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Abstract 

The inter-networked society has been experiencing an explosion of biological data. However, the 

explosion is paradoxically acting as an impediment to acquiring knowledge. The meaningful 

interpretation of these large volumes of biological data is increasingly becoming difficult. This 

analysis is very much crucial to elucidate several secrets of life and several aspects of medical 

sciences. The most efficient method to investigate these data is via laboratory experiments, but it 

involves lots of time, money, and manpower. So, effective and efficient computational tools are 

needed to store, analyze, and interpret these diverse types of biological data. Data mining bridges 

this gap. Data mining techniques are of two types: data management techniques and data analysis 

techniques. Among the different data mining techniques, machine learning based data mining 

techniques are widely used to mine biological data.  

Among the different types of bio-molecular data, gene expression data is highly impactful. 

Microarray techniques such as DNA and high density oligonucleotide chips are powerful 

biotechnologies as they are able to record the expression levels of thousands of genes 

simultaneously. Microarray data analysis has great impact in a number of studies over a broad 

range of biological and medical disciplines, including identification of functions of novel genes, 

identification of pathway in gene regulatory network, cancer classification by class discovery 

and prediction, identification of unknown effects of a specific therapy, identification of genes 

relevant to a certain diagnosis or therapy, and cancer prognosis etc. So, microarray gene 

expression data analysis plays an important role in real life applications.  

Due to several shortcomings of microarray experiments, considerable missing values (MVs) are 

introduced in the resultant matrix. Such incomplete matrices pose a problem in analysis 

algorithms as they need complete matrices. It is not feasible to repeat microarray experiments as 

they are overwhelmingly costly. So, designing algorithms for predicting these missing values 

accurately have become a mandatory preprocessing step before analysis. 

The challenge in this thesis, overall, is to devise powerful machine learning methodologies by 

symbiotically combining different tools to mine gene expression data in more efficient ways. In 

this regard, this thesis presents some new supervised and unsupervised learning methodologies, 

which are efficient in terms of prediction accuracy. The proposed methodologies are used to 

solve certain problems related to DNA microarray gene expression data.  

In the first and second works of this thesis, clustering techniques are used to develop new 

imputation methods for prediction of missing values more accurately. In the first work, we have 

introduced a new robust framework which is embedded in the K-nearest neighbor imputation 

method (KNNimpute), as well as its different versions to achieve better neighborhood formation, 

in order to improve the prediction accuracies. Apart from this a new version of KNNimpute is 

proposed here. From the experimental results it has been found that in each and every case, the 

proposed modified method with new framework significantly outperform their corresponding 



traditional versions and are also comparable with the existing robust numerical methods. In the 

second work we have given focus on developing a new imputation method via combining 

clustering and numerical approach to improve prediction accuracy. Existing numerical methods 

are very complex and hard to implement. The proposed work is simple compared to existing 

numerical methods and shows its superiority. 

In third and fourth work new supervised and unsupervised learning techniques are developed to 

analyze gene expression data in more efficient manner.  Here, in the third work, we have 

designed a novel framework using different partition-based clustering algorithms (mainly 

different versions of K-Means) to provide an intuitive model for eliminating noise and also 

generating functional gene clusters. The model is also capable of clustering genes without using 

any predefined K as K is automatically detected here. The effectiveness of the algorithm, along 

with a comparison with other algorithms, is demonstrated on different microarray datasets. 

In the fourth work, a new ensemble machine learning classification model named Multiple 

Filtering and Supervised Attribute Clustering algorithm based Ensemble Classification model 

(MFSAC-EC) is proposed to classify cancer samples more accurately which can handle class 

imbalance problem and high dimensionality of microarray datasets. The superiority of the 

algorithm, along with a comparison with other algorithms, is demonstrated on different 

microarray data sets. 
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Chapter 1 

 

Introduction 

 

Due to intense research activities and wide use of high-throughput technology in the area of 

biological sciences, society is experiencing an explosion of biological data. As the size of the 

biological databases increases day by day, analyzing this enormous volume of biological data has 

become complicated. This analysis is very much crucial to elucidate several secrets of life and 

several aspects of medical sciences. The most efficient method to investigate these data is via 

laboratory experiments. But it involves lots of time, money, and manpower. So, effective and 

efficient computational tools are needed to store, analyze, and interpret these different types of 

biological data. In this regard, a new field called bioinformatics [1, 2, 250] has risen to overcome 

the above-mentioned issues.  

Bioinformatics [1, 2, 250] is the conceptualizing biology in terms of molecules and 

applying informatics techniques to understand and organize the information with these 

molecules, on a large scale. It entails the development of algorithms utilizing various methods, 

such as machine learning, data mining, pattern recognition, applied mathematics, statistics, 

informatics, and biochemistry to store, analyze and interpret this vast amount of biological data 

[3]. Gene sequence alignment and sequence analysis, finding informative genes , applying  

classification and clustering techniques for gene dimension reduction or feature selection from 

gene expression data, genome annotation, protein structure prediction and alignment of proteins, 

protein- protein docking and study the modeling of evolution are the significant fields of research 

initiatives in the field of bioinformatics. Therefore, bioinformatics can be treated as the field 

where computational tools and techniques are used to foster the biological discoveries [1, 2 ,3]. 
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Machine learning [4, 5] is one sub field of artificial intelligence which involves the study 

of computer algorithms that let systems to automatically learn from experience and get better at 

doing so. The systems which are equipped with machine learning algorithms enable them to 

decide on their own without outside assistance. Such choices are made through identifying 

important underlying patterns in large, complex data sets. Machine learning techniques are 

divided into three broad categories: supervised learning, unsupervised learning, and 

reinforcement learning. These techniques are used in several ways in different fields like pattern 

recognition, image processing, data mining, natural language processing [4-12] etc.   

Data mining [11, 12] is a branch of computer science where several hidden information 

are extracted from data using several mining techniques. Data mining techniques are widely used 

in medical data examination field for analyzing, obtaining, modifying, deciphering, and 

displaying medical records that are kept in repositories. Mining medical records is very 

important for improvement of medical therapy and in parallel it is very challenging also, because 

diagnosis and prediction of diseases are directly related to a patient's life or death situation. 

Patients' and their families' lives could end in catastrophe if a classification or forecast is made 

incorrectly. Data analysis techniques consist of two types of techniques: data management 

techniques and data analysis techniques. Among the several data analysis techniques, machine 

learning techniques are widely used in medical data mining field to make decisions to easily and 

quickly diagnose and predict diseases.  

Among the several types of bio-technology, microarray technology is one of the most 

popular high-throughput bio-technology which is used to measure the expression level of a huge 

number of genes simultaneously in particular cells or tissues [13]. Results of microarray 

technology are large matrices known as gene expression data matrices where a row contains 

information about a gene; a sample/experiment is represented by a column and a cell contains 

information about a gene for a specific sample/experiment.  The use of Microarray data analysis 

has been applied  in several studies covering a wide variety of biological and medical disciplines, 

including identification of functions of novel genes, identification of pathway in gene regulatory 

network, identification of unidentified side effects of a particular medicine, the discovery and 

prediction of cancer categorization by class, the identification of genes linked to a certain 

diagnostic or therapy, and cancer prognosis etc. [14-30].  So, microarray gene expression data 

analysis has important aspects in real life applications. 

Due to several shortcomings of microarray experiments [31], considerable missing values 

(MVs) are introduced in the resultant matrix [31]. Sometimes, a large number of genes (up to 

90%) are   affected and contain   missing   values [31]. Such incomplete matrices pose a problem 

in analysis algorithms [14-30] as they need complete matrices. It is not feasible to repeat 

microarray experiments as they are overwhelmingly costly. So, designing algorithms for 

predicting these missing values accurately have become very important. Accuracy of these 

prediction methods can affect the results of analysis algorithms as these methods require 
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complete gene matrices. So, missing value prediction in gene expression data is a mandatory 

preprocessing task before analysis. 

The challenge is, therefore, to devise powerful machine learning methodology-based data 

mining techniques to preprocess and analyze gene expression data in more effective manner. The 

focus should be given to develop capable information processing systems which can deal with 

real life ambiguous problems and achieve tractable low-cost solutions. In the above background, 

the focus of the research undertaken in this thesis is presented next. 

1.1 Aim of the Dissertation 

The major focus of this research work is to devise machine learning methodology based 

new data mining techniques to preprocess and analyze gene expression data, which are efficient 

in terms of prediction accuracy. 

In view of the several technical problems associated with microarray experiments, a 

considerable number of entries are found missing in a typical microarray gene expression 

dataset. As a consequence, due to the unavailability of complete data, the effectiveness of the 

downstream analysis algorithms deteriorates. Different imputation techniques are employed to 

address this problem. These techniques are developed based on two approaches. One approach is 

weighted average based methods and second one is numerical approach-based methods. Among 

these techniques, the numerical methods are more robust than the weighted average based 

methods. However, weighted average based methods are widely used in several applications as 

these methods generate consistent results and are algorithmically simple, but these methods also 

suffer from some drawbacks that are seldom elaborated upon. These deficiencies have been 

pointed out in our first work. To solve these problems, in the first work we have first proposed a 

primary framework via proposing a new hybrid distance based a new version of the K-nearest 

neighbor imputation method (KNNimpute) named iterative sequential K-nearest neighbor 

imputation method (ISKNNimpute) approach. This work has not the capability to overcome all 

those deficiencies. So, we have introduced a new robust framework which is embedded in the K-

nearest neighbor imputation method (KNNimpute), as well as its different versions. The idea is 

to achieve better neighborhood formation, in order to improve the prediction accuracies. From 

the experimental results it has been found that in each and every case, the proposed modified 

methods with new framework significantly outperform their corresponding traditional versions 

and are also comparable with the existing robust numerical methods.  

In the second work, we have given focus on developing a new imputation method via 

combining clustering and numerical approach to improve prediction accuracy. It has been 

already found that prediction accuracy of numerical methods is high but these methods 

sometime generate inconsistent results. Existing numerical methods are very complex and hard 

to implement. Due to unavailability of codes in the internet these methods are not used 

frequently in the applications. Considering this view, we have proposed a new imputation 
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method which is a combination of bi-clustering and interpolation based numerical work. The 

proposed work is simple compared to existing numerical methods and shows its superiority. 

One important analysis task of microarray gene expression data is to find hidden patterns 

among genes present in this data to extract relevant information which will be beneficial for 

functional genomics. It has been already found that genes with similar expression patterns (co-

expressed genes) may have similar biological functions. The information from these hidden 

patterns among genes may help in analysing functional enrichment of genes, understanding gene 

function of uncharacterized genes, understanding cellular processes, gene co-regulation or 

relation in functional pathways, and finding out information related to transcriptional regulatory 

networks. So, it is a great challenge to identify groups of genes based on similar patterns from 

this large voluminous gene expression data. Clustering techniques [10, 14, 15] are widely used 

in gene expression data for clustering genes to partition genes among relevant functional groups. 

A huge number of different clustering techniques are already developed to solve this problem. 

However, the clustering of genes is an old problem but as gene expression data is very much 

noisy so proper noise deletion is an important task before clustering and is still challenging. 

Although tight clustering methods are developed, these methods have several computational 

limitations. Among the different category-based clustering methods, partition-based clustering 

methods are most popular but these methods are unable to eliminate noise. Here, in the third 

work, we have designed a novel framework using different partition-based clustering algorithms 

(mainly different versions of K-Means) to provide an intuitive model for eliminating noise and 

also generating functional gene clusters. The model is also capable of clustering genes without 

using any predefined K as K is automatically detected here.  

Sample classification is one of the important downstream analysis based application of 

microarray gene expression data. The gene expression data matrix contains a huge number of 

genes compared to a limited number of samples and this is a most important problem for sample 

classification. Most classification algorithms suffer from such a high-dimensional input space. 

Also, a very small number of genes contain relevant information for sample classification. 

Secondly, the class imbalance problem is an overhead for sample classification also. In this 

regard, in the fourth work, a new ensemble machine learning classification model named 

Multiple Filtering and Supervised Attribute Clustering algorithm based Ensemble Classification 

model (MFSAC-EC) is proposed which can handle class imbalance problem and high 

dimensionality of microarray datasets. The MFSAC method is a supervised feature selection 

technique combining multiple filters with a new supervised attribute clustering algorithm. Then 

for every sub dataset, a base classifier is constructed separately, and finally, the predictive 

accuracy of these base classifiers is combined using the majority voting technique forming the 

MFSAC-based ensemble classifier. 
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1.2 Organization of the Dissertation: 

Prior to dealing with the proposed works on gene expression data, a comprehensive 

survey of the relevant research publications is reported in Chapter 2. The survey covers 

following aspects:  

1. A general overview of the existing machine learning techniques for mining data.  

2. A brief overview of bioinformatics.  

3. A brief overview of different analysis tasks related to microarray gene expression 

data 

In the third chapter, we have given our focus on modification of the existing most popular 

weighted-average based imputation technique and its several versions. In this regard, we have 

found out the drawbacks of the most popular weighted-average based imputation technique and 

its several versions. To solve these problems, we first proposed a new hybrid distance based a 

new version of the K-nearest neighbor imputation method (KNNimpute) named iterative 

sequential K-nearest neighbor imputation method (ISKNNimpute). Although ISKNNimpute 

outperformed several existing imputation techniques, it failed to overcome all those deficiencies 

found in weighted-average based imputation approaches. So, we have introduced a new 

framework to apply in weighted-average based imputation procedure for neighborhood 

formation. The proposed framework is embedded in the K-nearest neighbor imputation method 

(KNNimpute), as well as its different versions. The idea is to achieve better neighborhood 

formation, in order to improve the prediction accuracies. It is based on a hybrid distance and 

gene transformation procedure which utilizes simultaneously the advantages of Euclidean 

distance, Mean squared residue score, and Pearson correlation coefficient to select the best 

possible neighbors, using pattern-based similarity. The new framework is tested on ten well-

known microarray datasets. From the experimental results it has been found that in each and 

every case, the proposed modified methods significantly outperform their corresponding 

traditional versions and are also comparable with the existing robust numerical methods. Among 

all the versions, ISKNNimpute with the new framework is better than other KNN versions.  

In the fourth chapter, we have proposed a new imputation technique which is a 

combination of bi-clustering and numerical work. In our method, we have used bi-clustering 

technique for neighborhood formation and then applied interpolation technique for predicting 

missing values. The proposed method is tested on different microarray datasets and from the 

experimental results it has been found that in each and every case, the proposed modified 

methods significantly outperform existing robust numerical methods.  

Here, in the fifth chapter, we have designed a novel framework using different partition-

based clustering algorithms (mainly different versions of K-Means) to provide an intuitive model 

for eliminating outliers and also generating functional gene clusters. The model is also capable 

of clustering genes without using any predefined K as K is automatically detected here. The 
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effectiveness of the algorithm, along with a comparison with other algorithms, is demonstrated 

on different microarray datasets. 

In the sixth chapter, a new ensemble machine learning classification model named 

Multiple Filtering and Supervised Attribute Clustering algorithm-based Ensemble Classification 

model (MFSAC-EC) is proposed which can handle class imbalance problem and high 

dimensionality of microarray datasets. This model first generates a number of bootstrapped 

datasets from the original training data where the oversampling procedure is applied to handle 

the class imbalance problem. The proposed MFSAC method is then applied to each of these 

bootstrapped datasets to generate sub-datasets, each of which contains a subset of the most 

relevant/informative attributes of the original dataset. The MFSAC method is a supervised 

feature selection technique combining multiple filters with a new supervised attribute clustering 

algorithm. Then for every sub dataset, a base classifier is constructed separately, and finally, the 

predictive accuracy of these base classifiers is combined using the majority voting technique 

forming the MFSAC-based ensemble classifier.  Also, a number of most informative attributes 

are selected as important features based on their frequency of occurrence in these sub-datasets. 

The effectiveness of the algorithm, along with a comparison with other algorithms, is 

demonstrated on different microarray data sets. 

The last chapter, that is, Chapter 7, draws the conclusion along with the future research. 
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Chapter 2  

 

Literature Survey 

 

This dissertation reports the application of different machine learning techniques to mine useful 

biological information from gene expression data. In this background, basic concepts of data 

mining techniques, machine learning techniques, bioinformatics and gene expression data are 

discussed in this chapter. The first section covers the basic overview of machine learning  

techniques. In the second section the fundamentals of data mining techniques are discussed. In 

the third section fundamentals of bioinformatics is given while in the last section gene expression 

data is elaborated.  

2.1 A Brief Overview on Machine Learning Techniques 

Machine learning [4, 5, 6] is a sub field of artificial intelligence. It is the field research of 

computer techniques that provide computers the capacity to automatically learn from experience. 

The systems which are equipped with machine learning algorithms, enable them to decide on 

their own without outside assistance. Such choices are made through identifying important 

underlying patterns in large, complex data sets. Some of the machines learning approaches are 

decision tree, genetic algorithm, neural network, inductive logic procedures, etc. These are 

currently under active investigation. With a hierarchical structure of attributes and classes, the 

ultimate goal is to handle any general sorts of data, including situations where the amount and 

type of characteristics may fluctuate and where new learning layers are superimposed In order to 

offer understanding of the decision-making process, it must sufficiently resemble human 
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reasoning. Although background information may be used in machine learning development, 

human intervention is not expected during operation. 

 

 

 

 

 

 

 

 

 

Figure 2.1 Taxonomy of Machine Learning 

 

The different application domains of machine learning are Pattern recognition, Computer 

vision, prediction, data mining, natural language processing and information retrieval. 

Depending on the method of learning, the kind of data they input and output, and the kind 

of issue they resolve, machine learning algorithms are divided into four broad categories as 

shown in Figure 2.1. These are supervised, unsupervised, semi-supervised and reinforcement 

learning. Apart from these categories, there are a few approaches. 

2.1.1 Supervised Learning  

Supervised learning [4, 5, 6] is one kind of machine learning technique which is to learn a 

function from sample input-output data pairs that transfers an input to an output. When the data 

takes the form of input variables and output target values, supervised learning is used. The 

algorithm picks up the function for mapping input to output to infer a function; it makes use of 

labeled training data and a variety of training samples. After inferring the function, it applies it 

on test data, and predicts output target value of test samples.  

Supervised learning algorithms are divided into two categories: 1) Classification (2) Regression. 

In classification task, the target values are discrete while in regression the target values 

are continuous. As for example predicting the class label or sentiment of a text message in 

Twitter or Facebook is an example of text classification while predicting the loan amount for a 

customer in a bank is an example of regression.  

2.1.2 Unsupervised Learning  

It can be very expensive, difficult, or even impossible to accurately label a training 

sample with its real category in many pattern recognition applications. The land-use 

classification in remote sensing can be treated as an example. Unsupervised learning [4, 5, 6] is 

applied when there is no class label is associated with input data that means data is available only 

in the form of inputs these algorithms simulate the underlying patterns in the data to gain a better 
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understanding of its properties. It is frequently used for generative feature extraction, trend and 

structure identification, result grouping, and exploratory purposes. 

One of the most popular unsupervised learning methods is data clustering which is a 

catch-all term for a number of techniques used to identify inherent natural groupings, or clusters, 

in multidimensional data based on similarities between the patterns and then these are used to 

forecast results from unknown inputs. Predicting consumer purchase behaviour would be an 

illustration of this strategy. 

There are numerous other unsupervised learning challenges than clustering. These 

include identifying association rules, dimensionality reduction, feature learning, and density 

estimation. 

2.1.3 Semi-supervised learning  

This is another kind of machine learning technique. This technique is a hybridization of 

supervised and unsupervised machine learning techniques, as it operates on both labelled and 

unlabelled data. Thus, it falls between learning ―without supervision‖ and learning ―with 

supervision‖. In the real world, in different contexts, where the number of unlabelled data is 

greater than the number of labelled data, semi-supervised learning is very useful. 

A semi-supervised [4, 6] learning model's main objective is to create predictions that are 

superior to those made using the model's labelled or unlabelled data alone. Semi-supervised 

learning is utilised in a variety of applications, including text categorization, fraud detection, 

machine translation, and fraud detection. 

2.1.4 Reinforcement learning  

Another type of machine learning technique is reinforcement learning [4,6], which 

enables software agents and computers to automatically assess their best behaviour in a given 

situation or environment for improving its performance based on achievement of penalty and 

reward. It is basically an environment driven approach and its ultimate goal is to choose the best 

action from environmental activities to increase reward or minimize the task.  

It is an effective tool in a variety of AI-related domains, including robotics, autonomous 

driving, manufacturing, and supply chain logistics, although it is not recommended for usage in 

simple or fundamental situations. 

Apart from these four major learning techniques there are a few other derived learning 

techniques. The most popular ones are discussed below. 

2.1.5 Multitask Learning  

The straightforward aim of multitask learning [6] is to improve the performance of other 

students. When multitask learning algorithms are used on a task, they recall the steps taken to 

solve the issue or arrive at the desired result. The algorithm then applies these processes to solve 

other problems or tasks that are comparable to the one at hand. This process for transferring 
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information from one algorithm to another is known as inductive transfer. Students can learn 

concurrently rather than individually and considerably more quickly if they share their 

experiences with one another. 

2.1.6 Ensemble Learning  

Ensemble learning [6] is the term for the type of learning that occurs when multiple 

individual learners are brought together to create only one learner. The particular learner could 

be a neural network, decision tree, or Naive Bayes, for example. Since the 1990s, ensemble 

learning has been a popular issue. It has been noted that a group of learners does a certain task 

more effectively than an individual student almost always. 

2.1.7 Active Learning  

The active learning algorithm [4] chooses the subset of data samples from which it 

wishes to learn in advance. From a big collection of unlabeled samples, the samples are chosen, 

and then they are labeled. As a result, the algorithm can outperform more established techniques 

while using far less training data that has been labeled. These techniques are quite helpful in 

situations where there may be a lot of unlabeled data yet labels are hard to come by or are 

expensive. 

2.1.8 Online Learning  

Utilizing data that becomes available in a sequential manner allows for training during 

online learning [3]. This method differs from batch sampling-based learning, which always has 

access to all of the training data. It can be helpful in situations where algorithms must 

dynamically adjust to new data patterns from all incoming input. 

2.1.9 Incremental Learning  

The incremental learning [4] approach is extremely similar to (and occasionally identical 

to) online learning. The primary distinction is that a training sample from an incoming data 

stream is only used once in online learning. Samples are typically chosen from a finite dataset for 

incremental learning, and the same samples may be processed more than once. 

2.1.10 Meta Learning  

In a meta-learning [4] paradigm, the machine learning model accumulates knowledge 

over a number of learning episodes, which frequently include a range of related tasks, and then 

makes use of this knowledge to enhance any subsequent learning performance. The objective is 

to solve novel tasks with just a few training samples. Meta-learning, also known as learning the 

learning process, seeks to enhance the learning algorithm given the knowledge of numerous 

learning episodes, in contrast to standard machine learning approaches where a particular task is 
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learnt from scratch using a preset learning algorithm. Few-shot learning and metric learning are 

two examples. 

2.1.11 Deep Learning  

Deep learning [4] is a method for using multiple-layer neural networks to a variety of 

machine learning methods. For the purpose of comprehending the incoming data, these various 

processing layers learn representations of the data at various levels of abstraction. 

2.2 Data Mining 

The field of computer science known as data mining explores several computational 

methods for locating and extracting implicit knowledge that is valuable from massive databases 

[11,12]. Since the past two decades, this field's significance has grown steadily, and today it is 

crucial to the process of finding hidden knowledge in databases (KDD). Numerous sectors, 

including e-commerce, fraud detection, instruction detection, lie detection, customer relationship 

management, market basket analysis, telecommunication networks, the banking industry, 

inventory control, and bioinformatics, among others, have used data mining techniques [11, 12].  

Disciplines including machine learning, artificial intelligence, probability, and statistics 

serve as the foundation for data mining. Predictive and descriptive tasks are the two main 

categories of data mining tasks. In the task of prediction, supervised learning functions are 

employed to forecast unknown or potential values of other relevant variables. The unsupervised 

learning functions are frequently used in the descriptive task to uncover patterns that describe the 

data and that people can understand.  Data mining involves several techniques. These techniques 

are divided into two categories: (1) data management techniques like data pre-processing 

techniques, dimension reduction techniques etc. (2) machine learning techniques for data 

analysis tasks like Clustering, Classification, Regression, Association rule mining, and other 

techniques for anomaly/outlier detection and summarization. 

2.2.1 Data Preprocessing  

Due to the explosion of the huge amount of raw data, originated from multiple 

heterogeneous sources under diverse environmental and physical conditions, these data are prone 

to several errors. The errors in data include the presence of noise, missing elements, and 

inconsistent data that will produce low-quality data which in turn produce erroneous or low-

quality data mining results. To remove these errors and improve the quality of data it is essential 

for these data to be preprocessed (to apply data preprocessing techniques). The methods for data 

preprocessing [11, 12] are categorized into data cleaning, data integration, data reduction, and 

transformation. To eliminate noise and fix discrepancies in the data, data cleaning can be used. 

By aggregating, removing redundancies, applying clustering, etc., data reduction reduces the size 

of the data. Data fusion creates a coherent data repository by combining data from several 

sources. In data transformations, the data are transformed into forms appropriate for mining. 
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These categories of preprocessing techniques may be working together to produce cleaned high-

quality data useful for mining. Among different other preprocessing methods some important 

techniques are discussed in the next sections.   

2.2.1.1 Missing Value Estimation 

Missing Value Estimation [11, 12] is an important preprocessing step falling under the 

category of data cleaning. Due to the imperfect data acquisition technique or multiple errors in 

the data preparation, many entries in the produced data remain absent or missing. These missing 

entries create severe problems during the analysis of these data as many analysis algorithms 

require complete data. Ignoring those missing entries leads to the cancelation of the related 

important information producing imperfect analysis results. For example, consider the produced 

data is in the form of a matrix where some entries are found missing. Ignoring those entries 

results in ignoring either the entire corresponding rows or columns in which missing entries are 

present. This will produce low-quality analysis results as some important features may be 

ignored during the cancelation of those entire rows and columns. Hence, proper methodologies 

are essential to predict those missing entries to achieve better analysis results. There are multiple 

categories of such missing value estimation techniques exist in the literature which we will 

discuss in detail in chapter 3. 

2.2.1.2 Dimension Reduction 

A minimally sized subset of qualities (features) that are pertinent to the target concept 

should be found using dimension reduction [11, 12]. A better knowledge of the underlying 

process that produced the data is one of three goals of dimension reduction [11, 12]. The other 

two goals are to speed up and reduce the cost of prediction. There are two main methods for 

dimension reduction: one is feature selection and other is feature extraction. Some of the 

commonly used methods for feature extraction and feature selection are discussed below. 

Feature Extraction 

In the original feature space of dimension d (m d), feature extraction algorithms choose a 

suitable subset of dimension m (either linearly or nonlinearly). For feature extraction and 

dimensionality reduction, linear transforms including principal component analysis (PCA), 

independent component analysis (ICA), linear discriminant analysis (LDA), and projection 

pursuit (PP) have been extensively used. Techniques for nonlinear feature extraction can be 

defined in a variety of ways. The kernel PCA is one such approach that has a close connection to 

PCA [32]. Multidimensional scaling is another nonlinear feature extraction technique [32]. 

Neural networks are also used for feature extraction [32]. 

Feature Selection 

Given a set of d features, choose the subset of size m that results in the minimum 

classification error, according to the definition of the feature selection problem given in [32, 33]. 
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Filter, wrapper, and embedding relationships are the three basic types that can exist between a 

feature selection algorithm and the inducer or classifier used to assess the utility of the feature 

selection process. 

1. Filter Scheme: The feature selection process can be thought of as a filter of unhelpful 

features prior to induction if it occurs before the induction or c stage. Filter methods assess 

the quality of the suggested feature subset based only on the inherent properties of the data 

and based on the link between each individual feature and the class label by computing 

straightforward statistics derived from the empirical distribution. The most common way is 

to rank the features in terms of the values of an univariate scoring metric. Then, the m 

features with the highest score are chosen to build the classifier. There is a large variety of 

different measures such as probabilistic or Distance metrics, measures inspired by the 

information theory. In a general sense, it can be seen as a particular case of the embedded 

scheme in which feature selection is used as a pre-processing. The filter schemes are 

independent of the induction algorithm. 

2. Wrapper Scheme: In the wrapper approach, a search is conducted in the space of 

features, evaluating the goodness of each found feature subset by the estimation of the 

accuracy percentage of the specific classifier to be used, training the classifier only with the 

found features. In this scheme the relationship is taken the other way around: it is the feature 

selection algorithm that uses the learning algorithm as a subroutine. The general argument in 

favor of this scheme is to equal the bias of both the feature selection algorithm and the 

learning algorithm that will be used later on to assess the goodness of the solution. The main 

disadvantage is the computational burden that comes from calling the induction algorithm to 

evaluate each subset of considered features. 

3. Embedded Scheme: The inducer or classifier in this approach has a custom feature 

selection method (either explicit or implicit). An illustration of this embedding can be found 

in the procedures for causing logical conjunctions.  Traditional machine learning tools like 

decision trees and random forest are included in this scheme. 

2.2.1.3 Data Discretization 

Data discretization is the procedure by which a wide range of continuous values given for 

an attribute can be reduced into some discrete small intervals. Discretization techniques divide 

the continuous range into small intervals thereby giving a label for each of the values falling 

under that interval. Discretization lowers and streamlines the initial data in order to create a 

clear, user-friendly knowledge-level representation of the mining findings. 

Discretization methods can be grouped as either top-down or bottom-up depending on the 

direction on which discretization will proceed. On the other hand, it can also be categorized as 

supervised or unsupervised depending on whether the class information is used for discretization 

or not. 



14 
 

2.2.2 Data Analysis Techniques 

There is several data analysis technique under data mining. These are classification, 

regression, clustering, association rule mining, anomaly detection, summarization, sequential 

pattern techniques. 

2.2.2.1 Classification 

Classification is among the classical data mining technique that is established as a task 

under supervised machine learning. It finds mutual properties amongst a set of objects in a 

dataset and categorizes them into diverse classes in accordance with the classification model. Its 

primary goal is to carefully examine the training data and create an accurate description or model 

for each class using data features. This method uses mathematical techniques like decision trees, 

Neural networks and statistics.  

2.2.2.2 Regression 

It is one among data mining techniques that defines the association between dependent 

and independent variables. It is a supervised machine learning task. Prediction is accomplished 

with regressions support. Regression analysis is a mathematical concept that establishes a 

relationship between the values of the dependent variable and those of the independent or 

predictor variables. The predicted variable in regression may be a continuous variable. 

Regression involves mapping real valued prediction variables from learning function elements. 

Statistical regression, Neural Network, and Support Vector Machine regression are some of the 

commonly used regression strategies. More complex techniques such as Logistic regression, 

Decision Trees or Neural Networks could also be utilized for forecasting future values, these 

techniques could also be combined for attainment of better result.  

2.2.2.3 Clustering 

It is a data mining technique which classifies tangible or intangible objects into groups of 

related items. Clustering divides a set of data (records, tuples, objects, and samples) into several 

groups (clusters) based on prior similarities. The principal aim of clustering is finding groups 

(clusters) of objects based on affinity so that within individual cluster there is great resemblance 

to each other while clusters are diverse enough from one another. In machine learning 

terminology, clustering is a form of unsupervised learning.  

2.2.2.4 Dependency Modeling (Association Rule Mining) 

It‘s amongst the finest acknowledged data mining techniques and is categorized under 

unsupervised data mining technique, which aims at finding connections or relations between 

items or records belonging to a large dataset and labels significant dependencies among 

variables. Association rule mining is implication of the form X → Y, where X and Y are distinct 

items or item sets manufacturing if-then statements regarding attribute values. In market basket 
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analysis this rule has been commonly used, it tries to analyze customers purchasing certain items 

and provides insight into the combinations customer frequently purchases together.  

2.2.2.5 Anomaly detection 

Synonymous to its name, it deals with the unearthing of most substantial changes or 

aberrations from the standard behavior.  

2.2.2.6 Summarization 

Though not amongst the techniques of data mining, but is a resultant of these methods, 

which is also known as generalization or description, which focuses on finding a concise 

depiction for a subset of facts.  

2.2.2.7 Discovery of Sequential Patterns 

Sequence discovery is a data mining technique that is used to determine sequential patterns or 

associations or regular events/trends between variable data fields over a business period. 

2.3 Brief Overview of different Classification and Clustering 

Techniques 

In this thesis we mainly developed different classification and clustering based machine 

learning models to mine gene expression data. So, a brief overview of different well-known 

classification is given first in this subsection and then different category based clustering 

algorithms are discussed in next subsection. 

2.3.1 Different Classification Techniques 

2.3.1.1 Bayesian Classifier 

A fundamental idea in the creation of pattern classifiers is the probabilistic approach.  

Bayesian classifiers [34] and Naive Bayesian classifiers [34] belong to this group. Bayesian 

classifiers are statistical classifiers and are based on Bayes‘ theorem. 

2.3.1.2 Decision Tree 

A special type of classifier is the decision tree [35]. The process of learning decision trees 

from class-labeled training tuples is known as decision tree induction. In a decision tree, each 

internal node (non-leaf node) symbolizes a test on an attribute, each branch shows the test's 

result, and each leaf node, or terminal node, stores a class label. The attributes values of a given 

tuple X are checked against the decision tree when the corresponding class label is unknown. 

From the root to a leaf node, which contains the class prediction for that tuple, a path is drawn. 

Because they can be built without any subject expertise or parameter setup, decision tree 
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classifiers are ideal for exploratory knowledge discovery. This is why they are so popular. High 

dimensional data can be handled via decision trees. 

2.3.1.3 Neural Network Based Classifiers 

The field of neural networks has attached attention of researchers from diverse fields. It 

covers a wide range of topics, such as comprehending and mimicking the human brain, as well as 

replicating more general human talents like voice and language use as well as the business, 

scientific, and technical disciplines of pattern recognition. A broad class of techniques can come 

under this heading. The basic structure of a neural network is layers of connected nodes, where 

each node produces a non-linear function of its input. A node's input can come directly from the 

input data or from other nodes. Some nodes can also be recognized by the network's output. As a 

result, the entire network reflects an extremely complex set of interdependencies that may 

include any level of nonlinearity, enabling the development of models for any generic functions. 

In the most basic networks, messages are propagated via layers of interconnected nodes by 

feeding the output from one node into another. Networks that connect the final output nodes to 

earlier nodes can model more complex behavior by giving the system the traits of a highly 

nonlinear system with feedback. The most commonly used family of neural networks for pattern 

recognition or classification tasks are multi-layer perceptron, radial basis function network, 

support vector machines [36-38], and so forth. 

2.3.1.4 K-Nearest Neighbor Classifier 

The k-nearest-neighbor method [34, 35] was first described in the early1950s. It has been 

extensively applied to pattern recognition. Based on learning by analogy, nearest neighbor 

classifiers compare a given test tuple with training tuples that are similar to it. N attributes are 

used to describe the training tuples. A point in an n-dimensional space is represented by each 

tuple. This results in the storage of all training tuples in an n-dimensional pattern space. A k-

nearest neighbor classifier looks for the k training tuples that are most similar to an unknown 

tuple when given an unknown tuple. These k training tuples are the unknown tuple's k nearest 

neighbors. A distance metric, like Euclidean distance, is used to define proximity. 

2.3.2 A Brief Overview of Different Clustering Techniques  

Many clustering algorithms exist in the literature. In general, the major clustering 

methods can be classified into the following categories. 

2.3.2.1 Partitioning Methods 

A partitioning method creates k partitions of the data from a database containing n 

objects or data tuples, where each partition represents a cluster and k< n. In other words, it 

divides the data into k groups that collectively meet the requirements listed below: At least one 

object must be present in each group, and each object must be a part of exactly one group. The 
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typical standard for a successful partitioning is that objects belonging to the same cluster are near 

or connected to one another, whilst those belonging to different clusters are separated or quite 

dissimilar. For evaluating the quality of partitions, there are numerous more types of criteria. 

Examples of partitioning-based clustering algorithms are the k-means algorithm, k-modes 

method, k-medoids (for example, PAM, CLARA, CLARANS [12, 39]) algorithm. 

2.3.2.2 Hierarchical Methods 

A hierarchical approach divides the supplied group of data objects into hierarchical 

decompositions. Depending on how the hierarchical breakdown is created, a hierarchical 

technique can be categorized as either agglomerative or divisive. The bottom-up technique, also 

known as the agglomerative approach, begins with each object creating a separate group (for 

instance, AGNES [12, 39]). Until all of the groups are merged into one (the top level of the 

hierarchy), or until a termination condition is met, it sequentially merges the items or groups that 

are close to one another. The top-down method, also known as the divisive method, begins with 

all of the items in the same cluster (for instance, DIANA [12, 39]). A cluster is divided into 

smaller clusters in each succeeding iteration, until eventually each item is one cluster, or until a 

termination condition is satisfied. Examples of hierarchical clustering algorithms are Chameleon, 

ROCK,CURE, BIRCH [12, 39] etc. 

2.3.2.3 Density-Based Methods 

The majority of object clustering techniques use object distance to group things together. 

Such algorithms struggle to find clusters of any shape and can only locate spherical-shaped 

clusters. On the basis of the idea of density, other clustering techniques have been created. Their 

basic premise is to grow a given cluster as long as the density (number of objects or data points) 

in the vicinity exceeds a predetermined threshold; specifically, for each data point inside a given 

cluster, the neighborhood within a predetermined radius must contain at least a predetermined 

number of points. A technique like this can be used to remove noise (outliers) and find clusters 

of any shape. The standard density-based approaches DBSCAN [12, 39] and its extension 

OPTICS [12, 39] grow clusters in accordance with a density-based connectivity analysis. A 

technique called DENCLUE [12, 39] groups items based on an examination of the density 

function value distributions. 

2.3.2.4 Grid-Based Methods 

Grid-based approaches divide the object space into a fixed number of grid-like cells. On 

the grid structure, all clustering actions are carried out (i.e., on the quantized space). The key 

benefit of this strategy is its quick processing time, which is usually unaffected by the quantity of 

data items and only depends on the number of cells in each dimension of the quantized space. A 

prominent example of a grid-based approach is STRING [12, 39]. Grid-based and density-based 

Wave Cluster uses wavelet transformation for clustering analysis [12, 39]. 
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2.3.2.5 Model-Based Methods 

Model-based methods posit a model for every cluster and then determine which model 

best fits the data. By creating a density function that reflects the spatial distribution of the data 

points, a model-based method may detect clusters. It also results in a method for automatically 

calculating the number of clusters based on common data, accounting for noise or outliers and 

producing reliable clustering techniques. Based on statistical modeling, the method EM [12, 39] 

performs expectation-maximization analysis. A probabilistic learning method called COBWEB 

[12, 39] uses concepts as a model for clusters and does probability analysis. A neural network-

based clustering approach called SOM (or self-organizing feature map) [40] converts high-

dimensional data into a 2-D or 3-D feature map that is also helpful for data visualization. 

The clustering technique that is used depends on the type of data that is available as well 

as the application's specific goals. It is feasible to test several algorithms on the same data when 

cluster analysis is used as a descriptive or exploratory tool to discover what the data may reveal. 

There are more forms of clustering algorithms that need specific consideration in addition to the 

categories of clustering methods mentioned above. One is graph based clustering (CLIQUE [12, 

39] and PROCLUS [12, 39]) and the other is constraint-based clustering [12, 39, 41].  

As in this thesis gene expression data is mined and it is molecular biology related data so 

in the next section, fundamentals of bioinformatics is discussed as this field deals with molecular 

biology related data.  

2.4 Bioinformatics 

Over the last few decades, there has been an explosion in the amount of biological 

information generated by the scientific community due to major advances in the field of 

molecular biology, coupled with advances in genomics technologies [1, 2, 3, 250]. Due to the 

overwhelming amount of biological data, computerized databases to store, organize, and index 

the data, as well as specialized tools to view and interpret the data, are now absolutely necessary. 

Computers are becoming crucial for conducting biological research. Such a strategy is perfect 

due to how easily computers can manage massive amounts of data and examine the complicated 

dynamics seen in nature. So, a new field has been evolved, that is, bioinformatics. So, a new 

field has been evolved, that is, bioinformatics. 

The use of computational techniques to biological discovery might be seen as 

bioinformatics [3]. To assess biological sequence data, genomic content and layout, and to 

forecast the function and structure of macromolecules, an interdisciplinary field integrating 

biology, computer science, mathematics, and statistics is used. This field's ultimate objective is 

to facilitate the discovery of novel biological insights and to provide a global viewpoint from 

which unifying biological principles can be deduced. 
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2.4.1 Aims of Bioinformatics 

Bioinformatics has three main objectives. 

1. First, bioinformatics organizes data in a way that makes it possible for researchers to 

access already-existing material and to submit new items as they are created, such as the 

Protein Data Bank for 3D macromolecular structures. So, in order to understand and 

organize the data related to these molecules on a large scale, bioinformatics 

conceptualizes biology in terms of molecules (in the sense of physical chemistry). It then 

applies informatics techniques (derived from disciplines such as applied mathematics, 

computer science, and statistics). Bioinformatics, which has a wide range of real-world 

uses, is essentially a management information system for molecular biology. 

2. The creation of materials and tools to assist in data analysis is the second goal. For 

instance, it is interesting to compare a protein's sequence to ones that have been 

previously defined. It takes more than simply a text-based search and tools like FASTA 

[42] and PSI-BLAST [43] to get relevant results in this case. The creation of such 

resources necessitates proficiency in computational theory as well as a solid grasp of 

biology. 

3. The final objective is to make use of these technologies to conduct data analysis and 

provide biologically relevant interpretation of the findings. 

2.4.2 Information of different data used in Bioinformatics 

Sources of data used in bioinformatics, the quantity of each type of data and 

bioinformatics subject areas that utilise this data [1-3] shown Table 2.1. 

2.4.3 Basic Concepts of Molecular Biology 

In this section the basic molecular biology related concepts are given which are required 

to understand the various problems of bioinformatics. 

Cell 

The simplest form of life is a cell [44]. They are the smallest unit capable of carrying out 

all of life's tasks in the current era. All living things are either made up of a single cell or are 

multicellular entities made up of many cells cooperating. It was discovered by Robert Hooke in 

1665. Its theory was first came to known to worldwide in 1839 by Matthias Jakob 

Schleiden and Theodor Schwann who asserts that every organism is made up of one or more 

cells, and that every cell has the genetic information needed to control its operations and pass on 

knowledge to its progeny. 
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Table 2.1: Different biomolecular data  

Type of Data Volume of Data (Size) Associated fields in Bioinformatics 

Raw DNA sequence 

8.2 million sequences    

(9.5 billion bases) 

 Identifying introns and exons,  

 Separating coding from non-coding sections, 

 Predicting gene product, and  

 Doing forensic analysis 

Protein sequence 

 
300,000 sequences             

(~300 amino acids each) 

 Algorithms for comparing sequences  

 Algorithms for multiple sequence alignments  

 Finding preserved sequence patterns 

Macromolecular 

structure 

13,000 structures               

(~1,000 atomic 

coordinates each) 

 Protein geometry measurements  

 3D structural alignment techniques  

 Surface and volume shape estimates  

 Secondary, tertiary structure prediction  

 Intermolecular interactions 

 

 

 Molecular modeling (force-field calculations, molecular 

movements, docking predictions) 

 

Genomes 

40 complete genomes    

(1.6 million - 3 billion 

bases each) 

 Structural assignments to genes  

 Characterisation of repeats  

 Genomic-scale censuses  

(characterisation of protein content, metabolic pathways)  

 Phylogenetic analysis 

 Linkage analysis relating specific genes to diseases 

Gene expression largest: ~20 time point 

measurements for ~6,000 

genes 

 Mapping expression data to sequence, structural and 

biochemical data 

 Correlating expression patterns  

Other data   

Literature 
11 million citations 

 Knowledge databases of data from literature 

 Digital libraries for automated bibliographical searches  

Metabolic pathways   Pathway simulations 

DNA 

Humans and nearly all other species carry their genetic information in DNA, also known 

as deoxyribonucleic acid. The majority of the DNA in eukaryotic organisms (animals, plants, 

fungi, and protists) is kept in the cell nucleus, while some of it is kept in organelles like the 

mitochondria or chloroplast [44, 45, 46]. Prokaryotes, which include bacteria and archaea, only 

store their DNA in the cytoplasm. DNA is compacted and organized within the chromosomes by 

chromatin proteins like histones. These little structures direct how DNA interacts with other 

proteins, helping to regulate which regions of the DNA are transcribed. 

All known living things, including some viruses, are built and function according to the 

genetic instructions found in deoxyribonucleic acid (DNA) [44, 45, 46], a biological 

macromolecule. Long-term information storage is the primary function of DNA molecules. Since 

DNA carries the instructions required to build other components of cells, such as proteins and 

ribonucleic acid (RNA) molecules, it is frequently compared to a collection of blueprints, a 

recipe, or a code. Although other DNA sequences have structural functions or are involved in 

controlling how this genetic information is used, genes are the DNA segments that carry this 
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genetic information. In terms of its chemical makeup, DNA is made up of two long polymers of 

nucleotides, which are simple units with backbones consisting of sugars and phosphate groups 

connected by ester bonds. These two strands are anti-parallel because they move in the opposite 

directions of one another. Each sugar has one of four categories of bases attached to it. Adenine, 

cytosine, guanine, and thymine are the four bases that can be found in DNA (T). The 

sugar/phosphate is joined with these four bases to create a full nucleotide. Information is 

encoded by the arrangement of these four bases along the backbone. The genetic code, which 

determines the order of the amino acids in proteins, is used to read this information. 

Transcription is the process of copying segments of DNA into the corresponding nucleic acid 

RNA in order to read the instructions. DNA is arranged into lengthy structures inside cells called 

chromosomes. Prior to cell division, these chromosomes are replicated through a process known 

as DNA replication.  

In two ways, DNA actually has a fundamental impact on the various biochemical 

processes that go on within living things. The first is that it includes the blueprints for the 

manufacture of proteins, which are fundamental molecules for all living things. The second 

function of DNA in life is as a carrier of genetic information, specifically the blueprints for 

proteins, from one generation to the next. 

 Genes: A contiguous stretch of DNA called a gene, which is a unit of heredity and 

provides the instructions needed to make a protein. A certain order of bases or 

nucleotides found in DNA molecules serves as the genetic code for genes. Prokaryotes 

often have circular chromosomes, while eukaryotes typically have linear chromosomes. 

A cell's genome is made up of its set of chromosomes; the human genome includes 46 

chromosomes and about 3 billion base pairs of DNA. 

 Gene expression: A protein-coding gene and its protein are separated in all species by 

two fundamental processes. The DNA containing gene must be transcribed from DNA to 

mRNA first, then it must be translated from messenger RNA (mRNA) to protein. Even 

though RNA-coding genes do not transform into proteins, they must nevertheless go 

through the first stage. Gene expression is the process of creating an RNA or protein 

molecule that is physiologically functional, and the resulting molecule is referred to as a 

gene product.  

 RNA: Single-stranded RNA molecules are nucleic acids made up of nucleotides. As it is 

involved in the transcription, decoding, and translation of the genetic code to generate 

proteins, RNA plays a significant role in protein synthesis. Ribonucleic acid, or RNA, is a 

type of nucleic acid that, like DNA, has three different parts: a nitrogenous base, a five-

carbon sugar, and a phosphate group. Adenine (A), guanine (G), cytosine (C), and 

uracil (U) are nitrogenous bases found in RNA. 

RNA is not necessarily linear despite being single-stranded. It can fold into intricate 

three-dimensional shapes and create hairpin loops. When this occurs, the nitrogenous 

bases bind to one another. Adenine pairs with uracil (A-U) and guanine pairs with 
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cytosine (G-C). RNA molecules are produced in the nucleus of our cells and can also be 

found in cytoplasm. The three primary types of RNA molecules are messenger RNA, 

transfer RNA and ribosomal RNA. 

Proteins 

Proteins are organic substances comprised of amino acids organized in a linear chain and 

folded into a globular form. They are sometimes referred to as polypeptides [44]. Proteins play a 

crucial role in nearly every cellular process and are fundamental components of organisms, just 

like other biological macromolecules like polysaccharides and nucleic acids. Many proteins are 

enzymes, which are essential to metabolism and catalyze biological events. Actin and myosin in 

muscle and the proteins in the cytoskeleton, which constitute a system of folding that maintains 

cell shape, are examples of proteins with structural or mechanical activities. Other proteins have 

crucial roles in the cell cycle, immunological responses, cell adhesion, and cell signaling. Since 

animals cannot produce all the essential amino acids they require, they must get them from food, 

proteins are also crucial in animal diets. Animals convert ingested protein into free amino acids 

during digestion, which are then utilized in metabolism. 

2.4.4 Bioinformatics Tasks for Biological Problems 

The field of bioinformatics includes the study of genes, proteins, nucleic acid structure 

prediction, and molecular design with docking, among other biological challenges. The major 

biological problems and associated tasks involved in bioinformatics are described next. 

Alignment and Comparison of DNA, RNA, and Protein Sequences 

A sequence alignment shows where two or more sequences are similar and where they 

are different by mutually placing the sequences. These include the prediction and alignment of 

DNA, RNA, and protein sequences, as well as the assembly of DNA fragments. The alignment 

with the greatest number of correspondences and the fewest discrepancies is considered to be 

ideal.. It is the alignment with the highest score, but which may or may not be biologically 

meaningful. Alignment techniques can be divided into two categories: global alignment and local 

alignment. The number of matches between the sequences along the entire length of the 

sequence is maximized by global alignment [47, 250]. The local match between two sequences 

receives the greatest scoring in local alignment [48, 250]. Global alignment is the best option for 

sequences that are known to be extremely similar because it includes every character in both 

sequences from beginning to end. A local alignment is then utilized to detect these internal 

regions of high similarity if the sequences being compared are not identical along their whole 

lengths but instead contain brief segments that do. This is because a global alignment may 

overlook the alignment of these crucial parts. Most other bioinformatics tools are based on 

pairwise comparison and alignment of protein or nucleic acid sequences. The Smith-Waterman 

algorithm is a dynamic programming approach that enables accurate and thorough comparison of 

two (or more) biological sequences [48]. It refers to a programming method or algorithm that, 
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when properly applied, efficiently performs all pairwise comparisons between the elements (such 

as nucleotide or amino acid residues) in two biological sequences. For alignment, spaces may 

need to be introduced within the sequences. The definition of a gap is a consecutive space. The 

end result is a mathematically ideal alignment of the two sequences, which isn't always 

biologically optimal. Given the particular parameters employed, a similarity score is also 

produced to indicate how similar the two sequences are. 

A multiple alignment [49] places homologous sequences in a common column by 

arranging a group of sequences in that way. Regarding multiple alignment scoring, there are 

various conventions. One method simply adds the scores of all the induced pairwise alignments 

found in the multiple alignment. This equates to scoring each column of the alignment by the 

total of pair scores in this column [50] for a linear gap penalty. The distinctions between global, 

local, and other types of alignment are rarely made in a multiple alignment, despite the fact that 

they would make biological sense. Generally speaking, the multiple alignment will be 

overdetermined by a complete collection of optimum pairwise alignments among a given set of 

sequences. Pairwise alignments can be put together as long as no new pairwise alignment is 

added to a set of sequences that are already included in the multiple alignment. Closing loops 

must be avoided while assembling a multiple alignment from pairwise alignments. 

Gene and Functional Site Identification from DNA Sequences 

Biology has entered into a new era of genomics that has far-reaching consequences in 

human medicine and health. This leads to speedy identification and localization of complex 

disease genes. As the Human Genome Project enters its large-scale sequencing phase, gene 

identification has become extremely important. Gene finding often entails using algorithms to 

find sequence segments, typically genomic DNA, that are biologically useful. This specifically 

entails identifying the genes that code for proteins, but it may also involve locating other 

functional components like various RNA genes and regulatory areas. 

Finding protein-coding genes within huge sections of uncharacterized DNA is 

challenging since the genomic sequence of the human body only contains a small percentage of 

protein-coding regions. Each protein in bacterial DNA is coded by a continuous region known as 

an open reading frame (ORF, beginning with a start codon and ending with a stop codon). The 

coding area in eukaryotes, particularly in vertebrates, is divided into a number of fragments 

called exons, while the remaining portions are known as introns. In essence, anticipating exon-

intron structures is what it means to locate eukaryotic protein-coding genes in uncharacterized 

DNA sequences. [51–54] discuss a variety of works on the identification of protein-coding 

genes. 

Splice sites or junctions, start and stop codons, branch points, promoters and terminators 

of transcription, polyadenylation sites, topoisomerase II binding sites, topoisomerase I cleavage 

sites, and various transcription factor binding sites are a few other categories of functional sites 

in genomic DNA that researchers have sought to identify. These nearby locations are referred to 

as signals, and the tools used to find them are sometimes termed signal sensors. Genomic DNA 
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signals can be compared to extended and variable length portions like exons and introns, which 

are identified by various techniques that are sometimes referred to as content sensors. Determine 

the precise structure of genes in genomic sequences by identifying splice sites, introns, exons, 

start and stop codons, and branch points, which is a crucial subtask in gene prediction. 

Promoter prediction and transcription factor binding site (TFBS) finding are crucial for 

understanding gene regulation and getting a better read on microarray expression data. With the 

aid of a promoter, a cell mechanism recognizes the start of a gene or gene cluster, which is 

required for the start of transcription. Every gene has a section in its DNA called a promoter, 

which tells the cellular machinery that a gene is coming up. For instance, the methionine-coding 

codon AUG also marks the beginning of a gene. 

Different methods have been used to identify variations between collections of known 

promoter and non-promoter sequences [55, 56]. Except for CpG island genes, current promoter 

predictions are substantially less trustworthy than predictions of protein-coding regions due to 

the lack of protein coding signatures. Finding TFBS motifs within regulatory areas, like as 

promoters, can then be done either by enumeration or by alignment to find the enriched motifs. 

Due to the rising number of fully sequenced genomes and the widespread usage of DNA 

chips, the identification of regulatory sites in DNA fragments has gained a lot of attention. Under 

the assumption that there are at least 30,000 possible promoter regions in the human genome, 

one for each gene, experimental analyses have only successfully found less than 10% of these 

regions. 

Protein Functional Site Prediction 

Another significant issue in bioinformatics is the prediction of functional protein 

locations. It is a crucial topic in research on protein function and, consequently, in medication 

development. However, it has been discovered that the relationship between functional sites and 

consensus patterns may not always be straightforward, necessitating the creation and application 

of more complex and, thus, more potent pattern recognition algorithms. For instance, bio-basis 

function neural networks [63–66], feed-forward and recurrent neural networks [61–62], feed-

forward and recurrent neural networks trained with back-propagation [57–59], Kohonen's self-

organizing map [60], and support vector machines [67] have all been used to predict various 

functional sites in proteins, such as protease cleavage sites of HIV (human immunodeficiency 

virus) and Hepatitis C virus. 

DNA Structure Prediction 

Numerous biological activities depend heavily on DNA structure. Base stacking energy, 

propeller twist angle, protein deformability, bendability, and position preference are just a few of 

the DNA structure characteristics that have been described using different dinucleotide and 

trinucleotide scales [68]. Three-dimension DNA structure and its organization into chromatin 

fibres are essential for its functions and are used in protein binding sites, gene regulation, triplet 

repeat expansion diseases, and other areas. 
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RNA Structure Prediction 

An RNA molecule is considered as a string of n characters                  such that 

            .   could be in the thousands but is typically in the hundreds. The molecule's 

secondary structure is a collection   of stems, with each stem made up of a series of successive 

base pairs (    ) (e.g.,         ). Here,             and (         ) are connectedthrough 

hydrogen bonds. If            , in principle we should require thatri be a complement to    and 

that       , for a certain threshold t (because it is known that an RNA molecule does not fold 

too sharply on itself). 

There are essentially two different ways to anticipate the RNA secondary structure 

automatically. The first involves adding contributions from each base pair, bulged base, loop, 

and other features to the overall free energy minimization [69–71]. The second method [69–71] 

is more empirical and looks for combinations of nonexclusive helices with the most base pairings 

in order to satisfy the requirement of a biomolecule having a tree-like structure. Dynamic 

programming techniques are the most popular within the latter [69–71]. For the prediction of 

RNA structure and its associated function, approaches for simulating the folding mechanism of 

an RNA molecule [71] and identifying key intermediate states are crucial. 

Classification and Prediction of Protein Structure 

Similar 3-D structures are produced by proteins with similar sequences. As a result, 

comparable sequences may produce identical structures, which is typically the case. Contrary to 

popular belief, identical 3-D structures do not always denote equivalent sequences. Because of 

this, homology and similarity are distinguished from one another. The databases contain 

instances of proteins that are homologous because they have virtually identical 3-D structures but 

do not show any observable or significant sequence similarity. Pairwise comparisons frequently 

miss tiny similarities that become apparent when numerous sequences are compared at once. 

They also struggle to reveal places that are conserved across an entire set of sequences. So, it 

makes sense to compare multiple sequences at once. In structural proteomics, a protein's three-

dimensional structure is predicted based on its primary amino acid sequence [72]. One of the 

most difficult issues in bioinformatics is determining how a protein functions given that its 

structure determines how it functions. The sequence of amino acids that make up a protein is its 

primary structure, which is the first of the five levels of protein structure. (ii) The spatial 

arrangement of the atoms that make up the primary protein backbone is known as the secondary 

structure of a protein. The local folding pattern constructed from certain secondary structures is 

known as the super-secondary structure or motif (iii). (iv) Tertiary structure, or the folding of the 

entire protein chain, is created by compressing secondary structural components connected by 

loops into one or more compact globular units called domains. (v) Several protein subunits may 

be organized in a quaternary structure within the final protein. 

In the same environment, protein sequences nearly invariably fold into the same 

structure. The structure of the protein is also influenced by Vander Waals interactions such as 

electrostatic, hydrophobic, hydrogen bonding, and others. Given its fundamental sequence, a 
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protein's structure is the subject of numerous ongoing efforts. The spatial coordinates of every 

atom in a protein molecule must be calculated in a typical computation of protein folding, 

starting with the initial configuration and progressing to the final minimum-energy folding 

configuration [73, 74]. Based on homology to existing proteins, sequence similarity algorithms 

can forecast the secondary and tertiary structures. Methods for secondary structure predictions 

include those suggested by Garnier, Osguthorpe, and Robson [76], Chou and Fasman [75], and 

others. This can also be accomplished using nearest neighbor approaches [78] and neural 

networks [77]. Methods for predicting tertiary structures [73, 74] are based on stochastic 

conformational space searches, molecular dynamics, and energy minimization. 

Molecular Design and Molecular Docking 

When two molecules are close to one another, it may be energetically advantageous for 

them to form a strong bond. The prediction of energy and physical configuration of binding 

between two molecules is known as the molecular docking problem. The process of docking a 

tiny molecule that is a described drug to an enzyme one wants to target is a common application 

in drug design. For instance, the HIV protease enzyme in the AIDS virus is crucial for the virus' 

ability to replicate. At a specific active spot on its surface, the protease's chemical reaction 

occurs. Small chemicals known as HIV protease inhibitors bind to the active site of the enzyme 

and remain there, preventing the enzyme from performing as it should. Using docking tools, we 

may assess a medication design by determining if it will successfully bind tightly to the enzyme's 

active site. Designers can modify the therapeutic molecule based on the outcome of docking and 

the consequent docked configuration [79]. 

Studying Evolutionary Relationships with Phylogenetic Trees 

Evolution is the gradual process of change that all organisms on Earth experience. 

Construction of trees with leaves representing current species and interior nodes representing 

hypothetical ancestors serves to illustrate the evolutionary history of today's species as well as 

how species link to one another in terms of common predecessors. Phylogenetic trees are the 

name given to this class of labeled binary trees [80]. The evolutionary link is investigated by 

phylogenetic analysis. On the basis of similarities between contemporary items, phylogenies are 

rebuilt. The goal of the phylogenetic tree reconstruction challenge is to identify the specific 

permutation of the provided objects that best meets the specified criteria. To tackle this issue, 

several algorithms are suggested [80]. 

Analysis of DNA Microarray Technology based Gene Expression Data 

Gene expression is the process by which a gene‘s coded information is converted into the 

protein and other functional product. Expressed genes include those that are transcribed into 

mRNA and then translated into protein, and those that are transcribed into RNA but not 

translated into protein (e.g., transfer and ribosomal RNAs). Not all genes are expressed, and gene 

expression involves the study of the expression level of genes in the cells under different 
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conditions. Conventional wisdom is that gene products which interact with each other are more 

likely to have similar expression profiles than if they do not [1-3, 13-15]. 

DNA Microarray technology is a high–throughput [13-15] biotechnology using which 

expression levels of several thousands of genes is measured at the same time for a particular 

sample/experiment or for a particular time point of a particular sample. The outcome of DNA 

microarray technology is a gene expression data matrix in which outcomes of several 

microarrays are combined containing same set of genes and different samples or different time 

points of a particular sample. 

Analysis of microarray gene expression data is very crucial in the field of biomedical 

research for deadly disease early prediction, prognosis and advancement of therapy, 

identification of functionality of novel genes, gene regulatory network identification [13-30] etc. 

  

Other potential bioinformatics tasks for biological issues include the following: (i) 

characterizing the protein content and metabolic pathways between various genomes; (ii) 

identifying protein functional sites; (iii) identifying and analyzing interacting proteins; (iv) 

characterization of repeats from genomes; (v) gene mapping on chromosomes; (vi) analysis of 

genomic-scale censuses; (vii) assignment and prediction of gene products; (viii) large-scale 

analysis of gene expression data; (ix) mapping expression data to sequence, structural, and 

biochemical data; (x) creation of digital libraries for automated bibliographical searches; (xi) 

creation of knowledge bases of biological information from the literature; (xii) creation of DNA 

analysis techniques for use in forensics; and so forth [81–83, 84]. 

In the next section, a brief description of DNA microarray and gene expression data is 

given. 

2.5 DNA Microarray based Gene Expression Data  

DNA Microarrays have made it possible to successfully see how cells work and have the 

ability to simultaneously investigate the expression of tens of thousands of genes. The general 

procedure for getting the gene expression profiles from a DNA microarray is shown in Figure 

2.2. These data on gene expression can be used as inputs for extensive data analysis, such as to 

better comprehend and categorize the genes into healthy and diseased cells. By counting all the 

mRNA that has been transcribed in a genomic system, gene expression shows how genotype 

changes into phenotype. Differential display, Microarray hybridization, RNA sequencing, Serial 

Analysis of Gene Expression (SAGE), and subtractive hybridization are just a few of the many 

standardized methods available for identifying variations in gene expression. All of these 

strategies' specifics are covered in detail in [85, 86]. 

The method for getting microarray data is shown in Figure 2.2 and entails collecting 

sample tissues from both malignant and healthy human tissues. The samples are then isolated for 

their mRNA using either a column or a solvent like phenol-chloroform. After that, both tissues 

are combined on a Microarray plate to form the cDNA label, which is subsequently hybridized. 
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The final step is to measure the relative fluorescence intensities using a microarray 

scanner in order to evaluate the results and save the data as an array for further use. 

2.5.1 Microarray experiment  

The hybridization process known as a microarray experiment compares the relative 

amounts of cellular mRNA obtained from two tissue samples. When single-stranded DNA or 

RNA molecules combine to form double-stranded complexes, the hybridization reaction occurs. 

As shown in Figure 2.2, there are generally four steps involved in determining the gene 

expressions in a microarray experiment. The first step is sample preparation and labeling, which 

involves RNA extraction from a particular tissue and labeling according to the technique chosen. 

Hybridization is the second stage. It is the stage where the DNA or RNA probes and labels that 

are intended for heteroduplexes are base-paired on the glass surface using the Watson-Crick 

method. Hybridization can be detected electrochemically, visually, or by using mass sensitive 

equipment. The third stage, washing, is where extra solution from the hybridization array is 

gotten rid of. In order to lessen the impact of the sensitivity and background level of the entire 

microarray, non-specifically bound cRNA is removed from the surface. The hybridized image of 

the array is created at the image acquisition stage, which concludes the process.  

 
 

 

 

 

 

Figure. 2.2 Steps involved in Microarray Experiment 
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2.5.2 Microarray data  

Large matrices (     ) are used to organize and store the data produced by microarray 

experiments. As shown in Figure 2.3, each Microarray data matrix consists of the samples 

presented in rows and the genes (features) in columns. Microarray data is in the form of a   by 

  matrix. Every single cell in a sample has a certain level of gene expression, where   is 

represents rows (samples) while    represents columns (genes).     denotes the expression level 

of the gene   and the condition or sample  . Where   ranges between   and  , and   from   to  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 2.3 Microarray Data 

2.6 Conclusion and Discussion 

The major advancement in the field of molecular biology has led to an explosive growth in the 

biological information. The meaningful interpretation of these large volumes of biological data is 

increasingly becoming difficult. Machine learning techniques are very useful to store, analyze, 

and interpret these biological data. In this regard, this thesis presents some classification and 

clustering techniques based methodologies to solve certain problems of gene expression data in 

bioinformatics. To understand various problems of bioinformatics, the basic concepts of 

molecular biology are reviewed in this chapter. Next chapter presents a new framework-based 

neighborhood formation technique for existing KNN and its several versions based preprocessing 

techniques to predict missing values in gene expression data more accurately. 
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Chapter 3 

 

Pre-processing on Microarray Gene Expression Data based 

on Clustering technique: A Framework for Neighborhood 

Configuration to Improve the KNN based Imputation 

Algorithms on Microarray Gene Expression Data 
 

3.1 Introduction 

Due to innate experimental problems [31] in DNA microarray technology, values of 

several cells of the data matrix are lost producing an incomplete data matrix containing missing 

entries.  However, the requirement of a complete data matrix as input in the analysis algorithms 

(example: classification, clustering, and other model-based algorithms [14-30]), makes the 

prediction of these missing entries very essential. The simplest approach is to repeat the 

experiment but owing to the high financial implication, as well as frequent unavailability of the 

biological sample, such repetition is often not practicable. Several prediction methods have 

hence been suggested to overcome this problem. These methods are divided into three broad 

categories [31, 87]. The first approach is to delete the entire samples or genes containing the 

missing entries. The drawback of this method is that valuable information may be lost and as a 

result, the performance of the analysis methods will be degraded. In the second approach, the 

missing entries of a gene are substituted by some mathematical operations such as mean or mode 

of the expression values of that gene for all the samples.  The drawback of this method is that all 

missing entries of a gene are filled up by the same value which distorts the original structure of 

the gene expression data. As a consequence, it may affect the performance of the analysis 

algorithms. The methods that belong to a third approach have overcome the above-mentioned 

problems and impute missing entries by taking correlated information from the non-missing part 

of the data matrix. A huge number of methods have been developed in this category. Depending 

on the type of information used, these methods are divided into four groups (1) global methods 

(2) local methods (3) hybrid methods, and (4) knowledge assisted methods [31, 87]. 
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Global methods [88, 89, 90] impute missing values by taking information from the entire 

data matrix considering that a global covariance structure exists in the dataset. Global methods 

work well for large datasets where local dependency among the genes does not exist [31, 87]. 

Local methods, on the other hand, predict the missing values based on local substructure only 

[31, 87]. These methods predict missing values by working in two phases. First, these methods 

identify neighbor genes for each target gene and then estimate the missing value by forming a 

relationship between each target gene and its neighbors. Estimation is performed based on either 

weighted average [90, 91, 92, 93] or numerical approach [94-100]. The third category represents 

hybrid methods [31, 87, 101, 102]. These methods integrate multiple imputation methods. Some 

hybrid methods consider both global and local correlation-based information for imputation [31, 

87, 101, 102]. This type of integration increases the complexity of the imputation process. The 

last category-based methods known as knowledge assisted methods [31, 87, 103-106] take the 

help of external domain knowledge as well as correlation information among genes from the data 

matrix to achieve better imputation accuracy. The limitation of these methods is that they require 

external domain knowledge information and hence will not work properly for newly explored 

cases where no such external domain knowledge information exists [31, 87]. 

Although many efficient missing value estimation techniques exist in the literature, 

performances of these methods vary greatly depending on the diverse nature and characteristics 

of the datasets [31, 87]. The performance also depends on several application areas [31, 87]. So, 

researchers have still been working on new missing value estimation techniques. Among the 

above mentioned four types of categories, local weighted average -based methods are simple and 

usually generate consistent results [105] in almost all cases. Due to this reason, the most popular 

weighted average-based method namely, the KNNimpute and its several modified versions have 

been widely used in different microarray data analysis tools like SAM, PAM, and MAANOVA 

[106-108] although their prediction accuracy is low compared to the numerical methods.  

The KNNimpute is the simplest and most widely used missing value estimation method 

for microarray gene expression data. However, not much attention has of late been given to 

remove its drawbacks. Rather, more and more researchers have been found to focus on 

developing numerical approach-based imputation techniques To address the above-mentioned 

issues, here first a primary framework is proposed by introducing PEH distance which is a 

integration of Pearson correlation coefficient and Euclidean distance in a new proposed version 

of KNN named Iterative Sequential K-Nearest Neighbor Imputation algorithm but this 

framework has several limitations. In this framework, some of the shortcomings are overcome 

using a novel distance combining both Euclidian and Pearson correlation similarity measures 

[109]. However, we have observed that even though this framework is capable of producing 

good results, in some cases, it fails in the presence of the oppositely co-expressed pattern-based 

genes and the scaling pattern-based genes. This drawback has later been elaborated in section 

3.4.2, but it may be mentioned here that the failure originates from its inability to handle the 

shifting, scaling, and inverted patterns in a proper manner in the dataset. Due to this drawback, 

the algorithm is incapable of involving in the weighted average computation procedure, such 
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candidate genes which may not be in the nearest Euclidian distance neighborhood, and yet which 

carry considerable correlation information with respect to the target gene in terms of the 

underlying pattern. Overall, we feel that more attention needs to be devoted to identify, address, 

and overcome the shortcomings of the KNNimpute because of the inherent simplicity of this 

method. 

So, in the second work, we have proposed a more robust framework for more accurate 

neighborhood formation in KNNimpute and its several versions to improve upon the weighted 

average procedure in these methods [110].  

The framework is developed based on a hybrid distance and gene transformation 

procedure. The motivation behind this work is that the neighborhood for each target gene will be 

constructed in such a way that the weighted average procedure will run only on the maximum 

positively co-expressed and magnitude wise closest genes. The integrated KNNimpute method 

with the new framework is renamed as a modified KNN imputation method (MKNNimpute). 

Similarly, the modified sequential KNN imputation method (MSKNNimpute), modified iterative 

KNN imputation method (MIKNNimpute), and modified iterative sequential KNN imputation 

method (MISKNNimpute) have also been proposed. The performances of these modified 

methods are compared with their corresponding established versions on different categories of 

microarray gene expression datasets. From the experimental results, it has been found that the 

proposed methods significantly outperform their corresponding existing counterpart versions in 

all cases for different types of datasets, and among these three, the modified iterative sequential 

version (MISKNNimpute) is found superior. From experimental results, it is also found that the 

MISKNNimpute method is also comparable with the robust numerical imputation methods for all 

types of datasets and other versions are also comparable with robust numerical imputation 

methods for local structured based datasets.  

3.2 Existing Nearest Neighbor Imputation Techniques 

Notation 

  is the input data matrix containing   genes and   samples where    . The     

row/gene is represented by    and    or       represents the information of the gene   in the     

column/experimental condition. A missing value in the     gene at     column position is 

represented by  .     is the missing indicator matrix for tracking missing positions in  . If any 

entry     in matrix   is 1, it means that the expression value of the corresponding position in 

matrix   i.e.     the position is present and if     is 0 then the value of the corresponding position 

i.e.     is missing. 

A gene with one or more missing entries, currently considered in the imputation 

procedure, is treated as a target gene and the remaining genes are considered as candidate genes 

with respect to that target gene. 
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3.2.1 K-Nearest Neighbor Imputation (KNNimpute) 

K-Nearest Neighbor imputation technique (KNNimpute) is the oldest and most popular 

weighted-average based imputation technique [90]. KNNimpute predicts the missing value of a 

target gene by taking information from its nearest neighbor genes. The nearest neighbor genes 

are selected based on Euclidean distance. The Euclidean distance     is calculated as shown in 

the equation (1). 

    √
∑       (       )
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                    (3.1) 

Here   and   are representing the target gene    and the candidate gene   . The missing 

value     at column   of the target gene    is calculated by taking the weighted average of   

nearest neighbor genes for column   as shown in the equation (3.2). 
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Here,     represents the weight of the    neighbor gene of the target gene   and is 

calculated as shown in equation (3.3). 
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3.2.2 Sequential K-Nearest Neighbor Imputation (SKNNimpute) 

SKNNimpute is an improved version of KNNimpute [91]. Similar to KNNimpute, for 

every missing position in the target gene SKNNimpute selects K-neighbor genes using Euclidean 

distance as mentioned in the equation (1). There are two main differences between SKNNimpute 

and KNNimpute. One difference is that, in SKNNimpute, initially the entire gene expression 

matrix ( ) is divided into two sub-matrices: one containing genes with missing entries (        ) 

and the other containing genes with no missing entries (          ). Instead of selecting the K-

nearest neighbor genes of the target gene from the whole matrix, it selects genes from the 

           matrix. The second difference is that SKNNimpute sequentially predicts the missing 

entries starting with the target gene containing the least number of missing positions. The already 

predicted values are used for subsequent imputations. 

3.2.3 Iterative K-Nearest Neighbor Imputation (IKNNimpute) 

IKNNimpute is another improved version of the K-nearest neighbor imputation [92]. In 

IKNNimpute, the missing positions in   are initially replaced by the corresponding row (gene) 

averages to form a complete gene expression matrix             . For each target gene, it selects 

K-nearest neighbor genes using Euclidean distance as mentioned in the equation (1) and 
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simultaneously imputes all the missing positions in that gene using the weighted average 

computed according to the equation (2). After imputing all the missing entries in all the target 

genes, again the complete gene expression matrix              is formed. This process is 

iterated until the difference between the estimated values of two successive iterations denoted by 

 ̂ 
   

 and  ̂ 
     

reaches a given threshold. In             ,   indicates the iteration number. 

The sum of squared differences between the estimated values obtained in the last two iterations 

is calculated using the equ-ation (4) given below. 
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If      is less than a given threshold, then the process will stop; otherwise, iteration will be 

continued. Here   represents the number of missing entries and   indicates iteration. 

 

3.3 Impact of different Distance Measures and their drawbacks in 

Predicting Missing Values in Gene  Expression Data  

In the above-mentioned weighted average-based imputation methods, the imputation 

accuracy can be improved if the neighborhood is constructed with those genes which are most 

similar based on the positively co-expressed pattern, as well as closer to the target gene in terms 

of magnitude [109]. However, the existing distances are not capable enough to satisfy the above-

mentioned criteria in presence of different types of gene patterns. Here, to represent the 

drawbacks of the different distance metrics, some figures (Figures 3.1-3.3) are considered. In 

every figure, there is a target gene and a set of different pattern-based candidate genes to show 

the drawbacks of these metrics with respect to the different patterns used in the above-mentioned 

imputation methods for neighborhood formation.  

3.3.1 Euclidean Distance 

In the above-mentioned imputation techniques, Euclidean distance [34] is used for 

neighborhood formation. It is a well-accepted distance measure to calculate the distance between 

two objects. The Euclidean distance between two  -dimensional objects                   

and                    can be defined as in the equation (3.5) below: 

              √∑          
     (3.5) 

If   and   are close in terms of their expression value, their Euclidean distance will be 

lower; otherwise, it is high. It means Euclidean distance between two objects is small if the two 

objects show similarity in magnitude or expression value. 

In gene expression data, it is already known [34] that the biological function based 

similar genes are also pattern-based similar (co-expressed), but may not still be similar 

expression value-wise. So, Euclidean distance is not a good measure to select co-expressed 
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genes. This is described in Figure 3.1. In Figure 3.1, a target gene and seven candidate genes are 

shown. Among them, gene3, gene6 are highly positively co-expressed and gene2, gene4, and 

gene7 are highly negatively co-expressed with the target gene according to the Pearson 

correlation coefficient. In Table 1, the corresponding expression values and the Euclidean 

distance and Pearson correlation coefficient for every gene in Figure 3.1 are given. The gene1 is 

magnitude wise closest to the target gene but not so in terms of pattern-based similarity.  The 

gene5, on the other hand, is much more pattern-based similar to the target gene but is scaled in a 

positive direction.  If K nearest neighbor genes of the target gene are selected using Euclidean 

distance value and K is set at four then gene1, gene2, gene3, and gene5 will be selected. From 

this figure, it is clear that irrespective of the pattern, Euclidean distance selects neighbor genes 

which are magnitude wise closer to the target gene. So, in the neighborhood formation of the 

target gene, Euclidean distance cannot always pick up the pattern-based most similar genes. 

 

 
Figure3.1. Microarray Gene Expression Patterns showing drawbacks of Euclidean distance 

 

Table 3.1: Euclidean distance and Pearson Correlation coefficient for genes in figure1 with respect to target_gene 

 
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Pearson Euclidean 

target_gene 30 36 32 34 40 30 37 32 39 35 
  

gene1 32 33 33 35 37 34 36 38 36 37 0.488901 9.486832981 

gene2 34 29 32 31 28 33 29 34 30 33 -0.858934 19.49358869 

gene3 11 16 12 14 20 11 17 13 19 15 0.994941 62.31372241 

gene4 10 4 9 7 1 9 5 9 3 7 -0.965924 90.97801932 

gene5 32 45 33 35 42 22 43 38 54 37 0.834125 21.3541565 

gene6 -14 -9 -13 -10 -4 -14 -8 -13 -7 -11 0.97532 141.689802 

gene7 -15 -21 -16 -18 -24 -18 -22 -17 -22 -17 0.895396 170.2615635 

3.3.2 Pearson Correlation Coefficient  

On the contrary, the Pearson correlation coefficient [34] is a well-known metric to 

measure the correlation-based similarity between two objects. Pearson correlation coefficient is 

also used as a similarity measure in KNNimpute, SKNNimpute, and IKNNimpute. The Pearson 

correlation between two objects P and Q, each of which is a  -dimensional vector, i.e.    

                and                   , can be defined as in equation (3.6) below:  
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∑    ̅     ̅ 

√∑    ̅       ̅  
                                                  

It varies between -1 to +1. If two objects are perfectly positively correlated then the 

Pearson correlation coefficient value between them is 1 and if two objects are perfectly 

negatively correlated then the Pearson value between them is -1. 

Using this measure, it is possible to select the most similar positively co-expressed and 

negatively co-expressed neighbor genes of the target gene. The drawback of this measure is that 

it can select any type of pattern-based similar gene (like perfect pattern-based similar, perfect 

inverted pattern-based similar, shifting, or scaling pattern-based similar in positive/negative 

direction) which adversely affects the weighted average procedure. In Figure 3.2, except the 

target gene, all other genes are candidate genes. According to absolute Pearson correlation value 

(which is |       |   if    nearest neighbor genes are chosen and   is set at 5, then gene2, 

gene3, gene4, gene6, gene7 will be selected. Among them, gene2 and gene3 are positively co-

expressed shifting patterns while gene6 is positively co-expressed scaling pattern with respect to 

the target gene. gene4 is a negatively co-expressed shifting pattern and gene7 is a negatively co-

expressed scaling pattern. The absolute Pearson correlation coefficient values of these genes are 

equal for that target gene. So, when the Pearson correlation coefficient is used for neighborhood 

formation, it selects any type of pattern-based most similar genes and cannot distinguish between 

the shifting patterns and scaling patterns. If the weight of each of the neighbor genes is 

calculated using Pearson correlation coefficient value with respect to the target gene according to 

the equation (3.2), then their weights are the same and it negatively affects the weighted average 

procedure-based imputation. Naturally, this in turn affects the prediction process at the time of 

calculation of the weighted average. 

 

 
Figure 3.2. Microarray Gene Expression Patterns showing drawbacks of Pearson Correlation Coefficient 
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Table 3.2: Pearson correlation coefficient for genes in Figure2 with respect to target_gene 

 

  
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Pearson 

target_gene 11 14 25 10 20 14 28 5 15 11 
 

gene1 6 9 20 5 15 10 25 2 12 8 0.990134 

gene2 50 53 64 49 59 53 67 44 54 50 1 

gene3 -14 -11 0 -15 -5 -11 3 -20 -10 -14 1 

gene4 -20 -23 -34 -19 -29 -23 -37 -14 -24 -20 -1 

gene5 45 42 31 46 36 42 29 51 41 45 -0.999364 

gene6 27.5 35 62.5 25 50 35 70 12.5 37.5 27.5 1 

gene7 -40 -46 -68 -38 -58 -46 -74 -28 -48 -40 -1 

3.4 Proposed Primary Framework: Pearson and Modified Euclidean 

based Hybrid (PEH) Distance Measure  

3.4.1 PEH Hybrid distance based First Framework   

To recover the above-mentioned drawbacks of Euclidean distance and Pearson 

correlation coefficient a new framework is proposed via introducing a novel  hybrid (PEH) 

distance in a new KNN version named iterative sequential K-nearest neighbor imputation. The 

hybrid distance is a combination of Euclidean distance and Pearson correlation coefficient.  

The proposed Hybrid (PEH) distance is defined in the equation (3.7). 

 

   (     )  

 {
(  |  (     )|)    (     )                                               (     )   

(  |  (     )|)         (     )   (      )         (     )   
           (3.7) 

 

|  (     )|  and    (     ) represent the absolute value of the Pearson correlation co-efficient 

and Normalised Euclidean distance between the genes    and    respectively. Normalised 

Euclidean distance is defined below: 

  (      )  represents the Euclidean distance between gene    and sign-flipped    (i.e. taking 

the negative values of the samples of gene    to get the mirror gene). 

The normalised Euclidean distance is a Euclidean distance which normalizes the distance 

in the range of 0–1. The modified Euclidean distance between two objects   and   with   

attributes/features is introduced in equation (3.8). 

                  
√

∑
       

 

   
 

 
   

 
                           (3.8) 

Here,     is the maximum difference along the  th attribute, and it is calculated as in 

equation (3.9). 

    {
                      

                    
                               (3.9) 
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In the first framework PEH distance is applied in the proposed ISKNN impute. The 

proposed iterative sequential K-nearest neighbor imputation procedure (ISKNNimpute) is 

another improved version of KNNimpute and combines the concepts of SKNNimpute and 

IKNNimpute. In every iteration, like SKNNimpute it also sequentially imputes the missing 

values starting from the gene that has least number of missing entries, and uses the imputed 

values for the later imputation.  According to KNN principle, in every iteration, for every target 

gene   this  procedure finds the nearest K-neighbor genes which are selected using the proposed 

PEH distance as mentioned in equation (3.5) and then estimates each missing value  ̂   in that 

given target gene simultaneously using the weighted average of the selected K-neighbor genes as 

mentioned in equation (3.10). The weight  ̅   is calculated using equation (11). A single 

iteration is completed when all missing entries of all target genes are imputed. Now for every 

missing position, the sum of squared differences      between the estimated values obtained in 

last two iterations is calculated using equation (3.12). If      is less than a given threshold  , then 

the process will stop otherwise iteration will be continued.  

 ̂   

{
 
 

 
 ∑  ̅  

 

   

|   |                                             

∑  ̅  

 

   

                                                                      

               

   is the element of  th gene at  th sample. 

 ̅   

 
   

⁄

∑  
   

⁄ 
   

                                                                      

Where     represents the PEH distance between gene   and gene  . 

     ∑( ̂ 
     

  ̂ 
   

)
 
                                                  

 

   

 

ISKNNimpute Algorithm 

Input: A gene expression matrix   containing  genes and   samples. Here the variable   

indicates iteration number and   is initialized to  . Let   represents number of target genes 

which contains missing values and   represents total number of missing entries in the given 

dataset. 

Output: Missing values are imputed in matrix  .  

Step 1. Sort all target genes in ascending order according to their missing rates. 

Step 2.Mark all   number of target genes as unprocessed. 

Step 3. Repeat step 3 for each target gene in the sorted list, to form the complete matrix 

             

a) Calculate the     distance from the target gene to each candidate gene. 

b) Choose K  nearest genes following the K-nearest neighbor principle. 
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c) Impute all the Missing values in that target gene simultaneously using the equation 

(3.10). 

d) Mark the target gene as processed. 

Step 4. Repeat step 4 until          for   = 1, 2, 3...... 

a)    Mark all the target genes as unprocessed. 

b)   Repeat step 4(b) for each target gene in the sorted list to form the complete matrix 

             

i. Calculate the     distance (considering all genes taking 

values from                ) from the target gene to each 

candidate gene. 

ii. Choose K  nearest genes following the K-nearest neighbor 

principle. 

ii. Impute all the Missing values in that target gene simultaneously using the 

equation (3.10). 

iii. Mark the target gene as processed. 

c) Compute     using the equation (3.12). 

Step 5. End 

Here the value of    is taken as     . 

Although primary framework is prepared via applying PEH distance in ISKNN algorithm but 

PEH distance can be applied in KNN and other versions also. 

 

Computational time complexity 

ISKNNimpute algorithm consists of 3 steps mainly. In step 1 it sorts the genes according 

to their missing rate which involves           time complexity. Step3 is repeated   times 

where in worst case   is equal to  . In step 3(a) ISKNNimpute computes the PEH distance from  

the target gene i to all other gene involving       complexity. Imputation of missing values in 

step 3(b) for target gene i takes maximum of      complexity as number of missing entries in 

any gene is not more than      which is very negligible compared to number of gene  . So 

step3 requires               time complexity. Step4 is repeated until         which is 

not more than 5 iterations as seen during experiments. The second step (b) in step4 does the same 

operations as in step3(a) and require        time complexity. The last step in step4 calculates 

sum of the squared differences      for each missing entry which is not more than     ( with 

maximum of 50% missing entries) and requires       complexity. Hence the time complexity 

of ISKNNimpute is           +        +        which is         . 

3.4.2 Limitations of Primary Framework  

Although the proposed distance can select the expression value-wise closer and most 

similar positively co-expressed genes, we observe that it cannot work properly for all types of 
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negatively co-expressed genes. It cannot handle scaling pattern-based genes. This is elaborated in 

Figure 3.3 and corresponding Table 3.3.  

In Figure 3.3, gene1 is the target gene and all other genes are candidate genes. Among 

these genes, gene2 and gene3 are negatively co-expressed and shifting pattern based similar. On 

the other hand, gene4 and gene7 are positively co-expressed and shifted pattern-based similar, 

while gene5 is positively co-expressed and scaled pattern with respect to the target gene, and 

gene6 is magnitude wise closer to the target gene.  If K is set at 4, then according to PEH 

distance gene5, gene7, gene3, gene2 will be selected as neighbor genes. Among these genes, 

gene7 is positively co-expressed and magnitude wise closer to the target gene.gene2 is selected 

by PEH distance as -gene2 which is also positively co-expressed and magnitude wise close to the 

target gene. gene5 is scaled but selected. gene3 is selected according to PEH distance which is 

negatively co-expressed and shifted. So, using PEH distance, selected neighbor genes may be 

scaled and may be negatively co-expressed. This hampers the weighted average procedure.  

 
Figure3.3. Microarray Gene Expression Patterns showing drawbacks of PEH distance 

 

 

Table 3.3: Pearson correlation Coefficient and PEH score for the genes in Figure3 with respect to target gene 

  1 2 3 4 5 6 7 8 9 10 Pearson PEH 

gene1 40 43 54 39 49 38 39 59 40 52     

gene2 -20 -23 -34 -21 -29 -20 -21 -40 -21 -32 -0.993809 0.001174243 

gene3 15 12 1 16 6 17 16 -4 15 4 -0.999192 0.000280454 

gene4 -35 -30 -21 -44 -30 -40 -42 -24 -35 -34 0.833268 0.127087915 

gene5 60 64.5 81 58.5 73.5 57 58.5 88.5 60 78 1 0 

gene6 34 36 40 39 42 38 42 52 48 49 0.593699 0.02586895 

gene7 30 32 42 29 39 28 29 47 30 40 0.99751 0.00025658 

-gene2 20 23 34 21 29 20 21 40 21 32 0.993809   

-gene3 -15 -12 -1 -16 -6 -17 -16 4 -15 -4 0.999192   
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3.5 A Robust Framework: A Novel Neighborhood Configuration to 

Improve the KNN based Imputation Algorithms on Microarray 

Gene Expression Data 

To overcome the above-mentioned problems, here a robust framework has been proposed 

by integrating a hybrid distance and gene transformation procedure for more accurate 

neighborhood formation in the traditional KNNimpute and its different versions. 

The framework consists of two parts: (1) Proposed hybrid distance-based neighbor gene 

selection (2) Neighbor gene transformation using the proposed transformation procedure. The 

proposed hybrid distance is developed based on two concepts: the Pearson correlation coefficient 

[34], and the Mean squared residue score [111, 112] while in the proposed transformation 

procedure Euclidean distance [34] is used. 

The motivation behind this work is that the neighborhood for each target gene will be 

constructed in such a way that the weighted average procedure will run only on those genes 

which are simultaneously closer magnitude wise, as well as most similar with respect to the 

positively co-expressed pattern. To achieve this goal, first the most positively or negatively 

correlated/co-expressed and shifting pattern-based genes are selected using a proposed hybrid 

distance. Then the negatively co-expressed genes are transformed into the positively co-

expressed genes. After that positively co-expressed genes are converted into magnitude wise 

closer genes while the scaling pattern-based positively or negatively co-expressed genes are 

discarded.  

Already the impact of Euclidean distance and Pearson correlation coefficient in neighborhood 

formation has been described in section 3.3.1 and 3.3.2. In the following subsections, first, the 

Mean squared residue (MSR) score [111, 112] and then how it is used in this paper and its 

impact on neighborhood formation are described, and then the proposed framework is described 

in the KNN environment. 

3.5.1 Mean Squared Residue Score and its Significance 

Cheng and Church had proposed a measure known as mean squared residue score [111, 

112] for measuring compact relationship among rows and also among columns in a bicluster 

[111, 112] in the biclustering framework. Biclustering [111] is a special kind of clustering 

technique in which objects/rows (genes) and features/columns (samples) are clustered at the 

same time. A bicluster      in a gene expression data matrix      is a sub-matrix showing 

similar behavior under a subset of genes (| | number of genes) and a subset of samples (| | 

number of samples). The residue score   (    )  of    
  

entry of the bicluster  is defined as 

shown in the equation (3.13): 

  (    )                                                        
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where     is the expression value of the     row (gene) and     column (sample) posi-tion in the 

bicluster ,      
 

| |
∑    

| |
     ,       

 

| |
∑    

| |
    ,      

 

| || |
∑           , are     row mean,     

column mean,  and over all mean of the bicluster   respectively.  

The mean squared residue score ( ) of the bicluster   is defined as in the equation (3.14): 

       
 

| ||  |
∑        

 

       
                                        

It has been observed in [45] that the mean squared residue score has no significant impact 

on positively co-expressed and shifting pattern-based genes in a bicluster but it has a great 

impact on positively co-expressed and scaling pattern-based genes. In the case of negatively co-

expressed and shifting/scaling pattern-based genes in a bicluster, the mean squared residue score 

has also significant impacts.  

Considering this observation, in this paper, we have used mean squared residue score 

   (      ) as a score between two genes    and    instead of a bicluster. To calculate this 

score, here we consider these two genes form a bicluster of size      The first row of this 

bicluster is the gene    and the second row is     The score is defined below:  

   (      )   
 

   
(∑        

 

 

   

  ∑        
 

 

   

)         

Here,     is the     expression value of    and     is the     expression value of     The 

impact of this score on different gene expression patterns is demonstrated in Figure 3.4. In 

Figure 3.4, target_gene represents the target gene and all other genes are the candidate genes. If 

neighbor genes are selected according to MSR score and K is set at 4 then gen-e1, gene2, gene3, 

and gene 4 will be selected. The expressions and corresponding Pear-son correlation coefficient 

and MSR score are also given in Table 3.4. This is elaborated below. 

 
Figure 3.4: Patterns showing the effect of MSR score on scaling and shifting patterns 
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Table 3.4: Pearson correlation Coefficient and MSR score for the genes in figure4 with respect to target gene 

  S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Pearson MSR 

target_gene 11 14 25 10 20 14 28 5 15 11     

gene1 21 24 35 20 30 24 38 15 25 21 1 0 

gene2 31 34 45 30 40 34 48 25 35 31 1 0 

gene3 -4.1 -0.1 9.9 -5.1 7.9 -1.1 12.9 -13.1 -0.1 -4.1 0.986772 0.473 

gene4 -28.8 -24.8 -14.8 -29.8 -16.8 -25.8 -11.8 -37.8 -24.8 -28.8 0.986772 0.473 

gene5 -35 -20 13 -20 -5 -20 7 -44 -20 -32 0.952899 29.722 

gene6 -20 -24 -34 -19 -32 -23 -37 -11 -24 -20 -0.98677 50.052 

gene7 35 20 -13 20 5 20 -7 44 20 32 -0.9529 139.4 

 

In this figure, gene1 and gene2 are perfectly positively co-expressed and display shifting 

patterns (with different shifting factor) with respect to the target gene. The MSR score between 

gene1 and target_gene is 0. The MSR score between gene2 and target_gene is also 0. So, for 

perfectly positively co-expressed genes, the value of the MSR score is 0 and is independent of 

the shifting factor. gene3 and gene4 are also positively co-expressed and show shifted (with 

different shifting factor) patterns with respect to the target gene. In both cases, the residue score 

is 0.473 and it is independent of the shifting factor. So, for positively co-expressed genes, the 

residue score decreases with the increase of pattern-based similarity and is independent of the 

shifting factor. On the other hand, gene5 is positively co-expressed and displays a highly scaled 

pattern with respect to the target gene. The MSR score between gene5 and the target_gene is 

very high. So, the MSR score between two positively co-expressed and scaling pattern-based 

genes is very high.  

gene6 is negatively co-expressed and displays a shifting pattern. The MSR score of gene6 

with respect to the target gene is very high. The case of gene6 therefore bears evidence of the 

fact that consideration of only MSR score may also lead to misleading decisions. Another 

candidate gene, gene7 is also negatively correlated and highly scaled with respect to the target 

gene. The MSR score between gene7 and the target gene is also very high. From these examples, 

it is clear that if a low MSR score is used for neighbor selection then it may favor the most 

similar positively co-expressed and shifting pattern genes, though there remains a problem in 

such cases as gene6 which is addressed in the subsequent sections.  

3.5.2 Proposed Framework in KNN environment (MKNNimpute) 

Here, a framework has been proposed for better neighborhood formation in traditional 

KNNimpute and it is renamed as MKNNimpute. The framework is developed by combining the 

Pearson correlation coefficient [34], mean squared residue (MSR) score [111, 112], and 

Euclidean distance [34]. It has two parts: (1) Proposed hybrid distance-based neighbor gene 

selection (2) Neighbor gene transformation using the proposed transformation procedure. 

In MKNNimpute, the imputation procedure starts from the target gene with the least number of 

missing entries. Then according to our novel framework, a set     of   neighbor genes of the 

target gene is formed depending on the proposed distance. If      , then these neighbor genes 

are transformed using the proposed transformation procedure. Then the missing entries in the 
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target gene are predicted by taking the traditional weighted average of those transformed 

neighbor genes as in equation (2) simultaneously. If      then the   number of the nearest 

neighbor genes of the target gene are selected according to Euclidean distance forming a set   

and then missing entries are imputed by taking their weighted average as in the equation (3.2). 

This process is repeated to predict missing entries in other target genes also. Here   is a user-

defined threshold. 

3.5.2.1  Proposed HPCMSR distance 

Proposed distance for neighbor gene selection: Here a hybrid measure named Hybrid Pearson 

Correlation Mean Squared Residue (      ) distance is proposed by combining Pearson 

correlation (PC) coefficient and mean squared residue       score. The proposed distance is 

defined in equation (11):  

                {
   (               –             )                 

   (             –            ̃ )                
    (3.16) 

 

          represents Pearson correlation value between the gene vectors    (target gene) and    

(candidate gene) and             represents the normalized MSR score between them.   ̃is 

the inverted pattern of   .            score between two genes    and    is defined below: 

              
           

                  
                                                

 

                   represents the maximum MSR score among all MSR scores of candidate 

genes with respect to a target gene.        value between two genes will vary between 0 and 

1 which means               The higher value of        signifies that the two genes 

are highly pattern-based similar (positively co-expressed or negatively co-expressed and shifted). 

The significance of        is demonstrated in Figure 3.5 and Table 3.5. 

 
Figure 3.5.Patterns showing the effect of HPCMSR score for scaling, shifting, and inverted patterns 
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In Figure 3.5, target_gene is the target gene and all other genes are candidate genes. If 

neighbors are selected using        score and K is set at 4 then gene1, gene2, gene5, and 

gene6 will be selected. Among these genes, gene1, gene5, and gene6are highly positively 

correlated/co-expressed and shifted with respect to the target gene. So, their         value 

with respect to the target gene are also very high mentioned in Table 3.5. gene2 is also pattern-

based similar with the target gene like gene1 but with opposite correlation. To calculate 

       of gene2, this gene is inverted with respect to itself by an inverting method (discussed 

later) and it becomes gene2‘. The        value of gene2‘with respect to the target gene is also 

very high mentioned in Table 3.5. So, from this example, it is clear that if two genes are highly 

positively co-expressed or negatively co-expressed and shifted, then        score between 

them is high. 

Table 3.5. Score values of the genes in Figure3.5 with respect to target gene 

 in figure5 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Pearson MSR NMSR HPCMSR 

target_gene 11 14 25 10 20 14 28 5 15 11 
    

gene1 1.2 5 15.2 0 13 4 18 -7.8 5.2 1.2 0.986772 0.473 0.004763 0.982009 

gene2 -20 -24 -34 -19 -32 -23 -37 -11 -24 -20 -0.986772 50.052 0.504036 0.482736 

gene2' -29 -25 -15 -30 -17 -26 -12 -38 -25 -29 0.986772 0.473 0.004763 0.982009 

gene3 -35 -20 13 -20 -5 -20 7 -44 -20 -32 0.952889 29.722 0.299308 0.653591 

gene4 30 26 3 40 18 27 -3 39 26 30 -0.974477 99.3025 1 0.025523 

gene4' 17.2 21 44.2 7 29 20 50 8.2 21.2 17.2 0.974477 12.0225 0.121069 0.853408 

 

On the other hand, gene3 is highly positively co-expressed and scaled with respect to the 

target gene with        value of 0.653591 while gene4 is highly negatively co-ex-pressed and 

scaled with respect to the target gene. This gene is inverted to gene4‘ and its       value is 

0.853408. So, for the highly positively co-expressed/negatively co-expressed and scaled genes 

       value is small compared to the highly positively or negatively correlated shifting 

patterns. This is due to the reason that using the Pearson correlation coefficient it is possible to 

distinguish positively co-expressed and negatively co-expressed genes while it cannot identify 

shifting and scaling patterns. But MSR score has a significant impact on scaling and also 

negatively co-expressed patterns.  

So, a combination of these two metrics in        score in such a manner gives this 

score the capability that it can select most positively/negatively co-expressed and shifted pattern-

based genes and discard scaling pattern-based genes, if such genes exist in the dataset. 

Now in this work, for every target gene,        distance is calculated between every 

candidate gene and the target gene, and then neighbor genes are selected forming a set     whose 

       value is greater than a certain threshold   . 

If   is set at high value then only positively co-expressed/negatively co-expressed and 

shifted pattern-based candidate genes will be selected as neighbors according to        value 

and the scaled pattern-based candidate genes will be discarded. 
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3.5.2.2   Proposed transformation method 

After the selection of neighbor genes, every neighbor gene is transformed using the following 

proposed transformation procedure. If any neighbor gene is negatively correlated with the target 

gene then this gene is inverted with respect to itself by using an inverting method (discussed 

later) and it becomes positively co-expressed with the target gene. Then all of these positively 

co-expressed genes are shifted toward the target gene by the shifting method (discussed later) so 

that they will come closer to the target gene. Finally, the weighted average of those trans-formed 

neighbor genes is taken to predict missing values in the target gene, where weights are calculated 

using Euclidean distance. 

 

Table 3.6. Expression and Score value of genes in Figure6 with respect to the target gene 

 
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Pearson MSR HPCMSR 

target_gene 11 14 25 10 20 14 28 5 15 11 
   

gene1 1.2 5.2 15.2 0.2 13.2 4.2 18.2 -7.8 5.2 1.2 0.986772 0.473 0.982009 

gene1'' 10.9 14.9 24.9 9.9 22.9 13.9 27.9 1.9 14.9 10.9 0.986772 0.473 0.982009 

gene2 -20 -24 -34 -19 -32 -23 -37 -11 -24 -20 -0.986772 50.052 0.013228 

gene2' -28.8 -24.8 -14.8 -29.8 -16.8 -25.8 -11.8 -37.8 -24.8 -28.8 0.986772 0.473 0.977322 

gene2'' 10.9 14.9 24.9 9.9 22.9 13.9 27.9 1.9 14.9 10.9 0.986772 0.472 0.977342 

gene3 48 39 33 46 38 41 32 54 41 52 -0.925749 45.923 0.008243 

gene3' 36.8 45.8 51.8 38.8 46.8 43.8 52.8 30.8 43.8 32.8 0.925749 1.802 0.889746 

gene3'' 9.7 18.7 24.7 11.7 19.7 16.7 25.7 3.7 16.7 5.7 0.925749 1.803 0.889726 

gene4 -35 -20 13 -20 -5 -20 7 -44 -20 -32 0.952899 29.722 0.359077 

gene5 56 59 65 56 56 59 65 48 58 56 0.88275 2.912 0.824571 

gene5'' 13.5 16.5 22.5 13.5 13.5 16.5 22.5 5.5 15.5 13.5 0.88275 2.912 0.824571 

gene6 25 27 35 26 32 26 33 21 34 29 0.836457 3.813 0.760276 

 

This novel transformation procedure is described using Figure 3.6 and Table 3.6. In 

Figure 3.6(a), except for the target gene, all other genes are candidate genes. For this example,   

is set at 0.95, and K is set at 5. According to the above criteria, K number of nearest neighbor 

genes are selected forming the neighbor set   {gene1, gene2, gene3, gene4, gene5}. Now every 

member of the set   is processed one after another. At first, gene1 is considered. For gene1, as it 

is positively co-expressed, only shifting operation is performed on it to make it (gene1‖) closer to 

the target gene as shown in Figure 3.6(b).  
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Figure 3.6(b) 

 
Figure 3.6(c) 

 
Figure 3.6(d) 

 
Figure 3.6(e) 

Figure 3.6 (a-e). Effect of proposed transformation on different pattern-based genes 

 

For gene2, as it is negatively co-expressed, it is first inverted with respect to itself by the 

inverting method (discussed below) so it will become (gene2‘) positively co-expressed with 

respect to the target gene. Then gene2‘ is shifted to the target gene by the shifting method 

(discussed below) so that it (gene2‖) will come closer to the target gene as shown in Figure 

3.6(c). Similarly, for gene3 the same operation is carried out as it is also negatively co-expressed 

and shown in Figure 3.6(d). For gene3, as it is positively co-expressed only shifting operation is 

performed on it to make it (gene3‖) closer to the target gene. A similar operation is carried out 

for gene4 and gene5 as they are also positively co-expressed as shown in Figure3. 6(e). Finally, 

weight is calculated for each of these transformed neighbor genes according to the equation (3.3) 

and missing values in the target gene are predicted according to the equation (3.2). The flowchart 
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for the imputation procedure using the proposed framework is shown in Figure 3.7. The 

algorithm is shown in Figure 3.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Flowchart of the proposed Modified KNNimpute 

3.5.2.3 Proposed inverting and shifting methods 

Method for inverting a gene with respect to a target gene: 

If the Pearson correlation coefficient value of a gene (gene2, for instance, in Figure 6(a)) with 

respect to the target gene is less than 0 then that gene is negatively co-expressed with respect to 
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the target gene. To invert this gene (here gene2), the average expression value of this gene with 

respect to all experimental conditions has been taken (here it is -24.4) and accordingly, x= -24.4 

is considered as an axis. Now the expression value of this gene for each experimental condition 

is subtracted from -24.4 and the result is added to -24.4 to get the inverted expression value for 

that gene (here gene2‘) as shown in Figure 3.6(c). The Invert function is shown in Figure 3.8(b). 

Method for shifting a gene with respect to a target gene: 

To shift a gene (consider gene1 in Figure 3.6(a)) with respect to a target gene, first the average 

expression value for the target gene and also for gene1 with respect to all experimental 

conditions have been taken. Then the difference of these average expression values has been 

calculated. This difference value is then again subtracted from the expression value of each 

experimental condition of that gene (here gene1) to shift that gene (here gene1‖) shown in Figure 

3.6(b). The Shift function is shown in Figure 3.8(c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 a) The proposed algorithm 

 

 

 

 

Figure 3.8 b) The invert function 

Algorithm: Modified K-Nearest Neighbor Imputation (MKNNimpute) 

Input: A gene expression matrix 𝐺𝑚 𝑛 with 𝑚 genes (rows), 𝑛 samples/conditions/experiments (columns), and 𝑚  𝑛  𝑝 

number of missing entries are artificially created in 𝐺 and these 𝑝 number of missing entries are present in 𝑞 number of target 

genes and 𝑞  𝑚   𝑆 is a set of 𝐾 number of gene vectors that means 𝐾  |𝑆|.  𝑀 and 𝐿 are two 𝑛-dimensional arrays. 

𝑰𝒏𝒗𝒆𝒓𝒕 𝒀  is a procedure which will invert a gene vector 𝑌. 𝑺𝒉𝒊𝒇𝒕 𝑾 𝒁  is another procedure that will shift a gene vector 𝑍 

to its corresponding target gene vector 𝑊. 𝛼 and 𝛿 are the user-defined parameters. 

Output: All missing entries are imputed in 𝐺. 

1. Arrange all 𝑞 number of target genes in 𝐺 considering in ascending order with respect to their missing rates.  

2. Mark all 𝑞 number of target genes as unprocessed. 

3. For each target gene 𝑔𝑡 in 𝐺 do the following: 

i. Calculate 𝐻𝑃𝐶𝑀𝑆𝑅 value between 𝑔𝑡 and each other gene present in 𝐺 and choose all  the nearest neighbor genes 

forming a set 𝑆 of 𝑔𝑡 whose 𝐻𝑃𝐶𝑀𝑆𝑅 value is greater than 𝛿. 

ii. If 𝐾  𝛼 then 

             A)  For every member gene 𝑔𝑡𝑛𝑒𝑖𝑔 𝑏𝑜𝑢𝑟𝑖
of 𝑆 do the following: 

a)  If 𝑃𝑅(𝑔𝑡𝑛𝑒𝑖𝑔 𝑏𝑜𝑢𝑟𝑖
, 𝑔𝑡 ) < 0 then 

       𝑀 = Call Procedure 𝑰𝒏𝒗𝒆𝒓𝒕(𝑔𝑡𝑛𝑒𝑖𝑔 𝑏𝑜𝑢𝑟𝑖
). 

     Else 

           𝑀  =  𝑔𝑡𝑛𝑒𝑖𝑔 𝑏𝑜𝑢𝑟𝑖
 

b)  𝐿 = Call Procedure 𝑺𝒉𝒊𝒇𝒕 (𝑔𝑡, 𝑀) 

c)  Calculate weight of  𝐿 using Euclidean distance-based weight as shown in the equation (3). 

d) Calculate all the missing entries in 𝑔𝑡 simultaneously by taking the weighted average of expression values of its 

modified (inverted and shifted) 𝐾-nearest neighbor genes according to the equation (2).   

            Else 

A) Select 𝛼-nearest neighbor genes of  𝑔𝑡 from the gene expression matrix 𝐺 based on Euclidean distance forming a 

set 𝑆. 

B) Calculate weight for each member gene 𝑔𝑡𝑛𝑒𝑖𝑔 𝑏𝑜𝑢𝑟𝑖
 as shown in the equation (3). 

C) Calculate all the missing entries in 𝑔𝑡 simultaneously by taking the weighted average of its 𝛼-nearest neighbor 

genes as shown in equation (2).   

iii. Mark  𝑔𝑡 (current target gene) as processed. 

4.  Impute all predicted missing entries calculated in step3 in the gene expression matrix 𝐺. 

5. End 

Procedure: Invert (𝒀) 

1. Calculate average expression value µ  of  𝑌 for all 𝑛 number of experimental samples. 

2. Subtract expression value for each experimental condition of gene vector 𝑌from µ and add the difference value for each 

experimental condition result with µ to get the expression value for each experimental condition of inverted 𝑌 named 𝑌 . 

3. Return 𝑌 . 
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Figure 3.8c) The shift function 

Figure 3.8 (a-c): The proposed algorithm and its different versions 

3.5.3 Proposed Framework for Sequential K-Nearest Neighbor Imputation 

(MSKNN-impute) 

In modified sequential K-nearest neighbor imputation, the proposed imputation procedure 

starts from the target gene which has minimum entries of missing. Similar to the MKNNimpute, 

the neighbor set   is formed from the candidate genes, whose        value with respect to the 

target gene is greater than a certain threshold δ.   Let   | |  If     , then like MKNNimpute, 

member genes of S are transformed if needed and the weighted average of those genes is taken 

for imputation. If     , then Euclidean distance is used to select   number of genes for the 

formation of the set   and the weighted average of those genes is taken for imputation. The 

original gene expression matrix is then replaced by the predicted value. This process continued 

in the subsequent estimation of other missing entries in the current target gene and other target 

genes. The only difference between MKNNimpute and MSKNNimpute method is that after 

predict-ting each missing entry, this value has been used for later imputation. 

3.5.4 Proposed Framework for Iterative K-Nearest Neighbor Imputation 

(MIKNNimpute) 

In MIKNNimpute, the missing positions in   are initially replaced by the corres-ponding 

row (gene) averages to form a complete gene expression matrix             . For each target 

gene, it applies the framework for neighborhood formation and simul-taneously imputes all the 

missing positions of that target gene using the weighted average computed according to the 

equation (2). After imputing all the missing positions in the data matrix, again the complete gene 

expression matrix              is formed. This process is iterated until the difference between 

the estimated values of two successive iterations reaches a given threshold. In             ,   

indicates the iteration number. The estimated values obtained in the last two successive iterations 

are used to calculate their sum of squared differences according to equation (3.4). 

3.5.5 Proposed Framework for Iterative Sequential K-Nearest Neighbor 

Imputation (MISKNNimpute) 

In modified iterative sequential K-nearest neighbor imputation, the proposed impu-tation 

procedure starts from the target gene which has minimum entries of missing. Similar to the 

MKNNimpute, the neighbor set   is formed from the candidate genes, whose        value 

Procedure: Shift (W, Z) 

1. Calculate average expression value  𝛼  of  𝑊 for all 𝑛 number of experimental samples. 

2. Calculate average expression value  𝛽  of  𝑍 for all 𝑛 number of experimental samples. 

3. Subtract 𝛽  from 𝛼 and store this difference value in 𝜂. 

4. Subtract 𝜂 from expression value of each experimental condition of 𝑍 to get shifted 𝑍 named as 𝑍 . 

5. Return 𝑍 . 
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with respect to the target gene is greater than a certain threshold δ. Let   | |   If     , then 

like MKNNimpute, member genes of S are transformed if needed and the weighted average of 

those genes is taken for imputation. If     , then Euclidean distance is used to select   

number of genes for the formation of the set   and the weighted average of those genes is taken 

for imputation. In this way, the missing positions in   are predicted to form a complete gene 

expression matrix             . This process is applied again to form the complete gene 

expression matrix             . This process is iterated until the difference between the 

estimated values of two successive iterations reaches a given threshold. In             ,    

indicates the iteration number. The estimated values obtained in the last two successive iterations 

are used to calculate their sum of squared differences according to equation (3.4). 

3.6 Experimental Results 

The effectiveness of the proposed algorithm is certified by carrying out a large number of 

experiments over ten microarray gene expression datasets. For comparing the efficiency of the 

proposed methods, different versions of the proposed methods are compared with the well-

known weighted average based and numerical methods based on existing missing value 

estimation techniques. The accuracy of the proposed methods in comparison with the above-

mentioned existing techniques has been ensured using the following metrics:(a) normalized root 

mean squared error (NRMSE) [92] and (b) average distance between partitions error (ADBPE) 

[113]. 

3.6.1 Gene Expression Datasets 

In this paper, ten different microarray gene expression data sets are taken (as listed in 

Table 3.7), considering different conditions of datasets like missing structure (equally and 

unequally distributed missing entries), missing rates (1 to 20% and uneven), species type 

(Saccharomyces cerevisiae, Atlantic salmon, and Homo sapiens) and type of dataset (time series, 

non-time series and mixed). Datasets SP.AFA [114] and SP.ELU [114] are of the type time 

series, GAS [115], ROS [116], GOL [117], Tymchuk [118], and HIR [119] are of non-time 

series while BALD [120], YOS [121] are of mixed type microarray gene expression datasets. 

Apart from the above datasets, a synthetic dataset generated by SynTReN [122] has also been 

used for our experimentation. The entropy values for the above datasets are calculated according 

to [123]. The lower and higher values of entropy signify the strong and weak correlation among 

the gene expressions respectively [123], and depending on that phenomena datasets are 

considered as global structured and local structured based datasets respectively. 
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Table 3.7: Description of microarray gene expression datasets used for experimentation 

Dataset Full Dim. Used Dim. Category Organism Expression Profile Entropy 

Spellman 

Alpha(SP.AFA) 

7681×18 4304×18 Time-

series, 

cyclic 

s.cerevisiae “Cell-cycle genes” 0.94 

SpellmanElu 

(SP.ELU) 

7681×14 4304×14 Time-

series, 

cyclic 

s.cerevisiae “Cell-cycle genes” 0.909 

Tymchuk 5299×34 1617×34 Steady 

state 

Atlantic 

Salmon 

Conservation genomics 0.922 

Gasch(GAS) 6152×174 5629×25 Steady 

state 

s.cerevisiae Cellular response to DNA-

damaging agent 

0.923 

Ross(ROS) 9706×60 2266×60 Steady-

state 

Homo Sapiens NCI 60 cancer cell lines 0.944 

Yoshimoto (YOS) 6166×24 4380×24 Mixed 

type 

s.cerevisiae Response to changes in 

calceneurine-dependent 

0.826 

Golub  (GOL) 7129×72 7070×72 Steady-

state 

Homo Sapiens Acute lymphoblastic leukemia 0.876 

Baldwin  (BALD) 16814×39 6838×39 Time-

series, 

non-cyclic 

Homo Sapiens Epithelial cellular response to L 

monocytogenes 

0.819 

Synthetic 200×50 200×50 Steady 

state 

s.cerevisiae Regulatory interactions 0.91 

3.6.2 Missing data set-up 

Here, all the datasets are used in the form of a log2 transformed scale. For this reason, 

these datasets are first converted to log2 scale if these are already not available in log2 

transformed scale. The complete gene expression dataset is formed by removing those genes 

which contained any missing entry.  

The initial log2 transformed dataset is represented as           with   genes and   samples. 

The complete dataset           has been formed excluding any single occur-ence of missing 

entries having   genes and   samples. Finally, missing entries are randomly introduced in 

          to generate the test dataset   using procedures A and B as in [92]. 

A. Missing at random (Uniform): In this procedure, a random function is used to randomly 

identify the possible entries or locations to be artificially deleted to create the missing 

entries. The numbers of such identified locations are 1%, 5%, 10%, 15%, and 20% of the 

total number of locations of the dataset to create the test dataset  .    

B. Missing at random (Non-uniform): During microarray experiments missing entries are 

created due to several experimental failures. These missing entries are not always 

uniformly distributed across the dataset. The image captured during the experiment may 

lead to having very low-intensity values for several columns or several rows leading to 

the non-uniform distribution of missing entries. The study says that 0.8% to 10.6% of 

locations are found missing in a dataset in the form of these non-uniform distributions. 

To mimic such a natural phenomenon, this procedure creates missing entries by selecting 

rows or columns randomly and a maximum of 50% of entries for that selected row or 
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column deleted continuously starting from any random location. In this way, this 

procedure creates non-uniform test datasets having 1.5% to 4.5% missing entries. 

To get unbiased results, the procedures in [117] of creating test data matrix are repeated 

multiple (50, in this case) times for each of the dataset with each different percentage of missing 

entries. Nine different datasets are used in this study and in each of these datasets six different 

percentages of missing positions are created by generating 2700 number of test data sets. 

A notation has been used for recognizing a particular test dataset with a particular percentage of 

missing entries for all 50 versions of repeated occurrences.  For example, for GAS data set with 

1% missing entries, the notation used here is GAS/1% and for uneven percentage, it is 

GAS/uneq. 

3.6.3 Metrics for Assessment of Performance 

The performance of the proposed methods has been evaluated using two major metrics. These 

are (a) Normalized Root Mean Squared Error (NRMSE) [92] and (b) Average Distance Between 

Partitions Error (ADBPE) [102]. 

1) Normalized Root Mean Square Error  

For evaluating the accuracy of any method, the algorithm is first applied to every dataset to 

predict the artificially introduced missing values. If the actual value is      and the predicted 

value is    ̂   then the error is calculated as normalized root mean squared error (NRMSE) as in 

equation (7). 

      
 

  

√
∑      ̂    

   

 
                       

Where    represents the standard deviation of   original values at the missing positions present 

in the experimental matrix. 

2) Average Distance Between Partitions Error 

Another measure, known as average distance between partitions error [102] is used here 

to compare the different imputation strategies. For every dataset, each of the prediction method is 

applied for prediction of artificially introduced missing values in test matrix  .  For this purpose, 

first the           matrix is partitioned     into   number of clusters using  -means [62] 

clustering algorithm. Then test matrix   is imputed with any imputation method generating 

matrix         and then divided into   number of clusters (partition  ) using  -means clustering. 

Then using Hungarian algorithm [124] the optimal match between the clusters of two partitions 

is determined by minimizing the average distance between them. The distance,         , 

of a cluster,   , in the partitioning of the imputed  data with each cluster,   ,  in the partitioning 

of the actual data is calculated using the formula in [124].  

ADBP error is calculated as in equation (3.19). 
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If two partitions are identical then the ADBP error        becomes zero and if they are totally 

different then it becomes one. So ADBP error varies between 0 and 1. 

3.6.4 Choice of model parameters for the proposed methods 

The performance of the proposed MKNN, MSKNN, MIKNN, and MISKNN depends on 

the proper selection of model parameter δ (the threshold for HPCMSR value) and α (user-defined 

cut-off for a minimum number of neighbor genes). The values of model parameters δ and α for 

which the proposed methods give the best performance in different types of data with different 

missing rates cannot be specified using a theoretical approach. Here, each proposed method is 

executed 50 times for each dataset and each missing rate by taking different values of δ and α to 

empirically judge the optimal value of δ and α. It has been found that the proposed methods 

generate the best results when α is set at the range of 5 to 10 for local structured datasets. For 

global structured based data-sets, the methods give the best results when α is set at the range of 

10 to 20. It has been observed that for both local structured and global structured based datasets 

the proposed methods give the best results when the δ value is set at the range of 0.90 to 0.95. 

The sensitivity analysis of parameters   and  , for different category datasets, are given in 

Figures: 3.9 (a) to 3.9 (e). 

The sensitivity analysis has been performed in terms of cross validation also on Synthetic 

dataset Figure 3.9 f) to justify the selection of optimal values of model parameters. To perform 

the cross-validation testing, the Synthetic dataset has been used as training data. A testing data 

comprising of the same set of genes (200) with a larger number of samples (75) has also been 

generated. It has been found that the value of parameters α and δ are in the same range as it was 

in the training dataset. 

3.6.5 Selection of optimal values of model parameters for other imputation 

algorithms 

Each existing algorithm for missing value estimation, considered here, is executed 50 

times by taking different values of model parameters for every missing rate in each data-set to 

select the optimal value of its model parameters empirically. The results are measured in terms of 

NRMSE. From experimental results, it has been observed that for KNN and its several versions, 

the best results are found when K is set between 10 and 20 and is consistent with the previous 

results [123]. For SVDimpute, the range of eigenvalues lies between 0.15 and 0.25 [123]. 

LLSimpute has its built-in parameter optimization characteristic [123]. 
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Figure 3.9a): Sensitivity graph of parameters α and δ for SP.AFA dataset 
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Figure 3.9 b) Sensitivity graph of parameters α and δ for ROS dataset 
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Figure 3.9c) Sensitivity graph of parameters α and δ for YOS dataset 
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Figure 3.9d) Sensitivity graph of parameters α and δ for BALD dataset 
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Figure 3.9 e): Sensitivity graph of parameters α and δ for Synthetic dataset 
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Figure 3.9f): Sensitivity graph of parameters α and δ for Synthetic dataset generated for testing. 
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3.6.6 Comparative Performance Analysis based on NRMS error 

In Figures 3.10(a) to 3.10(j), the proposed weighted average based MKNNimpute, 

MSKNNimpute, MIKNNimpute, and MISKNNimpute methods are compared with a cor-

responding existing weighted average based KNNimpute, SKNNimpute, IKNNimpute, and 

ISKNNimpute methods in terms of NRMSE to prove the effectiveness of the proposed methods. 

The results are shown here for all datasets. 

In noisy time-series datasets SP.AFA, the different versions of the proposed algo-rithm 

have performed better than their corresponding existing versions for all types of missing 

structure and missing rates. Among them, the MISKNNimpute shows the highest estimation 

accuracy by generating the lowest NRMS error.  

In steady-state local structured based dataset Synthetic, MISKNNimpute shows out-standing 

performance for all cases. MKNNimpute, MIKNNimpte, and MSKNNimpute al-so produce 

notably better performance than their corresponding traditional versions for all cases for this 

dataset. 

In another local structured based dataset Tymchuk, MKNNimpute performs better than 

KNNimpute in a lower missing rate. Its performance degrades showing almost the same 

performance as KNNimpute at a higher missing rate. MSKNNimpute and MIKNNimpute give 

better performance in all cases than their corresponding existing versions.  MISKNNimpute 

shows notable performance for all missing rates. 

In mixed-type global structured based dataset YOS, MKNNimpute, MSKNNimpute, and 

MIKNNimpute give notably better performance than their corresponding traditional version for 

all types of missing rates. MISKNNimpute shows comparable performance with its other 

versions. 

From these results, it is concluded that the use of the proposed framework in the traditional 

KNNimpute and its several versions improve their prediction accuracy significantly in most of 

the cases. This is true for all other datasets. 
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Figure 3.10(b): Synthetic 

 
Figure. 3.10(c): Tymchuk 

 

 
Figure 3.10(d): YOS 
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Figure 3.10(e): ROS 

 
Figure 3.10(f): HIR 

 
Figure 3.10(g): SP.ELU 
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Figure 3.10(h): BALD 

 
Figure 3.10(i): GAS 

 
Figure 3.10(j): GOL 

Figure 3.10. Comparative performance analysis of different versions of the proposed method for corresponding 

existing versions in terms of NRMSE for different datasets 
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3.6.7 Comparison of Performance for other well-known existing Imputation 

Techniques based on NRMS error 

In Figure 3.11(a) to 3.11(j), the proposed weighted average based MKNNimpute, 

MSKNNimpute, MIKNNimpute, and MISKNNimpute methods are compared with the most 

popular numerical methods SVDimpute[88], LLSimpute [95], BPCA[89] in terms of NRMSE by 

applying them on different microarray datasets to prove the effectiveness of the proposed 

methods. In Figure 11, results are shown for all datasets. 

For SP.AFA and SP.ELU datasets, the MISKNNimpute method give significantly better 

results than its all other versions and SVDimpute. It shows similar performance like LLSimpute 

and BPCA at higher missing rates. Except for MISKNNimpute, all other proposed versions do 

not work well for these two noisy datasets.  

For steady-state local structured based datasets (ROS, Tymchuk, Synthetic) MISKNN-

impute gives better performance compared to all its versions and other numerical methods for all 

types of missing rates. For these datasets, all other versions of the MISKNNimpute method give 

better or comparable results compared to the other numerical methods. This is also true for other 

local structure-based datasets. 

For mix type datasets (YOS, BALD) MISKNNimpute is comparable with LLSimpute and 

BPCA at higher missing rates, but the performance of its other versions is not so good.  

From these results, it can be said that for different types of datasets, among the different versions 

of the proposed methods, MISKNNimpute is the strongest and comparable with the robust 

numerical methods like LLSimpute and BPCA. For steady-state local structure-based datasets, 

the performance of MISKNNimpute and its other versions is significantly better than the 

numerical methods. For noisy time-series datasets and mixed datasets, MISKNNimpute is 

comparable with other numerical methods.  
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Figure 3.11(b)  

 
Figure 3.11(c)  
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Figure 3.11(f)  

 
Figure 3.11(g)  
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Figure 3.11(j)  

Figure. 3.11. Comparative performance analysis of different versions of the proposed method for 

existing well-known imputation techniques in terms of NRMSE 
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Figure 3.12(c)  

Figure 3.12. ADBP error of different methods for SP.ELU, YOS, and ROS datasets 
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3.6.8 Comparison of Performance based on ADBP error 

To measure the estimation capability of the different versions of the proposed methods, 

these methods are compared with the existing well-known imputation techniques with respect to 

the ADBP error. The results have been shown here for datasets of three different categories: (a) 

SP.ELU (b) YOS (c) ROS. 

In Figure 3.12, the results are shown for the best parameter values of all the methods.  From this 

figure, it has been observed that for SP.ELU dataset, MISKNNimpute performs better than all 

other methods at higher missing rates.  

In mixed-type global structured based dataset YOS, MISKNNimpute provides lesser 

error than all other methods. For a 5% missing rate LLSimpute gives slightly better performance 

than MISKNNimpute while for 15% missing rate BPCA provides a little better performance than 

that of the MISKNNimpute method.  

In the ROS dataset MISKNNimpute shows notably better performance than all other methods for 

higher missing rate while for lower missing rate it provides slightly better performance than that 

of other methods.  

From these results it can be said that MISKNNimpute performs significantly better for 

steady-state local structure-based datasets and other types of datasets, it is comp-arable with or 

better than the robust numerical methods. For steady-state local structure-based datasets and for 

the noisy time series datasets the performance of its other versions is comparable with the 

numerical methods. For mixed datasets except for MSKNN-impute, the performance of its other 

versions is comparable with numerical methods. 

3.7 Discussion 

A large number of established imputation techniques for gene expression data exist in the 

literature. These methods are highly dataset dependent and application-driven also. So, there 

exists no one single method which is best suited for all types of datasets and all types of 

applications. Although more advanced imputation techniques have been deve-loped, the  -

nearest neighbor principle-based imputation techniques continue to retain their popularity as 

these methods are very simple and usually generate consistent results in different types of 

datasets and also in different applications. However, their drawbacks have generally not been 

discussed in literature except for a few papers. In this regard, a framework is proposed in this 

paper for more accurate neighborhood configuration in or-der to increase the prediction accuracy 

of the traditional  -nearest neighbor rule-based estimation techniques by addressing the 

deficiencies that these suffer from.  

In this context, the reasons behind the improved effectiveness of the modified KNN and 

its several versions are discussed here. The framework introduced here consists of two parts: one 

is the proposed        based neighbor gene selection and the second one is the transformation 

procedure applied to the relevant neighbor genes. 
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Advantages of the proposed HPCMSR based neighbor gene selection over other distance 

metric-based gene selection procedure 

In traditional KNNimpute, SKNNimpute, and IKNNimpute methods, Euclidean distance 

is used to measure the similarity between any two genes. As already discussed, Euclidean 

distance is not a useful measure for extracting pattern-based similarity among genes. This is the 

one reason why the KNN based imputation algorithms turn out to be less effective when 

compared to the advanced imputation techniques.  

Second, the Pearson correlation coefficient is a widely used measure to select pattern -

based similarity among genes and already has been used as a similarity measure in traditional 

KNNimpute, SKNNimpute, and IKNNimpute methods. It is capable of selecting positively co-

expressed as well as negatively co-expressed neighbor genes of the tar-get gene, but the problem 

is that it is not capable of differentiating among shifting patterns and scaling patterns using the 

Pearson correlation coefficient. If the two candidate neighbor genes are of the same pattern based 

structure but one is a scaled pattern and another is a shifted pattern with respect to the target 

gene, then their Pearson correlation value will be the same and it adversely affects the weighted 

average process. Another problem is that if the two candidate neighbor genes are of the same 

pattern based structure but with a different shifting factor with respect to the target gene, then 

also their Pearson correlation value will be the same and it too affects the weighted average 

process adversely. 

Euclidean and Pearson correlation coefficient based hybrid PEH distance is capable of selecting 

positively co-expressed and magnitude wise closer genes, but still cannot handle all types of 

negatively co-expressed and perfectly scaling pattern-based genes. So, again weighted average 

procedure is affected. 

To overcome the above-mentioned problems, the hybrid distance        is introduced 

here which is a combination of the Pearson correlation coefficient and Mean squared residue 

(MSR) score. A mean squared residue score was proposed to measure the compactness of 

biclusters in the biclustering framework. Here in this paper, we have used the MSR score as a 

score function between two genes. The advantage of the MSR score is that if two genes are 

highly positively co-expressed and shifted then the MSR value be-tween them is low but if they 

are highly positively co-expressed and scaled then the MSR value between them is high. On the 

other hand, if the genes are negatively co-ex-pressed, then the MSR score between them is high 

irrespective of whether they are shifted patterns or scaled patterns. 

Due to the use of the Pearson correlation coefficient and Mean squared residue (MSR) 

score in the proposed hybrid distance, this distance function can select both the positively co-

expressed and negatively co-expressed shifted genes and also discard the scaling patterns. This 

helps to improve the accuracy of modified KNN, modified SKNN, modified IKNN, and modified 

ISKNN methods. 
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Advantages of the proposed transformation procedure 

After the selection of neighbor genes using        score, every neighbor gene is 

transformed using the following proposed transformation procedure. If any neighbor gene is 

negatively correlated with the target gene then this gene is inverted to itself by using an inversion 

method that makes it positively co-expressed with the target gene. Subsequently, all these 

positively co-expressed genes are shifted to the target gene by a shifting method so that they will 

come closer to the target gene. Finally, the weighted average of those transformed neighbor 

genes is taken to predict the missing values, where weights are calculated using Euclidean 

distance. By this transformation, it has become possible to take the weighted average of only the 

pattern-based most similar (positively co-expressed) and magnitude wise closer neighbor genes. 

This removes the drawbacks of the Euclidean distance and Pearson correlation coefficient based 

distance measure. 

Advantages of MSKNNimpute over traditional SKNNimpute 

In case of the conventional SKNN imputation method, initially, the entire gene 

expression matrix ( ) is divided into two sub-matrices: one containing genes with missing 

entries (        ) and the other containing genes with no missing entries (          ). The 

estimation method starts from the gene with minimum missing positions and neighbors genes are 

selected from           . As missing rates increase,            becomes almost blank because 

the maximum number of genes contains at least one missing entry. So, at a higher missing rate, 

its performance degrades. In the proposed modified SKNN method, the original data matrix is 

not divided into two parts and neighbor genes are selected from the entire matrix just like 

KNNimpute. It thus helps in improving the performance of modified SKNNimpute at higher 

missing rates. 

Advantages of MISKNNimpute over traditional ISKNNimpute 

In the ISKNNimpute method a novel hybrid distance is used for neighbor gene selection. 

The novel distance cannot ignore scaling pattern-based genes and cannot properly consider 

negatively co-expressed genes. On the other hand, in the MISKNNimpute method at the time of 

neighbor selection, all types of pattern-based genes are considered and information for the 

weighted average is taken from all types of genes (except scaling) after transforming them into 

positively co-expressed and magnitude wise closer neighbor genes. As a result, prediction 

accuracy increases. 

Drawbacks of the Proposed Framework 

Based on this framework the performance of modified KNNimpute and its several 

versions will improve if there exist scaling pattern genes and negatively or positively co-

expressed and shifted pattern-based most similar genes in datasets. In absence of these types of 

genes in datasets, the performance of modified KNNimpute and its several versions will be the 

same as traditional KNNimpute and its corresponding several versions. 



72 
 

Another drawback is that if in a dataset only scaling pattern-based candidate genes are 

present then this framework will select low scaling factor based genes. In this work, how high 

scaling factor based genes will be handled is not considered. 

3.8. Conclusion 

In this work, the modified KNNimpute, and its different versions are proposed for 

improving the prediction accuracy of the traditional K-nearest neighbor rule-based estimation 

techniques. The motivation behind this work is that the neighborhood for each target gene will be 

constructed in such a way that the weighted average procedure will run only on the maximally 

positively co-expressed and magnitude wise closest genes. 

To validate the effectiveness of the proposed methods, these methods are assessed and 

compared with existing KNNimpute, SKNNimpute, IKNNimpute, ISKNNimpute, SVDimpute, 

LLSimpute, and BPCA methods,  using two metrics (NRMSE, and ADBPE) over ten microarray 

gene expression datasets considering different conditions of datasets like missing structure 

(equally and unequally distributed missing entries), missing rates (1 to 20% and unequal), 

species type (Saccharomyces cerevisiae, Atlantic salmon, and Homo sapiens), and data type 

(steady-state, time-series, mixed) for a different choice of model parameters. 

In all cases, the proposed methods give better performance than their corresponding 

traditional versions, and among them, the prediction accuracy of the modified ISKNN-impute is 

the best. For local structure-based datasets, this method significantly outper-forms other 

numerical methods. For this type of datasets, other versions of it also give better results than 

numerical methods. For other types of datasets modified ISKNNimpute is also comparable with 

robust numerical methods LLSimpute and BPCA but its other versions give moderate results. 

The benefit of the usage of the modified ISKNNimpute method is that from the implementation 

point of view this method is simple compared to numerical methods and its prediction accuracy 

is comparable with robust numerical methods. 

In the next chapter we have proposed another missing value prediction technique for 

microarray gene expression data via integrating clustering and numerical approach.  
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Chapter 4 

 

 Biclustering based Sequential Interpolation Imputation 

Technique for Missing Value Prediction 

 

4.1 Introduction  

In the last chapter we have tried to improve prediction accuracy of clustering based 

imputation techniques. From experimental results, it has been revealed that prediction accuracy 

of numerical methods based on local approaches is much better than other approaches. In these 

approaches, the imputation has been performed following the selection of a set of neighbor genes 

with respect to the gene having missing entry, based on some similarity measure. The similarity 

is measured considering the values of the entire set of samples.  In case of gene expression data it 

has been found that genes (or samples) may exhibit similarity only for a subset of samples (or 

genes). Biclustering methods [111, 125, 126, 127] are used to compute a subset of genes (or 

samples) that are similar for a subset of samples (or genes). Considering this characteristic of 

gene expression data, recent development of biclustering based missing value imputation 

methods [93, 100, 128] have been becoming popular to improve the prediction accuracy. Some 

bicluster-based well known imputation techniques are bicluster-based impute (BIC) [93], 

iterative bicluster-based least square imputation (bi-iLS) [100] etc. 

Among the biclustering based methods, BIC is developed in biclustering framework only. 

It imputes missing value by minimizing the residue score of the bicluster related to that missing 

position. bi-iLS generates a bicluster for every missing entry and then applies iterative local least 

square imputation. This method has taken advantages from both numerical and biclustering 

approach to estimate missing value.  

Although numerical methods in the biclustering framework have been growing, to get 

better prediction accuracy it is still challenging. In this regard, a bicluster-based sequential 

interpolation imputation method named BiSIimpute [129] is proposed to predict missing values 

more accurately in microarray gene expression data. BiSIimpute can predict missing values in 

different gene expression datasets (time series and non-time series). The uniqueness of this 



74 
 

method is to apply interpolation in biclustering framework. For every missing position in a gene, 

this method first generates a bicluster and then applies interpolation. The whole process of 

imputation starts from the gene having minimum number of missing entries. This estimated 

value is then placed in the original matrix and this procedure is repeated for other missing values 

of that gene. Sequentially all missing values of all genes in the matrix are then imputed. 

The proposed method is compared with seven well known techniques, namely, 

KNNimpute [90], SKNNimpute [91], LLSimpute [95], SVDimpute [88], BPCA [89], NL [118], 

and bi-Ils[100]. Normalized root mean squared error (NRMSE) [92] and average distance 

between partition error (ADBPE) [113] are used to quantitatively evaluate the estimation 

accuracy of these techniques. The improved accuracy and robustness of the proposed method are 

demonstrated with the results taken using a wide range of datasets with various fault injection 

models. 

The chapter is divided into four major sections. Section 4.2 discusses the details of the 

method proposed in this chapter. The results and their validations are described in the next 

section. Qualitative discussions and justifications of the method are presented in section 4.4. 

Finally, the paper is concluded in Section 4.5. 

4.2 Proposed  Method 

In this section, a new bicluster-based sequential interpolation imputation method 

(BiSIimpute) is introduced for prediction of missing values. To apply interpolation we have used 

Lagrange‘s interpolation [130] technique. Throughout the paper we have adopted the following 

conventions to describe our imputation algorithm. 

The input data is represented by a 2D matrix         having   number of genes and 

  number of samples where    . The expression values of  th gene/row, where       ,  

for   number of samples/experiments in the gene expression matrix   ,  is denoted as    
       .  

    or       denotes the expression value of gene   in  th column/ sample/experiment in  . A 

missing value in the  th gene at  th sample position for which the imputation is to be carried out 

is denoted as               .      is the missing indicator matrix which will keep track of 

each missing location in  . Each entry in the indicator matrix   is denoted by    .     is equal to 

1 if expression value of     is available, otherwise     is equal to 0.  A gene with one or more 

missing values is treated as a target gene and a sample with one or more missing values is 

considered as a target sample.  

In the next subsection, the detailed description of  BiSIimpute  method is given. 

4.2.1 Detail Description of the Proposed BiSIimpute Method 

Our algorithm sorts the genes according to their missing rate as the first step. Then 

imputation begins from the gene (called target gene) which has lowest missing rate. For this 

target gene, interpolation based estimation technique is applied to every missing position to 

predict the missing value for that position. This value is imputed in the gene expression matrix 
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given as input and then used for latter imputation in other missing positions in that gene as well 

as in the other genes with missing positions in sequential manner. 

For each missing position in the target gene, the proposed method first forms a bicluster 

by selecting   number of most similar correlated genes with respect to the target gene and   

number of  most similar correlated samples of the target sample  by Pearson correlation 

coefficient. Then it estimates that missing value by applying Lagrange‘s interpolation based 

estimation technique on that bicluster. This estimated value is then stored in the given matrix and 

this same continues for other missing positions in that particular gene as well as for other genes. 

4.2.1.1  Formation of Bicluster 

It is assumed that genes which show similar pattern of changing tendencies in different 

experiments or with progress of time are under the control of the same transcription factor and 

are related to a similar function [111] in the cell. They are termed as correlated/co-expressed 

genes. The magnitude of expression levels of them may be or may not be closed. It has also been 

found that correlation among genes exists only for a subset of samples [111]. So, for every 

missing entry, while forming the bicluster, correlated genes and correlated samples are selected 

in respect to corresponding target gene and target sample. 

At first, all missing positions in the given gene expression matrix are replaced by row 

averages. These are not considered for selection of correlated genes and correlated samples but 

are considered in interpolation based estimation technique. 
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In equation (4.1),   is the data matrix, gene   
  is the target gene in which at  th 

column/sample position, the expression value (α) is missing.   

For the missing value  , at the  th  column/sample position of the gene   
   (i.e.      ), 

  nearest correlated genes of   
 , represented as            

 

 
           are first chosen using 

highest magnitude/absolute Pearson correlation coefficient using equation (4.2) forming the 

matrix         of   as shown in equation (4.3). 

   
∑          ̅̅̅          ̅       

 
   

√∑          ̅̅̅           ̅   
   

      

Where   ̅̅ ̅is the average values of gene vector  
 .    varies between -1 to +1.  
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As missing value  , is present at the  th  column/sample position of the gene   
   (i.e. 

     ) in  ,  th column of the matrix   is considered as the subsection of the target/missing 

column in   with respect to      ), and  is denoted by a vector         shown in figure (4.1). 

 
Figure 4.1. Formation of vector c 

Now, Pearson correlation coefficient value is calculated for each column with respect to 

the  th column (vector  ) of  . Then   nearest columns/samples to  th column/sample of   are 

selected according to highest magnitude/absolute Pearson correlation coefficient value. That 

means after initial selection of   number of neighbor genes from matrix  , subsection of these 

genes are reselected from   by selecting most correlated   number of columns/samples with 

respect to  th coumn/sample forming bicluster    as shown in equation (4.4). 
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After formation of the bicluster  , without no loss of generality, the subsection of target 

gene   
  named  ̂ 

           is formed by placing missing value α at the first position and then 

placing corresponding expression values of   number of selected samples in    as shown in 

equation (4.5). 

 ̂ 
                                        

where,         contain expression values of   
 , for corresponding   number of selected 

samples in   .   

Next, the final imputation matrix           is created by concatenating  ̂ 
  as the first 

row and column vector    in the first column with bicluster    as shown in equation (4.6). 
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4.2.1.2 Interpolation Based Approximation 

After bicluster formation, interpolation is applied for imputation.  First, average 

expression profile of each column for all the rows of the bicluster    is taken forming a vector  

        . Although, neighbor genes of target gene   
 , are selected using absolute Pearson 

correlation coefficient, they are either positively correlated or negatively correlated with the 

target gene   
 . The contribution of a gene   to  average expression profile is computed by using 

its opposite average expression profile (i.e. –   , for oppositely or negatively correlated genes. 

The meaning of this is to treat both under expression and over expression of genes equally; 

otherwise, expression of two genes with opposite polarity would cancel each other during their 

average profile calculation. Due to this reason, average expression profile of all rows (genes) of 

the bicluster    is calculated in the following way.  At first, Pearson correlation coefficient is 

calculated between each row    of the bicluster     with the first row (except the first column 

value that means vector   ) of bicluster  . If Pearson correlation coefficient value is greater than 

0 then it means that the particular row     of the bicluster    has same polarity (positively 

correlated) with vector   and it remains unchanged in calculating average expression profile. If 

Pearson correlation coefficient value is less than 0 then it means that the particular row     of the 

bicluster    has opposite polarity (negatively correlated) with vector   and its ‗sign-flipped‘ 

expression value is changed to      in calculating average expression profile. Changing the 

‗sign-flipped‘ value of     indicates that if    is oppositely correlated with vector   then its 

correlation is changed  in the same direction.  In this way every row of bicluster    is considered 

and its sign is changed according to the correlation. Then, average expression profile of these 

rows is taken for generating vector    as shown in figure 4.2. 

The vector    is taken as  -axis; the first row,    of the imputation matrix   is taken as 

 -axis.  Then, Lagrange‘s interpolation technique is applied to find          for a particular 

value of   where   is the average value,      , of the vector   of  .  

 

 
Figure 4.2: Formation of vector W

T
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Figure 4.3: Formation of vector Z 

Next, average expression profile for each row of all the columns of the bicluster    is 

calculated forming a vector         in the following manner as shown in figure 4.3. This 

vector   is taken as  -axis and the vector   in the imputation matrix   is taken as   -axis. 

Lagrange‘s interpolation is then used to get          for a particular   where   is the average 

value,     ,  of the vector     of   .  Finally   is calculated as the average of   and   .  

Algorithm: BiSIimpute 

Input: The matrix      with m genes and n samples where       . 

Output: The estimated values of all missing entries. 

1. Initialization: Substitute all missing entries in   by their corresponding row averages. 

2. Sort the rows in   in ascending order with respect to number of missing entries. 

3. For each of the missing location   in every target gene   
  in   perform the following. 

i. Compute Pearson correlation coefficient value between target gene     
  and other 

genes. Select   nearest correlated genes according to highest magnitude/absolute 

Pearson correlation coefficient to form  .   

 

ii. Compute Pearson correlation coefficient value for the missing column   with 

other columns in   and select   nearest samples according to highest 

magnitude/absolute Pearson correlation coefficient to form    (bicluster). 

iii. Generate the imputation matrix   by concatenating  ̂ 
  as the first row and 

column vector    in the first column with bicluster   . 

iv.  Calculate      as the mean of values in the vector   and calculate      as the 

average of values of the vector  . 

v. For every row     of bicluster     do:  

a. Calculate Pearson correlation coefficient of vector    of imputation matrix    and 

row     of  bicluster   . 

b. If Pearson correlation coefficient > 0 then row      remains same otherwise it is 

treated as      by changing its sign. 

vi. Calculate the average expression profile of  all rows of  bicluster    forming a 

vector named   . 

vii. Apply Lagrange‘s interpolation method, considering   as  -axis  and    vector 

as  -axis, for a definite    value as      and calculate              . 
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viii. For every column     of bicluster    do:  

a. Calculate Pearson correlation coefficient of vector   of imputation matrix   and 

column     of bicluster    . 

b. If Pearson correlation coefficient > 0 then column     remains same otherwise it is 

treated as      by changing its sign. 

ix. Calculate the average expression profile of all the signed columns of  bicluster   , 

forming a vector  . 

x. Apply Lagrange‘s interpolation method, considering   vector as  -axis and   

vector as  -axis for   =       and calculate            . 

xi. Finally calculate   as the average of    and    and that value is imputed at the 

proper position in the matrix   . 

4. End. 

4.2.2  Computational complexity analysis: 

For every missing position BiSIimpute first creates a bicluster (sub-matrix) of order 

          and then applies interpolation based approximation. To create a bicluster, it 

selects   number of nearest correlated genes of target gene. It takes time of order (       

     ) as each estimation of distance/similarity calculation between two genes takes linear time 

of order      and to select   number of genes      time is needed. Then it picks up   number 

of coexpressed columns of the target column from this selected   number of genes, which 

              time. As    and    , time complexity of creation of the bicluster (  ) is  

     . After forming the bicluster, it first takes the average expression profile of  neighbor 

genes taking      comparison and then applies interpolation. Similarly, it also takes the average 

expression profile of   neighbor samples taking      comparison and then applies interpolation. 

In the bicluster, interpolation is applied two times, one for genes and another for samples taking 

     and      time complexity. So for   number of missing positions, it takes        

         time. As   and  are very less compared to  , total time complexity of this method is 

        . 

 

4.3 Results 

In this paper, efficiency of the proposed BiSIimpute is evaluated by comparing it with a 

number of existing eminent imputation techniques, namely ―KNNimpute‖ [90], ―SKNNimpute‖ 

[91], ―LLSimpute‖[95], ‖SVDimpute‖[88], ―Bayseian principal component analysis 

(BPCA)‖[89], ―NL‖[118], and ―bi-iLS‖[100]. Experiments have been carried out over nine 

different datasets. Accuracy of our algorithm is compared with other algorithms using  two well 

known metrics: i) normalized root mean squared error (NRMSE) and  ii) average 

distance between partitions error (ADBPE) as discussed in the previous chapter. 
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All the above mentioned methods are implemented in C using Linux environment in a 

machine with a 4 GB RAM, and 3.2 GHz core i3 processor. 

Experiments have been carried out over nine different datasets as mentioned  

4.3.1 Gene Expression datasets 

For our experimentation, nine different microarray gene expression datasets have been 

used. These datasets are classified into three categories: (1) time-series dataset (SP.AFA[114], 

SP.ELU[114], BAL[120]) (2) mixed data set. Mixed dataset comprise time-series data as well as 

non time-series data or multiple time-series data measured in different experimental conditions, 

YOS[121]) (3) non-time series dataset (GAS[115], ROS[116], GOL[117], and Tymchuk[118]). 

A synthetic dataset generated by SynTReN [122] is also considered here. These datasets are 

described in Section 3.5.6.1. 

4.3.2  Evaluation of Performance 

The accuracy of the proposed algorithm is rigorously tested with already mentioned popular 

techniques, namely, KNNimpute, SKNNimpute,  LLSimpute, SVDimpute, BPCA, NL and bi-

iLS method. 

4.3.2.1 Selection of values for model parameters of BiSIimpute method 

The prediction capability of BiSIimpute algorithm depends on the dimension of the 

selected bicluster. These parameters ( and  ) depend on the type of dataset and also on the rate 

of missing entries present in that dataset. For this study, BiSIimpute is executed in 50 

simulations for each dataset with different values of   and   and by taking different percentages 

of MVs to empirically evaluate optimal values for   and  . In Table 4.1 the optimal values of u 

and v for each dataset with different missing rates have been shown.   

From Table 4.1, it is seen that in SP.AFA for 1%, 5%, 10%, 15%, 20%, and unequal 

missing rate, BiSIimpute gives lower NRMS error values when   is set at 5 and   is selected 

between 5 and 30. For unequal case, this method gives lower NRMS error values when       

and   is selected between 20 and 30. For SP.ELU and GAS datasets this method generates best 

results when   is is in the range of 10 to 20 and   is set as 5 and 8 respectively.   

For BAL and GOL datasets BiSIimpute shows consistently lower NRMS error values 

when   is selected between 30 and 50 and   is set at 12 and 20 respectively. 

The proposed algorithm gives best result when   is set at 30 and   is set at 7 for 1% 

missing entries of YOS dataset. But in cases of 5%, 10%, 15%, and 20% missing values, it gives 

best result when   varies between 20 and 30 and   varies between 7 and 10. 

For Tymchuk dataset in all cases, BiSIimpute gives lower NRMS error when   is 

selected between 10 and 15 and   is in the range of 5 to 10. 

For Synthetic dataset this method generates best result when   is set at 30 and   is set at 

5. 
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Table 4.1. Values of model parameters u and v with respect to lowest NRMSE for different datasets with different 

missing rates 

Dataset 
Rate of Missing 

Entries 

No. of 

Genes(u) 

No. of 

Samples(v) 
NRMSE Dataset 

Rate of 

Missing 

Entries 

No. of 

Genes(u) 

No. of 

Samples(v) 
NRMSE 

SP.AFA 

1% 15 5 0.402357 

Tymchuk 

1% 10 5 0.495795 

5% 10 5 0.42782 5% 10 10 0.467629 

10% 15 5 0.46654 10% 10 10 0.485912 

15% 30 5 0.50456 15% 15 10 0.49886 

20% 20 5 0.537864 20% 10 10 0.505428 

uneq 20 5 0.58353 uneq 10 10 0.49804 

SP.ELU 

1% 10 5 0.296244 

GOL 

1% 50  20  0.256414 

5% 20 5 0.292877 5% 50 20 0.299549 

10% 20 5 0.316235 10% 50 20 0.31596 

15% 20 5 0.34834 15% 50 20 0.346384 

20% 20 5 0.362286 20% 50 20 0.371475 

uneq 20 5 0.34101 uneq 50 20 0.340752 

BAL 

1% 50 12  0.316962 

YOS 

1% 30 7 0.335538 

5% 50 12  0.327577 5% 20 7 0.366803 

10% 50 12  0.352528 10% 20 7 0.363884 

15% 50 12 0.37017 15% 10 7 0.37031 

20% 50 12 0.380543 20% 20 7 0.378129 

uneq 30 12 0.32835 uneq 20 7 0.400382 

GAS 

1% 10 8 0.350636 

Synthetic 

1% 30 5 0.334418 

5% 20 8 0.359482 5% 30 5 0.30731 

10% 20 8 0.363014 10% 30 5 0.27102 

15% 20 8 0.374638 15% 20 5 0.357481 

20% 20 8 0.382701 20% 20 5 0.278159 

uneq 10 5 0.356349 uneq 20 5 0.31663 

 

From all these results, it can be concluded that for datasets with high entropy values 

(locally correlated datasets) this method gives minimal NRMS error when   is chosen in the 

interval of 5 to 30. For global structured based datasets this method generates optimal results 

with a higher range of   values, here that is from 30 to 50. For all types of datasets BiSIimpute 

method shows lower NRMS error values when   is set at approximately 30% of total number of 

samples. 

4.3.2.2  Selection of optimal model parameter values for other imputation 

algorithms 

To select optimal model parameter values for different missing value imputation 

algorithms other than the BiSIimpute method, 50 simulation runs of each of these methods are 

tested empirically for each dataset with different percentage of MVs under different values of 

model parameters. Then, the model parameters are chosen for these methods which generates the 

lowest NRMS error. After investigation, it is concluded that for the neighbor-based imputation 

methods (KNNimpute, SKNNimpute,  NL method), the optimal number of nearest neighbor 

genes ( ) is found within the range between 10 and 20 and is consistent with the previous 

studies [123]. SVDimpute generally uses a percentage of eigenvalues between 0.15 and 0.25 

[123]. The LLSimpute has built in parameter optimization characteristics within the algorithm 
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itself [123]. The value of model parameter for an imputation algorithm is selected as the one 

which gives the best result for that algorithm in most of the cases. 

Next, 50 simulations is performed again using the optimized values of model parameters 

of different methods for different datasets and for different missing rates. This is described in the 

next section. 

4.3.2.3  Comparative Performance Analysis based on NRMS error 

The efficiency of the newly proposed BiSIimpute method is analyzed with 

KNNimpute,  SKNNimpute, SVDimpute,  LLSimpute, BPCA, NL, and Bi-iLS methods, after 

applying them on nine microarray datasets of multiple category over different rates of missing 

positions. 

Figure 4.4 plots the performance of different methods as a function of 1%, 5%, 10%, 

15%, 20%, and unequal percentages of missing entries on different datasets. The performance is 

judged by the NRMS error value. NRMS error tends to degrade as the percentage of MVs 

increases for all methods. 

For noisy time-series datasets (i.e. for SP.AFA and SP.ELU), BiSIimpute method 

generates the best results in most of missing rates. When missing rate is below 5% in these 

datasets, BPCA, Bi-iLS, and LLSimpute methods provide better results than the proposed 

method.  For other missing rates, the proposed method generates the best results, Bi-iLS 

generates second best results  while BPCA and LLSimpute provide better results than other 

methods for these two datasets. For SP.AFA and SP.ELU datasets, the NRMS error values 

generated by the proposed method vary between 0.3 and 0.6 and 0.17 and 0.4 respectively. In 

these two datasets, KNNimpute, SKNNimpute, and NL methods show similar results for 

different missing rates. SVDimpute provide better results than KNNimpute, SKNNimpute, and 

NL method in these two datasets.  

BAL is a time series global structured based dataset of human cancer. In this dataset, 

BPCA  generates the best results in all missing rates.  bi-iLS and LLSimpute provide similar 

results in all missing rates. BiSIimpute method generates worse results than BPCA, bi-iLS, 

LLSimpute and performs better than other imputation methods. The NRMS error values 

generated by this method are in the interval from 0.33 to 0.35.  

According to Tryoyanskaya [90], GAS dataset is the most challenging dataset for 

prediction. Figure 4.4 shows that BiSIimpute outperforms LLSimpute, BPCA, KNNimpute, 

SKNNimpute, SVDimpute, NL method and gives a little better result than Bi-iLS for all missing 

rates. The NRMS error values generated by BiSIimpute method are in the interval from 0.32 to 

0.36 for GAS dataset. 

ROS dataset is a steady state human cancer dataset where missing value estimation is 

very difficult. High entropy value of this dataset indicates that this is a local structure based 

dataset. From Figure 4.4, it can be concluded that in this dataset, BiSIimpute notably 

outperforms all methods for all missing rates. BiSIimpute generates NRMS error values within 

range from 0.52 to 0.55 for this dataset.  
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Tymchuk is another steady state local structure based dataset of Atlantic Solomon and the 

proposed method also has generated minimal NRMS error for all types of missing entries. For 

this dataset bi-iLS and LLSimpute generate similar results in all cases. The NRMS error values 

generated by the propose method are in the range of 0.45 to 0.50. 

GOL dataset is a steady state global structure based dataset of human cancer. In this 

dataset BPCA generates the best  results  for all types of missing rates. BiSIimpute gives similar 

results as LLSimpute and bi-iLS. It also produces better results than other imputation methods 

for all types of missing rates. For this dataset NRMS error values generated by the proposed 

method varies between 0.27 and 0.34. 

In YOS dataset, BPCA generates the best result in all cases. BiSIimpute generates worse 

result than BPCA. Above 15% missing rate, it generates better results than bi-iLS and 

LLSimpute. KNNimpute,  SVDimpute, and NL methods have shown similar pattern of 

performance for different missing rates. For this dataset, NRMS error values generated by the 

proposed method varies between 0.32 and 0.38. 

For Synthetic dataset, BiSIimpute notably outperforms all methods for all missing rates. 

BiSIimpute generates NRMS error values within range from 0.25 to 0.35 for this dataset.  

From these results it can be concluded that for local structure based datasets, the proposed 

method gives notably better results than all other well known existing methods. But for global 

structure based datasets, this method always  generates a little worse results than BPCA and 

similar results with LLSimpute and bi-iLS method. 

In case of noisy time-series datasets (SP.AFA and SP.ELU) with lower missing rate, the  

proposed method    shows poor performance due to presence of noise as happened  in [91].  At 

higher missing rate, the performance of BiSIimpute increases due to reuse of imputed 

information for its sequential nature.  

In all cases the proposed method outperforms  KNNimpute, SKNNimpute, SVDimpute, 

and NL methods. 

4.3.2.4 Comparative Performance Analysis based on ADBP error 

The prediction quality of BiSIimpute method is evaluated by comparing its ADBP error 

with that of the existing methods. The result is shown in figure 5 only for three datasets (1) 

SP.ELU (2) ROS (3) YOS. 

For this purpose, first the           matrix is partitioned     into   number of clusters 

using  -means clustering algorithm, for               . Then every time, test matrix   is 

imputed with each imputation method generating matrix         and then divided into   number 

of clusters (partition  ) using  -means clustering for              . 

Figure 4.5 plots the performance of different methods as a function of 1%, 5%, 10%, 

15%, 20%, and unequal  percentages of missing entries on SP.ELU, ROS, and YOS datasets. 

Performance of our algorithm is judged by the ADBP error value.  The results for best   values 

are shown here using the average normalized ADBP error. ADBP error tends to increase as the 

increasing of percentage of missing values for all methods. 
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From Figure 4.5, it can be observed that BiSIimpute method is superior to the existing 

methods in case of SP.ELU and ROS datasets  and generates a little worse result than  

LLSimpute and BPCA in case of YOS dataset. For all other datasets which are not shown here, 

BiSIimpute generates similar or better results than all other existing methods mentioned here. In 

Figure 4.5, Noimp represents clustering ignoring missing values on test matrix   and then ADBP 

error is calculated.  

 

Figure 4.4. Comparative performance analysis of different methods based on NRMS error for different datasets with different 

percentage of missing entries 

  

Figure 4.5. ADBP error for SP.ELU, ROS, and YOS due to different methods 
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4.3.2.5 Comparative Performance Analysis of BiSIimpute with respect to BCCA and 

our sequential interpolation based imputation  technique 

We have also used an existing popular biclustering algorithm, named Bi-Correlation 

clustering algorithm (BCCA) [108] for bicluster formation and then applied our sequential 

interpolation based imputation method for imputation considering it as BCCA+SIimpute. We 

have tested our results for datasets SP.AFA and Synthetic as shown in Figure 4.6. In all cases our 

method BiSIipute outperforms BCCA+SIimpute method.  

BiSIimpute generates a bicluster corresponds to a missing position and then imputation is 

performed. The limitation of BCCA+SIimpute method is that, biclusters are  generated without 

considering missing entries. Some genes have not been included in any bicluster formed by 

BCCA and missing entries in those genes have not yet been imputed by this method.  

 

Figure 4.6. Comparative performance analysis with respect to NRMSE of BiSIimpute and BCCA+SIimpute 

 

Figure 4.7. Comparative performance analysis with respect to NRMSE of BiSIimpute and BiISIimpute 
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Standard Deviation Measurement 

In this paper, several data for each missing rate in every dataset are generated. For each 

such generated data, results are taken to evaluate prediction accuracy of all methods that are 

considered. Then, the standard deviations of NRMS error values of every method are calculated 

for each generated data. It has been observed that standard deviation of BiSIimpute is in the 

same range as the standard deviation in other methods. 

4.4. Discussion 

There are a large number of imputation strategies for estimation of missing values in 

microarray gene expression data. Among them KNNimpute, SKNNimpute are clustering based 

classical approaches and LLSimpute, SVDimpute, BPCA, NL, and bi-iLS etc. are well known 

statistical and numerical analysis based methods. All these methods except SVD, and BPCA 

utilize local information. On the other hand, SVD and BPCA use global correlation structure of 

entire gene expression matrix. These methods except NL consider gene-gene linear dependency. 

Tianwei‘s NL method considers nonlinear relationship between genes. bi-iLS is another local 

imputation method in which least square is applied in biclustering framework for imputation. In 

this paper, a bicluster-based sequential interpolation technique (BiSIimpute) is proposed. The 

innovativeness of this method lies in applying interpolation based imputation technique in 

biclustering framework. In this section, the rationale behind the efficacy of the proposed 

BiSIimpute method is qualitatively justified. 

BiSIimpute not only considers correlated genes of the target gene but also considers 

correlated samples of the target sample and outperforms all methods when genes have 

dominant local correlation. 

It is assumed that genes which show similar pattern of changing tendencies under a 

number of experiments/samples are under the control of the same transcription factor and are 

related to similar function [100] in the cell and they are termed as correlated genes. It has also 

been found that correlation among genes exists only for a subset of samples [100]. On the basis 

of this concept, BiSIimpute forms one bicluster for each missing entry and then applies 

interpolation based imputation. Although, in bi-iLS also for every missing entry a single 

bicluster has been formed but biclustering formation framework is different in BiSIimpute. 

During bicluster formation genes are selected by Bi-ils using weighted Euclidean distance 

measure while in our method genes are selected using absolute Pearson correlation coefficient 

value. In case of sample selection Bi-iLS uses a different approach than our proposed method. 

Use of Euclidean distance selects magnitude-wise similar genes/samples  in bi-iLS method 

which ignore pattern based similarity among genes/samples but in BiSIimpute, importance is 

given on selection of similar pattern based genes and samples using absolute Pearson correlation 

based similarity. It increases the prediction accuracy of our method than bi-iLS. 
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On the other hand, KNNimpute,  SKNNimpute, LLSimpute, and NL select neighbor genes by 

considering their expression profile across all conditions/samples. The output of SVDimpute and 

BPCA cannot be globally optimal if the genes have a dominant local similarity. This is because 

these techniques consider all genes and the correlation between many of these genes and the 

target gene is very little. 

The BiSIimpute algorithm considers both positive and negative correlation values similar 

to [98] 

KNNimpute, and SKNNimpute methods linearly combine similar genes by using their 

weighted average. These methods use Euclidean distance, that is not an optimal metric to 

compute the gene similarity. This degrades the accuracy of KNNimpute, and SKNNimpute 

methods. In BiSIimpute to predict missing value in a target gene, correlated genes are considered 

which are similar according to their patterns. Pearson correlation coefficient is a useful similarity 

measure to find pattern based similarity between two objects. So, BiSIimpute algorithm uses 

Pearson correlation coefficient to select    both correlated genes and correlated samples with 

respect to target gene and target sample respectively. Based on absolute correlation coefficient 

value, it selects genes and samples which are either positively correlated or negatively correlated 

with the target gene and target sample respectively. Absolute Pearson correlation coefficient is 

used so that highly correlated but inverted genes/samples may be taken care of.  

Sequential nature of BiSIimpute generates lower estimation error when missing genes are 

highly correlated with each other 

BiSIimpute is sequential like SKNNimpute. That means, it will consider the already 

estimated values for prediction of upcoming missing entries. So, while missing rate increases, 

sequentially reusing the imputed data prevents the propagation of imputation errors. This is 

unlike in conventional methods such as KNNimpute, LLSimpute, SVDimpute, BPCA, NL and 

bi-iLS. Though SKNNimpute considers reuse of already estimated missing values, it is not 

applicable in case of data set with higher missing rate, as almost every gene contains missing 

values. So, BiSIimpute provides the most accurate missing value prediction approach for datasets 

having high as well as low missing rate. 

BiSIimpute considers gene-gene linear dependency 

BiSIimpute method like  NNimpute, S NNimpute, LLSimpute, bi-iLS uses linear 

dependency between two genes.  
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4.5. Conclusion 

In this chapter, a bicluster-based sequential interpolation imputation method called 

BiSIimpute is proposed for estimation of missing values in DNA microarray data. The novelty of 

this method is that first time interpolation based imputation technique is applied in biclustering 

framework. The estimation accuracy of BiSIimpute is evaluated and compared with that of 

similar popular methods over various types of datasets (time-series, non time-series and hybrid 

datasets) with different proportions of missing rates (1, 5, 10, 15, 20, and unequal percentage) 

using different values of  and  . 

Using NRMSE, and ADBPE metric, it is found that the proposed method outperforms all 

other methods mentioned here for different local structured based datasets. So, it is a new robust 

approach to estimate missing values in different local structured based microarray gene 

expression datasets. 

In third and fourth chapters of this thesis, we have proposed two types of missing value 

prediction techniques. Among them one is developed based on clustering approach and second 

one is developed based on numerical approach. Actually missing value prediction in microarray 

data is most dominant part of data preprocessing. After data pre-processing, several machine 

learning techniques are applied to mine gene expression data. One such mining task is to find 

functionally similar groups of genes via applying clustering techniques on genes of gene 

expression data and in the next chapter we have proposed a new partition based clustering 

framework for clustering genes in gene expression data.   
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Chapter 5.  

 

HCFPC: A New Hybrid Clustering Framework using 

Partition-Based Clustering Algorithms to Group 

Functionally similar Genes from Microarray Gene 

Expression Data 

5.1 Introduction 

It has been already discussed that DNA Microarray Technology [15, 16], which is one of 

the most famed biotechnologies, has become blessings in the field of bio-medical research since 

last two-decade, because downstream analysis of microarray gene expression data have several 

applications in different real life crucial fields such as cancer type identification, prognosis, 

therapeutic targets prediction for cancer etc. [15-30].  
Among several analysis tasks one important analysis task of microarray gene expression 

data is to find hidden patterns among genes present in this data to extract relevant information 

which will be beneficial for functional genomics. This task is very challenging due to presence of 

huge number of genes.  One of the solutions of this task is to apply clustering techniques for 

clustering genes in gene expression data to find natural grouping present among genes for 

identification of interesting hidden patterns among them [17-19].  

Clustering technique [17-19] which is one kind of unsupervised machine learning 

technique is a very important tool for mining this data. In gene clustering, genes are clustered 

based on their similar expression patterns that means the co-expressed genes (genes with similar 

expression values) are grouped [17-19]. This is very helpful for identifying genes with similar 

cellular functions as it is already known that co-expressed genes may have similar behaviour. It 

is also beneficial for predicting the functionality of many genes for which functional information 
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has not been previously available in the databases [17-19]. Furthermore, from these clusters of 

co-expressed genes, valuable information can be extracted to understand functionality of 

different transcriptional regulatory networks or scrutinizing specific pathways [20, 131]. 

From different empirical studies it has been found that microarray data has several 

inherent characteristics [17-19, 132]. One important characteristics of microarray data is that 

gene clusters generated from this data are highly overlapping with each other or even embedded 

in one another [132, 133]. Another important characteristic of gene expression data is that it is 

inherently noisy and a small number of genes out of a huge pool of genes has significant 

importance from a biological point of view [134]. Although, a huge number of different notable 

clustering methods like Hierarchical clustering [17-19, 135], hard partition based clustering [17-

19, 137, 138], fuzzy clustering algorithms [139-142, 143-146], graph theoretical approaches-

based clustering [17-19,147, 148], model-based clustering [17-19] and finally tight clustering 

methods [134] are applied in this field to find clusters of co-expressed genes but maximum of 

them have not given their emphasis on elimination of noise except a few. So, now a days the 

main challenge in gene clustering algorithms is to find overlapping clusters of biologically 

relevant small collections of genes via eliminating noisy genes from the datasets. 

Although a huge number of different category based clustering algorithms are applied on 

gene expression data but among these partition based clustering algorithms specially different 

versions of k-means are most popular because of their simplicity. But there are still now different 

drawbacks present in different partition based clustering algorithms. As for example, partition 

based clustering algorithms like fuzzy  -means [143-146], possibilistic  -means [149] etc. work 

well on generation of overlapping clusters but main drawback of these clustering methods is that 

these methods work on whole dataset and are not capable to eliminate the noise. Apart from this, 

fuzzy  -means and possibilistic  -means clustering algorithms have also several other 

drawbacks due to their membership constraints [149] when run independently. As the main 

drawbacks of fuzzy-k-means is that different equidistant members may have different 

memberships values for the same cluster and it creates inconsistency in overall partitioning of the 

data while possibilistic k-means generates coincident clusters. On the other hand, k-means 

clustering algorithm always gives consistent results but cannot generate overlapping clusters.  

In this regard, here, a new hybrid clustering framework using different k-means versions 

(HCFPC) is proposed to find clusters of relevant co-expressed genes via eliminating noise from 

highly noisy microarray data. This is the first partition-based clustering framework where we 

have tried to eliminate all those drawbacks of different k-means versions in a novel manner. 

Experimental results show the efficiency of the proposed hybrid framework. 

5.2 Related Work 

5.2.1 Hard k-means 

Let                       be the set of   objects. Let   is the total number of 
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clusters and                       is the set of   centres/means. 

                      is the set of   clusters. This algorithm partitions   into  -clusters 

by minimizing the following objective function: 

  ∑∑||     ||
 

 

   

 

   

                                            

Where    is the  th centres of corresponding cluster    and every centre is updated using the 

following equation: 

                          
 

|   |
∑   

 
          

                               

Algorithm: Hard_k-means_Clustering 

Input: A dataset   with   objects 

Output: A set of clusters   

Step 1.  Read  . 

Step 2. Set iteration counter      

Step 3. Randomly choose   objects from   as initial cluster centres.  

Step 4. Assign each object to the cluster to which the object is the most similar, based on the 

distance of that object from the corresponding cluster centre.  

Step 5. Update all cluster centres using equation 5.2 i.e., calculate the mean value of the objects 

for each cluster. 

Step 6. If          then increment c and goto Step 4 otherwise goto Step 7. 

Step 7. End  

5.2.2 Fuzzy k-means 

Let                       be the set of   objects. Let   is the total number of 

clusters and                       is the set of   centres/means. 

                      is the set of   clusters. This algorithm partitions   into  -clusters 

by minimizing the following objective function: 

  ∑∑     
  ||     ||

 

 

   

 

   

                                            

Where          is the fuzzifier,    is the  th centres of corresponding cluster   . 

Here            is a membership matrix, in which every row represents membership values 

of a    object for all   clusters.           is the probabilistic membership value of object    for 
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the corresponding cluster    and it is calculated using the following equation: 

      ∑  
   

   
 

 

     
   ),          

   ||     ||
    (5.4) 

The elements     of      satisfies the following conditions: 

  ∑       
                   ∑                  

              (5.5) 

And every centre is updated using the following equation: 
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Algorithm : Fuzzy_k-means_Clustering 

Input: A dataset   with   objects 

Output: A set of clusters   

Step 1.  Read   and   . 

Step 2. Set iteration counter      

Step 3. Randomly choose   objects from   as initial cluster centres.  

Step 4. Calculate membership matrix     
 using equation 5.4. 

Step 5. Update all cluster centres using equation 5.6. 

Step 6. Calculate membership matrix     
    using equation 5.4. 

Step 7. If |     
        

 |     then increment c and goto Step 5 otherwise goto step 8. 

Step 8. End  

5.2.3 Possibilistic k-means 

Let                       be the set of   objects. Let   is the total number of 

clusters and                       is the set of   centres/means. 

                      is the set of   clusters. This algorithm partitions   into  -clusters 

by minimizing the following objective function: 

  ∑∑  
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Where          is the fuzzifier,    is the  th centres of corresponding cluster    and 

 
 
 are positive numbers and are defined as:  
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Here        
  
  is a membership matrix, in which every row represents membership 

values of a    object for all   clusters.  
  

       is the possibilistic membership value of object 

   for the corresponding cluster    and it is calculated using the following equation: 
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      (5.9) 

The elements     of      satisfies the following conditions: 

  ∑      
 
                                                                                (5.10) 

 

And every centre is updated using the following equation: 

                          
 

  
∑      

   
               ∑      

                        
    

 

Algorithm: Possibilistic_k_means_Clustering 

Input: A dataset   with   objects 

Output: A set of clusters   

Step 1.  Read   and   . 

Step 2. Set iteration counter      

Step 3. Randomly choose   objects from   as initial cluster centres.  

Step 4. Calculate membership matrix     
 using equation 5.9. 

Step 5. Calculate  
 
               using equation 5.8 

Step 6. Update all cluster centres using equation 5.11. 

Step 6. Calculate membership matrix     
    using equation 5.9. 

Step 7. If |     
        

 |     then increment c and goto Step 5 otherwise goto step 8. 

Step 8. End  
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5.3. Proposed Method 

Here, the proposed framework, is developed using different existing partition-based 

clustering algorithms. These are fuzzy  -means, possibilistic  -means, hard  -means. The 

proposed framework is described below. 

Preliminaries 

Let      is a data matrix (here, gene expression matrix) consisting of   number of genes 

and   number of samples.   {                   } is the set of   row/genes/objects, 

                       is the set of   clusters and                         is the set 

of   centres.        
    

       
      

  is the set of k clusters generated by fuzzy k-means 

clustering algorithm and       
    

        
        

    is the set of   centres generated by 

fuzzy k-means clustering algorithm.     {  
    

       
      

 }is the set of k clusters 

generated by possibilistick-means clustering algorithm and       
    

        
        

    is 

the set of   centres generated by possibilistick-means clustering algorithm.  

   {  
    

       
      

 }is the set of k clusters generated by possibilistic k-means clustering 

algorithm and       
    

        
        

    is the set of   centres generated by possibilistic 

k-means clustering algorithm.                        is the set of merged clusters. 

HCFPC : A New Hybrid Clustering Framework Using Partition Based Clustering 

Algorithms 

Here, in the proposed framework, at first, the number of clusters    and corresponding 

cluster centres are selected automatically using a procedure named Initial_Centre_Selection 

procedure. The proposed HCFPC procedure is shown in Figure 5.1. After execution of 

                         procedure, some objects are marked whose maximum similarity with 

respect to all objects is less than α. Then possibilistic clustering algorithm is applied to cluster 

objects considering already selected   number of objects as initial centres. After clustering, the 

objects which have membership value less than β with respect to all clusters, where β is a user 

defined threshold, and if they are already marked then these objects are considered as noise 

points and deleted from the object set. Then again from the remaining objects, using procedure 

                        ,   number of objects are selected as initial centres. Using these   

centres, fuzzy k-means, hard k-means, and possibilistic k-means run parallelly on the reduced 

object set and three set of clusters          are generated. Now for every cluster   
  ,     

   present in   , its similarity is checked with every cluster   
 ,       present in    using a 

cluster-cluster similarity measure (described later) and the cluster (let   
 ) for which similarity of 

  
 is maximum is chosen from   set. Similar way similarity of   

  is also checked with every 

cluster   
         present in    and the cluster (let   

 ) for which similarity of   
 is 

maximum is chosen from   set. The cluster-cluster similarity measure is described below: 
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Let    and    are two clusters: The similarity between two clusters is : 

           
     

     
                                    (5.12) 

If     and      have no match then their similarity value will be 0 and if they are perfectly 

matched with one another then their similarity value will be 1. So,            varies between 0 

and 1. 

Now from these three clusters,   
  ,   

 ,   
  the common objects are taken and a merged 

cluster    is formed. The objects which are not common in these three clusters are placed in 

  set. This process is repeated and in this way                        merged 

clusters are formed and their centre are calculated. Now from the non-common object set  , one 

is taken and is placed in the corresponding merged cluster to which it is closest. This procedure 

is repeated for all object present in   set. In this way merged clusters are finally modified.  

 

Figure 5.1 Block diagram of HCFPC Framework 

Algorithm: HCFPC 

Input:     is a gene expression matrix consisting of   number of genes and   number of 

samples.    {                   }is the set of   rows/genes/objects of  .  
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Output: A set    of Clusters. 

Step 1. Call                          procedure on   set and generate k-number of cluster 

centres and mark the objects whose maximum similarity with respect to other objects is less than 

α. 

Step 2. Call                                  procedure (with skipping step of random 

initial centre selection) and generate k-number of clusters. 

Step 3. Delete those objects from the set of objects  , which are already marked and whose 

possibilistic membership value with respect to all clusters less than β and form a reduced set of 

objects. 

Step 4.Call                          procedure on reduced object set and generate k-number of 

cluster centres. 

Step 5. Call                        g procedure (with skipping step of random initial 

centre selection),                                  procedure (with skipping step of 

random initial centre selection),                         procedure (with skipping step of 

random initial centre selection) on the reduced set of objects independently and generate three set 

of clusters         .  

Step 6. Repeat step 7 to step 11 for every cluster   
  ,        present in   do: 

Step 7. Calculate cluster-cluster similarity using CCS measure between   
  and every cluster 

  
    . 

Step 8. Select the cluster (let   
 )  from    which has maximum similarity with   

 . 

Step 9. Calculate cluster-cluster similarity using CCS measure between   
  and every cluster 

  
    . 

Step 10. Select the cluster (let   
 )  from    which has maximum similarity with   

 . 

Step 11. Take the common objects from these three clusters,   
  ,   

 ,   
  and form a merged 

cluster    and place the objects which are not common in these three clusters in   set. 

Step 12. Repeat step 13 for every object present in the set  : 

Step 13. Place the object in the corresponding merged cluster to which it is closest. 

Step 14. End 

Initial_Centre_Selection: Proposed Procedure for Initial Cluster centres Selection 

The proposed procedure is developed based on a neighborhood formation  criterion. The 

neighbor formation criterion is described first and then the proposed procedure is elaborated. 

New Neighbor selection criteria: An object     is in neighborhood of another object    or    is 

in neighborhood of     if and only if 
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         (     )           (     )  {
                         (     )    

           
           

 

Where,   is a user defined threshold and    (     ) is defined below: 

   (     )      
             

          
              

 

If two objects are similar then similarity between them is maximum, that is,    (     )   , 

Hence,      (     )   . Also,    (     )     (     ).  

 

Algorithm :Initial_Centre_Selection 

To create initial cluster centres, the proposed procedure is described below: 

Step 1. For every object      , using the proposed neighbor selection criterion the neighbors 

are selected and number of neighbors of every object      i.e.   (  )is calculated, where,  

  (  )   ∑          (     )             

 

         

 

Step 2.  Sort   objects in descending order according to their    values.  

Step 3. The objects whose maximum similarity value from other objects are less than    are 

marked. Here   is a user defined threshold. 

Step 4. Set   to 0 

Step 5. Repeat step 6 to Step 7 for all non-marked object present in   

Step 6. Select the object (let   ) with highest CN value as an initial cluster centre of    and 

delete all objects from set   which are neighbors of   .  

Step 7. Set        

Step 8. End 

After selection of   number of initial cluster centres, using the above-mentioned procedure, 

Possibilistic clustering algorithm is applied considering those centres as initial cluster centres. 

5.4. Results 

In this research work, the performance of HCFPC is compared with that of hard k-means 

(HKM) [17-19], fuzzy k-means (FKM) [143-145], possibilistic k-means (PKM) [148], cluster 
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identification via connectivity kernels (CLICK) [146], and self-organizing map (SOM) [149] on 

different microarray gene expression data sets (with noise and without noise version). The 

Silhouette index (SILH) [150], Davies-Bouldin index (DB) [151], and Dunn index (DUNN) 

[151] are the three main metrics for assessing the performance of various algorithms. 

Additionally, the Gene Ontology Term Finder is used to examine the biological significance of 

the HCFPC algorithm's created gene clusters [152]. 

In this paper, four publicly available microarray times series gene expression datasets are 

taken for making comparative study. The description of the datasets is given in Table 1, it can be 

found at http://www.ncbi.nlm.nih.gov/geo/, the Gene Expression Omnibus. 

Dataset Preparation: 

Four datasets have been used here for study. Among these, GDS2002 and GDS2003 

datasets required no pre-processing while GDS1116 and GDS2910 required pre-processing. 

Initially all rows containing missing values greater than 10% are deleted. The missing values are 

then filled with row-average values to get the complete data. After that artificially noise has been 

introduced. Among those deleted rows, rows with missing values above 75% are selected and 

those missing values are filled with random values outside the range of possible values (i.e. 

greater than the maximum possible value and less than the minimum possible value) in 

previously created complete data. These artificially created rows are then appended with the 

complete data to create the noisy datasets with 15 to 20% of noise elements.  

Table 5.1. Dataset Description 

Dataset 

Name 

Species

S 

Number of 

Rows/Genes 

Number of 

Columns/Tim

e-Points 

GDS2910(No

isy) 

Yeast 2746(1900+

846) 

191 

GDS1116(No

isy) 

Yeast 1081(798+2

81) 

131 

GDS2002 Yeast 5617 30 

GDS2003 Yeast 5617 30 

The parameters settings for the proposed clustering framework HCFPC are given below. 

Table 5.2. Parameters Settings 

Noise  Parameter MAX CUT(α) 0.5 

Neighbor Parameter(   0.8 

Membership Threshold for Possibilistic  

Noise Filter(β) 

0.01 

MAX Iteration No. 100 

MAX Cluster No. 30 

Convergence Parameter 0.01 
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Table 5.3. Performance  Comparison of the Proposed Framework with  HKM, FKM, and PKM 

DATASET 

NAME 

CLUSTERING 

METHODS 

CLUSTE

R NO. 

DB 

INDEX 

SILHOUT

TE 

INDEX 

DUNN 

INDEX 

GDS2910 

HCFPC 

framework 

30 

1.49 0.08 0.06 

HKM 2.47 0.05 0.049 

FKM 6.13 -0.06 0.045 

PKM 6.29 -0.17 0.037 

GDS1116 

HCFPC 

framework 

5 

1.91 0.12 0.042 

HKM 1.98 0.09 0.047 

FKM 3.97 -0.11 0.032 

PKM 4.65 -0.13 0.036 

 

To show the superiority of the proposed HCFPC framework, it is compared with hard k-

means, fuzzy k-means and possibilistic k-means for GDS2910 and GDS1116 data set (normal 

datasets no additional noise is inserted here). For every dataset the number of gene clusters k is 

decided by using the CLICK [146] algorithm. For HCFPC framework after generating all cluster 

representatives first k number of representatives are chosen which are generated by 

Initial_Centre_Selection() method used in HCFPC framework. For other algorithms k-number of 

cluster centres are generated randomly. The results are shown in Table 5.3. In all cases, the 

proposed framework shows its superiority. 

The performance of the proposed HCFPC framework is compared with HKM, FKM, 

PKM in presence of inherent noise and additional noise for GDS2910 and GDS1116 datasets 

with respect to Davis-Buldin index (DB), Silhoute index(SILH), Dunn index(DUNN) and all the 

results are shown in Table 4. In every case, the proposed framework shows its superiority. It has 

been also found that in presence of additional noise HCPFC framework gives significant better 

results than other partition-based clustering algorithms. 

Table 5.4 Performance  Comparison of the Proposed Framework with  HKM, FKM, and PKM in presence 

of Noise 

Dataset 
Evaluation 

Metric 

HCFPC framework HKM FKM PKM 

Normal 

dataset with 

inherent noise 

With 

noise 

Normal dataset 

with inherent 

noise 

With noise 

Normal 

dataset with 

inherent 

noise 

With 

noise 

Normal 

dataset with 

inherent 

noise 

With noise 

GDS2910 

DVB 1.49 1.55 2.47 2.76 6.13 8.43 6.29 12.54 

SILH 0.08 0.04 0.05 0.01 -0.06 -0.21 -0.17 -0.16 

DUNN 0.06 0.076 0.049 0.52 0.045 0.46 0.037 0.32 

GDS1116 

DVB 1.49 1.54 1.98 2.03 3.97 3.1 4.65 14.86 

SILH 0.12 0.11 0.09 0.13 -0.11 0.71 -0.13 -0.25 

DUNN 0.042 0.043 0.047 0.37 0.032 0.43 0.036 0.47 
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Table 5. 5 Performance  Comparison of the Proposed Framework with other Clustering Methods 

Indices Clustering Algorithms 
GDS2002 GDS2003 

Normal dataset Normal dataset 

DB Index 

CLICK 26.7 17.61 

SOM 13.41 15.22 

HCFPC framework 0.17 0.19 

Silhouette 

Index 

CLICK -0.12 -0.09 

SOM -0.05 -0.06 

HCFPC framework 0.89 0.93 

Dunn 

Index 

CLICK 0.03 0.05 

SOM 0 0.01 

HCFPC framework 4.1 2.43 

In order to establish the superiority of the proposed framework over two other category 

based existing gene clustering algorithms, namely, CLICK [146] and SOM [149], results are 

shown for GDS2002 and GDS2003 yeast microarray data sets. These results are obtained from 

literature survey[131]. Table 5 presents the comparative assessment of these three clustering 

algorithms, in terms of Silhouette index, DB index, Dunn index, From the results reported in this 

table, it can be seen that the proposed framework performs significantly better than both CLICK 

and SOM. 

Table 5.6. Significant GO Terms Obtained Using Proposed Algorithm for GDS2003 

Ontology 

Aspects 

Cluster 

Number 
Gene Ontology term 

Cluster 

frequency 

Genome 

frequency 

Corrected 

P-value 
FDR 

FALSE 

Positives 

Biological 

Process 

12 cytoplasmic translation 0.357 0.029 3.25E-117 0.00% 0 

3 mitochondrial translation 0.284 0.024 5.39E-73 0.00% 0 

18 ribosome biogenesis 0.538 0.067 3.87E-72 0.00% 0 

18 ribonucleoprotein complex biogenesis 0.543 0.08 1.15E-64 0.00% 0 

18 rRNA metabolic process 0.431 0.054 9.40E-55 0.00% 0 

12 peptide biosynthetic process 0.435 0.114 6.06E-54 0.00% 0 

12 
organonitrogen compound biosynthetic 

process 
0.551 0.187 2.85E-53 0.00% 0 

3 mitochondrion organization 0.284 0.04 3.02E-50 0.00% 0 

Molecular 

Function 

12 structural constituent of ribosome 0.315 0.033 4.86E-85 0.00% 0 

3 structural constituent of ribosome 0.219 0.006 4.15E-36 0.00% 0 

9 electron transfer activity 0.235 0.025 2.24E-20 0.00% 0 

9 
active transmembrane transporter 

activity 
0.324 0.025 1.56E-17 0.00% 0 

18 snoRNA binding 0.086 0.04 4.65E-17 0.00% 0 

Cellular 

Component 

3 mitochondrion 0.781 0.174 3.79E-125 0.00% 0 

12 cytosolic ribosome 0.329 0.023 3.36E-119 0.00% 0 

3 
mitochondrial protein-containing 

complex 
0.34 0.03 1.51E-87 0.00% 0 

12 ribonucleoprotein complex 0.463 0.091 1.23E-79 0.00% 0 

18 preribosome 0.35 0.024 8.68E-64 0.00% 0 

12 
intracellular non-membrane-bounded 

organelle 
0.581 0.21 1.72E-53 0.00% 0 
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Biological  Significance  of Gene Cluster 

Table 5.6.represents the information about some biological significant gene clusters in 

terms of Molecular function (MF), Biological process (BP) and Cellular component (CC) 

ontological terms for GDS2003 dataset generated by the GO Term Finder [152] tool via applying 

it gene clusters produced by HCFPC algorithm. Gene clusters are deemed significant clusters if 

their p-values are less than 0.05 for every given cluster of genes. 

5.5. Discussion 

From the results-based data analysis, it has been found that the proposed HCFPC 

framework partitions gene expression datasets in presence of inherent noise and also after 

incorporating additional noise into good clusters compared to other partition-based clustering 

algorithms in terms of different indices.  The proposed framework also generates better clusters 

than other category-based clustering algorithms like SOM and CLICK for normal datasets. Apart 

from this, from Table 6, it can be written that the proposed clustering framework generates 

qualitative biologically significant clusters. 

5.6. Conclusion 

In this paper, a new gene clustering framework is developed by integrating different 

partition-based clustering algorithms in a novel manner. The main novelty of this framework is 

that, it can work in presence of noise and after detecting noisy genes, it can eliminate them and 

generates good qualitative clusters with small set of significant genes. Apart from this instead of 

random centroid selection it selects centroid in a novel manner.  

The proposed framework with the above-mentioned features performs significantly better 

than other partition-based clustering algorithms and other types of clustering algorithms for all 

microarray datasets (in presence of additional noise also) in terms of different quantitative 

indices and also provides biologically significant clusters. 

In the next chapter we have proposed a new ensemble machine learning model for cancer 

sample classification from gene expression data. 
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Chapter 6 

 

An Ensemble Machine Learning Model based on Multiple 

Filtering and Supervised Attribute Clustering Algorithm for 

Classifying Cancer Samples 

6.1 Introduction 

Cancer is one of the most fatal diseases around the globe [153, 154]. According to the 

World Health Organization report, Cancer is marked as the second most deadly disease and an 

estimated 9.7 million deaths around the world in 2018 have occurred due to this signature disease 

[154]. Generally, one in every 6 deaths all over the world, occurs due to cancer. So, within 2030, 

the number of new cancer patients per year will increase approximately by 25 million [154, 155]. 

Although several advanced techniques are already developed for the detection of cancer, the 

proper prognosis of cancer patients, till date, is very poor and the survival rate is also very low 

[153, 154, 156]. It has been already found that for very accurate cancer sample classification or 

prediction, adequate information is not available from the clinical, environmental, and behavioral 

characteristics of patients [153, 154, 156]. Recently, due to different types of bio-molecular data 

analysis, several genetic disorders with different biological characteristics have been revealed 

which are very helpful for early identification and prognosis of cancer and also to discern the 

responses for different types of treatment [157-165]. 

 With the rapid advancements in genomic, proteomic, and imaging high-throughput technologies 

[157-165], now it is possible to accumulate huge amount (in the order of thousands) of different 

bio-molecular information of patients. Using this huge amount of information, researchers have 

been trying to develop more advanced techniques for early detection and proper prognosis of 

cancer, and also to improve cancer therapy for improvement of patients’ survival rate. To 

analyze this huge amount of information, lab-based approaches are not adequate as these 

methods are costly and time-consuming. So, computational or in-silico methods like statistical 

methods, machine learning, deep learning, etc. have been being used extensively in this field. 

It is well-known fact that in cancer-causing cells, gene expression is either overexpressed 

or under expressed [153]. So, measurement of gene expression in cancer cells can give adequate 
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information to improve cancer diagnostic procedures. Nowadays, different developing countries 

have been using this procedure for cancer sample detection. It is already known that using DNA 

microarray technology it is possible to measure the expression level of a numerous number of 

genes for a single experiment/sample simultaneously. The outcome of DNA microarray 

technology is a gene expression data matrix. This matrix carries information about the expression 

level of a huge number of genes for a limited number of samples (such as diseased patient 

samples and normal samples). The presence of the limited number of samples in this data matrix 

is due to the lack of availability of samples. So, based on information of gene expression data 

matrix, cancer sample classification is one of the essential tasks in the field of cancer research 

[165-171]. 

Using computational or in-silico approaches, gene expression-based cancer sample classification 

task has been reviewed extensively in different papers [165-171]. However, the main difficulties 

in the sample classification task arise due to several factors. Firstly, in these data sets, a 

substantially small number of samples is available (generally in the order of hundreds) compared 

to the availability of a huge number of genes (generally in the order of thousands) [165-171]. For 

sample classification, genes are treated as features/attributes. So, the high-dimensional gene 

space is an overhead for most classification algorithms. Secondly, only a very few genes are 

informative (differentially expressed) and the rest of the section is non-informative (noisy) [165-

171] for sample classification and responsible for degrading the classifier’s performance. Gene 

dimension reduction by identification of informative genes as biomarkers can improve the 

classification accuracy of classifiers. Apart from the improvement of classification accuracy, the 

identification of informative biomarkers (here, informative genes) has great prospects from a 

biomedical point of view. These are beneficial for finding the biological reason for a disorder, 

assessing disease risk, and developing therapeutic targets. The third problem arises due to the 

small sample size which creates an overfitting problem in classifier construction. Another 

problem that degrades classifier performance is the sample class imbalance problem. This 

problem occurs due to the presence of more instances/samples of one class (majority class) with 

respect to other class(es) (minority class) in a dataset. 

A fairly large number of works have been already developed for sample classification. 

These works are divided into two categories. In the first category [153, 165-171], the major 

emphasis is given to the selection of relevant genes for the reduction of feature space. Then 

based on this reduced feature space, predictive/classification accuracy of the samples is 

measured using different existing single classification models like naïve Bayes, support vector 

machine, relevance vector machine, K-nearest neighbor, decision tree, logistic regression, etc. As 

gene selection is a feature selection task, so based on feature selection techniques, these methods 

are divided into different categories. These are (1) filter methods (2) wrapper methods (3) 

embedded methods and (4) hybrid methods. Before we mention the second category of 

classification methods, let us first elaborate on the first category methods one by one. 

Filter methods [153, 165-171] select a subset of features without taking any information 

from any classification model. These methods select features that are differentially expressed 



104 
 

with respect to sample class labels. The filter methods rank individual features according to their 

class discrimination power based on some statistical score function and then select a number of 

high-ranked features to form a reduced and relevant feature subset. The popular statistical score 

functions used in filter methods are Fisher’s score, Signal to Noise ratio (SNR), correlation 

coefficient, mutual information, Relief [172], etc. Filter methods are computationally simple, 

fast, and unbiased in favor of any specific classifier as these methods do not consider any 

knowledge from any classifier at the feature selection phase. The drawback of filter methods is 

that the number of selected features is based solely on the trial-error method.  

Wrapper methods [153, 165-171], on the other hand, judge discrimination capability of a 

feature subset using classification error rate or prediction accuracy of a classifier as the feature 

evaluation function. It selects the most discriminative feature subset via minimizing the 

classification error rate or maximizing the classification accuracy of a classifier. The wrapper 

methods generally achieve better classification accuracy than the filter methods because the 

selection of feature subset is classifier-dependent. One drawback of these methods is that these 

are biased to used classifiers and another drawback is that these are computationally more 

expensive than the filter methods as generation of the best feature subset for the high-

dimensional dataset is an NP-complete problem. Due to these reasons, these methods are not 

applicable for high-dimensional datasets. 

In Embedded methods [153, 165-171], the optimal feature subset is selected through the 

unique learning procedure of a specific classifier at the time of classifier construction. Actually, 

in these methods, the optimal feature subset selection part is embedded as part of classifier 

construction. These methods are faster than wrapper methods but are biased to the specific 

classifier. In embedded approaches, the feature selection process is specific for a particular 

classifier and is not applicable to other classifiers. These are also computationally expensive. 

Due to these reasons for high-dimensional datasets, these methods are not applicable. On the 

other hand, recently hybrid feature selection methods [153, 165-171] are also developed.  In 

hybrid methods, different category-based methods are combined to take advantage of all of these 

methods for improving classification accuracy.  

Apart from these methods, clustering techniques [153, 165-171] are also used for feature 

selection purposes. Clustering techniques divide the data space in such a manner that objects in 

the same cluster are similar while in different clusters they are dissimilar. For the feature 

selection task, clustering methods (famous as attribute clustering in feature selection domain) 

(Au 2005) divide the features into several distinct clusters and then reduce the feature dimension 

by selecting a small number of significant features from each cluster. A lot of unsupervised gene 

(attribute) clustering algorithms (Au2005, Chin 2016, Hambali 2020) are already developed for 

this task. However, these methods are unsuccessful to find informative functional groups of 

genes for sample classification as in clustering genes, no supervised information from sample 

classes is considered [165-171, 173]. So, scientists have developed a number of supervised gene 

(attribute) clustering algorithms [174-177] in which genes are grouped using supervised 
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information from sample classes and a reduced gene set is formed via selecting the most 

informative genes from each cluster. 

All the above mentioned variants deliver comparable feature selection and classification 

accuracy. Quite often this type of classification models with only a few genes and with a limited 

number of training samples can classify the majority of training samples correctly, but the 

generalization capability of such classification models cannot be guaranteed [178-183]. So, the 

most important task for a medical diagnosis system is to improve the classification accuracy of 

unknown samples (generalization performance) which cannot be solved by this type of 

classification model.  

Apart from this problem, the microarray data is related to several uncertainties due to 

fabrication, hybridization, and image processing procedure in microarray technology. These 

uncertainties introduce various types of noise in microarray data. Due to the presence of these 

uncertainties with a limited number of training samples, the conventional machine learning 

approaches face challenges to develop reliable classification models.  

To overcome the above mentioned problems, it is therefore essential to develop general 

approaches and robust methods. In this regard, researchers are motivated to develop the second 

category-based model. These are the different robust ensemble classification models [178-183] 

which can overcome small sample size problems and are capable of removing uncertainties of 

gene expression data. 

Ensemble methods [184] are a class of machine learning technique which combines 

multiple base learning algorithms to produce one optimal predictive model. Ensemble 

classification model refers to a group of individual/base classifiers that are trained individually 

on the trained dataset in a supervised classification system and finally, an aggregation method is 

used to combine the decisions produced by the base classifiers. These ensemble classification 

models have the potential to alleviate the small sample size problem by applying multiple 

classification models on the same training data or on bootstrapped samples (sampling with 

replacement)  of the training data to decrease the chance of overfitting in the training data. In this 

way, the training dataset is utilized more efficiently, and as a consequence, the generalization 

ability is improved. 

Although different category-based ensemble classification models exist in the literature 

but these ensemble models are not capable of addressing all the above-mentioned problems 

(small sample size, high dimensional feature space, and sample class imbalance problem) related 

to microarray data.  

In this regard, here a new Multiple Filtering and Supervised Attribute Clustering 

algorithm-based ensemble classification model named MFSAC-EC is proposed. In this model, 

first, a number of bootstrapped versions of the original training dataset are created. At the time of 

the creation of bootstrapped versions, an oversampling technique [185] is adopted to solve the 

class imbalance problem. For every bootstrapped dataset a number of sub-datasets (each with a 

subset of genes) are generated using the proposed MFSAC method. The MFSAC is a hybrid 

method combining multiple filters with a new supervised attribute clustering method. Then for 
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every sub dataset, a base classifier is constructed. Finally, based on the prediction accuracy of all 

these base classifiers of all sub-datasets for all bootstrapped datasets an ensemble classifier (EC) 

is formed using the majority voting technique. 

The novelty of the proposed MFSAC-EC model is that here the emphasis is given 

simultaneously on the high dimensionality problem of gene expression data, small sample size 

problem as well as the class imbalance problem. All of these problems at the same time are not 

considered in any existing ensemble classification model. First of all, due to the use of 

bootstrapping method with a class balancing strategy, the proposed model can handle a small 

sample size and overfitting problem. Secondly, in MFSAC, different filter methods are used with 

their unique characteristics. So, different characteristics-based relevant gene subsets are selected 

via different filters to form different sub-datasets from every bootstrapped dataset. Finally, every 

gene subset is modified using a supervised attribute clustering algorithm. In this way, the high-

dimensionality problem of gene expression data is handled here. Apart from this, from the  

MFSAC generated sub-datasets, the frequency of occurrence is counted for every gene 

and informative genes are ranked accordingly. The prediction capability of the proposed model is 

experimented with over different microarray datasets and compared with the existing well-

known models. Experimental outputs demonstrate the superiority of the proposed model over 

existing models. 

6.2 Proposed Work 

The proposed MFSAC-EC model is composed of different filter score functions, a new 

supervised attribute clustering method, and an ensemble classification method. In the following 

subsections, first, a brief overview is given on different filter score functions and then the 

proposed MFSAC-EC model is described. 

Preliminaries 

In this paper, a data set (here, a microarray gene expression data set) is represented by a data 

matrix,     , with   data objects (samples) and   features (genes). The set of objects or 

samples is represented as                      while the set of genes is represented 

as                      . Here, each sample is a  -dimensional feature vector containing 

  number of gene expression values. Similar way, every gene is a  -dimensional vector 

containing   number of sample values. Here,     is a class vector representing the associated 

class label for every sample. The class label is taken from a set    {                } with 

  distinct class labels. 

Brief overview of Filter score functions used in MFSAC 

The filter score functions used in the proposed MFSAC-EC model are modified Fisher score 

[186], modified T-test [187], Chi-square [172], Mutual information [172], Pearson correlation 
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Table 6.1. Description of Different Filter Methods 

 

Filter Method Definition Description 

Modified 

Fisher score 

(Gu 2011) 
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Here modified Fisher score of feature    is presented. 

Here    represents the number of samples of class  ,   
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(Zhou 2007) 
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Here modified t-test of feature    is presented. 

Here,   
 
 and    are the mean of  th feature for  th class and 

mean of  th feature respectively.    is the sum of within class 

standard deviation and is represented as, 

While 

         
 

  
  

 

 
 ,    is the number of samples for  th class, 

   is lth sample‘s value for   th feature in  th class. Here   and 

  are total number of samples and total number of classes 

respectively. 

Chi Square 

(Das 2019)          ∑∑
(         (    )                )

 

              

 

      

             

 

Chi Square is a statistical test which is commonly used to 

compare observed data with the expected data according to a 

specific hypothesis. This test is also used as a measure to find 
class discrimination capability of a gene with respect to class 

vector. The chi square value of every gene vector is calculated 

in equation (3). 

Here,   is the set of all distinct values present in a gene, if the 

gene is discretized.         (    )and               

represent the number of observed and expected co-occurrence 

of value   and    appeared in gene    and class vector   

respectively. 

Mutual 

Information 

(Das 2019) 
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Mutual information is also represented using entropy measure shown in 

equation (5). 

Mutual information is an important measure based on 
information theory. Mutual information between a gene and a 

class vector can be defined as in equation (4). 

Here, 

     is the entropy or amount of information  present in   and 

    |    is the entropy or amount of information present in     

in presence of  . Here,   is the set of all distinct values present 
in a gene vector, if the gene vector is discretized. 

Relief-F     

(Das 2019) 
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Relief-F measures class discrimination power of a feature 
according to its distinguishing capability between near 

instances. For any random instance   , ReliefF finds the nearest 

instance from same class to find a hit     and a miss     from 

different class and according to that        is increased or 
decreased using equation (6). This process is run for w number 

of times for different instances. 

Pearson 
Correlation 

Coefficient 

(Leung 2010) 

        
∑      ̅      ̅  

 ∑      ̅        ̅  
                   (7) 

Pearson Correlation is used for detecting the linear relationship 

between two vectors. The equation (7) is used to calculate the 
PC (ρ) between the independent vector x and dependent vector 

y. For this paper x is considered as    and y as class vector C. 

Signal-to-
noise ratio 

(Leung 2010) 
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The signal to noise ratio test is a feature selection method that 

selects significant features according to their expression levels 
using S/R test. 

Here   
 
 and   

  
are the mean and standard deviation of   th 

feature for   th class respectively, while    and    are the mean 

and standard deviation of   th feature            ∑   
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coefficient [188], SNR [188], and Relief-F [172]. A summary of these 7 filters used in the 

MFSAC-EC model is given in the Table 6.1  

Proposed MFSAC-EC Model 

In the proposed MFSAC-EC model, initially, bootstrapping (sampling with replacements) 

with a class balancing procedure of samples is applied on training dataset   to create   number 

of different bootstrapped versions from the training dataset. Here, every bootstrapped dataset 

with   samples is formed by random sampling with replacements   times from the original 

dataset  . After that oversampling procedure is applied to each minority class to achieve data 

balance. 

Oversampling consists of increasing the minority class instances by their random 

replication to exactly balance the cardinality of the minority and majority classes in each 

bootstrapped dataset. Due to oversampling each bootstrapped dataset will contain more instances 

than the original dataset. 

The MFSAC method of the MFSAC-EC model, which is an integration of multiple filters 

and a new supervised attribute (gene) clustering method, is applied on every newly created 

bootstrapped (   ) training dataset. The proposed MFSAC method first calculates the class 

relevance score of every gene present in the bootstrapped training dataset using each filter score 

function                  mentioned above. Then for each filter score function, a sub dataset 

     with a gene subset (    ) is created by selecting a predefined number (let  ) of the most 

relevant genes from the full gene set  . So, |    |     After that on every gene subset        of 

every sub dataset     , the SAC (Supervised Attribute Clustering) method is applied and a set of 

clusters       and corresponding cluster representatives (considered as modified features) are 

formed. Finally,   numbers of most relevant cluster representatives are selected as modified 

features and a reduced sub dataset       of the sub dataset     is formed. How the SAC method 

works on     of every sub dataset     is discussed below.  

For any sub dataset     , the SAC method starts by selecting the gene from the subset 

(    ) with the highest     value. Let gene        with the highest     value be selected as 

the first member (let             ) and it also becomes the initial cluster 

representative          ) of the first cluster        and    is deleted from        In effect, 

             , and                                . This cluster is then grown up in 

parallel with the cluster representative refinement process which is described next. In this 

process, the gene (let    ) with next highest     value is taken from      subset and is merged 

with the current cluster representative  . The merging is done in two ways. Firstly the expression 

profile of    is directly added with   and a temporary augmented representative     is formed 

and its      value (let   ) is calculated. The second one is that the sign-flipped value of the 

expression profile of     is added with   and another temporary augmented representative     

is formed and its    value (     ) is calculated. If                          that is 

      then     is chosen else     is chosen. Let     is chosen.  Now if            

        then       otherwise,   is unaltered. Similar way if      is chosen and if 
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                   then       otherwise,   remains unchanged. If   is modified then 

the gene   is included in the cluster          is deleted from     . In effect,       

         and                  . So, the next chosen gene is included in the current cluster if 

it improves the class relevance value of the current cluster representative. The merging process is 

described in Figure 6.1.  

 
Figure 6.1: Cluster Representative Refinement Procedure 

Here g0 represents the current cluster representative     and its class relevance score 

((     ), here Pearson score), is shown. Now among all the genes g1, g2, g3, g4, and g5, the 

Pearson score of g1 is the highest. So, g1 is chosen for the merging process. Then g1 is added 

with   to create the temporary augmented representative (        ) and also its sign-

flipped value is added with the   to form the temporary augmented representative (      

  ). The Pearson score of     is greater than the Pearson score of    , so     is chosen. Now 

the Pearson score of    is greater than the Pearson score of  , so    is considered as the 

current cluster representative and         This process is continued for all other genes. Now, 

g3 is chosen as it is the gene with the next highest Pearson value. g3 and its sign-flipped value 

are added individually with current cluster representative   to form          and     

     respectively. In this case, Pearson score of    is greater than the Pearson score of     . 

So,     is chosen. Then Pearson score of    is Checked with the Pearson score of   and here 
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Pearson score of    is greater than the Pearson score of  . So,     is considered as current 

cluster representative and      . In this way, cluster representative is refined. This process is 

repeated for every member of      subset.  

After the formation of the first cluster and its corresponding augmented representative,   

is assigned to      that means           and the supervised clustering process is repeated to 

form the second cluster with the gene (let      with next highest     value from     subset. In 

this way a set of clusters                                      and their corresponding 

augmented cluster representatives                            are formed. After that   

number of most powerful augmented cluster representatives are chosen (as modified features) 

according to their    value from the generated clusters and with these   number of modified 

features, a reduced sub dataset       of sub dataset     is formed. 

In this way, for every bootstrapped version (   ) of the training dataset, 7 number of 

      sub-datasets are created and for every       an individual classifier is constructed using 

any existing classifier and finally, an ensemble classifier (EC) is formed by combining all these 

classifiers of all bootstrapped versions using the majority voting technique. To classify every 

sample using this ensemble classifier, each classifier votes or classifies the sample for a 

particular class, and the class for which the highest number of votes is obtained is considered as 

the output class.  

 
Figure 6.2: Block Diagram of the Proposed MFSAC-EC Model 
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Figure 6.3: Block Diagram of MFSAC Method 

MFSAC method based Informative Attribute Ranking 

For every gene (feature/attribute), the frequency of occurrence that means the total number of 

times it appears in all sub-datasets generated by the MFSAC method for all bootstrapped 

versions is calculated. Then according to their frequency of occurrence, those genes are ordered 

or ranked. The top-ranked genes with the highest occurrence frequency are considered the most 

informative cancer-related genes. The block diagram of the proposed MFSAC-EC model is 

shown in Figure 6. 2, while the block diagram of the MFSAC method is shown in Figure 6.3. 

The algorithm of the proposed model is described below. 

Algorithm: MFSAC-EC 

Input: A      data matrix (here, gene expression data matrix) containing   number of data 

objects (here, cancer samples) and   number of attributes (here, genes).  

Output:An ensemble classifier MFSAC-EC is formed to classify test samples. From MFSAC 

generated sub-datasets, informative genes are selected according to their rank. Every gene is 

ranked according to its frequency of occurrence. 

Definitions: 

                     is the set of objects or samples of      data matrix. Every sample    

is a   dimensional vector. 

                    is the set of features or genes of      data matrix. Every gene   is 

a   dimensional vector. 

                          is a set of the bootstrapped version of the original training 

dataset. In every bootstrapped dataset the number of samples varies from the original dataset but 

the number of features is the same as the original dataset.  

    is a class vector representing the associated class label for every sample. For a data matrix 

  distinct class labels exist and class labels are taken from a set                     . 
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         is    filter score function  which returns the class relevance value of    gene with 

respect to class vector   using    score function, for            as   represents the total 

number of filtering score functions used here. 

            is a set of top-ranked genes of   selected using    score function and     is 

corresponding sub dataset of    . Here      is a data matrix containing   number of genes.  

                                     And                             are the 

set of clusters and corresponding cluster representatives respectively generated from the 

corresponding subset      of      . Here every       is a vector. 

TR
+
, TR

-
, R are vectors similar to a gene vector. 

                                      is a set of sub-datasets each containing   

number of most relevant cluster representatives formed for every bootstrapped dataset    . 

                                is a set of classifiers formed for every bootstrapped 

dataset. 

1. Create   number bootstrapped version of training dataset  . 

2. For Every bootstrapped dataset    repeat step 3  

3. Repeat for            

A. Repeat for            

a) Calculate class relevance score          of    gene, where       with 

respect to class vector   

B. Select   number of top-ranked genes from   based on     score function and 

form      gene subset with corresponding      sub dataset 

C. Set      

D. Repeat until         

a) Set          

b) Set              and       

c) Select the gene (let     ) whose     score value is maximum among all 

genes of     and set        

d) Add     to       , and delete     from      

e) Set count =1 

f) Repeat for          |    | 

I. Compute first augmented representatives     by 

adding         with   that means            

II. Compute second augmented representatives     by 

adding sign-flipped version of          with   that 

means           

III. Compute class relevance value            and 

           using     score function 

IV. If                      then  

If                       then 
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 Set          and add     to        and 

delete     from      

 count = count +1 

V. If                       then  

      If                     then 

 Set           and add     to        and 

delete     from      

 count = count + 1 

g) Set            

h) Set         

E. Select   number of most relevant cluster representatives according to     score 

from      set and form       sub data set. 

F. Construct a classifier     for       sub data set  

4. Apply a test sample over all the classifiers of all bootstrapped dataset and calculate the 

prediction accuracy of each classifier  

5. Apply simple voting over all predictions to form an ensemble classifier    and get final 

prediction. 

6. Calculate number of occurrences for every gene for all       sub datasets across all 

bootstrapped versions and rank them according to their count. 

7. Select a number of top-ranked genes as informative genes. 

8. End 

6.3 Results 

To assess the performance of the proposed MFSAC-EC model, four well-known existing 

classifiers named K-Nearest Neighbor [34], Naive Bayes [34], Support vector machine [189], 

and Decision tree(c4.5) [34] are applied independently in this model and four different ensemble 

classification models are formed. To prove the superiority of the proposed model, it is compared 

with existing well-known filter methods (used here) and existing recognized gene selection 

methods [167, 173, 177] and also with different existing ensemble classifiers [178, 180, 190, 

181, 182]. To analyze the performance, the methods are applied to different publicly available 

cancer and other disease-related gene expression datasets. The major metrics used here for 

evaluations of the performance of the proposed classifier are the Cross-validation method 

(LOOCV, 5-fold, and 10-fold), ROC Curve, and Heat map. 

Description and Preprocessing of the Datasets 

The experimentation has been carried out over ten publicly available different gene expression 

binary class and multi-class datasets. Among these datasets, eight datasets are cancer datasets 

and two arthritis datasets. The eight cancer datasets are Leukemia [170], Colon [191], Prostate 

[192], Lung [193], RBreast [194], Breast [195], MLL [196], and SRBCT [197]. To show the 
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accuracy of the proposed model with respect to other than cancer datasets here two arthritis 

datasets RAHC [198] and RAOA [198] are also considered. The summary of the datasets is 

represented in Table 6.2. 

Table 6.2. Description of Cancer Gene Expression Datasets 

Dataset 

Data Dimension 

Gene × Sample    

(Original) 

Data Dimension 

Gene × Sample    

(Used) 

Sample 

Class 
Labels 

Dataset 

Data Dimension 

Gene × Sample    

(Original) 

Data Dimension 

Gene × Sample    

(Used) 

Sample 

Class 
Labels 

Leukemia 7129 × 72 7070 × 72 2 Breast 7129 × 49 7129 × 49 2 

Colon 2000 × 62 2000 × 62 2 MLL 12582 × 72 12582 × 72 3 

Prostate 12600 × 136 12600 × 136 2 SRBCT 2308 × 63 2308 × 63 4 

Lung 12533 × 181 12533 × 181 2 RAHC 41057 × 50 41057 × 50 2 

Rbreast 24481 × 97 24188 × 97 2 RAOA 18433 × 30 18433 × 30 2 

 

In the Leukemia dataset [170], the gene expression data matrix is prepared using 

Affymetrix oligonucleotide arrays. The original dataset consists of two datasets: the training 

dataset and the testing dataset. The training dataset consists of 38 samples (27 Acute 

Lymphoblastic Leukemia (ALL) and 11 Acute Myeloid Leukemia (AML)) while the test dataset 

consists of 34 samples (20 Acute Lymphoblastic Leukemia (ALL) and 14 Acute Myeloid 

Leukemia (AML)), each with 7129 probes from 6817 genes. For the Leukemia dataset, training 

and test datasets are merged here and genes with missing values are removed and finally, the 

dataset with 7070 genes and 72 samples is prepared. 

In the Colon cancer dataset [191], gene expression of 6500 genes for 62 samples is 

measured using Affymetrix oligonucleotide arrays. Among these 62 samples, 40 are Colon 

cancer samples and 22 are normal samples. Among these 6500 genes, 2000 genes are selected 

based on the confidence of measured expression levels. 

Prostate cancer dataset [192] also consists of training and testing datasets. In the training 

dataset, among 102 samples, 50 are normal samples and 52 are prostate cancer samples. In the 

test dataset among 34 samples, 25 are prostate cancer samples and 9 are normal prostate samples. 

Gene expression of every sample is measured with respect to 12600 genes using Affymetrix 

chips. Here, training and test datasets are merged, and a dataset with 12600 genes and 136 

samples is formed. 

The Lung cancer dataset [193] consists of 181 samples. Among these samples, 31 are 

malignant pleural mesothelioma and rest150 adenocarcinoma of lung cancer. Each sample is 

represented by 12533 genes and the gene expression of every sample is measured using 

Affymetrix human U95A oligonucleotide probe arrays. 

In Rbreast data set [194], the patients, who are considered as breast cancer patients after 5 

years intervals of initial diagnosis, fall under the category of relapse and rest as no relapse of 

metastases. 97 samples have been provided in which 46 patients developed distance metastases 

within 5 years and they are considered as relapse while the remaining remained healthy and are 

labeled as non-relapse. This dataset comprises 24481 genes and among them, 293 are removed. 

In the Breast cancer dataset [195], the gene expression of 49 samples is measured using 

HuGeneFL Affymetrix microarray arrays. Breast tumors are positive or negative in the presence 
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or absence of estrogen receptors (ER). In this dataset, 25 samples are ER+ tumors and 24 

samples are ER- tumors. 

MLL [196] is a type of dataset which comprises of training data set of 57 leukemia 

samples including 20 ALL, 17 MLL, and 20 AML and the test dataset including 4 ALL, 3 MLL, 

and 8 AML samples. For MLL cancer dataset training and test, datasets are merged here and 

finally, the dataset with 12582 genes and 72 samples are prepared. 

SRBCT dataset [197] is introduced as a dataset comprising of gene-expression for 

identifying small round blue-cell tumors of childhood SRBCT and samples of this dataset are 

further divided into four class which are neuroblastoma, rhabdomyosarcoma, non-Hodgkin 

lymphoma, and Ewing family of tumors and they are obtained from cDNA microarrays. A 

training set consisting of 63 SRBCT tissues, a test set consisting of 20 SRBCT and 5 non-

SRBCT samples are available. Here we have considered only the training dataset. Each tissue 

sample is already standardized to zero mean value and has a unit variance across the genes. 

RAHC commonly known as Rheumatoid Arthritis versus Healthy Controls is a data set [198] 

which comprises of gene expression characterizing as peripheral blood cells of 32 patients with 

RA, 3 patients with probable RA, and 15 age with sex-matched healthy controls performed under 

microarrays with a complexity of 26000 unique genes of 46000 elements. 

RAOA commonly known as Rheumatoid Arthritis versus Osteoarthritis is a dataset [198] 

that includes the gene expression of thirty patients in which 21 of them are with RA and the 

remaining 9 of them are with OA. The Cy3 labelled common reference sample and the Cy5 

labelled experimental cDNA were combined, then hybridised to the lymphochips. (consisting of 

18000 cDNA spots which symbolize immunology in the genes of relevance). 

Tools Used  

The algorithms are implemented using Python programming language and Scikit-learn 

libraries [199] which are explained in [200] for ML algorithms. The programs are executed on an 

online Colab platform with 12 GB RAM and Intel(R) Xeon(R) processor available in the "CPU" 

Runtime. Figures and tables are generated in the Matplotlib library [201] and also in Microsoft 

Excel. The python codes used here are available at https://github.com/NSECResearchCD-

SLB/PEERJ_MFSAC_EC. 

In the following subsections, first, the different types of metrics used here are discussed, 

and then the performance of the proposed MFSAC-EC  model is verified with respect to these 

metrics. This is followed by comparing the classification performance of the proposed model 

with different existing methods in terms of 10-fold cross-validation. The proposed model does 

not only perform the task of classification but also ranks every attribute or gene in descending 

order based on its information present in the dataset. To show the effectiveness of this ranking 

procedure topmost eight genes from Colon cancer and Leukemia cancer datasets are represented 

with their corresponding names, symbols, and references in significant cancer-related journals to 

demonstrate their significant roles in these cancers. 

https://github.com/NSECResearchCD-SLB/PEERJ_MFSAC_EC
https://github.com/NSECResearchCD-SLB/PEERJ_MFSAC_EC
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Evaluation Metrics 

The performance of the proposed MFSAC-EC classifier is established with respect to the 

following measures. 

Cross-Validation method 

The first well-known metric used here to evaluate the classification model performance is the k-

fold cross-validation method [182]. In the k-fold cross-validation method, the dataset is randomly 

divided into k number of folds and k-1 folds are used for training and one fold is used for testing. 

The process is repeated for k number of times and average classification accuracy is taken. When 

k is set at 1 that means the fold size is equal to the size of the dataset (training dataset size is 

equal to one less than the number of samples in the dataset and validation is done using the 

remaining sample) then it is considered as Leave one out cross-validation method (LOOCV). For 

k  is equal to 2, the cross-validation method is named the household method. It has been found 

that when k is set at a very small value that means the fold size is large then the accuracy of the 

classification model is affected by low bias and high variance problems. On the other hand, if k 

is set at a high value that means the fold size is not so large then the classification accuracy of the 

classification model has a high bias but low variance. It has been found that 10-fold cross-

validation method outperforms the LOOCV method [202, 203, 204] and it has been also 

endorsed that the 10-fold cross-validation method as a better measure for classification. 

In training-testing random splitting the dataset is initially randomly partitioned into training set 

(2/3
rd

 of the dataset) and testing set (1/3
rd

 of the dataset) with 50 runs. 

ROC curve analysis 

The performance of the proposed classifier for two-class datasets is also judged using Receiver 

Operator Characteristic (ROC) analysis [182]. It is a visual method for evaluating binary 

classification models. Under this analysis, the following measures are considered to judge the 

binary classification model.  

Classification accuracy (   ) is defined as,  

    = 
     

           
                          

The sensitivity      or True Positive Rate       can be defined as,  

        
  

     
 

The specificity      or True Negative Rate       can be defined as, 

        
  

     
 

The False Positive Rate       can be defined as:  

                     
  

     
 

The Positive Predicted Value       can be defined as: 
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The Negative Predicted Value       can be defined as: 

     
  

     
 

Where TP, TN, FP, FN are true positive, true negative, false positive, and false negative 

respectively. 

The ROC curve is plotted considering TPR along the y-axis and FPR along the x-axis. The area 

under the ROC curve (AUC) is used to represent the performance of the binary classification 

model. The higher AUC value of a ROC curve for a particular classification model signifies the 

better performance of the classification model in differentiating positive and negative examples. 

The range of AUC value is 0<=AUC<=1. 

Heat map analysis 

A heatmap is a data representation diagram in which the values for a variable of interest are 

portrayed using a data matrix. In this data matrix, the values of the variable are represented 

across two-axis variables as a grid of colored squares. The axis variables are divided into ranges 

and each cell‘s color represents the intensity of that variable for the particular ranges of values of 

axis variables. 

Here, the performance of the proposed classifier for multi-class datasets is judged using Heat 

map representation of confusion matrix [205], where a confusion matrix is a tabular 

representation to visualize the performance of a classification model in terms of true positive, 

true negative, false positive and false negative. 

Parameter Estimation 

Before running the MFSAC-EC, the parameters are settled down. In MFSAC-EC the input 

training dataset is bootstrapped. The proposed MFSAC-EC model is run here varying the number 

of bootstrapped datasets ( ) from 5 to 30 and the classification accuracy of this model is more or 

less the same from 10 to the rest of the range. So, the number of bootstrapped datasets for every 

training dataset for this model is set at 10.  

In MFSAC method, initially P number of genes is selected by each filter method. Here in Table 

2, the classification accuracy of the proposed model is shown with respect to different values of 

P. From Table 6.3, it has been found that the proposed model gives the best result for P=100 for 

RAOA and RAHC datasets. In case of Breast cancer, Lung cancer, MLL and SRBCT datasets it 

gives the best result at P = 200. For Leukemia datasets it gives the best result at P= 500. So, it 

can be said that MFSAC-EC gives best result for P value within 200 to 500 in all cases for all 

datasets except Colon and Prostate. In Colon and Prostate, it shows the best result for   = 1500.  

Here we have used SVM, DT (C4.5), NB, and KNN classifiers individually for forming different 

ensemble classification models. All the classifiers are implemented using Scilit-learn libraries of 

Python. For all classifiers, we have set parameters with default parameter values. For DT as 

default setting we have used splitting function = Gini, Splitting criterion = best,  height = none (  
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that means for every sample it reaches a leaf/class node). For SVM, we have used the RBF 

kernel function. For KNN we have chosen K (number of nearest neighbor) value from 3 to 7. 

The overall execution time of a single run of the MFSAC-EC model (considering 

bootstrapped dataset creation, feature selection using MFSAC, and then generating classification 

accuracy of test samples using LOOCV, 5-fold, 10-fold, and random splitting) and testing time 

using only 10-fold  are shown for different datasets in Table 6.4.  

Classification Performance of the Proposed MFSAC-EC Classifier  

In Table 6.5, using the LOOCV method, the classification accuracy of our proposed MFSAC-EC 

model is 100% for different datasets (Leukemia, Breast, RBreast, Lung, RAOA, and RAHC) for 

all cases. In the Prostate dataset, we did not get 100% accuracy using our model with respect to 

any type of existing classifier. In MLL, Colon, and SRBCT it also gives 100% accuracy using all 

types of ensemble classifiers. 

Table 6.5.Classification Accuracy of the proposed MFSAC-EC model with respect to LOOCV 

Dataset Proposed Model 

Cluster Representatives 

Dataset Proposed Model 

Cluster Representatives 

1 2 3 1 2 3 

COLON 

MFSA

C-EC 

NB 100 98.39 98.39 

MLL 

MFSAC-

EC 

NB 100 100 100 

KNN 98.39 100 100 KNN 100 100 100 

DT 98.39 98.39 98.39 DT 100 100 100 

SVM 100 98.4 98.4 SVM 100 100 100 

Prostate 

NB 97.06 97.79 98.53 

SRBCT 

NB 96.83 100 100 

KNN 97.79 97.79 98.53 KNN 96.83 100 100 

DT 97.79 98.53 97.79 DT 96.83 98.41 100 

SVM 98.53 99.26 99.26 SVM 82.54 98.41 100 

Leukemia 

NB 100 100 100 

Lung 

NB 100 100 100 

KNN 100 100 100 KNN 100 100 100 

DT 100 100 100 DT 100 100 100 

SVM 100 100 100 SVM 100 100 100 

RAOA 

NB 100 100 100 

RAHC 

NB 100 100 100 

KNN 100 100 100 KNN 100 100 100 

DT 100 100 100 DT 100 100 100 

SVM 100 100 100 SVM 100 100 100 

Breast 

NB 100 100 100 

RBreast 

NB 100 100 100 

KNN 100 100 100 KNN 100 100 100 

DT 100 100 100 DT 100 100 100 

SVM 100 100 100 SVM 100 100 100 

 

In Table 6.6 and Table 6.7, it has been shown that using 5 -fold and 10-fold cross-

validation, MFSAC-EC does not provide 100% accuracy only for Colon and Prostate cancer 

datasets. For other datasets, it provides 100% accuracy with respect to all types of ensemble 

classifiers. 

To show the generalization property of the proposed ensemble classifiers, the 

classification accuracy of these classifiers is also measured repeatedly with respect to the random 

splitting of the dataset into a training set (2/3 data of original dataset) and test set (1/3 data of 

original dataset). Random splitting is done with care such that class proportion is alike in the 
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training set and test set. In Table 6.8, the classification accuracy of the above mentioned four 

different types of ensemble classifiers for the different number of cluster representatives is 

shown in different datasets which are based on the best result of 50 random splitting of the 

dataset into a training set (2/3 data of original dataset) and test set (1/3 data of original dataset).  
 

Table 6.6.Classification Accuracy of the proposed MFSAC-EC model with respect to 5-Fold Cross Validation 

Dataset Proposed Model 
Cluster Representatives 

Dataset Proposed Model 
Cluster Representatives 

1 2 3 1 2 3 

COLON 

MFSAC-EC 

NB 96.77 96.77 96.77 

MLL 

MFSAC

-EC 

NB 100 100 100 

KNN 98.39 96.77 96.77 KNN 98.61 100 100 

DT 98.39 96.77 98.39 DT 98.61 100 100 

SVM 98.39 96.77 96.77 SVM 100 100 100 

Prostate 

NB 97.06 97.79 98.53 

SRBCT 

NB 98.41 100 100 

KNN 97.79 97.79 99.26 KNN 96.83 100 100 

DT 97.06 97.79 94.85 DT 96.83 98.41 100 

SVM 97.79 98.53 99.26 SVM 96.83 100 100 

Leukemia 

NB 100 100 100 

Lung 

NB 100 100 100 

KNN 100 100 100 KNN 100 100 100 

DT 100 100 100 DT 100 99.44 100 

SVM 100 100 100 SVM 100 100 100 

RAOA 

NB 100 100 100 

RAHC 

NB 100 100 100 

KNN 100 100 100 KNN 100 100 100 

DT 100 100 100 DT 100 100 100 

SVM 100 100 100 SVM 100 100 100 

Breast 

NB 100 100 100 

RBreast 

NB 100 100 100 

KNN 100 100 100 KNN 100 100 100 

DT 100 100 100 DT 100 100 100 

SVM 100 100 100 SVM 100 100 100 

 

Table 6.7Classification Accuracy of the proposed MFSAC-EC model with respect to 10-Fold Cross Validation 

Dataset Proposed Model 
Cluster Representatives 

Dataset Proposed Model 
Cluster Representatives 

1 2 3 1 2 3 

COLON 

MFSAC-EC 

NB 98.39 98.39 98.39 

MLL 

MFSAC-EC 

NB 100 100 100 

KNN 98.39 98.39 100 KNN 100 100 100 

DT 98.39 98.39 98.39 DT 100 100 100 

SVM 98.39 98.39 98.39 SVM 100 100 100 

Prostate 

NB 97.06 97.79 98.53 

SRBCT 

NB 96.83 96.83 100 

KNN 97.79 97.79 99.26 KNN 92.06 100 100 

DT 97.06 97.79 94.85 DT 95.24 96.83 100 

SVM 97.79 98.53 99.26 SVM 80.95 92.06 100 

Leukemia 

NB 100 100 100 

Lung 

NB 100 100 100 

KNN 100 100 100 KNN 100 100 100 

DT 100 100 100 DT 100 100 100 

SVM 100 100 100 SVM 100 100 100 

Breast 

NB 100 100 100 

RBreast 

NB 100 100 100 

KNN 100 100 100 KNN 100 100 100 

DT 100 100 100 DT 100 100 100 

SVM 100 100 100 SVM 100 100 100 

RAOA 

NB 100 100 100 

RAHC 

NB 100 100 100 

KNN 100 100 100 KNN 100 100 100 

DT 100 100 100 DT 100 100 100 

SVM 100 100 100 SVM 100 100 100 

 

 

From the results of Table 6.5 to Table 6.8, it has been observed that classification 

accuracy in the LOOCV method, 5-fold cross-validation, and 10-fold cross-validation methods is 
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higher than the random splitting of the dataset, and the overall generalization performance of the 

proposed classification model is also good. 

Table 6.8. Classification Accuracy of the proposed MFSAC-EC model with respect toRandom Splitting of the 

Datasets 

Dataset Proposed Model 
Cluster Representatives 

Dataset Proposed Model 
Cluster Representatives 

1 2 3 1 2 3 

COLON 

MFSAC-

EC 

NB 98.39 98.39 98.39 

MLL 

MFSAC-

EC 

NB 100 100 100 

KNN 98.39 98.39 98.39 KNN 100 100 100 

DT 98.39 98.39 98.39 DT 98.61 100 98.61 

SVM 98.39 100 98.39 SVM 100 100 100 

Prostate 

NB 94.68 95.74 93.62 

SRBCT 

NB 95 85 95 

KNN 97.87 96.81 92.55 KNN 95 100 90 

DT 94.68 94.68 94.68 DT 80 90 95 

SVM 94.68 96.81 94.68 SVM 65 75 95 

Leukemia 

NB 100 100 100 

Lung 

NB 100 100 100 

KNN 100 100 100 KNN 100 100 100 

DT 100 100 100 DT 100 100 100 

SVM 100 100 100 SVM 100 100 100 

RAOA 

NB 100 100 100 

RAHC 

NB 100 100 100 

KNN 100 100 100 KNN 100 100 100 

DT 100 100 100 DT 100 100 81.25 

SVM 100 100 100 SVM 100 100 81.25 

Breast 

NB 100 100 100 

RBreast 

NB 91.94 91.94 91.94 

KNN 100 100 100 KNN 85.48 87.10 83.87 

DT 100 100 100 DT 83.87 79.03 80.65 

SVM 100 100 100 SVM 93.55 91.94 91.94 

 

From the results of Table 6.5 to Table 6.8, it has been observed that classification 

accuracy in the LOOCV method, 5-fold cross-validation, and 10-fold cross-validation methods is 

higher than the random splitting of the dataset, and the overall generalization performance of the 

proposed classification model is also good. 

The performance of the proposed model for different two-class datasets with respect to 

different parameters like SN, SP, PPV, NPV, FPR is shown in Table 8. From this table, it is 

found that the performance of the proposed model is very good with respect to all these 

parameters for all two-class datasets. 

In Figures 6.4, the ROC curve is shown for different two-class datasets. In Figures 6.4a, 

6.4b, and 6.4c, the ROC curves are shown for Breast cancer using LOOCV, for Colon cancer 

using 5-fold cross validation, and for RAHC dataset using 10-fold cross-validation respectively. 

The ROC curves for Leukemia Cancer, and Lung cancer datasets using LOOCV are given in 

Figures 6.5a and 6.5b respectively. For Breast cancer, Leukemia cancer, and Lung cancer, the 

AUC value is equal to 1.0 in every case. The ROC curves are shown for RAOA, and RBreast 

cancer datasets using 5-fold cross-validation in Figures 6.6a, and 6.6b respectively. For these 

datasets also the prediction accuracy using 5-fold cross validation is very high according to the 

AUC value. In Supplemental Figures 6.6c, the ROC curves are shown for Prostate cancer using 

10-fold cross-validation. From these curves of 10-fold cross validation, it may be seen that 

except for Prostate cancer, for all other datasets the AUC value is 1 and for Prostate cancer, the 

AUC value is close to 1. 
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In Figures 6.7a and 6.7b, heatmap representations of the confusion matrix are shown for 

multi-class datasets: SRBCT and MLL with respect to 5-fold cross-validation, and 10-fold cross-

validation respectively. From these figures, it is clear that for the proposed model prediction 

accuracy is accurate in most cases. 

 

Comparison of MFSAC-EC Model with Well-Known Existing Filter Methods used in this 

model 

In Figure 6.8, the proposed MFSAC-EC model in combination with different existing classifiers 

is compared with different filter methods used in this model with respect to SRBCT, RAHC, 

Prostate, and Colon datasets in terms of 10-fold cross-validation. In all cases, the performance of 

the proposed model is significantly better with respect to all filters. 

 

 
Figure: 6.8: Classification Accuracy Comparison of MFSAC-EC with different filter methods using Ten Fold Cross-

Validation. 

Comparison of MFSAC-EC Model with Well-Known Existing Gene Selection Methods 

In Figure 6.9, the MFSAC-EC model with different existing classifiers as base classifiers are 

compared with existing well-known supervised gene selection methods named mRMR 

(minimum redundancy maximum relevance framework) [167], MSG (mutual information based 

supervised gene clustering algorithm) [177], CFS (Correlation-based Feature Selection) [206], 

and FCBF(Fast Correlation-Based Filter) [206] with respect to different classifiers using 10-fold 
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cross-validation method. From these results, it has been found that the proposed model 

outperforms in most of the cases. 

In Figure 6.10, the MFSAC-EC model is compared with well-known existing 

unsupervised gene selection methods named MGSACO [208], UFSACO [207], RSM[209], MC 

[210], RRFS [211], TV [212], and LS [213] with respect to DT, SVM, NB classifiers using 

random splitting method. From these results, it can be said that the MFSAC-EC model 

outperforms in all cases. 

 

 

Comparison of MFSAC-EC Model with Well-Known Existing Ensemble Classification and 

DEEP learning Models 

In Table 6.10, the proposed MFSAC-EC model using the DT classifier is compared with 

well-known existing ensemble classification models with respect to 10-fold cross-validation. 

These models are PCA-based RotBoost [190], ICA-based RotBoost [190], AdaBoost [190], 

Bagging [190], Arcing [190], Rotation Forest [190], EN-NEW1 [181], and EN-NEW2 [181]. 

From Table 6.10, it is clear that the proposed model using DT classifier outperforms in all cases.  

In Table 6.11, the proposed MFSAC-EC model using DT, NB, KNN as base classifiers 

are compared with different existing ensemble classifiers with respect to 10-fold cross-

validation. These classifiers are Bagging based ensemble classifier [180], Boosting based 

Figure 6.9 Comparison of MFSAC-EC with other well-known supervised gene selection methods and full gene set 

in terms of fivefold cross validation for all datasets. 
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ensemble classifier [180], Stacking based ensemble classifier [180], Heuristic breadth-first 

search-based ensemble classifier (HBSA) [182], Sd_Ens [180], and Meta_Ens [180]. In Table 

6.12 our model using SVM and KNN as base classifiers is compared with auto-encoder-based 

deep learning models [214] in terms of random splitting. Here, results are shown only for the 

datasets for which results are available in the literature, and all other fields are marked as ―Not 

Found‖. In all cases, the MFSAC-EC model outperforms all the well-known existing ensemble 

models (except for the Colon cancer dataset) and deep learning models which in turn validates 

the usefulness of the proposed model.  

 

  

 

 
 

Figure 6.10: Comparison of MFSAC-EC with other well-known unsupervised gene selection methods in terms of 

random splitting for different datasets. 
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Comparison of MFSAC-EC Model with Well-Known Existing Ensemble Classification and 

DEEP learning Models 

In Table 6.10, the proposed MFSAC-EC model using the DT classifier is compared with 

well-known existing ensemble classification models with respect to 10-fold cross-validation. 

These models are PCA-based RotBoost [190], ICA-based RotBoost [190], AdaBoost [190], 

Bagging [190], Arcing [190], Rotation Forest [190], EN-NEW1 [181], and EN-NEW2 [181]. 

From Table 6.10, it is clear that the proposed model using DT classifier outperforms in all cases.  

In Table 6.11, the proposed MFSAC-EC model using DT, NB, KNN as base classifiers 

are compared with different existing ensemble classifiers with respect to 10-fold cross-

validation. These classifiers are Bagging based ensemble classifier [180], Boosting based 

ensemble classifier [180], Stacking based ensemble classifier [180], Heuristic breadth-first 

search-based ensemble classifier (HBSA) [182], Sd_Ens [180], and Meta_Ens [180]. In Table 

6.12 our model using SVM and KNN as base classifiers is compared with auto-encoder-based 

deep learning models [214] in terms of random splitting. Here, results are shown only for the 

datasets for which results are available in the literature, and all other fields are marked as ―Not 

Found‖. In all cases, the MFSAC-EC model outperforms all the well-known existing ensemble 

models (except for the Colon cancer dataset) and deep learning models which in turn validates 

the usefulness of the proposed model.  
 

 

Table 6.10. Comparison of MFSAC-EC using DT with different existing Ensemble Classifiers using DT in terms of 10-Fold 

Cross Validation   

 
MFSAC-

EC 

PCA-

based 

RotBoost 

ICA-based 

RotBoost 
AdaBoost Bagging Arcing 

Rotation 

Forest 
EN-NEW1 EN-NEW2 

Colon 98.39 95.48 96.1 94.97 94.92 69.35 95.21 79.03 83.87 

Leukemia 100 98.75 98.77 98.22 97.47 Not Found 97.97 Not Found Not Found 

Breast 100 94.39 97.88 98.89 92.74 80.41 98.6 94.85 95.88 

Lung 100 98.11 99.54 96.3 97.08 97.24 97.56 98.34 99.45 

Prostate 97.79 Not Found Not Found 90.44 94.12 87.5 Not Found 94.85 97.06 

MLL 100 98.86 99.31 97.63 97.11 91.67 97.61 93.06 98.61 

SRBCT 100 99.5 99.59 98.16 96.46 Not Found 97.44 Not Found Not Found 
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Biological Significance Analysis 

The top 8 genes selected by the MFSAC-EC model for Colon cancer and Leukemia are listed in 

Table 6.13. For every gene, the name and symbol of the gene as well as the Accession number of 

the Affymetrix chip are listed. Apart from this information, to validate those genes, biomedical 

literature of the genes is searched and for every gene, the corresponding reference about its role 

and significance for a particular disease is provided. 

Table 6.13. List of genes selected by MFSAC-EC model for Colon and Leukemia cancer Datasets 

6.4 Discussion 

In this paper, a new Multiple Filtering and Supervised Attribute Clustering algorithm-

based ensemble classification model named MFSAC-EC is proposed. The main motivation 

behind this work is to develop a machine learning-based ensemble classification model to 

overcome the over-fitting problem which arises due to the presence of sample class imbalance 

problem, small sample size problem, and also high dimensional feature set problem in the 

microarray gene expression dataset, to enhance the prediction capability of the proposed model.  

Nowadays, in designing machine learning models, the use of ensemble methodology has been 

increasing day by day as it incorporates multiple learning algorithms and also training datasets in 

different efficient manners to improve the overall prediction accuracy of the model. Due to the 

inclusion of prediction accuracy of multiple learning models and also the use of different 

bootstrapping datasets, the chances of potential overfitting in training data is greatly reduced in 

the ensemble models, and as a consequence the prediction accuracy increases. One necessary 

condition of the superior performance of an ensemble classifier with respect to its individual 

Dataset Gene Name Accession Number Description Validation of Genes 

Colon 

TPM1 Hsa.1130 Human tropomyosin isoform mRNA, complete cds. [215],  [216], [217]  

IGFBP4 Hsa.1532 
Human insulin-like growth factor binding protein-4 

(IGFBP4) gene, promoter and complete cds. 
[218],  [219], [220] 

MYL9 Hsa.1832 
Myosin Regulatory Light Chain 2, Smooth Muscle 

Isoform (Human); contains element TAR1 repetitive 

element 

[221],  [222] 

ALDH1L1 Hsa.10224 
Aldehyde Dehydrogenase, Mitochodrial X Precursor 

(Homo sapiens) 
[223], [224] 

KLF9 Hsa.41338 
Human mRNA for GC box binding protein/ Kruppel Like 

Factor 9, complete cds 
[225], [226], [227] 

MEF2C Hsa.5226 
Myocyte-Specific Enhancer Factor 2, Isoform MEF2 

(Homosapiens) 
[228], [229], [230] 

GADPH Hsa.1447 Glyceraldehyde 3-Phosphate Dehydrogenase [231], [232] 

TIMP3 Hsa.11582 Metalloproteinase Inhibitor 3 Precursor [233], [234] 

Leukemia 

TXN X77584_at TXN Thioredoxin [235], [236], [237] 

CSF3R M59820_at 
CSF3R Colony stimulating factor 3 receptor 

(granulocyte) 
[238], [239], [240], [241] 

MPO M19508_xpt3_s_at MPO from Human myeloperoxidase gene [242], [243], [244], [245] 

LYZ M21119_s_at LYZ Lysozyme [159],[246], [247] 

CST3 M27891_at 
CST3 Cystatin C (amyloid angiopathy and cerebral 

hemorrhage) 
[248] 

ZYX X95735_at Zyxin [248], [249] 

CTSD M63138_at CTSD Cathepsin D (lysosomalaspartyl protease) [246] 

CD79A/ MB-1 
gene 

U05259_rna1_at MB-1 membrane glycoprotein [246] 
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member/base classifier is that every base classifier should be very accurate and diverse [190]. A 

classifier is considered accurate if its generalization capability is high and two classifiers satisfy 

diverse property if their prediction in classifying the same unknown samples varies from each 

other. The general principle of ensemble methods is to rearrange training datasets in different 

ways (either by resampling or reweighting) and build an ensemble of base classifiers by applying 

a base classifier on every rearranged training dataset [190].  

In our proposed ensemble model, at first, a number of bootstrapped datasets of the 

original training dataset is created. In every bootstrapped dataset, the class imbalance problem is 

solved using the oversampling method. Then for every bootstrapped dataset, a number of sub-

datasets are created using the MFSAC method (which is a hybrid method combining multi-filters 

and a new supervised attribute/gene clustering method), and then for every generated sub dataset, 

a base classifier is constructed using any existing classification model. After that, a new 

ensemble classifier (EC) is formed using the majority voting scheme by combining the 

prediction accuracy of all those base classifiers.  

The prediction accuracy of the proposed model is verified by applying it to high-

dimensional microarray gene expression data From Figure 6.9, and Figure 6.10 it has been found 

that the classification accuracy of the MFSAC-EC model is much better than the well-known 

existing gene selection methods. From Table 6.10, Table 6.11, and Table 6.12, it has been also 

found that the proposed MFSAC-EC classification model is superior to the existing ensemble 

classification models in almost every case. The superior performance of the proposed model is 

due to the following reasons:  

 The generation of the different bootstrapped versions of training data and also the use of 

the oversampling procedure to balance the cardinality of majority class and minority class 

in every bootstrapped dataset reduces the chances of the overfitting problem of a 

classifier.  

 Different types of filter methods are used in the MFSAC method. It has been already 

observed that one filter gives better performance for one dataset while the same gives 

poor results for other datasets. This is because every filter uses separate metrics and so 

the choice for a filter for a specific dataset is a very complex task. As different filter 

methods are used in the MFSAC method, so different sub-datasets with different 

characteristics-based attributes/genes are formed from each dataset. This is shown using 

Venn diagram in Supplemental Figures 6.11a and 6.11b. Here for Leukemia and Prostate 

cancer datasets, the first twenty genes, selected by each filter are shown. In case of 

Leukemia dataset, Relief measure generates non-overlapping gene subset while using  

other filter metrics presence of a small number of overlapping genes in different gene 

subsets are observed. In Prostate cancer dataset, Relief generates non-overlapping gene 

subset and also maximum number of genes are non-overlapping in gene subsets formed 

by Fisher score, MI (mutual information). From these figures, it is clear that using 

different filter methods different subsets of genes are selected and different sub datasets 

are formed. It shows diversity of those filter methods. As a consequence, the base 
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classifiers prepared on these diverse datasets are become diverse. This diversity increases 

the power of ensemble classifier.  

 Moreover, the genes selected by different filter methos are good biomarker also. In Table 

6.13, the top ranked 8 genes selected by MFSAC-EC model are shown for Leukemia and 

Colon cancer datasets. Among these genes, gene MPO (with column number 1720), 

CST3 (with column number 1823), ZYX (with column number 4788), CTSD (with 

column number 2062), CD79A/MB-1(with column number 2583), LYZ (with column 

number 6738) in Leukemia dataset are important biomarkers as these are selected by 

different filter methods mentioned in Supplemental Figure 6.11. 

 
Figure 6.11. Venn Diagram for top 20 genes Selected by each Filter for two Microarray Datasets.: 

 In MFSAC, at first, a sub dataset of the most relevant genes is selected by each filter 

method. Then on each sub dataset, the proposed supervised gene clustering algorithm is 

applied and a reduced sub dataset of modified attributes/features in the form of 

augmented cluster representatives is generated. In this method, at the time of cluster 

formation, genes are augmented based on their supervised information. In other words, 

such augmentation is considered where it increases the class discrimination power. Thus 

effectively, the class relevance of any augmented cluster representative is greater than 

that of any single gene involved in that process. So, this modified sub dataset containing 
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a reduced feature set in the form of augmented cluster representatives is more powerful 

according to class discrimination power than the sub dataset containing a subset of the 

most relevant genes. Apart from this, it is well known fact in gene expression data that 

two genes are functionally similar if they are pattern-based similar (either positively co-

expressed or negatively co-expressed) [109]. So, at the time of the augmentation 

procedure, two types of augmentations are considered here. One is that a gene is added 

with its original value with the current cluster representative and another one is that the 

gene is added with its sign-flipped value with the current cluster representative. This is 

because if the current cluster representative and a gene are positively co-expressed then 

normal addition is considered but if they are negatively co-expressed then normal 

addition will hamper the addition process and in that case, sign-flipping of that gene will 

give proper result.  The effect of augmentation with respect to every filter method is 

shown in Figure 6.12. In Figure 6.12, for the Breast cancer dataset, at the time of 

supervised cluster formation from each filter generated subset, the original gene, and its 

corresponding class relevance value, and also augmented gene and its corresponding 

class relevance are shown. From Figure 8, it is clear that for every filter method the class 

relevance score of every original gene is increased with respect to that filter after 

augmentation. In Figure 6.12, different class labels are distinguished by different colors. 

 Finally, for each sub dataset with modified attributes in the form of augmented cluster 

representatives, a classifier is constructed using any existing classifier, and these 

classifiers are combined using the majority voting technique to form an ensemble 

classifier (EC). The use of different sub-datasets with optimal gene subsets in the form of 

augmented cluster representatives and the formation of a classifier for every sub dataset 

can solve the overfitting problem of any single classifier. This is due to the reason that 

not all sub-datasets can consistently perform well on all types of cancer datasets (due to 

inherent characteristics of the datasets), but due to the use of majority voting in ensemble 

classifiers, this problem can be solved or reduced. 

Another outcome of our proposed model is to rank informative genes for every cancer dataset. 

For this task, the frequency of occurrence of each gene present in the form of augmented cluster 

representatives in every sub dataset is counted and these genes are ranked according to the 

counted value to measure the importance of those genes for any specific disease, here cancer. To 

establish the biological significance of those selected genes for every cancer dataset, their 

contribution has been confirmed by other existing studies where they are referred already. From 

these existing studies, it is clear that the selected genes are important for cancer class 

discrimination and also are important as cancer biomarkers for molecular treatment targets. 
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Figure 6.12 Original gene (different class label with different color) and corresponding Augmented gene with 

respect to different filter methods for Breast Cancer dataset.  
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6.5 Conclusions 

Many machine learning and statistical learning-based classifiers for sample classification 

already exist in the literature, but these methods are prone to suffer from overfitting due to small 

sample size problems, class imbalance problems, and the curse of the high dimensionality of 

microarray data. Although some of the existing methods can mitigate these issues to quite an 

extent, the problems have still not been satisfactorily overcome. Due to this reason, here a novel 

feature selection-based ensemble classification model named MFSAC-EC is proposed. It has 

been shown that the proposed model can handle the above-mentioned issues present in existing 

models. To check the performance of the proposed MFSAC-EC model, this classifier is applied 

to test sample classification accuracy in high dimensional microarray gene expression data, a 

domain that will be beneficial in the field of cancer research. From the experimental results, it 

has been found that the proposed model outperforms all other well-known existing classification 

models combined with the different recognized feature selection methods and also the newly 

developed ensemble classifiers for all types of cancer datasets mentioned here. Apart from this 

classification task, the proposed model can also rank informative attributes according to their 

importance. The efficiency of the proposed model in this task is vindicated by finding the most 

informative genes for Colon cancer and Leukemia cancer datasets using this model. These genes 

are biologically validated based on other well-known existing studies. Consequently, it is clear 

that the selected genes are vital for sample class discrimination and are also important 

biomarkers for molecular treatment targets of deadly diseases.  
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Chapter 7. 

 

Conclusion and Future Directions 

The main objective of this thesis is to develop machine learning techniques based new 

data mining methodologies, which preprocess and analyze gene expresssion data more 

accurately.  In this regard, certain problems of gene expression data  and the solutions of these 

problems using the proposed methodologies are discussed in this thesis. 

In the first work we have developed a novel framework for better neighbourhood 

formation in KNNimpute and its several versions to improve their prediction accuracy. From 

experimental results it has been found that prediction accuracy of the KNN and its several 

versions has been greatly improved after using this framework. This method can be applied in 

RNA expression data, protein expression data for prediction of missing values in future. 

In the second work we have developed another imputation method via integrating 

clustering and numerical method as it is already known that numerical methods are robust 

although these methods has several limitations. In this work we have tried to overcome all these 

drawbacks.The proposed model has given better performance than well-konwn existing 

numerical methods.  This method can be applied in RNA expression data, protein expression 

data and also in other areas apart from bioinformatics for prediction of missing values in future. 

In the third work, we have proposed a new framework based on partition based clustering 

for grouping functionally similar genes in unsupervised manner from microarray gene expression 

data. This is the first framework where we have eliminated noise using different partition based 

clustering methods and tries to overcome the drawbacks of different partition based clustering 

methods. Experimental results show superioty of the proposed method. One limitation  of this 
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method is that to check gene gene similarity we have used Euclidean distance. In gene 

expression data it is already revealed that pattern based similar genes are functionally similar. 

Using Euclidean distance value wise closer genes can only be considered which may be pattern 

based similar. So, in our proposed framework we are unable to extract pattern based similar 

genes only for cluster formation. In future work we will solve this problem. 

Specifically, both HCFPC method and MFSAC method select relevant genes in 

unsupervised and supervised manner respectively. Pathway analysis of identified relevant genes 

can give valuable information for Cancer disease as Cancer is still now deadly disease in 

advanced stage. Analysis of gene expression data to identify relevant biomarker prediction for 

early diagnosis of neurodegenerative disease can be another area of interest in future. Analysis of 

multimodal data including gene expression data for identification of relevant biomarkers for 

cancer, diabetics, and neurodegenerative disease prediction will be the promising area of interest 

for future research.  

Finally, it can be concluded that different machine learning based data mining schemes 

reported in this thesis can be extended to model other complex problems of bioinformatics and 

also in other areas. We will do these works in future. 

 

 

 

 

 

 

 

 

In the fourth work we have proposed a new ensemble classification model named 

MFSAC-EC for sample classification in microarray gene expression data. The proposed model 

has two components. One is gene/feature selection to reduce feature dimenstion and second one 

sample classification. For feature selection we have applied multi filters based supervised 

attribute/gene clustering algorithm and for classification we have applied a modified bagging 

model. The proposed model shows its superioty for different cancer datasets. In future we will 

modify this model via applying deep learning techniques and apply it for prediction of different 

diseases from high dimensional microarray gene expression and RNA expression datasets. 
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