
A Study on Reliability and Data Placement in

Distributed Systems

Thesis submitted by
Hindol Bhattacharya

Doctor of Philosophy (Engineering)

2022
School of Education Technology

Faculty Council of Engineering and Technology
Jadavpur University Kolkata, India



List of Publications, Presentations and Patents

based on this Thesis

INDEX NO.: 152/17/E

1. Title of the thesis: A Study on Reliability and Data Place-
ment in Distributed Systems

2. Name, Designation & Institution of
the Supervisor:

Prof Matangini Chattopadhyay

3. List of Publications:

a. Journal:

i.

H. Bhattacharya, S. Chattopadhyay, M. Chattopadhyay, and A. Banerjee, “Stor-
age and bandwidth optimized reliable distributed data allocation algorithm,” In-
ternational Journal of Ambient Computing and Intelligence (IJACI), vol. 10, no.
1, pp. 78–95, 2019.

b. Conferences:

i.

H. Bhattacharya, S. Chattopadhyay, and M. Chattopadhyay, “NS3 based HDFS
data placement algorithm evaluation framework,” in 2017 International Confer-
ence on Computer, Electrical & Communication Engineering (ICCECE), pp. 1–8,
IEEE, 2017.

ii.

H. Bhattacharya, S. Chattopadhyay, and M. Chattopadhyay, and A. Banerjee,
”A novel intelligent modeling of storage and bandwidth constraints in distributed
storage allocation,” in International Conference on Computational Intelligence,
Communications, and Business Analytics, pp. 336–346, Springer, 2017.

Continued...

i



iii.

H. Bhattacharya, S. Chattopadhyay, and M. Chattopadhyay, “Problems with
replica placement using data dependency in scientific cloud workflow,” in 2018
Fifth International Conference on Emerging Applications of Information Technol-
ogy (EAIT), pp. 1–4, IEEE, 2018.

iv.

H. Bhattacharya, A. Bhattacharya, S. Chattopadhyay, and M. Chattopadhyay,
“Lda topic modeling based dataset dependency matrix prediction,” in Interna-
tional Conference on Computational Intelligence, Communications, and Business
Analytics, pp. 54–69, Springer, 2018.

v.

H. Bhattacharya, M. Chattopadhyay, and S. Chattopadhay, “A case for splitting
a file for data placement in a distributed scientific workflow,” in 2021 IEEE 12th
Annual Information Technology, Electronics and Mobile Communication Confer-
ence (IEMCON), pp. 1058–1063, IEEE, 2021.

vi.

H. Bhattacharya, A. Bhattacharya, M. Chattopadhyay, and S. Chattopadhyay,
“Determining threshold for partitioning a dependency graph in replica prefetching
in distributed systems,” in 2021 Sixth International Conference on Research in
Computational Intelligence and Communication Networks (ICRCICN - 2021), p.
Article in Press, Springer, 2021.

4. List of Patents: None

5. List of Presentations in Na-
tional/International/Conferences
/Workshops:

a. International Conferences:

i.
2017 International Conference on Computer, Electrical & Communication Engi-
neering (ICCECE)
Paper- NS3 based HDFS data placement algorithm evaluation framework

ii.
2017 International Conference on Computational Intelligence, Communications,
and Business Analytics (CICBA)
Paper- A novel intelligent modeling of storage and bandwidth constraints in dis-
tributed storage allocation

Continued...

ii



iii.
2018 Fifth International Conference on Emerging Applications of Information
Technology (EAIT)
Paper- Problems with replica placement using data dependency in scientific cloud
workflow

iv.
2018 International Conference on Computational Intelligence, Communications,
and Business Analytics (CICBA)
Paper- Lda topic modeling based dataset dependency matrix prediction

v.
2021 IEEE 12th Annual Information Technology, Electronics and Mobile Com-
munication Conference (IEMCON)
Paper- A case for splitting a file for data placement in a distributed scientific
workflow

vi.
2021 Sixth International Conference on Research in Computational Intelligence
and Communication Networks (ICRCICN)
Paper- Determining threshold for partitioning a dependency graph in replica
prefetching in distributed systems

iii







Acknowledgements

It is with great pleasure that I would like to express my grati-
tude and indebtedness to my guide Prof. Matangini Chattopadhyay,
School of Education Technology, Jadavpur University, Kolkata, for
her continuous guidance, valuable advice and constant encouragement
through the research work culminating in this thesis. I would also
like to thank her for extending support in regard to my administra-
tive needs as Director, School of Education Technology. This thesis
would have remained incomplete, if not for Prof. Chattopadhyay’s
kind guidance in this regard.

I would also like to take this opportunity to thank Prof. Samiran
Chattopadhyay, Department of Information Technology, Jadavpur
University, for extending his guidance together with Prof. Matangini
Chattopadhyay in the various works of my thesis. My gratitude is
also due to Prof. Arnab Bhattacharya, Department of Computer Sci-
ence and Engineering, Indian Institute of Technology, Kanpur, for
providing me with the internship opportunity at Indian Institute of
Technology, Kanpur, during my period of Ph.D. research and for his
assistance in my research work.

I also thank my collaborators in various works- Dr. Kripabandhu
Ghosh of Indian Institute of Science Education and Research, Kalyani
and Dr. Avishek Banerjee, School of Computer Science Engineering
and Technology, Bennett University, Noida. Being seniors researchers,
their advice has been of great assistance in my work.

The ackowledgement is incomplete without expressing my grati-
tude to the administration, faculty members and staff of the School
of Education Technology, Jadavpur University and the officers and
staff of Jadavpur University for being ever helpful in assisting me
with my administrative needs.

Last but not the least, I would like to express my gratitude towards
my parents who supported and motivated me through my education
journey from Nursery to Ph.D. The support and assistance provided
by my friends, seniors and fellow researchers at Jadavpur University
also deserve its due credit; especially that of Dr. Susovan Jana of the

vi





Contents

No. Title Page
No.

1 Introduction 1
1.1 Distributed Data Management 3
1.2 Discussion on the Problems 12

2 Literature Survey 14
2.1 Distributed Storage system 14
2.2 Scientific Workflows 20
2.3 Cloud Computing 22
2.4 Data management in Distributed Systems, Cloud, Scientific

Workflows
26

2.5 Text Mining and Document Similarity 31
2.6 Tools and Methods used 34

3 Preliminary Studies on Reliability, Data Dependency
and Distributed Storage Netwoks 40

3.1 Introduction 40
3.2 Data Reliability and Data Placement in Distributed Systems 41
3.3 Extension of NS-3 for HDFS Simulation 62
3.4 Concept Mapping to Subsequent Chapters 72
3.5 Conclusion 75

4 Examining Data Dependency Relations Between
Text Files from Topic Analysis 76

4.1 Introduction 76
4.2 Background Concepts 78
4.3 Problem Solution 83
4.4 Empirical Observations 86
4.5 Conclusion 92

viii



Contents

No. Title Page
No.

5 A Social Network Analytics Based Dependent File
Pre-fetching in Distributed System 93

5.1 Introduction 93
5.2 A Discussion on the Problem 95
5.3 Social Network Analytics and its Applications in Current

Problem
97

5.4 Empirical Observations on SNA Hypothesis 99
5.5 Proposed Solution 105
5.6 Empirical Observations on Performance of Proposed Solution 108
5.7 Conclusion 112

6 Data Placement in Distributed Systems under Storage
and Network Constraints 115

6.1 Introduction 115
6.2 Introduction 116
6.3 Problem Statement 120
6.4 Feasibility Studies 122
6.5 Data Placement Solution 128
6.6 Empirical Observations 133
6.7 Conclusion 135

7 Conclusion 137
8 Bibliography 140

ix



Abstract

Cloud computing has been used for business applications for quite
some time with considerable success. The rapid adoption of cloud ser-
vices such as Microsoft Azure, Amazon AWS, Google Cloud platform,
etc. is a testament to the rise of cloud services. The rapid rise of cloud
computing can be attributed to the conveniences provided by it, such
as infinite and dynamic resource availability, managing IT resources,
limiting the cost to only the services used, etc. Cloud computing has
been utilized by non IT businesses which use computation to enhance
their business, while the core business may be in a different domain.
Traditional use of IT services would require over or under provision-
ing of computational and associated resources by these businesses;
thereby increasing cost. Also, expert human resource would have to
be recruited to maintain these resources; adding to the cost and hu-
man resource management problems. In cloud computing, these costs
are significantly reduced and the problems get eliminated.

Traditionally, the scientific community has utilized the services of
high performance computing (HPC) or Grid computing (HPC built
by aggregating power of a distributed system). However, a similar
problem that businesses face is also equally applicable to the scientific
computing community. Generally, scientists are experts in their own
domain of science and are expected not to be proficient in maintain-
ing IT resources. Also, resource requirements are dynamic in nature
and varyies between each experiment or project. Considering these
factors, a use case for cloud computing in scientific computing can
be made. Indeed scientific computation is steadily migrating into the
cloud platform.

Traditional data center based cloud computing had distributed
computing embedded in it in terms of aggregating computation pow-
ers of multiple devices and creating each virtual device. Recently, this
decentralization has been expedited with the use of concepts such as
Volunteer cloud, Edge computing, etc. Hence, apart from the typical
issues associated with cloud computing like Virtual Machine manage-
ment, issues arising out of distributed systems also need attention.

x



In this research work, issues arising out of data placement in such
distributed systems and associated reliability factors are studied and
some novel solutions to existing problems are proposed. We hope
to improve the state of the art in this domain with the studies and
proposed solutions described in this work.

xi



List of Figures and Tables

Table 1: List of Figures

Figure
No.

Figure Caption Page
No.

1.1 An example of a distributed system with remote data placement 5
1.2 An example of data migration in a distributed system 6
1.3 An example of data replication in a distributed system 7
1.4 Fragmentation of file into bloks in HDFS and placement of blocks in

repication and erasure coding scheme
8

2.1 MONTAGE Workflow 20
2.2 CYBERSHAKE Workflow 21
3.1 Distributed System 43
3.2 Task scheduling and data placement in distributed system 47
3.3 Data inter-dependency matrix 48
3.4 Data inter-dependency matrix (with Replication) 50
3.5 Results for no-replica and 1-replica 52
3.6 Results for 2-replica and 3-replica 53
3.7 Fragmented vs Non fragmented file placement 56
3.8 Traffic generated on a cumulative basis in the internet with some nodes

in local clusters going offline
58

3.9 Traffic generated on a per file basis in the internet with some nodes in
local clusters going offline

59

3.10 Traffic generated on a cumulative basis in the P2P network with some
nodes in local clusters going offline

59

3.11 Traffic generated on a per file basis in the P2P network with some nodes
in local clusters going offline

59

3.12 Traffic generated on a cumulative basis in the internet with no nodes in
local clusters going offline

60

3.13 Traffic generated on a per file basis in the internet with no nodes in local
clusters going offline

60

3.14 Traffic generated on a cumulative basis in the P2P network with no nodes
in local clusters going offline

60

xii



Table 2: List of Figures

Figure
No.

Figure Caption Page
No.

3.15 Traffic generated on a per file basis in the P2P network with no nodes
in local clusters going offline

61

3.16 Physical Datacenter architecture 65
3.17 Logical HDFS cluster architecture 66
3.18 Flow of execution- HDFS simulation in NS3 71
3.19 Screenshot of sample run of NS3-HDFS extension- 1 72
3.20 Screenshot of sample run of NS3-HDFS extension- 2 73
3.21 Screenshot of sample run of NS3-HDFS extension- 3 74
4.1 Document generative model of LDA 79
5.1 Tau Correlation for each incremental betweenness values in MONTAGE 102
5.2 Tau Correlation for each incremental betweenness values in CYBER-

SHAKE
103

5.3 Quartile-Deviation plot in case of MONTAGE 104
5.4 Quartile-Quartile plot in case of CYBERSHAKE 104
5.5 Tau Correlation for each incremental betweenness values in MONTAGE 113
5.6 Tau Correlation for each incremental betweenness values in MONTAGE 114
6.1 Distributed system under consideration 120
6.2 Results of non-symmetrical allocation 125
6.3 Results of symmetrical allocation 125
6.4 Consolidated results 126
6.5 Graphical view of best value for minimization 127
6.6 Flowchart of the data placement solution 130
6.7 Probability of Access 135

xiii



Table 3: List of Tables

Table
No.

Table Caption Page
No.

3.1 Essential Parameters 51
3.2 Essential Parameters 57
3.3 Essential Parameters 72
4.1 Essential Parameters 89
4.2 Confusion Matrix for 10 dataset sports subcategory classification 89
4.3 Clusterwise Dataset layout and Prediction Accuracy (Contd...) 90
4.4 Confusion matrix for 10, 20 and 30 dataset 91
4.5 Clusterwise Dataset layout and Prediction Accuracy 92
5.1 Node to Edge Ratio of Main Disconnected Component Graph 100
5.2 Results of MONTAGE- hit ratio 112
6.1 Essential Parameters 124
6.2 Essential Parameters 127
6.3 Essential Parameters 134

xiv



Chapter 1

Introduction

Cloud computing has been a major contributor to the expansion and
rapid adoption of e-solutions in a wide domain of business areas, which
would have otherwise avoided migrating to Information Technology
(IT) based solutions. The illusion of infinite and elastic deployment
and retraction of resources on-demand, the convenience to be able to
pay only as per use, and encapsulating the underlying complexities
in maintaining an IT infrastructure has made it popular even beyond
typical business applications. Scientific users of IT services face a
similar dilemma as the business users had in the past which is how
to gain an advantage that computation has to offer without getting
into the nitty-gritty of computation itself. Unsurprisingly, cloud com-
puting has been rising in popularity among the scientific community,
to catalyze their research while being blissfully encapsulated from all
the maintenance complexities and IT infrastructure planning.

Distributed system in the form of grid computation has been in
use in the scientific community for quite sometime. While a cloud
computing may necessarily be considered as a distributed system,
the actual distribution of physical resources across racks in the data
center to the data center itself makes it so. The cloud computing
system has added complexity, where the distributed nature of the
computing must be transparent to the user, creating an illusion of
the users working on a single monolithic system. Further, different
efficiency and cost issues creep up for the cloud operator when the
distributed system is not being managed efficiently.

Meanwhile, the distributed nature of the cloud has been exacer-
bated by the emergence of edge computing, fog computing, and mo-
bile cloud computing. These systems have introduced so much het-

1



erogeneity in the distributed system, that managing the system has
become a genuine concern.

While there are different aspects to infrastructure management in
terms of distributed nature of cloud computing, a particularly difficult
and important problem is that of data management. Data manage-
ment, if done properly, can result in the assimilation of the individual
powers of individual computing machines and seamlessly make them
work together to achieve extremely high-performance computation
as required by the scientific community. Traditionally, data transfer
has always been the biggest bottleneck in a computer’s performance.
Hence, a memory hierarchy with advanced caching techniques has
been developed to increase data locality in terms of the processor.
In a distributed system, data has the potential to be in a different
machine connected by a shared and slower network like the internet.
Hence, the need for data localization has been exponentially expanded
in distributed cloud systems. Indeed, when naive data management
techniques are used there is a potential for extremely poor perfor-
mance and high usage costs.

There has been a lot of work done on data management in dis-
tributed systems, especially the cloud. However, there remains much
scope for improvement in this domain.

The objectives of this research work are to present different so-
lutions to different problems of data management, specifically data
placement in a distributed system such that both reliability and per-
formance of the system may be enhanced. The reliability in a dis-
tributed system is handled by two primary methods- erasure coding
and replication. While erasure coding incurs less cost in terms of
space than the replication technique; its major disadvantage stems
from the computational cost incurred to retrieve the lost data. Repli-
cation performs two functions- data reliability and data availability.
If data is required at multiple locations in a distributed system, it is
beneficial to have multiple copies of the data at each site where it is
required. In its role in maintaining data reliability, the presence of
multiple copies of data ensures that data is available even if one or two
copies of the data get corrupted. Unlike, erasure-coding based data
reliability, replication involves sufficient storage overhead. However,
unlike erasure coding, there is no computational cost in reconstruct-

2



ing the corrupted data. As for data placement, data placement done
randomly, without any intelligent data placement, can result in non-
localization of data, i.e., data placed in a different site than where it
is required. This results in performance degradation due to execution
stalls on account of the non-availability of data and waiting for the
data to be migrated from a distant site.

It is an interesting study to figure out whether a data placement
in a distributed system can be accomplished, where both storage and
network costs can be minimized while maintaining high system reli-
ability. This study on optimized data placement is conducted in the
context of erasure coding based data reliability management. Gener-
ally, the likely use of data in future can be predicted with the use of
various machine learning algorithms. Data likely to be required to-
gether are placed at a local site to alleviate the data migration prob-
lem. It is also an interesting topic to address the cold start problem
i.e., how to predict future usage of data when historical information
of data usage is not available.

In this research work, we intend to study these issues relating to
reliability and data placement in a distributed system. We have pro-
posed novel solutions to some of these problems.

1.1 Distributed Data Management

Distributed data management is concerned with maintaining reliabil-
ity, consistency, and localization of the data. Consistency is a concern
when writing on data is performed. Consistency ensures that the up-
date made to data at one site is reflected at all the sites. Since, we are
dealing with read-only data in our problem, consistency is irrelevant
to the scope of this work and hence, will not be discussed anymore. In
the next two subsections, the other two concerns of data management-
localization and reliability are discussed in brief.

1.1.1 Data Localization

It has always been a holy grail of computer architects and system
designers to ensure that the execution of a program does not stall
due to unavailability of data. One reason for data unavailability is

3



that the data is placed at a distant device from where the execution
is being done. In a monolithic system, generally, data is expected
to be at the processor’s register, which is the closest place to the
processor. Unfortunately, due to size limitations, data often has to
reside in distant devices such as main memory or secondary memory.
In such a case where data is not available close to the processor, data
is migrated from the distant devices (main and secondary memory) to
cache memory and registers. During this migration, execution cycles
of the processor are stalled on account of unavailability of data. To
mitigate such a problem, caching protocols have been introduced to
pre-fetch the data into the cache before they are required.

In a distributed system, the same problem is present, with an addi-
tional issue. While in a monolithic system, the entire storage elements
are in the same computational device, but in distributed systems the
data may be stored at a storage element on a device connected over a
network. This not only adds to the distance of the data from the site
of computation where the data is needed but also has to deal with the
delay associated with the network- such as congestion. This problem
of remote data placement is illustrated in Figure 1.1.

Further, once the data is transferred from a remote device to a local
device, the data resides at the lowest level of the device’s hierarchy,
i.e., the secondary storage device. The local device has to deliver the
data to a memory element closer to the processing element, like a
cache memory. This is illustrated in Figure 1.2.

Hence data migration over a network in a distributed system adds
another layer of inefficiency in terms of execution stalls and perfor-
mance degradation. Thus, data localization, i.e., data being available
at the local node where it is required, becomes a major optimization
issue necessary for optimal system performance. It may be noted that
data localization in a distributed system concerns the localization of
data at the secondary memory of the local device.

1.1.2 Data Reliability Maintenance

Data reliability maintenance is the system’s responsibility to recover
data from any data corruption event or data being unavailable for any
other reason. Primarily, data reliability is maintained in two ways-
replication and erasure coding.

4



Figure 1.1: An example of a distributed system with remote data placement

Replication

Replication is the system’s attempt in maintaining reliability by creat-
ing multiple copies of the data unit and placing that data at different
sites of the distributed system. For an n factor replication, i.e n repli-
cas are made of data, the system can recover from a loss of n− 1 loss
of data copies.

This is illustrated in Figure 1.3. We can observe that the required
data is replicated 3 times and each replica is placed at three different
sites (nodes) of the distributed system. If data gets corrupted at one
node, the data can be migrated from any one of the other two nodes.

Apart from maintaining data reliability, replication also ensures
data localization. When multiple sites require same data, multiple
copies of the data are created, one for each node. Thus each node has
a copy of the required data locally.

From Figure 1.3, we can observe that three nodes have a local copy
of their required data. Considering that no data is corrupted, each

5



Figure 1.2: An example of data migration in a distributed system

of the three nodes has a local copy of the data and does not require
data migration during run-time.

Erasure Coding

Apart from replication, there is another form of data reliability maintenance-
erasure coding. Erasure coding is the technique of creating redundant
parity bits along with the actual data. The actual data is striped, or
it is divided into equal parts and together with the parity bits, these
data are distributed across all the nodes of the network. Erasure
coding is not just limited to distributed systems. Systems like Re-
dundant Array of Inexpensive Disks (RAID) in secondary memory
management uses the concept of erasure coding to recover from the

6



Figure 1.3: An example of data replication in a distributed system

error.
In distributed systems, there are various ways to implement erasure

coding. In Figure 1.4, the scheme followed by Hadoop Distributed File
System (HDFS) is illustrated.

The difference between replication and erasure coding is illustrated
in Figure 1.4. As can be seen in replication that 18 storage units are
required for replication, while only 9 storage units are required for
erasure coding. This indicates the storage efficiency of erasure coding.

The file is composed of blocks- A1, A2, B1, B2, C1, and C2. A1
and A2 form the A block collection, with a parity block Ap. It may
be observed that all three blocks are placed in different storage units
in different racks. If the A2 block is corrupted, Ap and A1 can re-

7



Figure 1.4: Fragmentation of file into blocks in HDFS and placement of blocks in
repication and erasure coding scheme

construct block A2. Similarly, any blocks of B and C’s collection can
be constructed from their respective parity block. Clearly, the sys-
tem can handle only one block of corruption per A block’s collection.
Hence, the placement of three blocks (2 data and 1 parity) in different
racks and storage element ensures that only one block is lost in the
event of a rack or storage failure.

1.1.3 Problems

The problem being attempted to be solved in the works presented in
the thesis are the following:

8



•Given file usage pattern, how do we predict the future require-
ment of the files at each site of the distributed system? One
such future requirement can be accurately predicted, data can
be pre-fetched at the appropriate sites where they are likely to
be required; thus improving system performance. We are more
interested in the question of how to determine which historical
usage patterns are useful for prediction and which are not, among
the entire data usage pattern.

•When multiple objectives are to be optimized- lower storage cost,
lower network usage (localization), and high reliability, a state-
space search technique is often the best course of action to be
taken. All the possible data placement is considered, with the
state space search algorithm trying to find the best placement
which optimizes the multiple optimization criteria. The problem
is how to implement the proper state-space search algorithm for
this purpose.

•When past file usage information is not available, we are faced
with a cold start problem. In such a case, content analysis re-
mains the only option. It needs to be investigated whether con-
tent analysis of files can be a working substitute for actual file
usage patterns for prediction or not.

•To develop a simulation environment, such that the network and
storage performance of proposed data placement algorithms on a
distributed system can be determined without having to use an
actual system.

1.1.4 Our Attempts at Solving the Problems

We discuss some of the techniques that we have leveraged to find
solutions to the problems discussed above. In the subsequent chapters,
the details on how these techniques are used to solve the problems
have been discussed.

Recommendation System

A recommendation system is a type of information filtering system
that predicts how a user is likely to prefer a given item. Such insight

9



helps the system to determine whether an item would be useful for a
user and if so, such an item is recommended to the user.

Finding an association between items is an important step in rec-
ommendation systems. If item A is frequently associated with item
B, then if a user N selects item A, likely, he/she will also select item
B.

Frequently, such a relationship between items as described above
for items A and B can be graphically described in terms of a depen-
dency graph. In a dependency graph, the items are represented as
nodes, while an edge exists between the nodes if some association ex-
ists between the node pair. The edges are weighted such that amount
of weight indicates the amount of association between the items.

The analogy of the recommendation system can be extended to
the problem of data placement in distributed systems. Here, the files
(data) are the items, while the task using the files corresponds to a
user. A dependency graph can be created from the knowledge of the
past usage of the file such that the file’s historical usage pattern may
be determined. The edges with high weight are considered to be the
node pairs that have historically been frequently requested together
by tasks and hence are likely to be requested together in the future
as well. As such files which are used together can be determined and
they can be placed together at a site in the distributed system.

The problem is to determine the value over which an edge’s weight
is to be considered relevant, such that the file pairs are to be con-
sidered as having been requested together. This value, known as a
threshold, is critical. A lower value would include files that are likely
not to be requested together; while a higher value is going to partition
the graph so much that relevant file pairs are ignored.

In this dissertation, a social network-based technique has been used
to determine a threshold value with considerable accuracy. The solu-
tion is aimed at answering the first problem enumerated above; how
to determine which historical patterns are useful for prediction.

State Space Search- Evolutionary Algorithms

Recommendation systems are useful when only association relations
between files are to be determined to improve data localization. How-
ever, when multiple objectives are involved, the recommendation sys-

10



tem falls short. Beyond data localization, storage in a distributed sys-
tem should also be cost-effective while also ensuring reliability. When
such multiple optimization objectives are involved, the best course of
action is to search through all the possible solutions and find out the
solution which optimizes all the criteria.

Searching through all the possible solutions is an intractable prob-
lem. Hence, frequently heuristics are used to guide the algorithm
toward the proper solution. In cases where heuristics are not possi-
ble or do not give good results, metaheuristic algorithms are utilized.
Metaheuristic algorithms often inspire solutions from the natural pro-
cesses’ ability to find an optimal solution.

A famous metaheuristic algorithm is a Genetic Algorithm (GA),
which inspires optimization process from the natural selection based
evolution of species. The idea is that each solution is encoded as
chromosomes (containing genes) and each chromosome is compared
for its fitness. The chromosomes with the highest fitness are allowed
to create offspring and the process continues until a satisfactory result
is obtained. The inclusion of mutation operation- random change in
the gene values, ensures that the entire search space is explored. The
chromosome with the highest fitness value is the solution and the
genes in the chromosome are the individual configurations that yield
the best solution.

In our problem, the individual placement solutions are encoded
as a chromosome and their best placement solution is found through
the application of GA. The details will be explored in the subsequent
chapter.

Content Analysis: Text Analysis

Often prior information on file usage is not available and this makes
predictions impossible. This type of problem is known as the cold
start problem. In such cases, the content analysis may come in
handy. The premise is that related items are frequently requested
together. If someone prefers Rabindra-sangeet and collects an album
of it, he/she will likely collect another album on Rabindra-sangeet.
Even in Rabindra-sangeet, there are six major genres- Puja (worship),
Prem(love), Swadesh (patriotism), Aanushthanik (occasion-specific),
Bichitro (miscellaneous), and Nrityonatya (dance dramas and lyrical

11



plays). A person who might be interested in the Prem genre may
collect albums related to it; similarly, a person who prefers the Puja
genre is likely to collect albums specific to the preferred genre. In
this sense, an association is formed between albums in each genre. It
is interesting to note that identifying such genres require analyzing
the content of the song (listening to the song) and then assigning the
specific genre.

In the same way text files can be analyzed using an automated
system by making a mathematical representation of text as in vector
format in Word2Vec or topic distribution as in Latent Dirichlet Allo-
cation. Like the example above, the text files can be categorized and
each user (or task) would be interested in one or few categories of the
files. Hence, in a way association relations can be established to some
extent. In this work, we attempt to study whether such a content
analysis-based method can yield good data placement results.

Also, for any set of files when association information is available, it
is generally the norm to place either the entire file on the node or none
at all. It is possible to fragment the files into multiple pieces and place
them in the node for greater space utilization and efficiency. Note that
file association information is available at the whole-file level, but the
placement is made at the fragment level.

System Simulation

Distributed systems are essentially a group of computers connected
over a network. Thus, the underlying simulation of any distributed
system must be that of a network simulator. In the chapter 3, NS3
would be suitably modified to include the additional functionalities
of a distributed system. The developed system is envisaged to help
researchers acquire necessary performance metrics, without requiring
the experiments to be conducted on actual machines.

1.2 Outline of the Thesis

The literature survey is arranged in terms of the concepts necessary
to understand the novel works presented in the thesis. Hence, the
thesis is composed of two logical parts.

12



The first part consists of chapter 2, where we present the litera-
ture survey. In this chapter, we discuss all the relevant related works
associated with the works presented in later chapters, as well as the
distributed system as a whole. Two types of papers have been dis-
cussed: one type of paper concerns the fundamental aspects of tech-
nology for better conceptual understanding; while the second type of
paper discusses the state of the art related to each relevant work.

In the second part, consisting of chapters 3-6, the problems and
our novel works done to address the problems have been discussed.
In chapter 3, we present three works; the first work covers the neces-
sity for handling replication differently than single copy data place-
ment. In the second work of chapter 3, we present the merits and
techniques of fragmenting a file in a distributed system, even though
association information for the entire file is only known and not that
of the fragments. We end chapter 3 by presenting a solution to the
problem of developing a simulation system for a distributed system
with NS-3 as a base. In chapter 4, we strive to solve the cold start
problem, i.e. how to find association information between files from
the content of the file itself, when no such information is available.
Based on this calculated association data, a data placement algorithm
has been proposed for distributed systems. In chapter 5, we consider
the problem of prefetching data in the nodes of the distributed sys-
tem. Here, file usage and ssociation data are available. However; the
trick is to determine which of these file associations are incidental and
which are relevant enough to be used for predicting future file usage.
Generally, a threshold based approach is proposed in the literature.
Association values below the threshold are considered incidental and
discarded. In this chapter, we discuss an algorithmic approach to
finding such a threshold. Finally, we present our last work in chapter
6, where we have develop a placement method that not just tries to
localize data and hence improving network performance and reducing
network related costs, but also tries to minimize storage cost as well
as maintain high reliability of the system. A GA based approach has
been discussed in this context.

We provide our concluding remarks in chapter 7 of this thesis with
an outline of the future works that can be performed from the works
presented in this thesis.

13



Chapter 2

Literature Survey

2.1 Distributed storage system

For any kind of computation, the storage system plays a pivotal role.
Such systems store the data which is to be required by the tasks
to be executed in the system. In the case of distributed systems,
complexity of storage management tends to rise with the complexity
of the system. In this section, the Distributed Storage System (DSS)
would be discussed together with some of the notable and relevant
works in literature.

2.1.1 Taxonomical classes

Taxonomically, a DSS could be classified into 8 classes as follows:

•System function

•Storage Architecture

•Operating Environmnet

•Usage Patterns

•Consistency

•Security

The most relevant of these classes and their brief description with
examples in literature is presented here:

14



System Function

In this class, the file systems are classified in terms of the functional
requirement of the file being used. Each of the classes is described
below:

•Archival: The storage system is used for persistent storage of
data. Since, such persistent storage is required by users for back-
ing up the data, fail safe reliability is of utmost concern in this
case. Generally, these files do not require frequent modifications,
hence the need for consistency management is eliminated. Some
examples include PAST [1] and CFS[2].

•General Purpose: These systems allow a transparent extension
of the user’s local file system to that of a remote file system.
Hence, compliance with the POSIX API standard is an absolute
requirement. Some examples of such systems are NFS [3, 4] and
Ivy [5].

•Publish/Share: Unlike the first two storage systems described,
this system is aimed at file publishing or sharing mostly anony-
mously or to avoid censorship. Hence, reliability is sacrificed for
anonymity. As such, a strict peer to peer approach is followed.
Some examples in class include Mojo Nation [6], BitTorrent [7],
etc.

•Performance: This class of DSS is tuned to perform I/O opera-
tions in a high performance computing environment. The nodes
in the distributed system are connected through a high band-
width network. Hence, the file system is tuned to adapt to the
particular workload being deployed. Also, like the general pur-
pose file system described above, transparent file system access
is provided. Some examples include Lustre [8, 9] and GPFS [10].

•Federation and Middleware: Due to the possible heterogeneity
in the distributed systems, interoperation between them is made
possible with the use of federation middleware. Such federation
middleware is concerned with administrative functions such as
cross domain security, homogeneous interface in a heterogeneous
environment, etc. Examples in this class include Freeloader [11]
and Oceanstore [12].

15



•Custom: As the name suggests, these storage systems implement
certain unique characteristics which are beyond the functions im-
plemented by the above systems or have a combination of func-
tions of the above systems. Freeloader and OceanStore allow
the user to implement customized functionalities, in addition to
federation functionalities.

To meet the demands of the objectives outlined in this thesis, func-
tionally a file system would have to be tuned towards serving high
performance storage needs.

Architecture

In terms of architecture, there are two kinds of storage systems; client
server and peer to peer. Client server systems are the oldest systems
in existence. In such systems, one of the nodes, designated as the
server, has special capabilities more than the other nodes, called the
clients. The server serves the data requirement of other nodes called
clients. The role of nodes as either client or server is well defined and
exclusive. Some examples of such architecture have been discussed in
[13, 11]. The server nodes also serve administrative functions, such
as authentication, replication, consistency management, etc.

The client server architecture presents a centralized approach to
a DSS. In the case of a globally centralized architecture, one central
server serves all the clients in the system. This creates a single point
of failure in the system and has severe scalability limitations. To alle-
viate the problems associated with globally centralized architecture,
a locally centralized architecture is proposed. In a locally centralized
architecture, multiple servers are responsible for a subset of client
nodes. Hence, such systems are more resilient to server failures and
can scale better.

Client server architecture is suited for use in a trusted or partially
trusted operating environment; or in other words, this architecture
is suitable for operations in a controlled environment. Such an envi-
ronment allows the system to focus on achieving good performance,
maintaining a strong consistency, and providing a POSIX compliant
I/O interface.

A peer to peer architecture [14, 15] in its strictest sense (pure peer
to peer) is completely symmetrical, with all nodes having the same

16



capabilities. Hence, such architecture makes the system very scalable,
and such systems are capable of adapting to a dynamic environment.
While the problems due to centralization has been overcome with a
pure peer to peer architecture, achieving and implementing such an
architecture is difficult. The nodes are likely connected through an
internet which is a highly asymmetrical connection medium; thereby
introducing asymmetry in the system, resulting in poor QoS. Further,
administrative necessities like establishing trust between nodes and
accountability require the presence of some centralized entity that is
trusted by all parties, which introduces centralization.

Due to the difficulty in implementing a pure peer to peer network,
two forms of centralized peer to peer architectures are proposed glob-
ally centralized and locally centralized. Napster [16] is an example
of a globally centralized peer to peer architecture. A central server
records the details of other peers and the files contained in them. A
node trying to access a file from another node in the system would
first connect with the central server to obtain the necessary details,
which is then used to connect to the relevant node(s). Similar to the
globally centralized client server architecture, this globally central-
ized architecture suffers the same problems and unsurprisingly the
solution comes in the form of locally centralized peer to peer architec-
ture. Gnutella [17] is an example of such a locally centralized peer to
peer architecture. In Gnutella, certain nodes assume the server like
responsibility, known as supernodes. In sufficient numbers, the use
of supernodes can relieve scalability and reliability issues, while also
decentralizing the system.

Operating Environment

A DSS may be in three operating environments trusted, partially
trusted, and untrusted.

The trusted environment is a system under a common administra-
tive domain and is quarantined off from the outside. This characteris-
tic ensures a high level of QoS, lesser security issues, and freedom from
unpredictable behavior from outside entities. Hence, workload analy-
sis can be carried out and performance tuned to optimum. However,
the only tradeoff is its limited scalability.

A partially trusted operating environment consists of a system with

17



a combination of trusted and untrustworthy nodes. The common
organizational bound is still maintained in terms of administrative
control. Some degree of trust may be assumed but security must be on
the lookout for possible rogue nodes, which may not adhere to terms
of service. Further, the predictable behavior may not be guaranteed,
since sharing of resources, especially networks, is assumed. In such
an environment, DSS is designed for maximum compatibility.

An untrusted environment is an open and public system where no
trust between nodes may be assumed. Accountability is difficult if
not impossible and the system is open to attack [15]. Some of the key
characteristics include a transient user base [6], the slashdot effect
[18], etc., to name a few.

Usage Patterns

For the three operating environments discussed above, three types of
usage patterns concern are to be considered.

In an untrusted system, the main issue is that some form of cen-
tralization leads to a potential bottleneck that needs to be relieved.
The problem further aggravates due to the flash crowd effect, where
there is a sudden surge in demand from the server, which cripples the
server [6]. In such a case a cloud system could be used to cater to the
momentary increase in demand. A secondary but important problem
is that of peers only participating as a consumer of services and not as
servers, thereby violating the core principle of cooperation that keeps
the peer to peer system functioning [19]. An incentive based mech-
anism could be used to prevent this behavior [20]. Another problem
is that of the asymmetrical nature of the user’s internet connection,
being biased towards downloads [15].

In a partially trusted environment, the major issue is the under-
utilization of resources [21] and utilization of optimal underutilized
storage resources [22].

The most interesting aspect is seen in the case of a trusted envi-
ronment. Due to its predictability and controlled nature, the main
source of determining usage patterns are the applications running on
them. Each application has its unique access pattern of data [23]; it
is necessary to study the application’s access pattern and accordingly
tune the storage system, such that good performance may be obtained

18



from the DSS.

Federation

With the integration of resources spanning beyond institutional and
geographical boundaries, a middleware becomes necessary to federate
resources across the sharing institutions. This forms the basis of Grid
computing [24].

Concerning DSS, federation involves understanding the semantics
of the data being shared and its associated metadata. Federation
produces a homogeneous interface by abstracting the heterogeneity of
the individual storage systems. Hence, users need not concentrate on
different management of data and can instead concentrate on how to
use the data. Some examples in the federation of storage services can
be found in [25, 26].

2.1.2 Contextualizing Distributed Storage System in Present
Work

The taxonomic classification of DSS discussed in Section 2.1.1 needs
to be elaborated in the context of the work presented in this thesis.
First, we consider system function; considering the objective of the
work, the DSS function should be aimed at performance and as a
federation middleware. Considering that the system is being devel-
oped solely for use in scientific workflow, the characteristics of high
performance function are well suited. While homogeneity in network
and node behavior are considered for simplicity in this work; how-
ever, the system would likely be introduced to heterogeneity as well.
Since multi institutional collaboration is envisaged, heterogeneity in
data storage may be assumed. Hence, federation functionality is to
be incorporated in the DSS.

In regards to the operating environment, a trusted operating envi-
ronment can be assumed, since the system being developed is for use
by accredited and affiliated researchers. The same applies to usage
patterns as well.

In terms of architecture, a peer to peer system with a locally cen-
tralized super nodes concept would be suitable. The super nodes
would be responsible for maintaining administrative control over the

19



local cluster and would have communication with other super nodes
for synchronized operation.

2.2 Scientific Workflows

Workflow systems owe their origin from the business community, where
a need for a group of services aimed towards a common objective is
felt for precise coordination. To simplify this need for complex coor-
dination of services, workflow technologies are introduced. Since then
scientific workflows [27] have been introduced to automate large scale
scientific analysis using computers.

One of the alternate automation techniques used by scientists is to
use different general purpose scripting languages to automate by the
integration of various analytic components. Certain special purpose
languages such as R, SAS, MATLAB are now integrable with script-
ing languages like Perl, shell scripts, etc. for automated use during
analysis.

Scientific workflows differentiate from such tool integration pro-
cesses by working on the principle of dataflow language. Scientific
workflows are depicted as a directed graph, where nodes represent a
computation state (also called an actor), while the edges represent the
data flow between each computation step. Hence, scientific workflows
provide a high level tool to analyze and prove a scientific hypothesis.

Figure 2.1: MONTAGE workflow

In our work, two workflows have been shown for MONTAGE and
CYBERSHAKE experiments in Figures 2.1 and 2.2 respectively 1

1Image credit: https://pegasus.isi.edu

20



Figure 2.2: CYBERSHAKE workflow

from the Pegasus workflow gallery. The colored circles in the figures
denote the different tasks which perform computation on the data.
The lines connecting the task from the upper layer to the lower layer
denote the dependence of data by the task at the lower layer on the
upper layer. Hence, the lines also denote the flow of data from one
task to another. Each task, even in the topmost layer requires data
on which the task computes upon. In the lower layers, the data may
also be the result of the computation of one or more upper layers.

To create a successful scientific workflow, certain desired attributes
must be satisfied:

•Scientific workflows should mirror the scientist’s conventional
work by making use of their methods over distributed resources.

•Depending on the observer/user, the scientific workflow must be
able to abstract an unique view suitable for the user for the same
information.

•Scientific workflow should be able to robustly and dependably
support transportation and analysis of large quantities of data
distributed across various repositories.

•Scientific workflow should be able to be reused, refined over time,
shared with other scientists in the field and the results of one
scientific workflow could be used as an input to another scientific
workflow.

Some of the examples of popular scientific workflows are Taverna
[28], Kepler [29], Triana [30] and Pegasus [31].

21



2.3 Cloud Computing

The present work is concerned with data management of distributed
scientific workflows executed in a cloud environment. Having covered
distributed storage systems and scientific workflows in earlier sections,
it is time to review the relevant works in literature in connection with
cloud computing.

Cloud computing has been formally defined by NIST in [32] as
follows:

Definition 1. “Cloud computing is a model for enabling ubiquitous,
convenient, on demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with mini-
mal management effort or service provider interaction.”

According to the NIST document, a cloud service consists of five
essential characteristics, three service models, and four deployment
models. Cloud computing is related to another distributed computing
model called Grid computing. A comparative study between cloud
and grid computing is available in [33].

Architecture

The architecture of a cloud computing environment can be divided
into four layers:

•Hardware: Physical resources of the cloud like computing, stor-
age, and networking elements are managed at this layer.

•Infrastructure: This layer is also known as the virtualization
layer. This layer pools physical compute and storage resources
and partitions them into virtual resources (Virtual Machine or
VM) using virtualization tools such as Xen [34], KVM [35] and
VMware [36].

•Platform: The operating system, related system applications
over the VM created in the earlier infrastructure layer is created
in this layer. Examples include Google App engine [37]

•Application: The topmost layer consists of the actual application
which is of interest to the user.

22



The layers have loose coupling with other layers to ease separate evo-
lution of each layer.

As part of the business model, different services are provided to
clients by cloud providers. The following traditionally important ser-
vices are as follows:

Infrastructure-as-a-Service (IaaS): On demand provisioning of com-
puting and/or storage resources in terms of a VM. Examples include
AmazonEC2 [38], GoGrid [39] and Flexiscale [40].

Platform-as-a-Service (PaaS): Caters to the need at the platform
layer resources such as Operating system support. Examples include
Google App Engine [37], Microsoft Windows Azure [41].

Software-as-a-Service (SaaS): This business model caters to the provi-
sioning of on demand applications over the internet Examples include
Salesforce [42], Rackspace, SAP Business ByDesign [43], etc.

Some Research Areas and Challenges

The research areas concerning cloud computing span across varied
domains including architectural design of data centers, VM migration,
resilience and fault tolerance, scalability, and backward compatibility.

The research area of concern in the present work is that of im-
plementing distributed file systems over clouds. Google File System
(GFS) [13] is specially designed and optimized to run data centers
that are tuned to provide high data throughput, low latency, and ro-
bustness to component failures. Another related file system of concern
is Hadoop Distributed File System (HDFS) [44]. HDFS is described
in detail in a later section of this chapter.

The research challenges include areas like automated service provi-
sioning, virtual machine migration, energy management, traffic man-
agement and analysis, data security, and software frameworks. Since
these issues are beyond the scope of this work, a detailed discussion
on these is not included in this literature survey to maintain brevity.

There are two research challenges that have relevance to the present
work. The first research challenge is in regards to storage technology
and the other is data management. This will be discussed in the next
two sections of this chapter. The other topic concerns the evolving

23



novel cloud architectures. These architectures will be discussed in the
next two subsections

2.3.1 Decentralized Cloud Computing

Traditionally, cloud computing is treated as a centralized computing
paradigm. However, with the rise in IoT and 5G technologies, dis-
tributed cloud computing systems are on the rise. Distributed cloud
computing consists of frequently overlapping terms like fog computing
and edge computing in addition to terms such as mobile cloud com-
puting, ad-hoc cloud, etc. This type of cloud computing compliments
the traditional centralized data-center based cloud by bringing com-
putation closer to the client (or sometimes on the client device itself).
There may be several reasons to adopt this decentralized approach.
For example the latency of data transfer to and from data centers
may be unacceptable, the data may be partly sensitive and that com-
putation would be preferably computed at the client’s machine, etc
are some of the reasons. In literature, the following surveys discuss
these decentralized cloud computing the state of the art, research
challenges, etc:

•[45, 46, 47]: Various aspects of decentralized cloud computing
are comprehensively covered in these surveys. They try to dis-
tinguish between ambiguous and overlapping paradigms like fog
computing and edge computing, mobile cloud computing, and
mobile ad hoc cloud computing, etc. apart from other concepts
related to decentralized cloud computing. The survey looks into
the need for the evolution of such decentralized cloud platforms,
application use cases, the enabling hardware and software tech-
nologies, and future research to solve the existing issues.

•[48]: This work explains the interplay between the underlying
concepts like MANET, mobile computing, etc. to implement a
cloud computing system.

2.3.2 Volunteer Cloud Computing

Volunteer Cloud Computing (VCC) is a subset of the broader comput-
ing paradigm called Volunteer Computing (VC). VC includes VCC,

24



Volunteer Grid Computing (VGC), and Mobile Volunteer Comput-
ing (MVC). Volunteer computing was created out of a need for ever
increasing need for computational resources. Traditional Cloud Com-
puting requires high data center set up and maintenance costs, with
a significant portion of these costs being spent on non computational
expenses like cooling systems, electricity [49], etc. On the other hand,
more than 2 billion desktops remain under utilized; while [50] reports
that PCs in institutions remain idle 97% of the time.

VC allows the utilization of these wasted computational resources
by way of voluntary donation to run compute intensive tasks, such
as that required for scientific analysis. Unlike traditional data center
based cloud systems, VC does not require specialized infrastructure
or requires cooling expenses, thereby making cloud computing more
affordable.

Some examples in VGC include Entropia [51] a system that aggre-
gates the computing resources of desktops within an organization into
a virtual grid; Condor [52] a system which utilizes idle workstations
for long running jobs; BOINC [53] the most influential volunteer com-
puting resource which is used by CERN (LHC@home [54]) for particle
physics research.

In terms of VCC examples, several sub classifications are possible
such as Volunteer Desktop Clouds [55], P2P Volunteer Clouds [56],
Social volunteer Clouds [57] and Volunteer Storage Clouds [58].

2.3.3 Scientific Workflows and Clouds

Cloud was built and traditionally utilized for computing needs related
to business. However, due to similar requirements of scientific com-
putation, cloud computing is being adapted for scientific computation
as well. As such scientific workflow could be deployed in a scientific
cloud computing environment as well.

Some of the important examples are Cumulus [59], Eucalyptus
[60], OpenNebula [61]. Some of the unique requirements of scientific
cloud computing encompass the need for massive parallelization in
code while also catering to the inter-dependency between the tasks.
Further, the data generated and used is huge often in the range of
Terabytes.

Scientific cloud computing often has added advantages over grid

25



computing like dynamic resource allocation and virtually infinite re-
sources as per requirement, ability to deploy the legacy application
through virtualization support, etc. Another popular science comput-
ing platform is High Performance Computing (HPC). Clouds suffer
some disadvantages when compared to HPC. Such disadvantages are
relatively slow network, virtualization overhead, etc.

2.4 Data management in Distributed Systems,

Cloud and Scientific Workflows

In this section works concerning storage elements, their failure and
how such failures are handled are discussed along with discussion in
relevant works in literature.

2.4.1 Storage Failures

Distributed storage systems are made up of individual storage ele-
ments, each of which is prone to failures. Storage system failures are
one of the leading causes of node unavailability (in terms of data) and
loss of data. Predicting the impending failure of a storage element can
be used for early transer data between storage elements and prevent
or mitigate system downtime.

One of the earliest influential works in predicting disk drive failures
in a large collection of disk drives has been the work in [62] and for
distributed storage system in [63]. Based on these studies, smart disk
failure prediction methods have been proposed in [64]. Similarly, work
in improvement in storage efficiency by building upon the disk failures
studies have been proposed in works such as [65]. Applying the disk
failure prediction and studies on disk failures, efforts have been made
to improve the efficiency of the data center as a whole. [66] has
studied the importance of disk failure prediction in datacenter design.
Similarly, [67] has proposed a reliability model for disk arrays. [68]
studied hard disk failures in the context of overall data center failure
and provides a more holistic picture. An example of node failure in
use in making cloud computing efficient is in the work by Lin et al.
[69]

26



2.4.2 Reliability

Data reliability is the study of increasing the durability and availabil-
ity of data. There are two types of failures permanent and transient
failures. Durability deals with the protection of data from permanent
failures. This includes measures that prevent complete loss of data
in case of a catastrophic failure of components. Transient failures are
cases, where a data source may go offline for sometime and making
data from that source becomes unavailable. It is to be ensured that
the temporary or permanent unavailability of data from one source
does not make the data completely inaccessible. Availability ensures
efficient data retrieval in such transient failures. There are mainly
two ways to ensure reliability in data storage; erasure coding and
replication.

Erasure Coding

Erasure coding is the data reliability procedure in which redundant
data is stored along with the actual data. If a file is of n bytes, we
store k bytes of data, such that k > n, and redundancy stored is
(n − k) bytes. This redundant data (n − k) is used to recover the
n bytes of data in case of corruption. Erasure codes are natural to
distributed systems. The k bytes of data (original and redundant) is
divided into an equal number of ’x’ stripes. These stripes are placed at
different nodes of the distributed system. If one or more nodes stop
data retrieval services (permanently or transiently), the remaining
data in other nodes can recover the lost data and normal services may
resume. If a large amount of data is lost, however, the data corruption
becomes permanent. Thus, more the redundant data stored in the
system (parity data), the greater the system failure that the system
can recover from. However, storing more redundant data adds to
the storage cost of the system; thereby creating a trade off between
reliability and storage cost.

There are two types of erasure coding that may be implemented:

•MDS codes: Maximum Distance Separable codes are those which
can make a system recover from any combination of m node
failures (considering the entire storage of a node as one unit) for
m parity data saved on them. An example of this type of code

27



is Reed Solomon code, which is used in commercial services like
Microsoft Azure [70] and Facebook [71].

•non MDS codes: non MDS codes are a type of erasure code that
can recover from less than m combination of node failures while
storing parity data in m nodes. These are also called locally
repairable codes since the redundant data is stored in each node
and the recovery involves data from the local nodes storage rather
than parity blocks from other nodes. This code is suitable for
recovering from an error within the node at the cost of storing
extra data at each node. An example of this type of code is [72]

Regeneration codes are those for which data can be easily recovered
with the minimal data download. These are traditionally divided into
two classes:

•Minimum Storage Regeneration (MSR): As the name implies,
these erasure coding schemes optimize the storage cost when
having to store the redundant data. Some examples in litera-
ture include [73, 74].

•Minimum Bandwidth Regeneration (MBR): In this case mini-
mizing network bandwidth usage or simply network usage is the
optimization criteria of the system. Some examples in literature
include [74, 75].

From the above discussions, it can be summarized that erasure
codes can be applied such that either bandwidth or storage could be
optimized while maintaining a high probability of recovery from a data
loss. There are works in literature [76, 77, 78], which looks into the
question of minimizing data storage in a high error recovery regime.
The interesting question is whether, in the same high error recovery
regime, both storage and bandwidth can be jointly minimized. With
erasure codes, alone, may be not. However, in a distributed system,
there is an option of intelligently placing data in the system. Whether
an intelligent data placement can jointly optimize both storage and
bandwidth in a high error recovery regime is something that will be
studied in a chapter 6.

28



Replication

Replication is the second process of maintaining data reliability. Un-
like, erasure coding, copies of the entire data (file) are made. These
copies, called replicas are distributed and stored in different nodes
of the distributed system based on the replica placement scheme in
place. While replication takes more storage space than erasure coding,
it has multiple uses. Firstly, no expensive computation is required to
generate the lost data. Secondly, replication may also be preferred for
other purposes like load balancing, energy conservation, minimizing
data transfer time, etc. In erasure coding, all the nodes containing the
stripes of data are required for recovery. Thus, the second advantage
cannot be exploited. In contrast, in replication, only one among the
multiple copies of the data is required.

Replication may be of two types:

•Static replication: A static replication is performed with the as-
sumption that the system’s behavior will remain constant during
its lifetime. Replication decisions are taken at the system start
time and such decisions are not changed (or changed manually)
during the system runtime. Some examples are given in [79, 80]

•Dynamic replication: In dynamic replication, the replication sys-
tem is triggered from time to time. It monitors for any behav-
ior change and accordingly computes a new replication strategy.
Some examples are given in [81, 82]

2.4.3 Data placement and Prefetching

In distributed systems, data placement deals with the problem of
intelligently placing data on nodes of the distributed system to opti-
mize one or more desired objectives. Prefetching is a similar concept
to data placement. In prefetching, the likely data usage is computed
by analyzing historical usage patterns and fetching data before it is
used.

The desired objective in mind is to ensure that all data required by
a task running at a node in the distributed system is available locally
and no or minimum data needs to be migrated from a remote node of
the system. A good data placement ensures such a local availability of

29



data which improves task performance by mitigating execution stalls
by reducing remote migration of data. In the case of prefetching,
since the data is already present in the concerned node, not only is
the execution stall time reduced, even the task does not have to wait
for starting the execution due to unavailability of data.

In this work, data placement is discussed in the context of scientific
workflows. The workflows consist of tasks, which may or may not be
dependent on the output data of another task. For tasks that have
no dependency on another task (or the output data is available), they
can be run in parallel. As discussed in section 2.2, tasks require data
to execute, and in the context of scientific workflows, the data consists
of a list of files. When viewed in inversion, each file has a list of tasks
that require the concerned file for its execution.

Interdependency between a pair of files has been defined in [83]
as the number of common tasks that require both the files during its
execution. Mathematically it is defined as follows: Task list(fn) is
the list of tasks which requires file fn during its execution.

Interdependency between files computes how likely both the files
will be required during the execution of tasks. A high interdependency
value indicates that the file pairs are likely to be used for many tasks;
hence, they should be placed together.

Interdependency based data placement has been adopted in various
works as presented in [84, 85, 86], etc. In various works described in
the subsequent chapters this concept of interdependency have been
described.

A related concept is that of interdependency based prefetching.
However, since a prediction of likely future data usage is required to be
made, some kind of predictive data analysis needs to be performed. In
these cases, recommendation system based predictions come in handy.

There are primarily two ways in which the prefetching is performed
in scientific workflows:

•Dependency graph: In these methods, the interdependency be-
tween the file pairs are collected and represented in the form of a
nXn matrix, called dependency matrix where n is the number of
files. The dependency matrix is used as an adjacency matrix for
a graph. The resulting graph obtained is called the dependency
graph where the nodes are the files, edges indicate interdepen-

30



dency between the files and the weight of edges represents the
amount of interdependency between the file pairs. The graph
represents the past file usage pattern and it is assumed that a
similar pattern would be repeated in the future. The core prin-
ciple is to partitioning the graph, such that each disconnected
components represent a cluster of highly dependent files. Subse-
quently, one of these file clusters is chosen and the files in that
cluster are prefetched. Examples are given in [87], [88], etc.

•Data mining: Data mining is a collection of concepts in data
science that extracts useful knowledge from a huge collection of
data. Frequently used in recommendation systems, it is used to
find a pattern in a collection of data. This pattern is used in
the recommendation system to optimize different objectives. As-
sociation rule mining is an important approach to data mining,
which uses algorithms such as Apriori algorithm, to find associ-
ation patterns between the items. Such an association pattern
provides useful knowledge on how a pair or group of items are
associated with each other. In the present context, the items are
analogous to files, and associations between files are determined
through data mining. Examples of such data mining techniques
used in data management has been presented in [89], [90], etc.

In chapter 4, the dependency graph based approach will be ex-
plored further.

2.5 Text Mining and Document Similarity

2.5.1 Text Mining

Text mining is the process of knowledge extraction from textual data
by transforming unstructured data into structured data, which can
be utilized for analysis. In this section, a subarea of text mining
is discussed, which is relevant to data management in distributed
systems.

31



2.5.2 Textual Content Analysis

Content analysis techniques can be categorized into either classifica-
tion (supervised) or clustering (unsupervised) techniques.

In classification, the objective is to segregate and group text data
units (files) into different classes or categories. When only two classes
are used for classification, it is called a binary classifier [91]. When
classification into multiple classes is required, multiple binary classi-
fiers are used [92]. In supervised technique, some amount of human
categorized data is required from which the algorithm can learn about
the basis of classification. When such data (called training dataset)
is not available, a supervised technique cannot be used and an unsu-
pervised technique becomes useful.

The clustering techniques utilize mathematical similarity (like Co-
sine distance, Manhattan distance, etc.) between files to classify them
into different clusters [93].

Some example of application of content analysis of textual docu-
ment in literature includes mapping published research [94, 95], patent
summarization [96] and novel topics in research articles [97].

2.5.3 Similarity and Recommendation Systems

In chapter 4, content analysisbased text similarity measurement will
be used to find interdependency. However, the basis of this method is
in the relation between data interdependency calculation and recom-
mendation systems. A recommendation system finds an association
between a pair of items based on the number of common cooccur-
rences. A common example is that of market basket based item as-
sociation [98]. In data management, data interdependency between a
pair of files is nothing but an association between the file pairs. The
analogy to an item is the file, while the analogy of the market basket
is the list of tasks that require the data.

There are plenty of works in the literature on the use of text anal-
ysis for building a recommendation system. Generally, such a content
based recommendation system is used when no or minimal informa-
tion is available; hence, other means of recommendation are not pos-
sible. Sometimes content based analysis is used to augment recom-
mendation systems using traditional means as well. Some examples

32



are discussed below:

•In Almalis et al.[99], text analysis has been used to analyze CV
of job seekers and propose a suitable job based on the analysis.
The analysis results in clustering of similar CVs and matching
each cluster with one or more jobs.

•In Amami et al.[100] a recommendation system for scientific pa-
pers has been proposed. This is the example of enhancing tradi-
tional recommendation systems like collaborative filtering with
probabilistic topic modeling.

•In Wang and Blei [101], both collaborative filtering and LDA
topic modeling have been combined for recommending a new
scientific article whose usage information is not available, but
such information on a topically similar article is available.

2.5.4 Beyond Text

Text analysis is a potent tool in recommendation systems that can
also be repurposed for data management based on data interdepen-
dency in distributed systems. Text and bioinformatics data share
many common structures which allow cross application of an analyt-
ical tool from one domain into the other. A common example is that
word similarity measurement using edit distances. In both cases, the
fundamental principle of letter sequence alignment is used. In the case
of text, the letters are straightforward. While in the case of bioinfor-
matics (say, gene bank data), the individual letter of gene sequence
is considered a letter. More examples of application of Natural Lan-
guage Processing (NLP) tools in bioinformatics (protein data) can be
found in [102]. Similarly, tools like LDA can be used as well as and
is evident from [103].

The above discussion points to the fact that beyond text data, sim-
ilar algorithms can be re purposed for managing bioinformatics data
as well. The consequence is that the data placement tool proposed in
chapter 4 has potential for application beyond text datasets.

33



2.6 Tools and Methods used

Beyond the concepts discussed in the previous sections, some other
miscellaneous concepts, relevant to our work, are being discussed in
this section.

2.6.1 State space search

Data placement involves the grouping together of files in such a way
that highly interdependent files are grouped while non interdependent
files are placed in other groups. One way to look at this is that there
are finite, albeit numerous combinations of file groupings that we can
make; out of which, one grouping achieves the above objective. Look-
ing in this way, data dependency based placement can be remodeled
as a state space search problem. Each combination represents a state
and the combination of files that achieves the stated objective repre-
sents the goal state. Starting from a random initial state, the problem
is to devise an efficient state space search algorithm to find the goal
state in the state space.

To aid this search effort, often assistance from estimate based guid-
ance, known as a heuristic, is sought. Heuristic gives good results
when good estimates are available which can guide the search algo-
rithm towards the goal state. In heuristic based searches, a goal state
is defined by the points of minima (or maxima), out of which only
one minima is the least, called global minima. In the problem con-
cerning our work, maxima (negative minima) is the combination of
files such that each group has the highest inter dependency value. A
heuristic based algorithm may end in one of the other maximas (lo-
cal maximas) and declare that the goal state has been reached. In
the context of the present work, such a maxima would be a group-
ing that has a high interdependence value, but another grouping may
exist which has an even higher interdependency value, which is not
explored. To prevent this undesirable result, due to unavailability of
reliable heuristics, metaheuristic algorithms are used in this work.

34



Metaheuristics

The idea of metaheuristic is to use general problem independent strate-
gies to solve specific hard problems [104]. Metaheuristics themselves
do not solve any particular problem but it can be applied to solve a
wide variety of problems.

Heuristics as has been described earlier, is a guide for the algo-
rithm its towards goal state. The meta component is the higher level
strategy that controls the underlying heuristics to overcome the lim-
itations of pure heuristics based searching due to unavailability of
reliable heuristics .

Metaheuristics based searching achieves the following goals:

•Efficiency: Find a solution to an NP hard problem in a reasonable
time

•Accuracy: Find an optimal or near optimal solution to the prob-
lem. Since it is a soft computing technique, absolute accuracy
is not necessary. Some level of inaccuracy as determined by the
user and the resulting non optimality is acceptable.

•Escaping the local minima (or maxima): Cover the entire so-
lution space while searching, such that the global maxima or
minima is reached.

Broadly, a meta heuristic algorithm may be classified into trajec-
tory based or population based algorithms. Due to the increased di-
versification achieved in population based methods, this class will be
discussed in more detail. Population based algorithms are primarily
of the following types:

•Evolutionary computing: These are iterative search techniques,
which stochastically manipulate the present solution to produce
a solution that is closer to the fitness value (mathematical ex-
pression of the objective). Genetic Algorithm (GA) [105] is the
most famous example in this category.

•Swarm intelligence: This category of search algorithm has search-
ing agents distributed throughout the state space. The agents
evaluate the search space at the local level in which it is deployed.
Communication between the agents with their neighbors gives a

35



global picture of the search space and as such the optimal point
is discovered. Some popular examples include Ant Colony Opti-
mization (ACO) [106] and Particle Swarm Optimization (PSO)
[107].

Some examples that demonstrate solution of real world problem
solving using metaheuristics are as follows:

•[108]: This work utilizes two variants of ACO for cryptanalysis
purposes. Performance on six encryption processes is evaluated
with good results, Simple substitution, affine, Feistel, carre de
Polybe, Vigenere, and transposition algorithm.

•[109]: In this work, GA has been applied in the domain of bioin-
formatics.

•[110]: Applied GA in combination with three more metaheuristic
algorithms to solve crop rotation problems in the field of agricul-
ture.

•[111]: In Wireless Sensor Network, maximum sensor coverage
with minimum device deployment and minimum energy expen-
diture are the objectives. In this work, ACO has been used
for searching the optimal solution with parameter analysis per-
formed with MIN MAX variant of ACO, giving excellent results.

2.6.2 Recommendation System

Another way to look into the stated problem is as a recommenda-
tion system problem. We look back into recommendation systems
once more as a background to the concepts of Social Network Anal-
ysis (SNA), that we will discuss next. According to Bobadilla et al
[112], recommendation systems are programs that predict the most
appropriate products or services for a user. Such predictions are made
based on the user’s interest in the item as seen from history and also
the information on the item itself; further taking into account the
user’s interaction with other users. In terms of the data placement
problem, the user is a file and the item is also a file. The prediction
has to be made on whether one file is to be grouped with the file in
question. This decision is based on the file’s interest in the other file

36



(based on how many tasks they are required in common; called inter-
dependency) and also whether this interest is more than the interest
with other files.

Broadly there are two types of recommendation systems; collabo-
rative recommendation and content based recommendation. A third
hybrid recommendation type may be proposed which combines the
two basic types.

A collaborative recommendation is based on the concept of a sim-
ilarity matrix. The core principle is that if there are five items and
two users have indicated a similar preference to the four items, it is
likely that the fifth item’s similarity would be similar as well.

Content based recommendation technique is the recommendation
process where an item is recommended to the user if its content is
similar to an item in which the user has already shown an interest.
For example, if a user is interested in a book, then he/she can be
recommended other books which have similarities in terms of contents
of the book. Such similarity may be analyzed through a plethora of
Natural Language Processing (NLP). One of the chapters in this work
is based on this concept of content based recommendation.

Examples of the two dominant types of recommendation system
are discussed in [113, 114, 115, 116, 117].

The third type of recommendation system utilizes graph analy-
sis. This will be discussed in the next subsection on Social Network
Analytics (SNA).

2.6.3 Social Network Analysis

Certain graphs have special structures which allow them to be ana-
lyzed by SNA. SNA studies two sets of properties:

•Relational properties: This study concerns the content and re-
lationship between the network actors [118]. Contents are the
information or material shared by actors within a network and
relationship refers to the social tie between the actors of the net-
work [119]. Generally, the network is represented using graphs
with the social actors represented as a node and the edges rep-
resent the social ties between the nodes. In the context of the
data placement problem, the files are the social actors and the in-

37



terdependency relation between two files constitutes the relation
between a pair of actors. Such a network is called a recommen-
dation network.

•Structural properties: Structural properties concern the recom-
mendation network graph as a whole or the subset of the graph.
Primarily, the centrality of the social actor or the relation be-
tween a pair of actors is the main point of analysis. Some works
which analyze social networks for structural properties are pre-
sented in [120, 121, 122].

The most important structural property to investigate in a social
network is the different centrality measures [123]. Some of these cen-
trality measures include degree, closeness, and betweenness centrality
[124] and PageRank centrality [125]. PageRank centrality is espe-
cially famous for it is the measure that revolutionized web search
engine technology.

Relation between recommendation systems and online social net-
works works both ways. The works in [126, 127, 128], illustrates how
social networks have been leveraged to augment recommendation al-
gorithms and in [129], an example where a recommendation system
is being used to enhance social networks is presented.

2.6.4 Simulation Tools: NS3, HDFS, Cloudsim, Gridsim

It is rarely possible to obtain a full fledged distributed system to
experiment upon. Most of such systems are costly or are in use and
could not be taken offline for experimentation purposes. In such cases,
simulation is an important evaluation tool to empirically validate the
performance of a proposed algorithm. Simulation closely models the
function of the distributed system being investigated and gives fairly
accurate performance measures as one would have while experiment-
ing on the real system.

In distributed systems, Cloudsim [130] and Gridsim [131] are used
to simulate cloud and grid systems respectively. Both these systems
simulate the entire cloud and grid system respectively and in cases
where only the storage system’s performance is to be investigated,
this might be unnecessarily complicated.

38



Distributed storage system essentially consists of two components;
a storage system and a network that connects the systems. In such a
case, HDFS and network simulators such as NS-2 [132] or the more
advanced NS-3 [133] could be used to specifically study the distributed
storage system with much simplicity.

39



Chapter 3

Preliminary Studies on Reliability, Data
Dependency and Distributed Storage
Netwoks

3.1 Introduction

In this chapter, some important concepts will be introduced that will
be useful to understand the works described in later chapters. More
importantly, these concept discussions will accompany novel research
work done and experiments, to reveal some important facts.

In this thesis, two topics: reliability and data placement are consid-
ered in the context of distributed systems. The concept of distributed
systems has been introduced in detail in chapter 2. This chapter elab-
orates the concepts of reliability and data placement on such systems.
Further, to study distributed systems, often a physical system is not
readily available. In such cases, simulation is a very convenient alter-
native to study the performance of a system. NS3 is a robust network
simulation environment, improving on the very popular NS2. Since
distributed systems are spread across a network, analyzing network
performance is an important point of study. In this chapter, NS3 has
been extended to support simulation of one such popular distributed
file system: HDFS, such that network specific performance aspects of
HDFS can be studied through simulation by leveraging the robustness
of NS3.

This chapter is organized into five sections including this introduc-
tion section. Concepts of reliability and data placement in distributed
systems are explained in Section 2, through two novel research exper-
imentation. In Section 3 HDFS extension of NS3 is discussed. In
Section 4, layout of future chapters is discussed. This chapter is con-

40



cluded in Section 5.

3.2 Data Reliability and Data Placement in Dis-

tributed Systems

In this section, the concepts related to data placement in a dis-
tributed system is introduced. These concepts would be explored
further through two novel experiments.

3.2.1 Scientific Workflow

A scientific workflow is a specialized workflow management system
for science applications that is aimed at specifying a series of compu-
tation and data manipulation steps for obtaining a result in scientific
research. Science workflows are intuitive and user friendly science
analysis tools, used by researchers who may not be proficient with a
more technical or programming based approach to computation and
data manipulation.

Another major advantage of scientific workflows is their enabling
ability for collaborative research. Scientists distributed across the
world may utilize a single workflow on a distributed system for exe-
cuting large scale experiments or knowledge discovery. Such ease of
collaborative research is a major stepping stone in advancements in
the scientific knowledge of humankind.

Distributed systems offer numerous benefits as discussed in the
previous chapter. However, such advantages are possible only when
intelligent decisions are taken in terms of managing such systems. One
such important management decision is that of data placement and
ensuring data localization. In subsection 2.4.3, the concept of data
placement, data localization is discussed along with a very intuitive
process for localized data placement in scientific workflow systems.

The distributed system being used for this work is shown in Figure
3.1. The functional unit of the system consists of a local compu-
tational cluster, which consists of five compute cum storage nodes.
These nodes serve as sites for task execution and file storage. These
nodes are interconnected through a local network. The entire cluster
is connected to data backup repositories, through the internet. The

41



local computational cluster may be distributed across a large geo-
graphic distance, but their interconnection network is different from
the typical internet; hence, the name local network. The local network
is dedicated to connecting the nodes of the local cluster exclusively.
Similar local clusters have a completely different local dedicated net-
work for their exclusive use.

During task execution, a scientific workflow is deployed into the
local computation cluster; the necessary data is downloaded from
the appropriate repository on the internet. The data and task are
placed at the relevant nodes by a task scheduling and data placement
algorithm respectively. On completion of task scheduling and data
placement, the workflow starts its execution.

3.2.2 System description

Data transfer is kept minimal in both the internet and the local net-
work of a cluster. However, practical constraints make data transfer
necessary. When data transfer needs to happen, it is preferable to
keep it limited to the local network only. If the data requirement can
not be satisfied by nodes in the local cluster, the global repository
on the internet is accessed. The design goal of the data placement
system is to minimize data transfer in the local network and internet,
particularly the internet.

Nodes in the local cluster are homogeneous within the cluster; i.e,
the characteristics of the node’s storage computational and commu-
nication abilities are the same across all the nodes in the system.
However, nodes from the different clusters may be heterogeneous.

Nodes of the system are considered unreliable unless otherwise
stated. Thus, the nodes randomly suffer error conditions; a state
in which they are not able to store data and compute any task, or
communicate with other nodes in the cluster. This condition exists
for some time before the nodes recover and come back online. A node
is considered non existent during this period of error. During the er-
ror period, data stored in the concerned node is considered lost. If
any other node requires the data from that node, it has to find an
alternative source, preferably from other nodes in the local cluster or
from the backup repository on the internet. During simulation, the
nodes are considered to fail following a Weibull distribution [134].

42



Figure 3.1: Distributed System

43



The system closely follows Hadoop’s [135] system architecture and
the file system is built around the Hadoop Distributed File System
(HDFS) [44]. The core difference is that map reduce is not used in
this case and the entire scientific workflow is already partitioned into
atomic units called tasks. Further, atomic data units are files and not
blocks as used in HDFS.

3.2.3 Reliability: Data and Replica placement

Data Interdependency

A workflow is a description of tasks: the fundamental unit of execution
and a graphical representation of task execution. During its execution,
each task requires a set of data that it can manipulate or compute
upon. Hence, a description of tasks among other things consists of the
set of files, that the task requires during its execution. The purpose of
any data management sub system is to ensure that data is available
to the executing task as fast as possible.

When a workflow is deployed in a distributed system, different
tasks are allotted to different execution sites (nodes) of the system.
Due to the distributed nature of the system, both in terms of data
storage and task execution, it may be possible that a task and the
files required by the task are placed at different sites of the distributed
system. This type of data placement is known as non localized data
placement.

A non localized data placement results in serious system perfor-
mance penalties. During task execution, if a file is not present at the
site of task execution, these files have to be migrated from remote
sites in the local cluster or backup on the internet. Such migration is
a time consuming affair, during which the task has to be stalled due
to the unavailability of data. Further, frequent data migration leads
to the wastage of precious network resources. Due to these factors, an
intelligent data management sub system of a distributed system tries
to avoid non localized data placement and prefers a localized data
placement.

As described earlier, each task contains a set of files that will be
required by it during its execution. From the set of all tasks, we can
invert the set and find a set of tasks for each file, that requires the

44



file for its execution. Considering any pair of files, when their set
of tasks is compared, they are likely to exhibit one or more common
tasks. These common tasks make the file pairs dependent on one
another and hence, these files are called interdependent files. Higher
the number of common tasks a pair of files exhibit, the higher is the
interdependency between the files. Mathematically, interdependency
between files can be represented by the equation as follows:

Interdependency(Filen, F ilei) = |dsn.Taskn ∩ dsi, Taski| (3.1)

Where, n = 1 and i = 3.

The equation finds interdependency between files File1 and File3,
where the set of tasks which require File1 is described by dsn.Taskn
which for n = 1 is ds1.Task1 and the set of tasks which require File3 is
described by dsi.Taski which for i = 3 is ds3.Task3. The intersection
between the two sets gives the number of tasks which requires both
File1 and File3 during their its execution. Hence, the number of such
common tasks, defined as the interdependency between files File1 and
File3, is obtained by |dsn.Taskn ∩ dsi, Taski|.

The interdependency metric defined in equation 3.1, represents the
number of tasks that require both files File1 and File3. Thus, higher
the interdependency between the files, it is more likely that when one
file in the pair is required by a task, the other file will also be required
by the task. When both the files are placed at different sites and they
are highly interdependent, both files have to be frequently migrated
to the other’s site creating data migration problem. Thus, to pre-
vent data migration and the resulting performance degradation, two
interdependent files are to be placed together at the same site of the
distributed system (known as colocation) thereby ensuring data local-
ization. The necessity for data localization has been discussed above;
however, the means to achieve that localization is not discussed. In-
terdependency between pairs of files is used to achieve the desired
data localization.

Dependency Matrix and Data Placement

There are two classifications of data placement of scientific workflow
in distributed systems:

45



•Task placement first: The tasks of the scientific workflow are
scheduled for execution at the sites of the distribution system.
The data is placed at each site of the distributed system based
on the data requirement of tasks placed at each site.

•Data placement first: Interdependency between each pair of files
is calculated and data is placed such that each site consists of a
group of highly interdependent files. The tasks are scheduled at
each site, depending on the result of data placement. A site that
contains most of the files required by a task is the one in which
the task is to be scheduled.

In this work and subsequent chapters, the data placement first ap-
proach is used except for chapter 4. This process utilizes the concept
of interdependency between files as described by equation 3.1. The
basic data placement approach using this metric is described below.

In Figure 3.2, the local cluster of the distributed system presented
in Figure 3.1 is presented. Here only 3 nodes are shown and these
nodes are connected through a local mesh network. Each node rep-
resents a data center, consisting of 3 storage cum compute servers.
Since all the servers in all the nodes are identical, the servers at each
node may be aggregated into a single compute cum storage entity.
The tasks t1 to t5 have been scheduled based on the prior data place-
ment. In effect, tasks scheduled at a particular node can be said to be
highly interdependent; since both their data requirement are satisfied
by the same node. Hence, if one task is scheduled at a particular site,
the other interdependent task would follow suit.

In Figure 3.3a the set of tasks that require by each file is shown.
Thus, ds1.Task1 = t1, t4 means that task t1 and t4 both require
file File1 denoted by ds1.Task1. As an aside it may be noted that
task dependencies here are different than what would be inferred from
Figure 3.2. Here tasks t1 and t4 are highly interdependent and will
be placed together in a node. Similarly, tasks t1 and t5 are highly
interdependent and would be placed at the same node.

Interdependency between each pair of files may be found through
equation 3.1. Thus, files File1: ds1.Task1 and File2: ds2.Task2
would be 2 since there are two common tasks. Interdependency be-
tween a file with itself could also be found, which will be equal to the

46



Figure 3.2: Task scheduling and data placement in distributed system

number of tasks required by the file. For file File1: ds1.Task1, since
there are 2 tasks which require it, interdependency between file1 to
itself is 2

The interdependency values may be arranged in terms of a ma-
trix as shown in Figure 3.3. Each cell of the matrix represents the
interdependency between the corresponding file pair. Thus cell ds1-
ds2 (row1, column2) represents the interdependency between files
File1 and File2 each of whose requirement by tasks is represented
by ds1.Task1 and ds2.Task2 respectively. This matrix is referred to
as the data dependency matrix.

Once the dependency matrix is available, different placement schemes
may be tried, one of which is described here briefly. Such a depen-
dency matrix may also be used for data prefetching, a concept that
will be visited in Chapter 5 of this thesis.

An easy way to place files in the nodes of the distributed system is

47



Figure 3.3: Data interdependency matrix

to arrange the files such that each file’s adjacency to the adjoining file
is determined by the interdependency between the files. Considering
the dependency matrix, the goal is to rearrange columns such that the
adjoining columns of a file represent the most interdependent file to
the given column. This is achieved through the use of the Bond En-
ergy Algorithm (BEA) [136, 137]. BEA rearranges the columns based
on the interdependency values. The resulting arrangement of columns
represents the list of adjacent files which are highly interdependent.
Once the reordered columns are available, each file is placed at a node
in order, till the node’s storage limit is reached. The file placement
then commences from the next node and goes on till all the files have
been placed. This technique of data placement has been used in [83],
which has been utilized in the development of Swin Dew C system
[138], a cloud based distributed scientific workflow execution system.

3.2.4 Replica placement

There are two methods in which data reliability can be maintained
in a distributed system: replication and error correction codes. Error
correction codes are used only in the work described in chapter 4,
otherwise, reliability is achieved through replication. Replication is
the process of keeping multiple copies of a file (data) at multiple sites

48



of the distributed system. If one site encounters data corruption,
the data may be migrated from another site. Further, a file may be
highly interdependent to two or more other files. It may be possible
that other dependent files are placed at different sites of the system.
Then, to satisfy data localization, the file interdependent on other
files is copied as replicas and each replica placed at each relevant site.

In this section, an anomalous observation is described [139] in terms
of data placement through the interdependency based metric intro-
duced above. This anomaly is observed only when data placement, as
described for Swin-Dew-C, is applied on replica placement; i.e., when
more than one copy of the data is to be placed, the data interdepen-
dency based method encounters an anomaly.

Consider Figure 3.4, the results illustrated in Figure 3.4a and b are
the same as that of Figure 3.3. The only addition is the third larger
matrix in Figure 3.4c.

The rows and columns of matrix in Figure 3.4c consists of replicas
of files ds1 to ds5. Only one replica is considered in this case. Thus
ds1’s replica is ds6, ds2’s replica is ds7 and so on. Thus, files ds6 to
ds10 are replicas of files ds1 to ds5.

Empirical Observations

To understand the anomaly, an experimental replica placement is
conducted by implementing the above data placement scheme using
C++. In the experiment, the placement of the data and their repli-
cas on data centers (sites) of the distributed system will be observed.
The observation is made for 2 cases: 1st case consists of no replication
and only 1 replica per file; the second case consists of 2 replica and 3
replica per file respectively. The number of data centers, tasks, and
size of files is kept constant. A set of tasks is built randomly and files
required for each task are allotted randomly as well. The information
is used for data placement as described above, with the dependency
matrix for 0 replica and 1 replica cases being taking a similar form as
in Figures 3.4b and c. The 3 replica and 4 replica case matrices are
similarly built as in 3.4c.

The essential parameters of the experiment is presented in Table
3.1

The allocation of files or replica of files is shown in Figure 3.5 for

49



Figure 3.4: Data interdependency matrix (with Replication)

50



Table 3.1: Essential Parameters

Parameter Value(s)
Number of datacenters 10
Datacenter capacity 3 datasets per datacenter
Number of replica(s) 0, 1, 2, 3
Number of tasks 10

Number of distinct datasets 5

0-replica and 1-replica case and Figure 3.6 for 2 replica and 3 replica
case.

Let us consider Figure 3.6, which represents the anomalous 2 replica
and 3 replica placement case (multiple replica placement). It may be
observed from Figure 3.6a, which represents 2 replica case, replicas
ds6− ds11, ds8− ds13, and ds10− ds15, which are all replicas of the
same file are placed at the same site or datacenter. In Figure 3.6b,
which represents 3 replica case, a similar observation of replicas being
placed at the same site can be observed: ds14− ds19, ds7− ds12 and
ds15− ds20.

From Figure 3.5a, i.e., the no replication case, a good data place-
ment can be observed as expected, in case of 1 replica also; i.e., no
replicas are placed at the same datacenter.

Discussions

The placement of replicas of the same file to the same data center
runs counter to the objective of replication as follows:

•Reliability: If a system maintains 3 copies of a file (main copy +
2 replicas), with the assumption that if one node failure occurs,
2 copies of the file may survive. In the above observed scenario,
loss of 1 node results in the unavailability of 2 copies, and only
1 copy is left. If one more node fails, the system will lose all the
copies of the file.

•Availability: 3 copies of the file may have been required because
the file is highly interdependent to file clusters at three different
nodes of the system. Hence, placing two copies of a file at one
data center would deprive localization at another data center.

51



Figure 3.5: Results for no replica and 1 replica

52



Figure 3.6: Results for 2 replica and 3 replica

53



Further, any other highly dependent file which could have been
placed in the place of the redundant copy. This is now not pos-
sible further aggravating data nonlocalization. All these results
in data migration during task runtime, which could have been
avoided

•Load imbalance: When multiple replicas are placed at different
nodes, the system can balance data migration load among mul-
tiple node; thereby reducing the load on a single node. With
multiple replicas being placed at a single node, a fewer num-
ber of nodes are available for data migration needs. Hence, the
system is deprived of its load balancing capabilities.

The reason for placing multiple replicas of a file at the same data-
center could be attributed to the following inequality:

|dsn.Taskn ∩ dsn.Taskn| ≥ |dsn.Taskn ∩ dsi.Taski| (3.2)

Where, n ̸= i.

The inequality 3.2 means that the interdependency of a file with
itself is always greater than or equal to the interdependency of a file
with another file. In some cases, a file’s self interdependency may be
the highest. In the traditional method of data placement, the replica
is considered just like another file. Hence, interdependency between
the replicas of the same file would also be highest in these cases.
Under such circumstances, the data placement algorithm will place
the replicas together in place of another highly interdependent file.

The solution lies in informing the data placement algorithm which
files are the replicas of another file and the algorithm treating their
interdependencies as self interdependency. This way, the algorithm
ensures that only interdependency between two different files are con-
sidered as the true interdependency.

3.2.5 Reliability: File Fragmentation based Placement

In the earlier discussion, a file is treated as an atomic unit while
making its placement decision. In such a situation, a file assigned
to be placed at a node is placed in its entirety if storage space is
available, else the entire file is not placed.

54



This type of file placement has some disadvantages. Consider Fig-
ure 3.7a; file f1 is to be placed in Node n1; however, there is not
sufficient space to place the entire file on the node. Thus, the file is
not placed and at runtime, the entire file would have to be migrated.
Further, if the free space available is not enough to accommodate any
file, the free space would be wasted.

Now, considering Figure 3.7b, if the file is split into three equal
parts then, two fragments of the file: s2 and s3 could be accommo-
dated in the available space. In this case, only fragment s1 would
have to be placed elsewhere and would have to be migrated during
runtime. Thus, the amount of data migration at run-time has been
reduced by about 66%; which significantly enhances task execution
performance by cutting down task stall time. Also, the available free
space in the node has been utilized fully.

Considering the above argument, it is tempting to try a file placed
in a distributed system by splitting the file and placing the fragments
instead of the entire file. This work [140] describes a study to examine
the feasibility of this approach through empirical observations.

Motivation for File Fragment Placement

There are several motivations for such a placement technique.
The most obvious motivation is that of paging in operating systems

memory management module. In paging, the entire data unit is split
into multiple fragments, and only necessary fragments are brought
and placed into the memory.

Distributed systems may be viewed as an extension of the mono-
lithic system’s memory hierarchy. In a monolithic system, memory
hierarchy ends with the main memory of the device. Sometimes the
secondary memory may be considered as an extension of the main
memory since unused pages are stored and retrieved from the sec-
ondary storage. In distributed systems, one more memory hierarchy
is added which is the secondary storage in a separate device connected
through a local network. When the internet based backup repository
is concerned, one more extension is added to the hierarchy, i.e., the
backup repository. Thus, in a distributed system, the highest mem-
ory hierarchy is the processor registers, followed by cache memory,
main memory, secondary storage of the device, secondary storage of

55



Figure 3.7: Fragmented vs Non fragmented file placement

another device in the local cluster, and the backup repository on the
internet, in order.

The second motivation is the Hadoop Distributed File System
(HDFS). In HDFS the atomic unit of storage is a block of data, which
may be smaller than the size of a file. However, if the interdependency
based placement is attempted, the interdependency would be found
for each block and the blocks placed as per their mutual interdepen-
dence value. This is the same as replacing the file placement method
described above with a block. The point of concern in this work is
that interdependency is known between the files, not between the sub
units of files such as blocks or fragments. This is where this work is
different from HDFS.

Further motivations can be obtained from the fragmentation of
workflows into segments and storage methods like bit torrent protocol,

56



discussed in the literature survey.

Emperical observations

To conduct the feasibility study, an experiment has been performed to
compare the performance of data placement traditional vs fragment
based. A distributed system similar to that illustrated in Figure 3.1 is
considered. The interdependency between the files are randomly de-
termined. Since the point of concern is the actual placement and not
the calculation of interdependency value, the random interdependency
determination is deemed not to affect the outcome of the experiment.
Once the interdependency values are available, files are assigned to
respective nodes. The actual placement depends on the availability
of the space in the node. The file size is randomly determined, so is
the capacity of the node. Once again these random decisions have no
bearing on the results produced by the experiment. In the fragmented
approach, the number of fragments equals the number of nodes. The
network traffic generated under the following circumstances are ob-
served:

•Traditional vs Fragmentation approach: The network traffic gen-
erated is compared between the traditional approach of placing
the entire file vs the alternate proposed approach of splitting the
files into fragments and placing them.

•Internet vs P2P(or local cluster): The traffic on the internet and
that in the P2P network is separately measured. Among the
traditional and alternate proposed approaches, minimal traffic
is expected. For the network traffic that gets generated, which
placement minimizes traffic in the internet is observed.

•Error vs no error nodes: The traffic generation by both the place-
ment approach is measured in both error conditions: cases where
data placed in nodes become unavailable due to failure and no
error condition: every node can cater to the data needs.

•Cummulitive vs Per file: A task might require every file in its
set of file requirements before starting its execution. Another
approach is that a file might need one file at a time during its
execution. In such a case a task executes when its current file

57



requirement is satisfied. As the task executes, the next required
file is migrated. This is the per file approach. The experiment
compares both these approaches.

The essential parameters are provided in Table 3.2 beolw:

Table 3.2: Essential Parameters

Parameter Value(s)
Number of nodess 20

Total number of files to be assigned 50, 100, 150, 200
Total number of files to be placed 10, 20, 30, 40

File size Variable 1GB to 800 GB
Number of files assigned per node random

Number of files (entire file) assigned per node 2 (selected randomly)

Results and Discussions

The results of the experiment are available in Figures 3.8 to 3.11.

Figure 3.8: Traffic generated on a cumulative basis in the internet with some nodes
in local clusters going offline

58



Figure 3.9: Traffic generated on a per file basis in the internet with some nodes in
local clusters going offline

Figure 3.10: Traffic generated on a cumulative basis in the P2P network with some
nodes in local clusters going offline

Figure 3.11: Traffic generated on a per file basis in the P2P network with some
nodes in local clusters going offline

59



Figure 3.12: Traffic generated on a cumulative basis in the internet with no nodes
in local clusters going offline

Figure 3.13: Traffic generated on a per file basis in the internet with no nodes in
local clusters going offline

Figure 3.14: Traffic generated on a cumulative basis in the P2P network with no
nodes in local clusters going offline

60



Figure 3.15: Traffic generated on a per file basis in the P2P network with no nodes
in local clusters going offline

From the results the following inferences could be drawn:

•When the per-file case is considered, the approach of splitting the
file and placing the fragments generates far less network traffic in
almost all the cases: internet vs p2p, cumulative vs per-file, and
error vs no-error condition. The results are presented in Figures
3.15, 3.13, 3.11 and 3.9

•In the cumulative case, both approaches exhibit identical results
for p2p and both no-error and error conditions. In the case of
internet traffic somewhat greater network traffic is observed for
the fragmentation-based approach. The results are presented in
Figures 3.14, 3.12, 3.10 and 3.8

The network traffic generated is due to data migration resulting
from non localized file placement. Thus, less the network traffic, more
localized file placement is achieved. For the per file case, the fragmen-
tation based approach yields the most localized placement under all
the conditions. In the case of cumulative cases, both the approaches
are tied with the traditional approach performing better in the case
of the internet.

It may be noted that a random decision has been taken in regards
to the placement of the fragments. This may have had some impact
on these results. Making an intelligent choice on which fragment is
to be placed at which node could play a role in a better placement,
resulting in high localization.

61



However, considering that random decision making has yielded this
result, similar if not a better result could be expected from intelligent
decision making regarding fragmentation. Thus, at the very least
splitting a file into fragments and placing these fragments yield good
localization when a task requires one file at a time. In case when a
task requires all the files at once, future work with intelligent decision
making on fragmentation would have to be developed and studied.

3.3 Extension of NS-3 for HDFS Simulation

Since evaluating the performance of an algorithm on a physically dis-
tributed system is not possible, simulation tools are required to com-
prehensively analyze the performance of an algorithm through empir-
ical evaluation. Good simulation tools for cloud and grid simulation
are available [130, 131]. Most of the simulation in data placement
requires only measuring network characteristics like network usage;
hence, using cloud simulation tools becomes overkill, and setting them
up is tedious. Hence, a simpler simulator to measure the distributed
system’s network performance has been developed [141].

3.3.1 Brief introduction to HDFS and NS3

The relevant concepts in regards to HDFS and NS3, required to un-
derstand the extension are described here.

Hadoop Distributed File System (HDFS)

HDFS is the distributed file system used to support Hadoop’s data
storage and retrieval requirements for big data analysis. Thus HDFS
has been developed keeping in mind the following design goals:

•Hardware failures: Hardware failures are considered to be a com-
mon occurrence and HDFS is expected to deal with such frequent
hardware failures.

•Batch job: HDFS expects to host data for use by batch jobs. This
eliminates the low latency requirement while high I/O through-
put is the performance criteria of concern.

62



•Big data: Since Hadoop is geared towards big data analytics,
HDFS needs to support the characteristics of big data as well.

•Data localization: HDFS tries to optimize data localization for
the same reason as discussed in the last section.

Considering the design goals in mind, HDFS observes the following
design principles:

•Replication: In HDFS files are stored as blocks of 64 MB each, ex-
cept the last block and each file has 3 replicas. These are default
numbers and are reconfigurable. HDFS has its own replica place-
ment algorithm and policy, but other replica placement schemes
as will be discussed in the subsequent chapters may be used.
After initial replica placement, replication may be triggered if
underreplication is detected.

•File system metadata persistence: HDFS has two kinds of nodes;
NameNode and DataNode. NameNode stores the file system
metadata like I/O activities on the files, change in replication
factor, etc. These are recorded in a file called EditLog stored in
the NameNode. EditLog file is used for HDFS or checkpointing
purposes as well.

•Robustness: In HDFS NameNode, DataNode or network parti-
tions may fail. HDFS is designed to ensure the minimal effect of
the failures on the continued working of the system. The robust-
ness implemented by HDFS to counter the effect of the failures
are as follows:

–DataNode failure: The status of each DataNode is reported
by periodic Heartbeat message to NameNode after periodic
intervals. If NameNode does not receive a heartbeat mes-
sage from a DataNode after a fixed time, that DataNode is
assumed dead. No further I/O is sent to that DataNode and
a rereplication is carried out if under replication occurs due
to the dead DataNode.

–NameNode failure: There are multiple NameNodes main-
tained, and periodically copies of EditLog and FsImage are

63



backed up in the backup NameNodes. Once a NameNode
fails, one of the backup NameNode assumes the responsi-
bility and starts from the checkpoint in the last EditLog
backed up.

–Data integrity: Individual blocks may fail, even when the
entire DataNode may be otherwise functional. NameNode
checks the checksum to detect data integrity in the blocks
and blocks which have anomalous checksum are discarded.
Periodic BlockReport sent to NameNode helps NameNode
keep track of the data integrity of the blocks. If underrepli-
cation occurs due to discarding the blocks, rereplication is
triggered.

Having discussed the design principles and assumptions, the design
architecture of Hadoop can now be discussed.

Data are deemed to be stored in datacenter, a generic name to
define a collection storage elements. Each datacenter is composed of
racks and each rack contains a set of nodes which have storage and
computational power. The schematic datacenter design is illustrated
in Figure 3.16

64



Figure 3.16: Physical Datacenter architecture [1]

Logically, the architecture is somewhat different. The functional
unit of HDFS consists of a single node designated as a NameNode
and multiple nodes designated as DataNode under the control of Na-
meNode. This collection of NameNode and its DataNodes is called a
cluster. The NameNode and the DataNodes may be from the same
or different racks in the same or different data center. One functional
NameNode is used per cluster, while there might be multiple nodes in
the cluster kept as standby to assume NameNode responsibility when
the functional node fails. The actual data storage and retrieval are
performed on the DataNodes. The logical architecture is illustrated
in Figure 3.17

65



Figure 3.17: Logical HDFS cluster architecture [142]

NS3

NS3 is the new version of the popular discrete network event sim-
ulation tool NS-2. The version upgrade has come with a complete
overhaul of the tool, with the new tool being implemented entirely
in C++ and can be used through C++ or python scripting. NS3’s
improvement allows it to be more flexible and scalable than NS2 with
the facility for real world testbed implementations.

A data center network is not natively implemented in NS3. How-
ever, an extension of the NS3 for implementing data center networks
has been proposed by NTU’s DCN implementation. It is this exten-
sion that is being extended to implement HDFS. For topology, Fat
tree topology is preferred, due to its high throughput and low latency
properties.

3.3.2 NS3 Extension for HDFS Implementation

The extension of NTU’s DCN extension of NS3 is being further ex-
tended in this work to implement the HDFS. The details of this
project constitute this section2.

Brief Description of the System

Without sacrificing the simulation ability, some of the functionalities
of HDFS have been omitted or simplified while extending the NS-3

2https://github.com/hindolb/NS3

66



for HDFS as follows:

•No actual data is saved; file is modeled as to contain data of a
particular size.

•File system operation times like seek, open, etc are disregarded:
We are interested only in measuring network usage and time
spent in migrating the data. Hence, these node hard disk specific
operations can be disregarded.

•NameNode failure is not considered: NameNode is not involved
in data storage or migration. Thus their failure is inconsequential
to network usage measurement due to data migration

•All DataNoodes and NameNodes are respectively considered ho-
mogeneous.

•Network errors are disregarded: Network errors or delays do not
contribute to the study of data localization. Hence, it can be
disregarded.

In implementing HDFS through the extension of the NTU DCN
model of NS3, the following changes have been made:

•NS3 has a basic node container object. A subclass of HDFS
server type is created by extending this object. The HDFS-
server class is further subclassed into DataNode and NameN-
ode subclass. Due to the subclassing, HDFS server inherits the
characteristics and function from node class, the combined char-
acteristics of the HDFS server and node class are inherited by
NameNode and DataNode class.

•The following helper functions have been added:

–Functions to introduce errors (DataNode and block error)
as configured by the user.

–Data placement: The default or user implemented data
placement algorithm is present. A function either calls the
default algorithm or any other user defined algorithm.

–Task placement: By default, tasks are placed randomly. A
specific task placement algorithm could be also called.

67



–Data migration: On completion of data and task placement,
a list of non local data is prepared. The data from the list
would require migration

–Server selection: When multiple replicas are present in dif-
ferent nodes, a selection needs to be made on which server’s
replica is to be chosen. Either the default Hadoop algorithm
could be used or a user defined algorithm could be called.

•Application data transfer is implemented by extending NS-3’s
TCP Bulk send and Packet send application. Application data
consists o data like read request and reply, metadata reply, block-
report, heartbeat, etc.

Description of Classes and Helper Functions

The proper description of the NS3 C++ classes used and modified for
achieving HDFS simulation is provided here:

•HDFS server: The generic class Node Container which describes
a node in NS3 is extended by creating a sub class HDFSServer,
such that the specialized role as HDFS nodes can be imple-
mented. An HDFS node or server can be further classified into
DataNode and NameNode. Thus HDFSServer class can be fur-
ther subclassed into the following classes:

–DataNode container: This is the subclass that extends the
HDFSServer class such that specific functionalities and char-
acteristics specific to DataNode

–NameNode container: Like the DataNode container, the
specific characteristics and functionalities of NameNode are
implemented by NameNode class which is again a subclass
of HDFSServer class.

•TCP Bulk Send Application: This class has been modeled sim-
ilar to the MyApplication class in seventh.cc file of NS-3. The
modification is made to the use of time defined stop; the new
definition stops transmission and closes socket when the entire
packet has been transmitted.

68



•Error Correction and Recovery: This class is used to mimic the
failure of nodes during HDFS runtime as well as subsequent re-
covery of the node during the runtime of HDFS.

•Server selection: This is a helper function that determines the
best DataNode which should be used for data access. While a
default policy has been implemented, the user may modify the
policy as per his/her necessities.

•Algorithm: This helper function calls the data placement algo-
rithm that the user wants to use. By default Hadoop’s algorithm
is used and called by this unction. A user may define his/her
function which implements a different algorithm. In that case, a
user must configure to call the particular function.

•Task placement and dependency calculation: These are two helper
functions. The helper function performs dependency calculation
is called at startup. Post the dependency calculation, the Algo-
rithm function is called; which places the data on the Hadoop
DataNodes. Followed by data placement another helper unction
is called which carries out task placement.

•PacketSink: Besides the Node Container class, PacketSink class
of ns3 has been subclassed to prevent the invocation of stop func-
tion at a scheduled time as NS3 implements. The stop function
is invoked on the completion of reading the entire packet.

Working Details

The flowchart of the working principles of HDFS NS3 is shown in
Figure 3.18. A brief description of the simulator’s work is explained
as follows:

Step1: The topology of the network is defined and DataNode and
NameNode objects are instantiated. TCP/IP is installed and an
IP address is assigned. Dependency between the data units is
calculated.

Step2: A data placement algorithm is invoked, which by user’s config-
uration, calls the Hadoop’s default implementation or a different

69



algorithm’s implementation. The data is placed as blocks in the
DataNodes as per the algorithm invoked.

Step3: Periodic events like heartbeat message, block report, and mak-
ing a node ”dead” to simulate error conditions are scheduled,
such that they may be triggered.

Step4A: Block read requests per DataNode is scheduled. Metadata re-
quest is sent to NameNode which replies by returning the list
of servers that contains the replica of the required block. On
receipt of the list of servers, a packet transfer is requested us-
ing the customized MyApp application. This is queued by the
NameNode.

Step5A: The metadata requests from DataNode are processed by the
NameNode one by one from the queue. A TCP bulk reply is sent
by the NameNode to the DataNode which sent the request, The
reply contains the list of servers that can satisfy the DataNode’s
particular data requirement.

Step6A: The metadata reply on being received by the DataNode, it finds
the best server from the list and a request is sent for the data to
the desired DataNode server.

Step7A: The data serving DataNode server on receipt of data request
sends a MyApp reply mimicking the data block.

Step8A: The requesting DataNode on receiving the data block mimick-
ing packet, removes the concerned block from its read request
queue.

Step4B: Each DataNode sends a MyApp packet mimicking either a
heartbeat message or block report message to the NameNode.

Step5B: NameNode on receiving the messages, records the events

Step6B: On trigger of a node or block failure event, NameNode on re-
ceiving the next Myapp message mimicking as heartbeat or block
report message from the particular DataNode makes the neces-
sary adjustments. On receipt of heartbeat, the ”dead” node is

70



marked unavailable. While on receipt of blockreport, the partic-
ular block is added to the list of free spaces, while deleting the
record of the replica that it held.

Step4C: At specific intervals, rereplication events are scheduled. During
this NameNode examines whether a block is under replicated. If
so, under replicated blocks are rereplicated.

Step9: For ending the simulation, the time based ending of NS3 has
been replaced with the event based ending. On completion of
all scheduled events in all nodes, a Simulator::Stop() function is
called to end the simulation.

Figure 3.18: Flow of execution- HDFS simulation in NS3

Sample Run

A test run of the system is being shown in Figure 3.19 to 3.21. Every
scheduled events have been appended with a cout statement such

71



that the event is displayed at the console. The essential parameters
are tabluted in Table 3.3.

Table 3.3: Essential Parameters

Parameter Value(s)
Number of nodess 16
Number of tasks 8

Number of clusters 1
Number of datasets 12

Number of replicas per datasets 3
Task placement Randomly set
Data placement Randomly set

Re-replication placement random
Error and recovery time Randomly set

ID of block and server made erroneous Randomly set
ID of block and server recovered Randomly set

Heartbeat interval HDFS default
Blockreport interval HDFS default

Server invalidation interval HDFS default
Bad block reclamation interval Random

Re-replication interval 5 seconds

Figure 3.19: Screenshot of sample run of NS3-HDFS extension- 1

3.4 Concept Mapping to Subsequent Chapters

The subsequent chapters discuss broader novel research performed
concerning data placement in distributed systems. In chapter 4, a

72



Figure 3.20: Screenshot of sample run of NS3-HDFS extension- 2

73



Figure 3.21: Screenshot of sample run of NS3-HDFS extension- 3

74



scenario is considered where interdependency data between the files
are not available or could not be computed. In such a case, the de-
pendency could theoretically be computed through similarity in the
content of the files. The feasibility of this idea has been explored in
chapter 4. In chapter 5, the data interdependency based prefetching
technique has been considered. The dependency matrix can be inter-
preted as an adjacency matrix of a dependency graph. This graph
can be used to analyze the file usage pattern. Since a graph is being
used, the opportunity for social network analysis opens up. In this
chapter, social network analysis is applied to solve a particularly in-
tractable problem in dependency graph analysis for file usage pattern
analysis. Data placement using error correction coding is explored
in chapter 6, where an optimized data placement is achieved using a
metaheuristic technique to minimize storage and network usage costs
while maintaining a high data recovery probability.

3.5 Conclusions

In his chapter the important concepts required for understanding the
works described in future have been discussed, Three novel research
experiments have also been discussed[140, 139, 141], to further illus-
trate the concepts.

75



Chapter 4

Examining Data Dependency Relations
Between Text Files from Topic Analysis

4.1 Introduction

In chapter 3, data and replica placement policy based on the concept
of interdependency between data units has been introduced. The
intuitive concept of interdependency has served the data placement
requirements with considerable success as is evident from the works
in literature.

The problem is that data interdependency information may not
always be available and may not be derivable from other sources of
information as well. Without the interdependency data available, the
data and replica placement works proposed in the literature will not
work. Hence, a way to bypass this limitation needs to be designed.

In the absence of interdependency or prior use data, the data place-
ment algorithm only has the contents of the data at its disposal. It
is necessary to find if the contents of the data could be used as a
surrogate for interdependency values.

In this work, text based data is considered. The files being text
files makes it possible to utilize topic modeling on them through the
use of tools such as Latent Dirichlet Allocation (LDA). As discussed
in [83], files of similar types generally exhibit higher interdependency
between themselves. In many works in the literature concerning Natu-
ral Language Processing (NLP) and Information Retrieval (IR), it has
been shown that similarity in topic between two text files is a good
estimate to find the similarity between the files. Hence, it stands
to reason that text files with similar topics could be considered as
highly interdependent one another. Hence, by analyzing the content

76



of the files (topics distributions), a good estimate of interdependency
between a pair of files can be obtained.

There is good interoperability between the tools used in the NLP
domain to those used in the bioinformatics domain (like genetics).
Hence, the method of finding the similarity between files through
LDA acting as a surrogate to interdependency between a pair of files
can be extended to the realm of bioinformatics as well.

In this work, LDA has been used to find similarities between pairs
of files. The topic distribution obtained through LDA is compared for
similarity by the use of statistical distances. The similarity obtained
is used to classify the files thereby establishing the use of LDA based
similarity as a surrogate for interdependency values.

4.1.1 Formal Problem Statement

The problem is formally described in this sub section. For data inter-
dependency, we use the the equation as defined in equation 3.1. How-
ever, the data on dsn.Taskn (data required by task n) and dsi, Taski
(data required by task i) are not available. Hence Inter−dependency(Filen, F ilei)
needs to be defined as follows:

Inter − dependency(Filen, F ilei) = |1−
Dist(Distr(Filen), Distr(Filei))|

(4.1)

Where Distr(Filen) is the topic distribution of text in file Filen and
Distr(Filei) is the topic distribution of text in file Filei. Dist(Distr(Filen), Distr(Filei))
computed the statistical distance between the topic distribution of the
two files, in effect finding how different the two files are in terms of
topics. The statistical distance can range between 0 and 1. Thus,
1−Dist(Distr(Filen), Distr(Filei)) gives the similarity between the
distributions and hence similarity between the files. This similarity
between the file pair is the interdependency between the file pair.

With interdependency calculated through equation 4.1, similar or
interdependent files can be classified. This work [143] aims to figure
out if such a grouping is possible with interdependency calculated
using equation 4.1. If so, then file content’s topic distribution could
be used to determine file interdependency, when relevant data are not
available.

77



4.1.2 Chapter Organization

This chapter is organized into five sections, including this introductory
section. The necessary background concepts have been discussed in
brief in Section two. The justification for the use of LDA instead of
other state of the art language modeling approaches has also been
discussed in Section two. The solution is discussed in Section three,
with an empirical validation of the proposed solution discussed in
Section four. This chapter is concluded in Section five.

4.2 Background Concepts

This work aims to solve the cold start problem in the determination of
file interdependency. While, we have discussed file interdependency in
details in previous chapters. In this section, other important concepts
that will be required in formulation of the solution will be discussed.

4.2.1 Data Dependency through Topic Modeling

During the discussion of data dependency in [86], authors have dis-
cussed the concept of interest locality. Interest locality presents the
idea that data are accessed as a group; the membership in the group
is decided by commonality in the topic of the data. The idea is very
intuitive. Consider a workflow task launched by an nucelar physicist,
a particle physicist and a molecular biologist. At a broader level, the
two physics related tasks would be more topically common than the
task of molecular biologist. At a granular level, the two physics related
tasks would differ topically. It is obvious that the data requirement
by tasks would follow the same pattern.

Text data and certain scientific data (like protein bank, gene bank
data) can be analyzed through topic modeling techniques. These doc-
uments are created based on the concept of latent topics and these
topics can be estimated by techniques such as Latent Dirichlet Alloca-
tion [144]. It is possible to compute similarity between these datasets
by comparing their topic distribution. These concepts will be dis-
cussed in the following subsection.

Considerng the above discussions, it is the aim of this work to
find out if topic modeling could be used as a reliable alternative to

78



data interdependency metric. This becomes important in cases where
file usage data is not available and hence traditional interdependency
calculation is not possible.

Latent Dirichlet Allocation based Topic Modeling

As discussed in the last section, text documents are considered to be
made up of topics. However, these topics are not apparent on the
document. Hence, the distribution of topics on the document has to
be estimated through statistical analysis of the document itself. La-
tent Dirichlet Allocation is such a technique for statistical estimation
of latent topics in a document. Before understanding the estimation
technique, it is necessary to understand the document generation pro-
cess first.

Document Generative Model

The document generative model considers that there is a distribution
of topic associated with the document θ̂kj and there are words which
are associated with the topics ˆϕwk. Hence, a document is formed
by writing the words in them such that both the distributions are
preserved. The generative model is shown in the form of probability
graph diagram below:

Figure 4.1: Document generative model of LDA

In the diagram, α and β are hyperparameters used to adjust the
Dirichlet priors.

79



Estimating the distributions

The document generative model is a theoretical model which gives an
intuition on what the topic distribution entails. In reality. documents
are available and the topic distributions are to be estimated. A cor-
rect estimation, in theory, would be able to generate the document
(in topical sense) through the document generation model discussed
above.

Essentially the topic distribution estimation process is like revers-
ing the document generative process. One way to achieve this is
through Gibb’s sampling as would be briefly described next.

Gibb’s Sampling

In the original work of Blei et al. [144], the generative model in Section
3.1 of the paper has been described by the following equation:

p(w, t) =

∫
p(θ)(

N∏
n=1

p(zn|θ)p(wn|zn)) dθ (4.2)

Equation (4.2) represents the probability of a sequence of words
and topics that would form the document in question. In the R.H.S
of the equation, we have three probability terms. Let us focus on
the innermost probabilities product: p(zn|θ)p(wn|zn). We can note
that it is formed of two independent probabilities: p(zn|θ), which
represents the probability that a topic zn is assigned to document
given distribution of topics in the document; while p(wn|zn) represents
the probability that the word wn is assigned to topic zn.

The interesting point to note here is that p(wn|zn) states that prob-
ability of wn is conditionally dependent on zn only. From section 3
of [144], we know that zn ∼ Multinomial(θ) and θ ∼ Dirichlet(α),
where α is a hyperparameter. Hence, we can see that probability of
wn is conditionally independent on the document or any sub units of
the document and rather is computed for the entire corpus.

We end our discussion on the analysis of the document generative
model noting the following important theorem.

Theorem 1.3.1: Word assignment to a topic is independent of any
particular document and rather computed from the whole corpus.

The above Theorem can be proved as follows:

80



Proof.At the end of Gibb’s sampling estimation iterations:

p(zij = k|z!ij, x, a, b) = ϕ̂wkθ̇k̂j,

where, θ̂kj =
Nkj + α

Nj +Kα
, ϕ̂wk =

Nwk + β

Nk +Wβ

removing constants-K, W , β,α =⇒ θ̂kj =
Nkj

Nj
and ϕ̂wk =

Nwk

Nk

(4.3)
Since θ̂kj and ϕ̂wk are independent, estimation of topic k being

assigned to word w- ϕ̂wk, is independent of j- in this case representing
the document (s- in case of sentences). Hence prooving equation
4.6.

Gibb’s sampling is the process of posterior estimation of topic dis-
tribution; i.e. estimating the topic probabilities given a document.We
now move on to how the topic distribution for a document is deter-
mined through Gibb’s sampling. We are going to closely follow the
work of Porteous et al. [145].

The fundamental equation for Gibb’s sampling based posterior es-
timation for a document j ∈ D, where D is a collection of documents
making the corpus, is as follows:

p(zij = k|z!ij, x, a, b) = 1

Z
akjbwk

where akj = N !ij
kj + α, bwk =

N !ij
wk + β

N !ij
k +Wβ

and Z =
∑
k

akjbwk

(4.4)
Gibb’s sampling consists of many iterations, where variables a and

b are adjusted to find a suitable value of p(zij = k|z!ij, x, a, b)- the
conditional probability that topic z is associated to word i of docu-
ment j. Equation (4.4) defines how this conditional probability value
is calculated for a document. Variable a represents the computation
of assignment of topic k to document j and in equation (4.5), b repre-
sents the computation of assignment of topic k to word w. The third
equation (4.4) is about the computation of normalization constant.

Why LDA

Since, LDA was introduced, there has been a lot of development in the
realm of text modeling techniques. Modern word embedding meth-

81



ods such as Paragraph Vectors (PV) [146] and Sentence Bidirectional
Encoder Representation from Transformers (SBERT) [147] have been
shown to deliver better results than LDA [144]. So the natural ques-
tion is why LDA is being used in this work.

Topic modeling based file interdependency measurement is based
on the concept of measuring similarity between documents. It has
been shown in [148], that measuring senquence alignment between
similar sentences of the document pair gives a better result in terms
of similarity measurement. It has been shown in the same work that
similarity between document pairs measured through such method
with LDA performs better than similarity measured through the tra-
ditional manner with the use of advanced methods like PV.

In this sense, it would appear reasonable to adapt state of the art
techniques such as PV and SBERT to measure similarity through se-
quence alignment of similar sentences and expect better results. How-
ever, our emperical results suggests otherwise. The reason behind this
counter intuitive empirical observation is explained by interpreting the
mathematics behind each method’s work principle.

The mathematical reasons are explained first, followed by the em-
pirical observations in its support.

For a sub unit (sentence in this case) s ∈ j ∈ D, where j is any
document in the corpus, equation 4.4 is modified as follows:

p
′
(zis = k|z!is, x, a, b) = 1

Z ′a
′

ksb
′

wk

where a
′

ks = N !is
ks + α, b

′

wk =
N !is

wk + β

N !is
k +Wβ

and Z
′
=

∑
k

a
′

kjb
′

wk

(4.5)
Considering Theorem 4.2.1, assignment of topic k to word w is not

dependent on whether we are computing for a document or a sub unit
of a document. Hence, we can state the following:

bwk = b
′

wk (4.6)

Thus, we can write the following equation:

Z
′ p

′
(zis = k|z!is, x, a, b)

a
′

ks

= Z
p(zij = k|z!ij, x, a, b)

akj
(4.7)

82



Hence, akj can be derived in terms of aks as follows:

akj =
Za

′

ksp(zij = k|z!ij, x, a, b)
Z ′p′(zis = k|z!is, x, a, b)

(4.8)

From equation 4.8 we can represent the computation of assignment
of topic k to any document j in terms of computation of assignment
of topic k to any sentence s. Alternatively, we can derive aks in terms
of akj as well.

With LDA, we can represent any document in the corpus to any
sub unit of the same or any other document in the corpus that estab-
lishes the relationship between a document and the sub units. This
relationship is established in terms of topic distribution which seman-
tically represents the document or the sub units of the document.
Since LDA can represent a document in terms of its sub units, simi-
larity measurement such as SIMDOC is possible; where sentences of
the document can be used to represent the respective documents.

4.2.2 Statistical Distances and Divergences

Latent Dirichlet Allocation is essentially a probability distribution of
topics in a document corpus. In order to measure similarity of two
document, we need to find how the two probability distributions are
similar to each other. The similarity is indirectly measured from sta-
tistical divergence between the distributions. Statistical diveregence
is a measure of how two probability distributions are different from
one another. A low value of statistical divergence means the proba-
bility distrbutions are similar, which in topic modeling context means
that the two documents are similar in topic. A related concept of
statistical distance is used when symmetric measure is needed; i.e.,
in statistical distance difference between distributions q and p is the
same as difference between distributions p and q. We will use the
Hellinger distance measure in this work as this has been shown to be
appropriate measure for topic modeling purposes in [149].

4.3 Proposed Solution

The solution to the problem discussed in section 4.1 is discussed in
Algorithm 1. The Algorithm pseudocode is followed by the explana-

83



tion of the algorithm.

Algorithm 1 DependencyMatrixPrediction

1: procedure CalculateBEA
2: numTopics← Number of topics
3: trainSet← Collection of text files for training
4: testSet← Collection of text files for prediction
5: model← TrainTopicModel(trainSet, numTopics)
6: numTopicDistr[.]← PredictTopicDistribution(model, testSet)
7: stat distij[.][.]← CalculateStatDist(numTopicDistr[.])
8: RearrangedMatrix← BEA(stat distij[.][.])

9: procedure TrainTopicModel(trainSet,numTopics)
10: bagOfWords← Extract each word from trainSet
11: model← LDA(bagOfWords, numTopics)
12: return model
13: procedure PredictTopicDistribution(model, testSet, numTopics)
14: while num(testSet) ̸= 0 do
15: numTopicDistr[.]← Topic distribution for the test dataset
16: return numTopicDistr[.]

17: procedure CalculateStatDist(numTopicDistr[.])
18: for All elements in numTopicDistr[.] do
19: firstDistr ← each element of numTopicDistr[.]
20: for All elements in numTopicDistr[.] do
21: secondDistr ← each element of numTopicDistr[]
22: stat distij[.][.]← Hellinger(firstDistr, secondDistr)
23: dependencyij = 1− stat distij[.][.]

return dependencyij

24: procedure Hellinger(firstDistr,secondDistr, numTopics)
25: for every i in numTopics do

26: temp← temp+ (
√
firstDistri −

√
secondDistri)

2

27: hellingerDist← 1√
2
temp

28: return hellingerDist

4.3.1 Explanation of the Algorithmic Pseudocode

The algorithm consists of five functions which are described as follows:

•CalculateBEA: This is the main procedure from which other pro-
cedures are invoked as required. The algorithm’s main purpose
is to produce a clustered dependency matrix such that it could
be used by data placement algorithms.

•TrainTopicModel: This is first procedure to be called by Calcu-
lateBEA. This procedure takes the number of topics and collec-

84



tion of training data as inputs and is used to train a topic model
using LDA.

•PredictTopicDistribution: This is second procedure to be invoked
by CalculateBEA. This procedure takes the trained model, col-
lection of new datasets, and the number of topics as input. The
probability distribution of all the topics as per the input number
of topics is calculated for each dataset.

•CalculateStatDist: This is the procedure that is used to invoke
a procedure Hellinger, which calculates the Hellinger distance
between all pairs of datasets. This procedure accepts the result
of the Hellinger distance and computes the dependency between
the datasets.

•Hellinger: This procedure computes the Hellinger distance be-
tween two topic distributions. In our algorithm CalculateStat-
Dist procedure invokes this procedure with two topic distribu-
tion. The Hellinger distance is calculated and returned to the
invoking procedure.

In calculating the BEA rearrangement, an interdependency matrix
needs to be computed. Typically such a matrix would be calculated
from the equation defined in equation 3.1, chapter 3.2. However,
as discussed in section 4.1 of this chapter, use of such equation is
not possible in this case. Instead, equation 4.1 defined in the in-
troductory section of this chapter is used. For this purpose topic
distribution of files is required, which requires training LDA model,
which is accomplished by TrainTopicModel function which returns
the trained LDA model. Once the trained model becomes available,
the topic distribution of the files in the test set is inferred through the
PredictTopicDistribution function. Once the topic distribution for
each file is available, the statistical distance, determined by squared
Hellinger distance is determined through CalculateStatDist, which
in turn uses the Hellinger function. Once the Hellinger distance is
available, the interdependency between the files is found by subtract-
ing the distance from the maximum possible distance. Once all in-
terdependencies are available, the dependency matrix can be created
followed by BEA based file placement.

85



Once the BEA rearrangement is available, the files can be grouped
into separate clusters.

4.4 Empirical Observations

To test the validity of the solution proposed in the last section, a set
of experiments have been designed. In this section, the description
of the experiments and their results along with the discussion on the
results are discussed.

For the experiment, the BBC news article dataset provided by
[150] has been used. The experiments aim to determine the clustering
ability of topic distribution based file interdependency measurement.

4.4.1 Setup

The text files in the BBC dataset consist of five top level categories:
Business, Entertainment, Sports, Technology, and Politics. The Sports
category is further subcategorized into Athletics, Cricket, Football,
Rugby, and Tennis. These are considered the true clusters. Hence, a
group of files relating to business has high interdependency between
themselves, while a low interdependency between files of other groups.

The LDA topic distribution of each file is computed using MATLAB’sTM

text analysis toolbox. On obtaining the topic distribution for each file,
statistical distance is computed in Python for each pair of files. An in-
terdependency matrix is created from the interdependence computed
between all pairs of files. Finally, BEA is applied to the matrix to
rearrange the files such that highly interdependent files are adjacent.

The essential setup parameters are given in Table 4.1.
The parameters which are not included in the table are deemed

to take the default value. Classification and clustering of high level
datasets, namely Business, Entertainment, Sports, Technology, and
Politics, use 10, 20, and 30 datasets (files) from each high level cate-
gory for testing and another 10, 20, and 30 datasets from each high-
level category for training. The individual categorization of files is
removed by mixing them. This is to ensure that the algorithm is only
able to classify and cluster the files by the interdependency metric.
After application of BEA on the interdependency matrix, ten ele-

86



ments(dataset ID) in every iteration are extracted from the resulting
rearranged interdependency matrix called clustered matrix. We mea-
sure what percentage of datasets in the clusters are actually from the
same high level categories. For 100% accuracy, BEA is expected to
cluster all datasets from a high level category in their respective clus-
ter. For example, if datasets 1 to 30 are from the business category,
then for 100% accuracy, we will be able to extract three groups of ten
datasets from the BEA rearranged clustered matrix, which belongs
exclusively to the business category. We call this measure Correct
Predictions. Further, a confusion matrix has been presented to un-
derstand the prediction errors made by the developed system.

For an experiment involving Sports category subcategorization,
apart from the above measure, we also measure whether the sub-
categories have also been correctly clustered in addition to the high
level categories.

4.4.2 Results and Discussions

The empirical observations are presented in terms of confusion matri-
ces in Tables 4.2, 4.3. The prediction accuracy and cluster wise data
layout is presented in Tables 4.4 and 4.5.

The interpretation of the results is as follows:

•For high level categorization, there is a cluster prediction accu-
racy of 72%, 93%, and 92%, for 10, 20, and 30 datasets per cate-
gory respectively. The cluster prediction accuracy validates that
our proposed algorithm could be used for grouping files based
on their topic; thereby making it suitable for consideration as an
alternative to the interdependency matrix.

•In the sports category, further fine grained subcategory classi-
fication has been performed. Cluster prediction at a granular
level is at an average of 88.89%. Most of the category specific
predictions are at 90% accuracy. Hence, the proposed algorithm
is capable of producing correct grouping even at a granular level.

•With the rise in the number of datasets, the algorithm’s predic-
tion accuracy gets better.

87



•Misclusterings are at border level, i.e., whenever a wrong cluster
is assigned, it is in the neighborhood of the correct cluster. Thus,
slight fine tuning could be applied.

•Confusion matrices also corroborate the cluster prediction accu-
racy results by having very few group mispredictions- both at
the high and granular level.

88



Table 4.1: Important setup parameters
Parameters Values

Total number of datasets (per category) training:
each top level category

10, 20, 30
sports subcategory classification

each subcategory: 10
testing:

each toplevel category
10, 20, 30

sports subcategory classification
each subcategory: 10

Number of Categories top level categoriees
5

sports subcategory classification
9

4 for high level category
5 for Sports subcategory

Number of topics 50
Short words ≤ 2 characters
Long words ≥ 15 characters

Table 4.2: Confusion Matrix for 10 dataset sports subcategory classification
Predicted

Athletics Cricket Football Rugby Tennis Business Entertainment Politics Tech
Athletics 9 1 0 0 0 0 0 0 0
Cricket 0 9 1 0 0 0 0 0 0
Football 0 0 9 1 0 0 0 0 0
Rugby 0 0 0 9 1 0 0 0 0

A
ct
u
a
l

Tennis 0 0 0 0 9 1 0 0 0

Business 0 0 0 0 0 9 1 0 0
Entertai- 1 0 0 0 0 0 8 1 0
nment
Politics 0 0 0 0 0 0 0 9 1
Tech 0 0 0 0 0 0 1 0 9

89



Table 4.3: Confusion matrix for 10, 20 and 30 dataset
10 dataset per category

Predicted
Business Entertainment Politics Sport Tech

Business 7 0 0 1 2
Entertain- 3 7 0 0 0
ment

A
ct
u
al

Politics 0 2 7 1 0

Sport 0 0 3 7 0
Tech 0 1 0 1 8

20 dataset per category
Predicted

Business Entertainment Politics Sport Tech
Business 19 1 0 0 0
Entertain- 1 18 1 0 0
ment

A
ct
u
al

Politics 0 0 19 1 0

Sport 0 1 0 18 1
Tech 0 0 0 1 19

30 dataset per category
Predicted

Business Entertainment Politics Sport Tech
Business 25 0 0 1 4
Entertain- 1 29 0 0 0
ment

A
ct
u
al

Politics 0 1 29 0 0

Sport 1 0 1 28 0
Tech 3 0 0 1 26

90



Table 4.4: Clusterwise Dataset layout and Prediction Accuracy
10 dataset sports subcategory classification

Cluster ID Dataset ID
Correct Predictions

Cluster 1 88 90 66 87 86 85 84 83 82 81 90.00%
Cluster 2 80 79 78 77 76 89 75 74 73 72 90.00%
Cluster 3 71 70 69 68 67 1 65 64 63 62 80.00%
Cluster 4 61 60 59 58 57 56 55 54 53 52 90.00%
Cluster 5 51 50 49 48 47 46 45 44 43 42 90.00%
Cluster 6 41 40 39 38 37 36 35 34 33 32 90.00%
Cluster 7 31 30 29 28 27 26 25 24 23 22 90.00%
Cluster 8 21 20 19 18 17 16 15 14 13 12 90.00%
Cluster 9 11 10 9 8 7 6 5 4 3 2 90.00%

Overall 88.89%
10 dataset

Cluster ID Dataset ID Correct Predictions

Cluster 1 47 20 48 46 45 44 43 42 41 40 80.00%
Cluster 2 37 36 34 38 35 33 31 30 29 28 70.00%
Cluster 3 27 26 25 24 23 22 21 19 39 15 70.00%
Cluster 4 18 17 16 3 14 13 11 10 9 12 70.00%
Cluster 5 50 8 49 32 7 6 5 4 1 2 70.00%

Overall 72.00%
20 dataset

Cluster ID Dataset ID
Correct Predictions

Cluster 1 99 100 96 98 97 71 95 94 93 92 90%
Cluster 2 91 90 89 88 87 86 85 84 83 82 100%
Cluster 3 81 80 79 78 77 76 75 74 73 72 90.00%
Cluster 4 40 70 69 68 67 66 65 64 63 62 90%
Cluster 5 61 60 59 58 57 56 55 54 53 52 90%
Cluster 6 51 50 49 48 47 46 45 44 43 42 1000%
Cluster 7 41 18 39 38 37 36 35 34 33 32 80%
Cluster 8 31 30 29 28 27 26 25 24 23 22 100%
Cluster 9 21 20 19 1 17 16 15 14 13 12 90%
Cluster 10 11 10 9 8 7 6 5 4 3 2 100%

Overall 93.00%

91



Table 4.5: Clusterwise Dataset layout and Prediction Accuracy (Contd...)
30 dataset

Cluster ID Dataset ID
Correct Predictions

Cluster 1 148 150 149 147 8 9 144 143 142 141 80.00%
Cluster 2 139 138 11 146 136 136 135 134 133 132 90.00%
Cluster 3 131 130 129 128 127 126 10 124 123 122 90.00%
Cluster 4 121 120 119 118 117 116 115 114 113 112 90.00%
Cluster 5 111 110 109 108 107 106 105 104 103 102 100.00%
Cluster 6 101 100 99 98 97 96 95 1 93 92 90.00%
Cluster 7 91 90 89 88 87 86 85 84 83 82 90.00%
Cluster 8 81 80 79 78 77 76 75 74 73 72 100.00%
Cluster 9 71 70 69 68 67 66 65 64 63 62 100.00%
Cluster 10 61 60 59 58 57 56 55 54 53 52 90.00%
Cluster 11 51 47 49 48 47 46 44 44 43 42 100.00%
Cluster 12 41 40 39 38 37 36 35 34 33 32 100.00%
Cluster 13 31 30 29 28 27 26 25 24 23 22 90.00%
Cluster 14 21 20 19 18 17 16 15 14 13 12 100.00%
Cluster 15 137 94 145 146 7 6 5 4 3 2 70.00%

Overall 92.00%

4.5 Conclusions

Interdependency between datasets is the key to good file placement
in distributed systems. However, when file usage information is not
available, an alternative method is required. In this work, such an
alternative method using topic modeling has been proposed for text
files. The algorithm has been empirically validated to produce good
group predictions based on topic analysis.

It is expected that the proposed algorithm could be used in other
data types which have analytical inter operability with text datasets
like bioinformatics datasets. It would be interesting to adapt the
algorithm for the specific needs of such datasets. This work has limi-
tations on its applicability in terms of data types. A workaround for
multimedia data types should be sought.

92



Chapter 5

A Social Network Analytics Based
Dependent File Pre-fetching in
Distributed System

5.1 Introduction

In the earlier chapters, the necessity for the localization of data in a
distributed computing environment has been established. In Chapter
3, we discussed the concept of inter dependency of data and how
this concept could be used to formulate an effective data localization
scheme. However, we have discussed the concept of data localization
and placement in terms of real time data placement only.

While data placement minimizes data migration at task execution
time and improves system performance, substantial time would have
to be spent to localize the data before any task execution could begin.
This presents the scope for further improvement by attempting to
minimize the wait time that a task has to endure before beginning its
execution.

In Chapter 2, prefetching techniques have been discussed which
are aimed at retaining a subset of the data resident at the local site
during a previous execution. With an accurate prediction of file use
in the future; the expectation is that the necessary files would be re-
tained at the local site. These will be the files that will be required
during the execution of the task(s) in the future. Thus, with data al-
ready present at the site, the tasks immediately begin their execution
without waiting for initial data placement, and considering accurate
prediction, no further data migration would be necessary during task
execution.

In the literature, different solutions of this problem have been dis-

93



cussed. Different methods including data mining, graph theory, etc
have been utilized to propose highly accurate prediction methods of
future file usage and file prefetching based on it.

One particular method of choice is through the analysis of a data
dependency graph. Chapter 3 discusses how data inter dependency
can be calculated between pairs of data units (files). Such computed
metric between every pair of files may be represented in the form
of a graph; such that the vertices of the graph represent the files,
while the edges between each pair of vertices represent the dependency
between the files. Such a graph may be analyzed to predict the inter
dependency between files.

While there are numerous other methods proposed in literature
apart from graph theory, the graph theoretic approach offers numer-
ous analytical tools which are worth exploring. Social networks are
the interpretation of a graph as representing the social bond between
individuals in a society. Different applications of social network ana-
lytics have been discussed in the literature survey (Chapter 2). Here
an important concept of social network analysis and indeed graph the-
ory has been discussed in connection with the improvement of data
inter dependency based data prefetching in distributed systems.

5.1.1 Chapter Organization

The contents of this chapter are organized into seven sections includ-
ing this introductory section. The problem that is being addressed
through the work described in this chapter is discussed in Section
2. The use of social network analysis in addressing the problem and
the associated hypothesis is discussed in Section 3. The hypothesis
is empirically verified; the empirical observations and the associated
details on the setup of the experiments are discussed in Section 4. On
confirmation of the hypothesis, a concrete algorithm is proposed as a
solution to the problem. The details of this algorithmic solution are
discussed in Section 5. The algorithm is validated empirically with
another set of experiments. This experimental setup and the empiri-
cal observations are discussed in Section 6. The chapter is concluded
in Section 7.

94



5.2 A Discussion on the Problem

Before introducing the Social Network Analysis and its application in
the solution of our problem, a discussion on the problem being solved
is presented in this section.

Before discussing the problem, it is vital to understand the three
steps generally followed in a prefetching algorithm:

•Dependency graph formation: The interdependency between each
pair of files is computed. These are arranged in terms of a depen-
dency matrix, where each cell in the matrix represents the de-
pendency between the corresponding pair of files. A dependency
graph can be created by interpreting the dependency matrix as an
adjacency matrix. A pair of files are determined interdependent
if they are requested within a fixed time interval (determined by
a threshold). The number of such requests is the dependency
between the two files.

•Partitioning the dependency graph: The dependency graph may
be a singly connected component or multiple connected compo-
nents. Some of the edges are representative of significant de-
pendencies between two files, which are representative of a file
usage pattern. While others are insignificant and incidental and
do not represent a file usage pattern and are likely a result of
noise. Since these noisy dependencies distort the actual file us-
age pattern, they must be omitted to reveal the actual file usage
pattern and hence an accurate prediction. A threshold is deter-
mined and edges having weight above this threshold value are
deemed significant dependencies; an edge having a lower weight
is considered as an incidental dependency and by the above logic
is discarded from the graph. The deletion of these edges may
result in partitioning the graph into one or more disconnected
components.

•Choosing the correct set of files: The set of vertices in each of the
components obtained from the above process represents a set of
highly interdependent files. The important criterion is to deter-
mine which of these set(s) is/are to be prefetched. Generally, a
set of files that have been requested most recently or often among

95



the competing sets, is the one that is prefetched.

The performance of a dependency graph based solution is depen-
dent on the choice of the value of different threshold values. The most
important threshold value to be determined is the one that is used to
partition the graph into disconnected components, among which the
set of nodes (representing the files) of one of the subgraphs is selected
for prefetching.

The value of graph partitioning threshold is usually passed as a hy-
per parameter to the prefetching algorithm. Hence, the performance
of the prefetching algorithm depends on the computation of a good
threshold value. A lower threshold will include too many files, many
of which may represent noises. A higher threshold would reject inter-
dependencies among files that could potentially be used in the future.
Indeed, an accurate future prediction is contingent upon the selection
of an accurate threshold value, which can filter the appropriate file
usage pattern.

The problem can be summarised as follows:

Definition 2. Problem Statement: Find a threshold value that can
partition the dependency graph such that each subgraph contains the
set of highly dependent files. The vertices of these subgraphs each
represent a fie usage pattern among which the most relevant one is
chosen.

The above problem can be defined mathematically as follows:

Find threholdv,

partitions G(V,E)− > G1(V,E), ..., Gn(V,E)

WeightEdge(Ean,Eam) > WeightEdge(Ean,Ebm)

(5.1)

The above equation describes an optimization problem that finds
an optimal threshold value. This threshold value is used for partition-
ing the dependency graph into disconnected components, such that
the edge weight between two vertices in the same component is al-
ways greater than the edge weight between two vertices in separate
components. This ensures that vertices in each of the components
represent the set of files that are historically highly interdependent.

Ean and Eam are two edges n and m, each in the same community
a; while, Ean and Ebm are two edges n and m, each in the different
community a and b respectively.

96



Once the set of highly dependent files being partitioned, the only
task left is to select one or more of these sets of files which are to be
prefetched

5.2.1 Scope of Work

As discussed above, there are three steps involved in the prefetching
process. In this work, the second step of determining the threshold to
partition the graph and determine sets of highly interdependent files
is being considered. This work explores the possibility of using social
network based analytics such that graph partition as per equation 5.1
is satisfied [151].

5.3 Social Network Analytics and its Applications

in Current Problem

This chapter is aimed at the application of a social network concept
in the domain of data prefetching in distributed systems. Social net-
works, a relevant concept, and its application in the data prefertching
problem are described in this section.

A social network is a representation of social structure wherein
interactions between social entities (individuals, organizations, and
as we will describe in this case; data) are captured in the form of
graphs having a certain structure. The vertices of the graph represent
the social entities, while the edges define the interaction between the
social entities.

A graph is considered a social network if it displays the charac-
teristics of a small world network. Small world networks are graphs
which tend to contain cliques or near cliques. Such structures are
prone to community formation, i.e., groups of vertices having high
inter connections amongst themselves, but few connections to other
vertices in the graph. Such communities of vertices are linked through
one or few edges; such edges are called local bridges or weak ties. The
identification of local bridges is an important activity in social net-
work analytics, not only because communities can be isolated by the
identification and deletion of such edges but also because such edges
have a special purpose of their own. Mathematically, a graph is de-

97



termined to be a small world network, if its Omega value is as close
to 0 as possible.

The weak ties are identified by applying the Girvan Newman al-
gorithm [152]. This algorithm computes the betweenness centrality
of all edges of the graph. The edges having a high betweenness cen-
trality are deemed to be local bridges the removal of which leads to
partitioning of the graph.

Betweenness centrality is the most important metric to be used in
this work. Hence we summarize as follows:

•Edges having high betweenness centrality are the edges that con-
nect the communities of a graph

•Deletion of such edges will lead to disconnected components.

•Each of the groups of vertices, obtained by deletion of high be-
tweenness centrality edges, are very densely connected amongst
each other.

•The betweenness centrality of edges within a community is less
than that of local bridges.

The usefulness of social networks spans across different disciplines:
From sociology, criminology, health care, linguistics, etc. The utility
of social network analysis in computer science has been studied in
the literature. Leaving aside the controversial analytics by the social
network platforms, recommendation systems utilize social network
analytics for more fine tuned recommendations.

One interesting work in this regard is [153]. This work studied
the Amazon copurchase dataset. The objective of the paper was to
determine whether the item on demand had any correlation with some
of the graph metrics: one of them being betweenness centrality. It was
found that there is a good correlation between betweenness centrality
and the demand for an item.

There is a strong similarity between the Amazon copurchase dataset
and the file dependency dataset. Both the cases are represented as
a graph. Vertices, in the case of the Amazon dataset, represent the
items on sale, while in the case of the file dependency dataset, vertices
represent files. The edges in the Amazon dataset represent the cop-
urchase between the items, i.e., how often two items are purchased

98



together. Similarly, in the file dependency dataset, edges represent
how often the two files are requested together by a task.

Owing to the similarity in the two datasets, it makes sense that like
in the study with Amazon dataset, the file interdependency problem
may exhibit the same pattern that higher the betweenness centrality
of an edge, the higher would be its weight thereby higher the interde-
pendency between the files.

Further, intuitively files in a scientific workflow tend to form com-
munities; like physics related files, biology related files; the physics
sub communities like particle physics, astrophysics, etc. Hence, the
dependency graph of these files is also likely to exhibit the small world
network structure described earlier, making it a good candidate for
social network analysis.

The above intuition can be rewritten as the following hypothesis:

Hypothesis 1. The edges having the highest betweenness centrality
are the edges having the highest weights.

Since, the problem stated above is concerned with segregating de-
pendency (represented as edges) based on the weight of the edge,
hence by the above hypothesis, high betweenness could be exploited
to solve the stated problem.

The next section is aimed at empirically verifying the validity of the
hypothesis. After verifying the hypothesis, an algorithmic solution to
the problem will be proposed.

5.4 Empirical Observations on SNA Hypothesis

The solution proposed in the next section is contingent upon the val-
idation of hypothesis proposed in the last section. A hypothesis in
social networks analytics can be validated through empirical observa-
tions only. Hence, an experiment has been set up to study the validity
of the stated hypothesis in the context of data interdependency.

Validation of the hypothesis would enable the use of the metric of
betweenness centrality to select the group of files to be prefetched,
thereby obtaining a solution to finding an appropriate threshold for
graph partitioning and file selection.

99



5.4.1 Description of the Experiments

For this experiment, we consider two synthetic workflows: MON-
TAGE and CYBERSHAKE from the Pegasus synthetic workflow col-
lection. This synthetic workflow collection has been chosen due to it
being an established dataset of repute [154]1.

The dataset consists of a record of executable tasks and the files it
requires during its execution. The record could be inverted to create
a dataset consisting of a collection of files, each with its list of tasks
that have requested the file for its execution.

The two specific workflow from the collection has been chosen due
to their opposite characteristic. In MONTAGE, the number of files
far outnumber the number of tasks. A lower task to file ratio makes
it more likely that two or more files will share a common task. Hence,
a dense and information rich dependency matrix is expected. In the
case of CYBERSHAKE, the inverse is true. The number of tasks are
almost same as the number of files. Thus, there is a considerable
possibility that a pair of files are unlikely to be requested by a com-
mon task; such pairs of files are likely to exhibit no interdependency.
Hence, due to such a low task to file ratio, a sparse, information poor
dependency matrix could be expected. We wish to test the validity
of our hypothesis on a condition that is likely to give a poor outcome
so that the limitations could be tested as well.

Table 5.1: Node to Edge Ratio of Main Disconnected Component Graph

MONTAGE CYBERSHAKE
0.0081 0.32932

The list of tasks per file dataset allows the computation of data
interdependency between each pair of files. The mathematical formula
for this computation is as follows:

Inter − dependency(Fa, Fb) = Number(S(Fa) ∩ S(Fb)) (5.2)

Where, S(Fa) and S(Fb)) are the the list of tasks that requires file Fa

and Fb respectively.

1https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator –deprecated, this
page links to a new version

100



Fa and Fb are any two files, whose interdependency is being cal-
culated. Interdependency is the number of tasks that have requested
both files. Hence, such files are common in both file lists or more
appropriately sets.

For a collection of files F1 to Fn, the dependency between all files
can be arranged in the form of a matrix called dependency matrix.
The matrix is represented as follows:

F11 F12 F13 . . . F1n

F21 F22 F23 . . . F2n

. . . . . . . . . . . . . . . . . . . . . .
Fd1 Fd2 Fd3 . . . Fdn


Where, Fdn = Number(S(Fd) ∩ S(Fn))

(5.3)

The matrix in equation 5.3 can be used as an adjacency matrix
to create a graph; called dependency graph, the vertices of the graph
being the files, and the value in each cell of the matrix represents the
weight of the edge between two files.

It is this graph that needs to be partitioned through deletion of
edges whose weight is lower than a threshold.

The betweenness centrality of each edge of the graph can be cal-
culated as well using the following formula:

g(v) =
∑
s̸=vt

σst(v)

σst
(5.4)

In equation 5.4, we are finding the betweenness centrality of edge
v, which is an edge connecting vertices representing files; Fs and Ft.
σst(v) is the total number of shortest path from node s to node t; σst
is the number of shortest path between nodes s and t, through edge
v.

Edges are ranked according to their betweenness centrality value.
More than one edge can have the same betweenness centrality value.
In such a case, the weight of the edge is used to rank the edges.

A separate ranking is performed based solely on the weight of the
edges. A higher correlation between the ranks validates the stated
hypothesis.

101



5.4.2 Results and Discussions

The experiments performed below measures the correlation between
the weight and betweenness centrality of each edge. Based on their
decreasing value of weight and betweenness centrality, the edges are
ranked. Edges sharing the same betweenness centrality value are
ranked based on their weight. The two rankings are measured for
their Kendall Tau correlation

The Kendall Tau correlation measure for MONTAGE is presented
in Figure 5.1, while the same measure for CYBERSHAKE is presented
in Figure 5.2.

Figure 5.1: Tau Correlation for each incremental betweenness values in MONTAGE

The Kendall Tau correlation in the case of MONTAGE as presented
in Figure 5.1 is more clear. For subgraph 1, there is a steady decline in
Tau correlation from perfect correlation in the first (highest) between-
ness centrality value, which abruptly drops to the negative correlation
between 0.002 to 0.001. The negative correlation remains steady for
some more betweenness centrality value, with a sharp rise to positive

102



Figure 5.2: Tau Correlation for each incremental betweenness values in CYBER-
SHAKE

correlation towards the least betweenness centrality value (0). How-
ever, overall, the first few betweenness centrality values (the highest
betweenness centrality value) have a very high correlation, validat-
ing hypothesis stated earlier. Subgraph 2 also confirms the same. In
the case of CYBERSHAKE, the correlation between betweenness cen-
trality value and edge weight is confirmed by some of the subgraphs,
while other subgraphs show anomalous correlation. This anomalous
results could be attributed to the sparse information scenario pre-
sented above. As will be clear in subsequent discussions, this sparsity
would have a detrimental effect on the application of the solution.

While Figures 5.1, 5.2, validates the hypothesis, two more results
are presented to gain further insights into the relaton between be-
tweenness centrality and edge weight.

While, we have received an overall picture of the correlation from
Figures 5.1, 5.2, the quartile deviation plots further illustrate the
relationship between betweenness centrality and edge weight. Eight
quartiles have been considered, each quartile representing 1/8th of
the total value. From Figure 5.3 in CYBERSHAKE, the quartile
behavior among the 23 subgraphs is quite erratic. However, a common
trend of rising deviation with higher quartiles could be observed. The
rising deviation can be observed in MONTAGE as well, though quite
uniformly between the two subgraphs as suggested by Figure 5.4.

103



Figure 5.3: Quartile Deviation plot in case of MONTAGE

Figure 5.4: Quartile Quartile plot in case of CYBERSHAKE

In summary, the empirical observation suggests that in an infor-
mation dense dataset, betweenness centrality could be used as an
effective metric for the solution to the graph partitioning problem as

104



will be discussed next, as per Hypothesis 1.

5.5 Proposed Solution

5.5.1 Solution Calculations, Intuitions and Algorithm

We have established the validity of the hypothesis from the empirical
observations presented in the last section. We also obtained some
insights into the relation between edge betweenness centrality value
and edge weight in a file dependency graph. We are in a good position
to exploit the insights gained to propose a solution to our problem.

Calculating the Threshold Value

According to the validated hypothesis 1, the highest betweenness
value contains the highest weighted edges. Thus the threshold can
be calculated by the equation below:

threholdv =

∑
e∈Betweenness1

Weight(e)

|Betweenness1|
(5.5)

Equation 5.5 finds threshold by finding the average weight of all
the edges having the highest betweenness centrality value. It is this
threshold value, threholdv, which is used to delete edges and partition
the graph such that the optimization problem described in equation
5.1 is satisfied.

The intuition behind the arithmetic mean based solution lies in the
fact that the edges having the highest betweenness centrality value
are the most significant edges (determined by weight). Ideally, all
the significant edges would exhibit the highest betweenness centrality
value. However, in reality, some insignificant edges also exhibit high
betweenness centrality value and vice versa. Thus, the mean weight of
the edges in the highest betwweenness centrality value that finds the
weight at which significant edges can be seperated from the insignif-
icant ones. The collection has an imbalance , where the significant
weights outnumber the insignificant edges. Thus, arithmetic mean,
having a bias towards the dominant class, is the most suitable mean
to partition the collection into significant and insignificant edges. This

105



value is considered closest to the ideal threshold weight. Thus, signif-
icant edges in other betweenness centrality values are included while
discarding the insignificant edges with high betweenness value.

Graph Partitioning Algorithm

Having presented with the necessary background for the solution, we
present our graph partitioning algorithm (Algorithm 2).

Algorithm 2 Calculating Threshold for Graph Partitioning

1: procedure Calculating Theshold(G,G.edge weight)
2: bc dict← dictionary ▷ Declaring a dictionary
3: sorted bc dict← dictionary ▷ Declaring a dictionary
4: edge list← list ▷ Declaring a list
5: Cumm Weight← 0 ▷ Declaring a variable
6: count← 0 ▷ Declaring a counter variable
7: while ∃e ∈ G do
8: bc(e)← Find BC(e)
9: if bc(e) ∈ bc dict.key() then
10: bc dict.value(bc(e))← append(e)

11: if bc(e) /∈ bc dict.key() then
12: bc dict.key()← bc(e)
13: bc dict.values(bc(e))← append(e)

14: sorted bc dict← Sort(bc dict)
15: edge list← sorted bc dict[0]
16: while ∃e ∈ edge list do
17: Cumm Weight← Cumm Weight+ edge weight(e)
18: count← count+ 1

19: thresholdv ← Cumm Weight/count
20: return(thresholdv)

Algorithm 2 receives the dependency graph G and the weight of
the graph’s edges G.edge weight as its input. It creates a dictionary
bc dict with key as the betweenness centrality values and value as the
list of edges corresponding to the key’s betweenness centrality value.
The betweenness centrality of each edge in the graph is computed
by function Find BC(e), which implements the betweenness central-
ity formula. The edge is listed at the appropriate list in the bc dict
dictionary, depending on the betweenness centrality value computed.

The bc dict dictionary is sorted based on the key value, i.e., the be-
tweenness centrality value. The dictionary is stored in sorted bc dict

106



dictionary such that the key is sorted from highest to lowest between-
ness centrality value. The list of edges of the first and therefore the
highest betweenness centrality from sorted bc dict dictionary is se-
lected. This list is assigned to edge list.

Once the list of edges is available, their weights are summed up
and the average of their weight is returned as the threshold value for
graph partitioning: thresholdv. This returned threshold value is used
as an input in Algorithm 3, used to partition the dependency graph
is discussed next.

Algorithm 3 Algorithm for Graph Partitioning

1: procedure Graph Partitioning(G,G.edge weight, threholdv)
2: selected files← list
3: while ∃e ∈ G do
4: if G.edge weight(e) < threholdc then
5: Delete edge(e)

6: if G.multiple components == True then
7: selected G← Select subgraph(G)

8: if G.multiple components == False then
9: selected G← G
10: for vertices ∈ selected G do
11: selected files← nodes

The inputs to Algorithm 3 are the dependency graph G, weight of
the graph’s edges G.edge weight and the threshold thresholdv.

Graph G is to be partitioned or its edges are to be deleted. The
weight of each of the edges of the graph is compared to thresholdv; if
the weight is found lower than the threshold, the edge is deleted. After
processing all the edges, the graph is checked if it has been partitioned
into disconnected components. If multiple disconnected components
are present, one among them is chosen. The specific algorithm for the
choice of the component is beyond the scope of this work. The reader
may choose any algorithm existing in literature for the purpose. If the
graph is a single connected component, there is nothing to be done.
The selected graph or the single connected component graph is stored
in selected G. The vertices of the graph selected G are selected as
the set of selected files to be prefetched.

107



5.6 Empirical Observations on Performance of Pro-

posed Solution

We present the empirical observations illustrating the performance of
our proposed algorithm. The result of the algorithm is to produce
a set of files to be prefetched, which it deems to be useful in the
future. The performance of the algorithm is determined based on the
accuracy of this prediction.

For test purposes, we have earlier split both MONTAGE and CY-
BERSHAKE datasets into test and train sets. The training sets are
the tasks and files which have already been executed and are to be
analyzed to detect a file usage trend. The test set contains tasks that
are to be executed in the future. The test set consists of a group of
tasks, each task containing a list of files that it will require. The task
in the test set is deemed to be the task that is to be scheduled for ex-
ecution in the future. The proposed algorithm’s prediction accuracy
is measured by how the file requirements of these tasks are predicted
and hence prefetched by the algorithm in advance.

5.6.1 Experiment Details

The objective of our experiment is to test the performance of our
algorithm on the following two metrics:

•Hit Ratio: Also known as the number of true positives returned
on a test set. The purpose of this test is to measure the pre-
diction accuracy of the algorithm. A higher hit ratio indicates
that tasks in the test set can meet its file demands from the set
of prefetched files; hence, less data migration would be required.
This translates to less execution waiting time and improved task
execution performance. This metric tests the algorithm’s perfor-
mance in terms of ability to localize the data.

For each task, hit ratio is calculated by counting the number of
files that the task requires and that is prefetched by the algo-
rithm. An average of all the tasks is reported.

•File under usage: A high hit ratio can also be obtained by
prefetching every file in the training set without making any

108



intelligent predictions. Hence, it is necessary to observe what
percentage of the files prefetched are utilized by the tasks in the
future. If there are many files which are not being used by the
tasks, then these have been unnecessarily prefetched and they
only waste storage space. An intelligent algorithm would exclude
files that are unlikely to be used. If a low file under usage is ob-
served then the algorithm is deemed efficient in respect of storage
space utilization. Another way to look at files under usage met-
rics is a measure of false positives. This metric ensures that the
algorithm does not achieve the primary objective of localization
in an inefficient manner.

For each task, we determine, how many of the prefetched files
have not been used. A percentage of the unused file per task is
calculated and an average of all the tasks is reported.

The details of the experiment, performed using Python3, is being
presented for ease of reproduction as follows:

•The interdependency between files in the training set is deter-
mined and arranged in terms of a dependency matrix. For sim-
plicity, we do not consider the time of request of the file by the
tasks.

•Using Python Networkx’s graph library, we have created a weighted
graph using the dependency matrix created above. The graph’s
vertices represent the files of the training set, while the edges rep-
resent the interdependency, the weight determining the amount
of interdependency.

•The graph has disconnected components; only the components
with more than one node are considered.

•For each subgraph, the betweenness centrality of each edge is
computed.

•A dictionary keeps the list of edges for each corresponding be-
tweenness centrality value. The dictionaries of each of the graphs
are merged into one dictionary. The dictionary is sorted based
on the betweenness centrality value in descending order of the
value of the keys; thus the highest betweenness centrality value
is the first entry in the dictionary.

109



•The maximum weight among all the edges is determined.

•The weight of each edge in the highest betweenness value is used
to calculate the threshold by equation 5.5

•Our set of prefetched files, obtained from the computed threshold
is compared against graph partitioning based on various thresh-
olds: 0%, 1%, 2%....10%, 20%...80%, 90% and 100% of the maxi-
mum edge weight. This means that at each case of nth threshold,
edges of weight below n×maximum edge weight

100 are deleted and the
graph is partitioned. 0% threshold includes all the files in the
training set and has the highest theoretical hit ratio possible.

•The graph is partitioned based on each of the threshold values
calculated, creating multiple disconnected components.

•File requirement of each task in the test set is computed on all
the disconnected components created by the threshold based par-
titioning. The best results among all the partitions based on hit
ratio and file under usage metrics are reported for every thresh-
old.

We follow the above steps for both CYBERSHAKE and MON-
TAGE workflows. Note that we conduct the experiment from the
point of view of a single site of the distributed system.

5.6.2 Results and Discussions

We present the experimental results of both CYBERSHAKE and
MONTAGE workflows here.

CYBERSHAKE workflow was included as an example of a dataset
with a relatively high number of tasks to a low number of files as
compared to MONTAGE. It was argued that such a high task to file
ratio would lead to a very sparse dependency matrix and graph. The
reason for the sparseness is that due to a low number of tasks, a task
is likely to request any file, but inversely a file’s set of required tasks
would be very small. With such a small list, there is very little pos-
sibility of intersection among the task requirement set between pairs
of files. Since dependency is calculated as the number of intersecting
tasks between a pair of files, a low possibility of intersection would

110



result in little or no dependency between the pair of files. The re-
sulting sparsity of the matrix and graph presents little historic data
for the algorithm to predict a trend and prefetch the files. Hence, an
extremely low hit ratio of 9.8% is observed in both cases; control and
the proposed method.

Cybershake’s result indicates the fundamental limitation with de-
pendency graph based measures. Data sparsity reduction techniques
could be applied as a possible solution to this limitation. Sparsity
reduction is likely to create a more informative and dense matrix and
graph.

However, sparsity reduction would convert the dependency graph
into a complete graph, i.e., every pair of vertices would be connected
by an edge. This would destroy even the slightest small world charac-
teristics in CYBERSHAKE’s dependency graph. In such a case two
things could be tried:

•The easiest choice would be to set a threshold, beyond which low
weight edges are deleted and small world characteristic of the de-
pendency graph is regained. However, this solution reintroduces
the same problem of finding a threshold that this work tried to
solve.

•The definition of betweenness, as defined in equation 5.4 is based
on the notion of the shortest path. In a weighted graph, this
definition changes taking into account the effect of the edge’s
weight. Hence, the betweenness centrality is redefined by the
following formula:

si =
N∑
j=1

aijwij (5.6)

where si is the betweenness centrality of the node i; aij and wij

are adjacency and weight matrices between nodes i and j, respec-
tively. In this case, the algorithm would have to be redefined,
since the betweenness centrality of a node is being calculated
instead of the edge.

MONTAGE workflow on the other hand was introduced as an ex-
ample of a dataset having a low task to file ratio, i.e, the number of

111



files far exceeds the number of tasks. By the inverse logic of that ap-
plied to CYBERSHAKE, the dependency matrix and graph is likely
to be highly dense and informative. A well designed algorithm with
proper parameters like threshold is likely to predict a trend from the
historic usage data; thereby it will likely be able to prefetch appro-
priate files, given the threshold and other parameters are accurately
provided.

The results show that for the threshold of 0%, the performance of
control is better. 0% threshold essentially means that the algorithm
selects all the files and essentially performs no work, so this result
can be excluded. While the proposed method outperforms the second
best of control, i.e., 1%, it is behind the threshold of 0% by around
2.25% only.

The results are provided in Table 5.2. For the control, results up to
threshold 9% are shown as the hit ratio up to this threshold is above
50% and hence, could be considered valid. For the results of the
proposed measure, only a single threshold is calculated; hence, only
one threshold (89.72) is valid for the results of the proposed methods.
The results are graphically shown in Figures 5.5 and 5.6.

Table 5.2: Results of MONTAGE: hit ratio
Threshold% Subgraph Results Results
Threshold (Number of files ) Hit Ratio% File Under

out of 872) Usage%
0.0%, 0.0 1 (501 files) 98.74 0.0
1.0%, 73.26 1(432 files) 95.41 3.274963546948744e-107

Calculated by Algorithm 2, 56.75 1(416 files) 96.49 3.1421576357699636e-107
2.0%, 146.572 1(350 files) 88.15 2.5234435836163434e-10
3.0%, 219.858 1 (297 files) 78.75 2.5234435836163434e-10
4.0%, 293.144 1 (265 files) 73.70 2.5234435836163434e-10
5.0%, 366.43 1 (265 files) 73.70 2.5234435836163434e-10
6.0%, 439.716 1(233 files) 68.64 2.526433441489944e-10
7.0%, 513.002 1(231 files) 68.27 2.526433441489944e-10
8.0%, 586.288 1(205 files) 64.11 2.526433441489944e-10
9.0%, 659.574 1(199 files) 63.07 2.526433441489944e-10

5.7 Conclusions

The focus of this chapter is to study the dependency graph from a
graph theoretic/social networks perspective. An additional objective
was to utilize the knowledge gained through analytical study to solve

112



Figure 5.5: Tau Correlation for each incremental betweenness values in MONTAGE

the threshold finding problem to partition the dependency graph, one
of the most important steps in data prefetching algorithms.

As per our first objective, we deduce that the concept of the
betweenness centrality of edges indeed strongly correlates with the
weight of the edges. This provides us with a solution to the threshold
problem. Graph partition threshold is essentially the determination
of significant and insignificant edges based on the weight. The high
correlation of betweenness centrality and edge weight results in the ac-
cumulation of almost all the significant edges (edges with high weight)
at the highest betweenness centrality value. Hence, the average weight
of edges with the highest betweenness value serves as a threshold to
determine what is significant and what is not.

Based on the concept, an algorithm is also developed. Empirical
observations show that the performance of the algorithm is close to
the optimal theoretical performance possible.

There are scopes for some improvements, however. The perfor-
mance observed is close to the theoretical performance, but not opti-
mal. This opens up further scope for improvement; perhaps a combi-

113



nation of some other metrics of graph theory to refine the betweenness
centrality based approach could be tried. It has also been observed
that performance is very poor for a sparse dataset. This is not some-
thing unique to this problem. Without much data, any prediction-
based method will fail and this problem is no exception. The issue is
that the nature of this problem prevents the use of standard sparsity
reduction techniques as discussed earlier. Some possible workaround
has been suggested, which needs to be developed and verified.

Figure 5.6: Tau Correlation for each incremental betweenness values in MONTAGE

114



Chapter 6

Data Placement in Distributed Systems
under Storage and Network Constraints

6.1 Introduction

In a computerized storage system, the reliability of the data being
stored is the most important and non-compromisable criterion. It is
necessary to ensure that data stored in the system remains as it is,
without any alteration to the data. Hence, a storage service provider
should not only protect the subscriber’s data against intentional ma-
licious data modifications but also against accidental modifications
inherent due to natural causes. Separate strategies are in place to
deal wuth the two types of data protection. In this work, protection
agaist non malicious accidental modification is addressed.

As observed in the system description section of the previous chap-
ter (Section 3.2, Figure 3.1), in a scientific workflow environment, gen-
erally local compute clusters have their data backed up at a secure
server on the internet. If data is lost in the local cluster due to node
failure, a copy from backup is downloaded via the internet. Data loss
due to nodes going offline in the local cluster causes increaded inter-
net traffic, which should be avoided as much as possible. Hence, if
data can be recovered from the remaining online nodes in the local
cluster then internet traffic could be avoided. In this chapter, the
focus will be on data placement in a distributed system(local cluster)
such that occassional node failures do not require data retrieval over
the internet.

In recent years, technological enhancement has allowed for the large
scale adoption of distributed computing wherein multiple separate de-
vices connected over a network have a common goal. Data storage

115



reliability management and its contribution to the prevention of data
loss preceded distributed systems. The use of error correction codes
for error detection and recovery have been in use or a long time now.
However, generating and storing correction codes is a costly under-
taking. Much research has been done to create an efficient error cor-
rection codes that offer both high reliability and have a low cost, The
research into this is an ongoing effort.

The emergence of distributed computing and its applications open
up new opportunities in our quest for low cost and reliable data stor-
age systems. As the results of this work would demonstrate, intelligent
placement of data in such systems can lead to a highly reliable storage
system with a low storage cost.

Since distributed system is being considered, another parameter to
be considered is network cost. The network is not a cheap resource
and its economic usage must be considered as well. It has to be
investigated whether the three objectives: high reliability, low cost
storage, and low network storage can be accomplished together at all
or a tradeoff exists. In the event of joint optimization of all objectives
bieng possible, a data placement solution to such a system must be
formulated.

This chapter is organized into seven sections including introduc-
tory section. In Section 2, some of the necessary concepts discussed
in the literature survey is revisited and elaborated upon. In Section 3,
the problem would be formally and elaborately described and a math-
emantical formulation is built. The feasibility of joint optimization of
the stated objectives has been investigated and the empirical obser-
vations are reported and their implications are discussed in Section 4.
The algorithmic solution to the problem is presented in Setion 5. The
performance of the solution is empirically validaed and the results
are presented in Sextion 6. The concluding remarks are presented in
Sextion 7.

6.2 Important Background Concepts

The concept of data allocation and storage budget has been discussed
in the literature survey. It may be recalled that the data location has
to be such that high reliability is ensured with a minimal storage bud-

116



get. To this effect, the following allocation pattern may be classified
as follows:

•Symmetric allocation: Symmetric allocation is such that each
node of the distributed system is allotted the same amount of
data.

•Non symmetric allocation: Non symmetric allocation is such that
each node of the distributed system is allotted a different amount
of data. It may happen that some nodes may not be allotted any
data at all.

Besides the above classification, data allotment may also be classified
based on how the distributed nodes are used for data storage:

•Maximal spread: Most, if not all the nodes in the distributed
system, are used to allocate data.

•Minimal spread: The data allocation is only concentrated at a
few nodes of the distributed system.

Based on the above classifications, the following four allocation
patterns are possible:

•Symmetric maximal spread: The data is allocated equally among
all the available nodes in the distributed systems.

•Symmetric minimal spread: The data is allocated equally, how-
ever only a subset of nodes of the distributed systems are used.

•Non symmetric maximal spread: While all the available nodes in
the distributed system are used, the data is not allocated equally
in each of the nodes.

•Non symmetric minimal spread: A subset of the nodes in the
distributed system are used and data allocated in each node is
not equal.

Besides the above allocation patterns, the storage allocation and
access may be classified based on the following:

•Probabilistic: The allocation or access of data to and from a node
in the distributed system is based on a probability distribution.

117



•Deterministic: The allocation and access of data to and from
a node in the distributed system are based on a predetermined
manner which remains fixed every time.

Hence, based on the probabilistic and deterministic allocation and
access policies, the following allocation and access policies are possi-
ble:

•Probabilistic allocation Deterministic access: The allocation of
data is made in a probabilistic manner, but the access of data is
made in a deterministic way

•Probabilistic allocation Probabilistic access: Both data alloca-
tion and access are made in a probabilistic manner

•Deterministic allocation Deterministic access: Both data alloca-
tion and access are made in a deterministic manner

•Deterministic allocation Probabilistic access: The allocation of
data is made in a deterministic manner, but the access of data
is made in a probabilistic way

There are two types of node that a distributed system might have:

•Homogeneous Nodes: The characteristics of the nodes in the dis-
tributed system are similar in terms of computation and storage.

•Heterogeneous Nodes: The characteristics of the nodes in the
distributed system are different either in terms of computation
or storage or both.

The last two concepts that need to be discussed are that of Storage
Budget and probability 1 error recovery regime. Probability 1 error
recovery regime is the concept that the distributed system saves data
in such a way that any data can be recovered from corruption due to
non malicious reasons. This ensures high reliability of the system in
terms of data storage. Storage budget is used to measure the amount
of data that is being stored in the system including the redundancies
that ensure the probability 1 error recovery regime. Similarly, network
budget is used to measure the amount of network usage due to data
migration during run time of the tasks of the scientific workflow. A

118



composite budget or budget is a combination of both storage and
network budgets, which are to be minimized.

Error correction codes are redundant information stored in the
system such that data loss to a certain extent may be tolerated by
the system. The data is recovered by mathematically combining the
existing data and the redundant parity data. The advantage of this
error recovery is that data can be reconstructed, thereby avoiding
the download of data from the internet. The disadvantage is that
the mathematical operation in data retrieval may be computationally
expensive. It may be noted that error correction can retrieve data
only till a certain data loss.

In the work presented in this chapter, only homogeneous nodes will
be considered. The literature in distributed storage allocation prob-
lem attempts to find the best allocation and spread pattern for data,
such that the composite budget may be decreased; while retaining the
probability 1 error recovery regime.

One of the advantages that distributed system offers is that by
intelligently placing data on the system, the storage budget may be
decreased while maintaining high system reliability.

6.2.1 System Description

The distributed system being considered is similar to the one de-
scribed in Figure 3.1 of chapter 3. Since, the aim of this work is to
avoid internet traffic (except initial download, which is not the concern
of this work). Only the local cluster with its constituent distributed
system is being considered. The distributed system considered in this
case is illustrated in Figure 6.1:

119



Figure 6.1: Distributed system under consideration

In this work, the distributed system illustrated in Figure 6.1 and
error correction code based system is utilized.

6.3 Problem Statement

The works available in the literature have proposed different solutions
to the problem of lowering the storage budget while maintaining the
probability 1 error recovery of the distributed system. The central
idea is that how a distributed system’s data may be placed, such
that the data can always be retrieved with minimum redundant data
stored in the system.

To achieve the above objective, the network usage issue has been
missed out. In a distributed system that not only stores data but also
caters to computation as in scientific workflow, network congestion,

120



and the resulting delay in transfer of data leads to severe performance
penalty. Hence, high network usage is considered a serious problem
as discussed in the last chapter. Also, a high data transfer indicates
non localized data placement, i.e., data is placed at a different node
of the distributed system than the one where it is needed.

From the above discussion, it may be summarized that a successful
distributed compute cum storage system would require optimization
of both storage and network usage while maintaining high reliability
through a probability 1 recovery regime.

To formally define the problem being addressed in this work, the
following optimization equation is presented below:

Minimize T =
n∑

i=0

xi +
n∑

i=i,j=1

yij (6.1)

Subject to

xi ≥ 0 and yij ≥ 0 and i ̸= j (6.2)

∑
i∈r

xi ≥ 1 and
∑
ij∈r

yij ≥ 1 and ∀r ∈ R (6.3)

Where

R =

(
n

r

)
r ⊂ 1, 2, ....., n (6.4)

T in equation 6.1 denotes the composite budget which consists of
both the storage budget xi and network usage budget yij. i is the
node of concern for which storage budget is being considered. j is the
source node from which a data if required, would have to be migrated
to node i. yij is the network budget, i.e. the amount of network usage
incurred by the system.

Equation 6.2 represents the constraints of the budget variables xi
and yij. Since storage and network usage cannot have a negative
number, these variables are constrained to have a value greater than
0. Further, since the source and a destination node in data transfer
should be different, so i and j cannot have the same value.

121



Equation 6.3 represents all the combinations in which a node can
be selected from the total number of nodes, which forms a set R. In(
n
r

)
, n is the number of nodes to be selected for retrieval, while r is

the total number of nodes.
Equation 6.3 represents the constraint that the summation of stor-

age budget and network budget of all the node combinations is at
minimum 1 or greater than it.

The following related problems are addressed in the work described
in this chapter [155]:

•Network simulation study

•Constraint optimization feasibility study

•Optimized Data placement under the constraints

6.4 Feasibility Studies

In this section, the feasibility studies are discussed. That is, which
allocation and spread model translates into lower network usage and
whether network usage and storage space required can be jointly min-
imized in a probability 1 recovery regime, are studied.

Throughput is defined as the number of packets that pass through
a network per second. In essence, throughput measures the efficiency
of the network. Data migration is an inevitability in a distributed
system due to space constraints. When data migration does occur,
such migration should be completed as soon as possible. With high
network throughput, data migration is completed faster, thereby im-
proving task performance by reducing stall periods.

The four allocation and spread pattern combinations discussed in
Section 6.2 are compared to find out which spread and allocation
patterns result in high throughput in a data center network topology.
A spread and allocation pattern with high throughput will make a
good candidate for use in distributed systems.

6.4.1 Network Simulation Study

The network simulation study is aimed at understanding the net-
work characteristics of the four combinations of data allocation and

122



spread, through the metric of throughput. The combination of data
allocation and spread which produces the high throughput would be
considered as a better candidate for use. The four combinations of
storage allocation and spread may be recalled as follows:

•Symmetric allocation minimal spread

•Symmetric allocation maximal spread

•Non symmetric allocation minimal spread

•Non symmetric allocation maximal spread

Simulation setup

Data in a large distributed storage is stored and computed in data
centers, which are specialized reliable storage facilities of data. Hence,
a data center network is considered for the network simulation study.
The network topology in a data center network comes in a variety of
forms like Fat tree, Dcell, Bcube, etc. Since the metric being studied is
the throughput, the throughput due to extraneous conditions should
be as limited as possible. Fat tree has proven capability of delivering
high throughput and low latency[156]; hence, it becomes our obvious
choice of topology for simulation.

Simulation is performed using NS-3. Nanyang Technological Uni-
versity’s implementation of Data Center Network [157] on NS-3 has
been used for simulating the data center network.

The essential simulation parameters are listed in Table 6.1
For each allocation pattern, symmetric and non symmetric, 8 spread

patterns are considered.

•Data placed in only one server (node): minimal allocation

•Data placed in the first 8 servers: minimal allocation: half of the
available servers are used

•Data placed in the last 8 servers: minimal allocation: a different
perspective of the first 8 server allocation

•Data placed in the middle 8 servers: minimal allocation: a dif-
ferent perspective of the first 8 and last 8 server allocation.

123



Table 6.1: Essential Parameters
Parameters Value

Total number of nodes 50
Maximum number of access nodes 16

Number of access nodes 1, 8, 16
Topology Fat tree
Links edhe host: CSMA, rest: P2P

Data rate 1 Gbps
Delay 0.001 ms

Application On-Off
Packet size 1024 bytes

On-Off data rate default
Total data transferred 125 MB
Total client nodes 5

•Data allocated in 8 odd interleaving servers: half of the available
servers used, but in a different arrangement than the last three
arrangement

•Data allocated in 8 random servers: half of the available servers
used, selection of the servers being random.

•Data allocated in all 16 servers: maximal allocation

Results and Discussions

The results of the network simulation study is presented in Figures
6.2 to 6.4.

The results under symmetric allocation are illustrated in Figure
6.2 while the results under non symmetric allocation are illustrated
in Figure 6.3. The consolidated results comparing both the spreads
are illustrated in Figure 6.4.

The salient observations are as follows:

•From Figure 6.4, where the consolidated results are available, it
can be inferred that under all allocation conditions non symmet-
ric spread of data yields a higher throughput. Thus, it is be a
prudent decision to allocate different amounts of data on different
nodes/servers of the distributed system

124



Figure 6.2: Results of non symmetrical allocation

Figure 6.3: Results of symmetrical allocation

•In non symmetric allocation, we observe that maximal allocation
yields the best throughput, by a considerable margin over other
allocation patterns. All the minimal allocation patterns have
almost the same throughput; whether only one is used or half of
the available nodes are used.

125



Figure 6.4: Consolidated results

Constraint Optimization Problem

The feasibility study for the constraint optimization problem is aimed
to study whether the twin objectives of network usage and storage
space minimization as stated in equation 6.1, can be jointly optimized
keeping the constraints stated in equations 6.2 to 6.4 in mind.

The problem has been studied using a hybrid of two algorithms:
Genetic Algorithms (GA) and Particle Swarm Optimization (PSO);
GA PSO [158]. The GA part explores the solution space efficiently
to find the global minima instead of being stuck in the local minima.
While the PSO part enhances faster convergence of the algorithm
which would be slow in the case of a pure genetic algorithm.

The essential parameters of the experiment are as follows:

Results and Discussions

From Figure 6.5, we can deduce that the cost of storage and network
usage jointly rises and falls in every case. Only in the case of node 1,
negligible variation can be observed. In this simulation, bandwidth
cost represents the network usage. Hence, we can conclude that both
storage and network usage can be jointly optimized.

126



Table 6.2: Essential Parameters

Parameters Value
Population size 150

Maximum generations 100
Probability of crossover 0.85
Probability of mutation 0.15
Beta (model coefficient) 1.5
Number of storage nodes 5

Number of nodes selected for retrieval 2
Number of runs 50

Figure 6.5: Graphical view of best value for minimization

Summary

We had conducted two separate experiments: one to study which
allocation and spread patterns is best for data placement and another
to study the feasibility of joint optimization of minimizing network
and storage space usage. In summary, the empirical observations
point that a non symmetric spread with a maximal allocation is the
best placement strategy and joint optimization of minimizing storage

127



and network usage cost is possible.
Based on these empirical observations, a data placement solution

is proposed.

6.5 Data Placement Solution

In the last section, the feasibility of data placement in the distributed
system jointly optimizing both network and storage space usage has
been established. Thus, a data placement solution with the same
objectives and constraints is being proposed in this section.

Considering the system at hand, high reliability is an essential
requirement. Hence, this desired trait of data placement is not con-
sidered as an optimization objective, but rather as a constraint to
the optimization problem. A candidate data placement solution may
provide the minimum network and storage usage; however, if the re-
liability condition of a probability 1 recovery regime is not achieved,
this solution will not be considered.

Considering that two objectives are to be optimized: minimum net-
work usage and minimum storage space, a multiobjective optimization
strategy, more appropriately a bicriteria optimization strategy needs
to be applied. Since both objectives can be optimized simultaneously,
the optimization problem is trivial. Hence, finding a set of Pareto op-
timal solutions can be avoided.

Optimization problems are essentially state space search problems.
All the possible data placement solutions are already known. The task
of the algorithm is to find the optimal data placement. To this effect, a
fast efficient, and nearly complete search algorithm is required. Hence,
a metaheuristic based approach has been considered for this purpose.

The algorithm being proposed is a hybrid of two metaheuristic
approaches; Genetic Algorithm (GA) and Particle Swarm Optimiza-
tion(PSO). The reason behind the use of these two algorithms is ex-
plained below.

•Genetic Algorithm: Genetic Algorithm adapts the biological pro-
cess of natural selection which is used by species to evolve into
a population that is more adaptable to survive in their envi-
ronment. In terms of the state space search problem, the most

128



optimal solution is considered the state of the fittest popula-
tion. Starting from a random state, GA stochastically guides the
search agents to the optimal point, such that the population of
the search agents at the optimal point is maximized. The ad-
vantage of GA is that due to its stochastic nature, it explores
the entire search space even in areas that may not look promis-
ing at first. Hence, GA’s have a higher chance of escaping the
local minima and discovering the global minima. The biggest
disadvantage of GA is its very slow convergence to the optimal
solution

•Particle Swarm Optimization: In this approach, the candidate
data placement solutions are modeled as particles that collec-
tively form a swarm of particles. In each iteration, each particle’s
position and velocity are adjusted and the swarm is observed.
The simplicity of the algorithm leads to its quick convergence
to a solution. However, this algorithm has the disadvantage of
providing a sub optimal solution since it can get stuck in local
minima.

It may be noted that GA and PSO are complementary to each
other. GA’s slow convergence is complemented by the fast conver-
gence of PSO. PSO’s inability to escape local minima is complemented
by GA’s ability to find the global minima. Hence, a hybrid approach,
when properly applied, utilizes the best of both approaches: a fast
converging optimal solution finding algorithm.

We must note that the metaheuristic algorithms work on estimates
of goodness and are randomized. Further, they have to be stopped
after some generations. Hence, an optimal solution is not guaranteed.
However, in the domain of soft computing, a close solution to optimal
is acceptable. Hence, a near optimal solution is acceptable in this
case.

The problem formulation is the same as described in equations
6.1 to 6.4. The hybrid algorithm being used is GA MWPSO, where
MWPSO is the Mean Weighted Particle Swarm Optimization.

129



6.5.1 Proposed Algorithm

We present the flowchart and the pseudocode of the algorithm first.
Subsequently, the algorithm is explained.

Figure 6.6: Flowchart of the data placement solution

The algorithm takes NP number of population, Pc is the proba-
bility of crossover, Pm is the probability of mutation, and Mg is max-
imum number of generations as parameter inputs. There are three
functions: Main, ApplyPSO, and ApplyGA. The three functions are
described as follows.

•Main: This function creates an equal number of population for
GA and PSO as dictated by NP . Time t is initialized and so are
the populations. The initial fitness function and best chromo-
some/particle determination for GA and PSO are carried out in
this function. If the termination condition is not met then GA
and PSO specific operations are carried out by calling ApplyGA
and ApplyPSO functions respectively. The outputs from these
functions are used to update the initial/last results which are
used as a parameter in the next time iteration.

130



Algorithm 4 GA MWPSO Algorithm

1: procedure Main(NP,Pc, Pm,Mg)
2: NPGA, NPPSO ← CreatePopulation(2 ∗NP )
3: t← 0
4: PGA(t), PPSO(t)← InitializePopulation(NPGA, NPPSO)
5: f(xi)GA ← Fitness(PGA(t))
6: f(xi)PSO ← Fitness(PPSO(t))
7: P Chrbest ← FindBestChromosome(PGA(t), f(xi)GA)
8: p Ptrbest ← FindBestParticle(PPSO(t), f(xi)PSO)
9: while Termination Check == False do
10: t← t+ 1
11: P Chrbest, f(xi)GA, PGA(t) = ApplyGA(PGA(t −

1), P Chrbest, Pc, Pm,Mg, t)
12: P Ptrbest, f(xi)PSO, PPSO(t), velocity, position =

ApplyPSO(CombinePopulation(PPSO(t − 1), PGA(t −
1)), P P trbest, t, P Chrbest)

13: Print(P Chrbest, f(xi)GA)
14: Print(P Ptrbest, f(xi)PSO)

15: procedure ApplyGA(PGA(t− 1), P Chrbestt−1 , Pc, Pm,Mg), t)
16: PGA(t)← ApplyCrossover(PGA(t− 1))
17: PGA(t)← ApplyMutation(PGA(t))
18: f(xi)GA ← Fitness(PGA(t))
19: P Chrbest ← FindBestChromosome(PGA(t), f(xi)GA)
20: P Chrbest ← CompareChromosome(P Chrbest, P Chrbestt−1)
21: returnP Chrbest, f(xi)GA, PGA(t)

22: procedure ApplyPSO(PPSO(t− 1), P P trbestt−1 , t, P Chrbest)
23: velocity ← GetV elocity(PPSO(t))
24: position← GetPosition(PPSO(t))
25: f(xi)PSO ← Fitness(PPSO(t))
26: p Ptrbest ← CompareParticle(PPSO(t), PPSO(t− 1), f(xi)PSO)
27: PPSO(t) = ApplyMW (p Ptrbest, position, velocity, p P trbest, P Chrbest)
28: returnP Ptrbest, f(xi)PSO, PPSO(t), velocity, position

•ApplyGA: This function applies crossover and mutation on the
population followed by the fitness function calculation and best
chromosome determination. If the present iteration’s best chro-
mosome is better than the last iteration’s best chromosome, then
the best chromosome is updated with the present one. The func-
tion returns the best chromosome, new GA population, and fit-
ness value.

•ApplyPSO: This function applies position and velocity for each
particle in the population followed by the fitness function calcu-

131



lation and best particle determination. If the present iteration’s
best particle is better than the last iteration’s best particle, then
the best particle is updated with the present one. The function
returns the best particle, new PSO population, fitness value, ve-
locity, and position.

NP is the number of population. At the beginning of the algo-
rithm, the population is doubled, such that half of the population
is assigned to the GA and the other half to PSO. For both GA and
PSO, the algorithm iteratively computes in parallel to execute for ini-
tialization, computation of fitness function, and determining the best
chromosome or particle. This computation continues till the termi-
nation condition is met. In each iteration the following stochastic
updates are made.

•GA: Crossover and mutation operations are performed on pop-
ulation from the last iteration to obtain a new population. The
best chromosome from the new population is determined and
compared to the best chromosome from the last iteration’s pop-
ulation. The best among these two chromosomes is stored. The
tournament selection process is used to select the new popula-
tion.

•PSO: Each particle’s position is compared with the position of
all the particles to improve its position. The new position is
computed by calculating the velocity of each particle.

Mean Best Position (mbest) is used to update particle position,
which is defined as the average center of gravity of each particle po-
sitions. it is defined as follows:

mbest(t) = [m1(t),m2(t), ...,mn(t)] (6.5)

mj(t) =
1

M

M∑
i=1

P best
i,j (t)j − 1, ...n and M = 2NP (6.6)

Where, P best
i,j (t) = [P best

i,1 (t), P best
i,2 (t), ..., P best

i,n (t)] is best position for
particle xij. In the algorithm P best

i,j (t) is described by p Ptrbest
Fitness function f(xi) is calculated, where i = 1, 2, ...2.NP and

compared with P best
t . A comparison is made whether f(xi) is greater

132



than P best
i,j and make P best

i,j = f(xi). P
PSO
g is updated asmax(P PSO

g , P best
i,j ).

Subsequently, the particle position is updated using the basic PSO for-
mula as described in the equation below. A new local and global best
solution (P best

ij and P PSO
g is found. Alternately, if P best

j is the best
then next iteration follows using the same steps. In the algorithm,
f(xi) is denoted by f(xi)PSO and P PSO

g is denoted by PPSO(t).
The best position of a particle is updated as follows:

P best
ij (t) = ηP best

ij (t) + (1− η)P PSO
g (t), where η = rand(0, 1)

(6.7)

The new particle position is calculated as follows:

when rand(0, 1) > 0, 5,

xij = Pijbest(t)− β.|mbest(t)− xij|.ln(
1

u
) where u = rand(0, 1)

(6.8)

else,

xij = Pijbest(t) + β.|mbest(t))− xij|.ln(
1

u
) (6.9)

Where β is the model coefficient

6.6 Empirical Observations

The algorithm’s performance is validated with the experiment de-
scribed in this section and the empirical observation that follows.

Algorithm 4 has been implemented in C++, which was executed
on an x86 based processor of speed: 2.10 GHz, running G++ and
Ubuntu OS platform.

Keeping in mind that a metaheuristic based algorithm has been
used, the problem considers different sets of random fuzzy numbers
using triangular membership function for each runs.

Availability of data for given storage and network usage budget is
considered as the evaluation criteria. We have n storage nodes, with
each node storing a fraction of the data. If r out of n nodes are used

133



for access, a total of
(
n
r

)
combination of nodes is possible for access.

Hence, a greater number of
(
n
r

)
will translate to greater viability that

the data will be accessed by the system.
Considering the above evaluation criteria, the performance of the

algorithm is measured on the following metric.

•Probability of Access: The main point of observation is to note
whether the data stored in the distributed system is accessible
with minimum budget. We need to figure out, how many viable
possibilities are available out of the total number of possibilities.
More the number of such viable possibilities, the greater is the
availability of the data. Such greater availability of data ensures
the better run time performance of the tasks that need these
data. The probability of access measures the availability of data
in the distributed system.

Table 6.3: Essential Parameters

Parameters Value
Population size 150

Maximum generations 100
Probability of crossover 0.85
Probability of mutation 0.15

Beta coefficient 1.5
Number of storage nodes 10
Number of access nodes 5

Number of runs 50
Storage cum Network budgets (T) 9

7
, 11

9
, 13

11
, 15

13

Results and Discussions

From Figure 6.7, we can make the following observations:

•At T= 11
9 , the best performance is observed. The probability of

access reaches 60% at
(
10
4

)
and reaches 100% at

(
10
6

)
. Thus with

only 22% overhead, we obtain a 100% probability of access with
210 combinations (

(
10
6

)
= 210) of retrieval nodes.

134



Figure 6.7: Probability of Access

•At
(
10
9

)
= 10 combinations of retrieval nodes, every budget has

a probability of access at 100%.

In summary, it can be agreed that for full availability, there are 210
possible combinations in which data can be placed. This is possible
at a budget of T= 11

9 , i.e. about 22% overhead, which is the second
lowest value considered. At the lowest budget of T=9

7 , i.e. with about
12% overhead, probability of access of 100% is obtained at

(
10
9

)
or 10

combinations; while a decent probability of access at about 80% is
possible at

(
10
8

)
or 45 combinations.

6.7 Conclusions

Storage, network usage and reliability are three interconnected factors
that contribute to the performance of the scientific workflow execution
in a distributed system. Savings in storage space makes room for more
dependent data to be colocated, thereby reducing migration and hence
network usage. High reliability of data retrieval assures limited use
of precious internet resources to download a backup copy of the data.
Network usage is an inevitability in distributed systems due to storage
space constraints. Hence, a data placement that results in minimal
network usage is desirable.

135



In this work, the spread and allocation pattern was studied and the
best combination was established through a simulation study. Fur-
ther, it was established that both objectives of data and network usage
can be jointly optimized with high system reliability in terms of data
retrieval. Empirical observations suggest that high data availability is
possible with a very low budget through the data placement algorithm
proposed in this work.

136



Chapter 7

Conclusion

This work has been aimed at studying data management in dis-
tributed systems, especially with the data placement and prefetching
part of data management. The scientific workflow is considered in
most cases as the typical workload on distributed systems. However,
many of the concepts created are independent of the workload being
deployed.

In chapter 2, necessary background concepts and terminologies
have been discussed, with a detailed reference to different important
works in literature, This creates the foundation on which the novel
works presented in the subsequent chapters can be understood.

In chapter 3, three independent works are presented which describe
at length, the concepts to be used in later chapters in the form of two
novel works. The concept of data interdependency between files in a
distributed system is discussed, which will become important in chap-
ters 4 and 5. This concept is discussed in conjunction with a problem
with the classic definition and a solution to the problem. We have
been able to describe that when replication is in use, additional in-
formation in this regard is required by the system for proper replica
placement. Another related concept to interdependency has been dis-
cussed. It is the study on whether files should be placed as a whole
as in traditional systems or by splitting them into fragments. It has
been established in this work that placing files by fragmenting them
instead of the present practice of placing the entire file is a better
placement solution. The third work is aimed at extending a famous
network simulation tool to study the performance of a distributed
system in terms of simply network and storage. We have extended
NS-3 simulator such that it is able to simulate network characteristics

137



of the Hadoop Distributed File System.
In chapter 4, the cold start problem concerning data interdepen-

dency has been addressed. The solution lies in content based analysis.
It has been shown that similarity based on topic in the content of text
documents can be used for finding the file interdependency with quite
good results.

In chapter 5, a data placement problem concerning prefetching is
addressed, especially when dependency graphs are being used. The
problem of identifying the insignificant dependencies which do not
predict a files usage trend is addressed. For the solution, graph the-
oretic and social network analysis concept of edge betweenness cen-
trality has been utilised. We have been able to obtain good results,
when enough historic file usage data is available.

Finally, the problem of optimizing multiple parameters like lower-
ing storage and network cost, while maintaining high data reliability,
has been addressed. For this purpose metaheuristics based, states-
pace search has been used by hybridizing two algorithms to find an
efficient solution to the problem. Through the empirical observations
from the solution of the optimization problem, we have been able to
prove that data placement is possible with low storage and network
cost simultaneously while maintaining high reliability. Based on this
finding, high reliability, low storage and network cost data placement
scheme has been proposed for erasure coding based methods.

In summary, we have studied the problem of data placement in a
distributed system under various conditions and have proposed appro-
priate solutions to the problems that came up from these conditions
with varying amounts of success. While solution to many problems in
the domain of distributed storage management has been addressed in
this work, as discussed above, certain limitations do remain. In our
work on simulation of the network characteristics of HDFS, the work
is limited to HDFS only. A general purpose simulation solution would
be more useful. Such a simulator could be extended into the specific
distributed storage system other than HDFS. It has been generally
shown that splitting a file into sub-components and placing them in-
creases their localization; however, the splitting was made randomly
which results in sub-optimality. In the work on localized placement
of text files based on their topics, advanced insights obtained through

138



the analytical power of LDA described in Chapter 4 has not been
utilised to its full potential. Finally, the social network analysis based
prefetching works when abundant data is available. The sparsity,
while being an overall problem with data analytics, remains a severe
limitation on the use of such approach in data placement in distributed
systems.

We have plans to continue our research in data placement in dis-
tributed systems in future; part of which being to address the lim-
itations discussed above. Source codes in NS-3 uses C++; hence,
allowing for the use of object oriented paradigm’s concept of inher-
itance. We plan to build a general purpose distributed storage sim-
ulator in NS3. The specific storage system, like HDFS, which needs
to be simulated can be extended by the new classes inheriting the
general purpose classes of the to be built simulator for the distributed
storage system. We plan to develop an intelligent system which can
split and place the fragments of the file that has been split in the
distributed system for maximum performance gain through localiza-
tion. In relation to the data sparsity problem, we plan to generate
additional inter-dependency data between the files through the use of
provenance analysis of data. We further hope to obtain better text
file placement through content analysis through advanced text mining
techniques. Hopefully, these and other similar efforts in future will
further improve the state-of-the-art in data placement in distributed
systems, a goal that we set out while working on the different works
described in this thesis.

139



Bibliography

[1]A. Rowstron and P. Druschel, “Storage management and caching
in past, a large-scale, persistent peer-to-peer storage utility,” in
Proc. 8th ACM Symposium on Operating Systems Principles,
pp. 188–201, October 21-24, 2001.

[2]F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica, “Wide-area cooperative storage with CFS,” ACM SIGOPS
Operating Systems Review, vol. 35, no. 5, pp. 202–215, 2001.

[3]B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel, and
D. Hitz, “NFS version 3: Design and implementation.,” in Proc.
Summer USENIX Conference, pp. 137–152, June 6-10, 1994.

[4]R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon,
“Design and implementation of the sun network filesystem,” in
Proc. Summer USENIX Conference, pp. 119–130, June 11-14,
1985.

[5]A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen, “Ivy: A
read/write Peer-to-Peer file system,” ACM SIGOPS Operating
Systems Review, vol. 36, no. SI, pp. 31–44, 2002.

[6]B. Wilcox-O’Hearn, “Experiences deploying a large-scale emer-
gent network,” in International Workshop on Peer-to-Peer Sys-
tems, February 24-25 2002.

[7]B. Cohen, “Incentives build robustness in bittorrent,” in Work-
shop on Economics of Peer-to-Peer Systems, June 4-5, 2003.

[8]P. J. Braam and P. Schwan, “Lustre: The intergalactic file sys-
tem,” in Ottawa Linux Symposium, pp. 50–54, July 13-16, 2002.

[9]P. Braam, “The lustre storage architecture,” arXiv, 2019.

140



[10]F. Schmuck and R. Haskin, “[gpfs]: A shared-disk file system
for large computing clusters,” in Proc. Conference on File and
Storage Technologies, pp. 231–244, January 28-30, 2002.

[11]S. S. Vazhkudai, X. Ma, V. W. Freeh, J. W. Strickland, N. Tamm-
ineedi, and S. L. Scott, “Freeloader: Scavenging desktop storage
resources for scientific data,” in Proc. ACM/IEEE Conference on
Supercomputing, pp. 56–66, November 12-18, 2005.

[12]J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
et al., “Oceanstore: An architecture for global-scale persistent
storage,” ACM SIGOPS Operating Systems Review, vol. 34,
no. 5, pp. 190–201, 2000.

[13]S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File
System,” in 19th ACM Symposium on Operating Systems Prin-
ciples, pp. 29–43, October 23-26, 2003.

[14]R. Hasan, Z. Anwar, W. Yurcik, L. Brumbaugh, and R. Camp-
bell, “A survey of Peer-to-Peer storage techniques for distributed
file systems,” in Proc. International Conference on Information
Technology: Coding and Computing, pp. 205–213, April 4-6,
2005.

[15]A. Oram, Peer-to-Peer: Harnessing the power of disruptive tech-
nologies. California, USA: O’Reilly Media, Inc., 2001.

[16]B. Carlsson and R. Gustavsson, “The rise and fall of Napster-
An evolutionary approach,” in Proc. 6th International Computer
Science Conference on Active Media Technology, pp. 347–354,
December 18-20, 2001.

[17]M. Ripeanu, “Peer-to-Peer architecture case study: Gnutella net-
work,” in Proc. 1st International Conference on Peer-to-Peer
Computing, pp. 99–100, August 27-29, 2001.

[18]S. Adler, “The slashdot effect: An analysis of three internet pub-
lications,” Linux Gazette, vol. 38, no. 2, pp. 623–626, 1999.

141



[19]D. Hughes, G. Coulson, and J. Walkerdine, “Free riding on
gnutella revisited: the bell tolls?,” IEEE Distributed Systems,
vol. 6, no. 6, pp. 1–18, 2005.

[20]M. Yang, Z. Zhang, X. Li, and Y. Dai, “An empirical study
of free-riding behavior in the Maze P2P file-sharing system,” in
Proc. International Workshop on Peer-to-Peer Systems, pp. 182–
192, February 24-25, 2005.

[21]W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer, “Feasibil-
ity of a serverless distributed file system deployed on an existing
set of desktop PCs,” ACM SIGMETRICS Performance Evalua-
tion Review, vol. 28, no. 1, pp. 34–43, 2000.

[22]A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken,
J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P.
Wattenhofer, “Farsite: Federated, available, and reliable storage
for an incompletely trusted environment,” ACM SIGOPS Oper-
ating Systems Review, vol. 36, no. SI, pp. 1–14, 2002.

[23]P. E. Crandall, R. A. Aydt, A. A. Chien, and D. A. Reed,
“Input/output characteristics of scalable parallel applications,”
in Proc. ACM/IEEE conference on Supercomputing, pp. 59–89,
November 12-17, 1995.

[24]I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the
grid: Enabling scalable virtual organizations,” The International
Journal of High Performance Computing Applications, vol. 15,
no. 3, pp. 200–222, 2001.

[25]A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and
S. Tuecke, “The data grid: Towards an architecture for the dis-
tributed management and analysis of large scientific datasets,”
Journal of Network and Computer Applications, vol. 23, no. 3,
pp. 187–200, 2000.

[26]A. Rajasekar, M. Wan, and R. Moore, “MySRB and SRB-
components of a data grid,” in Proc. 11th IEEE Interna-
tional Symposium on High Performance Distributed Computing,
pp. 301–310, July 24-26, 2002.

142



[27]E. Deelman and Y. Gil, “NSF workshop on the challenges of
scientific workflows,” pp. 1–2, May 1-2, 2006.

[28]T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Green-
wood, T. Carver, K. Glover, M. R. Pocock, A. Wipat, et al.,
“Taverna: A tool for the composition and enactment of bioin-
formatics workflows,” Bioinformatics, vol. 20, no. 17, pp. 3045–
3054, 2004.

[29]B. Ludscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,
M. Jones, E. A. Lee, J. Tao, and Y. Zhao, “Scientific workflow
management and the Kepler system,” Concurrency and Compu-
tation: Practice and Experience, vol. 18, no. 10, pp. 1039–1065,
2006.

[30]I. Taylor, M. Shields, and I. Wang, “Distributed P2P computing
within TGriana: A galaxy visualization test case,” in Proc. Inter-
national Parallel and Distributed Processing Symposium, pp. 8–
18, May 15-19, 2003.

[31]E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kessel-
man, G. Mehta, K. Vahi, G. B. Berriman, J. Good, et al., “Pe-
gasus: A framework for mapping complex scientific workflows
onto distributed systems,” Scientific Programming, vol. 13, no. 3,
pp. 219–237, 2005.

[32]P. Mell, T. Grance, et al., “The
NIST definition of cloud computing.” url:
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-
145.pdf. (accessed 2022-03-08).

[33]I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and
grid computing 360-degree compared,” in Proc. Grid computing
Environments Workshop, pp. 1–10, November 12-16, 2008.

[34]D. E. Williams, “Virtualization with Xen (TM): Including Xe-
nEnterprise, XenServer, and XenExpress,” Amsterdam, Nether-
lands: Elsevier, 2007.

[35]Y. Goto, “Kernel-based virtual machine technology,” Fujitsu Sci-
entific and Technical Journal, vol. 47, no. 3, pp. 362–368, 2011.

143



[36]A. Gulati, A. Holler, M. Ji, G. Shanmuganathan, C. Wald-
spurger, and X. Zhu, “VMware distributed resource manage-
ment: Design, implementation, and lessons learned,” VMware
Technical Journal, vol. 1, no. 1, pp. 45–64, 2012.

[37]A. Zahariev, “Google App Engine.” url:
http://cse.tkk.fi/en/publications/B/5/papers/Zahariev
final.pdf. (accessed 2022-03-08).

[38]“Amazon Web Services.” url http://aws. amazon. com/es/ec2.
(accessed 2022-03-08).

[39]D. Liu, H. Zhu, and I. Bayley, “Applying algebraic specification
to cloud computing–A case study of Infrastructure-As-A-Service
gogrid,” in Proc. of the 7th International Conference on Software
Engineering Advances, pp. 1–4, November 18-23 2012.

[40]G. Munasinghe and P. Anderson, “Flexiscale-
next generation data centre management.” url:
http://spring2008.ukuug.org/talk abstracts.html. (accessed:
2022-03-08).

[41]M. Copeland, J. Soh, A. Puca, M. Manning, and D. Gollob,
Microsoft Azure. New York, USA: Apress, 2015.

[42]A. Manchar and A. Chouhan, “Salesforce CRM: A new way of
managing customer relationship in cloud environment,” in Proc.
2nd International Conference on Electrical, Computer and Com-
munication Technologies, pp. 1–4, June 26-27 2017.

[43]Y. Zhou, “SAP business by design,” in Proc. IEEE 25th Inter-
national Conference on Data Engineering, pp. 1760–1760, March
29-April 2, 2009.

[44]D. Borthakur et al., “HDFS architecture guide,” Hadoop apache
project, vol. 53, pp. 1–14, 2008.

[45]A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Ni-
akanlahiji, J. Kong, and J. P. Jue, “All one needs to know about
fog computing and related edge computing paradigms: A com-
plete survey,” Journal of Systems Architecture, vol. 98, pp. 289–
330, 2019.

144



[46]J. Gedeon, F. Brandherm, R. Egert, T. Grube, and
M. Muhlhauser, “What the fog? Edge computing revisited:
Promises, applications and future challenges,” IEEE Access,
vol. 7, pp. 152847–152878, 2019.

[47]A. J. Ferrer, J. M. Marques, and J. Jorba, “Towards the de-
centralised cloud: Survey on approaches and challenges for
[m]obile, [a]d hoc, and [e]dge computing,” ACM Computing Sur-
veys (CSUR), vol. 51, no. 6, pp. 1–36, 2019.

[48]B. Zaghdoudi, H. K.-B. Ayed, and I. Riabi, “Ad hoc cloud as a
service: A protocol for setting up an ad hoc cloud over manets,”
Procedia Computer Science, vol. 56, pp. 573–579, 2015.

[49]N. Jones, “How to stop data centres from gobbling up the world’s
electricity?,” Nature, vol. 561, no. 7722, pp. 163–167, 2018.

[50]P. Domingues, P. Marques, and L. Silva, “Resource usage of
Windows computer laboratories,” in Proc. International Confer-
ence on Parallel Processing Workshops, pp. 469–476, June 14-17,
2005.

[51]A. Chien, B. Calder, S. Elbert, and K. Bhatia, “Entropia: Archi-
tecture and performance of an enterprise desktop grid system,”
Journal of Parallel and Distributed Computing, vol. 63, no. 5,
pp. 597–610, 2003.

[52]M. J. Litzkow, M. Livny, and M. W. Mutka,
“Condor-A hunter of idle workstations.” url:
https://research.cs.wisc.edu/htcondor/doc/icdcs1988.pdf.
(accessed: 2022-03-08).

[53]D. P. Anderson, “BOINC: A system for public-resource comput-
ing and storage,” in Proc. 5th IEEE/ACM International Work-
shop on Grid Computing, pp. 4–10, November 8, 2004.

[54]J. Barranco, Y. Cai, D. Cameron, M. Crouch, R. De Maria,
L. Field, M. Giovannozzi, P. Hermes, N. Hoimyr, D. Kaltchev,
et al., “LHC@ Home: A BOINC-based volunteer computing in-
frastructure for physics studies at CERN,” Open Engineering,
vol. 7, no. 1, pp. 379–393, 2017.

145



[55]G. A. McGilvary, A. Barker, A. Lloyd, and M. Atkinson, “V-
BOINC: The virtualization of Boinc,” in Proc. 13th IEEE/ACM
International Symposium on Cluster, Cloud, and Grid Comput-
ing, pp. 285–293, May 13-16, 2013.

[56]K. Graffi, D. Stingl, C. Gross, H. Nguyen, A. Kovacevic, and
R. Steinmetz, “Towards a P2P cloud: Reliable resource reserva-
tions in unreliable P2P systems,” in Proc. IEEE 16th Interna-
tional Conference on Parallel and Distributed Systems, pp. 27–34,
December 8-10, 2010.

[57]K. Chard, S. Caton, O. Rana, and K. Bubendorfer, “Social cloud:
Cloud computing in social networks,” in Proc. IEEE 3rd Inter-
national Conference on Cloud Computing, pp. 99–106, October
24-26, 2010.

[58]D. Neumann, C. Bodenstein, O. F. Rana, and R. Krishnaswamy,
“STACEE: Enhancing storage clouds using edge devices,” in
Proc. 1st ACM/IEEE Workshop on Autonomic Computing in
Economics, pp. 19–26, June 14, 2011.

[59]L. Wang, J. Tao, M. Kunze, D. Rattu, and A. C. Castellanos,
“The Cumulus project: Build a scientific cloud for a data center,”
in Proc. 1st workshop on Cloud Computing and its Applications,
pp. 1–7, October 22-23, 2008.

[60]D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov, “The Eucalyptus open-source
cloud-computing system,” in Proc. 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid, pp. 124–131,
May 18-21, 2009.

[61]B. Sotomayor, R. S. Montero, I. M. Llorente,
and I. Foster, “Capacity leasing in cloud sys-
tems using the open nebula engine.” url:
https://citeseerx.ist.psu.edu/document?repid=rep1type=pdf
doi=35451f05ae33a8d3160dd3b11dada3968ce99566. (accessed
2022-03-08).

[62]E. Pinheiro, W.-D. Weber, and L. A. Barroso, “Failure trends in
a large disk drive population,” in Proc. 5th USENIX Conference

146



on File and Storage Technologies, pp. 17–29, February 13-16,
2007.

[63]D. Ford, F. Labelle, F. Popovici, M. Stokely, V.-A. Truong,
L. Barroso, C. Grimes, and S. Quinlan, “Availability in globally
distributed storage systems,” in Proc. 9th USENIX Conference
on Operating Systems Design and Implementation, pp. 61–74,
October 4-6, 2010.

[64]S. Lu, B. Luo, T. Patel, Y. Yao, D. Tiwari, and W. Shi, “Making
disk failure predictions smarter!,” in Proc. 18th USENIX Con-
ference on File and Storage Technologies, pp. 151–167, February
24-27, 2020.

[65]S. Kadekodi, K. Rashmi, and G. R. Ganger, “Cluster storage sys-
tems gotta have heart: improving storage efficiency by exploiting
disk-reliability heterogeneity,” in Proc. 17th USENIX Conference
on File and Storage Technologies, pp. 345–358, February 25-28,
2019.

[66]J. Basak and R. H. Katz, “Significance of disk failure prediction
in datacenters,” arXiv, 2017.

[67]S. S. Arslan, “A reliability model for dependent and distributed
mds disk array units,” IEEE Transactions on Reliability, vol. 68,
no. 1, pp. 133–148, 2018.

[68]G. Wang, L. Zhang, and W. Xu, “What can we learn from
four years of data center hardware failures?,” in Proc. 47th An-
nual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks, pp. 25–36, June 26-29, 2017.

[69]Q. Lin, K. Hsieh, Y. Dang, H. Zhang, K. Sui, Y. Xu, J.-G. Lou,
C. Li, Y. Wu, R. Yao, et al., “Predicting node failure in cloud
service systems,” in Proc. 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering, pp. 480–490, November 4-9, 2018.

[70]C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan,
J. Li, and S. Yekhanin, “Erasure coding in windows azure stor-
age,” in Proc. USENIX Annual Technical Conference, pp. 15–
26, June 13-15 2012.

147



[71]D. Beaver, S. Kumar, H. C. Li, J. Sobel, P. Vajgel, et al., “Find-
ing a needle in haystack: Facebook’s photo storage.,” in Proc.
9th USENIX Symposium on Operating Systems Design and Im-
plementations, pp. 1–8, October 4-6, 2010.

[72]C. Huang, M. Chen, and J. Li, “Pyramid codes: Flexible schemes
to trade space for access efficiency in reliable data storage sys-
tems,” ACM Transactions on Storage, vol. 9, no. 1, pp. 1–28,
2013.

[73]C. Suh and K. Ramchandran, “Exact-repair mds code construc-
tion using interference alignment,” IEEE Transactions on Infor-
mation Theory, vol. 57, no. 3, pp. 1425–1442, 2011.

[74]K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-
regenerating codes for distributed storage at the msr and mbr
points via a product-matrix construction,” IEEE Transactions
on Information Theory, vol. 57, no. 8, pp. 5227–5239, 2011.

[75]S.-J. Lin and W.-H. Chung, “Novel repair-by-transfer codes and
systematic exact-mbr codes with lower complexities and smaller
field sizes,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 25, no. 12, pp. 3232–3241, 2014.

[76]D. Leong, A. G. Dimakis, and T. Ho, “Distributed storage al-
locations,” IEEE Transactions on Information Theory, vol. 58,
no. 7, pp. 4733–4752, 2012.

[77]D. Leong, A. G. Dimakis, and T. Ho, “Distributed storage alloca-
tion for high reliability,” in Proc. IEEE International Conference
on Communications, pp. 1–6, May 23-27, 2010.

[78]D. Leong, A. G. Dimakis, and T. Ho, “Distributed storage alloca-
tion problems,” in Proc. Workshop on Network Coding, Theory,
and Applications, pp. 86–91, June 15-16, 2009.

[79]J. Liu, H. Shen, H. Chi, H. S. Narman, Y. Yang, L. Cheng, and
W. Chung, “A low-cost multi-failure resilient replication scheme
for high-data availability in cloud storage,” IEEE/ACM Trans-
actions on Networking, vol. 29, no. 4, pp. 1436–1451, 2020.

148



[80]S.-Q. Long, Y.-L. Zhao, and W. Chen, “Morm: A multi-objective
optimized replication management strategy for cloud storage
cluster,” Journal of Systems Architecture, vol. 60, no. 2, pp. 234–
244, 2014.

[81]D. Boru, D. Kliazovich, F. Granelli, P. Bouvry, and A. Y.
Zomaya, “Energy-efficient data replication in cloud computing
datacenters,” Cluster Computing, vol. 18, no. 1, pp. 385–402,
2015.

[82]M.-K. Hussein and M.-H. Mousa, “A light-weight data replication
for cloud data centers environment,” International Journal of
Engineering and Innovative Technology, vol. 1, no. 6, pp. 169–
175, 2012.

[83]D. Yuan, Y. Yang, X. Liu, and J. Chen, “A data placement strat-
egy in scientific cloud workflows,” Future Generation Computer
Systems, vol. 26, no. 8, pp. 1200–1214, 2010.

[84]M. Y. Eltabakh, Y. Tian, F. Ozcan, R. Gemulla, A. Krettek,
and J. McPherson, “Co-Hadoop: flexible data placement and its
exploitation in hadoop,” Proc. VLDB Endowment, vol. 4, no. 9,
pp. 575–585, 2011.

[85]J.-x. Wu, C.-s. Zhang, B. Zhang, and P. Wang, “A new data-
grouping-aware dynamic data placement method that takes into
account jobs execute frequency for hadoop,” Microprocessors and
Microsystems, vol. 47, pp. 161–169, 2016.

[86]J. Wang, P. Shang, and J. Yin, “Draw: A new data-grouping-
aware data placement scheme for data intensive applications with
interest locality,” in Cloud Computing for Data-Intensive Appli-
cations, pp. 149–174, Springer, 2014.

[87]N. Mansouri and M. M. Javidi, “A new prefetching-aware data
replication to decrease access latency in cloud environment,”
Journal of Systems and Software, vol. 144, pp. 197–215, 2018.

[88]K. A. Kumar, A. Quamar, A. Deshpande, and S. Khuller,
“SWORD: Workload-aware data placement and replica selec-
tion for cloud data management systems,” The VLDB Journal,
vol. 23, no. 6, pp. 845–870, 2014.

149



[89]N. Mansouri, M. M. Javidi, and B. Mohammad Hasani Zade,
“Using data mining techniques to improve replica management
in cloud environment,” Soft Computing, vol. 24, no. 10, pp. 7335–
7360, 2020.

[90]T. Hamrouni, S. Slimani, and F. B. Charrada, “A data min-
ing correlated patterns-based periodic decentralized replication
strategy for data grids,” Journal of Systems and Software,
vol. 110, pp. 10–27, 2015.

[91]S. Tong and D. Koller, “Support vector machine active learn-
ing with applications to text classification,” Journal of Machine
Learning Research, vol. 2, pp. 45–66, 2001.

[92]G. M. Fung and O. L. Mangasarian, “Multicategory proximal
support vector machine classifiers,” Machine learning, vol. 59,
no. 1-2, pp. 77–97, 2005.

[93]G. Ingersoll, T. S. Morton, and D. Farris, “Taming text: how to
find, organize, and manipulate it,” New York, USA: Simon and
Schuster, 2012.

[94]D. Antons and C. F. Breidbach, “Big data, big insights? Ad-
vancing service innovation and design with machine learning,”
Journal of Service Research, vol. 21, no. 1, pp. 17–39, 2018.

[95]C. Hopp, D. Antons, J. Kaminski, and T. O. Salge, “The topic
landscape of disruption research—a call for consolidation, rec-
onciliation, and generalization,” Journal of Product Innovation
Management, vol. 35, no. 3, pp. 458–487, 2018.

[96]S. Kaplan and K. Vakili, “The double-edged sword of recombi-
nation in breakthrough innovation,” Strategic Management Jour-
nal, vol. 36, no. 10, pp. 1435–1457, 2015.

[97]D. Antons, A. M. Joshi, and T. O. Salge, “Content, contribution,
and knowledge consumption: Uncovering hidden topic structure
and rhetorical signals in scientific texts,” Journal of Manage-
ment, vol. 45, no. 7, pp. 3035–3076, 2019.

150



[98]R. Agrawal, R. Srikant, et al., “Fast algorithms for mining as-
sociation rules,” in Proc. 20th International Conference on Very
Large Data Bases, pp. 487–499, September 12-15, 1994.

[99]N. D. Almalis, G. A. Tsihrintzis, N. Karagiannis, and A. D.
Strati, “FoDRA—a new content-based job recommendation algo-
rithm for job seeking and recruiting,” in Proc. 6th International
Conference on Information, Intelligence, Systems and Applica-
tions, pp. 1–7, July 6-8, 2015.

[100]M. Amami, R. Faiz, F. Stella, and G. Pasi, “A graph based
approach to scientific paper recommendation,” in Proc. interna-
tional conference on web intelligence, pp. 777–782, August 23-26,
2017.

[101]C. Wang and D. M. Blei, “Collaborative topic modeling for rec-
ommending scientific articles,” in Proc. 17th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Min-
ing, pp. 448–456, August 21 - 24, 2011.

[102]D. Ofer, N. Brandes, and M. Linial, “The language of proteins:
NLP, machine learning & protein sequences,” Computational and
Structural Biotechnology Journal, vol. 19, pp. 1750–1758, 2021.

[103]X. Chen, X. Hu, X. Shen, and G. Rosen, “Probabilistic topic
modeling for genomic data interpretation,” in Proc. IEEE
International Conference on Bioinformatics and Biomedicine,
pp. 149–152, December 18-21, 2010.

[104]F. Glover, “Future paths for integer programming and links to ar-
tificial intelligence,” Computers & Operations Research, vol. 13,
no. 5, pp. 533–549, 1986.

[105]E. Goldberg David and H. Henry, “Genetic algorithms and ma-
chine learning,” Machine Learning, vol. 3, no. 2, pp. 95–99, 1988.

[106]M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimiza-
tion,” IEEE Computational Intelligence Magazine, vol. 1, no. 4,
pp. 28–39, 2006.

151



[107]J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proc. International Conference on Neural Networks, pp. 1942–
1948, November 27-December 1, 1995.

[108]T. Mekhaznia and M. E. B. Menai, “Cryptanalysis of classical ci-
phers with ant algorithms,” International Journal of Metaheuris-
tics, vol. 3, no. 3, pp. 175–198, 2014.

[109]M. Angelova and T. Pencheva, “Genetic operators’ significance
assessment in multi-population genetic algorithms,” Interna-
tional Journal of Metaheuristics, vol. 3, no. 2, pp. 162–173, 2014.

[110]A. Aliano Filho, H. de Oliveira Florentino, and M. Vaz Pato,
“Metaheuristics for a crop rotation problem,” International Jour-
nal of Metaheuristics, vol. 3, no. 3, pp. 199–222, 2014.

[111]S. Fidanova, P. Marinov, and M. Paparzycki, “Multi-objective
ACO algorithm for wsn layout: performance according to number
of ants,” International Journal of Metaheuristics, vol. 3, no. 2,
pp. 149–161, 2014.

[112]J. Bobadilla, F. Ortega, A. Hernando, and A. Gutierrez, “Rec-
ommender systems survey,” Knowledge-Based Systems, vol. 46,
pp. 109–132, 2013.

[113]A. Sang and S. K. Vishwakarma, “A ranking based recommender
system for cold start & data sparsity problem,” in Proc. 10th
International Conference on Contemporary Computing, pp. 1–3,
August 10-12, 2017.

[114]R. Obeidat, R. Duwairi, and A. Al-Aiad, “A collaborative recom-
mendation system for online courses recommendations,” in Proc.
International Conference on Deep Learning and Machine Learn-
ing in Emerging Applications, pp. 49–54, August 26-28 2019.

[115]N. Nassar, A. Jafar, and Y. Rahhal, “A novel deep multi-
criteria collaborative filtering model for recommendation sys-
tem,” Knowledge-Based Systems, vol. 187, pp. 104–121, 2020.

[116]W. Krisdhamara, B. Pharmasetiawan, and K. Mutijarsa, “Im-
provement of collaborative filtering recommendation system to

152



resolve sparsity problem using combination of clustering and
opinion mining methods,” in International Seminar on Applica-
tion for Technology of Information and Communication, pp. 94–
99, September 21-22, 2019.

[117]K. K. Fletcher, “A method for dealing with data sparsity and
cold-start limitations in service recommendation using person-
alized preferences,” in Proc. IEEE International Conference on
Cognitive Computing, pp. 72–79, June 25-30, 2017.

[118]C. L. Streeter and D. F. Gillespie, “Social network analysis,”
Journal of Social Service Research, vol. 16, pp. 201–222, 1993.

[119]S. Wasserman, K. Faust, et al., “Social network analysis: Meth-
ods and applications,” Cambridge, UK: Cambridge university
press, 1994.

[120]J. Coleman, “The mathematics of collective action,” Abingdon-
on-Thames, UK: Routledge, 2017.

[121]R. Burt, “Toward a structural theory of action,” New York, USA:
Academic Press, 1982.

[122]P. Bonacich, “Factoring and weighting approaches to status
scores and clique identification,” Journal of Mathematical So-
ciology, vol. 2, no. 1, pp. 113–120, 1972.

[123]L. C. Freeman, “Centrality in social networks conceptual clarifi-
cation,” Social Networks, vol. 1, no. 3, pp. 215–239, 1978.

[124]J. Zhang and Y. Luo, “Degree centrality, betweenness centrality,
and closeness centrality in social network,” in Proc. 2nd Interna-
tional Conference on Modelling, Simulation and Applied Mathe-
matics, pp. 300–303, March 26-27, 2017.

[125]S. Brin and L. Page, “The anatomy of a large-scale hypertex-
tual web search engine,” Computer Networks and ISDN Systems,
vol. 30, no. 1-7, pp. 107–117, 1998.

[126]S. Sukrat and B. Papasratorn, “An architectural framework for
developing a recommendation system to enhance vendors’ ca-
pability in c2c social commerce,” Social Network Analysis and
Mining, vol. 8, no. 1, pp. 1–13, 2018.

153



[127]D. H. Lee and P. Brusilovsky, “Improving personalized recom-
mendations using community membership information,” Infor-
mation Processing & Management, vol. 53, no. 5, pp. 1201–1214,
2017.

[128]A. Triantafillidou and G. Siomkos, “The impact of facebook ex-
perience on consumers’ behavioral brand engagement,” Journal
of Research in Interactive Marketing, vol. 12, no. 2, pp. 164–192,
2018.

[129]A. Corbellini, C. Mateos, D. Godoy, A. Zunino, and S. Schiaffino,
“An architecture and platform for developing distributed recom-
mendation algorithms on large-scale social networks,” Journal of
Information Science, vol. 41, no. 5, pp. 686–704, 2015.

[130]R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and
R. Buyya, “Cloudsim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provi-
sioning algorithms,” Software: Practice and Experience, vol. 41,
no. 1, pp. 23–50, 2011.

[131]R. Buyya and M. Murshed, “Gridsim: A toolkit for the modeling
and simulation of distributed resource management and schedul-
ing for grid computing,” Concurrency and Computation: Prac-
tice and Experience, vol. 14, no. 13-15, pp. 1175–1220, 2002.

[132]T. Issariyakul and E. Hossain, “Introduction to network simula-
tor 2 (NS2),” in Introduction to network simulator NS2, pp. 1–18,
New York, USA: Springer, 2009.

[133]T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and
J. Kopena, “Network simulations with the ns-3 simulator,” SIG-
COMM Demonstration, vol. 14, no. 14, p. 527, 2008.

[134]H. Rinne, “The Weibull distribution: a handbook,” New York,
USA: CRC press, 2008.

[135]T. White, “Hadoop: The definitive guide,” California, USA:
”O’Reilly Media, Inc.”, 2012.

[136]W. McCormick, S. Deutsch, J. Martin, and
P. Schweitzer, “Identification of data structures and

154



relationships by matrix reordering techniques.” url-
https://apps.dtic.mil/sti/tr/pdf/AD0754012.pdf. (accessed
2022-03-08).

[137]W. T. McCormick Jr, P. J. Schweitzer, and T. W. White, “Prob-
lem decomposition and data reorganization by a clustering tech-
nique,” Operations Research, vol. 20, no. 5, pp. 993–1009, 1972.

[138]X. Liu, D. Yuan, G. Zhang, J. Chen, and Y. Yang, “SwinDeW-
C: A‘ peer-to-peer based cloud workflow system,” in Handbook of
Cloud Computing, pp. 309–332, New York, USA: Springer, 2010.

[139]H. Bhattacharya, S. Chattopadhyay, and M. Chattopadhyay,
“Problems with replica placement using data dependency in sci-
entific cloud workflow,” in Proc. 5th International Conference
on Emerging Applications of Information Technology, pp. 1–4,
January 12-13, 2018.

[140]H. Bhattacharya, M. Chattopadhyay, and S. Chattopadhay, “A
case for splitting a file for data placement in a distributed
scientific workflow,” in Proc. IEEE 12th Annual Information
Technology, Electronics and Mobile Communication Conference,
pp. 1058–1063, October 27-30, 2021.

[141]H. Bhattacharya, S. Chattopadhyay, and M. Chattopadhyay,
“NS3 Based HDFS data placement algorithm evaluation frame-
work,” in Proc. International Conference on Computer, Electrical
& Communication Engineering, pp. 1–8, December 22-23, 2017.

[142]A. S. Foundation, “HDFS logical cluster architecture.”
url: https://hadoop.apache.org/docs/stable/hadoop-project-
dist/hadoop-hdfs/HdfsDesign.html. (accessed 2022-03-08).

[143]H. Bhattacharya, A. Bhattacharya, S. Chattopadhyay, and
M. Chattopadhyay, “LDA topic modeling based dataset depen-
dency matrix prediction,” in Proc. International Conference on
Computational Intelligence, Communications, and Business An-
alytics, pp. 54–69, July 27-28, 2018.

[144]D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet al-
location,” The Journal of Machine Learning Research, vol. 3,
pp. 993–1022, 2003.

155



[145]I. Porteous, D. Newman, A. Ihler, A. Asuncion, P. Smyth, and
M. Welling, “Fast collapsed gibbs sampling for latent dirichlet al-
location,” in Proc. 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 569–577, August
24 - 27, 2008.

[146]Q. Le and T. Mikolov, “Distributed representations of sentences
and documents,” in Proc. International Conference on Machine
Learning, pp. 1188–1196, June 21-26, 2014.

[147]J. D. M.-W. C. Kenton and L. K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language under-
standing,” in Proc. of NAACL-HLT, pp. 4171–4186, June 2-7,
2019.

[148]G. Maheshwari, P. Trivedi, H. Sahijwani, K. Jha, S. Dasgupta,
and J. Lehmann, “Simdoc: Topic sequence alignment based doc-
ument similarity framework,” in Proc. Knowledge Capture Con-
ference, pp. 1–8, December 2-3, 2017.

[149]V. Rus, N. Niraula, and R. Banjade, “Similarity measures based
on latent dirichlet allocation,” in Proc. International Conference
on Intelligent Text Processing and Computational Linguistics,
pp. 459–470, March 24-30, 2013.

[150]D. Greene and P. Cunningham, “Practical solutions to the
problem of diagonal dominance in kernel document clustering,”
in Proc. 23rd International Conference on Machine Learning,
pp. 377–384, June 25 - 29, 2006.

[151]H. Bhattacharya, A. Bhattacharya, M. Chattopadhyay, and
S. Chattopadhyay, “Determining threshold for partitioning a de-
pendency graph in replica prefetching in distributed systems,”
in Proc. 6th International Conference on Research in Computa-
tional Intelligence and Communication Networks, p. Article in
Press, Springer, 2021.

[152]M. Girvan and M. E. Newman, “Community structure in social
and biological networks,” Proc. National Academy of Sciences,
vol. 99, no. 12, pp. 7821–7826, 2002.

156




