) 

In binary classification, support vector machines are widely used as 

classifiers [174] – [175]. Support vector machine (SVM) (a classic machine 

learning algorithm) was proposed by Vapnik et al. [174]. The structural risk 

problem can be reduced by SVM algorithm. Apart from this, it uses statistical 

theory during the implementation of classification process. SVM classifiers 

are designed to maximize the margin between two data points by finding an 

optimal hyperplane [174], [181] – [183].  

The present work uses multiclass SVM classification tools to detect the 

multi-classes of HST features acquired in the feature extraction process. 

Using the one-against-all approach (OAA), the author employed multiclass 

SVM in this work. It is noteworthy that selecting the appropriate kernel 

function can help to enhance the effectiveness of SVM operation. Several 

kernel functions, like linear, polynomial, and radial basis functions (RBF), 

were employed to performance testing of the SVM classifier [175].  

In the reported work the training dataset that is provided is: 

1{ , } Tn

T z z zS x c == , where the sample of the training dataset is Tn

zx  , class 

label is denoted here as: { 1, 1}zc  + − , and the training datum's number is 

denoted as: 
Tn . To segregate the whole training dataset into positive and 

negative classes, an appropriate hyperplane is selected in the SVM process. 

The mathematical illustration of the hyperplane is presented below as [181]: 

( ) .p hp hph x w x b= +       (4.8) 

In equation 4.8, hpw  refers as the weight vector and 
hpb  indicates bias terms 

of hyperplane equation. Therefore, the condition for optimal hyperplane can 

be defined as [181]: 

( )
,

1
,

2
min

hp hpw b

t

hp hp hp hpC w b w w=                             (4.9)  

subjected to  ( ) 1, 1,2,....,t

z hp z hp Ty w x b z n+  = . A soft classification formula 

is obtained in equation (4.9), in which some misclassifications are penalized. 

,

1

1

2
min

hp hp T
w b n

t

hp hp pen z

z

w w C
=

+                  (4.10) 
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subjected to ( ) 1 , 0 1,2,....,t

z hp z hp z z Ty w x b z n+  −   = . In the 

equation (4.10), 
penC denotes the cost penalty factor whereas the slack 

variable denotes as 
z . It should be mentioned here that, to balance the 

complexity of the model and nullify the model’s training error, the cost 

penalty factor has been employed [181]. 

In this work, the classification problem is nonlinear, so a nonlinear 

mapping function ( )s x  is used to plot original data space Tn
into high-

dimensional feature space. It is noteworthy that the nature of the dataset is 

inseparable. The nonlinear classification problem becomes linear after 

applying the aforesaid steps. Apart from this, determining the inner product's 

( ) ( )t

s sx x   performance in the feature space is difficult. In this regard, an 

appropriate kernel function has been used and it plays a pivotal role in 

classification process. The mathematical expression of the kernel operation is 

shown below [181]:  

( , ) ( ) ( )t

s i j s i s jK x x x x=                  (4.11) 

A kernel function can be regarded as a linear, polynomial, or radial basis 

function (RBF) [182], depending on the application. SVM classification is 

mainly performed with radial basis functions with Gaussian forms. In this 

study, the radial basis (RBF) kernel function with Gaussian form has been 

utilized and it can be mathematically expressed as [182]: 

2

|| ||
( , ) exp

2

t

i j

s i j

s

x x
K x x

 −
=    

               (4.12) 

The Kernel function parameter is denoted in the above equation (4.12) as s  

The 
s  reflects the distribution features of the training data sample [174]. 

Although the present work is a multiclass problem, SVM classification is 

usually used for binary classification. For multi-class classification, ensemble 

SVM topology was adopted to address that concern. As reported in [183], the 

one-against-all (OAA) approach is the method for multiclass classification. A 

topology of five SVM classifiers was applied to identify five different classes 

of contamination severity. The schematic of an ensemble SVM is shown in 

Fig 4.4. 
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Fig. 4.4. Schematic diagram of Multiclass SVM construction. 

4.5.2 k-Nearest Neighbor (k-NN) 

An instance-based classifier such as the k-Nearest Neighbor (k-NN) 

classifier categorizes test samples based on their distance from the training 

dataset [184] – [186]. It is a well-known supervised classifier, widely utilized 

in the area of power engineering, bio-medical engineering problem. On the 
other hand, it classifies test points based on their distance to training data 

points which comprises least computational complexness [176]. The number 

of nearest neighbor’s ‘kE’ and can influence the performance of classifier.  

In the present work, the training dataset that is provided is: 

1{ , } Tn

T z z zS x c == , where the sample of the training dataset is Tn

zx  , class 

label is denoted here as: { 1, 1}zc  + − , and the training datum's number is 

denoted as: 
Tn . After that, the unlabeled testing data is represented as 

Tx , 

The distance between every training datum is calculated by the k-NN 

classifier. Additionally, the Euclidean distance (kE) has been taken into 

consideration, which is mathematically expressed as follows [176]: 

2( , ) || ||E z T z Tk dis x x x x= = −               (4.13) 

The classifier chooses kE number of nearest instances based on the distance 

that is computed, i.e., 
1 2

....
kz z zx x x 

  and the related class label, i.e., 
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1 2
....

kz z zc c c 
  . A significant part of k-NN classification performance is 

affected by the number of instances or the k-value. 

4.5.3 Gaussian Naïve Bayes (GNB) 

GNB, also known as Gaussian Naïve Bayes, is an effective tool for 

classifying data using the Bayes theorem [185] – [186]. In GNB, a 

probabilistic model has been designed based on the features and classification 

that can be accomplished using the decision rule of the probabilistic model 

[149]. The GNB classifier operates efficiently on small training datasets, as 

well as it takes less computational time to perform the classification. In 

addition, the GNB classifier suits high-dimensional datasets because each 

feature and variable were independently calculated [185]. In this work, GNB 

classifier has been implemented where gaussian probability density function 

has been adopted for the probabilistic model. 

The feature variable set is F and the class variable set is D in this work. 

Based on the given model, the Bayes theorem was applied to predict the class 

label. This mathematical model can be represented as follows [185]: 

( | ) ( )
( | )

( )

F D D
D F

F

 
 =


               (4.14) 

Where,  1 2, ..... nF f f f= and  1 2, ..... nD D D D= . It is noteworthy that 

the characteristics of features set variables are conditionally independent. 

Bayes' theorem allows computing the probability of feature attributes at a 

class label jD as follows [149, 185]: 

1 2

1

1 2

( | ) ( | ).... ( | )
( | ,..., )

( ) ( ).... ( )

j j n j

j n

n

f D f D f D
D f f

f f f

  
 =

  
                          (4.15) 

It can be further mathematically represented as [185]: 

1
1

1 2

( ) ( | )

( | ,..., )
( ) ( ).... ( )

n

j i j

i
j n

n

D f D

D f f
f f f

=

 

 =
  


               (4.16) 

Equation (4.16) can be neglected since its denominator remains unchanged in 

the case of the input feature variables. The following formula can be used to 

express equation (4.16): 

1

1

( | ,....., ) ( ) ( | )
n

j n j i j

i

D f f D f D
=

                             (4.17) 

So, to estimate the class label, GNB classifier identifies the class which have 

maximum probability according to [185],  
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 1 2
1, ...,

( ) ( | )arg max
k

n

z j i j

ik

Y D f D
=   

 
=   

 
                           (4.18) 

In a Gaussian Nave Bayes classifier, feature values at a particular class 

label are supposed to follow a Gaussian distribution or normal distribution 

[185]. By using the Gaussian probability density function [185], it is expected 

that, for probability calculation of a feature characteristic 
if  at each class 

level
jD . 

2

2

( )

2

2

1
( | ) exp

2

i D j

D j

j

f

i j

D

f D

−
−



 =


                          (4.19) 

The standard deviation and mean for every feature variable of input are 

symbolized for each given class jD as 
jD and 

jD  respectively. GNB 

classifier stores mean and standard deviation for each input variable in each 

class. Equation (4.18), can therefore predict the input feature variable’s if  

class label. 

4.5.4 Random Forest (RF) 

The application of Random Forest or RF classifier (an ensemble classifier) 

to many practical classification problems is very popular. The RF classifier 

consists of several relatively uncorrelated decision-tree classifiers [149]. Each 

decision-tree classifier randomly selects feature from the training dataset 

using the CART algorithm [171], [174] – [176]. Every decision-tree estimates 

the output, and the ultimate estimation is constructed on majority voting 

[156], [176] – [178], [187]. Detailed description of the aforesaid RF 

classifiers was discussed in chapter 3 (Section: 3.5.2.1). 

4.6 Results and Discussion 

4.6.1 Variation of Surface Leakage Current (SLC) Signal for 

Various Contamination Levels 

In this study, 400 SLC signals (80 signals has been considered for each 

contamination level) has been recorded to predict the contamination level of 

polymeric insulator. The SLC signals were assimilated with a sampling 

frequency of 25 kHz. Those recorded SLC signals of SiR insulator at various 

contamination level have been presented in Fig. 4.5.  

From Fig. 4.5, it can be observed that SLC signal becomes distorted with 

increase in the contamination level. Hence, using Hyperbolic Stockwell 

Transform (HST), the SLC signals were evaluated in time-frequency domain. 

Prior to that, hyperbolic window parameter of HST for a particular SLC signal 

has been tuned using grid search optimization.  
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Fig. 4.5. SLC waveform of SiR insulator for class: (a) CL-1 (b) CL-2 (c) CL-

3 (d) CL-4 and (e) CL-5. 

4.6.2 Analysis of Selected HST Features 

When the hyperbolic window stockwell transform was applied to an 

acquired SLC signal, it returned a 2-D complex HST matrix. The size of the 

HST matrix is 750 × 1500. Fig 4.6 shows a magnitude contour plot of surface 

leakage current signal converted into HST matrix for light, moderate, and 

heavy contamination levels. An important aspect of any classification 

approach is features selection, since it can improve classification accuracy 

and reduce computational burden. Using the magnitude and phase spectrum 

of HST matrix, 17 time-frequency HST features were extracted. In this work, 

for features’ selection the extracted HST features of SLC signal were further 

analyzed through the Least Absolute Shrinkage and Selection Operator 

(LASSO). LASSO is regarded as an embedded properties selector. LASSO 

regularization procedure was recommended by Tibshirani [179, 180].  

Again, LASSO can augment any classifier model's interpretability, this is 

due to the fact that it can remove inapt features those are not related to the 
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response variables. As a result, the model's overfitting issue and 

computational time gets reduced [179]. 

 

Fig. 4.6 Magnitude contour plots of SLC converted Hyperbolic Stockwell 

(HS) matrix for class (a) CL-2 (
F

H  , 
B

H   and  H = 0.11, 0.23 and 307) (b) 

CL-3 (
F

H  , 
B

H   and H  = 0.11, 0.21 and 324.5) and (c) CL-5 (
F

H  , 
B

H    

and H  = 0.12, 0.23 and 321.5) 

By using the penalty function, a sparse weight matrix is generated to 

discover the optimal feature [180]. The mathematical expression of LASSO 

function is defined as [179]:  
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The above equation can be rewrite as [30]: 

2

0

1 1

arg min
l ln m

lasso

i ij j

i j

yt f

= =

 
 = −  −  

 
                (4.21) 

Where, the threshold limit is denoted by
1

lm

j h

j

t
=

  . 

Additionally, ijf is the
thj property of 

thi datum defined over

( )1,2,.... lj n= and ( )1,2,... li m= . Whereas, iyt denotes the marked 

value of 
thi datum and j  indicates the regression coefficient of 

thj  

property. In addition, the lambda parameter  0l  is the coefficient of 

LASSO regularization that controls shrinkage of all coefficients [179].  

This technique requires a threshold value less than or equal to the absolute 

addition of coefficients of regressions i.e., 
1

lm

j h

j

t
=

  . Using the lambda 

parameter 0l  , the coefficients of regressions with lesser values are 

reduced to zero in feature space. i.e., ( ) 0j l  = . It is notable that inapt 

characteristics are removed from the model when the coefficient of a feature 

variable reaches zero. There is an inverse relationship between the threshold 

value and the lambda parameter, which means that the number of coefficients 

shrinks toward zero at higher values of lambda. The LASSO method performs 

better on input feature variables that are highly correlated; this allows LASSO 

to choose only one variable as a sampling point by shrinking the others to 

zero. In this approach, it is noteworthy to mention that the value of the lambda 

parameter was chosen as 0.15.  

Apart from this, the LASSO function (
lasso ) selects 5 relevant feature 

variables out of 17 (as shown in Table 4.2) and decreases the coefficient of 

regression from the rest to zero. As a result, the classification cannot include 

feature variables with zero regression coefficients. Table 4.2 shows the output 

of LASSO feature selection, where true indicates selected feature variables, 

while false indicates eliminated feature variables. This operation is applicable 

to each class of contamination based on SLC data. 
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Table 4.2. Selection of true features by LASSO from the HST features. 

Features  Decision 

F-1 
False 

F-2 True 

F-3 True 

F-4 
False 

F-5 
False 

F-6 False 

F-7 True 

F-8 False 

F-9 True 

F-10 False 

F-11 
False 

F-12 False 

F-13 False 

F-14 True 

F-15 False 

F-16 False 

F-17 
False 

In this present work, five features namely F-2, F-3, F-7, F-9 and F-14 have 

been chosen through LASSO. The aforesaid five features were further 

analyzed through a box-whisker plot. Fig. 4.7, shows a box-whisker plot of 

selected features. These plots reveal significant variances between the median 

and quartiles (upper and lower) for selected features at five contamination 

levels. As a result, the following five features were used for the classification 

approach. 
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Fig. 4.7 Box-whisker plot of time-frequency HST features of SLC signal: (a) 

F-2 (b) F-3 (c) F-7 (d) F-9 (e) F-14 

4.6.3 Performance Analysis of Machine Learning Classifiers 

As mentioned earlier, four machine learning classifiers were used in the 

present work to assess the performance of time-frequency HST features. This 

paper implemented a 10-fold cross validation technique to attain reliable 

performance hence overfitting can be avoided. For training testing purposes, 

extracted HST features have been divided into 10 parts at a ratio of 9:1. The 

performance of the classifiers was evaluated through three parameters namely 

accuracy, sensitivity and specificity. The description of the aforesaid 

parameters has been expressed as follows: 

( )
( )

( )
% 100

TP TN
Accuracy

TP FP TN FN

+
= 

+ + +
              (4.22) 
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P
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ity

FP
i = 

+
               (4.24) 

The terms TP, TN, FP, and FN in 4.23 and 4.24 are indicated as correct 

positive prediction, accurate negative prediction, wrong positive prediction, 

and wrong negative prediction, respectively. Accordingly, the 

aforementioned evaluation indices can be extracted considering the confusion 

matrix. The outline of the suggested framework is presented in Fig. 4.8. 

 

Fig. 4.8 Outline of the recommended model for contamination class 

predictions for overhead line SiR insulators. 

Considering the confusion matrix, the aforementioned parameters have 

been extracted based on various classifiers. The mean values and standard 

deviation of those classification parameters for four different classifiers have 

been represented in Table 4.3. From Table 4.3, it has been noticed that, the 

performance of Random Forest or RF classifier is better than Support Vector 

Machine or SVM (with Radial Basis kernel function (RBF)), k-Nearest 

Neighbor or k-NN (k = 6) and GNB. Again, it can be stated that, the 

classification performance has been found to be better for RF classifiers than 
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Gaussian Naïve Bayes or GNB and SVM (with a linear kernel function). 

Further, it should be mentioned here that, the hyper-parameters for the RF 

classifier (i.e., number of trees) and the k-NN (i.e., kernel function) have been 

optimized using the grid search optimization method. It has been noticed that, 

all classification parameters show a low standard deviation value, which 

indicates robustness of HST features. 

Table 4.3. Classifiers performance by the proposed method. 

Classifiers 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Gaussian Naïve Bayes 95.56 ± 0.73 95.74 ± 0.64 98.87 ± 0.19 

k-Nearest Neighbor  

(k = 6) 
97.42 ± 0.46 97.39 ± 0.49 99.32 ± 0.13 

Support Vector 

Machine (Linear) 
96.32 ± 0.55 96.44 ± 0.58 99.08 ± 0.12 

Support Vector 

Machine (Polynomial) 
97.09 ± 0.63 97.12 ± 0.66 99.21 ± 0.14 

Support Vector 

Machine (Radial Basis 

Function (RBF)) 

97.89 ± 0.39 97.84 ± 0.36 99.49 ± 0.09 

Random Forest  

(no. of trees = 200) 
98.08 ± 0.32 98.13 ± 0.36 99.57 ± 0.10 

4.6.4 Comparative Study on Other Time-frequency Methods 

To get a superior idea about the feasibility of the recommended method, 

the comparison of its performance was carried out with time-frequency-based 

transform methods. Using the classical stockwell transform (ST), short time 

Fourier transform (STFT), and continuous wavelet transform (CWT), the 

recorded SLC signals of SiR insulator was analyzed in the time-frequency 

domain. It should be mentioned here that for continuous wavelet transform, 

the Morlet mother wavelet was adopted. However, for the STFT, a hammer 

window with 75% overlap was used to analyze SLC signals in the time 

frequency domain. SLC signal performance was evaluated by extracting 

seventeen features from the magnitude and phase spectrum of the time-

frequency ST, WT and STFT matrix of the SLC signal (i.e., elaborately 

described in section 4.4.3). The extracted time-frequency ST, WT and STFT 

features were further evaluated through LASSO and the selected features 

have been fed to a classifier. Table 4.4 indicates that time-frequency HST 



 

 

 

 

 

 

 

 

Condition Assessment of Overhead Line Silicone Rubber Insulators by 

employing Surface Leakage Current Signal and Hyperbolic Stockwell 

Window Transform 

99 

 

 

 

 

 

 

features are more effective than other time-frequency features, which is 

indicative of the proposed method's effectiveness. 

Table 4.4. Comparative Performance analysis with other time-frequency 

methods. 

Time-Frequency Method  Classifier Accuracy (%) 

STFT 

k-NN 93.79 ± 1.41 

SVM (RBF) 93.83 ± 1.08 

RF 94.72 ± 0.83 

 WT 

k-NN 94.49 ± 0.94 

SVM (RBF) 95.31 ± 0.68 

RF 95.56 ± 0.64 

ST 

k-NN 95.82 ± 0.66 

SVM (RBF) 96.09 ± 0.55 

RF 96.53 ± 0.42 

HST 

k-NN 97.42 ± 0.46 

SVM (RBF) 97.89 ± 0.39 

RF 98.08 ± 0.32 

Further, the comparison of the performance of the recommended method 

has also been carried out with a conventional method. Based on Table 4.5, the 

superior action of the recommended method has been observed than the 

existing method. Therefore, it can be stated that, the application of the 

suggested technique for the condition assessment of SiR insulators results in 

more reliable method than the existing methods. An analysis is done by 

comparing the existing methods with the recommended method as illustrated 

in Table 4.5. 

Table 4.5 Comparative analysis with existing methods. 

Paper Methods 
Name of the 

Classifier/s 

Accuracy 

(%) 

[150] Autocorrelation Rough Set Classifier 90.7 

[146] 
Short Time Modified 

Hilbert Transform 
Sparse Classifier 95.0 

Proposed 

Work 

Hyperbolic 

Stockwell Transform 

k-NN 97.42 ± 0.46 

SVM (RBF) 97.89 ± 0.39 

RF 98.08 ± 0.32 
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4.7 Conclusion 

This article presents a novel framework for estimating contamination 

levels in SiR insulators using Surface Leakage Current (SLC) signals. In 

another way to study of SLC signals in the time-frequency domain, a 

hyperbolic window has been used instead of the conventional gaussian 

window. Besides, the parameters of the hyperbolic window have been further 

optimized using grid search optimization techniques for the maximization of 

the measurement of energy concentration of time-frequency matrix. From the 

SLC signal converted into a complex time-frequency Hyperbolic Stockwell 

(HS) matrix, five time-frequency features have been selected which are highly 

linked with the SiR insulator's contamination level. Based on the 

classification results, it has been observed that all the classifiers have returned 

satisfactory performance. Among them, RF classifiers have provided the most 

effective performance. The proposed method has the following advantages. 

• Classification performance of the suggested framework is not 

influenced by variation in voltage levels. 

• A framework is proposed that is adaptive to SLC signal 

signatures. 

• Proposed framework is independent of the insulator’s dimension. 

• In terms of analyzing time and frequency, the proposed strategy 

demonstrates superior performance in comparison to techniques 

such as the Stockwell Transform, Short-Time Fourier Transform, 

and Continuous Wavelet Transform. 

• Proposed method shows improved performance than other 

existing classifier-based methods of insulator condition 

monitoring through SLC analysis. 

Therefore, it can be concluded that the proposed Hyperbolic Stockwell 

Transform (HST) based feature extraction technique can be executed for the 

assessment of the overhead line SiR insulator’s condition. The proposed 

framework's main limitation is the time required for predicting the surface 

contamination level of overhead line insulators using SLC signals.  

In addition, the proposed framework's classification process is a 

supervised learning approach, which is cumbersome. The generated features 

matrix from the HST method is then needed to arrange input and output 

variables for supervised feature classification. Based on the training data, the 

learning algorithm of classifiers makes predictions iteratively. The algorithm 

will be stopped once it reaches an acceptable performance level. Due to its 

iterative process, the proposed model is inconvenient for real-time data 

processing. Due to the aforesaid limitations, a proposed unsupervised 

classification model has been developed with deep learning techniques. A 

detailed discussion of the proposed framework is reported in the next chapter. 
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Chapter 5 

Time-frequency Domain Analysis of Leakage 

Current Signal of Overhead line Polymeric 

Insulator by Cross Hyperbolic Stockwell Transform 

Aided Fine-tuned Convolutional Neural Network 

Technique 

5.1 Introduction 

In Chapter 4, the proposed model has been implemented based on Surface 

Leakage Current (SLC) signals analysis. The proposed framework achieved 

satisfactory outcomes. Furthermore, the time domain SLC signal was 

transformed into time-frequency domain image data via the Hyperbolic 

Stockwell Transform (HST) technique. In the HST method, firstly, the 

features were extracted. Then, overhead line insulator surface contamination 

was identified using extracted features fed into various machine-learning 

classifiers manually. Therefore, manual feature extraction and features 

classification are highly unpredictable and time-consuming. Aforesaid hand-

crafted methods may lose features during the process, resulting in undesirable 

outcomes. Considering the aforesaid drawbacks, this chapter presents a 

framework, in which features are extracted using a Cross-Hyperbolic 

Stockwell transform (XHST). Thereafter, the selection and classification of 

optimal features were achieved automatically with the help of a fine-tuned 

convolution neural network technique. Thus, in this proposed framework, 

automated processes eliminate the computational burden. This proposed 

method monitors overhead line insulators' surface conditions faster and more 

efficiently. 

It has already been mentioned in previous chapters that environmental 

pollutants can degrade the SiR insulator's surface under moist conditions. 

Different climate conditions significantly impact the surface condition of SiR 

insulators as well as affect SiR insulators' performance when used in outdoor 

applications. The surface of the SiR insulators is eroded due to the following 

environmental factors: fog, raindrops, dew, sea salt, sand, dust, soil and air 

contamination [7], [189] – [191]. Surfaces of overhead line insulators are 

contaminated with water particles and environmental pollutants, creating 

conductive paths. These paths aid the flow of leakage current on overhead 

line insulators. In [191], it was reported that an irregular distribution of 

electric fields stimulates surface leakage current (SLC) and a variation in 

current density was observed on the surface of SiR insulators. Consequently, 

dry bands were developed at various locations on the SiR Insulator's surface. 

It is noteworthy to mention that these dry bands are treated as open circuits 

across the SiR insulator surface [7], [191] – [192]. As a result, the SLC flow 
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is hindered by these dry bands, which in turn causes deterioration in the SiR 

insulator's surface property through the Joule heating effect. Additionally, the 

intensity of the electric field at the boundaries of dry bands is high, leading to 

overhead line insulators breakdown. These factors, therefore, cause 

undesirable power outages on transmission and distribution lines. For this 

reason, monitoring the SiR insulator surface regularly is essential to ensure 

its longevity. Therefore, analysis of surface leakage current signals is an 

effective way in studying overhead line insulators' surface conditions. The 

previous two chapters proposed methodologies to predict surface 

contamination severity based on SLC signal processing. To acquire SLC 

signals, a shunt device is required to connect directly in contact with SiR 

insulators under test which is demonstrated elaborately in Chapter 2 (section 

2.2.2 and section 2.2.2.1) [70], [149]. 

At highly contaminated conditions, the leakage current signature becomes 

highly distorted, non-stationary, and contains partial arcs. It can be significant 

for overhead line insulators to perform poorly when they are heavily 

contaminated. ESDD (Equivalent Salt Deposit Density) is used to determine 

how heavily the surface of the insulator has been contaminated [70]. 

However, this approach has some drawbacks, such as a time-consuming and 

complex calculation approach. Therefore, to keep track of how badly 

overhead line insulators are contaminated, researchers have presented several 

approaches [193] – [195]. Among them, the well-known method is surface 

leakage current (SLC) signal analysis [70], [144], [193]. According to [150], 

the degree of SiR insulator surface contamination influences the signature of 

the SLC signal. A standard method for determining the state of the overhead 

line insulator is to estimate the phase difference between the SLC and source 

voltage [193]. However, the aforesaid approach depends on the input voltage. 

It is noteworthy that measuring the input voltage on the high-voltage side is 

costly [144]. In [144], using odd harmonic components of SLC signals, the 

degree of surface contamination of overhead line insulators can be estimated. 

In this regard, the SLC signal's odd harmonic components have been extracted 

using the Fast Fourier transform (FFT). It should be mentioned here that the 

SLC becomes non-stationary and distorted as contamination severity 

increases. It has been noted that FFT analysis cannot detect the source of 

signal distortion, such as the effect of harmonics on a signal, or surface 

contamination or external noise. For this reason, FFT implementation is not 

suitable for non-linear signal analysis. Furthermore, aliasing and signal 

leakage adversely affect FFT analysis outcomes and may result in inaccurate 

results. That is why stationary signals can only be processed using FFT 

analysis.  

For identifying contamination severity, SLC signals have been tested 

through Short Time Hilbert Transform (STHT) [150], statistical analysis 

[194], autocorrelation [146], recurrence plots [195] and Hyperbolic Stockwell 

Transform (HST) [7]. However, in previous research, contamination 

indicators or features had been manually extracted from SLC signals [196]. 

In addition, these manual feature extraction methods are highly unpredictable 
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and may require deep signal processing knowledge. Hand-crafted methods 

may lose features during the process, resulting in undesirable outcomes. 

According to the aforesaid observations, studying the nonlinear dynamics 

of surface leakage current (SLC) signals with respect to surface 

contamination severity can be effectively achieved by analysis of SLC in a 

joint time-frequency plane. In this work, the authors acquired SLC data in the 

laboratory environment using the data acquisition setup for different 

contamination classes of SiR insulator samples. The Cross Hyperbolic 

Stockwell Transform (XHST) was utilized for feature extraction into the 

time-frequency domain. In this regard, the acquired time-domain SLC signals 

were converted into joint time-frequency domain image data. After that, the 

acquired feature matrix was utilized for automated feature classification.  

Notably, the SLC signals of various contamination levels were cross-

correlated with an uncontaminated surface leakage current signal using 

XHST. The XHST window parameters were fine-tuned by Bayesian 

Optimization (BO) to get more precise results in the T-F domain. Afterwards, 

transfer learning with a fine-tuning strategy was implemented on a pre-trained 

CNN model (i.e., VGGNet-16) for automatic feature classification and 

contamination class prediction. The proposed schematic is suitable for any 

dimension of overhead line insulators. Thus, the proposed framework can 

automatically sense the prior state of any failure of overhead line insulators 

due to contamination. 

5.2 Basic Concept of Hyperbolic Stockwell Transform (HST) 

The Hyperbolic Stockwell Transform (HST) is a signal processing tool 

used for analyzing time-frequency information in a signal. In mathematical 

terms, the XHST is a modified version of the Stockwell Transform (ST), a 

variant of the classical Fourier Transform. In addition, due to the static 

window shape, ST cannot give consistent results for non-linear SLC signals. 

In order to overcome these limitations, the Hyperbolic Stockwell Transform 

(HST) has been introduced to replace the Stockwell Transform (ST). That is 

why, the conventional Gaussian window of ST has been replaced by a 

hyperbolic window for better time-frequency resolution. The detailed 

explanation of the aforesaid techniques is elaborately explained in Chapter 4 

(Section 4.4.1).    

In Stockwell Transform (ST), the fixed-shaped Gaussian Window (gw (t)) 

function can be expressed as [197]: 
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In the above expression (1), the fixed-shaped Gaussian Window (gw (t)) is 

denoted as: 
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The standard deviation is 1
af

 =  inversely proportional to the 

translational parameter (τ) and system frequency (fa). ST is capable of 

processing high-frequency as well as low-frequency signals with high 

resolution [197].  
In addition, due to the static window shape, Stockwell Transform (ST) 

cannot give consistent results for non-linear SLC signals. In [95], [100] – 

[101], provide additional information about the Stockwell transform (ST). 

That is why a modified version of the Stockwell Transform, that is, the 

Hyperbolic Stockwell Transform (HST) [198] – [199], has been introduced 

to overcome the aforesaid limitations. The window function of HST is 

hyperbolic and it is a frequency-dependent function [200]. The main reason 

for choosing HST is because it shows an asymmetrical nature of low-

frequency signals and symmetrical nature during high-frequency signals. 

HST is flexible because it can satisfactorily manage both types of frequency 

components [167], [200]. The parameters of the window can be adjusted to 

modify the shape of the window [167], [200]. Advantage of HST is that it 

gives precise results in the high-frequency and low-frequency domains 

compared with conventional Stockwell Transform (ST) [167]. [200]. The 

HST function can mathematically express by as [167]: 
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              (5.3) 

Where 
f  is the forward taper parameter, 

b  is the back taper parameter  

  is the window shape controlling parameter, and R is the hyperbola 

function. The mathematical expression of the hyperbola function is expressed 

in equation (5.4) [167]: 

2 2 2( ,{ , , }) [ ]( ) [ ] ( )
2 2

f b f b
f b

f b f bR t t t           
   

+ −− = − − + − − +  (5.4) 

In equation (5.4), translational factor = ψ; this translational factor can be used 

to maintain a specific peak of the hyperbolic window at ( ) 0t − = , and that 

can be expressed in the following equation (5.5): 
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5.2.1 Window Parameter Tuning of Hyperbolic Stockwell 

Transform (HST) 

According to equation (5.3), it has been noticed that three boundary 

conditions have controlled the shape of the hyperbolic window, i.e., ωf, ωb 

and δ. Also, the aforesaid parameters are able to alter the resolution of a Time-

Frequency (T-F) spectrum. Therefore, analyzing SLC signals with a fixed 

value of window parameters (ωf, ωb and δ) is technically incorrect. In 

previous studies, the parameters of hyperbolic window have been determined 

by the grid search optimization technique [196]. However, this parameter 

tuning method usually takes much longer to converge. The Bayesian 

optimization (BO) technique has been applied in this work to tune the 

hyperbolic window (HW) parameters. 

In this paper, the reason for applying BO to fine-tune the HST window 

parameter is that it converges quickly for fewer iterations, and its 

effectiveness is not affected by the window parameter. The paper's detailed 

theoretical background of Bayesian Optimization can be found [167], [200]. 

The maximum Energy Concentration Measurement (
( , , ) max

f bECM
  

) value in 

the T-F plane has been used as a cost function to find the optimal value of 

hyperbolic window parameters (ωf, ωb and δ). The mathematical expression 

of the cost function is given in the equation (5.6): 
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In equation (5.6), the normalized form of the 
, ,

| ( , ) |f b aHST t f
  

 is defined 

as shown in equation (5.7). 
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Where the range of HW tuning parameters is taken, e.g., 0.5, 1.5f b    

and 1

af
  . 
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5.2.2 Effect of Contamination Severity on Surface Leakage 

Current Signal 

In this study, the Cross Hyperbolic Stockwell Transform (XHST) method 

was used to analyze non-stationary signals in a joint time-frequency frame. In 

order to measure the correlation between two signals, an XHST method can 

be applied to a joint time-frequency plane. Accordingly, XHST provides 

additional information than conventional time-frequency techniques. The 

second advantage of XHST is the reduction of non-correlated and arbitrary 

noise in any two cross-correlated time signals. In other words, a cross-

spectrum created by two signals disturbed by random and uncorrelated noise 

will not reflect their influence on outcomes [208] – [209]. Since arbitrary 

noise and non-correlated noise have low cross-correlation, there is no 

significant cross-correlation between them.  In the combined time-frequency 

domain, the correlation between two signals can be measured using the XHST 

method. In this method, the degree of similarity between the two signals is 

illustrated in terms of strength by the intensity of the color bars.  

It is noteworthy to mention that a higher correlation degree signifies an 

enhanced link between the two cross-correlated signals. Moreover, in the 

XHST technique, the output image is associated with regions in which weakly 

correlated signals exhibit maximum common power. This work analyses the 

non-linear dynamics of the SLC with contamination level through the Cross 

Hyperbolic Stockwell transform. In XHST, the time-frequency HST spectrum 

of the SLC signal is cross-correlated with a reference SLC signal. The 2D 

spectrum is presented as a complex 2D matrix (T). Where T = H × S, H = 

frequency component of SLC signals and S = sample points of the SLC 

signals. Next, the T-matrix of SLC signals is cross-correlated with a reference 

SLC signal. 

In this task, the SLC signal recorded for the uncontaminated SiR insulator 

has been considered a reference signal. The mathematical formula of XHST 

can be expressed as [167], [201]: 

R

*

( , ) ( , ) ( , )SLC SLC Ri i i in n n
XHST jR T jR T jR

NR NR NR

   
=    
   

   (5.8) 

In equation (5.8), the SLC signal of the contaminated SiR insulator is 

represented as SLCi , and the SLC signal of the clean surface is represented as 

the reference signal Ri . The complex conjugate form of T-matrix for 

reference signal is presented in equation (5.8):  
*

( , )Ri
n
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 5.1 XHST spectrum images of surface leakage current correspond to (a) 

Very Light (VL) (b) Light (L) (c) Moderate (M) (d) High (H) and (e) Very 

High (VH) surface contamination severity. 
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In order to obtain the time-frequency XHST spectrum, it is technically 

incorrect to analyze the SLC signal with a fixed value of window parameters, 

i.e., (ωf, ωb and δ). Considering this fact, the window parameters have been 

optimized according to the process mentioned in [29], [196]. Compared to 

conventional Hyperbolic Stockwell Transform, the XHST technique has 

some distinct advantages, such as XHST can find similarities or 

dissimilarities between two signals. Besides that, the random noise does not 

affect the time-frequency spectrums obtained through the XHST method 

[167], [201]. In Fig. 5.1, contamination classes of Very Light (VL), Moderate 

(M), and Very High (VH) have been illustrated in the cross-time-frequency 

spectrum of SLC signals obtained through the XHST method. 

 5.3 Convolution Neural Network (CNN) Based Approach 

During the traditional feature extraction and classification process, 

quantitative and qualitative analysis are necessary for decision-making. 

Conventional feature classification techniques are handcrafted and time-

consuming [29], [196] – [197]. In contrast, the deep learning technology used 

in the CNN model can automatically extract deep features and can identify 

the most significant features. In recent years, Convolution neural network 

(CNN) has gained popularity in image classification, object detection, feature 

extraction and many other applications [202] – [204]. It uses convolution 

operation to learn spatial features in an image adaptively and automatically. 

The CNN learns and extracts significant features through multilayered 

insights inspired by the natural brain's learning process. It is preferred for 

discriminating various classes of input images. In contrast to a separate 

feature extraction tool, CNN-based classification frameworks do not require 

a separate feature extraction tool [202] – [207].  

Therefore, it replaces tedious and unsophisticated manual feature 

extraction. The components of a CNN architecture typically include the input 

layer, convolution layer, pooling layer, fully connected layer and output 

layer. Notably, the convolution layer, pooling layer, and fully connected layer 

serve as the main functional layers of the CNN model. The first two layers 

are responsible for feature extraction, whereas the last layer maps the learned 

features for classification purposes [199]. Finally, the SoftMax layer provides 

the probabilistic values with the help of a trained model and predicting the 

contamination class from the input dataset (i.e., images) is possible. A brief 

overview of CNN's architecture is presented below. 

• Convolutional Layer: Kernels are the basic building blocks of the 

CNN architecture. These kernels are used as filter blocks to process the 

input images. During image processing, the kernels organize themselves 

individually with the dimension (i.e., height and width) of each input 

image. These kernels are capable of extracting 2D feature sets from 

input images [199] – [204]. The convolutional layer consists of an 

activation function layer, known as a Rectified Linear Unit (ReLu). It is 

stipulated that ReLu causes an increase in CNN nonlinearity. 
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• Pooling Layer: The pooling layer, which comes before the ReLu layer, 

streamlines each convolutional layer's output while retaining significant 

data.  It is noteworthy that after the pooling layer, the output features will 

decrease, but they will still include the most significant features of the 

previous feature map. Moreover, network overfitting is additionally 

controlled by pooling layers [204]. The fully connected (or FC layer) 

layer receives the outcome of the pooling layer for feature prediction. 

• Fully Connected (FC) Layer: The FC layers help to transform a 2D 

feature map into 1D features matrix. Through the encoded 1D feature 

vector, the FC layer determines the score for each input image. In order 

to estimate the probable class of image data, scores are converted into 

probabilistic values by the SoftMax layer based on the training model 

[204]. Fig. 5.2 shows a typical CNN architecture schematic diagram 

[202]. 

 

Fig. 5.2 Schematic diagram of Convolutional Neural Network (CNN) 

architecture [202]. 

In this work, to extract features from the joint time-frequency XHST spectrum 

image, a deep learning framework was used. The automated feature extraction 

procedure is a benefit of the deep learning framework.  
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5.3.1 Transfer Learning Aided Fine-Tuning Approach to 

Proposed CNN Model 

The conventional manual feature extraction processes are time-consuming 

and there is the possibility of data being lost. This traditional approach 

requires quantitative and qualitative analysis for decision-making [196] – 

[198]. Although CNN is very useful for the image-related task, but the 

training of a CNN model from scratch has some limitations, which are 

reported as follows:  

i. Massive amounts of data should be required to train a network 

from scratch and with the limited amount of data there is a 

possibility that the CNN model may overfit the training data [202] 

– [204]. 

ii. The weights are randomly initialized in a deep CNN model. These 

weights are updated after each iteration during the network training 

based on the loss function and labelled data. However, it involves 

a computational challenge while updating the weights of all layers 

[202] – [205].  

Considering the above-mentioned limitations, this article adopts transfer 

learning with a fine-tuning strategy to identify contamination classes from the 

T-F plane SLC signal. As the name suggests, in Transfer Learning (TL), 

knowledge learned previously from a pre-trained model has been applied to a 

new task. The application of transfer learning is prevalent in various 

engineering problems [202] – [205]. It should be mentioned here that the TL-

based approach is convenient on a limited dataset. Also, this approach works 

faster than the network trained from scratch [202] – [205].  

In this work, a popular deep CNN model named VGGNet-16 has been 

applied to classy SLC signal converted XHST spectrum images [205]. In 

addition, before being fed as inputs, the XHST images were resized to (227 × 

227 × 3) into the proposed CNN module. Table 5.1 presents the training 

parameters for the proposed CNN architecture, including the minimum batch 

size, number of epochs, testing frequency, and learning rate. The Adam 

Optimizer has been employed in order to scale the learning rate for each 

network weight. The cross-entropy has been chosen as a loss function for the 

proposed CNN model. Fig. 5.3 illustrates the training and validation 

performance of the proposed CNN module with the XHST image datasets.  

In this fine-tuning strategy, the last three convolutional block of 

VGGNet16 have been fine-tuned, whereas the top three convolutional blocks 

have been kept frozen. The bottom convolutional block can capture 

significant information from the input image [29], [205]. 
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Fig. 5.3. Training and validation performance of the proposed CNN module 

using XHST image dataset. 

In addition, Fig. 5.4 illustrates an overview of the proposed transfer learning 

framework with a fine-tuning strategy to identify contamination classes. Due 

to the fact that this assignment consists of five classes, the number of neurons 

in the final FC layer has been maintained at five.  

Table 5.1 Training Parameter of Pre-trained VGGNet-16 Model. 

SI. 

No. 
Tuning Parameters Technical Details 

1 Learning Rate 0.0001 ms 

2 Minimum Batch Size 100 

3 Testing Frequency 50 Hz 

4 Number of Epochs 30 

5 Loss Function Cross Entropy 

6 Solver Adam Optimizer 

Table 5.1 shows the training parameters during VGGNet-16 fine-tuning. 

It is essential to mention that it took around 35 minutes (approx.) to train the 



 

 

 

 

 

 

 Chapter 5 

112 

 

 

 

 

 

 

proposed model. An Intel® CoreTM i5 (7200U, CPU @ 2.50 GHz to 2.71 GHz) 

processor paired with 24 GB (DDR4) RAM and 2 GB of graphics memory 

(NVIDIA GeForce 940MX) was used to carry out the VGGNet-16 

architecture's fine-tuning process. The training of the proposed VGGNet-16 

architecture has been implemented on Python and Keras Library-based 

TensorFlow2 platforms. 

 

Fig. 5.4 Proposed transfer learning framework with a fine-tuning strategy to 

identify contamination classes. 
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5.4   Results and Discussions 

This work is aimed to detect the degree of contamination of overhead SiR 

insulators using an SLC signal. In order to accomplish this, five distinct 

contamination levels were used to acquire the SLC signals of 11 kV SiR 

insulator samples. It is worth mentioning that 400 SLC signals were stored 

for each of the classes of contamination, that is, a total of 2000 SLC signals 

were recorded for all classes. After that, time-frequency XHST images are 

produced from the recorded SLC signals. After that, the XHST method's 

image dataset was fed to a pre-trained deep CNN architecture (i.e., VGGNet-

16) for automated feature extraction and contamination severity detection. 

The classification performance of the proposed framework and comparative 

study are discussed in the following sections. 

5.4.1 Evaluation of the Proposed Framework's Performance 

Three statistical parameters including accuracy, precision, and specificity 

have been utilized to evaluate the effectiveness of the proposed model [205] 

– [208]. The aforementioned statistical parameters have been measured after 

the five-fold cross-validation technique [205], [208]. In Table 5.2, the result 

of the comprehensive study has been presented. The result shows that after an 

initial improvement, the classification performance almost saturates after 

fine-tuning the 3rd convolution block of VGGNet-16. However, the 

computational time has increased rapidly with the number of fine-tuned 

convolutional blocks. This is because the number of trainable parameters in 

VGGNet-16 increases with the number of fine-tuned convolution blocks. 

Considering the computational time and accuracy, the VGGNet-16 model 

fine-tuned up to the 3rd convolution block (i.e., from the bottom) should be 

considered for real-life implementation.  

Table 5.2 Performance of Fine-Tuned Proposed CNN Model for Different 

Training Parameters 

SI. 

No. 

Number of fine-tuned 

Convolution block 

Training time / 

epoch (p.u.) 
Accuracy (%) 

1 Block - 0 1 97.65 

2 Block - 1 2.34 98.35 

3 Block - 2 4.56 99.20 

4 Block - 3 7.89 99.70 

5 Block - 4 9.98 99.75 

6 Block - 5 11.12 99.75 
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The presented framework's elaborate performance is illustrated in Table 

5.3.  It can be inferred from the outcome that the proposed framework has 

exhibited excellent results. As a result, the proposed framework is perfectly 

acceptable for use in practical implementation. Three indices such as 

"Accuracy", "Precision" and "False Positive Rate (FPR)" have been used to 

assess the performance of the proposed CNN architecture [209]. For the 

purpose of determining the efficiency of the proposed architecture, five-fold 

cross-validation has been applied. For each class of surface contamination, 

the average value is reported in Table 5.3 after five repetitions. According to 

the results, the proposed CNN module returned outstanding performance 

results for the XHST image dataset. In this regard, the proposed deep-learning 

framework appears robust for predicting contamination classes. 

Table 5.3 Performance of Pre-Trained Proposed CNN Model. 

SI. 

No. 

Contamination 

Classes (CL) 

Accuracy 

(%) 

Precision 

(%) 

False 

Positive 

Rate (FPR) 

(%) 

1 CL-Very Light 99.5 99.75 99.93 

2 CL- Light 99.25 99.5 99.87 

3 CL-Medium 100 99.5 99.87 

4 CL-High 100 99.75 99.93 

5 CL-Very High 99.75 100 100 

6 Overall 99.70 99.70 99.93 

5.4.2 Impact of Fine-Tuning on Pre-Trained Architecture 

System 

In this section, the impact of the number of the fine-tuned layer in the 

VGGNet-16 model has been rigorously analyzed. For this purpose, the 

number of trainable parameters has been varied; in other words, the number 

of fine-tuned convolution blocks has been iteratively increased and the 

performance has been assessed. The amount of fine-tuning, the size of the 

most recent input dataset, how similar the input dataset is to the pre-training 

dataset, and other factors are often used to determine how the suggested 

VGGNet-16 model is tuned. By using pre-trained models that are appropriate 

for the assessment of particular duties. Apart from this, it is a successful 

method for reducing time and labor in training updated models. 
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5.4.3 Comparison with other Time-Frequency Imaging 

Techniques 

To get better insight into the efficacy of the proposed framework, the 

performance of the VGGNet-16 involving other time-frequency imaging 

techniques has also been investigated in this section. For this purpose, the 

time-frequency spectrum image of acquired SLC signals has been obtained 

through other time-frequency methods such as Hyperbolic Stockwell 

Transform (HST), Stockwell Transform (ST), and Cross-Stockwell 

Transform (XST), respectively. Each time-frequency image dataset has been 

analyzed using a fine-tuned VGGNet-16 model to identify the contamination 

classes of SiR insulators. It is worth mentioning that a comparison study on 

the performance with aforesaid time-frequency methods has been shown in 

Table 5.4. The XHSWT time-frequency representation should be considered 

for identifying the degree of contamination of overhead line insulators, 

according to the analysis. 

Table 5.4 Comparison Study with Different Time-Frequency Strategies. 

Time-Frequency Methods Accuracy (%) 

Stockwell Transform (ST) 98.65 

Hyperbolic Stockwell Transform (HST) 99.05 

Cross Stockwell Transform (XST) 99.15 

Cross-Hyperbolic Stockwell Transform (XHST) 99.70 

5.4.4 Validation with Different Dimensions SiR Insulator 

The SLC signal recorded from the SiR insulator in various dimensions 

served as evidence to support the effectiveness of the proposed model. A 33 

kV rated SiR insulator sample was used for validation purposes. Table 5.5 

contains the 33 kV rated SiR insulator's technical specifications. The insulator 

sample was then contaminated and the SLC signals were acquired 

accordingly (as shown in Fig. 5.5). 

Table 5.5 Technical Specification of 33 kV SiR Insulator. 

SI. No. Parameters Specifications 

1 Rated Voltage 33 kV 

2 Creepage distance 900 mm 

3 Section length 545 mm 
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It is worth noting that 500 SLC signals (100 per class) were recorded for 

validation. That means each surface contamination class had 100 numbers of 

surface leakage current signal data. After that, the SLC signals were converted 

into XHST images in the time-frequency (T-F) domain. Those image datasets 

were fed to a proposed pre-trained VGGNet-16 architecture for identifying 

the intensity of surface contamination. 

 

Fig. 5.5 Image of Actual Hardware Setup for SLC Measurement using of 33 

kV rated SiR Insulator. 

According to the results shown in Fig. 5.6, the proposed method can be 

deduced to be capable of monitoring the SiR insulator's condition in any 

dimension. 

 

Fig. 5.6 Validation Performance of the Proposed CNN framework. 
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5.5   Conclusion 

This article presents an advanced technique to estimate the contamination 

level of the SiR insulator. This technique analyses the SLC signal of SiR 

insulators through the time-frequency (T-F) method. It demonstrates that joint 

T-F plots of SLC signal obtained through the XHST method can provide in-

depth information about the contamination level of the SiR insulator.  After 

that, the XHST method's image dataset was then fed to a pre-trained deep 

CNN architecture (i.e., VGGNet-16) for automated feature extraction and 

contamination severity detection. In this proposed technique, no handcrafted 

feature extraction techniques have been used. A comparison study with the 

existing method also revealed that the proposed method produced superior 

results to those of other time-frequency methods, as per the outcome. The 

automatic feature extraction process used by the proposed deep learning 

VGGNet-16 architecture is very sophisticated. As a result, the model 

performs better since it can select the attributes that are most pertinent to the 

input dataset. Additionally, by retraining the model on the fresh input dataset, 

it is simple to adapt it to the new set of objectives. Notably, the proposed deep 

learning system becomes extremely resilient and flexible. Apart from this, in 

comparison with handcrafted feature-based and conventional time-frequency 

aided deep learning frameworks (i.e., reported in the previous chapters), 

cross-spectrum deep learning frameworks performed better in mean 

recognition interpretation.  

Hence, it can be summarized that the proposed technique can be used to 

estimate the level of contamination in any dimension's SiR insulator in real-

time. The proposed technique makes it possible to detect surface 

contamination of overhead line insulator in its early stages, allowing for 

proactive maintenance and reducing the risk of power outages. It also results 

in lower maintenance costs and a more reliable along with an efficient system. 
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Chapter 6 

Conclusions and Future Scope 

6.1 Conclusion 

The purpose of this dissertation is to address some factors that contribute 

to the degradation of overhead line insulators. Environmental pollutants and 

moisture association cause severe surface contamination in overhead line 

insulators. Pollutants can be accumulated on the surface of overhead line 

insulators which creates conductive layers. This leads to the initiation of 

leakage current flow along the surface of overhead line insulators. The flow 

of leakage current on the surface is more rapid and noticeable when moisture 

is associated with pollutants. Due to this, dry bands may develop at various 

points on the external surface due to an increase in current density. There can 

be a variety of consequences caused by these dry bands: 

• Overhead lines can cause overheating and non-uniform voltage 

distribution stress across the surface of insulators. 

• Insulating property of overhead line insulators can degrade due 

to rapid leakage current flow through the surface. 

• The development of tracking and erosion on the housing of 

overhead line insulators can lead to surface flashover. 

Through the analysis of leakage current profiles of overhead line 

insulators, the dissertation aims to understand leakage current dynamics 

associated with surface contamination severity. Therefore, early 

identification of surface contamination of overhead line insulators is 

imperative for preventing premature failure of overhead line insulators, which 

contributes to power system reliability. The degree of surface contamination 

of overhead line insulators can be estimated by conventional techniques, 

which is direct measurement of equivalent salt deposit density (ESDD). In 

spite of this, ESDD measurement is a time-consuming and cumbersome 

technique. It has been observed experimentally that leakage current profiles 

become non-stationary and distorted with increasing of surface contamination 

severity.  

In this regard, the severity of surface contamination was artificially 

prepared in the laboratory as per the IEC 60507 standard. In the laboratory, 

five different classes of artificial contamination slurry were prepared 

according to the standard (i.e., IEC 60507) using different proportions of 

mixture of NaCl, Kaolin and distilled water. The slurry was applied to the 

overhead line insulator's surface to prepare the insulator sample. Afterward, 

the samples were kept for 24 hours to dry.  According to IEC 60507, the 

detailed sample preparation has been discussed in Chapter 2 (Section 2.2.1). 

In order to acquire the surface leakage current (SLC) data from the various 
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contaminated samples, an experimental setup was developed in the 

laboratory. The SLC data was acquired and was stored on the computer for 

data analysis purposes. The elaborate discussion about the experimental setup 

has been demonstrated in Chapter 2 (section: 2.2.2).  

In Chapter 3, mathematical morphology has been employed for analysis 

of SLC, as demonstrated. Notably, mathematical morphology can be very 

useful for analyzing non-stationary signals due to its ability to extract 

temporal characteristics. After that, the extracted features were fed to a 

Random Forest (RF) classifier to identify the contamination level of overhead 

line insulators. The results show that features of mathematical morphology 

can predict overhead line insulators' surface contamination severity with 

satisfactory results for the RF classifier. Apart from this, the proposed filter 

technique can efficiently provide optimal features, which improve the 

proposed framework's prediction accuracy. Moreover, the method can be 

applied to other types of non-stationary signals. On the contrary, employing 

the proposed filter model with Mathematical Morphology operation for 

acquiring features from SLC signals is time-consuming and cumbersome. In 

addition, the mathematical morphological technique depends on structural 

element dimensions. Assigning structural elements depends on the signature 

of the input signal, which is the trickiest. Notably, the proposed model's 

success rate was examined with only one machine learning classifier (i.e., 

Random Forest). It is impractical to accurately validate the surface 

contamination level of overhead line insulators by testing just one classifier 

at a time.  

For this reason, in Chapter 4, the author reported an integrated time-

frequency signal processing technique applied to SLC signals to overcome 

the flaws mentioned in the mathematical metaphorical-based model. Using a 

data acquisition system, SLC signals of different contamination classes were 

acquired and converted into a joint time-frequency image data bank by 

Hyperbolic Stockwell Transform (HST). In addition, HST provided different 

statistical features from the image bank as output features. Optimal features 

were extracted using the LASSO regression technique to predict surface 

contamination levels of overhead line insulators accurately. Notable, the 

framework's performance was compared with four standard classifiers for 

validation, such as Support Vector Machine (SVM), Random Forest (RF), 

Gaussian Naive Bayes (GNB) and k-Nearest Neighbor (k-NN). The proposed 

model's performance is unaffected by external noise and aliasing effects. 

Additionally, the framework reported here does not depend on structural 

element dimensions. On the other hand, the proposed framework's feature 

classification process is a supervised learning approach, which is 

cumbersome. The generated features matrix from the HST method can only 

be utilized if it is arranged as input and output variables for supervised feature 

classification. The classifier models must perform iterative operations based 

on the training dataset to predict the correct contamination level. It has been 

observed that the proposed model's algorithm is terminated when it reaches 

an acceptable performance level. That is why it is time-consuming to predict 

the contamination class of the overhead line insulators. 

 



 

 

 

 

 

 

Conclusions and Future Scope 

120 

 

 

 

 

 

 

In Chapter 5, by using the cross hyperbolic stockwell transform (XHST) 

approach, the distinct characteristics of surface leakage current (SLC) signals 

at different surface contamination levels of overhead line insulator samples 

were revealed. Also, the extracted features are not affected by external noise 

and the aliasing effects. Furthermore, the XHST method was a powerful tool 

for detecting surface contamination because it is cross-correlated with a 

reference signal (i.e., the SLC at the clean surface of overhead line insulator). 

In addition, time-frequency cross-spectrum images are fed to a pre-trained 

CNN architecture (i.e., VGGNet-16). Automatic feature extraction and 

classification have been achieved using the transfer learning strategy with 

fine-tuning techniques to train VGGNet-16 architecture. The performance of 

the proposed model is validated for any dimension of the overhead line SiR 

insulator. In a deep learning framework, feature extraction is fully automated 

and the abundant features are eliminated without any supervision. The cross-

spectrum deep learning framework described here is simple, accurate, and 

robust, which makes it potentially suitable for predicting overhead line 

insulators' surface contamination severity. The pre-trained deep VGGNet-16 

architectures' major advantage is automatic feature extraction and prediction 

of the contamination classes. This significantly reduces the effort and time 

needed to develop a model for a specific task. Furthermore, the pre-

conditioned models can be further fine-tuned over a few epochs to validate 

the model performance for any dimension’s overhead line insulators.  

6.2 Scope of Future Work 

In this dissertation, several techniques have been proposed for condition 

assessment of overhead line insulators in service. These techniques are 

potentially worthy to implement in real time offline condition assessment of 

overhead line insulators. This study's outcomes can support scientists 

currently exploring techniques for monitoring the condition of different types 

of overhead line insulators. Some of the future scopes in this research field 

have been mentioned below. 

Development of a visual based condition monitoring framework to 

estimate the life of the any types of overhead line insulators. Although, 

surface leakage current spectrum can estimate the life of the overhead line 

insulators effectively but all the proposed framework are suitable for offline 

condition assessment. Therefore, infrared thermal images of overhead line 

insulators at different surface contamination level can be analyzed through 

advanced image processing technique on-line. The thermal infrared imaging-

based approach can more effectively predict surface contamination level as 

well as and life span of that insulator. The main advantage of thermal infrared 

imaging is that it can be utilized in any environmental conditions or at any 

location, such as outdoor or indoor applications. Most importantly, the visual 

imaging technique has no dependency on input voltage levels to monitor the 

condition of overhead line insulators. Moreover, image classification based 

online monitoring techniques are more efficient than the conventional 

techniques.  



 

 

 

 

 

 

 Chapter 6                                                                                               

121 

 

 

 

 

 

 

Therefore, it is appropriate to mention here that this dissertation has 

presented certain approaches for condition monitoring of in-service overhead 

line insulators. However, a more accurate picture regarding the practical 

implementation of these approaches will emerge with the deployment of field 

monitoring devices that would be developed based on the proposed methods. 

The field monitoring devices can be practically implemented for real time 

condition assessment of overhead line insulators.  
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