MASTER OF ARTS EXAMINATION, 2023

(1st Year, 2nd Semester)

DEPARTMENT OF SOCIOLOGY

[Social Statistics]

Time : Two Hours

Full Marks : 30

Answer either in English or in Bengali.

All questions carry equal marks.

Answer any *two* questions.

1. a) Explain which of the following is a statistic and which is a parameter by giving reasons.

5

4

- i) The mean age of American from 2010 decennial census
- ii) The unemployment rate for the population of U.S. adults, estimated by the government from a large sample
- iii) The percentage of Texans opposed to the health care reform bill from a poll of 1,000 residents
- iv) The mean salaries of employees at your school (e.g., administrators, faculty, maintenance)
- v) The percentage of students at your school who receive financial aid
- b) All the numbers below are of those convicted of public corruption. Find out the following:
 - i) What is the range of convictions in 1990? In 2009? Which is greater? 2
 - ii) What is the mean number of convictions in 1990 and 2009? 2
 - iii) Calculate the standard deviation for 1990 and 2009.
- iv) Which year appears to have more variability in number of convictions as measured by the standard deviation? Are the results consistent with what you found using the range?2

Number of Public Corruption Convictions by Year									
	1990		2009						
Govt. Level	No. of Convictions	Govt. Level	No. of Convictions						
Federal	583	Federal	426						
State	79	State	102						
Local	225	Local	257						

Source: U.S. Census Bureau, Statistical Abstract of the United States: 2012, Table 338.

2.	a)	Distinguish between paramaters and statistics.	4
	b)	What are tests of significance?	2
	c)	What are one-tailed and two-tailed test?	4
	d)	The senior class has been given a comprehensive examination to assess edu	cational
		experience. The mean on the test was 74 and the standard deviation was 10. What pe	rcentage
		of the students had scores :	
		a) between 75 and 85	
		b) below 75?	
		c) below 80?	
		d) below 85?	5
3.	a)	What is point estimate and interval estimate?	2
	b)	State the Central Limit Theorem.	3
	c)	What is null hypothesis and alternative hypothesis?	4
	d)	It is known that, nationally, doctors working for health maintenance organizations	(HMOs)
		average 13.5 years of experience in their specialties, with a standard deviation of 7	.6 years.
		The executive director of an HMO in a Western state is interested in determining	whether
		doctors have less experience than the national average. A random sample of 150	doctors
		from HMOs shows a mean of only 10.9 years of experience.	
		i) State the research and the null hypotheses to test whether doctors in this HM	AO have
		less experience than the national average.	2
		ii) Using an alpha level of .01, calculate this test.	4
4.	a)	What are the types of error?	4
	b)	How can errors be avoided?	3
	c)	What are the properties of a bivariate relationship?	3
	d)	A student of Sociology wishes to examine whether or not there is a relationship bet	ween the
		unemployment rate of the country and suicide rate among youth over eleven-month	n period.
		Analyze the problem statistically and interpret the results sociologically.	5

Month	Unemployment Rate	Suicide Rate
1	8	52
2	9	59
3	7	55
4	11	60
5	12	62
6	9	49
7	6	50
8	7	49
9	8	51
10	5	46
11	4	44

Appendix A

Area Under the Normal Curve

Column (a) lists Z scores from 0.00 to 4.00. Only positive scores are displayed, but, since the normal curve is symmetrical, the areas for negative scores will be exactly the same as areas for positive scores. Column (b) lists the proportion of the total area between the Z score and the mean. Figure A.1 displays areas of this type. Column (c) lists the proportion of the area beyond the Z score, and Figure A.2 displays this type of area.

Area

Beyond

Area

Between

(a)	(b)	(c)
	0 .	

Ζ	Mean and Z	Z	Z Mean and Z		Z .	
0.00	0.0000	0.5000	0.21	0.0832	0.4168	
0.01	0.0040	0.4960	0,22	0.0871	0.4129	
0.02	0.0080	0.4920	0.23	0.0910	0.4090	
0.03	0.0120	0.4880	0.24	0.0948	0.4052	
0.04	0.0160	0.4840	0.25	0.0987	0.4013	
0.05	0.0199	0.4801	0.26	0.1026	0.3974	
0.06	0.0239	0.4761	0.27	0.1064	0.3936	
0.07	0.0279	0.4721	0.28	0.1103	0.3897	
0.08	0.0319	0.4681	0.29	0.1141	0.3859	
0.09	0.0359	0.4641	0.30	0.1179	0.3821	
0.10	0.0398	0.4602	0.01	0 1017	0 0700	
0.11	0.0438	0.4562	0.31	0.1217	0.3783	
0.12	0.0478	0.4522	0.32	0.1200	0.3745	
0.13	0.0517	0.4483	0.33	0.1295	0.3707	
0.14	0.0557	0 4443	0.34	0.1331	0.3009	
0.15	0.0596	0.4404	0.00	0.1300	0.3032	
0.16	0.0636	0.4364	0.37	0.1400	0.3557	
0.17	0.0675	0.4325	0.38	0.1480	0.3520	
0.18	0.0714	0.4286	0.39	0.1517	0.3483	
0.19	0.0753	0.4247	0.40	0 1554	0.3446	
0.20	0.0793	0.4207	0.40	0.1004	0.0440	

470 APPENDIX A

.

(a)	(b) Area Between	(c) Area Beyond	(a)	(b) Area Between	(c) Area Beyond
	Mean and Z	Z	Z	Mean and Z	Z
0.41	0.1591	0.3409	0.96	0.3315	0.1685
0.42	0.1628	0.3372	0.97	0.3340	0.1660
0.43	0.1664	0.3330	0.98	0.3365	0.1635
0.44	0.1700	0.3300	0.99	0.3389	0.1611
0.45	0.1730	0.3204	1.00	0.3413	0.1567
0.40	0.1772	0.3192	1.01	0.3438	0.1562
0.48	0.1844	0.3156	1.02	0.3461	0.1539
0.49	0.1879	0.3121	1.03	0.3485	0.1515
0.50	0.1915	0.3085	1.04	0.3508	0.1492
0.51	0 1050	0.2050	1.05	0.3531	0.1469
0.51	0.1950	0.3050	1.00	0.3577	0.1440
0.52	0.1900	0.3013	1.07	0.3599	0.1401
0.53	0.2019	0.2946	1.09	0.3621	0.1379
0.55	0.2088	0.2912	1.10	0.3643	0.1357
0.56	0.2123	0.2877	4 4 4	0.2005	0 1005
0.57	0.2157	0.2843	1.11	0.3666	0.1335
0.58	0.2190	0.2810	1.12	0.3708	0.1292
0.59	0.2224	0.2776	1.14	0.3729	0.1271
0.60	0.2257	0.2743	1.15	0.3749	0.1251
0.61	0.2291	0.2709	. 1.16	0.3770	0.1230
0.62	0.2324	0.2676	1.17	0.3790	0.1210
0.63	0.2357	0.2643	1.18	0.3810	0.1190
0.64	0.2389	0.2611	1.19	0.3830	0.1170
0.65	0.2422	0.2578	1.20	0.3849	0.1151
0.66	0.2454	0.2546	1.21	0.3869	0.1131
0.67	0.2486	0.2514	1.22	0.3888	0.1112
0.68	0.2517	0.2483	1.23	0.3907	0.1093
0.69	0.2549	0.2451	1.24	0.3925	0.1075
0.70	0.2000	0.2420	1.25	0.3944	0.1056
0.71	0.2611	0.2389	1.26	0.3962	0.1038
0.72	0.2642	0.2358	1.27	0.3980	0.1020
0.73	0.2673	0.2327	1.20	0.3997	0.1003
0.74	0.2703	0.2297	1.30	0.4032	0.0968
0.75	0.2764	0.2236	1.00	0.4040	0.0000
0.77	0.2794	0.2206	1.31	0.4049	0.0951
0.78	0.2823	0.2177	1.32	0.4000	0.0934
0.79	0.2852	0.2148	1.33	0.4002	0.0910
0.80	0.2881	0.2119	1.35	0.4115	0.0885
0.81	0.2910	0.2090	1.36	0.4131	0.0869
0.82	0.2939	0.2061	1.37	0.4147	0.0853
0.83	0.2967	0.2033	1.38	0.4162	0.0838
0.84	0.2995	0.2005	1.39	0.4177	0.0823
0.85	0.3023	0.1977	1.40	0.4192	0.0808
0.86	0.3051	0.1949	1.41	0.4207	0.0793
0.87	0.3078	0.1922	1.42	0.4222	0.0778
0.88	0.3106	0.1894	1.43	0.4236	0.0764
0.89	0.3150	0.1807	1.44	0.4251	0.0749
0.00	0.0100	0.1041	1.45	0.4265	0.0735
0.91	0.3186	0.1814	1.46	0.4279	0.0721
0.92	0.3212	0.1788	1.4/	0.4292	0.0708
0.93	0.3238	0.1702	1.40	0.4300	0.0694
0.95	0.3289	0.1711	1.50	0.4332	0.0668
0.00	0.0200	0.1717		0. 100L	0.0000

.

35

· .

.

AREA UNDER THE NORMAL CURVE 471

120/1200

.

(a) <i>Z</i>	(b) Area Between Mean and Z	(c) Area Beyond <i>Z</i>	(a) <i>Z</i>	(b) Area Between Mean and Z	(c) Area Beyond Z
1.51	0.4345	0.0655	2.06	0.4803	0.0197
1.52	0.4357	0.0643	2.07	0.4808	0.0192
1.53	0.4370	0.0630	2.08	0.4812	0.0188
1.54	0.4382	0.0618	2.09	0.4817	0.0183
1.55	0.4394	0.0606	2.10	0.4821	0.0179
1.56	0.4406	0.0594	2.11	0.4826	0.0174
1.57	0.4418	0.0582	2.12	0.4830	0.0170
1.58	0.4429	0.0571	2.13	0.4834	0.0166
1.59	0.4441	0.0559	2.14	0.4838	0.0162
1.00	0.4452	0.0040	2.15	0.4842	0.0158
1.61	0.4463	0.0537	2.16	0.4846	0.0154
1.62	0.4474	0.0526	2.17	().4850	0.0150
1.63	0.4484	0.0516	2.18	0.4854	0.0146
1.64	0.4495	0.0505	2.19	0.4857	0.0143
1.65	0.4505	0.0495	2.20	0.4861	0.0139
1.66	0.4515	0.0485	2.21	0.4864	0.0136
1.67	0.4525	0.0475	2.22	0.4868	0.0132
1.68	0.4535	0.0465	2.23	0.4871	0.0129
1.69	0.4545	0.0455	2.24	0.4875	0.0125
1.70	0.4554	0.0446	2.25	0.4878	0.0122
1.71	0.4564	0.0436	2.26	0.4881	0.0119
1.72	0.4573	0.0427	2.27	0,4884	0.0116
1.73	0.4582	0.0418	2.28	0.4887	0.0113
1.74	0.4591	0.0409	2.29	(),4890	0.0110
1.75	0.4599	0.0401	2.30	0.4893	0.0107
1.76	0.4608	0.0392	2 21	0 4006	0.0104
1.77	0.4616	0.0384	2.31	0.4898	0.0104
1.78	0.4625	0.0375	2.02	0.4000	0.0102
1.79	0.4633	0.0367	2.34	0.4904	0.0096
1.80	0.4641	0.0359	2.35	0.4906	0.0094
1.81	0.4649	0.0351	2.36	0.4909	0.0091
1.82	0.4656	0.0344	2.37	0.4911	0.0089
1.83	0.4664	0.0336	2.38	0,4013	0.0087
1.84	0.4671	0.0329	2.39	0.4916	0.0084
1.85	0.4678	0.0322	2,40	0.4018	0.0082
1.86	0.4686	0.0314	2 /1	0 4020	0.0080
1.87	0.4693	0.0307	2.41	0 4020	0.0020
1.88	0.4699	0.0301	2 43	0 4025	0.0075
1.89	0.4706	0.0294	2.44	0.4027	0.0073
1.90	0.4713	0.0287	2.45	0.4029	0.0071
1.91	0.4719	0.0281	2.46	0.4031	0.0069
1.92	0.4726	0.0274	2.47	0.4032	0.0068
1.93	0.4732	0.0268	2.48	0,4934	0.0066
1.94	0.4738	0.0262	2.49	0,4930	0.0064
1.95	0.4744	0.0256	2.50	0.4938	0.0062
1 96	0.4750	0.0250	2.51	A ADA A	0.0000
1.97	0.4756	0.0244	2.52	0.4041	0.0000
1.98	0.4761	0.0239	2.53	0.4040	0.0057
1.99	0.4767	0.0233	2.54	0.4046	0.0055
2.00	0.4772	0.0228	2.55	0,4046	0.0054
2.01	0.4778	0.0222	2.56	0.4048	0.0052
2.02	0.4783	0.0217	2.57	O ADAO	0.0051
2.03	0.4788	0.0212	2.58	0.4961	0.0049
2.04	0.4793	0.0207	2.59	0,4008	0.0048
2.05	0.4798	0.0202	2.60	0 4000	0.0047

•

.

 \mathcal{P}^{ω}

· . [·] ·

. .

	(a) <i>7</i>	(b) Area Between Mean and Z	(c) Area Beyond <i>Z</i>	(a) 7	(b) Area Between Mean and Z	(c) Area Beyond Z
			~			
	1.51	0.4345	0.0655	2.06	0.4803	0.0197
	1.52	0.4357	0.0643	2.07	0.4808	0.0192
	1.53	0.4370	0.0630	2.08	0.4812	0.0188
	1.54	0.4382	0.0618	2.09	0.4817	0.0183
	1.55	0.4394	0.0606	2.10	0.4821	0.0179
	1.50	0.4406	0.0594	2.11	0.4826	0.0174
	1.57	0.4410	0.0562	2.12	0.4830	0.0170
	1.50	0.4429	0.0571	2.13	0.4834	0.0166
	1.60	0.4452	0.0548	2.14	0.4838	0.0162
	1.00	0.4402	0.0040	2.15	0.4842	0.0158
	1.61	0.4463	0.0537	2.16	0.4846	0.0154
	1.62	0.4474	0.0526	2.17	0.4850	0.0150
	1.63	0.4484	0.0516	2.18	0.4854	0.0146
	1.04	0.4495	0.0505	2.19	0.4857	0.0143
	1.00	0.4505	0.0495	2.20	0.4801	0.0139
	1.00	0.4515	0.0465	2.21	0.4864	0.0136
	1.68	0.4535	0.0465	2.22	0.4868	0.0132
	1.69	0.4545	0.0455	2.23	0.4871	0.0129
	1.70	0.4554	0.0446	2.24	0.4875	0.0125
	1170	0.4004	0.0440	2.25	0.4878	0.0122
	1.71	0.4564	0.0436	2.26	0.4881	0.0119
	1.72	0.4573	0.0427	2.27	0.4884	0.0116
	1.73	0.4582	0.0418	2.28	0.4887	0.0113
	1.74	0.4590	0.0409	2.29	0,4090	0.0107
	1.76	0,4508	() 0302	2.00	0,4090	0.0107
	1.70	0.4616	0.0384	2.31	0.4896	0.0104
	1.78	0.4625	0.0375	2.32	0.4898	0.0102
	1.79	0.4633	0.0367	2.33	0.4901	0.0099
	1.80	0.4641	0.0359	2.34	0,4904	0.0096
	1 01	0.4040	0.0054	2.35	0,4906	0.0094
	1.81	0.4649	0.0351	2.36	0,4909	0.0091
	1.82	0.4000	0.0344	2.37	0.4911	0.0089
	1.80	0.4004	0,0320	2.30	0.4016	0.0087
	1.85	0.4678	0.0323	2.00	0.4918	0.0082
	1.86	0.4686	0.0314	2.10	0,1010	0.0002
	1.87	0.4693	0.0307	2.41	0.4920	0.0080
	1.88	0.4699	0.0301	2.42	0.4922	0.0078
	1.89	0.4706	0.0294	2.43	0.4925	0.0075
	1.90	0.4713	0.0287	2.44	0,4927	0.0073
•	1 0 1	0 4710	0.0281	2.40	0,4929	0.0071
	1.91	0.4719	0.0201	2.40	0.4000	0.0009
	1.92	0.4720	0,0274	2.47	0.4034	0.0066
	1 94	0.4738	0.0262	2.40	0 4036	0.0064
	1.95	0.4744	0.0256	2.50	0.4938	0.0062
	1.96	0.4750	0.0250	0.54	0.1010	
,	1.97	0.4756	0.0244	2.51	0,4940	0.0060
	1.98	0.4761	0.0239	2.52	0.4941	0.0059
	1.99	0.4767	0.0233	2.03	0,0040	0.0057
	2.00	0.4772	0.0228	2.04	0.4040	0.0055
	2.01	0 4778	0.0999	2.55	0.4949	0.0052
	2.02	0.4783	0.0217	2.57	0.4949	0.0051
·. ·	2.03	0.4788	0.0212	2.58	0.4061	0.0049
-	. 2.04	0.4793	0.0207	2.59	0,4952	0.0048
	2.05	0.4798	0.0202	2.60	0,4983	0.0047

AREA UNDER THE NORMAL CURVE 471

·*.

۰.

.

. 12

.

(a)	(b) Area Between	(c) Area Beyond	(a)	(b) Area Between	(c) Area Beyond
Ζ	Mean and Z	<u>Z</u>	Z	Mean and Z	Z
2.61 2.62 2.63 2.64 2.65 2.66 2.67 2.68 2.69 2.69	0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964	0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036	3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20	0.4991 0.4991 0.4992 0.4992 0.4992 0.4992 0.4992 0.4993 0.4993 0.4993	0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
2.70 2.71 2.72 2.73 2.74 2.75 2.76 2.77 2.78 2.79 2.80	0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4971 0.4972 0.4973 0.4974 0.4974	0.0033 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 0.0026	3.21 3.22 3.23 3.24 3.25 3.26 3.27 3.28 3.29 3.30	0.4993 0.4994 0.4994 0.4994 0.4994 0.4994 0.4995 0.4995 0.4995 0.4995 0.4995	0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 0.0005
2.81 2.82 2.83 2.84 2.85 2.86 2.87 2.88 2.89 2.90	0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981 0.4981	0.0025 0.0024 0.0023 0.0022 0.0022 0.0021 0.0021 0.0020 0.0019 0.0019	3.31 3.32 3.33 3.34 3.35 3.36 3.37 3.38 3.39 3.40	0.4995 0.4995 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 0.4997 0.4997	0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 0.0003
2.91 2.92 2.93 2.94 2.95 2.96 2.97 2.98 2.99 3.00	0.4982 0.4983 0.4983 0.4984 0.4984 0.4985 0.4985 0.4985 0.4986 0.4986 0.4986	0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 0.0014	3.41 3.42 3.43 3.44 3.45 3.46 3.47 3.48 3.49 3.50	0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4998 0.4998	0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 0.0002
3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10	0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990 0.4990	0.0013 0.0012 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010 0.0010	3.60 3.70 3.80 3.90 ⁵ 4.00	0.4998 0.4999 0.4999 0.4999 0.4999	0.0002 0.0001 0.0001 <0.0001 <0.0001

. .

Appendix B

Distribution of t

Use this table to find the critical region (step 3 of the five-step model) for tests of significance with sample means when sample size (N) is small. First, choose an alpha level and a one- or two-tailed test. Then find degrees of freedom to find the *t* score that marks the beginning of the critical region.

		Lev	el of Significan	ce for One-Ta	ailed Test	
Degrees	.10	.05	.025	.01	.005	.0005
of		Lev	el of Significan	ce for Two-Ta	ailed Test	
(df)		.10	05	.02	.01	.001
1	3.078	6.314	12.706	31.821	63.657	636.619
2	1.886	2.920	4.303	6.965	9.925	31.598
3	1.638	2.353	3.182	4.541	5.841	12.941
4	1.533	2.132	2.776	3.747	4.604	8.610
5	1.476	2.015	2.571	3.365	4.032	6.859
6	1.440	1.943	2.447	3.143	3.707	5.959
7	1.415	1.895	2.365	2.998	3.499	5.405
8	1.397	1.860	- 2.306	2.896	3.355	5.041
9	1.383	1.833	2.262	2.821	3.250	4.781
10	1.372	1.812	2.228	2.764	3.169	4.587
-11	1.363	1.796	2.201	2.718	3.106	4.437
12	1.356	1.782	2.179	2.681	3.055	4.318
13	1.350	1.771	2.160	2.650	3.012	4.221
14	1.345	1.761	2.145	2.624	2.977	4.140
15	1.341	1.753	2.131	2.602	2.947	4.073
16	1.337	1.746	2.120	2.583	2.921	4.015
17	1.333	1.740	2.110	2.567	2.898	3.965
18	1.330	1.734	2.101	2.552	2.878	3.922
19	1.328	1.729	2.093	2.539	2.861	3.883
20	1.325	1.725	2.086	2.528	2.845	3.850
21	1.323	1.721	2.080	2.518	2.831	3.819
22	1.321	1.717	2.074	2.508	2.819	3.792
23	1.319	1.714	2.069	2.500	2.807	3.767
24	1.318	1.711	2.064	2.492	2.797	3.745
25	1.316	1.708	2.060	2.485	2.787	3.725
26	1.315	1.706	2.056	2.479	2.779	3.707
27	1.314	1.703	2.052	2.473	2.771	3.690
28	1.313	1.701	2.048	2.467	2.763	3.674
29	1.311	1.699	2.045	2.462	2.756	3.659
30	1.310	1.697	2.042	2.457	2.750	3.646
40	1.303	1.684	2.021	2.423	2.704	3.551
60	1.296	1.671	2.000	2.390	2.660	3.460
120	1,289	1.658	1.980	2.358	2.617	3.373
∞	1,282	1.645	1.960	2.326	2.576	3.291

NUCCESS IN

Source: Table III of Fisher and Yates: *Statistical Tables for Biological, Agricultural and Medical Research*, published by Longman Group Ltd., London (1974), 6th edition (previously published by Oliver & Boyd Ltd., Edinburgh).

Apjendix D

λ

Distribution of F

Use this table to find the critical region (step 3 of the five-step model) for analysis of variance tests. Choose an alpha level of either 0.05 or 0.01 and then find the degrees of freedom to find the F ratio that marks the beginning of the critical region.

n ₁ n ₂	1.	214	3	4	5	6	8	12	24	80.
1	161.4	199.5	215.7	224.6	230.2	234.0	238.9	243.9	249.0	254.3
2	18.51	19.00	19.16	19.25	19.30	19.33	19.37	19.41	19.45	19.50
3	10.13	9.55	9.28	9.12	9.01	8.94	8.84	8.74	8.64	8.53
4	7.71	6.94	6.59	6.39	6.26	6.16	6.04	5.91	5.77	5.63
5	6.61	5.79	5.41	5.19	5.05	4.95	4.82	4.68	4.53	4.36
6	5.99	5.14	4.76	4.53	4.39	4.28	4.15	4.00	3.84	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.73	3.57	3.41	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.44	3.28	3.12	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.23	3.07	2.90	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.07	2.91	2.74	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	2.95	2.79	2.61	2.40
12	4.75	3.88	3.49	3.26	3.11	3.00	2.85	2.69	2.50	2.30
13	4.67	3.80	3.41	3.18	3.02	2.92	2.77	2.60	2.42	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.70	2.53	2.35	2.13
15	4.54	3.68	3.29	<u>3.06</u>	2.90	2.79	2.64	2.48	2.29	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.59	2.42	2.24	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.55	2.38	2.19	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.51	2.34	2.15	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.48	2.31	2.11	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.45	2.28	2.08	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.42	2.25	2.05	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2.40	2.23	2.03	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.38	2.20	2.00	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.36	2.18	1.98	1.73
25	4.24	3.38	2.99	2.76	2.60	2.49	2.34	2.16	1.96	1.71
26	4.22	3.37	2.98	2.74	2.59	2.47	2.32	2.15	1.95	1.69
27	4.21	3.35	2.96	2.73	2.57	2.46	2.30	2.13	1.93	1.67
28	4.20	3.34	2.95	2.71	2.56	2.44	2.29	2.12	1.91	1.65
29	4.18	3.33	2.93	2.70	2.54	2.43	2.28	2.10	1.90	1.64
30	4.17	3.32	2.92	2.69	2.53	2.42	2.27	2.09	1.89	1.62
40	4.08	3.23	2.84	2.61	2.45	2.34	2.18	2.00	1.79	1.51
60	4.00	3.15	2.76	2.52	2.37	2.25	2.10	1.92	1.70	1.39
120	3.92	3.07	2.68	2.45	2.29	2.17	2.02	1.83	1.61	1.25
∞	3.84	2.99	2.60	2.37	2.21	2.09	1.94	1.75	1.52	1.00

p = .05

Values of n_1 and n_2 represent the degrees of freedom associated with the between and within estimates of variance, respectively.

Source; Table V of Fisher and Yates: *Statistical Tables for Biological, Agricultural and Medical Research,* published by Longman Group Ltd., London (1974), 6th edition (previously published by Oliver and Boyd Ltd., Edinburgh). Reprinted by permission of Addison Wesley Longman Ltd.

478 APPENDIX D

•

•

3-

p = .01

n ₁ n ₂	$\langle \mathbf{f} \rangle$	2	3	4	5	6	8	12	24	80
1	4052	4999	5403	5625	5764	5859	5981	6106	6234	666
2	98.49	99.01	99.17	99.25	99.30	99.33	99.36	99.42	99.46	99.50
3	34.12	30.81	29.46	28.71	28.24	27.91	27.49	27.05	26.60	26.12
4	21.20	18.00	16.69	15.98	15.52	15.21	14.80	14.37	13.93	13.46
5	16.26	13.27	12.06	11.39	10.97	10.67	10.27	9.89	9.47	9.02
6	13.74	10.92	9.78	9.15	8.75	8.47	8.10	7.72	7.31	6.88
7	12.25	9.55	8.45	7.85	7.46	7.19	6.84	6.47	6.07	5.65
8	11.26	8.65	7.59	7.01	6.63	6.37	6.03	5.67	5.28	4.86
9	10.56	8.02	6.99	6.42	6.06	5.80	5.47	5.11	4.73	4.31
10	10.04	7.56	6.55	5.99	5.64	5.39	5.06	4.71	4.33	3.91
11	9.65	7.20	6.22	5.67	5.32	5.07	4.74	4.40	4.02	3.60
12	9.33	6.93	5.95	5.41	5.06	4.82	4.50	4.16	3.78	3.36
13	9.07	6.70	5.74	5.20	4.86	4.62	4.30	3.96	3.59	3.16
14	8.86	6.51	5.56	5.03	4.69	4.46	4.14	3.80	3.43	3.00
15	8.68	6.36	5.42	4.89	4.56	4.32	4.00	3.67	3.29	2.87
16	8.53	6.23	5.29	4.77	4.44	4.20	3.89	3.55	3.18	2.75
17	8.40	6.11	5.18	4.67	•4.34	4.10	3.79	3.45	3.08	2.65
18	8.28	6.01	5.09	4.58	4.25	4.01	3.71	3.37	3.00	2.57
19	8.18	5.93	5.01	4.50	4.17	3.94	3.63	3.30	2.92	2.49
20	8.10	5.85	4.94	4.43	4.10	3.87	3.56	3.23	2.86	2.42
21	8.02	5.78	4.87	4.37	4.04	3.81	3.51	3.17	2.80	2.36
22	7.94	5.72	4.82	4.31	3.99	3.76	3.45	3.12	2.75	2.31
23	7.88	5.66	4.76	4.26	3.94	3.71	3.41	3.07	2.70	2.26
24	7.82	5.61	4.72	4.22	3.90	3.67	3.36	3.03	2.66	2.21
25	7.77	5.57	4.68	4.18	3.86	3.63	3.32	2.99	2.62	2.17
26	7.72	5.53	4.64	4.14	3.82	3.59	3.29	2.96	2.58	2.13
27	7.68	5.49	4.60	4.11	3.78	3.56	3.26	2.93	2.55	2.10
28	7.64	5.45	4.57	4.07	3.75	3.53	3.23	2.90	2.52	2.06
29	7.60	5.42	4.54	4.04	3.73	3.50	3.20	2.87	2.49	2.03
30	7.56	5.39	4.51	4.02	3.70	3.47	3.17	2.84	2.47	2.01
40	7.31	5.18	4.31	3.83	3.51	3.29	2.99	2.66	2.29	1.80
60	7.08	4.98	4.13	3.65	3.34	3.12	2.82	2.50	2.12	1.60
120	6.85	4.79	3.95	3.48	3.17	2.96	2.66	2.34	1.95	1.38
∞	6.64	4.60	3.78	3.32	3.02	2.80	2.51	2.18	1.79	1.00

Values of n_1 and n_2 represent the degrees of freedom associated with the between and within stimates of variance, respectively.