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1. Introduction 

Due to intense research activities and wide use of high-throughput technology in the 

area of biological sciences, society is experiencing an explosion of biological data. As the 

size of the biological databases increases day by day, analyzing this enormous volume of 

biological data has become complicated. This analysis is very much crucial to elucidate 

several secrets of life and several aspects of medical sciences. The most efficient method to 

investigate these data is via laboratory experiments which involve lots of time, money, and 

manpower. So, effective and efficient computational tools are needed to store, analyze, and 

interpret these different types of biological data. In this regard, a new field called 

bioinformatics [1,2] has risen to overcome the above-mentioned issues.  

Bioinformatics [1,2] is the conceptualizing biology in terms of molecules and applying 

informatics techniques to understand and organize the information with these molecules, on a 

large scale. It involves the creation and advancement of algorithms using techniques 

including machine learning, data mining, pattern recognition, applied mathematics, statistics, 

informatics, and biochemistry to store, analyze and interpret this vast amount of biological 

data [3]. Major research efforts in this field include sequence alignment and analysis, gene 

finding, genome annotation, protein structure alignment and prediction, classification of 

proteins, clustering and dimension reduction or feature selection from gene expression, 

protein-protein docking or interactions, and the modeling of evolution. Hence, in other words, 

bioinformatics can be described as the application of computational methods to make 

biological discoveries [1,2,3]. 

Machine learning [4,5] is one sub field of artificial/machine intelligence which is 

related to the study of computer algorithms that provides systems the ability to automatically 

learn and improve from experience. Machine learning algorithms allow the systems to make 

decisions autonomously without any external support. Such decisions are made by finding 

valuable underlying patterns within complex data. Machine learning techniques are divided 

into three broad categories: supervised learning, unsupervised learning, and reinforcement 

learning. These techniques are used in several ways in different fields like pattern 

recognition, image processing, data mining, natural language processing [4-12]etc.   

Data mining [11, 12] is a branch of computer science where several hidden information 

are extracted from data using several mining techniques. Data mining techniques are widely 

used in medical data examination field for analyzing, extracting, transforming, interpreting 

and visualizing medical records stored in repositories. Medical data mining is very important 

for improvement of medical therapy and in parallel it is very challenging also, because 

diagnosis and prediction of diseases are directly related to a matter of life and death of 

patients. A wrong classification or prediction can be disastrous to the life of patients and their 

relatives. Data mining techniques consist of two types of techniques: data management 

techniques and data analysis techniques. Among the several data analysis techniques, 

machine learning techniques are widely used in medical data mining field to make decisions 

to easily and quickly diagnose and predict diseases. 
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In the several types of bio-technology, microarray technology is one of the most 

popular high-throughput bio-technology which is used to measure the expression level of a 

huge number of genes simultaneously in particular cells or tissues [13]. Results of microarray 

technology are large matrices known as gene expression data matrices where a row contains 

information about a gene; a sample/experiment is represented by a column and a cell contains 

information about a gene for a specific sample/experiment.  Microarray data analysis has 

been successfully applied in a number of studies over a broad range of biological and medical 

disciplines, including identification of functions of novel genes, identification of pathway in 

gene regulatory network, cancer classification by class discovery and prediction, 

identification of unknown effects of a specific therapy, identification of genes relevant to a 

certain diagnosis or therapy, and cancer prognosis etc. [14-30].  So, microarray gene 

expression data analysis has important aspects in real life applications. 

Due to several shortcomings of microarray experiments [31], considerable missing 

values (MVs) are introduced in the resultant matrix [31]. Sometimes, a large number of genes 

(up to 90%) are   affected and contain   missing   values [31]. Such incomplete matrices pose 

a problem in analysis algorithms [14-30] as they need complete matrices. It is not feasible to 

repeat microarray experiments as they are overwhelmingly costly. So, designing algorithms 

for predicting these missing values accurately have become very important. Accuracy of 

these prediction methods can affect the results of analysis algorithms as these methods 

require complete gene matrices. So, missing value prediction in gene expression data is a 

mandatory preprocessing task before analysis. 

The challenge is, therefore, to devise powerful machine learning methodology-based 

data mining techniques to preprocess and analyze gene expression data in more efficient 

ways. The systems should have the capability of flexible information processing to deal with 

real life ambiguous situations and to achieve tractability, robustness, and low-cost solutions. 

In the above background, the focus of the research undertaken in this thesis is presented next. 

2. Aim and Works of the Dissertation 

The major focus of this research work is to devise machine learning methodology based 

new data mining techniques to preprocess and analyze gene expression data, which are 

efficient in terms of prediction accuracy. 

2.1 1st Work: Pre-processing on Microarray Gene Expression Data based 

on Clustering technique: A Framework for Neighborhood 

Configuration to Improve the KNN based Imputation Algorithms on 

Microarray Gene Expression Data 

In view of the several technical problems associated with microarray experiments, a 

considerable number of entries are found missing in a typical microarray gene expression 

dataset. As a consequence, due to the unavailability of complete data, the effectiveness of the 

downstream analysis algorithms deteriorates. Different imputation techniques are employed 

to address this problem. These techniques are developed based on two approaches. One 

approach is weighted average based methods and second one is numerical approach-based 
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methods. Among these techniques, the numerical methods are more robust than the weighted 

average based methods but the weighted average based methods are widely used in several 

applications as these methods generate consistent results and are algorithmically simple, but 

these methods also suffer from some drawbacks that are seldom elaborated upon. These 

deficiencies have been pointed out in our first work. To solve these problems, in the first 

work we have first proposed a primary framework via proposing a new hybrid distance based 

a new version of the K-nearest neighbor imputation method (KNNimpute) named iterative 

sequential K-nearest neighbor imputation method (ISKNNimpute). The ISKNNimpute with 

the hybrid distance does not capable of solving all those deficiencies. So, we have introduced 

a new robust framework which is embedded in the K-nearest neighbor imputation method 

(KNNimpute), as well as in its different versions. The idea is to achieve better neighborhood 

formation, in order to improve the prediction accuracies. The new framework is developed 

using Euclidean distance, Pearson correlation coefficient, and mean square residue score.The 

new framework is tested on ten well-known microarray datasets. From the experimental 

results it has been found that in each and every case, the proposed modified methods 

significantly outperform their corresponding traditional versions and are also comparable 

with the existing robust numerical methods. Among all the versions, ISKNNimpute with the 

new framework is better than other KNN versions.  

Experimental Results 

The effectiveness of the proposed algorithm is certified by carrying out a large number 

of experiments over ten microarray gene expression datasets. For comparing the efficiency of 

the proposed methods, different versions of the proposed methods are compared with the 

well-known weighted average based and numerical methods based on existing missing value 

estimation techniques. The accuracy of the proposed methods in comparison with the above-

mentioned existing techniques has been ensured using the following metrics:(a) normalized 

root mean squared error (NRMSE) [40] and (b) average distance between partitions error 

(ADBPE) [41]. 

In Figure 1 the different proposed versions of KNNimpute are compared with their 

corresponding existing versions with respect to different distances like Euclidean, Pearson, 

PEH distance in terms of NRMSE for ROS dataset. In Figure 2 and Figure 3 the proposed 

versions are compared with different existing popular methods LLSimpute [42], SVDimpute 

[43], BPCA[44] in terms of NRMSE and ADBPE respectively. In all cases the proposed 

versions show superior performance. 

For our experimentation, different microarray gene expression datasets have been used. 

These datasets are classified into three categories: (1) time-series dataset (SP.AFA[45], 

SP.ELU[45], BAL[46]) (2) mixed data set. Mixed dataset comprise time-series data as well 

as non time-series data or multiple time-series data measured in different experimental 

conditions, YOS[47]) (3) non-time series dataset (GAS[48], ROS[49], GOL[50], 

Tymchuk[51] and HIR[52]). A synthetic dataset generated by SynTReN [53] is also 

considered here.  
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Figure 1 . Comparative performance analysis of different versions of the proposed method with its existing 

versions using different distances  in terms of NRMSE for ROS dataset 
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Figure.2. Comparative performance analysis of different versions of the proposed method for existing well-

known imputation techniques in terms of NRMSE 
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Figure 3. ADBP error of different methods for SP.ELU, YOS, and ROS datasets 
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In this work, the modified KNNimpute, and its different versions are proposed for 

improving the prediction accuracy of the traditional K-nearest neighbor rule-based estimation 

techniques. The motivation behind this work is that the neighborhood for each target gene 

will be constructed in such a way that the weighted average procedure will run only on the 

maximally positively co-expressed and magnitude wise closest genes.In all cases, the 

proposed methods give better performance than their corresponding traditional versions, and 

among them, the prediction accuracy of the modified ISKNN-impute is the best. For local 

structure-based datasets, this method significantly gives similar results compared to other 

numerical methods. 

In the next work, we have proposed another missing value prediction technique for 

microarray gene expression data via integrating clustering and numerical approach.  
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2.2 2nd Work: Clustering and Numerical technique based Pre-processing 

on Microarray Gene Expression Data: Bi-clustering based Sequential 

Interpolation Imputation Technique for Missing Value Prediction in 

Microarray gene expression data   

In the second work, we have given focus on developing a new imputation method via 

combining clustering and numerical approach to improve prediction accuracy. It has been 

already found that prediction accuracy of numerical methods is high but these methods 

sometime generate inconsistent results. Existing numerical methods are very complex and 

hard to implement. Due to unavailability of codes in the internet these methods are not used 

frequently in the applications. Considering this view, we have proposed a new imputation 

method which is a combination of bi-clustering and interpolation based numerical work. 

Here, using bi-clustering the neighborhood is first formed and then using interpolation 

missing values are imputed. The proposed work is simple compared to existing numerical 

methods and shows its superiority. 

Experimental Results 

In this paper, efficiency of the proposed BiSIimpute is evaluated by comparing it with a 

number of existing eminent imputation techniques, namely KNNimpute [43], SKNNimpute 

[55], LLSimpute [42], SVDimpute [43], Bayseian principal component analysis (BPCA)[44], 

NL[51], and bi-iLS[56]. Experiments have been carried out over nine different datasets. 

Accuracy of our algorithm is compared with other algorithms using two well-known metrics: 

i) normalized root mean squared error (NRMSE) and ii) average distance between partitions 

error (ADBPE) as discussed in the previous chapter. All the datasets are used here from 

previous experiment.  

All the above mentioned methods are implemented in C using Linux environment in a 

machine with a 4 GB RAM, and 3.2 GHz core i3 processor. 

Figures 4 and Figure 5 show the comparative experimental results to prove effectiveness of 

the proposed framework. 

 

Conclusion 

In this work, a bicluster-based sequential interpolation imputation method called 

BiSIimpute is proposed for estimation of missing values in DNA microarray data. The 

novelty of this method is that first time interpolation based imputation technique is applied in 

biclustering framework. Using NRMSE, and ADBPE metric, it is found that the proposed 

method outperforms all other methods mentioned here for different local structured based 

datasets. So, it is a new robust approach to estimate missing values in different local 

structured based microarray gene expression datasets. After data pre-processing several 

machine learning techniques are applied to mine gene expression data. One such mining task 

is to find functionally similar genes from microarray gene expression data which is discussed 

in the next work.  
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Figure 4. Comparative performance analysis of different methods based on NRMSE for different datasets with 

different percentage of missing entries 
 

 

 

Figure 5.Comparative Performance Analysis of different methods with respect to ADBP error for SP.ELU, 

ROS, and YOS datasets 
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2.3 HCFPC: A New Hybrid Clustering Framework using Partition-Based 
Clustering Algorithms to Group Functionally similar Genes from 
Microarray Gene Expression Data 

One important analysis task of microarray gene expression data is to find hidden 

patterns among genes present in this data to extract relevant information which will be 

beneficial for functional genomics. It has been already found that genes with similar 

expression patterns (co-expressed genes) may have similar biological functions. The 

information from these hidden patterns among genes may help in analysing functional 

enrichment of genes, understanding gene function of uncharacterized genes, understanding 

cellular processes, gene co-regulation or relation in functional pathways, and finding out 

information related to transcriptional regulatory networks. So, it is a great challenge to 

identify groups of genes based on similar patterns from this large voluminous gene 

expression data. Clustering techniques [10, 14,15] are widely used in gene expression data 

for clustering genes to partition genes among relevant functional groups. A huge number of 

different clustering techniques are already developed to solve this problem. However, the 

clustering of genes is an old problem but as gene expression data is very much noisy so 

proper noise deletion is an important task before clustering and is still challenging. Although 

tight clustering methods are developed, these methods have several computational 

limitations. Among the different category-based clustering methods, partition-based 

clustering methods are most popular but these methods are unable to eliminate noise. Here, 

in the third work, we have designed a novel framework using different partition-based 

clustering algorithms (mainly different versions of K-Means) to provide an intuitive model 

for eliminating noise and also generating functional gene clusters. The model is also capable 

of clustering genes without using any predefined K as K is automatically detected here. 

Experimental Results 

In this research work, the performance of HCFPC is compared with that of hard k-

means (HKM) , fuzzy k-means (FKM) , possibilistic k-means (PKM) , cluster identification 

via connectivity kernels (CLICK) , and self-organizing map (SOM) [69] on different 

microarray gene expression data sets (with noise and without noise version). The major 

metrics for evaluating the performance of different algorithms are Silhouette index (SILH) 

[70], Davies-Bouldin index (DB) [71], Dunn index (DUNN) [71]. Also, the biological 

significance of the generated gene clusters generated by HCFPC algorithm is analyzed using 

the Gene Ontology Term Finder [72]. 

In this paper, four publicly available microarray times series gene expression datasets 

are taken for making comparative study. The description of the datasets is given in Table 1, 

which are downloaded from Gene Expression Omnibus (http://www.ncbi.nlm. nih.gov/geo/).  

Table 1.Dataset Description 

Dataset Name Species Number of  Rows/Genes Number of Columns/Time-Points 

GDS2910(Noisy) Yeast 2746(1900+846) 191 

GDS1116(Noisy) Yeast 1081(798+281) 131 

GDS2002 Yeast 5617 30 

GDS2003 Yeast 5617 30 
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Dataset Preparation: 

Four datasets have been used here for study. Among these, GDS2002 and GDS2003 

datasets required no pre-processing while GDS1116 and GDS2910 required pre-processing. 

Initially all rows containing missing values greater than 10% are deleted. The missing values 

are then filled with row-average values to get the complete data. After that artificially noise 

has been introduced. Among those deleted rows, rows with missing values above 75% are 

selected and those missing values are filled with random values outside the range of possible 

values (i.e. greater than the maximum possible value and less than the minimum possible 

value) in previously created complete data. These artificially created rows are then appended 

with the complete data to create the noisy datasets with 15 to 20% of noise elements.  

Table 2. Performance Comparison of the Proposed Framework with HKM, FKM, and PKM on Normal Datasets 

Dataset Name Clustering Methods Cluster No. DB Index Silhouette Index Dunn Index 

GDS2910 

HCFPC framework 

30 

1.49 0.08 0.06 

HKM 2.47 0.05 0.049 

FKM 6.13 -0.06 0.045 

PKM 6.29 -0.17 0.037 

GDS1116 

HCFPC framework 

5 

1.91 0.12 0.042 

HKM 1.98 0.09 0.047 

FKM 3.97 -0.11 0.032 

PKM 4.65 -0.13 0.036 

 

Table 3.Performance Comparison of the Proposed Framework with HKM, FKM, and PKM in Presence of Noise 

Dataset 
Evaluation 

Metric 

HCFPC framework HKM FKM PKM 

Normal 

dataset with 

inherent 

noise 

With 

noise 

Normal 

dataset 

with 

inherent 

noise 

With 

noise 

Normal 

dataset with 

inherent 

noise 

With 

noise 

Normal 

dataset with 

inherent 

noise 

With 

noise 

GDS2910 

DVB 1.49 1.55 2.47 2.76 6.13 8.43 6.29 12.54 

SILH 0.08 0.04 0.05 0.01 -0.06 -0.21 -0.17 -0.16 

DUNN 0.06 0.076 0.049 0.52 0.045 0.46 0.037 0.32 

GDS1116 

DVB 1.49 1.54 1.98 2.03 3.97 3.1 4.65 14.86 

SILH 0.12 0.11 0.09 0.13 -0.11 0.71 -0.13 -0.25 

DUNN 0.042 0.043 0.047 0.37 0.032 0.43 0.036 0.47 

Table 4.Performance Comparison of the Proposed Framework with other Clustering Methods 

Indices Clustering Algorithms 
GDS2002 GDS2003 

Normal dataset Normal dataset 

DB Index 

CLICK 26.7 17.61 

SOM 13.41 15.22 

HCFPC framework 0.17 0.19 

Silhouette Index 

CLICK -0.12 -0.09 

SOM -0.05 -0.06 

HCFPC framework 0.89 0.93 

Dunn Index 

CLICK 0.03 0.05 

SOM 0 0.01 

HCFPC framework 4.1 2.43 
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Table 5.Significant GO Terms Obtained Using Proposed Algorithm for GDS2003 

Ontology 

Aspects 

Cluster 

Number 
Gene Ontology term 

Cluster 

frequency 

Genome 

frequency 

Corrected P-

value 
FDR 

FALSE 

Positives 

Biological 

Process 

12 cytoplasmic translation 0.357 0.029 3.25E-117 0.00% 0 

3 mitochondrial translation 0.284 0.024 5.39E-73 0.00% 0 

18 ribosome biogenesis 0.538 0.067 3.87E-72 0.00% 0 

18 
ribonucleoprotein complex 

biogenesis 
0.543 0.08 1.15E-64 0.00% 0 

18 rRNA metabolic process 0.431 0.054 9.40E-55 0.00% 0 

12 peptide biosynthetic process 0.435 0.114 6.06E-54 0.00% 0 

12 
organonitrogencompound 

biosynthetic process 
0.551 0.187 2.85E-53 0.00% 0 

3 mitochondrion organization 0.284 0.04 3.02E-50 0.00% 0 

Molecular 

Function 

12 
structural constituent of 

ribosome 
0.315 0.033 4.86E-85 0.00% 0 

3 
structural constituent of 

ribosome 
0.219 0.006 4.15E-36 0.00% 0 

9 electron transfer activity 0.235 0.025 2.24E-20 0.00% 0 

9 
active transmembrane 

transporter activity 
0.324 0.025 1.56E-17 0.00% 0 

18 snoRNA binding 0.086 0.04 4.65E-17 0.00% 0 

Cellular 

Component 

3 mitochondrion 0.781 0.174 3.79E-125 0.00% 0 

12 cytosolic ribosome 0.329 0.023 3.36E-119 0.00% 0 

3 
mitochondrial protein-

containing complex 
0.34 0.03 1.51E-87 0.00% 0 

12 ribonucleoproteincomplex 0.463 0.091 1.23E-79 0.00% 0 

18 preribosome 0.35 0.024 8.68E-64 0.00% 0 

12 
intracellular non-membrane-

bounded organelle 
0.581 0.21 1.72E-53 0.00% 0 

 

Comparative Performance Analysis 

The performance of the proposed framework is compared with different existing 

partition based methods and other methods are compared on different datasets without noise 

and with noise. The proposed framework with the above-mentioned features performs 

significantly better than other partition-based clustering algorithms and other types of 

clustering algorithms for all microarray datasets (in presence of additional noise also) in 

terms of different quantitative indices and also provides biologically significant clusters. 

Results are given in Tables 2 to 5.  

Conclusion 

In this work, a new gene clustering framework is developed by integrating different 

partition-based clustering algorithms in a novel manner. The main novelty of this framework 

is that, it can work in presence of noise and after detecting noisy genes, it can eliminate them 

and generates good qualitative clusters with small set of significant genes. Apart from this 

instead of random centroid selection it selects centroid in a novel manner.  

The proposed framework with the above-mentioned features performs significantly better 

than other partition-based clustering algorithms and other types of clustering algorithms for 

all microarray datasets (in presence of additional noise also) in terms of different quantitative 

indices and also provides biologically significant clusters. 

In the next work, we have proposed a new ensemble machine learning model for cancer 

sample classification from gene expression data. 
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2.4 An Ensemble Machine Learning Model based on Multiple Filtering 

and Supervised Attribute Clustering Algorithm for Classifying Cancer 

Samples  

Sample classification is one of the important downstream analysis based application of 

microarray gene expression data. The gene expression data matrix contains a huge number of 

genes compared to a limited number of samples and this is a most important problem for 

sample classification. Most classification algorithms suffer from such a high-dimensional 

input space. Also, a very small number of genes contain relevant information for sample 

classification. Secondly, the class imbalance problem is an overhead for sample classification 

also. In this regard, in the fourth work, a new ensemble machine learning classification model 

named Multiple Filtering and Supervised Attribute Clustering algorithm based Ensemble 

Classification model (MFSAC-EC) is proposed which can handle class imbalance problem 

and high dimensionality of microarray datasets. The MFSAC method is a supervised feature 

selection technique combining multiple filters with a new supervised attribute clustering 

algorithm. Using MFSAC method different sub datasets are formed based on different 

filtering measures and then for every sub dataset, a base classifier is constructed separately, 

and finally, the predictive accuracies of these base classifiers are combined using the majority 

voting technique forming the MFSAC-based ensemble classifier. 

 

Experimental Results 

To assess the performance of the proposed MFSAC-EC model, four well-known 

existing classifiers named K-Nearest Neighbor [86], Naive Bayes [86], Support vector 

machine [87], and Decision tree(c4.5) [86] are applied independently in this model and four 

different ensemble classification models are formed. To prove the superiority of the proposed 

model, it is compared with existing well-known filter methods (used here) and existing 

recognized gene selection methods [76, 88-89] and also with different existing ensemble 

classifiers [90-95]. To analyze the performance, the methods are applied to different publicly 

available cancer and other disease-related gene expression datasets. The major metrics used 

here for evaluations of the performance of the proposed classifier are the Cross-validation 

method (LOOCV, 5-fold, and 10-fold), ROC Curve, and Heat map. 

Description and Preprocessing of the Datasets 

The experimentation has been carried out over ten publicly available different gene 

expression binary class and multi-class datasets. Among these datasets, eight datasets are 

cancer datasets and two arthritis datasets. The eight cancer datasets are Leukemia [79], Colon 

[96], Prostate [97], Lung [98], RBreast [99], Breast [100], MLL [101], and SRBCT [102]. To 

show the accuracy of the proposed model with respect to other than cancer datasets here two 

arthritis datasets RAHC [103] and RAOA [103] are also considered. 

 

Comparison of MFSAC-EC Model with Well-Known Existing Gene Selection Methods 

In Figure 6, the MFSAC-EC model with different existing classifiers as base classifiers 

are compared with existing well-known supervised gene selection methods named mRMR 
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(minimum redundancy maximum relevance framework) [76], MSG (mutual information 

based supervised gene clustering algorithm) [88], CFS (Correlation-based Feature Selection) 

[89], and FCBF(Fast Correlation-Based Filter) [89] with respect to different classifiers using 

10-fold cross-validation method. From these results, it has been found that the proposed 

model outperforms in most of the cases. 

 

 
Figure 6. Comparative performance analysis of MFSAC-EC model with respect to different existing gene 

selection methods in terms of 10 fold cross validation 

 

Comparison of MFSAC-EC Model with Well-Known Existing Ensemble Classification 

and DEEP learning Models 

In the below Tables 6, 7 and 8, MFSAC-EC is compared with different ensemble and 

deep learning models. In all cases the proposed method shows its superiority. 

Biological Significance Analysis 

The top 8 genes selected by the MFSAC-EC model for Colon cancer and Leukemia are listed 

in Table 9. For every gene, the name and symbol of the gene as well as the Accession number 

of the Affymetrix chip are listed. Apart from this information, to validate those genes, 

biomedical literature of the genes is searched and for every gene, the corresponding reference 

about its role and significance for a particular disease is provided. 

 

Conclusion  

Many machine learning and statistical learning-based classifiers for sample 

classification already exist in the literature, but these methods are prone to suffer from 

overfitting due to small sample size problems, class imbalance problems, and the curse of the 

high dimensionality of microarray data. Although some of the existing methods can mitigate 

these issues to quite an extent, the problems have still not been satisfactorily overcome. Due 

to this reason, here a novel feature selection-based ensemble classification model named 
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Table 6. Comparison of MFSAC-EC using DT with different existing Ensemble Classifiers using DT in terms of 10-Fold Cross Validation 

Dataset 
MFSAC

-EC 

PCA-based 

RotBoost 

ICA-based 

RotBoost 
AdaBoost Bagging Arcing 

Rotation 

Forest 
EN-NEW1 EN-NEW2 

Colon 98.39 95.48 96.1 94.97 94.92 69.35 95.21 79.03 83.87 

Leukemia 100 98.75 98.77 98.22 97.47 Not Found 97.97 Not Found Not Found 

Breast 100 94.39 97.88 98.89 92.74 80.41 98.6 94.85 95.88 

Lung 100 98.11 99.54 96.3 97.08 97.24 97.56 98.34 99.45 

Prostate 97.79 Not Found Not Found 90.44 94.12 87.5 Not Found 94.85 97.06 

MLL 100 98.86 99.31 97.63 97.11 91.67 97.61 93.06 98.61 

SRBCT 100 99.5 99.59 98.16 96.46 Not Found 97.44 Not Found Not Found 

 

Table 7. Comparison of MFSAC-EC using DT, KNN, NB, SVM with different existing Ensemble Classifiers using  DT, KNN, NB, SVM in terms of  10-Fold Cross 

Validation 

Dataset 
MFSAC-EC Bagging Boosting Stacking HBSA 

SD_Ens Meta_Ens 
DT NB KNN SVM DT NB KNN DT NB KNN DT NB KNN KNN SVM 

Leukemia 100 100 100 100 94.12 88.23 73.53 91.18 88.24 75.53 91.18 91.18 91.18 88.46 88.46 92.45 94.12 

Colon 98.39 98.39 100 98.39 95.16 66.13 90.32 98.39 87.1 91.94 98.39 93.59 93.59 75 85 94.4 99.21 

Prostate 97.79 99.26 99.26 99.26 26.47 26.47 38.24 26.47 26.47 52.94 26.47 26.47 52.94 85.29 97.06 52.94 52.94 

Lung 100 100 100 100 91.28 96.64 97.32 81.88 95.3 97.99 97.99 97.99 96.64 
Not 

Found 

Not 

Found 
81.88 97.99 

Breast 100 100 100 100 78.95 36.84 68.42 68.42 36.84 68.42 68.42 68.42 68.42 
Not 

Found 

Not 

Found 
73.49 79.87 

 

Table 8. Comparison of MFSAC-EC using SVM and KNN with respect to different existing deep learning Classifiers using random splitting 

Dataset 
SVM KNN 

MFSAC-EC Folded Autoencoder Autoencoder MFSAC-EC Folded Autoencoder Autoencoder 

Colon 100 90.15 73.11 98.39 81.09 56.97 

Prostate 96.81 84.16 64.3 97.87 76.48 52.1 

Leukemia 100 93.62 84.12 100 85.24 77.13 
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Table 9. List of genes selected by MFSAC-EC model for Colon and Leukemia cancer Datasets 

 

 

MFSAC-EC is proposed. It has been shown that the proposed model can handle the above 

mentioned issues present in existing models. From the experimental results, it has been found 

that the proposed model outperforms all other well-known existing classification models 

combined with the different recognized feature selection methods and also the newly 

developed ensemble classifiers for all types of cancer datasets mentioned here. Apart from 

this classification task, the proposed model can also rank informative attributes according to 

their importance. The efficiency of the proposed model in this task is vindicated by finding 

the most informative genes for Colon cancer and Leukemia cancer datasets using this model. 

3. Conclusion and Future Directions 

The main objective of this thesis is to develop machine learning based some 

classification and clustering methodologies, which preprocess and analyze gene expresssion 

data more accurately.  In this regard, certain problems of gene expression data  and the 

solutions of these problems using the proposed methodologies are discussed in this thesis. 

In the first work we have developed a novel framework for better neighbourhood 

formation in KNNimpute and its several versions to improve their prediction accuracy. From 

experimental results it has been found that prediction accuracy of the KNN and its several 

versions has been greatly improved after using this framework. This method can be applied in 

RNA expression data, protein expression data for prediction of missing values in future.  

In the second work we have developed another imputation method via integrating 

clustering and numerical method as it is already known that numerical methods are robust 

although these methods has several limitations. In this work we have tried to overcome all 

these drawbacks. This method can be applied in RNA expression data, protein expression 

Dataset Gene Name Accession Number Description Validation of Genes 

Colon 

TPM1 Hsa.1130 Human tropomyosin isoform mRNA, complete cds. [103],  [104], [105]  

IGFBP4 Hsa.1532 
Human insulin-like growth factor binding protein-4 

(IGFBP4) gene, promoter and complete cds. 
[106], [107], [108] 

MYL9 Hsa.1832 

Myosin Regulatory Light Chain 2, Smooth Muscle 

Isoform (Human); contains element TAR1 repetitive 

element 

[109],  [110] 

ALDH1L1 Hsa.10224 
Aldehyde Dehydrogenase, Mitochodrial X Precursor 

(Homo sapiens) 
[111], [112] 

KLF9 Hsa.41338 
Human mRNA for GC box binding protein/ Kruppel Like 

Factor 9, complete cds 
[113], [114], [115] 

MEF2C Hsa.5226 
Myocyte-Specific Enhancer Factor 2, Isoform MEF2 

(Homosapiens) 
[116], [117], [118] 

GADPH Hsa.1447 Glyceraldehyde 3-Phosphate Dehydrogenase [119], [120] 

TIMP3 Hsa.11582 Metalloproteinase Inhibitor 3 Precursor [121], [122] 

Leukemia 

TXN X77584_at TXN Thioredoxin [123], [124], [125] 

CSF3R M59820_at 
CSF3R Colony stimulating factor 3 receptor 

(granulocyte) 
[126], [127], [128], [129] 

MPO M19508_xpt3_s_at MPO from Human myeloperoxidase gene [130], [131], [132], [133] 

LYZ M21119_s_at LYZ Lysozyme [134], [135] 

CST3 M27891_at 
CST3 Cystatin C (amyloid angiopathy and cerebral 

hemorrhage) 
[136] 

ZYX X95735_at Zyxin [136], [137] 

CTSD M63138_at CTSD Cathepsin D (lysosomalaspartyl protease) [134] 

CD79A/ MB-1 

gene 
U05259_rna1_at MB-1 membrane glycoprotein [134] 
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data and also in other areas apart from bioinformatics for prediction of missing values in 

future.  

In the third work, we have proposed a new framework based on partition based 

clustering for groupingin unsupervised manner functionally similar genes from microarray 

gene expression data. This is the first framework where we have eliminated noise using 

different partition based clustering methods and tries to overcome the drawbacks of different 

partition based clustering methods. Experimental results show superioty of the proposed 

method. One limitation  of this method is that to check gene gene similarity we have used 

Euclidean distance as in gene expression data it is already known that not value-wise only 

pattern based similar and expression value wise closer genes are also functionally similar. 

Using Euclidean distance value wise closer genes can only be considered. In future work we 

will solve this problem. 

In the fourth work we have proposed a new ensemble classification model named 

MFSAC-EC for sample classification in microarray gene expression data. The proposed 

model has two components. One is gene/feature selection to reduce feature dimenstion and 

second one sample classification. For feature selection we have applied multi filters based 

supervised attribute/gene clustering algorithm and for classification we have applied a 

modified bagging model. The proposed model shows its superioty for different cancer 

datasets. In future we will modify this model via applying deep learning techniques and apply 

it for other disease based microarray datasets.  

Finally, it can be concluded that different classification and clustering schemes reported 

in this thesis can be extended to model other complex problems of bioinformatics and data 

mining. 
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