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Abstract

Understanding metabolism is crucial for comprehending the phenotypic nature of all living

things, including humans. Metabolism is essential for life and good health, any dysregulation

in metabolic processes can be detrimental and involved in various diseases, including cancers,

diabetes, cardiovascular diseases, etc. Therefore, exploring metabolic alterations is essential to

comprehend the underlying mechanism behind disease development. Additionally, it offers a

unique opportunity to identify potential drug targets and design new therapeutic strategies. Due

to the complexity and high dimensionality, mathematical modelling-based approaches have

been used to study metabolic perturbations in various conditions like human diseases. Al-

though numerous mathematical modelling-based studies have been performed, there still exists

a lacuna of metabolic perturbations in several diseases such as diabetes, cancer, nonalcoholic

fatty liver disease, etc. The present thesis aims to explore metabolic perturbations in disease to

understand the underlying mechanism and develop therapeutic strategies.

Here, we explored the application of genome-scale metabolic models (GSMM) and small-

scale kinetic models in studying the role of metabolites and associated pathways in disease

progression. We start by applying GSMM to identify the altered metabolic flux state of pancre-

atic β -cells under type 2 diabetes (T2D). We identified seven secreted metabolites from β -cell

associated with cardiovascular disease (CVD) pathogenesis. Additionally, GSMMs were ap-

plied to identify critical regulatory points through in silico knockout approaches. In total, 13

genes were obtained whose knockout reduced the growth rate of all cancer models but were

inactive across all nine normal cell models. We later validated two of these genes (SOAT1 and
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CYTB) experimentally on four cancer cell-lines. Finally, the combination of these two appli-

cations of GSMM, i.e., identifying metabolic alterations and regulatory points through in silico

gene knockout, was used to identify potential targets for nonalcoholic steatohepatitis (NASH).

We elucidated the possible mechanism of action of these identified targets using GSMM. Our

analysis identified three potential targets for NASH. Their inhibition attenuate hepatic steatosis

by promoting higher flux rates for the altered reactions involved in fatty acid activation and

mitochondrial beta-oxidation pathways.

The current thesis is not limited to the application of GSMM. We have also used small-scale

kinetic models to capture the underlying disease mechanism. We have proposed and analyzed

a six-dimensional model on glucose-stimulated insulin secretion (GSIS) to identify the crucial

factors whose impairment can either lead to hyperglycemia or hypoglycemia. Our analysis

uncovers the potential therapeutic strategies for preventing the progression of T2D during these

alterations. We have also proposed another seven-dimensional model for insulin synthesis and

secretion to understand the pathophysiology of T2D and hyperinsulinemic hypoglycaemia. The

model analysis revealed that the defects in the insulin granules dynamics hamper first- and

second-phase insulin secretion. In contrast, abnormal insulin synthesis takes a long time to

exert the effect and might also be one of the reasons for fasting hypoglycemia in insulinoma

patients. Our study also suggests that targeting insulin synthesis could become a potential

therapeutic strategy for controlling impaired insulin secretion.

Overall, the work discussed in this thesis explores the application of GSMMs and small-

scale kinetic models in understanding metabolic perturbations in human disease. The identified

crucial factors responsible for impaired metabolism will enrich our understanding of disease

pathogenesis. The proposed drug targets or therapeutic strategies have the potential to control

the disease progression, and thus opens door for further exploration.
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1
Introduction

1.1 Metabolism

Metabolism is the set of all biochemical reactions that occur within each living cell of an

organism [1]. The word “metabolism” originates from the Greek word “metabolē”, meaning

“change” or from the French word “métabolisme” [2]. These chemical reactions include the

biosynthesis of complex macromolecules such as proteins, lipids, carbohydrates, and nucleic

acids (anabolism) and the degradation of these macromolecules into smaller molecules such as

carbon dioxide, water, and ammonia with the release of energy in the form of ATP (catabolism).

Catabolism can occur either in the presence of oxygen (called aerobic catabolism) or even in

the absence of oxygen (called anaerobic catabolism). Although the energy yield is much lower

in anaerobic catabolism, it is also crucial for organisms or cells to survive in such environments

1
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that are temporarily or permanently devoid of oxygen. Photosynthesis, a phototrophic energy

metabolism, is an essential metabolic process in which plants, algae, and some bacteria acquire

light energy to synthesize food. Ultimately, almost all organisms rely on the food produced

through photosynthesis for nourishment. There are three major purposes of metabolism: 1) the

conversion of food into energy to perform the cellular processes, 2) the conversion of food to

building blocks for carbohydrates, proteins, lipids, and nucleic acids, and 3) the elimination

of metabolic wastes. These enzyme-catalyzed chemical reactions allow organisms to carry

out activities such as growth, movement, development, reproduction and responding to their

environments.

1.1.1 Metabolic pathways

Metabolism mainly consists of a series of enzymatic steps, also called metabolic pathways.

Metabolic pathways refer to the series of enzyme-catalyzed chemical reactions connected by

their intermediates, i.e., the reactants of one reaction are the products of the previous one,

and so on (Fig. 1.1). Basically, the pathway converts one or more starting molecules into

products through a series of intermediates. Each of these chemical reactions in metabolic

pathways doesn’t take place automatically, instead facilitated by a specific protein called an

enzyme. Also, some of these enzymes need dietary vitamins, minerals, and other cofactors

to catalyze their corresponding reactions. The reactants, products, and intermediates of the

metabolic reactions are called metabolites, which play roles in many cellular functions such

as energy conversion, cofactor activity, signalling, and epigenetic regulation [3, 4]. Metabolic

pathways are distributed in various compartments of the cell and based on these, their function

and significance vary [5]. For instance, the tricarboxylic acid (TCA) cycle, oxidative phospho-

rylation, and electron transport chain occur in the mitochondria [6]. Whereas glycolysis, fatty

acid biosynthesis, and pentose phosphate pathway occur in the cytoplasm [7].
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Figure 1.1: Overview of the metabolic pathways (Source: KEGG: Kyoto Encyclopedia of
Genes and Genomes [8]). Here each dot represents the metabolites and each edges denotes an
enzymatic reaction.

Metabolic pathways are broadly divided into two categories: 1) anabolic pathways and 2)

catabolic pathways (Fig. 1.2). Anabolic pathways construct macromolecules such as carbohy-

drates, proteins, lipids, and nucleic acids from smaller units and typically need an energy input.

Anabolic processes help to make the building blocks of the cells. Photosynthesis, pentose phos-

phate pathway, gluconeogenesis, glycogenesis, protein biosynthesis are fatty acid synthesis are

examples of anabolic pathways. Catabolic pathways involve the breaking down of macro-
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molecules and biomolecular polymers into simpler molecules such as carbon dioxide, water,

and ammonia and release energy. Catabolic pathways have two major roles: they provide the

small biomolecules that are the building blocks for the macromolecules and produce the energy

needed to run cellular functions and synthesize the macromolecules. Glycolysis, TCA cycle,

glycogenolysis, beta-oxidation of fatty acid, and urea cycle are examples of catabolic pathways.

Figure 1.2: Coupling of anabolic and catabolic pathways in cell metabolism (Source: Judge,
A. et al. Essays Biochem (2020) [2]; reprinted with unrestricted use under the license: CC BY-
NC-ND 4.0). Catabolic pathways involve in the breakdown of macromolecules and biomolec-
ular polymers into simpler molecules and release energy. Anabolic pathways utilize energy to
build new molecules out of the products of catabolism.

1.1.2 History of metabolic research

Metabolism and metabolic pathways have been explored over the course of several centuries

and now have progressed from studying whole animals in early studies to investing each re-

action in modern biochemistry and molecular biology. Metabolic studies were conducted as

early as the thirteenth century by Ibn al-Nafis, who stated that “the body and its parts are in a

continuous state of dissolution and nourishment, so they are inevitably undergoing permanent

change” in his work titled “Al-Risalah al-Kamiliyyah fil Siera al-Nabawiyyah” [9]. The more

sophisticated and documented research started in the closing decades of the sixteenth century.

Instrumentation enhanced direct observation by enabling quantification, allowing verification

in the sciences, especially of biological systems. The first controlled experiments on humans
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were published in 1614 by Santorio Santorio in his book titled “Ars de statica medecina” [10].

His efforts were devoted to understanding metabolic balance studies. In these early studies,

the underlying mechanisms of the metabolic processes had not been investigated, and it was

thought that a vital force was there to animate the living tissue [11]. In the 19th century, Louis

Pasteur observed that sugar fermentation by yeast is catalyzed by the substances present within

the yeast cells, and he called them “ferments” [12]. This discovery, along with the publication

made by Friedrich Wöhler in 1828 that describes the formation of urea from two inorganic

molecules [13], established the basis for organic compounds and biochemical reactions found

in cells. The discovery of enzymes at the beginning of the 20th century advanced the knowl-

edge further and also separated the study of metabolic reactions from the biological study of

cells and marked the beginnings of biochemistry. The early 20th century saw rapid advance-

ment in metabolic studies, and the most notable finding was the discovery of Kreb’s cycle or

citric acid cycle by Hans Krebs, who contributed a lot to the field of metabolism and obtained

the Nobel Prize in Physiology or Medicine in 1953 [14]. He also discovered the urea cycle and,

later, the glyoxylate cycle working with Hans Kornberg.

At least 25 prizes have been awarded for metabolism-related work: 15 times to 31 laureates

in Physiology or Medicine and 10 times to 15 laureates in Chemistry. The first one came in

1902 in Chemistry and was awarded to Emil Fischer’s pioneering work on sugar and purine

syntheses. The most recent one was awarded for the oxygen-sensing role of HIF-1α in 2019.

In mammals, two small peptide hormones: insulin and glucagon, can control metabolism. Both

are secreted from the islets of Langerhans of the pancreas, where insulin is produced in β -cells

and glucagon is produced in α-cells. Given the significance of insulin in the management of

diabetes, Nobel prizes were awarded in 1923, 1958, and 1977 for its discovery, structural iden-

tification, and development of its radioimmunoassay. Lipids are biomolecules that are highly

soluble in nonpolar solvents but insoluble in polar solvents. Most of the energy in various or-

ganisms is stored in the form of fats and oils [15]. There are two main subtypes of lipids: sterols

(such as cholesterols) and those containing fatty acids (such as triglycerides). They serve as

cellular messengers, assisting proteins in their functions. They also initiate several chemical

reactions that aid in regulating development, immunity, reproduction, and other aspects of ba-
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sic metabolism. In the years 1964 and 1985, Nobel prizes were also awarded for discoveries

concerning the mechanism and regulation of cholesterol and fatty acid metabolism. Vitamins

are the essential micronutrients in the diet, even though in small amounts, they cannot be syn-

thesized by our bodies, and their deficiency leads to severe diseases [16]. Due to accumulated

research on vitamins, we now apparent that 13 vitamins are necessary for human health, in-

cluding nine water-soluble vitamins (C and eight B vitamins) and four fat-soluble vitamins (A,

D, E, and K). In total, seven Nobel prizes were awarded in the vitamins-related work [17]. A

series of catabolic reactions known as cellular respiration transform nutrients into energy in the

form of ATP [1]. The nature and the mode of action of the respiratory enzyme haemoglobin

were discovered by Otto Warburg, and this pioneering work was also awarded the Nobel prize

in 1931. Moreover, various transporter proteins can assemble in the channels present in the

cell membrane for transporting water, mineral ions, and various metabolites [1]. In 2003, the

Nobel prize was awarded in chemistry for discovering water channels and for structural and

mechanistic studies of ion channels. These prize-winning studies on the enzymes and mem-

brane channels paved the way for our current understanding of how cells process and transport

matter and energy. Also, the understanding of drug metabolism and xenobiotic metabolism has

advanced over the last two centuries of research.

Development of new advanced techniques such as chromatography, NMR spectroscopy,

X-ray diffraction, isotopic labelling, electron microscopy, etc., have tremendously advanced

modern biochemical research. These methods have made it possible to identify and thoroughly

examine the numerous chemicals and metabolic pathways in cells. Till now, a very large num-

ber of metabolic pathways have been discovered, and the corresponding information can be

found in various online resources such as KEGG [8], BRENDA [18], BioCyc [19], MetaCyc

[20], Reactome [21], etc. Among these resources, KEGG is one of the most extensively used

databases and provides various information on genomes, pathways, enzymes, metabolites, and

drugs. Information regarding the orthologous genes for multiple organisms can also be ob-

tained from KEGG. In addition to KEGG, organism-specific metabolic information can be

obtained from other resources, including BioCyc, MetaCyc, etc. From BRENDA, we can get

information regarding the enzymes, their activity, expression, and inhibition.
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1.1.3 Significance of studying metabolism

Understanding metabolism is crucial for comprehending the phenotypic nature of all living

things, including humans. The studies of metabolism have been conducted in a broad range

of fields, such as biotechnology, nutrition, medicine, disease diagnosis, and drug metabolism

[2, 22–25]. Studies on biotechnology mainly focus on identifying techniques to synthesize

valuable substances on an industrial scale in a cost-effective manner [25, 26]. The commonly

used methods for performing metabolic engineering are 1) overexpressing the rate-limiting

enzyme of the biosynthetic pathway of the desired compounds, 2) inhibiting the competing

metabolic reactions, 3) engineering the rate-limiting enzyme, 4) gene expression in the non-

native organism, i.e., heterologous host [27]. Understanding metabolism gives a unique op-

portunity to understand the genotype-phenotype and the environment-phenotype relationship,

as the metabolome of an organism reflects the genes, diet, and lifestyle in that entity [23, 28].

Research on the discovery and breakdown of specific metabolic pathways occupied a promi-

nent position in scientific inquiry for many years until the 1960s [2]. Since then, research on

the role of metabolism has been primarily focused on recognizing metabolic perturbations and

their manifestation in human diseases [2]. As metabolism is essential for life and good health,

any disruptions or dysregulation in metabolic processes can be harmful and involved in most

human diseases. Aberrant metabolism is one of the major causes of various diseases, includ-

ing cancers, diabetes, cardiovascular diseases, nonalcoholic fatty liver disease and neuronal

diseases [29–35]. So, understanding metabolic alterations in various pathophysiology condi-

tions allow us to understand the disease mechanisms and helps to identify potential drug targets

and metabolic biomarkers [36]. More importantly, targeting metabolic enzymes is much more

promising since metabolism is evolutionarily more conserved than other biologic processes

[37].

However, after many decades of research, there is a growing need to explore the metabolic

perturbations in various diseases, such as diabetes, cancer, nonalcoholic fatty liver disease

(NAFLD), etc. For example, β -cell loss of function is one of the major reasons for developing

type 2 diabetes (T2D), and ensembled evidence suggests that impaired β -cell metabolism may

be the initial or triggering factor for abnormal β -cell functioning [38, 39]. Although it is known
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that altered mitochondrial metabolism, ATP synthesis, glycolysis, some amino acid metabolism

pathway, and fatty acid metabolism hampered insulin secretion in T2D [38–44], there is still

a void in an in-depth understanding of β -cell metabolism in T2D. The main drawbacks of the

current anticancer drugs are that they have many side effects [45] and show different responses

in different individuals [46]. Thus there is a need to develop new anticancer drugs to take care

of these problems and hence demand an in-depth mechanistic understanding of cancer [47, 48].

Besides, after decades of research, no drug has been FDA-approved for treating NAFLD [49].

Thus a better understanding of the pathophysiology of NAFLD is needed to identify potential

drug targets to control the disease progression.

In fact, there are several challenges in studying metabolism. For instance, since metabolic

networks are complex and large in nature, it is very difficult to measure the flow of metabolites

through each reaction. In contrast to the static-like concentrations of transcripts, proteins, or

metabolites, metabolic fluxes are the time-dependent flow of metabolites through a network

and, therefore, cannot be quantified directly. Instead, it requires a computer model-based plat-

form to infer from the measurable quantities [50]. Another challenge in experimental studies

on human metabolism is that they are costly and time-consuming. The techniques for identify-

ing new therapeutic strategies mostly rely on performing gene knockout [51–55] or phenotypic

screening of drugs [51, 56–59] to obtain the desired outcome, like a reduction in the growth

rate for cancer cell lines. As doing these without prior screening can cause a waste of time, re-

sources, and money, hence any interdisciplinary approaches can speed up the processes. In this

context, mathematical modelling-based approaches can become a successful helping hand. It

has also been widely employed to capture disease-associated molecular mechanisms [60–62],

identify new drug targets and biomarkers [36, 63–65], and develop new intervention strategies

and therapeutic agents [66–69].

1.2 Mathematical modelling

Mathematical modelling, a key part of the systems biology approach, is a process by which

a real-world problem is translated into a mathematical language. This kind of formulation is
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purely abstract and always based on some assumptions, which means neither all the details

of each process will be described, nor all aspects concerning the problem will be considered.

For decades, mathematical models have been widely used in biological science to aid in un-

derstanding the dynamics of complex biological systems [70]. In general, experiments lead to

several hypotheses on individual processes, but it often comes up short in providing a global

overview of the whole system [71]. In this context, mathematical modeling can help to under-

stand a more comprehensive knowledge of the dynamics of the system and test the experimen-

tally driven hypotheses. It also provides new hypotheses regarding future development, which

can be further validated through experimentation. Formulation of mathematical models and,

subsequently, computation have become more and more familiar in biology over the past few

decades, even though they have been applied much earlier. In the 13th century, Fibonacci used

the famous Fibonacci series in his book “Liber Abaci” (The Book of Calculation, 1202) to de-

scribe the growth of the rabbit population [72]. Daniel Bernoulli used mathematics to describe

the impact of smallpox on the human population in the 18th century [73]. In 1789, Thomas

Malthus proposed the Malthusian growth model (exponential nature of population growth) of

the human population in his book “An Essay on the Principle of Population”, one of the earliest

and most influential books on population biology [74]. Later, Pierre François Verhulst pro-

posed the logistic function for the population growth model in a series of works between 1838

and 1847 [75]. Lotka and Volterra described the population dynamics of predator and prey

with their famous equation known as Lotka–Volterra equations, a pair of first-order nonlinear

differential equations, in the 1920s [71]. On the other hand, in 1913, Leonor Michaelis and

Maud Menten developed mathematical equations known as the Michaelis-Menten equation to

describe the rate of enzyme kinetic reactions [76]. Using these equations as a foundation, a

series of kinetic models have been developed to understand the dynamics of various metabolic

pathways in different organisms.

Mathematical modelling is a subjective and selective process in which specific questions

are addressed [71, 77]. Therefore, the model should be constructed according to the problems,

with a priority that the structure of the model must accurately reflect the real system (Fig.

1.3). Also, need to clarify its level of confidence and limitations. The values of parameters are
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Figure 1.3: The general steps involved in studying biological systems through mathemati-
cal modelling.

always based on existing knowledge and can also be inferred from the available experimental

data. The model is then analyzed, and the result must be validated by existing knowledge or ex-

periments to establish the model. If the models fail to reproduce the known phenomenon of the

system, the subsequent modification will be carried out in the model until the desired outcome

appears. The model-predicted hypotheses should be further validated through experimentation

or extrapolations from comparable systems. The mathematical formulation part can be kept

as simple as possible for easy implementation and interpretation of the results. Otherwise,

making it very realistic can make the system more complicated to propose new hypotheses.

In biological systems, sometimes generalized models are developed to apply to similar objects

(e.g., the Michaelis-Menten equation holds for many enzymes). In contrast, others are typi-

cally focused on one specific object, like the sequence of a gene, the 3D structure of a protein,

etc. In modelling biological systems, we must follow some constraints like non-negativity and

boundedness, as the level of biological entities can not be negative or infinite. The attempt at

mathematical modelling provides quantitative and qualitative descriptions of the systems and

often reveals gaps in current knowledge or understanding. Additionally, it can be utilized to

determine the feasibility of the proposed theories.
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1.3 Modelling of metabolism

The formulation of a mathematical model on the biological processes can be achieved by em-

ploying different approaches depending on the nature of the system and the data availability.

Ordinary differential equations (ODE)-based mathematical models are the most extensively

used approaches and are applied to capture the time course of biological entities like metabo-

lites [78]. This modelling approach is very useful for capturing the non-linearity of the systems

and can explain the interactions between different variables. Besides, the right strategy to cap-

ture the diffusion of the variables is to incorporate the partial differential equations (PDE) in

the model. This Spatio-temporal modelling provides the spatial information of the system [79].

A major obstacle to these approaches in metabolic modelling is that only a small sub-network

can be studied instead of the whole network due to the lack of knowledge on the kinetics of

each enzyme in different cells and organisms [80, 81]. In this context, constrained-based mod-

eling provides unique opportunities to capture the steady-state flux distribution through the

entire metabolic network [71, 77]. Aside from these, rule-based modelling (or agent-based

modelling), delay differential equations, stochastic differential equations, Petri net, and var-

ious statistical modelling approaches have been applied in studying biological systems [71].

ODE-based small kinetic models and constrained-based models are the most widely employed

approaches to understanding the metabolism and corresponding perturbations in various con-

ditions like genetic manipulation and human diseases.

1.3.1 Kinetic modelling

Kinetic modelling has been extensively used in capturing the dynamics of various metabolites

in different cells and organisms. It has a long tradition and finds roots in the early 20th century

when Michaels and Menten proposed a mathematical equation to describe the rate of enzyme

kinetic reactions [76]. The rate of reactions is given by the formula

v =Vmax
[S]

KM +[S]
,
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where Vmax represents the maximum achieved rate by the enzyme. KM is known as the Michaelis

constant and is numerically equal to the substrate concentration at which the rate is half of the

Vmax. The Michaelis-Menten equation is a generalized model and can be applied to any en-

zymatic reaction. All the kinetic models are based on the law of mass action: “the rate of

the chemical reaction is directly proportional to the product of the activities or concentrations

of the reactants”, introduced by Guldberg and Waage in the 19th century [82]. Kinetic mod-

elling forms the basis of various metabolic pathways, in which the dynamical equation of each

metabolite can be represented by:

dx
dt

= rate of production - rate of consumption,

where the production and consumption rate depends on the activity of the corresponding cat-

alyzing enzymes.

The most addressed question through kinetic modelling is to rationally design strategies

for improving the ability of cells or organisms to produce the desired product. Till now, nu-

merous biological processes have been studied through kinetic modelling. Among all these,

central metabolism receives the most attention as it is the basis of the conserved phenomenon

of life and serves as a hub for almost all catabolic and biosynthetic activities [83]. The overall

structure of central metabolism is remarkably well conserved in all living organisms, and its

regulation plays a crucial role in adapting organisms to environmental changes [84]. Thus, the

kinetic models on the central metabolism will also serve as the basis for further integration

and extension to peripheral metabolism. Initially, the kinetic models were centered on com-

prehending glycolytic oscillations in nongrowing yeast cells [85–92]. Later works attempted

to understand the control properties and glycolytic responses upon a glucose-perturbed condi-

tion [93–96]. Due to the advanced techniques for experimentation and the progressive increase

in quality data, more detailed models were formulated for exploring the glycolysis process in

yeast [97–100]. The glycolysis and pentose phosphate pathway of Escherichia Coli has also

been studied by Chassagnole et al. [101], and this is the first ever model that connects the sugar

transport system (i.e., phospho-transferase system) with the reactions of the glycolysis and

pentose phosphate pathway. This model structure was validated by experimentally observed
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concentrations of intracellular metabolites and predicted the potential targets for envisaged re-

designing central carbon metabolism. A kinetic model on the central metabolic pathways such

as glycolysis, TCA cycle, pentose phosphate pathway, and the anaplerotic pathways for Es-

cherichia Coli was formulated for understanding the metabolic perturbations in response to

specific gene knockouts [102]. Also, a kinetic model on the central carbon metabolism of E.

coli was developed using fluxomics and metabolomics data [103]. Kinetic models on metabolic

pathways have often been used to predict the drug targets in the case of pathogens [104–108].

Sensitivity analysis has been a widely used technique to predict drug targets using these kinetic

models.

Kinetic modelling has also been used to explore human metabolic pathways and applied in

various tissues like the liver, pancreas, brain, etc. [109–114]. The human body is very much

complex since different organs and tissues have different functions and metabolism. Also,

each of these organs interacts with others. So, to understand human metabolism, whole-body

metabolic models are needed. In this context, compartmentalized-based kinetic models are used

in which various tissues and their interactions are considered to formulate the model structure.

Till now, numerous compartmentalized models have been proposed to study the whole-body

metabolism of glucose, triglycerides, cholesterol, etc [115–117]. Kinetic models usually focus

on only a small sub-network of the entire metabolism. Whereas, constraint-based modelling is

often used to simulate large pathways, and since no enzyme kinetic information is needed, it

gets great attention in systems biology.

1.3.2 Constraint-based modelling

Constraint-based modelling is an appropriate mathematical platform for studying and under-

standing metabolic network flux distribution at steady-state [36, 77, 118]. It bypasses the hur-

dles in simulating large networks through kinetic modelling and can also serve as a scaffold

for capturing the manipulation in metabolic networks. There are approximately four major

successive steps in this type of model building and analysis: 1) network reconstruction, 2) for-

mulation of Stoichiometric matrix, 3) identification and implementation of a set of constraints

that govern cellular metabolism, and 4) determination of optimal flux distribution through flux
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balance analysis. Network construction is the most critical step in constraint-based modelling

as it involves an extensive literature survey to make an appropriate list of metabolites, bio-

chemical reactions, and gene–protein reaction relationships. In this context, various resources

on metabolic pathways like KEGG [8], MetaCyc [20], BioCyc [19], and EcoCyc [119] can be

beneficial. Additionally, genomic and proteomic data also help to get information on relevant

metabolic network components. In making the list of metabolic reactions, we must check that

each reaction is balanced in mass and charge. Also, it needs proper compartmentalized and

directionality information of each reaction for reconstructing the metabolic network. The en-

zyme reversibility data can be obtained from online resources like KEGG [8] and BRENDA

[18].

After the compilation of network reconstruction, the entire reaction list is converted into a

stoichiometric matrix (S) with dimension m× n, where m denotes the number of metabolites

and n represents the number of reactions present in the network. The numbers in each column

correspond to the stoichiometric coefficients of metabolites participating in that reaction. Neg-

ative values indicate the consumption of these metabolites, and positive values represent the

production. In constraint-based modelling, mainly three types of constraints are applied: 1)

the mass–balance constraints and implemented by using the matrix S. This is used to impose

the steady-state condition on the metabolites. 2) Thermodynamic constraints, which determine

the reversibility of the reactions. 3) Enzyme capacity constraints that fix the maximal flux

rate (Vmax) and can be inferred from the experimental data, like transcriptomics, proteomics,

and fluxomics. These constraints establish a geometric solution space of all possible metabolic

fluxes [77]. Additionally, the consumption rate of certain metabolites in the cells can be applied

to impose the specific nutrient supply in the system. Various optimization-based techniques,

like flux balance analysis [120–122], extreme pathway analysis [123], elementary mode anal-

ysis [124, 125], etc., are mainly used to characterize the allowable solution space and predict

the optimal solution.

Metabolic network reconstruction using biochemical information has been ongoing since

the 1930s when the glycolytic pathway was defined [77]. In the late 1980s, the rise of large-

scale organism-specific biochemical data collection allowed the systematic generation of organism-
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specific metabolic networks [77, 126]. These network reconstructions for various organisms,

including Escherichia Coli [127–131], Saccharomyces cerevisiae [132–134], and Aspergillus

niger [135–137], were established in a stepwise fashion. The genome-sequencing and cor-

responding annotation enable researchers to reconstruct the genome-scale metabolic network.

The first genome-scale metabolic model (GSMM) was reconstructed for Haemophilus influen-

zae in 1999 [138] and came apparently in shorter time intervals after the publication of its first

genome sequencing in 1995 [139]. In the past few decades, GSMMs have been widely used to

study the metabolism of bacteria. They are mainly used for metabolic engineering in biochem-

ical synthesis [140–142], drug-target identification [143–145], investigation of novel metabolic

functions [146–148], studying host-pathogen interactions [149–154], etc.

Constraint-based metabolic modelling approaches are advancing at an accelerating pace

to understand the molecular mechanisms behind various diseases and identify potential thera-

peutic strategies [155]. Earlier network-level human metabolism studies have focused on the

functional characterization of distinct human metabolic pathways and organelles [156–158].

In 2007, two generic human GSMMs were developed based on the evaluation of genomic and

bibliomic data: Recon1 [159] and Edinburg Human Metabolic Network [160]. The Recon

series has undergone several significant modifications by incorporating additional biological

information and rectifying various modelling flaws [161–164]. In 2018, the latest version of

the Recon series, Recon3D, was published, and it incorporated the most comprehensive human

gene-protein-reaction (GPR) relationships and the structural information of metabolites and en-

zymes [164]. The clinical significance of the Recon series in investigating human diseases has

been demonstrated in numerous studies [64, 165, 166], and most extensively, these have been

applied in studying cancer [36, 167]. These generic GSMMs have also been used to model

various cells and tissues, including the liver [168, 169], heart [60], kidney [170], brain [171],

small intestine [172], macrophages [150], etc., by integrating high-throughput data. Besides,

these generic models have been used to enhance the understanding of host-pathogen interac-

tions [149–154].

The human metabolic reaction (HMR) database, another generic human GSMM series,

was published first in 2012 [173]. The first version (iHuman1512) was developed by col-
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lecting information from the previously published generic models of humans [159, 160, 174]

and the KEGG database [175]. Compared to the Recon series, the HMR series (HMR1;

[173] and HMR2; [62]) contains more extensive and manually curated information on fatty

acid metabolism. It, therefore, has been used to obtain comprehensive GSMMs of human

adipocyte (iAdipocytes1809; [176]), hepatocyte (iHepatocytes2322; [62]), and skeletal my-

ocyte (iMyocyte2419; [177]). These cell- or tissue-specific GSMMs have been used to study

the metabolic characterization of human diseases like obesity, diabetes, and NAFLD. Recently,

a unified generic human GSMM (Human1) has been published by integrating and curating the

latest Recon (Recon3D) and HMR (HMR2) model lineages [178]. Human1 consists of 13,417

metabolic reactions, 3625 genes, and 4164 unique metabolites, and all the information can be

obtained from the web portal Metabolic Atlas.

1.4 Tools and approaches

1.4.1 Analytical tools

Definition 1 (System of differential equation): A system of differential equations of the

form
dx
dt

= ẋ = f (x), (1.1)

where X ∈ Rn and f = ( f1, f2, ....... fn)
T , fi = fi(x1,x2, .......xn), is a called a nonlinear system.

If the partial derivatives of f1, f2, . . . ., fn are C1 functions then the initial value problem

dx
dt

= f (x) with x(0) = x0

has a unique solution. The system (1.1) is called autonomous system since the function f (x)

does not contain time (t) explicitly. Otherwise, it is said to be non-autonomous system.

Definition 2 (Equilibrium point): A point x̄∈Rn is called an equilibrium point of the system

(1.1) if

f (x̄) = 0.
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An equilibrium point is also called a fixed point, critical point, stationary point, steady state.

Definition 3 (Lyapunov stability): The equilibrium point x̄ of (1.1) is said to be Lyapunov

stable or simple stable if for any ε > 0 there exists a δ (ε)> 0 such that for every solution x(t)

of (1.1) with initial condition x(0) = x0 if ‖x0− x̄‖< δ then ‖x(t)− x̄‖< ε for all t > 0, where

‖.‖ is the Euclidean norm.

Definition 4 (Quasi-asymptotic stability): The equilibrium point x̄ of (1.1) is said to be

quasi-asymptotic stable iff there exists a number δ > 0 such that if ‖x0− x̄‖< δ then lim
t→∞
‖x(t)−

x̄‖= 0.

Definition 5 (Asymptotic stability): The equilibrium point x̄ of (1.1) is said to be asymptot-

ically stable if it is (a) Lyapunov stable as well as (b) quasi-asymptotically stable.

Let x̄ be an asymptotically stable equilibrium point of (1.1) then the set

D(x̄) = {x ∈ Rn : lim
t→∞
‖x(t)− x̄‖= 0}

is called the basin of attraction of x̄. If D(x̄) = Rn then x̄ is said to be globally asymptotically

stable. Otherwise, it is said to be locally asymptotically stable.

Theorem 1 (Routh-Hurwitz criteria): Let us consider the n-th degree polynomial

P(λ ) = λ
n +B1λ

n−1 + ...+Bn−1λ +Bn, (1.2)

where all the coefficients Bi, i= 1,2, ...,n, are real constants then n Hurwitz matrices are defined

as
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Hk =



B1 1 0 0 ... 0

B3 B2 B1 1 ... 0

B5 B4 B3 B2 ... 0

. . . . ... .

. . . . ... .

. . . . ... .

0 0 0 0 ... Bk



, k = 1,2,3, ...,n,

where Bk = 0 if k > n. All the roots of the polynomial P(λ ) will have negative real parts iff the

determinants of all the Hurwitz matrices are positive. Thus the Routh-Hurwitz criteria for n=

2, 3 and 4 are as follows

• n = 2 : B1 > 0, B2 > 0.

• n = 3 : B1 > 0, B3 > 0, B1B2−B3 > 0.

• n = 4 : B1 > 0, B3 > 0, B4 > 0, B1B2B3−B2
3−B2

1B4 > 0.

1.4.2 Sensitivity analysis

Sensitivity analysis is a widely used systems biology tool for identifying the most critical in-

puts, such as parameters or initial conditions, whose slight variance can affect the model outputs

[179]. The sensitivity of each input factor can be computed by varying independently around

a nominal value while the others remain constant. This approach is known as local sensitivity

analysis as it can only capture the impact of uncertainties of the inputs very close to the nomi-

nal values. However, in biological systems, the variations in inputs are often very uncertain, so

local sensitivity analysis is insufficient to infer the true nature of these input factors [179]. In

this context, global sensitivity techniques are required.

Global sensitivity analysis captures the variation in the model outputs under various com-

binations of input factors. The combinations of inputs can be generated from several sampling-

based methods like random sampling, importance sampling, and Latin hypercube sampling

[180, 181]. Finally, the sensitivity index for each input can be measured depending on the
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relationship with the model outputs [179]. For linear trends, sensitivity can be measured by

applying the Pearson correlation coefficient, Standardized Regression Coefficients, and Partial

Correlation Coefficients. For nonlinear monotonic trends, Spearman Rank Correlation Coef-

ficient, Standardized Rank Regression Coefficients, and Partial Rank Correlation Coefficient

are applied to measure the sensitivity. For nonlinear non-monotonic relationships, various

variance-based methods like the Sobol method and its extended version, Fourier Amplitude

Sensitivity Test (FAST), and its extended version (eFAST) are the best options. Among them,

PRCC [179] and eFAST [182] are the most commonly used and reliable techniques [183, 184].

PRCC can offer additional informations, such as how changing (increasing or decreasing) the

input factors will alter the model output. In contrast, eFAST only provides which parameter

uncertainty has the most significant impact on model output [179]. Thus, PRCC can be more

informative than eFAST in selecting parameters to target if we intend to attain specific ob-

jectives, for example, an increment in the ATP yield or a reduction in glucose consumption,

etc.

1.4.3 Context-specific model reconstruction

Genome-scale metabolic models (GSMM) are generally built to contain all the known metabolic

reactions and enzymes in a particular organism [185]. These reconstructed networks are generic

and always remain a superset of the functioning metabolic reactions at any given time. Deter-

mination of active reactions in a cell or organism is often of interest in constraint-based studies

as this obtained context-specific sub-network represents the actual metabolism [186]. These

can be inferred from the activity of the corresponding enzymes in the particularly interested

cells or organisms. In this context, various throughput data, including transcriptomics, and

proteomics data, have been used to build context-specific models.

Several methods exist to reconstruct context-specific networks from a generic GSMM (Table 1.1),

and these methods can be categorized into three classes: “GIMME-like”, “iMAT-like”, and

“MBA-like” [187, 188]. The Gene Inactivity Moderated by Metabolism and Expression (GIMME)

[186] method belongs to the “GIMME-like’, which minimizes the usage of reactions associated

with the lowly expressed genes. The Integrative Metabolic Analysis Tool (iMAT) [189, 190]
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and Intergrative Network Inference for Tissues (INIT) [173] methods belong to the “iMAT-

like”, which finds an optimal trade-off between including reactions corresponding to highly

expressed genes and excluding reactions associated with lowly expressed genes. The Model-

building algorithm (MBA) [168], metabolic Context-specificity Assessed by Deterministic Re-

action Evaluation (mCADRE) [191], and FASTCORE [192] methods belong to the “MBA-

like” family, which retains a core reaction set and removes other reactions if not required to

support the core set. The E-Flux [193] method uses the gene-protein-reaction (GPR) relation-

ship to map the gene expression value into flux-bound constraints, and it does not fall into any

of these three categories. The gene expression data is used here to fix the lower and upper

bounds of the fluxes so that reactions associated with the highly expressed genes should be

allowed to have higher absolute flux than others.

Table 1.1: Various methods for the reconstruction of context-specific metabolic network.

Method Description Data input

Handling

missing

data

GIMME

Defines active and inactive reactions using

the gene expression data. Returns a func-

tioning model that meets the objective by

minimizing the usage of inactive reactions.

Transcriptomic data are

used to define inactive

reactions and their re-

spective weights.

Considers as

active reac-

tions.

iMAT

Uses expression data to define high, mod-

erate, and low expressed reactions. Finds

the optimal trade-off between excluding

lowly expressed reactions and including

highly expressed reactions.

Any type of data can be

used to define the ex-

pression status of reac-

tions.

Does not

favor ex-

clusion or

inclusion.

INIT

Optimizes the exclusion of the lowly ex-

pressed reactions and inclusion of highly

expressed reactions. Allows secretion (or

accumulation) of metabolites.

Any type of data can

be used to define the

weights of reactions.

Dependents

on the

user-defined

weights.
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MBA

Provides a most parsimonious model that

includes all the high-confidence reactions

and the necessary moderate-confidence re-

actions.

Any type of data that

can provide confidence

in reactions.

Removed if

not required

to support

the included

reactions.

mCADRE

Core reactions are defined as highly ex-

pressed reactions. Other reactions are

ranked according to their expression and

removed according to their rank if not nec-

essary to support the core reactions.

Transcriptomic data are

mainly used to define

the core reactions and

to rank the others.

Removed if

not required

to support

the core.

FASTCORE

Determines a core reaction set using the

data and includes the minimum necessary

reactions to support the core.

Any type of data can be

used to define the core

reactions.

Removed if

not required

to support

the core.

E-Flux

Determines the reaction expression using

the GPR relationship from the gene ex-

pression data and uses these to fix the

bound of each reaction.

Transcriptomic data are

mainly used to define

the reaction expression.

Does not

favor ex-

clusion or

inclusion.

1.4.4 Flux balance analysis

Flux balance analysis (FBA) is a widely used constraint-based modeling approach to analyze

the flow of metabolites through metabolic pathways [122]. This method mainly relies on the

assumption of mass balance and the steady state of metabolites. The mass balance constraints

are implemented by the stoichiometric matrix (S) of dimension m×n (for a metabolic network

with m metabolites and n reactions). In this matrix, each row denotes a unique metabolite,

and each row represents the individual reactions. The entries in each column correspond to the

stoichiometric coefficients of the metabolites participating in a particular reaction. Negative



22 Chapter 1. Introduction

values indicate consumption, and positive values represent production. The value 0 is given

for those metabolites that are not participating. Under the steady-state assumption, a system of

linear equations is obtained as

S.v = 0,

where the flux distribution is represented by the vector v, with length n. Constraints arising

from reaction reversibility, enzyme capacity, and experimental measurements are imposed by

setting the upper (vup) and lower bounds (vlow) of the reactions. In any realistic GSMMs, there

are more unknowns than equations, as the corresponding metabolic network contains more

reactions than metabolites (n > m). It leads to the existence of infinite solutions. Although

the imposed constraints define a bounded solution space, it is hard to analyze and interpret the

phenotypic state of the network. Therefore to obtain a single point within the solution space,

FBA seeks an objective function for optimization. Here, the objective function is any linear

combination of fluxes of the form z = cT v, where c denotes the vector of weights and reflects

the relative contribution of each reaction. In FBA, the linear programming (LP) solver is used

to solve the optimization problem of the form

max/min Z = cT v,

s.t. S.v = 0,

vlow ≤ v≤ vup.

The selection of suitable objective functions is purely context-specific. Some of its classic

examples include the maximization of growth rate, maximization of ATP production, mini-

mization of substrate utilization, and the maximization of biochemical synthesis. Most of the

time, biomass reaction has been used as the objective function based on the assumption that

the cell seeks to maximize cellular growth to ensure survival [121, 122]. After solving the

above-mentioned LP problem, FBA provides the optimal value of the objective function with

the corresponding optimal flux distribution.
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1.4.5 Flux variability analysis

LP problems can have multiple optimal solutions, which means various points in the solution

space can give the same optimal value. In general, constraint-based models fall under the grasp

of such circumstances [194, 195]. In 2003, Mahadevan et al. [196] developed flux variability

analysis (FVA) to capture the alternative optimal solutions in constraint-based modelling. FVA

provides the ranges of flux values for each reaction, and the calculation is performed using LP

and quadratic programming (QP) methods. Typically, FVA solves 2n number of LP problems

of the form:

max vi and min vi,

s.t. S.v = 0,

cT v = Zob j,

vlow ≤ v≤ vup,

for i = 1,2, ...,n.

where Zob j is the optimal value of the objective function obtained from the FBA, and n is the

number of reactions. The reactions having the same minimum and maximum non-zero fluxes

are essential for accomplishing the objective of interest, as there are no alternative pathways in

the network.

1.4.6 Flux sampling

Flux sampling provides the opportunity to compute all possible feasible solutions throughout

the entire solution space in a statistically significant manner [197–200]. Flux sampling seeks

sufficient and uniform data points from the solution space to keep the analysis accurate and

unbiased. Although FVA provides the ranges of flux values, it cannot give the possible flux

distributions. Besides, flux sampling does not need any objective function; therefore, it is a

very efficient and helpful technique when the specific objective function is unclear. There are

several algorithms for performing flux sampling on a constraint-based model. The first pro-
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posed algorithm is the rejection sampling technique [201]. This approach becomes inefficient

when a huge fraction of the samples have to be rejected. The hit-and-run (HR) algorithm [202]

mitigates this problem by performing sampling directly from the solution space. HR picks

samples from the solution space by iteratively choosing a random direction from the uniform

distribution and an arbitrary step size in a direction so that the next point also lies in the so-

lution space. The artificial centering hit-and-run (ACHR) method [203] computes the random

flux distributions by applying the center estimate and random flux vector direction. Coordinate

hit-and-run with rounding (CHRR) [204] uses a rounding preprocessing step on the anisotropic

flux sets. The uniform random sampling method, known as gpSampler, [198] is often used for

sampling constraint-based models and is partly based on ACHR. gpSampler is implemented in

the Constrained Based Reconstruction and Analysis (COBRA) Toolbox [205].

1.4.7 In silico network perturbation

There are mainly three approaches in performing in silico metabolic network perturbation:

1) Reaction-centric, 2) Gene-centric, and 3) Metabolite-centric. Reaction-centric techniques

focus on identifying metabolic reactions from the network that, when perturbed, affect the

cell’s capacity to carry out essential functions. These are performed mainly by inhibiting or

removing the reactions from the network and subsequently capturing the downstream effect on

the objective function. Once a crucial reaction has been identified from the analysis, the GPR

rules are used to obtain the protein or gene that can be targeted to perturb the reaction. Gene-

centric techniques focus on identifying genes that are critical to maintaining cellular function.

The first step of these techniques is to identify metabolic reactions that are affected by the

removal of this gene by using the GPR rules. Then, the effect of this gene is calculated by

inhibiting or removing all of these reactions from the network. Metabolite-centric techniques

focus on finding highly connected metabolites in the metabolic network and, when targeted,

affect cellular function significantly. The effect is captured by removing those reactions from

the network that consume this metabolite. In all these cases, the network perturbations are

finally imposed through the associated reactions. The perturb models are generated mainly by

changing the bounds of the fluxes; for example, in complete inhibition, the bounds are fixed at
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0.

The simulation of the perturbed model can be performed through the FBA [206], in which

a particular cellular objective function is optimized. The effect of the network perturbation

is defined by calculating the changes in the optimal value compared to the wild-type condi-

tion. Several perturbation-specific algorithms, such as minimization of metabolic adjustment

(MOMA) [207], regulatory on/off minimization (ROOM) [208], and metabolic transformation

algorithm (MTA) [209], etc., have been developed to capture the effect of metabolic network

perturbation through GSMM. Instead of looking for an optimal flux state that optimizes the

cellular objective function, MOMA provides a unique flux distribution closest to the wild-type

flux distribution. The underlying hypothesis is that the metabolic flux state after the network

perturbation may undergo a minimal redistribution compared to the wild-type flux state. To

obtain such flux distribution, MOMA employs quadratic programming (QP) to minimize the

Euclidean norm:
√

n
∑

i=1
(Vwt,i−Vi), between the given wild-type flux distribution (Vwt) and the

post-perturbed flux distribution (V ). On the other side, ROOM minimizes the number of sig-

nificant flux changes in the perturbed state compared to the wild-type flux distribution. ROOM

employs mixed integer linear programming (MILP) to determine the perturbed flux distribu-

tion and allows a few significant flux changes rather than numerous small changes. MTA em-

ploys mixed integer quadratic programming (MIQP) to predict the metabolic reactions or genes

whose knockout can shift the metabolic flux distribution from one state to another. Before ap-

plying this algorithm, it must be required to define the set of reactions whose flux rates have

to change to shift the metabolic state. MTA removes each reaction or gene from the network

and solves the MIQP problem that minimizes the changes in flux rates through “unchanged”

reactions and maximizes the flux rate changes in the “changed” reactions. Finally, a score is

given for each reaction or gene according to the success of bringing the metabolic state towards

the target state.
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1.5 Scope and objectives of the thesis

An abnormal metabolic state is the root cause or consequence of numerous human diseases,

including cancer, diabetes, obesity, cardiovascular disorders, and neurological diseases. There-

fore, it is an unmet need to explore metabolism in disease conditions to understand the under-

lying mechanism behind disease development and progression. It also presents a tremendous

opportunity to discover new drug targets and design new therapies and diagnostic techniques.

Again, human diseases do not derive from the abnormal functioning of a single gene or pathway

but reflect the disruption of complex intracellular and intercellular metabolic networks that link

tissues and organs. Due to these complexities, it is very challenging for experimental biologists

to explore all metabolic pathways.

In this context, mathematical modelling-based approaches could be a good alternative in

exploring the entire metabolism and proposing new hypothesises. Although numerous math-

ematical modelling-based studies have been performed in human diseases, there still exists

a lacuna of metabolic perturbations in various conditions, such as diabetes, cancer, NAFLD,

cardiovascular disorders, etc. In view of the challenges concerning metabolic perturbation in

disease conditions, the objectives of the thesis have been defined as follows:

1. To develop and analyse the large-scale metabolic model for capturing the alteration in

metabolic flux states under disease conditions with the help of omics data.

2. To develop simulation methods to explore the role of metabolic genes in controlling

disease progression.

3. To build small-scale kinetic models to capture the role of altered metabolites responsible

for the disease.

1.6 Thesis layout

The present thesis aims to explore metabolic perturbations in disease to understand the under-

lying mechanism and develop therapeutic strategies. More precisely, the thesis is devoted to

studying the role of metabolites and associated pathways in the progression of the disease and
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using it to develop therapeutic strategies. In Chapter 1, the introduction of the thesis is dis-

cussed. This chapter contains information regarding the significance of studying metabolism

in human diseases and how mathematical modelling can help to understand metabolism. It

also describes the various mathematical tools and methods used for model development and

simulations.

Human metabolism is a highly complex and tightly regulated system consisting of multiple

enzymatic reactions and metabolites, and hence very difficult to measure the flow of metabo-

lites through each reaction by experiments. In this context, genome-scale metabolic models

(GSMMs) provide a unique opportunity to capture the metabolic flux state in different cell-

type and conditions and therefore have been successfully applied for systematically studying

human diseases. In Chapter 2, we have applied GSMM to capture the metabolic alterations

in pancreatic β -cell to understand the key factors responsible for the dysregulated β -cell func-

tion in type 2 diabetes (T2D). The metabolic-flux profiles of pancreatic β -cells were predicted

by integrating the gene-expression data of ten diabetic patients and ten control subjects into

a human genome-scale metabolic model. Analysis of these flux states shows reduction in the

mitochondrial fatty acid oxidation and mitochondrial oxidative phosphorylation pathways, that

leads to decreased insulin secretion in diabetes. We also observed elevated reactive oxygen

species (ROS) generation through peroxisomal fatty acid β -oxidation. In addition, cellular an-

tioxidant defense systems were found to be attenuated in diabetes. Our analysis also uncovered

the possible changes in the plasma metabolites in diabetes due to the β -cells failure. These ef-

forts subsequently led to the identification of seven metabolites associated with cardiovascular

disease (CVD) pathogenesis, thus establishing its link as a secondary complication of diabetes.

In addition to exploring metabolic alteration, GSMM can be applied to identify critical

regulatory points from the metabolic network through in silico knockout approaches. Chapter

3 focuses on identifying the regulatory points in the cancer metabolic networks by performing

the gene knockout study on the various cancer-specific GSMMs. We performed single-gene

knockout studies on existing GSMMs of the NCI-60 cell-lines obtained from 9 tissue types. The

metabolic genes responsible for the growth of cancerous cells were identified and then ranked

based on their cellular growth reduction. The possible growth reduction mechanisms, which
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matches with the gene knockout results, were described. Gene ranking was used to identify

potential drug targets, which reduce the growth rate of cancer cells but not of the normal cells.

The gene ranking results were also compared with existing shRNA screening data. The rank-

correlation results for most of the cell-lines were not satisfactory for a single-gene knockout,

but it played a significant role in deciding the activity of drug against cell proliferation, whereas

multiple gene knockout analysis gave better correlation results. We validated our theoretical

results experimentally and showed that the drugs mitotane and myxothiazol can inhibit the

growth of at least four cell-lines of NCI-60 database.

Combining these two approaches, i.e., identifying metabolic alterations and regulatory

points through in silico gene knockout, might lead us to potential drug targets that could revert

the altered disease metabolic state to a healthy state. The combination of these two approaches

was used in Chapter 4 to identify potential targets for nonalcoholic steatohepatitis (NASH),

which is driven by perturbations in gene expressions and thereby tailoring a cascade of events

influencing the complex disease dynamics that span through proteins and metabolites. The

potential targets were identified using a de novo methodology and could reverse the disease-

specific molecular alterations. Our approach resulted in three promising targets for NASH and

eight targets for its early-stage NAFL. We also elucidated the possible mechanism of action

of these identified targets using GSMM. Inhibition of these identified targets could attenuate

hepatic steatosis by promoting higher flux rates for the altered reactions involved in fatty acid

activation and mitochondrial beta-oxidation pathways. Although this chapter provides a new

perspective on drug discovery, we still need small-scale kinetic models to capture the underly-

ing mechanism associated with metabolic alterations related to a disease condition.

Impaired glucose-stimulated insulin secretion (GSIS) in β -cell is one of the major causes

of developing T2D in the presence of insulin resistance (IR). A global picture of metabolic

alterations in β -cell under T2D was earlier discussed in Chapter 2. However, this study was

limited by the inability to explore the dynamics of crucial processes like insulin secretion,

which hold the key to T2D. Therefore, to study the cause, effect, and, thereby, the mechanism

of T2D, in Chapter 5, we have built a six-dimensional kinetic model to study the GSIS process.

The model was established by simulating the normal and IR-induced hyperglycemic conditions.
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The analysis revealed the possible factors responsible for the impaired GSIS process in IR,

whose dysfunction can lead to T2D. Finally, using the parameter recalibration analysis, we

uncovered the potential therapeutic strategies for compensating the insulin secretion-reducing

alterations that could eventually help prevent the disease progression.

Next, we extended this study by incorporating the insulin synthesis and insulin granule

biogenesis processes with the GSIS to decipher the in-depth understanding of glucotoxicity in

β -cell dysfunction. In Chapter 6, a simplified kinetic model for insulin synthesis and secretion

of insulin granules was developed and analyzed. The analysis revealed that the defects in the

insulin granule trafficking and exocytosis processes hamper first- and second-phase insulin

secretion and might be one of the main reasons for β -cell dysfunction in T2D. The long-term

effect of abnormal insulin synthesis could hamper insulin secretion and make the scenario more

critical, causing complete insulin loss inside the β -cells. Besides, uncontrolled insulin synthesis

could increase basal insulin secretion and drive toward fasting hypoglycemia. The present

study also hypothesized the regulation of insulin synthesis through targeting transcription and

translation as a potential therapeutic strategy for controlling impaired insulin secretion.

Chapter 7 discusses the conclusions and the future directions of the thesis.





2
Prediction on metabolic alterations from

gene expression data using genome-scale

metabolic model1

2.1 Introduction

Human metabolism is a highly complex and tightly regulated system consisting of multiple

enzymatic reactions and metabolites that form a connected and functional network in which

the products of one reaction become the substrates of the other reactions [210, 211]. Genome-

scale metabolic models (GSMMs) have been successfully applied for systematically studying

1The bulk of this chapter has been published in Computers in Biology and Medicine, 144 (2022): 105365.
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human metabolism to discern underlying mechanisms involved in disease progression’s patho-

physiology [60–62]. This mathematical framework has also been widely used to identify new

drug targets and develop new intervention strategies and therapeutic agents [67, 68]. It is also

employed in predicting metabolic biomarkers and capturing metabolites with altered produc-

tion fluxes [64]. However, to the best of our knowledge, very little work has been carried

out to analyze the metabolic pathways related to pancreatic β -cells using GSMM. Previously,

Calimlioglu et al. [212] successfully obtained some T2D-related metabolic signatures by incor-

porating pancreatic β -cell transcriptomics data into GSMM.

β -cell failure (reduction of β -cell mass and function) is central to the pathogenesis of type

2 diabetes (T2D). Multiple metabolic abnormalities including glucotoxicity, lipotoxicity (ele-

vated free fatty acids/triglycerides), glucolipotoxicity, disruptions of lipid metabolism, oxida-

tive and endoplasmic reticulum stress, proinflammatory cellular responses, islet amyloid depo-

sition, disruption of transcriptional control, and β -cell turnover, plasticity, and dedifferentiation

have been implicated as drivers of β -cell dysfunction in T2D [43, 213–218]. Taken together,

dysregulated β -cell function and loss of mass potentially through multiple mechanisms pro-

mote hyperglycemia due to inadequate levels of circulating insulin, ultimately resulting in the

development and progression of T2D [219, 220]. Hence, therapeutic strategies targeted at main-

taining β -cell function and mass are likely to be most beneficial in the clinical management of

T2D.

The underlying mechanism(s) by which β -cell function gets impaired in T2D is yet to

be established. Several contributing factors have been proposed so far, such as oxidative

stress, endoplasmic reticulum (ER) stress, impaired voltage-gated calcium channels (VGCC),

impaired exocytosis, β -cells irregular proliferation, and impaired glucose metabolism [221–

223]. Insulin/insulin-like growth factor-1 (IGF-1) signaling pathways also play a vital role in

β -cell growth and survival, and any loss of its receptors leads to profound defects in post-

natal β -cell development [224, 225]. The insulin signaling cascade is negatively regulated by

protein-tyrosine phosphatases, most notably protein-tyrosine phosphatase 1B (PTP1B) and also

its inhibitions were proposed as a promising strategy for the treatment of β -cell failure [226–

228]. However, the question is, which one is the initial or triggering factor that drives diabetes
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progression. Ensembled evidence suggests that impaired β -cell metabolism may be the earli-

est, as alterations in metabolic genes or metabolism were observed in isolated islets from T2D

donors [31, 32], diabetic mouse models [229–231], and high glucose exposed insulin-secreting

cell-lines [232, 233]. Chronic hyperglycemia also induces metabolic changes in β -cells which

causes reduction of mitochondrial metabolism and ATP synthesis [38, 39]. It is reported that

hyperactive glycolysis has been observed in various aged and diabetic β -cells, which results in

β -cell dysfunction and loss of cellular identity [40]. Also, the perturbation of isocitrate dehy-

drogenase 2 (IDH2) catalyzed reductive TCA cycle flux results in impaired GSIS [234], hence

may contribute to insulin secretory defects in T2D [220]. It is also reported that metabolic

dysregulation, particularly amino acid dysmetabolism, is tightly associated with disease pro-

gression, from gestational diabetes mellitus to T2D [41]. L-Glutamine metabolism plays a vi-

tal role in insulin secretion either directly or via metabolism or via enhancing malate-aspartate

shuttle activity [42]. Plasma levels of both glutamine and arginine were significantly reduced

in patients with T2D compared to the control group [235]. Also, the exposure of free fatty acid

(FFA) or lipids activates cell stress responses and FFA receptors, which results in cell damage

and hampers insulin secretion [39, 43, 44, 220]. The intricacy of these results tempted us to

explore the whole metabolic network and identify the key nodes that might have a pathogenic

role in the progression of T2D.

The present study aims to address this void by an in-depth application of GSMM to cap-

ture the insights of β -cell metabolism in T2D. We integrated the open-source gene expression

data [236] of pancreatic β -cells of ten diabetes and ten non-diabetes individuals into a generic

GSMM Recon 2.04. The obtained subject-specific models were used to predict the flux states

for all the individuals. We then explored these flux states to identify metabolic hot spots in re-

actions having altered flux rates and relating pathways and metabolites. Co-expression network

analysis was also performed to determine the metabolic modules that showed disease-specific

changes. We then explored the significantly correlated modules to understand the transcrip-

tional regulation of metabolism in diabetes. Given that diabetes is a significant risk factor for

cardiovascular disease (CVD) and that most of the diabetic patients in our study died from car-

diovascular complications [236], therefore, we tried to capture the molecular events involved in
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cardiovascular complications with relevance to the metabolic impairment of diabetic β -cells.

Our analysis revealed the possible changes in the plasma metabolic profile due to the impaired

metabolism of β -cell, some of which are associated with cardiovascular complications.

2.2 Material and methods

2.2.1 Transcriptomics data collection for pancreatic β -cells

Gene expression data of pancreatic β -cell profiles were obtained from https://www.ncbi.nl-

m.nih.gov/geo/ (accession numbers: GSE20966). The data include transcriptomics profiles of

the ten control subjects and ten patients with T2D [236]. Out of ten T2D patients, the average

duration of diabetes for seven patients was 5.3 years, and no information was available for

the rest three. Of the ten patients with diabetes, three were treated with insulin, six were on

oral antidiabetic therapy, and no therapeutic information was available for one patient. The

rest of the information of the ten control subjects and ten T2D patients is available in Marselli

et al. [236]. They also provided the preprocessed transcriptomic data using the DNA-chip

Analyzer (dChip) software that uses the invariant set normalization algorithm.

2.2.2 Differentially expressed genes

A two-sample t-test was performed to calculate the p-values for two different phenotype groups

using the ‘mattest’ function in MATLAB. Differentially expressed genes (DEGs) were calcu-

lated using the cut-off p-value < 0.05 and fold-change ≥ 1.2.

2.2.3 Weighted gene co-expression network analysis (WGCNA)

Co-expression networks of metabolic genes were constructed using the WGCNA package in

R [237], where all the samples were considered for analysis. Pairwise Pearson correlations be-

tween gene expression levels were calculated to construct the correlation matrix. A linear trans-

formation was applied to the obtained correlations that retain their sign using the relation. The

weighted signed co-expression network was built using a soft power adjacency function called
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the soft-threshold power, which ensures that the co-expression network possesses a scale-free

topology. In our case, the value was 10. The weighted adjacency matrix was transformed into

a topological overlap matrix (TOM), which was further used to perform the hierarchical clus-

tering [238]. Finally, the dynamic tree cut algorithm was applied to identify the modules [239].

The values used here are 30, and 0.25 for the minimum module size and the merge cut height,

respectively. The expression value of the module eigengene (ME) was calculatedusing the Sin-

gular Value Decomposition. The Pearson correlation coefficient was measured between the ME

expression value and the clinical trait to obtain the most relevant modules [237]. The studied

subjects’ disease state (control-0, diabetic-1) was used as the clinical trait.

Transcriptional factor (TF) enrichment analysis was performed for the DEGs associated

with highly correlating modules using Enrichr [240] with the help of two libraries: ChEA, and

ENCODE and ChEA Consensus TFs. To obtain the TFs, we used the cut-off value of 0.05 on

the p-values obtained from the enrichment analysis.

2.2.4 Reconstruction of subject-specific metabolic models

Recon 2.04 [161], a generic model of human metabolism, was used to build the subject-specific

metabolic models together with the E-Flux method [193]. Recon 2.04 includes 1731 enzyme-

encoding genes (2140 transcripts), 7440 metabolic reactions, and 2626 unique metabolites dis-

tributed over eight cellular compartments (cytosol, mitochondria, endoplasmic reticulum, nu-

cleus, peroxisome, lysosome, golgi apparatus, and extracellular). Besides these, in that model,

biomass-producing flux is used as an objective function.

The flux bound constraints were derived from the gene expression data according to the

gene–protein–reaction (GPR) rules. These rules are included in the generic models in the form

of logical expressions (‘OR’ and ‘AND’ operators are used). Below is one example of GPR

rules: r = f (g1,g2,g3) = g1 AND (g2 OR g3), where f is the logical expression connecting the

reaction r and g1, g2 and g3. That means the catalysing enzyme of r has two subunits: one part

is translated from g1, the remaining part can be translated from either g2 or g3. For the case of

the E-Flux method, two mathematical operations, ‘addition’ and ‘minimum’, were applied for

the ‘OR’ and ‘AND’ expressions, respectively, to calculate the numerical values for the GPR
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rule values. If a1, a2 and a3 be the abundance of the three transcripts g1, g2 and g3 respectively,

then according to this method the GPR rule values of r will be: e = min(a1, a2 + a3). Next,

these GPR rule values of the reactions were normalized by dividing them by the maximum

value among all twenty subjects. These normalized values were then used to fix the bounds

of the reactions to generate the subject-specific models. These values were used to set both

lower and upper bounds for reversible reactions, and only upper bounds were changed for

irreversible reactions. Since there are no particular metabolic processes that have to optimize

for the pancreatic beta-cells thus, we excluded the objective function from all metabolic models.

2.2.5 Estimation of sample size for solution space

Metabolic models, in general, are under-determined systems, where the number of unknowns

is greater than the number of equations, which leads to an infinite number of solutions. In this

context, flux balance analysis [122] is normally applied to get the flux rates of each reaction un-

der the steady-state assumption by solving an optimization problem. In our case, the objective

function was excluded from the models as there is no such particular metabolic process in beta-

cell that has to optimize. Thus, to get the flux values of the reactions, we used the ‘gpSampler’

function, a uniform sampling technique implemented in the Constrained Based Reconstruction

and Analysis (COBRA) Toolbox [205] of MATLAB along with GurobiTM Solver. In our case,

‘gpSampler’ helps to get the solutions of the system:

d−→x
dt

= S.−→v = 0 (2.1)

where, −→x and −→v are vectors of metabolite concentrations and flux values of the reactions

and S is the stoichiometric matrix of size m× n, m is the number of metabolites and n is the

number of the reactions present in the models. Additionally, each component vi is bounded by

the inequality vimin 6 vi 6 vimax ,∀i ∈ {1,2, · · · ,n} and the bounds are defined earlier.

In this system, the number of unknowns is greater than the number of equations, which leads

to an infinite number of solutions. All the computational approaches provide a finite number of

solutions from the solution space, so the solutions’ mean can be used for further analysis. It was
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found that the mean is always dependent on the sample size. Thus it demands the appropriate

sample size prediction to obtain the true mean of the solutions. Here, we iteratively varied the

sample size and captured the mean values obtained from the sampling. The Euclidean distances

between the mean flux values for different sample sizes are depicted in Fig. 2.1. Around the

sample size of 130k, the Euclidean distances between the consecutive means become negligi-

ble. It depicts that the mean is not changing too much after crossing the sample size of 130k.

To check the robustness of this predicted sample size (130k), we also calculated the mean flux

states of 120k, 130k, and 140k solutions for two independent subject-specific metabolic models

(given in Fig. 2.2) and found that the Euclidean distances are significantly less for both these

models. Thus, this value was used here as the sample size to perform the uniform sampling for

all the metabolic models.
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Figure 2.1: The euclidean distances between the mean flux values for different sample
sizes. Around the sample size 130k, mean distances become very less (less than 0.1). Here, the
yellow bar represents the value 0.1.

2.2.6 Identifying significantly altered metabolic reactions

We performed the uniform sampling for each model, and the mean of the 130k solutions was

selected for the possible flux state. Here, we obtained the flux rates of each 7440 reactions for
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Figure 2.2: This figure shows the Euclidean distances between the mean flux (MF) values
of three consecutive sample sizes 120k, 130k, and 140k. We performed this exercise for two
independent subject-specific metabolic models (one for diabetic and another for control). All
of these values are less than 0.1.

every pancreatic β -cell of the ten control subjects and ten patients with T2D. A two-sample t-

test was performed to calculate the p-values for two different clinical groups using the ‘mattest’

function in MATLAB. Significantly altered metabolic reactions were calculated using the cut-

off p-value < 0.05 and fold-change ≥ 1.2.

2.2.7 Reporter pathway analysis

To obtain the significantly altered pathways, we performed the reporter pathways analysis [241].

Applying the inverse normal cumulative distribution function (CDF), the p-values (preaction)

obtained for each reaction from the t-test were transformed into the Z-scores (Zreaction). Path-

ways were assigned a Z-scores (Zpathway) by aggregating the Z-scores of the involved reactions

by the relation [241]:

Zpathway =
1√
r

r

∑
reaction=1

Zreaction, r = No. of reactions.

Finally, the Z-scores were transformed into p-values by using CDF, and the pathways having

p-values < 0.05 were considered as reporter pathways.



2.3. Result 39

2.2.8 Notes on statistical analysis

MATLAB 9.4 (2018a) version was used for all the statistical analysis and the model construc-

tion. The ‘mattest’ function was used to perform the two-sample t-test, in which the p-values

and t-scores were calculated using permutation tests (1000 permutations). The COBRA Tool-

box with solver GurobiTM (version 9.0.1) was used for the uniform sampling of the solutions.

WGCNA was performed in R version 4.1.0. The R package ‘ggplot2’ was used to create the

bubble and the circular bar plots. The codes used here can be found in the GitHub repository:

https://github.com/AbhijitPaul1993/Beta-cell_GSMM.

2.3 Result

2.3.1 Co-expression of metabolic genes

We investigated the changes in the expression profiles of the enzyme-coding genes in diabetes

and found 117 up- and 72 down-regulated genes (p-value<0.05 & fold change cut off 1.2). The

pathways involved in these genes are summarized in Table 2.1. It is apparent from the literature

that the significant genes in a disease state always exhibit some inherent expression pattern. Its

identification often leads to discovering crucial modules of the disease under investigation.

We employed Weighted Gene Co-expression Network Analysis (WGCNA) to capture these

modules, which constructs a co-expression network based on the pairwise correlation between

genes.

The WGCNA of metabolic genes within all the samples gave four metabolic modules of

co-expressed genes, and of these, Module 1 contains the highest number of genes, and module

4 contains the lowest number of genes (see Table 2.2). We captured the variations of these

modules within the samples, and the correlation between the module Eigen gene (ME) expres-

sion value and the disease state were given in Table 2.2. We observed that Modules 2, 3, 4

positively correlate with the disease state, and Module 1 negatively correlates. Only Module

2 shows a significant correlation, and also it contains the majority (108 out of 189) of the dif-

ferentially expressed metabolic genes (DEMGs). Module 2 was found up-regulated in all the
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disease samples, while the other modules showed a heterogeneous behavior in different sam-

ples (Fig. 2.3). The major metabolic pathways associated with each module were also provided

in Table 2.2.

Table 2.1: Metabolic pathways containing the differentially expressed genes (DEG). DEGs
were identified using the p-value cut-off < 0.05 and fold change cut-off 1.2.

Pathways Up-regulated genes Down-regulated genes

Alanine and aspartate

metabolism

ASS1

Aminosugar metabolism RENBP, UAP1L1, GALE, GFPT2 PGM3, GFPT1

Androgen and estrogen syn-

thesis and metabolism

CYP2S1

Arachidonic acid metabolism CBR3 GPX7, ALOX5, CYP2S1

Arginine and Proline

Metabolism

PRODH2, MAOA, ALDH1B1 PRODH

Bile acid synthesis CH25H, BAAT, ALDH1B1 SLC27A2, ACOT1, ACOT2

Biotin metabolism BTD

Butanoate metabolism ECHDC2

Cholesterol metabolism LSS HMGCR, AACS

Chondroitin sulfate degrada-

tion

GUSB, CTSA

Chondroitin synthesis NDST3, B3GALT6 HS3ST5, HS6ST2, EXTL1

Citric acid cycle IDH2 DLD

CoA catabolism ACP2, VNN1

Cysteine Metabolism TST

D-alanine metabolism SLC16A7

Eicosanoid metabolism CBR3, BAAT, PTGES, DECR2,

ALDH1B1

SLC27A2, ACOX1, ACOT2, ACOT1,

HADH, ALOX5, CYP2S1

Exchange/demand reaction SERPINA3, SERPINA1, APOC3 GYG2, TXN
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Fatty acid oxidation FASN, CPT1B, IDH2, CRAT, PPT2,

DECR2

SLC27A2, ACOX1, ACOT2, ACOT1,

HACL1, HADH, DBI

Fatty acid synthesis FASN, BAAT, CTSA ACOT2, ACOT1

Folate metabolism MTHFD2, MTHFR MTHFS

Fructose and mannose

metabolism

GMPPB PGM2

Galactose metabolism GALE, CTSA

Glutamate metabolism GAD1, ALDH1B1

Glutathione metabolism OPLAH GPX7, PRDX3

Glycerophospholipid

metabolism

CHAT, PLA2G1B, CHKB, DGKB,

PLA2G6, PAFAH1B2

DGKD, SGPL1, PAFAH2

Glycine, serine, alanine and

threonine metabolism

PSAT1, CHDH DLD

Glycolysis/gluconeogenesis PCK1, ALDH1A3, LDHA, ENO3,

ALDH1B1

AACS, PGM2, GPD2, DLD, RWDD2A

Glycosphingolipid

metabolism

B4GALT6

Glyoxylate and dicarboxylate

metabolism

ALDH1A3, LDHA, ALDH1B1

Heme synthesis FECH

Heparan sulfate degradation GUSB

Histidine metabolism ALDH1A3, ALDH1B1

Hyaluronan metabolism GUSB

Inositol phosphate

metabolism

INPPL1, INPP5J PIK3CB, PIK3R5

Keratan sulfate degradation CTSA

Limonene and pinene degra-

dation

ALDH1B1
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Linoleate metabolism UGT2B15, UGT2B28

Lysine metabolism PLOD2 SPCS2, DLD

Methionine and cysteine

metabolism

CBS, LDHA, MAT1A MAT2B

Miscellaneous CPA2, CYP21A2, TST, CPA1, GUSB,

CA12, UGT2B15, UGT2B28

NLN, DLD

N-glycan degradation CTSA

N-glycan synthesis MAN1B1, MOGS, FUT8 ALG10

NAD metabolism QPRT

Nucleotide interconversion NT5M, ENTPD6, NME4, PDE7A,

AK1, PDE4C, ADCY6

DTYMK, NME7, AMPD3, ENTPD3,

ADK

Nucleotide sugar metabolism TGDS

O-glycan synthesis GALNT7, GALNT5 GALNT14, GCNT1

Oxidative phosphorylation COX5B GPD2

Pentose phosphate pathway G6PD PGM2, PRPS1

Phenylalanine metabolism ALDH1A3, TAT, MAOA

Phosphatidylinositol phos-

phate metabolism

PIGA, PIK3CB

Propanoate metabolism LDHA, ACSS3 AACS, DLD

Purine catabolism NT5M, ACP2 ENTPD3

Purine synthesis PAICS

Pyrimidine catabolism DPYSL3, ACP2 UPB1, ENTPD3

Pyrimidine synthesis NME4 DTYMK

Pyruvate metabolism ALDH1A3, LDHA, ALDH1B1 ME1

ROS detoxification SOD3

Selenoamino acid

metabolism

CBS, FMO2, MAT1A MAT2B
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Sphingolipid metabolism ST6GALNAC6, CTSA, SMPD2,

ARSA, GBGT1

SGPL1

Squalene and cholesterol syn-

thesis

HMGCR

Starch and sucrose

metabolism

AMY1A, AMY1B, AMY1C, AMY2A,

ATHL1

GYG2

Steroid metabolism CYP21A2, UGT2B28 SRD5A2

Taurine and hypotaurine

metabolism

GAD1

Tetrahydrobiopterin

metabolism

TPH2 HADH

Transport, endoplasmic retic-

ular

ABCC1 SLC37A4

Transport, extracellular SLC24A3, AQP1, AQP8, SLC22A3,

SLC26A9, SLC4A1, SLC16A7,

PRODH2, SLC52A2, SLC5A2,

ATP1B3, ABCC5, SLC2A14, RBP1,

SLC17A7, LCO2B1, SLC7A7, ABCC1

SLC6A1, SLC2A2, SLC6A14,

TMEM27, SLC27A2, SLC5A1,

SLC4A8, SLC1A2, SLC18A2,

SLC6A10P, ABCC8, SLC14A2, AQP2,

LRP2

Transport, lysosomal SLC29A3 SLC17A5, ATP6V1A

Transport, mitochondrial AQP8, SLC16A7, SLC25A13 MMAA, SLC25A14

Transport, peroxisomal CRAT

Triacylglycerol synthesis CEL, PNLIP, PNLIPRP1

Tryptophan metabolism IDO2, AOX1, TPH2, MAOA,

ALDH1B1

HADH, INMT

Tyrosine metabolism TYRP1, ALDH1A3, COMTD1, TAT,

UGT2B15, UGT2B28, MAOA

SULT4A1

Unassigned CEL, ALDH1A3, CBS, IDH2, AOX1,

CA12, ALDH1B1, ACSS3

ACOX1, PRODH



44
Chapter 2. Prediction on metabolic alterations from gene expression data using

genome-scale metabolic model

Urea cycle ODC1

Valine, leucine, and

isoleucine metabolism

PCCA, ALDH1B1 HADH, DLD

Vitamin A metabolism UGT2B15, UGT2B28

Vitamin B12 metabolism MMAA

Vitamin B6 metabolism AOX1

Vitamin C metabolism ALDH1A3, GLRX, ALDH1B1

Xenobiotics metabolism CYP2S1

beta-Alanine metabolism GAD1, ALDH1B1

Module 2 contains the genes associated with fatty acid oxidation, eicosanoid and glyc-

erophospholipid metabolism, glycolysis and gluconeogenesis, etc., and some extracellular trans-

porters (Table 2.2). This module includes the dysregulated genes found in triacylglycerol syn-

thesis (CEL, PNLIP, PNLIPRP1), pentose phosphate and glycolytic pathways (G6PD, PGM2,

PRPS1), ROS detoxification (SOD3), sphingolipid metabolism (ST6GALNAC6, SGPL1), starch

/glycogen and sucrose metabolism (salivary amylase genes, AMY1A, AMY1B, and AMY1C,

pancreatic amylase gene, AMY2A and acid trehalase-like protein 1, ATHL1) and bile acid syn-

thesis (CH25H, BAAT, ACOT1, ACOT2). This module also contains the dysregulated genes

associated with amino acids, histidine, arginine, proline, tryptophan, valine, leucine, isoleucine,

glycine, serine, alanine, and threonine metabolism; the expressions of ALDH1A3, LDHA,

PRODH2, IDO2, AOX1, PCCA, PSAT1, CHDH genes were up-regulated whereas expressions

of PRODH, and HADH were down-regulated in β -cell samples from patients with diabetes.

Table 2.2: The correlation between module eigengene (ME) expression value and disease
state. p-values corresponding to each Pearson correlation coefficient are provided in the paren-
theses. Metabolic pathways associated with each module and the number of differentially ex-
pressed metabolic genes (DEMGs) are also mentioned.

Module (Size)
Disease state

(p-value)
DEGs

(Up, Down)

Pathways (No. of genes)
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Module 1

(287)
-0.34 (0.1) 21 (3, 18)

Transport, extracellular (28); Fatty acid

oxidation (24); Oxidative phosphoryla-

tion (22); Nucleotide interconversion (20);

Unassigned (17); Valine, leucine, and

isoleucine metabolism (14)

Module 2

(240)
0.78 (5e−5) 108 (75, 33)

Transport, extracellular (37); Fatty acid ox-

idation (21); Unassigned (19); Miscella-

neous (15); Eicosanoid metabolism (15);

Glycerophospholipid metabolism (13); Nu-

cleotide interconversion (13); Glycoly-

sis/gluconeogenesis (10)

Module 3

(162)
0.18 (0.4) 10 (10, 0)

Oxidative phosphorylation (18); Nucleotide

interconversion (16); Transport, extracellu-

lar (16); Eicosanoid metabolism (8); Unas-

signed (8); Glutathione metabolism (7)

Module 4 (73) 0.21 (0.4) 6 (5, 1)

Oxidative phosphorylation (9); Glycoly-

sis/gluconeogenesis (7); Transport, extra-

cellular (7); N-glycan synthesis (6); Sphin-

golipid metabolism (5)

By performing the transcriptional factor (TF) enrichment analysis, we found that 11 and

16 TFs, respectively, were associated with the up-and down-regulated genes of Module 2 (p-

value<0.05). Among these, the protein products of TP63, HNF4A, RELA, STAT3, NR1H3,

GATA3, STAG1 (SA1), FOXO3, and ESR1 TFs regulate the expression of elevated genes in-

volved in fatty acid, pyruvate and amino acid metabolism, glycolysis/glucone- ogenesis, and tri-

acylglycerol synthesis. In contrast, the TFs E2F1, SMAD2, SMAD3, FOXH1, NR1H3, ARNT,

AHR, CLOCK, FOXM1, TCF3 (E2A), SPI1, and SOX11 regulate the expression of attenuated

genes whose protein (enzyme) products participate in fatty acid and sphingolipid metabolism,
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Figure 2.3: Module eigengene (ME) expression profile of metabolic modules. The x-axis
represents samples for different disease profiles (control-blue, diabetes-red), and the y-axis
represents ME expression values.

glycolysis/gluconeogenesis, oxidative phosphorylation, pentose phosphate pathway, and urea

cycle. Functional impairment of HNF4 Adue to mutation can cause maturity-onset diabetes

of the young 1 (early-onset type 2 diabetes) [242, 243], but sometimes it can also cause hy-

perinsulinemic hypoglycemia [243, 244]. Activating mutations in STAT3 can lead to neonatal

diabetes accompanied by beta-cell failure, and also its inhibition has been proposed as cell ther-

apy for ameliorating hyperglycemia in diabetes [245]. It is reported that RELA is necessary for

maintaining healthy glucose metabolism as its deletion results in loss of insulin secretion [246].

Also, the activation of ESR1 inhibits lipogenesis in beta-cell by suppressing fatty acid synthase

expression [247]. GATA3 regulates the genes involved in fatty acid metabolism, amino acid

metabolism, glycolysis/gluconeogenesis as well as triacylglycerol synthesis (pancreatic lipase-

related protein 1), and its inhibition has been proposed as a therapeutic strategy in obesity-

associated insulin resistance and type 2 diabetes [248]. Liver X Receptor α (NR1H3) was

found to be a regulator of the dysregulated genes in fatty acid, amino acid, glucose metabolism,

and pentose phosphate pathway. It is also reported that liver X Receptors can control insulin se-

cretion and biosynthesis via regulation of glucose and lipid metabolism, but its hyperactivation

can lead to lipogenesis with the combination of the LXR/RXR agonists, resulting in reduced
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glucose-induced insulin secretion [249]. Here we found that FOXM1, SMAD2, and SMAD3

regulate the expression of genes involved in glycolysis (GPD2) and sphingolipid metabolism

(SGPL1). FOXM1 transcriptional program plays a key role in the proliferation of beta-cells,

and it is reported that nondiabetic obesity increases the expression of FOXM1, resulting in the

increased beta-cell mass, but in diabetic strain, this up-regulation was found to be absent [250].

Activation of SMAD3 reduces insulin production and secretion, whereas inactivation increases

glucose-stimulated insulin secretion [251], and SMAD2 disruption leads to impaired glucose

tolerance with reduced activity of the KATP channels [252]. ARNT and E2F1 regulate genes

involved in glycolysis (GPD2) and pentose phosphate pathway (PRPS1), and also their expres-

sion is decreased in diabetic human islets [253, 254]. Impaired glucose tolerance and abnormal

insulin secretion were observed in beta-cell-specific ARNT knockout mice [253] and E2F1 de-

ficient mice, and pancreatic islets [255]. CLOCK and FOXH1 regulate the expression of genes

involved in lipid metabolism (ACOT1/ACOX1), sphingolipid metabolism (SGPL1), and pen-

tose phosphate pathway (PRPS1). It has been reported that disruption of CLOCK expression

leads to impairment of mitochondrial function, oxidative stress in beta-cell and impaired GSIS,

and finally, diabetes [256].

2.3.2 Significant alterations in metabolic flux states

We predicted the metabolic-flux level profile of pancreatic β -cells for ten control and ten T2D

subjects by integrating the gene expression data on Recon 2.04. Metabolic tasks are a widely

used approach for assessing the technical quality of the reconstructed models [257, 258]. It

analyzes a particular set of organ-specific metabolic functions like ATP yields on various carbon

sources under aerobic and anaerobic conditions, and production of lipids and vitamins. To

evaluate our model, we performed 74 pancreas-specific metabolic tasks as defined in Thiele

et al. [257] and found that all the models show 96% of these tasks. The significantly altered

pathways obtained from comparing metabolic-flux profiles between the diabetic and control

subjects are shown in Fig. 2.4A.
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Figure 2.4: Significantly altered metabolic pathways. (A) Reporter pathways analysis was
performed here to obtain the significantly altered pathways, and the corresponding cut-off p-
value < 0.05. (B) Up- and down-regulated reactions were obtained by comparing the flux
values in diabetic subjects with respect to the control subjects. The cut-off p-value and fold
change are 0.05 and 1.2, respectively. The total number of obtained altered reactions for each
pathway is provided in the parentheses.

We noticed that all the altered reactions in arginine and proline metabolism, oxidative phos-

phorylation, propionate metabolism, pyrimidine catabolism, R group synthesis, and sphin-

golipid metabolism are down-regulated. Whereas only up-regulated fluxes were observed in
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chondroitin sulfate degradation, folate metabolism, histidine metabolism, triacylglycerol syn-

thesis, starch, and sucrose metabolism. Fatty acid oxidation was found as a highly perturbed

pathway in diabetic conditions, which exhibited both up-and down-regulated reactions. How-

ever, up-regulated reactions (65%) are higher than down-regulated ones (Fig. 2.4B). In the

diseased state, peroxisomal fatty acid beta-oxidation was found to be up-regulated, whereas

mitochondrial and cytosolic fatty acid oxidation was attenuated. The reactions associated with

peroxisomal H2O2 production had higher flux rates in diabetic conditions, while the mitochon-

drial NADH and FADH2 producing reactions had significantly lower fluxes (Fig. 2.5). We also

observed alterations in fatty acid transport within the cellular compartments such as peroxi-

some, cytoplasm, and extracellular space.

For the triacylglycerol synthesis pathway, we noted increased flux rates for the carboxyl es-

ter lipase (CEL, previously named cholesterol esterase or bile salt-stimulated [or dependent] li-

pase) catalyzed hydrolysis of triglyceride (Fig. 2.6). This enzyme is a lipolytic enzyme capable

of hydrolyzing cholesteryl esters, tri-, di-, and monoacylglycerols, phospholipids, lypophos-

pholipids, and ceramide enzymes. No significant changes in the metabolism of CEL-generated

triacylglycerol metabolites were observed in this process. However, it did show alterations in

their transport rates from the cytoplasm to the extracellular space. Reduced flux rates were also

observed in the oxidative phosphorylation pathway for two reactions, coenzyme Q:cytochrome

C - oxidoreductase (mitochondrial complex III) and cytochrome C oxidase (mitochondrial com-

plex IV) (see Fig. 2.7).

A significant perturbation of amino acid metabolism, which plays a crucial role in insulin

secretion either directly or indirectly [42], was observed here (Figs. 2.6 and 2.7). High flux

rates for two reactions (choline dehydrogenase and betaine-aldehyde dehydrogenase) involved

in glycine, serine, alanine, and threonine metabolism were observed, and also the level of

choline dehydrogenase (CHDH) was up-regulated. Consequently, elevated glycine betaine

production flux from choline was observed and further transported to extracellular space. In

addition, histidine metabolism pathway was found up-regulated. In this case, higher flux rates

from L-histidine (his_L) to 5-formimino tetrahydrofolic acid (5forthf) were observed. The

beta-alanine and alpha-ketoglutaric acid (akg) production flux reduction from glutamic acid
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and malonic semialdehyde (msa) was observed in the beta-alanine metabolism pathway. This

reduction might be the result of the downregulation of ACOT1 and ACOT2, leading to lower

conversion rates of propionic acid to propionyl-CoA (bile acid synthesis pathway). A series of

metabolic reactions were altered that participate in bile acid synthesis, propanoate, beta-alanine

metabolism, and CoA biosynthesis pathways, leading to reduced fluxes from propionyl-CoA to

malonic semialdehyde. Also, the reduced uptake flux of propionic acid was observed here.

Fatty acid oxidation

0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.75 3 

Fold change value

Beta oxidation of long chain fatty acid [FAOXC16080x]

Acyl-CoA Oxidase[r1443]

Acyl-CoA Oxidase [r1444]

Acyl-CoA Oxidase [r1445]

Acyl Coenzyme A Oxidase [RE2985X]

Fatty Acid Beta Oxidation (C10:1->C10:2) [FAOXC101C102x]

Fatty Acid Beta Oxidation (C10:2->C10:3) [FAOXC102C103x]

Fatty Acid Beta Oxidation (C10->C8) [FAOXC10C8x]

Fatty Acid Beta Oxidation (C12->C10) [FAOXC12C10x]

Fatty Acid Beta Oxidation (C14:2->C12:2) [FAOXC142C122x]

Fatty Acid Beta Oxidation (C14:3->C12:3) [FAOXC143C123x]

Fatty Acid Beta Oxidation (C14->C12) [FAOXC14C12x]

Fatty Acid Beta Oxidation (C16:3->C16:4) [FAOXC163C164x]

Fatty Acid Beta Oxidation (C16:4->C16:5) [FAOXC164C165x]

Fatty Acid Beta Oxidation (C16->C14) [FAOXC16C14x]

Fatty Acid Beta Oxidation (C18:4->C16:4) [FAOXC184C164x]

Fatty Acid Beta Oxidation (C20:4->C20:5)[FAOXC204C205x]

Fatty Acid Beta Oxidation (C22:5->C22:6) [FAOXC225C226x]

Fatty Acid Beta Oxidation (C24:1->C22:1) [FAOXC241C221x]

Fatty Acid Beta Oxidation (C6Dc->C4Dc) [FAOXC6DCC4DCx]

Fatty Acid Beta Oxidation (C8:1->C6:1) [FAOXC81C61x]

Fatty Acid Beta Oxidation (C8Dc->C6Dc) [FAOXC8DCC6DCx]

Acyl Coenzyme A Oxidase (Hexadecanoyl Coenzyme A) [ACOAO7p]

Beta Oxidation of Long Chain Fatty Acid [FAOXC200180x]

Acetyl Coenzyme A Carboxylase, Beta Isoform [ACCOACm]

Beta Oxidation of Long Chain Fatty Acid (Odd Chain) [FAOXC170m]

Fatty Acid Beta Oxidation (C18:2->C18:2Oh) [FAOXC182C182OHm]

3-Hydroxyacyl Coenzyme A Dehydrogenase [RE3005M]

Figure 2.5: Alteration in fatty acid oxidation pathway related to H2O2 and ATP produc-
tion. H2O2 producing reactions in the peroxisomal compartment are shown at the panel’s top
row. The last four reactions (in the panel) are associated with mitochondrial ATP, NADH, and
FADH2 production. The fold change values for the up-and down-regulated reactions are dis-
played on the right and left sides of value 1, respectively. These fold-changes were calculated
by comparing the median flux values of the diabetic group with respect to the control.

The level of beta-alanine was compensated by the higher conversion rate from aspartic acid

(see beta-alanine metabolism in Figs. 2.6 and 2.7). In the tryptophan metabolism pathway, a
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higher production flux of serotonin from tryptophan was observed due to the higher expression

of TPH2. We also found alterations in the arginine, proline, valine, leucine, and isoleucine

metabolic pathways.

In the starch and sucrose metabolic pathways, higher flux rates were observed for pancreatic

α-amylase, and the corresponding genes were up-regulated in patients with diabetes compared

to the control subjects. Pancreatic α-amylase synthesized by pancreatic acinal cells and se-

creted into the duodenum as a major component of pancreatic fluid catalyzes the initial step of

hydrolysis of α-linked polysaccharides (like starch and glycogen) for glucose production in the

small intestine. The elevated pancreatic α-amylase may contribute to increased blood glucose

levels. Interestingly, its inhibitors have been suggested as potential antidiabetic agents [259].

Reactions of pentose phosphate pathway (PPP), which derives glycolysis in the cytoplasm,

were found significantly decreased in diabetic patients, causing reduced yield of ribulose 5-

phosphate and NADPH; ribulose 5-phosphate serves as a precursor for nucleotide synthesis by

proliferating cells, and NADPH is utilized for lipogenesis and glutathione regeneration by glu-

tathione reductase. Also, a reduced flux rate was observed in the rates of conversion of malate

to pyruvate catalyzed by cytosolic malic enzyme 1 (ME1) along with concomitant NADPH

production. We also observed an elevated expression of extracellular superoxide dismutase 3

(SOD3), which protects the extracellular space from the toxic effect of ROS intermediates by

converting superoxide radicals into hydrogen peroxide and oxygen. However, no significant

changes were observed in the expression of SOD1 and SOD2.

Sphingolipids play an important role in glucolipotoxicity-induced apoptosis. It also influ-

ences β -cell physiology by regulating proinsulin folding and insulin secretion [260, 261]. In the

sphingolipid metabolism, conversion fluxes of cytosolic and ER O- Phosphorylethanolamine

(Abbreviation used in Recon 2.04 for O- Phosphorylethanolamine: ethamp) and cytosolic

palmitaldehyde (Abbreviation used in Recon 2.04 is: hxdcal) from sphinganine 1-phosphate

(Abbreviation used in Recon 2.04 is: sph1p) were found down-regulated. Also, the accu-

mulation of O- Phosphorylethanolamine in ER and the flux rate of sphinganine-1-phosphate

pamlmitaldehyde-lyase (glycerophospholipid metabolism), which produces sphinganine 1- phos-

phate from O-Phosphorylethanolamine and palmitaldehyde, were significantly suppressed.
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folylpolyglutamate synthetase 1.25 atp[c]+4 glu_L[c]+thf[c]=>3 h2o[c]+adp[c]+h[c]+pi[c]+5thf[c]

folylpolyglutamate synthetase (DHF), mitochondrial 1.29 glu_L[m]+6dhf[m]+atp[m]=>h[m]+7dhf[m]+adp[m]+pi[m]

folylpolyglutamate synthetase (10fthf) 1.25 10fthf[c]+atp[c]+4 glu_L[c]=>10fthf5glu[c]+3 h2o[c]+adp[c]+h[c]+pi[c]

folylpolyglutamate synthetase (10fthf), mitochondrial 1.26 10fthf[m]+4 glu_L[m]+atp[m]=>10fthf5glu[m]+h[m]+3 h2o[m]+adp[m]+pi[m]

folylpolyglutamate synthetase (10fthf), mitochondrial 1.21 10fthf5glu[m]+glu_L[m]+atp[m]=>10fthf6glu[m]+h[m]+adp[m]+pi[m]

folylpolyglutamate synthetase, mitochondrial 1.26 4 glu_L[m]+atp[m]+thf[m]=>h[m]+3 h2o[m]+5thf[m]+adp[m]+pi[m]

formimidoyltransferase cyclodeaminase 1.52 2 h[c]+5forthf[c]=>nh4[c]+methf[c]

Gamma-glutamyl hydrolase (10FTHF5GLU), extracellular 1.26 4 h2o[e]+10fthf5glu[e]=>4 glu_L[e]+10fthf[e]

Gamma-glutamyl hydrolase (10FTHF5GLU), lysosomal 1.27 10fthf5glu[l]+4 h2o[l]=>10fthf[l]+4 glu_L[l]

Gamma-glutamyl hydrolase (10FTHF6GLU), lysosomal 1.22 10fthf6glu[l]+h2o[l]=>10fthf5glu[l]+glu_L[l]

Gamma-glutamyl hydrolase (5DHF), extracellular 1.26 4 h2o[e]+5dhf[e]=>4 glu_L[e]+dhf[e]

Gamma-glutamyl hydrolase (5THF), extracellular 1.26 4 h2o[e]+5thf[e]=>4 glu_L[e]+thf[e]

Gamma-glutamyl hydrolase (5THF), lysosomal 1.27 4 h2o[l]+5thf[l]=>4 glu_L[l]+thf[l]

Gamma-glutamyl hydrolase (7DHF), lysosomal 1.29 h2o[l]+7dhf[l]=>6dhf[l]+glu_L[l]

methylenetetrahydrofolate dehydrogenase (NAD), mitochondrial 1.66 nadh[m]+methf[m]<=>nad[m]+mlthf[m]

lipase 1.69 h2o[c]+tag_hs[c]=>h[c]+Rtotal3[c]+dag_hs[c]

lipase 1.72 h2o[c]+dag_hs[c]=>h[c]+Rtotal[c]+mag_hs[c]

lipase 1.73 h2o[e]+tag_hs[e]=>h[e]+dag_hs[e]+Rtotal3[e]

Glutamate formimidoyltransferase 1.52 h[c]+thf[c]+forglu[c]=>glu_L[c]+5forthf[c]

histidase 1.52 his_L[c]=>nh4[c]+urcan[c]

Imidazolonepropionase 1.52 h2o[c]+4izp[c]=>h[c]+forglu[c]

Urocanase 1.52 h2o[c]+urcan[c]=>4izp[c]

acetyl-CoA C-acetyltransferase, mitochondrial 1.21 accoa[m]+ppcoa[m]<=>coa[m]+2maacoa[m]

2-Methylprop-2-enoyl-CoA (2-Methylbut-2-enoyl-CoA), mitochondrial 1.21 3hmbcoa[m]<=>h2o[m]+2mb2coa[m]

3-hydroxyacyl-CoA dehydrogenase (2-Methylacetoacetyl-CoA), mitochondrial 1.21 h[m]+nadh[m]+2maacoa[m]<=>nad[m]+3hmbcoa[m]

(S)-Methylmalonyl-CoA hydrolase Propanoate metabolism EC:3.1.2.17 1.25 h2o[m]+mmcoa_S[m]<=>h[m]+coa[m]+HC00900[m]

(S)-Methylmalonate semialdehyde:NAD+ oxidoreductase EC:1.2.1.3 1.25 2 h[m]+nadh[m]+HC00900[m]<=>h2o[m]+nad[m]+2mop[m]

5-Hydroxy-L-tryptophan decarboxy-lyase 1.48 h[c]+5htrp[c]=>co2[c]+srtn[c]

L-Tryptophan,tetrahydrobiopterin:oxygen oxidoreductase (5-hydroxylating) 1.33 o2[c]+thbpt[c]+trp_L[c]=>5htrp[c]+thbpt4acam[c]

L-Serine hydro-lyase (adding homocysteine) EC:4.2.1.22 1.44 h[c]+ser_L[c]+HC00250[c]=>h2o[c]+cys_L[c]

aspartate 1-decarboxylase 1.41 h[c]+asp_L[c]=>co2[c]+ala_B[c]

pyruvate peroxisomal transport via proton symport 1.58 h[c]+pyr[c]<=>h[x]+pyr[x]

betaine-aldehyde dehydrogenase, mitochondrial 1.43 h2o[m]+nad[m]+betald[m]=>2 h[m]+nadh[m]+glyb[m]

choline dehydrogenase (FAD acceptor), mitochondrial 1.43 fad[m]+chol[m]=>fadh2[m]+betald[m]

RE0565 1.6 h[c]+malcoa[c]+stcoa[c]=>co2[c]+coa[c]+CE2251[c]

RE0566 1.6 h[c]+nadph[c]+CE2251[c]<=>nadp[c]+CE2247[c]

RE0567 1.6 CE2247[c]<=>h2o[c]+CE2243[c]

RE0568 1.6 h[c]+nadph[c]+CE2243[c]<=>nadp[c]+arachcoa[c]

guanidinoacetate N-methyltransferase (c) 3.16 h[c]+ahcys[c]+creat[c]<=>amet[c]+gudac[c]

glycine amidinotransferase (c) 3.16 orn[c]+gudac[c]<=>gly[c]+arg_L[c]

superoxide dismutase, extracellular 1.26 2 h[e]+2 o2s[e]=>h2o2[e]+o2[e]

Carboxypeptidase A 1.48 leu_L[e]+CE5789[e]<=>h2o[e]+CE5786[e]

Carboxypeptidase A 1.47 leu_L[e]+CE5798[e]<=>h2o[e]+CE5797[e]

phosphoribosylpyrophosphate synthetase 1.35 h[c]+amp[c]+prpp[c]<=>atp[c]+r5p[c]

alpha-methylacyl-CoA racemase (reductase) 1.57 0.5 o2[x]+dhcholestancoa[x]=>dhcholoylcoa[x]+h2o[x]

bile acid Coenzyme A: amino acid N-acyltransferase 1.59 cholcoa[x]+taur[x]=>coa[x]+tchola[x]

bile acid Coenzyme A: amino acid N-acyltransferase 1.57 gly[x]+dgcholcoa[x]=>coa[x]+dgchol[x]

peroxisomal thiolase 2 1.57 8 coa[x]+7 dhcholoylcoa[x]+2 h2o[x]+3 co2[x]=>7 dgcholcoa[x]+8 ppcoa[x]

Choloyl-CoA:glycine N-choloyltransferase EC:2.3.1.65 1.5 coa[c]+gchola[c]<=>gly[c]+cholcoa[c]

Choloyl-CoA:glycine N-choloyltransferase EC:2.3.1.65 1.44 coa[c]+tchola[c]<=>taur[c]+cholcoa[c]

glycine N-choloyltransferase EC:2.3.1.65 1.42 coa[c]+dgchol[c]<=>gly[c]+dcholcoa[c]

RE1804 1.38 nad[c]+CE0233[c]<=>h[c]+nadh[c]+xol7ah2al[c]

RE1826 1.38 o2[c]+h[c]+nadph[c]+xol7ah2[c]=>h2o[c]+nadp[c]+CE0233[c]

Bile Acid-CoA:Amino Acid N-Acyltransferase 1.32 coa[c]+tdchola[c]<=>taur[c]+dcholcoa[c]

chondroitin sulfate A proteoglycan protease, lysosome (endosome) 1.32 h2o[l]+cspg_a[l]=>Ser_Gly_Ala_X_Gly[l]+cs_a[l]

chondroitin sulfate C proteoglycan protease, lysosome (endosome) 1.31 h2o[l]+cspg_c[l]=>Ser_Gly_Ala_X_Gly[l]+cs_c[l]

beta-glucuronidase, lysosomal 1.32 h2o[l]+cs_a_deg2[l]=>glcur[l]+cs_a_deg3[l]

beta-glucuronidase, lysosomal 1.31 h2o[l]+cs_c_deg2[l]=>glcur[l]+cs_c_deg3[l]

beta-N-acetylhexosaminidase, lysosomal 1.31 h2o[l]+cs_a_deg1[l]=>acgal[l]+cs_a_deg2[l]

beta-N-acetylhexosaminidase, lysosomal 1.3 h2o[l]+cs_c_deg1[l]=>acgal[l]+cs_c_deg2[l]

beta-N-acetylhexosaminidase, lysosomal 1.31 h2o[l]+cs_c_deg4[l]=>acgal[l]+cs_c_deg5[l]

beta-N-acetylhexosaminidase A, lysosomal 1.32 2 h2o[l]+cs_a[l]=>h[l]+acgal[l]+so4[l]+cs_a_deg2[l]

beta-N-acetylhexosaminidase A, lysosomal 1.32 2 h2o[l]+cs_c[l]=>h[l]+acgal[l]+so4[l]+cs_c_deg2[l]

beta-N-acetylhexosaminidase A, lysosomal 1.3 2 h2o[l]+cs_c_deg3[l]=>h[l]+acgal[l]+so4[l]+cs_c_deg5[l]

N-acetylgalactosamine-4-sulfatase, lysosomal 1.31 h2o[l]+cs_a[l]<=>h[l]+so4[l]+cs_a_deg1[l]

N-acetylgalactosamine-6-sulfatase, lysosomal 1.3 h2o[l]+cs_c[l]<=>h[l]+so4[l]+cs_c_deg1[l]

N-acetylgalactosamine-6-sulfatase, lysosomal 1.31 h2o[l]+cs_c_deg3[l]<=>h[l]+so4[l]+cs_c_deg4[l]

Phosphoenolpyruvate carboxykinase (GTP) 2.98 oaa[c]+gtp[c]=>co2[c]+pep[c]+gdp[c]

(S)-Lactate:NAD+ oxidoreductase EC:1.1.1.27 1.37 h[x]+nadh[x]+pyr[x]<=>nad[x]+lac_L[x]

alpha-amylase, extracellular (strch1 -> strch2) 1.36 8 h2o[e]+strch1[e]=>8 glc_D[e]+strch2[e]

alpha-amylase, extracellular (glygn2 -> glygn4) 1.37 8 h2o[e]+glygn2[e]=>8 glc_D[e]+glygn4[e]

Alpha-Amylase 1.34 glc_D[e]+malttr[e]<=>h2o[e]+maltttr[e]

Alpha-Amylase 1.33 glc_D[e]+maltttr[e]<=>h2o[e]+maltpt[e]

Alpha-Amylase 1.33 glc_D[e]+maltpt[e]<=>h2o[e]+malthx[e]

Alpha-Amylase 1.33 glc_D[e]+malthx[e]<=>h2o[e]+malthp[e]

Alpha-Amylase 1.33 glc_D[e]+CE2838[e]<=>h2o[e]+CE2839[e]

Nicotinate D-Ribonucleoside Kinase 1.34 atp[c]+nicrns[c]=>adp[c]+h[c]+nicrnt[c]

nucleotide phosphatase 1.34 h[c]+nac[c]+r1p[c]=>pi[c]+nicrns[c]

Nicotinate D-ribonucleotide:pyrophosphate phosphoribosyltransferase 1.34 ppi[c]+nicrnt[c]<=>h[c]+prpp[c]+nac[c]

5'-nucleotidase (dUMP),mitochondrial 1.73 h2o[m]+dump[m]=>pi[m]+duri[m]

5'-nucleotidase (dTMP), mitochondrial 1.27 h2o[m]+dtmp[m]=>pi[m]+thymd[m]

Subsystems in VMH database Reactions DescriptionFold change
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Figure 2.6: Description of the high flux valued reactions. Here, the first column represents
the pathways in which these reactions are participating. The second column provides the name
of each reaction, the third column shows their fold change value in type 2 diabetes compared
to control, and last column depicts the formula of each reaction.
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These reactions are associated with the gene Sphingosine-1-Phosphate Lyase 1 (SGPL1) and

found down-regulated. In the gluconeogenesis pathway, we noticed a higher flux rate for

phosphoenolpyruvate carboxykinase (GTP) and a reduced flux rate for FAD-linked glycerol-3-

phosphate dehydrogenase (mGPDH). Reduced activity of mGPDH has already been reported

in T2D [262, 263].

cytochrome c oxidase, mitochondrial Complex IV 0.68 o2[m]+4 focytC[m]=>4 h[m]+2 h2o[m]+4 ficytC[m]

ubiquinol-6 cytochrome c reductase, Complex III 0.65 2 h[m]+2 ficytC[m]+q10h2[m]=>4 h[c]+q10[m]+2 focytC[m]

sn-Glycerol-3-phosphate:(acceptor) 2-oxidoreductase EC:1.1.5.3 0.77 q10[m]+glyc3p[c]=>dhap[c]+q10h2[m]

Sphingosine-1-phosphate lyase 0.77 h2o[r]+sphs1p[r]=>h[r]+ethamp[r]+hdca[r]

sphinganine-1-phosphate palmitaldehyde-lyase EC:4.1.2.27 0.8 sphs1p[c]=>ethamp[c]+HC02228[c]

hexadecanal:NADP+ delta2-oxidoreductase EC:1.3.1.27 0.8 h[c]+nadph[c]+HC02228[c]=>nadp[c]+hxdcal[c]

Sphinganine-1-phosphate pamlmitaldehyde-lyase EC:4.1.2.27 0.8 ethamp[c]+hxdcal[c]=>sph1p[c]

glucose-6-phosphate dehydrogenase, endoplasmic reticulum 0.02 nad[r]+g6p[r]<=>h[r]+nadh[r]+6pgl[r]

phosphogluconate dehydrogenase, endoplasmic reticulum 0.83 nadp[r]+6pgc[r]=>nadph[r]+co2[r]+ru5p_D[r]

6-phosphogluconolactonase, endoplasmic reticulum 0.83 h2o[r]+6pgl[r]=>h[r]+6pgc[r]

2-Deoxy-D-ribose 1-phosphate 1,5-phosphomutase EC:5.4.2.7 0.74 2dr1p[c]<=>2dr5p[c]

arginase 0.58 h2o[c]+arg_L[c]=>orn[c]+urea[c]

Ornithine Decarboxylase 0.71 h[c]+orn[c]=>co2[c]+ptrc[c]

kynurenine 3-monooxygenase 0.76 o2[c]+h[c]+nadph[c]+Lkynr[c]=>h2o[c]+nadp[c]+hLkynr[c]

Nitric Oxide Synthase (NO forming) 0.79 o2[c]+nadph[c]+nwharg[c]=>h2o[c]+h[c]+nadp[c]+citr_L[c]+no[c]

proline oxidase (NAD), mitochondrial 0.75 nad[m]+pro_L[m]=>2 h[m]+nadh[m]+1pyr5c[m]

Proline dehydrogenase (m) 0.75 fad[m]+pro_L[m]=>h[m]+fadh2[m]+1pyr5c[m]

3-hydroxyisobutyrate dehydrogenase, mitochondrial 0.82 nad[m]+3hmp[m]<=>h[m]+nadh[m]+2mop[m]

2-Methylpropanoyl-CoA:oxygen 2,3-oxidoreductase EC:1.3.99.2 0.76 ibcoa[m]+q10[m]=>2mp2coa[m]+q10h2[m]

3-Aminopropanoate:2-oxoglutarate aminotransferase (m) 0.47 glu_L[m]+msa[m]<=>akg[m]+ala_B[m]

Propenoyl-CoA hydrolase (m) 0.67 h2o[m]+prpncoa[m]=>3hpcoa[m]

4-Aminobutyraldehyde:NAD+ oxidoreductase EC:1.2.1.3 0.54 h2o[m]+nadp[m]+4abutn[m]<=>2 h[m]+nadph[m]+4abut[m]

4-Aminobutanal:NAD+ 1-Oxidoreductase 0.54 2 h[m]+nadh[m]+4abut[m]<=>h2o[m]+nad[m]+4abutn[m]

palmitoyl-CoA desaturase (n-C16:0CoA -> n-C16:1CoA) 0.76 o2[c]+h[c]+nadh[c]+pmtcoa[c]=>2 h2o[c]+nad[c]+hdcoa[c]

Palmitoyl Coenzyme A Hydrolase 0.7 h[c]+coa[c]+ocdca[c]<=>h2o[c]+stcoa[c]

Palmitoyl Coenzyme A Hydrolase 0.77 h[c]+coa[c]+arach[c]<=>h2o[c]+arachcoa[c]

Arachidonate 5-lipoxygenase 0.74 o2[c]+arachd[c]=>5HPET[c]

Arachidonate 5-lipoxygenase 0.77 5HPET[c]=>h2o[c]+leuktrA4[c]

R group artificial flux 0.81 arachcoa[c]=>1.25 R2coa_hs[c]

R group artificial flux 0.82 h[m]+nadph[m]+fadh2[m]+lnlccoa[c]=>nadp[m]+fad[m]+1.125 R2coa_hs[c]

R group artificial flux 0.78 fadh2[m]+hdd2coa[c]=>fad[m]+R6coa_hs[c]

R group to palmitate conversion 0.82 Rtotal3coa[c]=>pmtcoa[c]

R total flux 2 position 0.83 R2coa_hs[c]+R4coa_hs[c]=>2 Rtotal2coa[c]

R total flux 3 position 0.83 R1coa_hs[c]+R2coa_hs[c]=>2 Rtotal3coa[c]

R total flux 0.67 R2coa_hs[c]=>Rtotalcoa[c]

R total flux 0.67 R5coa_hs[c]=>Rtotalcoa[c]

R total flux 0.78 R6coa_hs[c]=>Rtotalcoa[c]

Propinol adenylate:CoA ligase (AMP-forming)EC:6.2.1.17 0.6 coa[m]+HC01668[m]=>2 h[m]+ppcoa[m]+amp[m]

Propanoate:CoA ligase (AMP-forming)EC:6.2.1.1 EC:6.2.1.17 0.6 h[m]+atp[m]+ppa[m]=>ppi[m]+HC01668[m]

steroyl-CoA,hydrogen-donor:oxygen oxidoreductase EC:1.14.19.1 0.82 o2[c]+pmtcoa[c]+2 HC00619[c]=>2 h2o[c]+2 HC00617[c]+HC10852[c]

Propanoyl-CoA:(acceptor) 2,3-oxidoreductase EC:1.3.3.6 EC:1.3.99.3 0.67 ppcoa[m]+q10[m]=>q10h2[m]+prpncoa[m]

L-proline:(acceptor) oxidoreductase EC:1.5.99.8 0.79 5 h[m]+q10[m]+1pyr5c[m]<=>q10h2[m]+pro_L[m]

2-methylcitrate synthase 0.76 h2o[c]+ppcoa[c]+oaa[c]=>h[c]+2mcit[c]+coa[c]

Propanoyl-CoA:FAD 2,3-oxidoreductase, mitochondrial 0.66 ppcoa[m]+fad[m]=>fadh2[m]+prpncoa[m]

3-hydroxypropanoate:NAD+ oxidoreductase EC:1.1.1.59 0.67 nad[m]+3hpp[m]=>h[m]+nadh[m]+msa[m]

ITP diphosphohydrolase Purine metabolism EC:3.6.1.5 0.82 h[e]+pi[e]+idp[e]<=>h2o[e]+itp[e]

CDP diphosphohydrolase Pyrimidine metabolism EC:3.6.1.5 0.81 h[e]+pi[e]+cmp[e]<=>h2o[e]+cdp[e]

CTP diphosphohydrolase Pyrimidine metabolism EC:3.6.1.5 0.82 h[e]+pi[e]+cdp[e]<=>h2o[e]+ctp[e]

dTDP diphosphohydrolase Pyrimidine metabolism EC:3.6.1.5 0.83 h[e]+pi[e]+dtmp[e]<=>h2o[e]+dtdp[e]

dTTP nucleotidohydrolase Pyrimidine metabolism EC:3.6.1.39 0.82 h[e]+pi[e]+dtdp[e]<=>h2o[e]+dttp[e]

glycerol-3-phosphate dehydrogenase (FAD), mitochondrial 0.77 fad[m]+glyc3p[c]=>fadh2[m]+dhap[c]

nucleoside-diphosphatase (GDP), extracellular 0.81 h2o[e]+gdp[e]=>h[e]+pi[e]+gmp[e]

nucleoside-triphosphatase (GTP) 0.8 h2o[e]+gtp[e]=>h[e]+pi[e]+gdp[e]

malic enzyme (NADP) 0.66 nadp[c]+mal_L[c]=>pyr[c]+nadph[c]+co2[c]

Transport reaction 0.8 dump[m]=>dump[c]

(R)-Mevalonate:NADP+ oxidoreductase (CoA acylating) EC:1.1.1.34 0.59 2 nadp[c]+coa[c]+mev_R[c]<=>2 h[c]+2 nadph[c]+hmgcoa[c]

Palmitoyl Coenzyme A Hydrolase 0.78 h[c]+coa[c]+ppa[c]<=>h2o[c]+ppcoa[c]

3-hydroxyisobutyryl-CoA hydrolase 0.67 h2o[m]+3hpcoa[m]=>h[m]+coa[m]+3hpp[m]
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Figure 2.7: Description of the low flux valued reactions. Here, the first column represents
the pathways in which these reactions are participating. The second column provides the name
of each reaction, the third column shows their fold change value in type 2 diabetes compared
to control, and last column depicts the formula of each reaction.
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Our analyses revealed marked alterations in the urea cycle, and one of the associated genes

(ornithine decarboxylase (ODC1)) was found downregulated. ODC1 catalyzes the rate-limiting

step of polyamine biosynthesis by decarboxylating ornithine (orn) and producing putrescine

(ptrc), the precursor for the polyamines. We also observed reduced flux for the upstream reac-

tion, arginase, which converts L-arginine (arg_L) into ornithine and urea. So, these alterations

can be considered an effect of reduced plasma level of arginine, which is already reported for

T2D patients [235]. A reduced uptake rate for L-arginine was also observed. In addition,

up-regulated fluxes were observed for two other reactions in the urea cycle: guanidinoacetate

N-methyltransferase and arginine:glycine amidinotransferase that promote the formation of L-

arginine and glycine from ornithine by consuming creatine (creat).

2.3.3 Alterations in the secretory profile of the pancreatic β -cell

We obtained 65 perturbed exchange/demand reactions, and of these, 37 reactions had high flux

rates, while 28 had low flux rates (names of the associated metabolites provided in Fig. 2.8).

We observed almost 2-fold increased triglyceride (triacylglycerol) uptake in the diabetes group,

resulting in an elevated production rate of diglyceride (diacylglycerol) and monoacylglycerol

2 and FAs. The associated CEL gene was found up-regulated. It is likely that these alterations

must be responsible for observed higher secretion of these metabolites into the extracellular

space (Fig. 2.8). Indeed, a higher abundance of plasma diglyceride and FAs were already re-

ported in patients with diabetess [264, 265]. We also observed higher expression of the CPA2

(carboxypeptidase A2 (pancreatic)) gene, a Zn-dependent digestive enzyme from the pancreas.

CPA2 regulates the conversion of kinetensin 1-8 and neuromedin N (1-4) into kinetensin and

neuromedin N (NMN), respectively, by consuming L-leucine (see miscellaneous in Fig. 2.6).

These reactions occur in the extracellular compartment of the cell (information extracted from

Recon 2.04), and the plasma level of L-leucine has been reported higher in diabetes sub-

jects [264]. Also, the presence of NMN and its precursor neurotensin (NT) were reported in

the extract of a human neuroendocrine pancreatic adenoma [266]. However, the plasma NMN

level was undetectable (below 100 pmol/L). We also observed higher secretion rates of betaine

due to earlier mentioned alterations in the glycine, serine, alanine, and threonine metabolism.
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Figure 2.8: List of metabolites corresponding to altered exchange reactions. The name
of the metabolites corresponding to each exchange reaction was extracted from the Virtual
Metabolic Human (VMH) database [267]. The flow of exchange of these metabolites was
obtained from the corresponding flux rates. Positive values in the exchange rate denote the se-
cretion of metabolites, and negative values indicate the consumption of metabolites. According
to the flow of the exchange and the mode of alterations in diabetes, we grouped the metabolites
into four classes: (A) Secreted from β -cells with higher flux rates, (B) Secreted from β -cells
with reduced flux rates, (C) Consumed by β -cells with higher flux rates, and (D) Consumed
by β -cells with reduced flux rates. The length of the circular bar represents the fold change
values of the exchange rates for each metabolite in diabetic patients compared to the control
subjects. The five-line segments between the groups A-B, B-C, C-D denote the 0-, 0.5-, 1-, 1.5-
and 2-fold change, respectively, from the center to the periphery.

It has been recently reported that plasma betaine level is upregulated in the diabetes group com-

pared to healthy controls [268]. Also, a group of five metabolites (betaine, alpha-linolenic acid,

d-mannose, l-glutamine, and methylmalonic acid) was proposed as a combinatorial biomarker

to distinguish diabetes mellitus from a healthy control [268]. As a result of the alterations in

tryptophan metabolism (described earlier), we observed a higher secretion flux of serotonin.
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Earlier studies [269, 270] also reported increased plasma serotonin levels in diabetic patients.

Also, reduced uptake of L-glutamic acid and L-arginine was observed here. These may be the

effect of low plasma levels of these two amino acids, and it is already reported that their levels

are reduced in diabetes [235].

2.4 Discussion

Our study aims to capture the insights of β -cell metabolism responsible for the dysregulated

β -cell function in type 2 diabetes. There were 117 up- and 72 down-regulated metabolic

genes found to be associated with various metabolic pathways. The co-expression analysis

of metabolic genes showed that most dysregulated genes in diabetes follow a similar expres-

sion pattern and form a cluster (Module 2). This module could distinguish diabetic samples

from the control samples. To unravel the complexities of the metabolic pathways, a constraint-

based modeling approach was employed to map the gene expression changes at the level of

metabolic flux rates, pathways, and metabolites. The E-flux method, which serves as a scaffold

for understanding the changes in the metabolic pathway, was applied in an effort to gener-

ate the subject-specific models from the generic human metabolic model. Comparison of the

metabolic-flux profiles between the patients with diabetes and control subjects provided mech-

anistic understanding responsible for blunting of ATP synthesis. This analysis also uncovered

potential causes responsible for the activation of oxidative stress-linked pathways.

Mitochondrial metabolism is a major determinant of insulin secretion from pancreatic β -

cells [271–273]. Their aerobic metabolism permits the oxidation of glucose and fatty acids

for the generation of ATP required for the exocytosis of insulin granules. In addition, β -cell

mitochondria play a crucial role in synthesizing other metabolites that can act, both intra- and

extra-mitochondrially, as factors that couple glucose sensing to insulin granule exocytosis. Our

analysis revealed a significant reduction in the mitochondrial fatty acid oxidation process as ev-

ident by reduced fluxes with concomitant decreases in NADH and FADH2 production. Indeed,

mitochondrial oxidative phosphorylation is the primary source for ATP generation in which

the reducing compounds like NADH and FADH2 are utilized by the electron transport chain to
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generate an electrochemical gradient that drives ATP synthesis. Thus, the decreased production

of these reducing compounds can lead to reduced fluxes towards oxidative phosphorylation and

subsequently affects ATP production. Here, we also found a significant reduction in the fluxes

for, coenzyme Q:cytochrome c - oxidoreductase (mitochondrial complex III) and cytochrome c

oxidase (mitochondrial complex IV) in the oxidative phosphorylation pathway. These impair-

ments lead to the decline of the ATP level required for the proper closure of the KATP channels

in T2D patients. Thus, reduced insulin secretion was observed in patients with diabetes, and

this is potentially one of the major causes of diabetes progression. Similar conclusions were

also drawn experimentally where the decreased activity of mitochondrial complex IV was ob-

served for diabetic islets [274, 275], and long-term exposure of high glucose was associated

with the reduction in the constituents of mitochondrial complexes I-IV [276]. It is also reported

that chronic hyperglycemia causes a change in mitochondrial number, function, and morphol-

ogy, which leads to impairment in the GSIS process through altered oxidative phosphorylation,

reduced mitochondrial Ca2+ capacity, and decreased ATP production rate [277].

Oxidative stress induced by chronic hyperglycemia is critically involved in the failure of

β -cell function and mass during T2D development. T2D is also accompanied by a chronic

elevation of free fatty acids, which contribute to β -cell failure via enhanced lipotoxicity. Fatty

acids are oxidized mainly in two compartments, mitochondria, and peroxisome, in which per-

oxisomal fatty acid oxidation is the major site of H2O2 production in β -cells. Peroxisomal

fatty acid oxidation shortens long- and very-long-chain fatty acids, resulting in H2O2 produc-

tion, and the shortened fatty acids are subsequently translocated to the mitochondria for their

further degradation. Our analysis revealed that the peroxisomal fatty acid oxidation and H2O2

production rates are upregulated in patients with diabetes. Consequently, this should lead to

increased ROS generation in β -cells leading to excessive oxidative stress. This fatty acid-

induced β -cell lipotoxicity is also confirmed experimentally [278]. In addition, analysis of

diabetic patient samples showed increased carboxyl ester lipase (CEL) activity, resulting in

excess production of diglyceride, monoacylglycerol 2, and fatty acids from the hydrolysis of

triglyceride (Figs. 2.6). Excess fatty acid accumulation also can induce lipotoxicity, whereas

excess diglyceride accumulation has been linked to the β -cell dysfunction in T2D [279, 280].
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Thus, the increased CEL activity has the potential to contribute to the β -cell dysfunction in

T2D.

In addition to decreased ATP levels, reduction in NADPH production is also likely to nega-

tively impact on providing reducing equivalents to two potent antioxidant systems which scav-

enge H2O2, i.e., the glutathione peroxidase and peroxiredoxin systems [281]. In addition to

this, the production flux for putrescine, a precursor for polyamine biosynthesis, is also reduced.

Polyamines are polycations that interact with negatively charged molecules such as DNA, RNA

and proteins and they play multiple roles in cell growth, survival and proliferation. Moreover,

it has been reported that the chronic depletion of cellular polyamine levels leads to oxidative

stress-mediated cellular apoptosis [282]. Thus, continuing depletion of NADPH and polyamine

levels in diabetic β -cells could negatively impact the efficacy of antioxidant defense systems

and secondarily exaggerate the extent of oxidative damage to macromolecules and activation

of stress-related signaling pathways.

Analysis of the secretory profile of pancreatic β -cell in the diabetic state leads to increased

secretion rates of 19 metabolites. Among these, diacylglycerol, monoacylglycerol 2, fatty

acids, betaine, serotonin, kinetensin, and neuromedin N (NMN) are the seven metabolites that

were associated with cardiovascular complications. Diacylglycerol, monoacylglycerol 2, and

fatty acids all can contribute to the increased circulating levels of FFA in diabetes. Under nor-

moglycemia, FFAs are used as essential fuel, but their high levels under pathological conditions

may eventually lead to lipotoxicity and excessive fat accumulation in the heart [283]. It has also

been reported that elevated plasma betaine concentration is a marker of cardiovascular risk in

diabetes [284]. Serotonin acts as a neurotransmitter and as a peripheral hormone in the human

body. Higher plasma serotonin level has been proposed as a marker for decompensation in pa-

tients with chronic heart failure [285]. The elevated serotonin concentrations have already been

described in various cardiovascular diseases [286–289]. Kinetensin is known to increase blood

pressure via activation of angiotensin-II type 1 receptors, and also it shows a variable effect on

heart rate [290]. The NMN does not show any direct role in cardiovascular complexity. How-

ever, its precursor, pro-neurotensin/ neuromedin N (pro-NT/NMN) [291], shows association

with metabolic diseases, diabetes, cardiovascular disease, breast cancer, ischemic stroke [292].
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Thus, our findings suggest that impaired metabolism of pancreatic β -cells not only leads

to dysregulated insulin secretion but also may contribute to the pathogenesis of cardiovascular

disease and associated complications. Although, investigators mainly directed their efforts on

β -cell metabolism in order to examine the cause and effect of diabetes. Our current studies,

however, raised the possibility that alteration in the β -cell metabolism affects the plasma in-

sulin levels and impaired plasma metabolic profiles in diabetes, which may further exaggerate

diabetes-related cardiovascular complications. On the one hand, we have shown the application

of GSMM in capturing metabolic alterations, while on the other hand, it can also be applied to

identify critical regulatory points through knockout approaches. In the next chapter, we have

explored GSMM in finding regulatory points for different cancer metabolic networks through

in silico gene knockout study.





3
In-silico gene knockout studies using

genome-scale metabolic model1

3.1 Introduction

Gene knockout study in cancer cell-lines is used to see the effect of an existing cancer drug or

to develop new cancer drug [51–55]. Another approach is the phenotypic screening of drugs in

cancer cell-lines to find its effect on the cell growth [51, 56–59]. Both of these processes are

very costly and time consuming [293–295]. Therefore, a computational method, like metabolic

networks, could be a good alternative to find drugs having better selective ability in killing can-

cerous cells [296–298]. One tool which is particularly suitable to deal with problems like per-

1The bulk of this chapter has been published in Scientific reports, 11.1 (2021): 1-13.
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sonalized medicine and finding a larger therapeutic window is genome-scale metabolic models

(GSMMs) [69]. Through flux balance analysis (FBA) on these GSMMs, one can evaluate the

metabolic capabilities of the cell, e.g., the capability of synthesizing biomass building blocks.

GSMMs have successfully been used in cancer drug development [63, 65, 66, 173, 299]. For

example, Folger et al. [63] made a generic metabolic model of cancer and predicted some

growth-supporting genes for cancer, which were validated with experimental shRNA data.

GSMMs were also used to predict the putative effects of drugs of DrugBank database [69],

but the results were not compared with the experimental data.

Chronic progressive diseases such as cancer do not derive from abnormal functioning of a

single gene or a single pathway but reflect the disorder of complex intracellular and intercellular

networks that link tissues and organs [300]. Various tissues and organs like breast, central

nervous system (CNS), colon, lung, ovary, prostate, renal are affected by cancer. Millions of

people are suffering from cancer and the number is increasing [301–303]. Available drugs

that are used for treating cancer, unfortunately, have many side effects [45]. Therefore, there

is an increasing demand for new therapies with better therapeutic windows, implying that the

drug will target a particular cell type (such as tumour cells) with no or minimum negative

effects on healthy cells. The search for such suitable therapeutic windows is an important and

challenging problem in the case of cancer. Another problem with the existing cancer drugs is

that a particular drug shows different responses when applied to different individuals. This is

because the effects of a drug on a patient depend not only on the interaction with its targets

but also on the activities of many other enzymes which form a complex network of metabolic

reactions in which the products of a reaction become the substrates of other reactions [69]. This

leads to the emerging field of personalized medicine and personalized drug-choice [46]. Thus

there is a need for developing new anti-cancer drugs taking care of the above problems and

demands for an in-depth mechanistic understanding of cancer [47, 48].

The present study is an attempt to explore gene knockout strategies that apply GSMMs

in finding possible targets and mechanisms related to cancer disease. For the analysis, we

considered the GSMMs of the NCI-60 cell-lines built by Yizhak et al. [299] using Personalized

Reconstruction of Metabolic models (PRIME) approach. They established their cell-specific
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model based on molecular and phenotypic data. It is shown that the models can find drug targets

that inhibit the proliferation of specific cell-lines. Their models can also infer on the prognosis

of breast and lung cancer. In this study, we applied their model for a more comprehensive

study on the single and multiple gene knockout effects on the growth rate of the cancer cell-

line and compared the results with the online experimental database. We also attempted to

capture the underlying mechanisms associated with the observed growth reduction rate due to

gene knockout. We further analysed our top-ranked genes to get potential targets which were

then validated experimentally. It is also observed that multiple knockout tests give a better

correlation with experimental observation than single-gene knockout results.

3.2 Materials and methods

3.2.1 Predicting cancer cell growth by gene knockout

We used minimization of metabolic adjustment (MOMA) technique [207] for observing gene

knockout effect on the growth rates of 60 cancer cell-line models. To mimic the knockout

condition of a gene, we changed the lower and upper bounds of flux values of the reactions

associated with the gene to zero. In the case of simultaneous knockout of multiple genes, the

bounds of all reactions of these participating genes were set to zero. To measure the growth

rate, we used two models as input for MOMA: one representing the knockout condition and

the other one representing the wild-type condition of a particular cell-line. The fractional cell

growth (FCG) was then calculated by taking the ratio of growth rates in knockout condition to

wild-type condition. COBRA toolbox was used from the MATLAB package [304] for MOMA.

Though there exists several genes associated with the same reaction with non-trivial ‘AND’ and

‘OR’ combinations, in order to keep our analysis simple, we followed the literatures [63, 299,

305, 306] and assumed zero flux for the reaction associated with the knockout gene.

3.2.2 Gene symbol to Gene ID conversion

In GSMMs, the identity of genes is given in gene ID format and therefore the gene symbols

need to be converted into gene IDs. For this purpose, we used the Uniprot database, which
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provides the mapping between gene IDs and gene symbols of the metabolic genes. Using

this method, one can find out the metabolic genes from any given gene set having gene ID

information. One can also extract genes from any given gene set, which are present in the

cancer cell-line metabolic models, by taking intersection with the 1905 gene IDs present in the

cancer models.

3.2.3 Gene knockout effect on the production flux rate of metabolite

Flux balance analysis (FBA) was applied to get the flux values of each of the metabolic re-

actions present in the metabolic networks under the wild-type and gene knockout condition.

Then, the production flux rate of a metabolite was obtained by summing up the flux values of

the reactions in which it is produced. Finally, the ratio between the production flux rates under

the two different conditions was calculated.

3.2.4 Biomass reduction score (BRS)

Total 43 metabolites are used as the substrate in the biomass reaction, and we termed them

as biomass metabolites (see Table 3.1). These biomass metabolites are then arranged in the

decreasing order of their coefficient values in the biomass reaction and scored them accordingly.

For example, the biomass metabolite having the highest coefficient was scored 43 and the

biomass metabolite with the lowest coefficient was scored 1. To capture the individual gene

knockout effect on the biomass reaction, we first listed out the biomass metabolites whose

production flux rates are reduced by more than two folds. We then calculated the sum of the

scores of these biomass metabolites and termed them as biomass reduction score (BRS).

Table 3.1: The list of metabolites that are used as substrate in the Biomass reaction. We
listed them accordingly to their coefficients given in the biomass reaction. Negative sign repre-
sents the consumption of this metabolites in biomass reaction.

Metabolites Names Metabolites

Symbol

Coefficient in

Biomass reaction

Rank Score

ATP atp[c] -43.153 1 43
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H2O h2o[c] -43.153 2 42

L-Aspartate asp-L[c] -2.452366 3 41

glycogen, structure 1

(glycogenin-11[1,4-Glc])

glygn1[c] -0.939899 4 40

L-Glutamine gln-L[c] -0.676289 5 39

L-Glutamate glu-L[c] -0.594216 6 38

Glycine gly[c] -0.492442 7 37

L-Alanine ala-L[c] -0.420217 8 36

L-Serine ser-L[c] -0.131318 9 35

L-Histidine his-L[c] -0.10177 10 34

triacylglycerol (homo sapi-

ens)

tag_hs[c] -0.097285 11 33

L-Threonine thr-L[c] -0.072226 12 32

phosphatidylethanolamine

(homo sapiens)

pe_hs[c] -0.07098 13 31

L-Proline pro-L[c] -0.063691 14 30

Phosphatidylcholine (homo

sapiens)

pchol_hs[c] -0.060784 15 29

phosphatidic acid (homo

sapiens)

pa_hs[c] -0.058105 16 28

L-Asparagine asn-L[c] -0.042678 17 27

L-Valine val-L[c] -0.042678 18 26

L-Leucine leu-L[c] -0.039396 19 25

GMP gmp[c] -0.037088 20 24

L-Lysine lys-L[c] -0.032829 21 23

CMP cmp[c] -0.032723 22 22

Cholesterol chsterol[c] -0.029279 23 21

cholesterol ester xolest_hs[c] -0.023261 24 20
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phosphatidylserine (homo

sapiens)

ps_hs[c] -0.020854 25 19

L-Tyrosine tyr-L[c] -0.019696 26 18

AMP amp[c] -0.019636 27 17

UMP ump[c] -0.019636 28 16

monoacylglycerol 2 (homo

sapiens)

mag_hs[c] -0.013664 29 15

L-Isoleucine ile-L[c] -0.013133 30 14

L-Phenylalanine phe-L[c] -0.013133 31 13

diacylglycerol (homo sapi-

ens)

dag_hs[c] -0.01114 32 12

phosphatidylinositol (homo

sapiens)

pail_hs[c] -0.010963 33 11

sphingomyelin (homo sapi-

ens)

sphmyln_hs[c] -0.008545 34 10

dAMP damp[c] -0.00805 35 09

dTMP dtmp[c] -0.00805 36 08

L-Methionine met-L[c] -0.006567 37 07

dCMP dcmp[c] -0.005367 38 06

dGMP dgmp[c] -0.005367 39 05

lysophosphatidylcholine

(homo sapiens)

lpchol_hs[c] -0.004474 40 04

L-Cysteine cys-L[c] -0.004269 41 03

L-Arginine arg-L[c] -0.003282 42 02

L-Tryptophan trp-L[c] -0.003282 43 01
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3.2.5 MTT Assay

Different cancerous cell-lines were maintained at 37◦C in a humidified incubator with 5% CO2

supply. A549 (Human lung carcinoma), HCT116 (Human colorectal carcinoma), K562 (Hu-

man chronic myelogenous leukaemia) cells were grown in Dulbecco’s Modified Eagle Medium

(DMEM) (Hyclone, West South logan, USA) and HL60 (Human promyeloblast) was grown

in RPMI 1640 (Gibco) supplemented with 10% fetal bovine serum (FBS). The SOAT1 in-

hibitor mitotane and CYTB inhibitor myxothiazol were purchased from Sigma Aldrich (St.

Louis, USA). They were dissolved in dimethyl sulfoxide (DMSO) (Sigma-Aldrich, MO, United

States) and stored in -20◦C as a stock concentration of 10 mM and 50 mM respectively. The

effect of mitotane and myxothiazol on the proliferation and viability of all cell-lines was moni-

tored using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. MTT

powder was purchased from Merck, USA and was dissolved in PBS (5mg/ml) prior to the

assay. MTT assay is based on the principle of reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide to purple coloured formazan by the mitochondria of metabolically

active cells. Cells were seeded at a density of 2×104 cells per well in 96 well plate for 24 hours

followed by addition of the drug at different concentrations. The MTT assay was performed

after 48 hours of incubation with the drug. Each experiment was performed three times with

five replicates. Mean, standard deviation and standard error were determined using Graphpad

prism.

3.2.6 Extraction of experimental gene knockdown information from database

We used DEMETER database [307] to obtain the experimental gene knockdown effect on cell

growth. It contains a knockdown effect on the viability of cells from 501 cancer cell-lines using

the shRNA library. The data is given in the form of log fold change in cell number due to gene

knockdown. A gene with a negative log fold change value implies that there is a reduction

in the cell growth upon knockdown of this gene [307]. The database contains the knockdown

results of 17098 genes on 501 cell-lines, out of which 30 cell-lines are present in NCI-60 cell-

lines panel. In our cancer models, we got only 1444 genes from those 17098 genes. So, we

obtained the gene knockdown effect of 1444 metabolic genes on 30 cancer cell-lines.
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3.2.7 Permutation test

Permutation test was applied to get the p-value corresponding to each Spearman rank-correlation.

In the first step, Spearman rank-correlation was calculated between the predicted data and the

experimental data. Next, the predicted data were randomly permuted by using the ‘randperm’

function in MATLAB. The function ‘randperm’ gives a randomly permuted vector of the in-

tegers from 1 to n without repeating elements. In our case, n represents the number of data

points. The elements of the randomly generated vector is used as index of the original data to

generate the permuted data. Spearman rank-correlations were calculated between the permuted

data and the experimental data. This process was repeated for 1000 times and the p-value was

obtained by using the formula (r+1)/1001, where r is the number of cases for which random

permuted set gave better rank-correlation than the non-permuted case.

To verify the usefulness of the permutation test we obtained the distribution of the rank-

correlations for the 1000 randomly permuted set (see Fig. 3.1 for three cell-lines). It was

observed that they follow normal distribution.

-0.1 -0.05 0 0.05 0.1

Rank-correlation

0

50

100

150

200

250

F
re

q
u

en
cy

-0.1 -0.05 0 0.05 0.1

Rank-correlation

0

50

100

150

200

250

300

F
re

q
u

en
cy

-0.1 -0.05 0 0.05 0.1

Rank-correlation

0

50

100

150

200

250

300

F
re

q
u

en
cy

A B C

Figure 3.1: Distribution of Rank-correlation for the 1000 randomly permuted set. The red
line represents the rank-correlation for the non-permuted case. We presented here three cases,
where the rank-correlation for the non-permuted cases are: (A) Positive, (B) Almost zero and
(C) Negative. "Anderson-Darling test" was applied to check the normality. This give a test
decision for the null hypothesis that the vector is coming from a population with a normal
distribution. In our case we got zero value which indicates that the test fails to reject the null
hypothesis at 5% significance level.

3.2.8 Finding drugs with inhibitory type nature from DrugBank database

In DrugBank database [308], 6490 drugs (out of 8283) have information about its targets and

the corresponding mechanism of action. These targets are given in the form of gene names.
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There are 1684 drugs which have gene ID information of at least one metabolic target (see

method “Gene symbol to Gene ID conversion"). We then searched for the drugs that can

decrease the activity of at least one metabolic target. For this purpose, we selected the following

three mechanisms of actions: (i) inhibition, (ii) antagonist, (iii) inverse agonist. We found 410

drugs out of 1684 which decreased the activity of at least one metabolic gene. Out of these 410

drugs, only 380 drugs have at least one inhibitory type target on cancer cell-lines GSMMs.

3.2.9 Link between DrugBank database and NCI-60 growth inhibition

database

DrugBank database has DrugBank ID, whereas NCI-60 growth inhibition database [309] has

NSC ID. So, we first converted their IDs into a single ID for further analysis. In the DrugBank

database, the conversion of drug ID to PubChem CID or CAS ID is provided and the conversion

of CAS ID to NSC ID is given in the chemical data section of the NCI-60 growth inhibition

database. We therefore used CAS ID information of the drugs to link these two datasets. There

are 373 drugs, out of previously described 380 drugs, which have CAS ID information and

out of them only 200 drugs have NSC IDs. However, all NSC IDs do not have information

regarding GI50 value. So, we finally obtained 64 drugs with NSC IDs that have a GI50 score

in negative log value.

3.2.10 Finding active drugs using GI50 score

GI50 score is an important measure of drug activity. It quantifies the dosage of the drug required

to inhibit the cell growth by 50%. In the NCI-60 growth inhibition database, the range of log

value of GI50 score of the drugs is given between -10 to -1. Drugs with log GI50 score less

than -5 was considered to be active against cancer [310, 311].
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3.3 Results

3.3.1 Single gene knockout ranking based on their influence on cancer

cell proliferation using the genome-scale metabolic models

We used the study of Yizhak et al. [299] to obtain the GSMMs of cancer from different tissue

types. The networks were made using the molecular (gene expression) and phenotypic data

(proliferation rate) of cancer cell-lines by applying PRIME method. These data were used to

constrain the bounds on the flux values of the corresponding reactions in metabolic networks.

The data for NCI-60 collection were taken from the study by Lee et al. [312], in which RPMI-

1640 was used to grow the cell-lines experimentally. We used 60 cancer metabolic networks

across 9 tissue types of NCI-60 panel to find cancer drug targets which inhibit cell growth

across all cell-lines. We aimed to rank metabolic genes according to their growth inhibitory

effect in cancer cell-lines.

Genes

Sorted mean 
fractional cell 
growth across 60 
cancer cell-lines

Figure 3.2: Gene knockout simulation result. Mean value of the fractional cell growth (FCG)
across 60 cancer metabolic models for each individual of 1905 metabolic genes. The right lower
panel represents the 143 genes which give very low growth rate after knocking out across all 60
cancer models (mean value< 10−6 & s.d.< 1.2874×10−6) and the upper panel represents the
1488 genes which show no change in the growth rate after knocking out across all 60 cancer
models (mean value> 0.99995 & s.d.< 3.2838×10−6).

Cancer cell-lines metabolic models used in our work contains 1905 genes. We simulated the

models via MOMA [207, 304] and predicted the growth rate of cancer cell-lines after knocking
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out each gene one by one. Taking the average of fractional cell growth (FCG) of 60 cell-lines,

we obtained the mean FCG of each 1905 genes (Fig. 3.2). Using a cut off value of 10−6 (lower

circled portion in Fig. 3.2) on the sorted mean FCG, we obtained 143 genes that are responsible

for very low growth rate in our knockout cancer models. On the other hand, we got 1488

genes, using a cut off value of 0.99995 (the upper circled portion in the Fig. 3.2), which show a

negligible effect on the growth rate. Interestingly, looking at the reactions corresponding to the

143 genes, we found that all of them, except one gene, is associated with the coupled reactions

(Fig. 3.3).

3.3.2 Mechanistic insight into the genes giving a low growth rate after

knockout

We looked for the underlying mechanisms associated with the observed growth reduction rate

due to gene knockout. We applied parsimonious enzyme usage FBA (pFBA) [313] using CO-

BRA Toolbox [314]. pFBA classifies each gene into six categories depending on the optimal

growth solutions: essential genes, pFBA optima, enzymatically less efficient (ELE), metabol-

ically less efficient (MLE), zero flux genes and blocked genes. There are 71 essential genes,

470-530 pFBA optima, 230-280 ELE, 545-577 MLE, 82 zero flux genes and 427 blocked genes

across 60 cancer cell-lines models. We looked for the classification of the 143 growth reduc-

ing genes and found that these genes contain all the 71 essential genes and the rests are pFBA

optima (Fig. 3.4A). On the other hand, all zero flux and blocked genes, with almost all ELE

and MLE genes belong to the 1488 non-effecting genes set (Fig. 3.4B). Though there are some

genes from the 1488 set, which are present in pFBA optima class, but no essential genes are

there in the 1488 gene set.

The production fluxes of the metabolites involved in the biomass reaction is changed due to

gene knockout. The biomass reaction in the GSMMs uses 43 metabolites as substrate, termed

as biomass metabolites. We measured the fold changes in the production flux of these biomass

metabolites under individual gene knockout condition with respect to wild-type condition. The

biomass metabolites whose production flux are reduced by more than 2 folds are shown in

Fig. 3.5A. The upper panel of this figure shows the number of biomass metabolites associated
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Figure 3.3: Flux coupled reactions corresponding to the 143 growth-reducing genes. In
total, 176 reactions are associated to the 143 gene set.Among these 176 reactions, 143 reactions
formed group of coupled reactions which is presented here. There are only one genes out of
143, whose any associated reactions are not present in these coupled reaction set.

with 143 genes responsible for growth reduction, and the lower panel shows the number of

biomass metabolites associated with 1488 genes, which do not affect the growth rate. One can

observe that the number of biomass metabolites associated with the 143 genes is much higher

than that of 1488 genes. To confirm the association of 143 genes with the biomass reaction,
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we introduced a biomass reduction score (BRS) for each gene (see “Materials and methods"

for details). A gene with higher BRS has more knockout effect on the biomass reaction. It was

observed that BRS of 143 genes are much higher than 1488 genes (Fig. 3.5B), confirming that

they are more effective in reducing the flux of biomass reaction.

Ess
en

tia
l

pFBA o
ptim

a
ELE

MLE

Zer
o F

lu
x

Blo
ck

ed

10

20

30

40

50

60

C
an

ce
r 

ce
ll-

lin
e 

m
o

d
el

s

Ess
en

tia
l

pFBA o
ptim

a
ELE

MLE

Zer
o F

lu
x

Blo
ck

ed

10

20

30

40

50

60

C
an

ce
r 

ce
ll-

lin
e 

m
o

d
el

s

0% 20% 40% 60% 80% 100%

For 1488 non-effceting genesBA

Parcentage of genes present in each
categories classified by pFBA

For 143 growth reducing genes

Figure 3.4: Coverage of pFBA classes by the 143 growth reducing and 1488 non-effecting
genes set. For each of the 60 models, pFBA was applied to classify the genes into six categories
and then the parentage of involvement for each class into the (A) 143 growth reducing genes
set and (B) 1488 non-effecting genes set was calculated.

Finally, we looked for the biomass metabolites that are associated specifically with the 143

growth reducing genes. We observed that the production flux of 37 biomass metabolites are

reduced by knocking out different genes from 143 genes set (Fig. 3.6A), while different genes

from 1488 genes set reduced production flux of 27 biomass metabolites (Fig. 3.6B). Calculating

the set difference, we obtained 16 biomass metabolites that are specifically associated with dif-

ferent genes from the 143 gene set. It is observed that 12 out of 16 biomass metabolites showed

association with most of the 143 genes (see Fig. 3.6C). Next, we looked for these 16 metabo-

lites whether they are flux coupled or not. If they are flux coupled, then one can expect that

the corresponding genes become essential for the production of both for the metabolites. We

observed that only 4 metabolites out of 16 are flux coupled (Fig. 3.6D). L-Aspartate (asp-L[c])

is produced from L-Glutamate (glu-L[c]) by the enzyme kinetic reactions Aspartate Transam-

inase (ASPTA) but there is another transport reaction L-aspartate transport via Na, H symport

and K antiport (ASPt6) in which influx of cytosolic L-Aspartate happens from the extracellular
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Figure 3.5: Effect of metabolic genes on biomass function. (A) The upper and lower panels
indicate the number of biomass metabolites whose production flux at least 2 folds decreased by
each of the 143 growth reducing genes and 1488 non-growth reducing genes, respectively. (B)
Biomass reduction scores (BRS) of genes following synergic effect. BRS is high for first 143
growth reducing genes and it is low for 1488 non-growth reducing genes.

space. For the three cell-lines (SNB-75, HOP-9 and SK-OV-3), flux values of another transport

reaction aspartate-glutamate mitochondrial shuttle (ASPGLUm) was observed, which transfer

L-Aspartate from mitochondria to cytosol, and as a consequence, cytosolic L-Glutamate enters

into the mitochondria. There is another reaction sterol O-acyltransferase (SOAT11) which uses

cholesterol (chsterol[c]) to produce cholesterol ester (xolest_hs[c]).

3.3.3 Finding potential cancer drug targets from the top-ranked genes

Our top-ranked genes can be a potential drug target if their knockout does not significantly

affect the growth of non-cancerous cells. So, we need to see the effect of our growth reduc-

ing genes on normal cell model. The 60 cell-line panel covers nine different tissues. So, we

considered nine models [161] built on different cell-type from these nine tissues representing

their normal condition. The cell-specific models [161] were built from a global reconstruction

(Recon 2), which contains 7,440 reactions and 2,194 transcripts, using protein expression data

from the Human Protein Atlas [315]. These models consist of 2,426 ± 467 reactions (± s.d.)

and 1,262 ± 204 transcripts. They applied a published algorithm [189, 205] to predict the flux

activity states of the genes by applying an optimization method. The method maximizes the
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Figure 3.6: Biomass metabolites affected by the 143 growth reducing genes and 1488 non-
effecting genes. Reduction in production fluxes for each individual biomass metabolites were
captured in the gene knockout condition. (A) Represent the production flux are 2 fold decreased
or not for any 143 genes and (B) represents the case for 1488 genes. We gave value 1 if the
production flux of a metabolite is decreased in at least one gene knockout condition across each
cell-lines, otherwise, the value remains zero. For 16 metabolites, all values are zero across the
60 cancer cell-lines in (B) but there are non-zero values in (A). (C) The number of genes
among the set of 143 growth reducing genes whose knockout shows at least 2 fold reduction in
the production fluxes for each of the 16 metabolites. (D) A bipartite network that represents the
connection between L-Aspartate, L-Glutamate, cholesterol and cholesterol ester. Rectangular
and ellipse-shaped boxes indicate the reaction and metabolite respectively and the arrow shows
the flow of the flux.

consistency between gene expression and the corresponding enzyme activity. A comparison

of the result of normal cells with that of the cancer cell-lines will help us to find targets that

can reduce the growth of cancer cells but has minimal effect on the normal cells. Our gene

knockout simulation result gave us 143 genes whose knockout can reduce the growth rate in

cancer cell-line metabolic models. Some of these genes have multiple isoforms. After remov-

ing those isoforms, the gene list reduced to 121 unique genes and all of them could be potential

drug targets. However, to be a potential drug target, a gene should show a minimal activity

in normal cells. So, we looked for the activity of these 121 genes on normal cell models and
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found from the literature [161] that only 13 genes (Table 3.2) out of 121 are inactive across all

the 9 normal cell models. Thus we have 13 genes that reduce the growth in 60 cancer cell-lines

models but have no effect on the flux state of the normal cell models. Therefore, these 13 genes

can be considered as potential drug targets against cancer for these 9 tissues with minimal side

effects. Interestingly, each of these 13 genes has very high BRS (>353) (see Table 3.2). Most

of the genes (UQCR11, CYC1, UQCRQ, UQCR10, MT-CYB, UQCRB, UQCRC1, UQCRC2,

UQCRFS1 and UQCRH) given in Table 3.2 have same BRS because they are associated with

the same reactions “Ubiquinol-6 Cytochrome C Reductase, Complex III" with ‘AND’ combina-

tions. This reaction is catalysed by cytochrome bc1 complex (EC 1.10.2.2), which is the third

complex in the electron transport chain in mitochondria and the subunit proteins are encoded

by these ten genes. It plays a critical role in ATP generation process by catalysing electron

transfer from ubiquinol to cytochrome c, coupled to proton transport from the matrix space to

the intermembrane space of mitochondria [316, 317].

Table 3.2: Gene ID, gene symbol and the corresponding average value of the biomass
metabolic score (BRS) across 60 cancer cell-line models of the cancer specific drug targets.

No. Gene ID Gene symbol Avg. of BRS
1 10975 UQCR11 379
2 1537 CYC1 379
3 27089 UQCRQ 379
4 29796 UQCR10 379
5 31 ACACA 385
6 32 ACACB 370
7 4519 MT-CYB 379
8 6646 SOAT1 383
9 7381 UQCRB 379
10 7384 UQCRC1 379
11 7385 UQCRC2 379
12 7386 UQCRFS1 379
13 7388 UQCRH 379

3.3.4 Experimental validation of the identified potential drug targets

To validate our simulation results for identifying potential drug targets, we searched for the

inhibitors of these 13 genes and used two commercially available inhibitors, i.e., mitotane

(SOAT1 inhibitor) [318] and myxothiazol (CYTB inhibitor) [319] for in-vitro studies. Mitotane
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is reported to show anticancer activity in some cell-lines such as NCI-H295, Hela, HepG2,

IMR-32 and HEK293 [318]. So we considered four cell-lines (HCT116, K562, HL60 and

A549) from NCI-60 cell-line panel, which are different from the cell-lines reported in [318].

The effect of these two inhibitors on the cell viability was studied by adding the inhibitor at

different concentrations and measuring the growth rate of cell-lines. Fold change in the growth

rate (i.e., cell viability) was calculated for each cell-line at different drug concentrations for

both the drugs and was plotted in Fig. 3.7. An EC50 value (concentration of drug at 50% fold

change cell viability) was calculated for each cell-line from the resultant curve. The EC50

value of mitotane was 37.83 µM (for HCT116), 60.85 µM (for K562), 38.51 µM (for HL60)

and 57.99 µM (for A549) and for myxothiazol, it was 18.28 µM (for HCT116), 84.92 µM (for

K562), 8.21 µM (for HL60) and 9.25 µM (for A549). Thus, mitotane and myxothiazol both

are effective in inhibiting the growth of these four cell-lines.
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Figure 3.7: Effect of mitotane and myxothiazol in cell viability. Experimentally measured
fold change in cell viability of four different cell-lines (A549, HL60, K562, HCT116) at differ-
ent concentrations of mitotane and myxothiazol.

3.3.5 Testing the predictive ability of GSMM for single-gene knockout

We extracted the information from DEMETER database [307] on the knockdown effect of 1444

genes in 30 cell-lines. We calculated the Spearman rank-correlation between the predicted FCG

from our GSMM and the experimental data from DEMETER database for each of the 30 cell-

lines. The corresponding p-value of the rank-correlation for each cell-line was obtained by
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permutation test. It was observed that most of the obtained positive rank-correlation were not

significant (Fig. 3.8). There were only 5 cell-lines, which are showing significant positive rank-

correlation but their correlation value was less than 0.15. Thus, the obtained gene ranking from

single-gene knockout results does not show much correlation with the experimentally observed

result. So, we looked for the effect of multiple genes knockout on the growth rate.
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Figure 3.8: Comparison of gene knockout simulation results with DEMETER database.
Distribution of measured Spearman rank-correlation between predicted FCG of genes using
GSMM and experimental data from DEMETER for the 30 cell-lines. The p-values were mea-
sured using permutation test.

3.3.6 Identification of multiple targets using DrugBank database infor-

mation

We took the drugs available in the DrugBank database [308] based on the gene target informa-

tion. DrugBank database contains the biochemical and pharmacological information about the

drugs. We only selected 380 drugs which are inhibitory and the corresponding target genes are

present in the cancer cell-lines metabolic models. These 380 drugs have 202 metabolic targets

in the models. To observe the effect of a particular drug on the growth rate, we knocked out all

the genes that were inhibited by that drug and simulated the models via MOMA. This exercise

was repeated for all the 380 drugs across all the 60 cancer cell-line models. We used a cut off
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value of 0.5 on FCG (representing at least 50% reduction on the growth rate) to call a drug

active and obtained 76 drugs. 10 out of these 76 drugs have already been approved in cancer

treatment and another 18 drugs are in different phases of the clinical trial.

We considered NCI-60 growth inhibition database [309] to get the GI50 values of the drugs

and compared the predicted anti-proliferative activity with the experimentally measured po-

tency of the drugs. There are 64 drugs with GI50 value in the NCI-60 growth inhibition

database. Out of these 64 drugs, 23 drugs have mean log GI50 value less than -5 across 60

cell-lines and therefore considered to be active against cancer for most of the cell-lines. Com-

paring these 23 drugs with our list of 76 drugs, we obtained 17 drugs common in both sets.

Finally, a cell-wise comparison between predicted FCG of drugs using GSMM and their log

GI50 values was performed and the Spearman rank-correlations was obtained. It is observed

that around 50% cell-lines were showing significant rank-correlation and their correlations

were also higher than single knockout result, see Fig. 3.9 (median Spearman rank-correlation=

0.2137, Wilcoxon’s signed-rank p-value= 1.6296×10−11).
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Figure 3.9: Validation of predicted cell-line specific responses of drugs. Distribution of
measured Spearman rank-correlation between predicted FCG of drugs using GSMM and their
log GI50 values for the 60 cell-lines. The p-values were measured using permutation test.
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3.3.7 Linking the significance of single-gene knockout ranking on the ac-

tivity of drug

We used our gene knockout results of 202 target genes corresponding to those 380 drugs to test

the significance of gene ranking. It was observed that 37 genes were present at the top position

and 146 genes at the bottom in our gene ranking list. The drugs corresponding to these 37

genes significantly reduced (mean FCG < 10−6) the growth rate of cancer models (Fig. 3.10).

On the contrary, those drugs whose targets belong to the set of 146 genes, placed at the bottom

in our gene ranking list, showed no effect in the cancer models.

Figure 3.10: Robustness of gene ranking. (A-C) Gene ranking of total 202 targets of at least
one of the 380 drugs. (A) Top 37 genes lie on the lower circled portion (mean FCG< 10−6)
in Fig. 3.2. (B) 19 Genes lie in between the lower and upper circled portion (mean FCG lies
between 10−6 to 0.99995) in Fig. 3.2. (C) Bottom 146 genes lie on the upper circled portion
(mean FCG> 0.99995) in Fig. 3.2. (D) 73 drugs (mean FCG< 10−6) significantly reduce the
growth rate of cancer models. (E) 16 drugs which gives mean FCG between 10−6 to 0.99995 in
cancer models. (F) 291 drugs that show no effect (mean FCG> 0.99995) in the cancer models.
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3.4 Discussion

Recently, GSMM gained a lot of attention in drug discovery. It has been used to study drugs

related to cancer. Ghaffari et al. [320] explored strategy for identifying anti-growth factors for

the inhibition of cell growth using GSMM on 11 cell-lines and identified potential antimetabo-

lites that could inhibit the growth or kill any of the cell-lines. They also checked the in-silico

toxicity by employing GSMMs for 83 human healthy cell-types. The same methodology had

been applied by Agren et al. [66] in a different study to find potential drugs for hepatocel-

lular carcinoma (HCC) by reconstructing and analysing personalized GSMMs for six HCC

patients. Raškevičius et al. [69] used GSMMs to predict the putative effects against cancer of

those compounds which are structurally similar to human metabolite and also gave a concept

of finding therapeutic windows through GSMMs. Turanil et al. [68] introduced a drug repo-

sitioning based method via GSMMs to predict therapeutic agents for cancer treatment. They

reconstructed prostate cancer-specific GSMM by combining personalized GSMMs (n > 450)

and proteomics data. They used drug-perturbed gene expression data of three cell-lines (PC3,

HL60, and MCF7) from the ConnectivityMap2 (CMap2) [321] to reveal drug off-targets by

predicting novel gene-drug interactions and evaluated in-silico cell viability. The present study

aimed to develop a knockout strategies for identifying potential drug targets and the associated

mechanisms using GSMM and gene expression data. This will help us to get novel drug targets

as well as targets that might be used for drug repurposing. We used existing GSMMs of NCI-

60 cell-lines [299] to predict the anti-proliferative activity of single metabolic genes as targets

against cancer and ranked them accordingly. We got 143 genes whose knockout reduced the

cell growth across all the metabolic models of the NCI-60 panel. We also obtained a list of

1488 genes whose knockout does not show any effect on the growth rate of any cancer model.

We searched for the underlying mechanism for such reduction in the growth rate of cancer cells

by 143 genes and found that the biomass reduction score (BRS) of those genes were much

higher than those of 1488 genes. The synergic effect in biomass reaction is much more for 143

gene list than 1488 gene list. It is observed that there are 12 biomass metabolites which are

influenced by almost all the 143 genes but not by any of the 1488 genes for all the 60 cell-lines.

Glycogen is the top-ranked among those 12 biomass metabolites. It is already reported that
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glycogen pathway is up-regulated in various cancers [322, 323] and funneled into glycolysis to

promote cell growth, invasion and metastasis [324]. Likewise, glycogen is used by cancer cells

to survive under nutrient starvation condition [325]. Considering its importance, inhibition of

glycogen metabolism has become a new potential strategy for cancer treatment [322, 326–328].

We looked for potential targets from these 143 genes which showed a significant reduction

in the growth rate following knockout. To be a potential target, these genes need to show the

minimal knockout effect on the normal cells. We obtained 13 such targets from 143 genes

whose knockout reduced the proliferation rate of cancer cells but were inactive across all the 9

normal cell models. One of the main features of the identified targets was that they were show-

ing their effect in all the NCI-60 cell-lines. To experimentally validate the effect of these targets

on multiple cell-lines, we chose SOAT1 and CYTB and showed that it’s inhibition reduces the

growth rate in multiple cell-lines. Inhibition of SOAT1 is known to reduce growth rate in 5

cell-lines [318] and additionally we have showed its effect on 4 more cell-lines. These cell-

lines are taken from different tissues like blood peripheral, colon, adrenocortical gland, cervix,

liver, kidney and brain. We have used mitotane to inhibit SOAT1, which is already known

for the treatment of adrenocortical carcinoma and Cushing’s syndrome [329–331]. However,

the inhibitor of CYTB, myxotyiazol, is not known as an anticancer drug, but we have seen its

growth inhibiting effect on four cancer cell-lines. This could be a potential novel repurposed

drug and need further evaluation. Moreover, literature survey showed that inhibition of SOAT1

and CYTB do not have any significant influence on the growth of the normal cells [332–334].

Literature also supports the validity of our other identified targets (given in Table 3.2). For ex-

ample, atovaquone, a potent and selective mitochondrial inhibitor [335, 336], has been shown

to reduce proliferation in cervical cancer cell-lines [337], Du145 prostate cancer cells [338]

and MCF7-derived Cancer Stem-like CSCs [334]. Another identified target is UQCRB, whose

inhibitor terpestacin blocks vascular endothelial growth factor (VEGF)-induced angiogenesis

in endothelial cells and is proposed to be applied as a drug for human cancer [339, 340]. Cy-

tochrome c-1 (CYC1) is found to play an important role in breast cancer patients. Knocking

down of CYC1 inhibits proliferation in human breast cancer cell-lines [341]. In another study,

it was observed that silencing CYC1 by shRNA transfection also inhibits proliferation in hu-
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man osteosarcoma (OS) cells [342]. Another identified gene target UQCRFS1 appears to be

involved in the progression of gastric cancers and in the development of more aggressive phe-

notype of breast cancer [343, 344]. Lentivirus-mediated knockdown of UQCRC2 suppresses

cell growth and colony formation in RKO. HCT116 cells result in cell cycle arrest and induce

cell apoptosis in vitro in colorectal cancer (CRC) [345]. The knockdown of ACACA expression

inhibits cell proliferation in prostate [346] and breast [347] cancer cell-lines.

We used Spearman rank-correlation method to compare our single-gene knockout ranking

obtained from the GSMM with the experimental data. Most of the observed rank-correlations

were very low and/or not significant. This was in agreement with other studies where single-

gene knockout does not show the desired result [348–350]. On the other hand, when applied

multiple gene knockout strategies, we obtained a higher and significant rank-correlations with

the experimental results. It leads to the conclusion that multiple genes knockout show a better

result than single-gene knockout, confirming the similar observations by other studies [349–

353]. This might be because genes or proteins interact in a complex network, where alternative

pathways always exist to carry the function [349, 354]. Though the single knockout results did

not give the desired correlations, the gene ranking obtained using this strategy seemed to be

significant. It was noticed that a drug could only be active if it has at least one target belonging

to the top rank. In case, none of the targets is from the top rank then that drug is observed to be

ineffective.

The developed strategy to use gene knockout in GSMMs to identify drug targets has general

applicability with any novel set of gene expression data associated with a tumour. The tumour-

specific GSMM can be built from the gene expression data to go for the single or multiple gene

knockout strategies. We proposed to use drug information for multiple gene knockout strategies

that can also serve as drug repurposing technique. This method could be used to identify novel

drug targets as well as targets that might be used by existing drugs on novel kinds of tumour. It

is, therefore, possible to identify genes that are more relevant to specific cancer. The developed

methodology could also be used to screen for common therapy. This strategy was used in the

present study where we obtained 143 genes whose knockout were showing significant growth

reduction across all cell-lines (see Fig. 3.11)
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Figure 3.11: Gene knockout simulation result for 143 genes across 60 cancer cell-line mod-
els. Here the colour bar represents the fractional cell growth (FCG), the ratio of growth rates in
knockout condition to wild-type condition. Here, we observed very low FCG value across all
the 60 cancer models.

In the previous two chapters, we have shown the application of GSMM in finding metabolic

alterations and regulatory points through in silico gene knockout studies. Combining these two

applications of GSMM could lead us to the identification of potential drug targets that might

revert the altered metabolic state from disease to healthy condition. In the next chapter, we

have applied GSMM to identify potential targets for nonalcoholic steatohepatitis (NASH).



4
Importance of genome-scale metabolic

model in identifying drug-targets1

4.1 Introduction

Nonalcoholic steatohepatitis (NASH), characterized by steatosis, lobular inflammation, and

hepatocellular ballooning, is the second stage of the nonalcoholic fatty liver disease (NAFLD)

continuum. It is a slowly progressive disease that often remains clinically discerned, resulting

in late detection, curbing the therapeutic options, and contributing to poor outcomes. Hence,

there is a need to reveal the underlying molecular mechanisms of the disease that might lead

to the development of effective treatment strategies. Probing context-specific networks, such

1The bulk of this chapter has been communicated for possible publication in peer reviewed journal.

85
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as protein-protein interaction (PPI) and/or metabolic networks, is the only way to make proper

sense of the anomalies in the cellular systems that occur with a disease’s progression. Metabolic

networks can investigate alterations in the metabolism that befalls across the entire histologi-

cal spectrum of disease, probing the changes that develop during the progression of benign to

severe stages [154]. Genome-scale metabolic models (GSMMs) capture the altered metabolic

pathways through a bottom-up systems-level understanding of the metabolic network. Over

the past decade, GSMM has widely been employed to capture the disease-associated molec-

ular mechanisms [61, 64], which are further used to identify potential drug targets [36] and

biomarkers [64]. Some therapeutic strategies are proposed in NAFLD by identifying altered

metabolic pathways using GSMM [62, 67]. Besides the metabolic alterations, pathways like

inflammation, fibrosis, apoptosis, etc., also contribute to the disease progression. Thus, protein

and metabolic level rewiring is required to control the disease progression. Hence, to better

understand the feasibility of the targets, their role in the disease system should be adequately

investigated, which brings the collaborative effort of the context-specific molecular networks

into the scenario. Probing these context-specific networks is probably the only way to make

sense of the cellular anomalies during disease progression.

The present study aims to identify the potential drug targets for NASH. We integrated the

open-source gene expression data of the liver biopsy sample [355] into a functional GSMM

for hepatocytes [62] to capture the metabolic alterations in the disease condition. Understand-

ing molecular alterations were then used to identify candidate targets that might cause disease

transversality towards a healthy state. Finally, the knockdown profiles of these identified can-

didate genes were investigated through GSMM to obtain the potential drug targets. Here, we

also explored their mechanism of action in attenuating NASH.

4.2 Material and methods

4.2.1 Transcriptomics data collection

Gene expression data of liver biopsy samples were obtained from the Gene Expression Om-

nibus (https://www.ncbi.nlm.nih.gov/geo/); the accession number is GSE126848 [355]. The
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data include RNA-Seq profiles of the 15 NAFL, 16 NASH, and 26 control individuals. The

control group comprises 14 healthy normal-weight subjects and 12 overweight subjects. Genes

having missing values in at least one sample were excluded from the analysis. The data was

normalized by using Transcripts Per Million (TPM) normalization method and the outliers were

replaced by using the ‘filloutliers’ function in MATLAB.

4.2.2 Differentially expressed genes

To compare the expression values between the two groups, a two-sample t-test was performed

using the ‘mattest’ function in MATLAB. The ‘mafdr’ function in MATLAB was applied to the

p-values to implement the Benjamini and Hochberg false discovery rate (FDR). Genes with a

fold change of 1.2 and FDR adjusted p-value < 0.05 were selected as differentially expressed

genes (DEGs) [356].

4.2.3 Reconstruction of context-specific metabolic models

We used a functional GSMM for hepatocytes, iHepatocytes2322 [62], generated based on the

hepatocyte-specific proteomics data and included 2322 genes, 7930 reactions, and 2895 unique

metabolites across eight different cellular compartments. The pre-processed transcriptomic

data corresponding to the metabolic genes was mapped into the iHepatocytes2322 using the

E-Flux method [193].

A fasting condition was imposed on all the models as the liver biopsy samples were taken

at a fasting state. During fasting, the liver uptakes gluconeogenic substrates (like lactate, glyc-

erol, etc.), non-esterified fatty acids and amino acids, and produces glucose, very-low-density

lipoprotein (VLDL), ketone bodies, and plasma proteins [67]. Thus, the input variables of our

models are: 1) lactate, 2) glycerol, 3) fatty acids, 4) amino acids, and the output variables are:

1) glucose, 2) VLDL, and 3) ketone bodies. We also allowed the uptake of oxygen, phosphate,

minerals, and protein secretion (mainly albumin), urea, H2O, and CO2.
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4.2.4 Flux-based analysis

Flux variability analysis (FVA) [196] was applied to evaluate the flux ranges (minimum and

maximum) for each reaction flux that satisfies the model constraints. Here, we performed FVA

in the CobraToolbox 3.0 [314] on the reconstructed GSMMs by minimizing the sum of flux

rates based on the assumption that fasting condition cells will try to reduce the pathway usage

for economic purposes [67]. To perform FVA, ‘fluxVariability’ function was applied (using

the gurobi solver v9.0) with only considering the solutions that give at least 90% [357] of the

optimal solution.

Perturbed reactions are predicted based on the flux ranges between the two clinical groups.

We first listed out the reactions that have significant changes in the flux ranges (i.e., either

lower or upper range). In this step, a two-sample t-test was performed on the lower and upper

flux ranges separately and applied the cutoff value on Benjamini and Hochberg FDR adjusted

p-value ≤ 0.05. The reactions having flux values in both coordinates (i.e., lower and upper

flux ranges are negative and positive, respectively) were excluded from the analysis. The flux

ranges A=[minA, maxA] and B=[minB, maxB] for each altered reaction were then compared to

get the direction of the alterations (i.e., up or down), where A and B represent the super flux

ranges for these two clinical groups [64]. Here, we considered:

B > A if
(
(minA < minB) & (maxA ≤ maxB)

)
or
(
(minA ≤ minB) & (maxA < maxB)

)
,

and

B < A if
(
(minB < minA) & (maxB ≤ maxA)

)
or
(
(minB ≤ minA) & (maxB < maxA)

)
for the case where A and B both belong to the positive coordinate. Conversly,

B < A if
(
(minA < minB) & (maxA ≤ maxB)

)
or
(
(minA ≤ minB) & (maxA < maxB)

)
,

and

B > A if
(
(minB < minA) & (maxB ≤ maxA)

)
or
(
(minB ≤ minA) & (maxB < maxA)

)
for the case where A and B both belong to the negative coordinate. The fold change value for

the ranges was calculated from the relation:

f old = 1+ |b|−|a|
max(|a|,|b|) , where (a, b) can take (maxA, maxB) or (minA, minB).
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4.2.5 In silico gene knockdown exercise using GSMM

We performed an in silico single gene knockdown approach to obtain the gene set responsible

for the network perturbations towards the healthy state. To get the disease-specific GSMM,

we integrated the average gene expression values into the iHepatocytes2322 by applying the E-

Flux method [193]. On the other hand, the knockdown model was built by considering the 90%

reduction in the expression value of a particular gene, and the corresponding flux state (V res)

was obtained by using minimization of metabolic adjustment (MOMA) [207]. This process

requires the state (V re f ) of disease-specific GSMM. The ‘gpSampler’ function available in the

CobraToolbox 3.0 [314] was used for flux sampling and the mean value of the flux distributions

was considered. Finally, we assigned scores for each gene knockdown similar to the method

proposed in the metabolic transformation algorithm (MTA) [209], following the rule

Transformation Score (TS) = ∑i∈Rsuccess |V
re f
i −V res

i |−∑i∈Runsucces |(V
re f
i −V res

i |
∑i∈Rs |V

re f
i −V res

i |
.

The altered relations are classified into two groups Rsuccess and Runsuccess based on the changes

in flux rates in the required direction and Rs represents the set of unaltered reactions.

4.2.6 Method to predict metabolic network level perturbation using the

gene knockdown profile

Here, we used four inputs: (i) a generic GSMM (iHepatocytes2322), (ii) up-and downregu-

lated genes under each gene knockdown case, (iii) disease-specific gene expression data (av-

erage gene expression values under the specific disease stage), and (iv) flux state (V re f ) of

disease-specific GSMM. The knockdown-specific gene expression data were generated from

the disease-specific gene expression data by considering a 2-fold up/down in the expression

values of the up/downregulated genes. Next, the obtained expression data was integrated into

the iHepatocytes2322 by applying the E-Flux method [193], and the corresponding flux state

(V res) was predicted by using MOMA [207]. This process requires the flux state (V re f ) of

disease-specific GSMM. Finally, a score was assigned for each gene knockdown similar to

the method mentioned in the earlier section. We also extracted the metabolic reactions whose

fluxes shifted from the diseased state toward the target state.
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4.3 Results

4.3.1 Changes in metabolic flux in NAFLD

We investigated a dataset GSE126848 [355], which includes RNA-Seq liver biopsy data of

the 15 NAFL, 16 NASH, and 26 control individuals. To delve into the changes in the ex-

pression profiles, the differentially expressed genes (DEGs) were identified. We found 5672

and 5468 DEGs (FDR adjusted p-value<0.05 & fold change cut off 1.2) in the NASH and

NAFL categories, respectively (Table 4.1). Also a significant number of metabolic genes

(included in iHepatocytes232215) were found differentially expressed in this two stages of

NAFLD (Table 4.1). Thus, understanding metabolic pathway level alterations are very crucial

for gaining more insights into the disease mechanism.

Table 4.1: Number of differentially expressed genes (DEGs). The second row represents the
total up- and downregulated genes obtained in NASH and NAFL categories, while the third
row denotes the number of DEGs involved in Hepatocytes232215.

NASH vs Control NAFL vs Control

Upregulated Downregulated Upregulated Downregulated

DEGs 2810 2862 1480 3988

DEGs involved in

iHepatocytes2322
412 464 245 590

Metabolic flux level profiles were predicted for each individual by integrating the gene

expression data on iHepatocytes232215 [62] followed by flux variability analysis (FVA) [196].

2,859 and 1,721 reactions were altered for the NAFL and NASH categories, respectively, in

which 998 were common in both categories. It is known that NAFLD is strongly correlated

with carbohydrates, lipids, bile acids, amino acids, and lipid metabolism dysfunctioning [358].

So, the altered reactions were linked with these processes (Fig. 4.1A). It was observed that 26%

of the associated reactions of carbohydrate metabolism were altered in NAFL. Additionally,

transport reactions, exchange reactions, and vitamin metabolism also showed alteration. The

numbers of up- and downregulated reactions for the same metabolism process were different
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Figure 4.1: Metabolic flux level alterations. A) Represents the doughnut plot of the major
metabolic processes associated with the altered reactions, and the corresponding numbers are
mentioned inside. The inner and outer circles respectively represent the NAFL and NASH
categories. Also, the level of alterations of each process is provided inside the parenthesis of
the color legend. B) The bar plot represents the percentage of up–and downregulated reactions
in each metabolic process. C) Significantly altered metabolic pathways obtained for NASH
and NAFL in comparison to the control group. The bar length represents the percentage of
altered reactions for each pathway. The number inside the Y-label denotes the number of total
reactions in the corresponding pathway.
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for NAFL and NASH (Fig. 4.1B). Interestingly, the fatty acid oxidation process were found

downregulated for both groups and it primarily reflects the alterations in the fatty acid acti-

vation, desaturation, and beta-oxidation pathways (Fig. 4.1C). We also found that the reac-

tions in the NASH group were showing higher degree of alterations compared to its counter-

part. The glycolysis or gluconeogenesis, tricarboxylic acid cycle, glyoxylate or dicarboxylate

metabolism, and pyruvate metabolism were the most upregulated pathways in the carbohydrate

metabolism for the NASH group. These promote higher production fluxes of acetate, pyru-

vate, acetyl-CoA, and glycerate. Similar results were found for the NAFL group, except some

reactions were downregulated in glycolysis or gluconeogenesis and pyruvate metabolism path-

ways. In case of lipid metabolism, most reactions in the glycerolipid metabolism were upregu-

lated, and the reactions in the arachidonic acid metabolism and glycosphingolipid biosynthesis-

ganglio series were downregulated. Up- and downregulations were both observed for other

pathways in the lipid metabolism process. On the other hand, marked alterations (mostly down-

regulation) were observed for bile acid biosynthesis, recycling, and formation and hydrolysis

of the cholesterol esters pathways. We observed decreased production fluxes of cholate, glyco-

cholate, taurocholate, glycochenodeoxycholate, and taurochenodeoxycholate from cholesterol.

Significant alterations in amino acid metabolism were also noticed. The reactions involved in

arginine and proline, glycine, serine and threonine, cysteine and methionine, and beta-Alanine,

were upregulated. The reactions involved in the glutathione metabolism, lysine metabolism,

phenylalanine, tyrosine, and tryptophan biosynthesis pathways were downregulated for the

NASH group. For the NAFL group, these pathways were downregulated except for glycine, ser-

ine, threonine metabolism, cysteine, and methionine metabolism pathways. Here, we observed

reduced fluxes of glutathione peroxidase in cytoplasmic, mitochondrial, and extracellular com-

partments for both groups, suggesting defects in antioxidant defence mechanisms. Glutathione

peroxidase plays a vital role in cellular defence against oxidative stress by converting H2O2 to

H2O [359]. Besides that, we also found reduced fluxes for glutathione oxidoreductase in cyto-

plasmic and mitochondrial compartments, which regenerates glutathione through the reduction

of glutathione disulfide by utilising NADPH and NADH as a cofactor.
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4.3.2 Genes causing metabolic transformation

These observed disease-associated molecular alterations were further used to determine po-

tential recovery options. At the metabolic stage, we systematically carried out a 90% gene

knockdown and calculated the transformation score (TS) [209], reflecting the extent to which

it may transform the disease state towards a healthy state (Fig. 4.2A). Genes with positive TS

(hereafter referred to as metabolic candidate genes, MCG) were selected for further evaluation.

From this in silico knockdown analysis, we obtained 91 and 112 MCG for the NAFL and NASH

groups, respectively. Also, a significant overlap (58 genes) was observed between the MCGs

of both groups. These obtained MCG for both groups were enriched in retinol metabolism, one

carbon pool by folate, tyrosine metabolism, drug metabolism, pyruvate metabolism, glycoly-

sis/gluconeogenesis, and alanine, aspartate, and glutamate metabolism.
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Figure 4.2: Transformation score (TS) analysis. TS of the metabolic genes, obtained by
performing 90% gene knockdown exercise. Here, the red dots represent the genes with TS>0.

4.3.3 Identifying targets in NAFLD using GSMM

Besides the metabolic alterations, pathways like inflammation, fibrosis, apoptosis, etc., also

contribute to the disease progression. Thus, protein level rewiring is also required to control the

disease progression. Therefore, we need a set of genes that can influence the metabolic network

and DEGs. So, here we used the indispensable candidate proteins (ICp) [360] obtained from

the investigation of the directional PPI networks containing the DEGs, candidate proteins (Cp),

and the MCGs.
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We next aimed to filter the predicted candidate targets obtained from the network analysis

by investigating their knockdown effect on the disease-specific GSMMs. Analysis of GSMM

provides the unique opportunity to explore the knockdown effect on the metabolic networks

systematically and can help in quantifying their impact on the transformation from the disease

state to the healthy state. For this purpose, knockdown profiles of each ICp in the HEPG2 cell

line were used to capture the transition of metabolic flux from the disease state to the healthy

state. We calculated the TS for each ICp (Fig. 4.3A) and then considered the proteins with

positive TS scores as potential targets. The identified proteins are crucial in the physiology

of NASH as these proteins affect the controllability of the network containing DEGs, Cps and

MCGs, capable of inducing reverse gene expression to the DEGs and initiating the metabolic

flux level transition from the disease to a healthy state. We obtained three potential targets for

NASH, namely, BAG6, CYCS, and CASP3.
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Figure 4.3: The potential targets in NAFL and NASH. A) The histogram of transformation
scores (TS) per protein in ICp . The TS is plotted in the X-axis, while the bar length denotes
the number of proteins. A gene is considered as a potential target if it has a positive TS.

In the NAFL category, eight proteins (ACVR1, BMP4, CASP3, FGFR3, GABPB1, PLAU,

PPP1CC and VDAC1) were identified as potential targets. A literature review of these eight

prospective targets reveals an intriguing fact that most of these proteins have already been

implicated in NAFLD. Bone morphogenetic protein 4 (BMP4) belongs to the TGF-β super-

family and acts as pro-fibrogenic factor potentiating HSC transdifferentiation [361]. Besides

the contribution to hepatic fibrosis, BMP signaling plays a role in developing NAFLD, and

the treatment with BMP inhibitors was observed to reduce hepatic triglyceride content in dia-

betic db/db mice [362]. The canonical BMP signaling occurs through another target ACVR1
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which echoes its importance [362]. Being a member of the fibroblast growth factor receptor

family, FGFR3 is reported to contribute to fibrogenesis [363]. PLAU (also known as UPR) has

been shown to stimulate the synthesis of triglycerides in Huh7 hepatoma cells [364]. Finally, a

VDAC-based peptide R-Tf-D-LP4 was reported to halt the progression of steatosis and NASH

progression in a high-fat diet (HFD-32) mouse model [365].

4.3.4 Effects of the identified targets in reversing the disease metabolic

flux state

Often, targeting a gene results in changes in the expression levels of specific genes since these

gene products share several similar pathways, processes, and functions. Thus, an investiga-

tion of these affected genes and their associated pathways and ontological properties facilitates

deciphering the mechanistic understanding of the targeted gene. The knockdown profiles of

these potential targets were further used to evaluate their effect on NASH-specific traits: lipid

accumulation (steatosis), inflammation, apoptosis, and fibrosis (Fig. 4.4A). The knockdown

of CYCS and PLAU affected most metabolic genes in the NASH and NAFL categories, re-

spectively (Fig. 4.4B-C). The knockdown of CYCS and CAPS3 could improve inflammation,

fibrosis, and apoptotic pathways, whereas the knockdown of BAG6 ameliorates the latter two

and the knockdown effects of the targets for the NAFL category have a heterogeneous impact

[360].

To elucidate the beneficial effects of the identified potential targets on hepatic steatosis, the

knockdown profile of each target in the disease-specific GSMM was integrated. The percent-

ages of upregulated reactions transferred towards the control were higher than the downregu-

lated ones for all these targets (Fig. 4.4D). In the NAFL category, knockdown of the PPP1CC

and VDAC1 shows a higher impact on the metabolic level alterations than the other genes,

particularly in the lipid, bile acid metabolism, and transport reactions (Fig. 4.5A). The other

six targets have almost similar effects in all the altered metabolic processes. All three NASH

targets have a similar impact. However, their influences are minor compared to the NAFL cat-

egory. They are, nevertheless, more potent than others in the fatty acid oxidation process. The

reactions involved in the fatty acid activation and mitochondrial beta-oxidation were already



96 Chapter 4. Importance of genome-scale metabolic model in identifying drug-targets

downregulated in the NAFL and NASH groups. The knockdowns of potential targets of NASH
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Figure 4.4: Mechanistic understanding of the potential targets. A) The schematic diagram
for exploring the potential targets on the disease-specific traits. The process starts with extract-
ing the gene knockdown profiles from the CMap database and ends with identifying changes
in the disease-specific traits such as lipid accumulation (steatosis), inflammation, apoptosis,
and fibrosis. B-C) Bar plot representing the numbers of affected metabolic genes following the
knockdown of each potential target in the NAFL and NASH groups. D) The figure illustrates
the number of reactions transferred towards normal following the knockdown of each target in
their respective category, and the value is provided at the top of each bar. The number of up-and
downregulated reactions in the NAFL category are 477 and 2382. In the NASH category, these
numbers are 909 and 812, respectively.
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* Pathways (no. of upregulated reactions in NASH, NAFL, 

no. of downregulated reactions in NASH, NAFL) 

Upregulated Downregulated

NASH NAFL NASH NAFL

A

B
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34%

Figure 4.5: Knockdown effect of the potential targets in the metabolic level alterations. A)
This figure depicts the effect of each target on the metabolic processes altered in the NAFLD
spectrum. The numbers of altered reactions transferred towards control are shown here in per-
centages, while the number of total altered reactions is provided inside each process’s paren-
thesis. B) Knockdown effect of the potential targets of NASH in the downregulated reactions
of fatty acid oxidation. Here, the bar plot represents the observed flux rate differences between
the knockdown and NASH conditions. A reaction is placed in two categories depending on its
decreased or increased flux rate.
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were found to increase the flux rates of 66% altered reactions in the fatty acid oxidation path-

ways, including fatty acid activation and mitochondrial beta-oxidation (Fig. 4.5B and Fig. 4.6).

The knockdown of the potential targets for NAFL could do the same for mitochondrial beta-

oxidation, whereas all but PPP1CC were able to do so for some of the reactions in the cytosolic

fatty acid activation (Fig. 4.7). Additionally, our proposed targets can revert some altered car-

bohydrate, amino acid metabolism, glycerolipid, and sphingolipid metabolism reactions. It was

also found that the knockdown profiles of these proposed targets (both NASH and NAFL categ-

Glycolysis / Gluconeogenesis

Starch and sucrose metabolism

Galactose metabolism

Fructose and mannose metabolism

Pyruvate metabolism

Tricarboxylic acid cycle and glyoxylate/dicarboxylate metabolism

Alanine, aspartate and glutamate metabolism

Arginine and proline metabolism

Glycine, serine and threonine metabolism

Histidine metabolism

Lysine metabolism

Tryptophan metabolism

Tyrosine metabolism

Valine, leucine, and isoleucine metabolism

Phenylalanine, tyrosine and tryptophan biosynthesis

Cysteine and methionine metabolism

Glutathione metabolism

beta-Alanine metabolism

Other amino acid

Fatty acid activation (cytosolic)

Fatty acid activation (endoplasmic reticular)

Fatty acid biosynthesis (even-chain)

Fatty acid biosynthesis (odd-chain)

Fatty acid desaturation (even-chain)

Fatty acid desaturation (odd-chain)

Fatty acid transfer reactions

Omega-3 fatty acid metabolism

Omega-6 fatty acid metabolism

Beta oxidation of even-chain fatty acids (peroxisomal)

Beta oxidation of unsaturated fatty acids (n-9) (peroxisomal)

Beta oxidation of phytanic acid (peroxisomal)

Beta oxidation of di-unsaturated fatty acids (n-6) (peroxisomal)

Beta oxidation of even-chain fatty acids (mitochondrial)

Beta oxidation of odd-chain fatty acids (mitochondrial)

Beta oxidation of unsaturated fatty acids (n-7) (mitochondrial)

Beta oxidation of unsaturated fatty acids (n-9) (mitochondrial)

Beta oxidation of di-unsaturated fatty acids (n-6) (mitochondrial)

Beta oxidation of poly-unsaturated fatty acids (mitochondrial)

Beta oxidation of branched-chain fatty acids (mitochondrial)

Linoleate metabolism

Lipoic acid metabolism

Arachidonic acid metabolism

Eicosanoid metabolism

Acylglycerides metabolism

Sphingolipid metabolism

Glycerolipid metabolism

Glycerophospholipid metabolism

Glycosphingolipid biosynthesis-ganglio series

Glycosphingolipid biosynthesis-globo series

Glycosphingolipid biosynthesis-lacto and neolacto series

Glycosphingolipid metabolism

Ether lipid metabolism

Pool reactions

Steroid metabolism

Bile acid biosynthesis

Bile acid recycling

Formation and hydrolysis of cholesterol esters

Folate metabolism

Protein assembly

Protein modification

Protein degradation

Oxidative phosphorylation

ROS detoxification

Pentose phosphate pathway

Carbohydrates

Fatty acids

Amino acids

Lipids

Bile acid

Others

40

45

50

30

20

10

5

Unaltered

60

0

15

25

35

55

U
p

 
re

a
ct

io
n

s

B
A

G
6

C
Y

C
S

D
o

w
n

 
re

a
ct

io
n

s

C
A

S
P

3

B
A

G
6

C
Y

C
S

C
A

S
P

3

Figure 4.6: Beneficial effects of the proposed potential targets against NASH on reverting
the disease-specific metabolic alterations. The column represents the number of reverted
reactions for each pathway.
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ories) are associated with the increased flux of mitochondrial glutathione peroxidase, except

for PPP1CC and VDAC1, which increase the flux rate of extracellular glutathione peroxidase.

It was also found that the knockdown profiles of these proposed targets (both NASH and NAFL

categories) are associated with the increased flux of mitochondrial glutathione peroxidase, ex-

cept for PPP1CC and VDAC1, which increase the flux rate of extracellular glutathione perox-

idase. The flux rate of mitochondrial glutathione oxidoreductase was found to be upregulated

after the knocking down of all three recovery options for the NASH category, but in the cyto-

plasm, only the NADH-associated flux rate was increased. On the other hand, a heterogeneous

effect was observed for the recovery proteins for the NAFL group. Hence, our proposed tar-

gets have the potential to revert the metabolic alterations and could attenuate hepatic steatosis

by promoting higher flux rates for the altered reactions involved in fatty acid activation and

mitochondrial beta-oxidation pathways.

4.4 Discussion

NASH is a multifactorial progressive disease that initiates from a benign NAFL and may move

to severe cirrhosis and liver failure [366]. Currently, it is the main reason for global liver

transplants, and unabated, the numbers are going to rise only. NASH is driven by various

inflammatory pathways, multiple fibrosis pathways, and metabolic alterations such as lipid

metabolism, pathways associated with lipotoxicity, and oxidative defence [366]. However,

despite being studied for decades, the molecular mechanism governing NASH is yet to be

deciphered, thus making the disease very hard to control. Thus, demanding potential drug

targets for NASH has become a top priority. Therefore, we have endeavored to study NASH to

identify a set of potential targets with high confidence.

Here, we have proposed an in silico pipeline involving GSMM in combination with results

from protein-protein interaction (PPI) networks to identify drug targets. The pipeline first iden-

tifies the most significant elements of the genomic and metabolic level perturbations, which can

initiate the disease reversibility. A list of indispensable candidate proteins (ICp) was obtained

from the directional PPI network analysis containing the DEGs, candidate proteins (Cp), and
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Figure 4.7: Beneficial effects of the proposed potential targets against NAFL on reverting
the disease-specific metabolic alterations. The column represents the number of reverted
reactions for each pathway.

the MCGs [360]. We have checked the knockdown effects of each ICp on the disease-specific

GSMMs by performing a metabolic network level transformation since they can influence the

network controllability and generate reverse gene expression profiles. Finally, ICps with pos-

itive transformation scores were deemed potential targets because they can affect the network

controllability, induce reverse gene expression to the DEG, and revert the disease metabolic

flux state towards healthy.

GSMM is at the heart of this collaborative investigation. It starts from understanding the

molecular alterations to deciding the potential drug targets from indispensable candidate protein

(ICp). It is known that abnormal metabolism is the primary cause or consequence of human

diseases. Therefore, exploring the metabolic alterations in multifactorial diseases like NASH is
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necessary. In addition to capturing metabolic alterations, GSMM provides a unique opportunity

to identify genes that can regulate or revert the alterations from the disease state. Here, we

performed the in silico knockdown analysis using GSMM to identify the metabolic genes that

can transform the disease-metabolic state towards control. However, a PPI network analysis can

give important nodes that have the potential to influence the network, still unable to provide the

information that it is driving the disease or can control the disease progression. In this context,

GSMM can be used to quantify their impact on the transformation from the disease state to the

healthy state. Here, we have incorporated the knockdown profile of each ICp to capture their

effect on the metabolic network, as most of the proteins are non-enzymatic. After identifying

the potential targets based on the transformation score, we asked how these targets could reverse

the metabolic alterations. Therefore, after integrating the knockdown profiles, we looked for

fluxes of each of the altered reactions. This approach helps us identify the metabolic reactions

whose flux rates can actually reverse by targeting these identified potential targets. From there,

we also identified the impact of these targets on hepatic steatosis.

We obtained three proteins (CASP3, CYCS, and BAG6) that can cause reversibility in

NASH at both the metabolic level and as well as protein level. Using in silico gene knock-

down, we have shown that these proteins are associated with steatosis, inflammation, apop-

tosis, and fibrosis. Caspase 3, Apoptosis-Related Cysteine Peptidase (CASP3), is a member

of the caspase family and plays a central role in apoptosis execution [367]. The genetically

modified mice with loss of CASP3 activity were reported as resistant to diet-induced NASH

development [368]. Cytochrome C (CYCS) is a small soluble heme protein found abundantly

in the inner mitochondrial membrane, and its exodus to cytosol triggers apoptosis, whereas

its translocation into the extracellular space induces inflammation [369]. BCL2 Associated

Athanogene 6 (BAG6) is an ATP-independent molecular chaperone involved in cellular quality

control processes. It prevents misfolded protein aggregation by promoting their degradation

through the cellular proteasome machinery [370]. It is involved in insulin-like growth factor

receptor signaling pathway [371] and DNA damage-induced apoptosis [372]. It is also a ligand

of the natural killer/ NK cells receptor NCR3 [373]. However, no report exists regarding the

involvement of BAG6 in NASH. Moreover, the studied liver biopsy data indicated that BAG6
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was not differentially expressed in NASH. Thus it’s not involved in NASH development, rather,

its inhibition can reduce the disease progression. Thus, BAG6 can potentially become a suitable

drug target in NASH and need further evaluation through experimental studies.

Our strategy of leveraging and interconnecting the context-specific molecular networks

identified three potential targets for NASH and eight for NAFL. These targets exert their ef-

fects at the gene and metabolic levels and reverse disease-associated molecular signatures. We

have shown that knocking them down affects steatohepatitis, inflammation, and fibrosis devel-

opment. Our proposed methodology lays out a pragmatic framework for identifying potential

therapeutic targets with their possible mechanism of action. Though it will significantly speed

up the drug discovery process by providing a better experimental design to biologists for further

exploration, we need small-scale kinetic models to capture the underlying mechanism associ-

ated with metabolic alterations related to a disease condition.



5
Small-scale kinetic model and therapeutic

strategies1

5.1 Introduction

In Chapter 2, we have applied genome-scale metabolic model (GSMM) to identify metabolic

alterations in pancreatic β -cell responsible for the dysregulated β -cell function in type 2 dia-

betes (T2D). One of the major causes of developing T2D in the presence of insulin resistance

(IR) is the impaired glucose-stimulated insulin secretion (GSIS) in β -cell. Though GSMM pro-

vides a global picture of metabolic alterations, we need a focused small-scale kinetic modelling

approach to better capture the GSIS process and unravel the cause, effect, and mechanism of

1The bulk of this chapter has been published in Applied Mathematical Modelling, 108 (2022): 408-426.
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T2D.

T2D usually manifests years after prediabetes or impaired glucose tolerance. This happens

due to loss in β -cell function to compensate for the insulin resistance through augmented in-

sulin secretion [374–376]. During prediabetes, blood glucose levels rise over time, causing

harmful effects on various organs, including pancreatic β -cells, a condition known as gluco-

toxicity [377, 378]. It creates an unnatural environment in β -cells that leads to alteration in

function and, most notably, the loss of acute GSIS. Impaired GSIS is the fundamental flaw

in T2D progression since the β -cell loss of mass varies greatly between different studies and

comes into the picture in later stages [377, 379, 380]. The β -cell is highly susceptible to caloric

overload, as GSIS is attenuated following glucose infusion in healthy persons and after the cul-

ture of human islets under glucotoxicity [381, 382]. It is reported that loss of specialised gene

expression [377, 383] or loss in ATP production through defective mitochondrial metabolism

[31, 374, 383, 384] can lead to complete disruption of the acute phase of GSIS. Although many

experimental [385, 386] and theoretical [377, 387–390] studies have been conducted to un-

derstand the GSIS process in β -cell, the exact mechanisms responsible for this loss of GSIS

during prediabetes have not been fully elucidated [387]. Moreover, theoretical studies mainly

focused on the glucose-insulin dynamics by constructing a minimal model that contains a mini-

mal number of parameters. They estimate the glucose effectiveness and insulin sensitivity from

intravenous glucose tolerance test (IVGTT) or oral glucose test (OGTT) data (detailed review

can be found in [387–390]).

Some work has been done on the impaired GSIS process during IR-induced hyperglycemia;

however, the mechanisms underlying this phenomenon are still poorly understood [387]. As

a result, a detailed understanding of this system through different parameter variations would

provide the possible solutions to stop or delay the progression of T2D. This is the primary mo-

tivation behind the present study, where we explored the GSIS through mathematical modelling

to investigate the possible factors responsible for the reduced insulin secretion in IR-induced

hyperglycemic state.

The current study aims to capture key factors responsible for the progression of diabetes in

the IR condition. To get a better understanding of the system, we need to consider more players
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other than glucose and insulin. In β -cell, glucokinase (GK) plays a vital role in the insulin

secretion process and acts as a glucose sensor [391, 392]. Besides, the oxidative phosphoryla-

tion process is an essential step in GSIS, as ATP production from glucose metabolism solely

depends on this process. So, we have also incorporated these two factors in our study. Calcium

is another key factor that could influence the GSIS process. The role of calcium and ATP in the

GSIS process was already known for a long time. However, the underlying interactions were

incorporated in the model considerably later (like the work by Giugliano et al. [393]). In the

pancreatic β -cells, plasma glucose enters the cell via GLUT-2 transporters and subsequently

generates energy in the form of ATP through mitochondrial oxidative phosphorylation followed

by glucose metabolism. The elevated cytoplasmic ATP concentration resulted in the rising of

cytoplasmic calcium (Ca2+) concentration through the closure of the KAT P channels [394, 395].

The cytoplasmic Ca2+ triggers the exocytosis of insulin-containing granules from the β -cell,

which results in a rise in insulin concentration in the blood plasma [396, 397]. In the glucose-

Ca2+-insulin interactions, several models were proposed to understand the glucose metabolism,

membrane potential, calcium levels, and insulin secretion, as reviewed in [387, 398–400].

McKenna et al. [401] proposed a mathematical model (Dual Oscillator Model (DOM)) on

glucose-calcium interactions to simulate their observations obtained from ex vivo experimental

studies, in which loss in slow calcium oscillations was found at an elevated glucose concentra-

tion. A sinusoidal glucose stimulus with a sufficiently large amplitude and period can recover

this loss in oscillations. Recently, Das et al. [402] proposed a minimal mathematical model

to understand the GSIS mechanism through glucose metabolism and ATP-dependent calcium

influx. The work mainly focused on elucidating the role of ATP-dependent calcium input rate

on insulin secretion. It is reported that chronic hyperglycemia results in ATP depletion by

activating uncoupling protein 2 (UCP2) [403–405] or by up-regulating the voltage-dependent

anion channel (VDAC) [374], and is also proposed as one of the major causes for obesity-

induced T2D progression. Overactivity of the KAT P channel can cause a diabetic state due to

under secretion of insulin, and its polymorphism (E23K) is proposed as one of the T2D risk

factors [406]. Also, a loss in intracellular calcium content through diminished voltage-gated

calcium channels (VGCC) function and/or density can be considered a threat for T2D devel-
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opment [407–410], but sometimes hyperactivation of the VGCC channel also leads to β -cell

death [410–412].

In the present study, we proposed and analysed the GSIS process through a six-dimensional

model incorporating calcium and ATP. The proposed mathematical model was established by

generating the normal condition provided in [115]. This model also captured the hyperglycemic

state induced by IR and loss of β -cell mass and mimicked the diabetic condition. Here, we

identified crucial factors in the GSIS process whose dysfunction can lead to T2D development

or hypoglycemia. The acquired understanding of the crucial factors was then used to explore

different potential strategies that would prevent the progression of IR towards T2D.

5.2 Formulation of the mathematical model

The pancreatic β -cell is considered where plasma glucose enters the cell via glucose trans-

porters (GLUT-2) present on the cell membrane. After entering the cell, the glucokinase

phosphorylates it, which then enters into the energy metabolism pathway. In the process of

metabolism, energy is generated in the form of ATP; as a result, cytoplasmic ATP concen-

tration increases. Mainly two types of ion channels are essential for insulin secretion:- KATP

channels and the voltage-gated Ca2+ channels [394, 395]. At low plasma glucose, the KATP

channels are spontaneously active, allowing potassium ions (K+) to flow out of the cell that

holds the membrane potential near the hyperpolarized resting potential (near -60 mV) [413].

In the presence of higher plasma glucose, the elevated cytoplasmic ATP concentration leads

to the closure of the KATP channels. This, in turn, results in the depolarization of the plasma

membrane and the potential shifts from negative to positive. When the plasma membrane po-

tential crosses -40 mV, the VGCC open and allow the influx of extracellular Ca2+ into the

β -cells [413]. Also, from the endoplasmic reticulum (ER), calcium comes into the cytoplasm

via RyR2 channels. The cytoplasmic Ca2+ goes back outside the cell through Na+/Ca2+ ex-

changers and PMCA channel, present in the plasma membrane and into ER via SERCA pump.

The rise in cytoplasmic Ca2+ concentration triggers the exocytosis of insulin-containing gran-

ules, resulting in a surge in insulin concentration in blood plasma [396, 397]. The production
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of ATP is solely dependent on the oxidative phosphorylation process, which occurs in the mi-

tochondrial compartment. A term is included in the model that represents the total pool of

intermediated metabolites available for oxidative phosphorylation as per previous work [413].

The ATP synthesis rate is determined by the consumption rate of these intermediate metabo-

lites. The proposed mathematical model on the glucose-induced insulin secretion process is

schematically presented in Fig. 5.1.

Glucose-6-phosphate

ATP

Glucose

Insulin

K+

Ca2+

K
ATP

channel
(closed)

Voltage-gated 
Ca2+ channel 

(open)

GLUT-2

Depolarization

Glucose

Glucokinase

Glycolysis

TCA cycle
Insulin granules

Beta-cell

Figure 5.1: Schematic diagram of the proposed mathematical model(5.12) on GSIS pro-
cess.

While formulating the mathematical model, we considered six variables G, I, [Re]i, [AT P]i,

[Ca2+]i and [Ca2+]ER as the concentrations of plasma glucose, plasma insulin, the total pool

of intermediated metabolites, cytoplasmic ATP, cytoplasmic Ca2+ and ER Ca2+ respectively.

A rise in plasma glucose (G) occurs due to glucose input in the blood plasma from food and

hepatic glucose production. The fall of G is due to two effluxes; one is insulin-independent

utilization by cells like β -cells, brain, erythrocytes, etc., and another is insulin-dependent uti-

lization by cells like muscle cells, hepatic cells, etc. Here we have considered a time-dependent

function for the dietary glucose input in the form of [117]:

V = v11te−t/k11 (5.1)
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The other three terms were taken from the study by Andrea De Gaetano et al. [414], in which

a minimal model on the intravenous glucose tolerance test (IVGTT) was proposed. The rate

equation of the concentration of plasma glucose (G) is expressed as:

dG
dt

= v11te−t/k11 + v12− v13G− v14GI (5.2)

where, k11ln2 denotes the approximate value of the half-life of the glucose absorption, v11k2
11

is the total amount of uptaken glucose, v12 is the hepatic glucose production, v13 is the insulin-

independent glucose utilization rate constant and v14 is the insulin-dependent glucose utiliza-

tion rate constant. The production rate of intermediated metabolites depends on the glycolysis

flux, and we assume that this flux is determined by the glucose phosphorylation rate [415]. The

flux of the phosphorylation reaction depends on the activity of glucokinase and the level of

the glucokinase’s two substrates, glucose and ATP. The ATP-dependent activity is best fitted to

Michaelis-Menton equation [416]. Glucokinase shows a sigmoidal fashion for glucose with a

Hill coefficient, h=1.7 [417]. Therefore, in the present model, we use the rate expression for

glucokinase from [418] as follows:

VGlu = v21
Gh

Gh + kh
21

[AT P]i
[AT P]i + k22

(5.3)

where, VGlu is the reaction rate of glucokinase with v21 is the maximum rate of glucose con-

sumption, k21 is the half-maximal glucose concentration, h is the Hill coefficient, and k22 is the

Michaelis-Menton constant for ATP. So, in our study, the [Re]i production rate was assumed to

be proportional to the phosphorylation rate of glucose to glucose-6-phosphate with conversion

efficiency ε . The ATP synthesis rate from the intermediated metabolites through the oxidative

phosphorylation process may be expressed as Hill equation [413, 418]:

VOP = v22[Re]i
[MgADPf ]

2
i

[MgADPf ]
2
i + k2

23
(5.4)
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with

[MgADPf ]i = 0.055[ADP]i (5.5)

A0 = [AT P]i +[ADP]i (5.6)

where, v22 is the maximum ATP production rate, [MgADPf ]i is concentration of cytosolic

free MgADP, k23 is the half-maximal cytosolic free MgADP concentration and [ADP]i is con-

centration of cytosolic ADP. A0 is the general concentration of intracellular nucleotides which

was assumed to be constant. According to the previous studies [413, 419], we assumed the

values of A0 equals 4000 µM. Thus, the rate equation of the concentration of intermediated

metabolites expressed as:

d[Re]i
dt

= ε

(
v21

Gh

Gh + kh
21

[AT P]i
[AT P]i + k22

)
− v22[Re]i

[MgADPf ]
2
i

[MgADPf ]
2
i + k2

23
(5.7)

31 ATP molecules are produced from one glucose molecule [420], so we considered the

value of ε equal to 31. Here, we also considered the linear degradation of ATP with rate

constant v31 for uses in various activities into the cell. Therefore, the rate equation of the

concentration of cytoplasmic ATP is expressed as:

d[AT P]i
dt

= v22[Re]i
[MgADPf ]

2
i

[MgADPf ]
2
i + k2

23
− v31[AT P]i (5.8)

A rise in the concentration of cytoplasmic Ca2+ ions has two sources:- the influx of Ca2+

ions from extracellular space via VGCC and from the ER via RyR2 channels. As the influx of

Ca2+ ions through voltage-gated Ca2+ channels is a downstream effect of a rise in cytoplasmic

ATP concentration, we considered the rate is linearly dependent on cytoplasmic ATP concen-

tration with rate constant v41 for simplicity of the model. The influx of Ca2+ ions via RyR2

channels is dependent on the concentration of ER calcium. Here, we used a previously men-

tioned mechanism [421] for calcium-induced calcium release, v42
(
[Ca2+]ER− [Ca2+]i

)
, where

v42 is the activity of the RyR2 channels. On the other hand, cytoplasmic Ca2+ ions concentra-

tion declines for two effluxes, sequestration of intracellular Ca2+ into the calcium store ER via
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SERCA pump and efflux of Ca2+ ions outside of the cell through the cell membrane. Follow-

ing [422], the equation for SERCA was taken as v43[Ca2+]2i
k2

41+[Ca2+]2i
, where v43 is the maximum rate and

k41 is the corresponding half-maximal cytoplasmic Ca2+ concentration. Here, we considered

linear term v44[Ca2+]i for removal of cytoplasmic Ca2+ ions into extracellular space with rate

constant v44. The dynamics of the concentration of cytoplasmic Ca2+ and ER Ca2+ ions in our

model are expressed as:

d[Ca2+]i
dt

= v41[AT P]i + v42
(
[Ca2+]ER− [Ca2+]i

)
− v43[Ca2+]2i

k2
41 +[Ca2+]2i

− v44[Ca2+]i (5.9)

d[Ca2+]ER

dt
=−v42

(
[Ca2+]ER− [Ca2+]i

)
+

v43[Ca2+]2i
k2

41 +[Ca2+]2i
(5.10)

The rise of insulin in blood plasma is due to the exocytosis of insulin-containing granules,

triggered by intracellular Ca2+ ions. Bokvist et al. [423] proposed a mathematical expression

for Ca2+ dependent insulin secretion rate and got the value of the co-operativity coefficient of 2

by applying least-squares fit with experimentally observed data. Thus, we employ Hill function
v61[Ca2+]2i

k2
61+[Ca2+]2i

, with co-operativity coefficient of 2 for the releasing rate of insulin from single β -

cell, where v61 is maximum rate of insulin release and k61 is the corresponding half-saturation

intracellular Ca2+ concentration. We considered a linear degradation of blood insulin concen-

tration (I) with degradation rate constant v65. So, the dynamical equation of I is expressed

as:

dI
dt

=
v61v62v63[Ca2+]2i

v64(k2
61 +[Ca2+]2i )

− v65I (5.11)

where, v62 is the total number of β -cells, v63 is the effective volume of each β -cell and v64

is the effective volume of the plasma insulin space [424]. Thus, the minimal model of glucose-

induced insulin release process in β -cell is proposed by the following system of a nonlinear

ordinary differential equation (ODE):
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dG
dt

= v11te−t/k11 + v12− v13G− v14GI

d[Re]i
dt

= ε

(
v21

Gh

Gh + kh
21

[AT P]i
[AT P]i + k22

)
− v22[Re]i

[MgADPf ]
2
i

[MgADPf ]
2
i + k2

23

d[AT P]i
dt

= v22[Re]i
[MgADPf ]

2
i

[MgADPf ]
2
i + k2

23
− v31[AT P]i

d[Ca2+]i
dt

= v41[AT P]i + v42
(
[Ca2+]ER− [Ca2+]i

)
− v43[Ca2+]2i

k2
41 +[Ca2+]2i

− v44[Ca2+]i

d[Ca2+]ER

dt
=−v42

(
[Ca2+]ER− [Ca2+]i

)
+

v43[Ca2+]2i
k2

41 +[Ca2+]2i
dI
dt

=
v61v62v63[Ca2+]2i

v64(k2
61 +[Ca2+]2i )

− v65I

(5.12)

with the initial conditions G(0)> 0, [Re]i(0)> 0, [AT P]i(0)> 0, [Ca2+]i(0)> 0, [Ca2+]ER(0)>

0, I(0)> 0 and

[MgADPf ]i = 0.055[ADP]i

A0 = [AT P]i +[ADP]i = 4000µM

5.3 Preliminary results

5.3.1 Positive invariance of the solutions

The system of equations (5.12) can be written as:

Ẋ = F(X) (5.13)

together with initial conditions X(0) = X0 ∈ R+
6.

Where, X = col
(

G, [Re]i, [AT P]i, [Ca2+]i, [Ca2+]ER, I
)
∈ R6 and
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F(X) =



F1(X)

F2(X)

F3(X)

F4(X)

F5(X)

F6(X)


=



v11te−t/k11 + v12− v13G− v14GI

ε

(
v21

Gh

Gh+kh
21

[AT P]i
[AT P]i+k22

)
− v22[Re]i

[MgADPf ]
2
i

[MgADPf ]
2
i +k2

23

v22[Re]i
[MgADPf ]

2
i

[MgADPf ]
2
i +k2

23
− v31[AT P]i

v41[AT P]i + v42
(
[Ca2+]ER− [Ca2+]i

)
− v43[Ca2+]2i

k2
41+[Ca2+]2i

− v44[Ca2+]i

−v42
(
[Ca2+]ER− [Ca2+]i

)
+

v43[Ca2+]2i
k2

41+[Ca2+]2i

v61v62v63[Ca2+]2i
v64(k2

61+[Ca2+]2i )
− v65I


(5.14)

It is easy to check in equations (5.14) that whenever choosing X0 ∈ R+
6 with Xi = 0, then

Fi(X0)|Xi=0 = 0 ≥ 0,(i = 1,2,3,4,5,6). Due to the lemma of Nagumo [425], any solution of

equation (5.13) with X0 ∈ R+
6, say X(t) = X(t;X0), is such that X(t) ∈ R+

6 for all t > 0.

5.3.2 Boundedness of the solutions

From the first equation of (5.12), we get

dG
dt

= v11te−t/k11 + v12− v13G− v14GI

=
v11t

et/k11
+ v12− v13G− v14GI

=
v11t[

1+ t
k11

+ 1
2!

t2

k2
11
+ 1

3!
t3

k3
11
+ · · ·

] + v12− v13G− v14GI

≤ v11t
t

k11

+ v12− v13G− v14GI

≤ v11k11 + v12− v13G

(5.15)

Thus we obtain,

dG
dt

+ v13G≤ v11k11 + v12 (5.16)

Using the variation of constants formula, inequality (5.16) is transformed into

0≤ G(t)≤ v11k11 + v12

v13
(1− e−v13t)+G(0)e−v13t (5.17)
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From which we get,

G(t)≤M1,∀t ≥ 0 (5.18)

where, M1 =
v11k11+v12

v13
+G(0).

From the system equation of (5.12), we can easily find that

d[AT P]i
dt

∣∣∣
[AT P]i=A0

≤ 0 (5.19)

This implies that the value of [AT P]i always remains within the range (0,A0].

By merging fourth and fifth equations of (5.12), we get

d[Ca2+]i
dt

+
d[Ca2+]ER

dt
= v41[AT P]i− v44[Ca2+]i

≤ v41A0− v44[Ca2+]i

(5.20)

Let us assume, for a instance t1 ≥ 0 first time the value [Ca2+]i(t1)≥ v41A0
v44

. Then from equation

(5.20) we have

d[Ca2+]i
dt

+
d[Ca2+]ER

dt
≤ 0. (5.21)

Here, we also mentioned that in the time interval [0, t1), the value of [Ca2+]ER(t) cannot crosses

the threshold value v41A0
v44

+ v43
v42

. It is easily can derive from the fifth equations of (5.12) that
d[Ca2+]ER

dt ≤ 0, when [Ca2+]ER(t)≥ v41A0
v44

+ v43
v42
∀t < t1. Thus, we got, [Ca2+]ER(t1)≤ v41A0

v44
+ v43

v42
.

When, equation (5.21) holds, then three possibilities may arise:

(I) d[Ca2+]i
dt ≤ 0 and d[Ca2+]ER

dt ≤ 0,

(II) d[Ca2+]i
dt ≤ 0 and d[Ca2+]ER

dt > 0 and

(III) d[Ca2+]i
dt > 0 and d[Ca2+]ER

dt ≤ 0
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For case (I) and (II), the value of [Ca2+]i always remains in the interval (0, v41A0
v44

] and then

bounded there for all t ≥ 0, i.e., [Ca2+]i(t) ≤ v41A0
v44
∀t ≥ 0. Similarly for case (I) and (III),

the value of [Ca2+]ER always remains in the interval (0, [Ca2+]ER(t1)] and then [Ca2+]ER(t)≤

[Ca2+]ER(t1) ∀t ≥ t1. Thus we obtained that [Ca2+]ER is for all t ≥ 0, i.e., [Ca2+]ER(t) ≤
v41A0

v44
+ v43

v42
∀t ≥ 0.

For case (II), it is easily can derive from the fifth equations of (5.12) that d[Ca2+]ER
dt ≤ 0, when

[Ca2+]ER(t) ≥ v41A0
v44

+ v43
v42

, as [Ca2+]i(t) ≤ v41A0
v44
∀t ≥ 0. Thus the value of [Ca2+]ER always

remains in the interval (0, v41A0
v44

+ v43
v42

] and then bounded there for all t ≥ 0, i.e., [Ca2+]ER(t)≤
v41A0

v44
+ v43

v42
∀t ≥ 0.

In case (III), we obtain from equation (5.21) that d[Ca2+]i
dt < −d[Ca2+]ER

dt and also we have

[Ca2+]ER(t)≤ v41A0
v44

+ v43
v42
∀t ≥ 0. Using the fifth equations of (5.12), we have

d[Ca2+]i
dt

<−d[Ca2+]ER

dt

< v42
(
[Ca2+]ER− [Ca2+]i

)
− v43[Ca2+]2i

k2
41 +[Ca2+]2i

< v42
(
[Ca2+]ER− [Ca2+]i

)
(5.22)

Thus, when [Ca2+]i ≥ [Ca2+]ER, the value of d[Ca2+]i
dt ≤ 0. Thus the value of [Ca2+]i al-

ways remains in the interval (0, max([Ca2+]ER)] and then bounded there for all t ≥ 0, i.e.,

[Ca2+]i(t)≤ v41A0
v44

+ v43
v42
∀t ≥ 0.

Let us consider the case, where the value [Ca2+]i(t)<
v41A0

v44
∀t ≥ 0. From the fifth equation

of (5.12), we get

d[Ca2+]ER

dt
=−v42

(
[Ca2+]ER− [Ca2+]i

)
+

v43[Ca2+]2i
k2

41 +[Ca2+]2i

=−v42[Ca2+]ER + v42[Ca2+]i +
v43[Ca2+]2i

k2
41 +[Ca2+]2i

≤−v42[Ca2+]ER +
v41v42A0

v44
+ v43

(5.23)
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Thus we obtain,

d[Ca2+]ER

dt
+ v42[Ca2+]ER ≤

v41v42A0

v44
+ v43 (5.24)

Using the variation of constants formula, inequality (5.24) is transformed into

0≤ [Ca2+]ER(t)≤
v41v42A0

v44
+ v43

v42
(1− e−v42t)+ [Ca2+]ER(0)e−v42t (5.25)

From which we get,

[Ca2+]ER(t)≤M2,∀t ≥ 0 (5.26)

where, M2 =
v41v42A0

v42v44
+ v43

v42
+[Ca2+]ER(0).

From the sixth equation of (5.12), we get

dI
dt

=
v61v62v63[Ca2+]2i

v64(k2
61 +[Ca2+]2i )

− v65I

≤ v61v62v63

v64
− v65I

(5.27)

Thus we obtain,

dI
dt

+ v65I ≤ v61v62v63

v64
(5.28)

Using the variation of constants formula, inequality (5.28) is transformed into

0≤ I(t)≤ v61v62v63

v64v65
(1− e−v65t)+ I(0)e−v65t (5.29)

From which we get,

I(t)≤M3,∀t ≥ 0 (5.30)
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where, M3 =
v61v62v63

v64v65
+ I(0).

From the second equation of (5.12), we get

d[Re]i
dt

= ε

(
v21

Gh

Gh + kh
21

[AT P]i
[AT P]i + k22

)
− v22[Re]i

[MgADPf ]
2
i

[MgADPf ]
2
i + k2

23

≤ εv21− v22[Re]i
[MgADPf ]

2
i

[MgADPf ]
2
i + k2

23

(5.31)

Thus, d[Re]i
dt ≤ 0 if in any time t2

v22[Re]i(t2)
[MgADPf ]

2
i (t2)

[MgADPf ]
2
i (t2)+ k2

23
≥ εv21 (5.32)

[Re]i(t2)≥
εv21

v22

[
[MgADPf ]

2
i (t2)+ k2

23

[MgADPf ]
2
i (t2)

]

≥ εv21

v22

[
1+

k2
23

[MgADPf ]
2
i (t2)

] (5.33)

Thus, whenever the value of [Re]i crosses the threshold value given in (5.33), the value of d[Re]i
dt

becomes ≤ 0, and so, the value of [Re]i remains in a bounded region. This property always

holds except the case when for a given time t3 the value of [MgADPf ]i = 0 ∀t ≥ t3 and this

happens if [AT P]i = A0 ∀t ≥ t3. That means [AT P]i reaches a fixed point with value A0.

5.4 Numerical simulation

5.4.1 Model validation

The model (5.12) with the parameter set (provided in Table 5.1) is validated with the clinical

data [115] for 204 normal subjects, receiving a mixed meal containing 1 ±0.02 g/kg of glu-

cose (see Fig. 5.2). The model simulated results lie within the normal range, which validates

our model. Next, we investigate whether our proposed model (5.12) is capable of captur-
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Figure 5.2: Postprandial plasma glucose and insulin concentrations observed in nor-
mal subjects through model simulation. The black-colored line represents the average
plasma glucose and insulin levels of 204 normal subjects (age 56±2 years, body weight 78±1
kg) [115], and the grey area represents the mean±SD range. Our model simulated results using
the parameter set reported in Table 5.1 are shown in a red-colored line.

0 60 120 180 240 300 360 420 480

Time (min)

40

110
126
150

200

250

300

350

400

(m
g

/d
l)

Plasma Glucose
Control
2 fold reduction
3 fold reduction
4 fold reduction
5 fold reduction

0 60 120 180 240 300 360 420 480

Time (min)

0

100

200

300

400

500

600

(p
m

o
l/l

)

Plasma Insulin
Control
2 fold reduction
3 fold reduction
4 fold reduction
5 fold reduction

Figure 5.3: Effect of reduction in insulin-dependent glucose utilization rate (v14) on plasma
glucose and insulin level.

ing the effect of the insulin resistance (IR) scenario or not. IR is connoted as a clinical state

in which a normal or increased insulin level produces an attenuated biologic response like

insulin-mediated glucose uptake, metabolism, or storage [426, 427]. To mimic this condition,

we reduced the value of insulin-dependent glucose utilization rate (v14) in our system, and sub-

sequently, plasma glucose level was captured (Fig. 5.3). It was found that 2-h plasma glucose

level goes beyond the normal range (given in grey shaded area in Fig. 5.2) by the 2- or 3-fold

reduction of v14, but fasting plasma glucose remains in the normal range, which established

the impaired glucose tolerance (IGT) condition. Fasting plasma glucose was found to cross
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the normal range after the 4-fold reduction of v14, and it remains within the range of 110-126

mg/dl for 4 & 5-fold reduction, which established the impaired fasting glucose (IFG) condi-

tion [428]. Additionally, we observed that these alterations lead to higher plasma insulin levels

due to increased plasma glucose levels.

Table 5.1: Parameter values with the corresponding reference: Values of the parameters
were collected mostly from the available literature. For some unknown parameters, we esti-
mated their values so as to keep the value of the plasma glucose and insulin levels within the
normal range provided in the study by Dalla Man et al. [115].

Parameters Definition Value with unit Reference

v11 see equation (5.2) for explanation 25.37 µMmin−1 Estimated

k11 see equation (5.2) for explanation 45 min [117]

v12 Constant glucose input from liver 107 µMmin−1 [414]

v13 Rate constant of insulin-independent

glucose utilization/excretion

0.012 min−1 [414]

v14 Rate constant of insulin-dependent glu-

cose utilization

135 µM−1min−1 [414]

ε ATP conversion constant in the β -cell 31 [420]

v21 Maximum rate of glucose consumption 80 µMmin−1 Estimated

h Hill coefficient 1.7 [417]

k21 Half-activation glucose level 7000 µM [413, 418]

k22 Michaelis-Menten constant for ATP 500 µM [413, 418]

v22 Maximum ATP production rate 12 min−1 [413]

k23 Half-activation cytosolic free MgADP

concentration

20 µM [413, 418]

v31 ATP degradation rate constant 0.45 min−1 Estimated

v41 ATP dependent calcium input rate con-

stant

0.007 min−1 Estimated

v42 Activity of RyR2 channel 0.2 min−1 Estimated

v43 Maxium rate for SERCA pump 20 µMmin−1 Estimated
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k41 Half maximal calcium concentration 0.5 µM [419]

v44 Removal rate constant for plasma mem-

brane pump activity

28 min−1 Estimated

v61 Calcium-dependent maximum insulin

release rate constant

1.08 µMmin−1 Estimated

k61 Half-maximal calcium concentration 1.4 µM [423]

v62 Total number of β -cells 8.16×108 [429]

v63 Effective volume of a β -cell 1.5×10−12l [424]

v64 Effective volume of the plasma insulin

space

3 l [424]

v65 Insulin degradation rate constant 0.323 min−1 [430]

5.4.2 Effects of loss in β -cell mass in the glucose-insulin dynamics

The total insulin released from the pancreas is determined by the product of the morphological

mass of β -cells and the insulin secreted by each cells. Thus, the glucose homeostasis in our

body requires an adequate number of insulin-secreting β -cells that respond appropriately to

plasma glucose levels. T2D is a complex metabolic disorder in which inadequate β -cell mass is

observed with the IR, mainly in the late, inulin-requiring phase of β -cell [431], and the reported

deficits of β -cell mass in autopsy studies are∼ 0˘65% [432]. The chronically increased glucose

levels may negatively affect the β -cell mass by promoting apoptosis without no significant

change in β -cell proliferation [431].

To investigate the loss of β -cell mass in glucose-insulin dynamics, we reduced the value

of the β -cell number (v62) in our model and subsequently captured the changes in plasma

glucose and insulin levels through the simulation. Stepwise fold reduction in β -cell number

results in elevated plasma levels of peak postprandial glucose, 2-h glucose, and 8-h glucose

compared to the normoglycemic situation (Fig. 5.4A). In these conditions, we also observed

significant reductions in the postprandial plasma insulin levels (Fig. 5.4B). In the 2-fold loss
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Figure 5.4: Impact of β -cell mass loss on plasma glucose and insulin levels. To capture the
loss of β -cell mass, we stepwise only reduced the value of the β -cell number (v62) up to 10-fold
on our model simulation. The variations in (A) plasma glucose and (B) insulin levels up to the
5-fold reduction of β -cell number are shown here. (C) represents the effect of loss of β -cell
mass on 2-h and 8-h plasma glucose levels, in which it was observed that both these levels are
elevated compared to the control condition. In (D), we showed the reduction (in percentage)
in peak postprandial plasma insulin level during the loss of β -cell number from the control
condition.

of β -cell number, the 2-h plasma glucose crosses the normal range, and the 8-h glucose level

reaches beyond the normal range in the 4-fold loss (Fig. 5.4C). We also noticed a 36% and 64%

reduction in peak postprandial plasma insulin level in the 2- and 4-fold loss of β -cell number,

respectively (Fig. 5.4D). Additionally, we observed that the 8-h plasma glucose level remains

above the 126 mg/dl value in the 8-fold loss of β -cell number, which causes an 80% reduction

in peak postprandial plasma insulin level. It reflects that the critical loss in β -cell number has

enough potential to cause diabetes development. Type 1 diabetes (T1D), characterized by the

attenuated insulin secretion due to the destruction of β -cells [433], comes into the grasp of

such circumstances in which nearly 100% losses were observed for patients with long-standing

T1D [434–436].



5.4. Numerical simulation 121

5.4.3 Glucose-insulin dynamics in type 2 diabetes

The model structure of the normal subject shows a reasonably good fit to experimental data

(Fig. 5.2). T2D patients might also be described using the same model with different parameter

values. T2D is mainly characterized by the coexistence of IR and reduced β -cell function/mass.

A very recent study [429] shows around 37% reduction in β -cell number in T2D participants

compared with those without diabetes (5.1× 108 ± 2.35× 108 vs. 8.16× 108 ± 4.27× 108,

p < 0.01). Thus, here we reduced the value of the total number of β -cells (v62) to 5.1× 108.

Similarly, to impose the IR and loss of β -cell function, we reduced the values of the rate con-

stants of the insulin-dependent glucose utilization (v14) and the calcium-dependent maximum

insulin release (v61). It is also reported that before the meal consumption, the plasma glucose

concentrations were much higher in diabetic subjects compared to non-diabetic subjects (9.1±

0.7 vs. 5.2 ± 0.1 mmol/l) [437]. Thus, we also changed the initial condition of plasma glucose

concentration for the simulation.
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Figure 5.5: Postprandial plasma glucose and insulin concentrations observed in dia-
betic (red-colored line) and normal (blue-colored line) conditions through model sim-
ulation. The parameter set for diabetic conditions are v11 = 19.82 µMmin−1,v14 =
42.2 µM−1min−1,v61 = 0.673 µMmin−1,v62 = 5.1× 108, and the remaining parameters are
as in Table 5.1. Additionally, we changed the initial condition of plasma glucose concentra-
tion, G(0) = 9.1 mmol/l = 164 mg/dl according to the study [437].

The model simulated glucose-insulin curves for the diabetic condition are shown in Fig. 5.5

and compared with the simulated results for the normal condition provided in Fig. 5.2. It was

found that both 2- and 8-h plasma glucose levels in the diabetic condition (310 and 128 mg/ dl,

respectively) are much higher than in the normal condition (141 and 85 mg/ dl, respectively).
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We also observed a marked reduction in plasma insulin level in the diabetic situation during

the first 3-h time interval of the simulation, i.e., after the meal consumption. However, fasting

insulin concentrations (8-h insulin level) did not differ between diabetic and normal conditions.

The peak postprandial plasma insulin concentrations were found to be reduced by 43.25% in

debates compared to the normal (176 vs. 310 pmol/l). The same amount of alteration (43.24%)

was also observed in an experimental study performed by Basu et al. [437].

5.4.4 Factors responsible for the development of diabetes during the IR-

induced hyperglycemia

IR is one of the primary factors that lead to T2D development, where prolonged plasma glucose

level leads to loss of β -cell function/mass, and subsequently, plasma insulin level falls. Thus,

here we aimed to identify crucial parameters that have a significant effect on β -cell function.

That will help bring forward the possible triggers responsible for the loss of plasma insulin

level during the development of T2D from the IR situation.

5.4.4.1 Parameters having association with different glycemic conditions

At the very beginning, we performed global sensitivity analysis (GSA) to obtain the sensitive

parameters of our model (5.12) by performing Latin Hypercube Sampling (LHS), and Partial

Ranked Correlation Coefficient (PRCC) analysis [438]. In total, 16 sensitive parameters (v11,

k11, v12, v13, v14, ε , v21, k21, k22, v31, v41, v44, v61, k61, v62 and v65) were obtained for the plasma

glucose and insulin level (see Figs. 5.6 and 5.7). To uncover the effect of these sensitive pa-

rameters on blood glucose level, we varied each parameter individually by 10-fold up and down

from their default values (given in Table 5.1 for which glucose remains in the normal range).

We partitioned the parameter ranges into five compartments based on the glycemic conditions:

hypoglycemia, normoglycemic, IGT, IFG, and diabetes mellitus (Table 5.2). Among these

sensitive parameters, changes in the values of four parameters (v12, v21, k21 and v31) can cause

both hypoglycemia and diabetes. These parameters represent hepatic glucose production rate,

glucose consumption rate by the β -cells, glucose sensitivity of glucokinase, and ATP utiliza-

tion rate by the cell. Alteration in the values (beyond the threshold value provided in Table 5.2)
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Figure 5.6: Sensitive parameters for plasma glucose level. Global sensitivity anal-
ysis was performed by using Latin Hypercube Sampling (LHS) and Partial Ranked
Correlation Coefficient (PRCC) technique [438]. The bar represents the sensitivity of
each parameter on the two and eight hours plasma glucose level after meal consump-
tion. Sensitive parameters were selected based on the threshold value ± 0.3 on PRCC
value [402, 439]. Total 15 sensitive parameters were found. Among them 14 parameters
(v11,k11,v13,v14,ε,v21,k21,v31,v41,v44,v61,k61, v62 and v65) are sensitive for two hours plasma
glucose level and 10 parameters (k11,v12,v13,ε,v21,k21,v31,v41,v44 and k61) are sensitive for
eight hours plasma glucose level.

of the remaining sensitive parameters, except v11 and v13, can also make the system diabetic.

These parameters represent the following biological processes: glucose absorption from di-

etary food, insulin-dependent glucose utilization, the sensitivity of glucokinase for ATP, ATP

production through glucose metabolism, ATP dependent calcium entry, efflux of calcium ions

outside of the cell through the cell membrane, calcium-dependent exocytosis of insulin gran-

ules, total number of β -cells and degradation of insulin. Changes in the values of v11 and v13

can only make system IGT and hypoglycemia, respectively. Thus, we obtained 14 parameters

responsible for the diabetic condition and five parameters for hypoglycemia. This analysis also

helps to capture the parameter ranges for the maintenance of glucose homeostasis. IR is one of

the primary factors that lead to T2D development, where prolonged plasma glucose level leads

to loss of β -cell function/mass, and subsequently, plasma insulin level falls. Thus, here we

aimed to identify crucial parameters that have a significant effect on β -cell function. That will

help bring forward the possible triggers responsible for the loss of plasma insulin level during
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Figure 5.7: Sensitive parameters for plasma insulin level.Global sensitivity analy-
sis was performed by using Latin Hypercube Sampling (LHS) and Partial Ranked Cor-
relation Coefficient (PRCC) technique [438]. The bar represents the sensitivity of
each parameter on the two and eight hours plasma insulin level after meal consump-
tion. Sensitive parameters were selected based on the threshold value ± 0.3 on PRCC
value [402, 439]. Total 14 sensitive parameters were found. Among them 11 parameters
(k11,ε,v21,k21,v31,v41,v44,v61,k61, v62 and v65) are sensitive for two hours plasma insulin level
and 11 parameters (k11,v12,v13,ε,v21,k21,k22,v31,v41,v44 and k61) are sensitive for eight hours
plasma insulin level.

the development of T2D from the IR situation.

5.4.4.2 Possible causes for the reduced plasma insulin level in the presence of IR

Now, we focused on identifying the crucial parameters that significantly affect β -cell function.

So, we varied each parameter associated with the diabetic condition together with the insulin-

dependent glucose utilization rate (v14) around their default values and captured the glucose

level for the 8 hours time frame. The whole parameter space is mainly divided into four differ-

ent regions (green, cyan, red, and blue) according to the different outcomes (see Fig. 5.8I), like

cyan-colored regions representing where the 2-h or 8-h glucose levels or both cross the normal

range described in Table 5.2. Variation in the plasma glucose and insulin concentrations dy-

namics was also captured for each parameter pair selected from the different colored regions.

We observed that the plasma glucose levels are much higher for the parameter pairs selected

from the red-colored regions than the green-colored regions, and also 8-h glucose levels reach
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Table 5.2: Robustness of the sensitive parameters with respect to various glycemic con-
ditions. Different glycemic conditions are defined as follows: hypoglycemia: plasma glucose
level reaches below the level 40 mg/dl [440]; impaired glucose tolerance (IGT): two hours
plasma glucose level crosses the upper limit of the grey shaded area given in Fig. 5.2; impaired
fasting glucose (IFG): eight hours plasma glucose level≥ 110 and < 126 mg/dl [428]; diabetes
mellitus: eight hours plasma glucose level ≥126 mg/dl and two hours plasma glucose level >
200 mg/dl [428].

Parameters Hypoglycaemia Normal IGT IFG Diabetes
v11 - v11 < 40.1 v11 ≥ 40.1 - -
k11 - k11 < 55 k11 ≥ 55 96≤ k11 < 109 k11 ≥ 109
v12 v12 ≤ 25.1 25.1 < v12 < 193.1 v12 ≥ 241.4 193.1≤ v12 < 263.1 v12 ≥ 263.1
v13 v13 ≥ 0.0483 v13 < 0.0483 - - -
v14 - v14 > 90.2 v14 ≤ 90.2 18 < v14 ≤ 38 v14 ≤ 18
ε - ε > 25 ε ≤ 25 14 < ε ≤ 18 ε ≤ 14

v21 v21 ≥ 191 64 < v21 < 191 v21 ≤ 64 36 < v21 ≤ 49 36≤ v21
k21 k21 ≤ 1830 1830 < k21 < 9500 k21 ≥ 9500 11000≤ k21 < 14300 k21 ≥ 14300
k22 - k22 < 1200 k22 ≥ 1200 1450≤ k22 < 2000 k22 ≥ 2000
v31 v31 ≤ 0.19 0.19 < v31 < 0.557 v31 ≥ 0.557 0.735≤ v31 < 0.975 v31 ≥ 0.975
v41 - v41 > 0.0054 v41 ≤ 0.0054 0.0024 < v41 ≤ 0.00359 v41 ≤ 0.0024
v44 - v44 < 36 v44 ≥ 36 55≤ v44 < 81.5 v44 ≥ 81.5
v61 - v61 > 0.72 v61 ≤ 0.72 0.14 < v61 ≤ 0.3 v61 ≤ 0.14
k61 - k61 < 1.8 k61 ≥ 1.8 2.73≤ k61 < 4.1 k61 ≥ 4.1
v62 - v62 > 5.4×108 v62 ≤ 5.4×108 1.1×108 < v62 ≤ 2.3×108 v62 ≤ 1.1×108

v65 - v65 < 0.481 v65 ≥ 0.481 1.127≤ v65 < 2.376 v65 ≥ 2.376

beyond the limit of 126 mg/dl. For example, we showed the obtained different glucose-insulin

dynamics for only two parameters pairs (v21, v14) and (v31, v14) in Fig. 5.8II. We also found

that the plasma insulin levels remain high throughout the simulation for the hypoglycemic con-

ditions, i.e., for the parameter pairs given in the blue-colored regions. Here, we mainly focused

on parameters that show a red-colored region in the 2D parameter space since it shows more

than a 43% reduction in peak postprandial plasma insulin level than the default parameter set.

A total of eleven such parameters were obtained that affect the peak postprandial plasma insulin

levels (Fig. 5.8I c-m). We also observed that different parameters have different synergic ef-

fects on the outcomes. Like, parameters whose reduction is responsible for the reduced plasma

insulin level are associated with the alterations in ATP production through glucose metabolism,

glucose consumption rate by the β -cells, ATP-dependent calcium entry into the cells, calcium-

dependent exocytosis of insulin granules, and reduced β -cell number. There are six parameters

whose up-regulation can cause a significant reduction in postprandial plasma insulin level, and

they are associated with the alterations in the activity of GK, ATP utilization rate, efflux of

calcium ions outside of the cells, and the degradation of plasma insulin.
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Figure 5.8: The combined effect of each sensitive parameter with the rate constant of
insulin-dependent glucose utilization (v14) on the plasma glucose and insulin level. (I) The
whole 2D parameter space is divided into different regions to represent different glycemic con-
ditions, like red, cyan, green, and blue colors representing diabetic (hyperglycemia+reduced
insulin level), prediabetic (hyperglycemia), healthy and hypoglycemic state, respectively. Val-
ues of the fixed parameters are given in Table 5.1. We used the study by Basu et al. [437]
to get the degree of alterations in the peak postprandial plasma insulin concentrations in dia-
betes compared to healthy individuals. (II) The glucose-insulin dynamics for each parameter
pair selected from the different colored regions. Here, we only showed the dynamics for two
parameters pairs: (a)-(b) (v21, v14) and (c)-(d) (v31, v14). For the model simulation, we set the
value of v14=105, and the values of other parameters were selected randomly from the different
colored regions.

GK plays a vital role in the GSIS process by phosphorylating glucose into glucose-6-

phosphate, and it also serves as a glucose sensor in β -cells [391, 392]. It is known that MODY-2

specific mutations of GK either reduce its activity or increase the half-maximal glucose concen-

tration or change in both [441]. Here, we observed that elevation in the half-maximal concen-



5.4. Numerical simulation 127

tration of glucose and ATP for GK (k21 and k22) reduces the postprandial plasma insulin level.

This loss of activity in GK affects insulin secretion by reducing glucose consumption, which

further diminishes the glycolytic flux. Decreased value of ATP conversion coefficient from

glucose (ε) also came here as another factor for impaired insulin secretion, which can be con-

sidered a consequence of improper glucose metabolism or any defects in ATP synthesis from

NADH or FADH2. These all contribute to the impaired GSIS by hampering glucose-evoked

rise in intracellular ATP levels. Besides that, up-regulation of ATP utilization can also diminish

cytosolic ATP content, resulting in reduced insulin secretion. It is reported that chronic hy-

perglycemia results in diminished ATP generation by activating uncoupling protein 2 (UCP2),

which is one of the major causes of obesity-induced type 2 diabetes development [403–405].

Undoubtedly ATP is the primary metabolic factor for GSIS, but our analysis revealed that

the only loss in rising cytosolic Ca2+ concentration could hamper insulin secretion. Here, we

found that the down-regulation of ATP-dependent calcium input rate constant (v41) and the

up-regulation of calcium extrusion rate (v44) significantly reduces peak postprandial plasma in-

sulin level by reducing the intracellular calcium content. Decreased value of v41 can be caused

due to either overactivity of KATP channels or loss in function and/or density of VGCC. This

is reported that activating mutations in Kir6.2 and sulfonylurea receptor 1 (SUR1) subunits of

the KATP channel are the major cause of neonatal diabetes, and also a polymorphism in the

KATP channel (E23K) is a type 2 diabetes risk factor [406]. Besides that, diminished VGCC

function and/or density causes a loss in intracellular Ca2+ content, and so these changes can

be considered a threat for type 2 diabetes development. This association is already found in

some patients [407–410], but sometimes hyperactivation of the VGCC channel also leads to

β -cell death [410–412]. We also obtained a crucial parameter, v61 (calcium-dependent max-

imum insulin release rate), responsible for the diminished plasma insulin level and reduction

in its value leads towards either the improper calcium-induced exocytosis of insulin-containing

granules or loss of insulin content. Studies also support our observation that glucotoxicity-

induced loss of β -cell function is caused due to loss of insulin mRNA expression, content, and

secretion [442, 443].
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5.4.5 Parameter recalibration: providing possible therapeutic strategies

We are now in a position to explore the effects of each parameter in controlling the normal

plasma glucose and insulin levels under each condition obtained from the previous analyses.

This understanding helps to provide possible therapeutic strategies under these circumstances.

Our previous analysis established that IR causes hyperglycemia without reducing the plasma

insulin level. So, here we captured the tuning effect of each of the parameters not directly

associated with the GSIS process in maintaining glucose homeostasis under the hyperglycemic

conditions related to the reduced value in v14 (see Fig. 5.9). These parameters are mainly

associated with the dietary input of glucose (v11 and k11), hepatic glucose production (v12) and

insulin-independent glucose utilization (v13). It was found that a gradual change in the value

of all four except v12 can able to control the 2-h plasma glucose. Besides, 8-h plasma glucose

levels can be maintained only by tuning v12 and v13, but there is a risk of hypoglycemia.
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Figure 5.9: Parametric recalibration with the help of each of the four parameters: v11,
k11, v12 and v13. This figure represents the required changes for each of these parameters to
revert back the plasma glucose level from the different glycemic conditions generated from the
reduction in the value of v14.

One of the main aims of this study was to identify potential parameters that will help in-

crease the plasma insulin levels in T2D patients. For this, we considered each of the cases that

resulted in reduced plasma insulin levels in the presence of IR and tried to identify the potential

restoration possibilities through parameter variation. The parameter regulation was made here
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Figure 5.10: Parametric recalibration with the help of v41 while restoring the system from
diabetic to normal state. This exercise was done with the setup that v14 was fixed at 75, and
other parameters like ε , v21, k21, k22, v31, v44, v61, k61, v62, and v65 were chosen randomly from
the red-coloured region of Fig. 5.8I. The first, second and third row represents the changes in
2-h glucose level, 8-h glucose level and peak insulin level, respectively, while each column
corresponds to the parameters written on the top for which the restoration is happening.

by manually tuning individual parameters around their default value. The disease condition was

imposed in this analysis by considering any random point from the red shaded region given in

Fig. 5.8I, since this region represents the hyperglycemic state associated with the reduced in-

sulin levels and sensitivity. Here, we obtained three potential parameters (v41, v44, and v61) to

restore the diabetic state to normal (see Figs. 5.10, 5.11 and 5.12). In this process, we changed

the values of v41, v44 and v61 from their default values separately and estimated the 2-h glucose

level, 8-h glucose level, and peak insulin level. For example, in the first column of these figures,

we have ε = 15 (random value) and v14 = 75, i.e., the system is in a diabetic state. Now, if we

increase v41 or v61 or decrease v44 up to 10-fold, the elevated plasma glucose level starts to fall

in its normal range in both 2-h and 8-h cases, and also the corresponding peak insulin level

increases. We observed that the plasma glucose and insulin levels could be restored through

these parameters except for some cases. For example, recalibration of v41 and v44 could not

significantly increase the plasma insulin level for the circumstances associated with v61, v62 and

v65. However, these can control the 8-h plasma glucose level. Otherside, up-regulation of v61

completely fails to restore the system for the circumstances associated with k21, k22 and v31,
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and only the 8-h plasma glucose level can be controlled for the case of v44.
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Figure 5.11: Parametric recalibration with the help of v44 while restoring the system from
diabetic to normal state. This exercise was done with the setup that v14 was fixed at 75, and
other parameters like ε , v21, k21, k22, v31, v44, v61, k61, v62, and v65 were chosen randomly from
the red-coloured region of Fig. 5.8I. The first, second and third row represents the changes in
2-h glucose level, 8-h glucose level and peak insulin level, respectively, while each column
corresponds to the parameters written on the top for which the restoration is happening.
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Figure 5.12: Parametric recalibration with the help of v61 while restoring the system from
diabetic to normal state. This exercise was done with the setup that v14 was fixed at 75, and
other parameters like ε , v21, k21, k22, v31, v44, v61, k61, v62, and v65 were chosen randomly from
the red-coloured region of Fig. 5.8I. The first, second and third row represents the changes in
2-h glucose level, 8-h glucose level and peak insulin level, respectively, while each column
corresponds to the parameters written on the top for which the restoration is happening.
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Also, we did not find any sufficient changes in the plasma insulin levels in these cases. Ta-

ble 5.3 summarises all of these strategies obtained here through the parameter recalibration

techniques, which could be used to maintain glucose homeostasis during improper insulin se-

cretion.

Table 5.3: Proposed hypothesis for maintaining glucose homeostasis through increasing
the insulin secretion from β -cells in case of improper insulin secretion.

Possible restoration strategies
Reasons behind reduced
plasma insulin level

Increase
in ATP-
dependent
Ca2+ entry

Down-
regulation
in Ca2+

extrusion

Increase in Ca2+-
induced exocytosis
of insulin-containing
granules

Reduced ATP production
through glucose metabolism

X X X

Decreased glucose consumption
in β -cell

X X X

Reduced activity of glucokinase X X No
Up-regulation in ATP utilization
rate

X X No

Down-regulated ATP-dependent
Ca2+ input rate

Not consid-
ered

X X

Increased Ca2+ extrusion X Not consid-
ered

partially

Improper Ca2+-induced exocy-
tosis of insulin-containing gran-
ules

partially partially Not considered

Reduced β -cell number partially partially X
Higher insulin degradation rate partially partially X

5.5 Discussion

Insulin, released from the pancreatic β -cells, plays a significant role in maintaining glucose

homeostasis by stimulating glucose absorption from the blood into the liver, fat, and skeletal

muscle cells [444]. However, in insulin resistance (IR) conditions, the system does not respond

well to insulin, and as a result, glucose absorption from the blood to different cells decreases. IR

is one of the primary causes of type 2 diabetes (T2D) development. However, according to cur-

rent research, IR alone cannot cause T2D in people with normal glucose tolerance because IR-

induced hyperglycemia is mainly compensated by increased insulin production from pancreatic

β -cells in people with normal islet function [431, 445]. So, abnormalities in glucose-stimulated
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insulin secretion from pancreatic β -cells are also required to cause diabetes [446–448]. This

motivates us to investigate the possible factors responsible for the reduced insulin secretion in

IR-induced hyperglycemic state. We proposed a six-dimensional minimal model to identify

crucial factors in the glucose-stimulated insulin secretion (GSIS) process whose dysfunction

can lead to T2D or hypoglycemia. We established our model by generating the normal [115].

We further used this model to capture the glucose-insulin dynamics in diabetes and observed a

good fit with the disease state. For instance, a 43.25% reduction was observed in the peak post-

prandial plasma insulin concentrations similar to the experimental study performed by Basu

et al. [437]. Also, the 2- and 8-h plasma glucose levels were markedly elevated in diabetic

conditions (310 and 128 mg/ dl, respectively) compared to the normal (141 and 85 mg/ dl,

respectively). We also captured the effect of loss in β -cell number in glucose-insulin dynamics

and found drastic changes in plasma glucose and insulin concentrations, establishing the role in

disease development [429, 431, 432]. We then analyzed the model and captured different fac-

tors responsible for the progression of the disease. The underlying causes of decreased insulin

secretion will aid in the prevention of IR-induced diabetes. So, we finally used the information

to identify different potential strategies that would prevent the progression of IR towards T2D.

We seek the parameters that reduced the peak postprandial plasma insulin concentrations.

This type of investigation highlights the specific biological processes whose impairment leads

towards the more critical condition in the presence of IR-induced hyperglycemia. We obtained

eleven parameters responsible for the reduced peak postprandial plasma insulin levels, and

also, the associated processes were elaborated here. So, any alterations in these parameters

due to IR-induced persistent hyperglycemia can result in loss of β -cell function. These al-

terations mainly reflect the improper glucose-evoked rise in intracellular calcium content in

β -cell, which is caused either by hindering the calcium entry or raising the cell’s calcium ex-

port rate. Aside from the downregulation of voltage-gated calcium channels (VGCC), more

factors interrupt the glucose-evoked entry of calcium, such as the reduced activity of GK, the

decline in ATP production from glucose metabolism, increased ATP utilization rate, and most

importantly, overactivity of the KATP channels. In addition to these factors, improper calcium-

induced exocytosis of insulin-containing granules, loss of insulin content, and loss in β -cell
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mass could contribute to disease development. It is reported that ATP depletion is observed in

chronic hyperglycemia due to activation of uncoupling protein 2 (UCP2) and the upregulation

of voltage-dependent anion channel (VDAC) and also proposed as one of the major contribu-

tors towards the obesity-induced T2D progression [374, 403–405]. Besides, the polymorphism

of the KATP channel (E23K) is proposed as one of the T2D risk factors [406]. Studies also

support our observation on hyperglycemia-induced β -cell failure due to loss of insulin content

and β -cell mass leads to T2D development [377, 442, 443].

Identifying some crucial factors that cause disease progression brings us to the key ques-

tion of how to control these alterations to prevent the progression. Our model demonstrated

that IR-induced hyperglycemic conditions are not fully controlled by reducing hepatic glu-

cose production. Although this lowers plasma glucose levels, the postprandial glucose levels

remain out of the normal range, and also there is a risk of hypoglycemia. Metformin is a

widely recommended antidiabetic drug whose primary function is to reduce hepatic glucose

production and improve insulin sensitivity. So, patients treated with metformin may experi-

ence higher postprandial glucose levels, which should not be ignored as this can further cause

β -cell dysfunction. Thus, additional interventions are required to control the postprandial glu-

cose levels for the patients on metformin monotherapy. It will be beneficial for preventing the

disease progression for the prediabetic patients as well as those with no loss of β -cell mass.

Here, we observed that reducing dietary glucose input and increasing insulin-independent glu-

cose utilization could reduce postprandial glucose levels in the IR-induced hyperglycemic state.

Hence, strategies that reduce carbohydrates absorption from the small intestine (i.e., diet con-

trol or alpha-glucosidase inhibitors) or increase glucose excretion through urine (i.e., SGLT2

inhibitors) could be more beneficial for the patients treated with metformin.

The initial treatment of T2D includes a self-management education program that empha-

sizes lifestyle changes such as diet, physical activity, and weight loss [449]. Even though

diet and physical activity are fruitful, most people require oral antidiabetic drugs to control

their blood glucose levels. Our analysis revealed three possible strategies to control the pro-

gression of diabetes: (1) increase in ATP-dependent Ca2+ entry, (2) down-regulation in Ca2+

extrusion and (3) increase in Ca2+-induced exocytosis of insulin-containing granules, by im-
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proving β -cell function (Table 5.3). In support of our first strategy, there is an antidiabetic

drugs sulphonylureas and glinides that target the ATP-dependent calcium influx mechanism

by blocking the KATP channels, resulting in calcium entry through VGCC channels. Our sec-

ond strategy hypothesizes that down-regulation in Ca2+ extrusion might prevent diabetes pro-

gression. People have recently focused on inhibiting calcium extrusion from preventing and

treating diabetes due to the risk of hypoglycemia in sulfonylurea therapy [450, 451]. More

importantly, there is no absolute requirement for high plasma glucose for working sulfony-

lureas, so insulinotropic drugs with improved glucose sensitivity are demanded [451]. In β -

cell, two channels are mainly responsible for calcium extrusion: the Na/Ca exchange (NCX)

and the plasma membrane Ca2+ ATPase (PMCA) [452]. Thus, prevention of calcium extru-

sion through inhibiting these channels could be a promising strategy for controlling diabetes.

The recent works also agree with our statement, in which inhibition of any of these channels

increases glucose-induced insulin release, β -cell proliferation, and mass [452–455].

All this literature support add confidence to our proposed strategies. However, we didn’t get

a single strategy to control all these considered alterations. The first two listed strategies failed

to meet the desired outcome for the circumstances associated with the reduced Ca2+-induced

exocytosis of insulin-containing granules, reduced β -cell number and higher insulin degrada-

tion rate. It seems evident that their tuning relies on the glucose-evoked rise in calcium content

in the cells, so they can only control the remaining alterations. So, sulfonylureas will no longer

be helpful for the patients who have reached the stage of illness associated with alterations in

these factors. The last one entirely fails to restore the system for the circumstances associated

with reduced glucokinase activity and up-regulation in ATP utilization rate and only controlled

the 8-h plasma glucose level for the case of increased calcium extrusion. However, with these

limitations, the main goal of treating patients is to slow the progression and occurrence of sec-

ondary failure [377, 456, 457]. Secondary failure is mainly defined as a deterioration of glucose

control in T2D patients and caused due to progressive loss of β -cell function and insulin sensi-

tivity [458]. This demands combination therapy, which has already been under process in some

cases. Recently, GLP-1 receptor agonists have been approved in the United States for treat-

ing T2D patients, which have therapeutic effects such as enhancing glucose-induced insulin
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secretion, increasing insulin synthesis, and β -cell proliferation [459, 460].

In this study, we also captured the possible reason for hypoglycemia. It is a well-known

fact that unregulated insulin secretion from β -cells is the primary cause of hypoglycemia. Ex-

cess plasma insulin can also contribute to hypoglycemia development by suppressing hepatic

glucose production that is reported for insulinoma patients [461]. The deletion of the C/EBPβ

gene in the liver can also cause hypoglycemia by reducing hepatic glucose production [462].

Our model analysis revealed that elevated β -cells glucose consumption rate, glucose sensitivity

of GK and insulin-independent glucose utilization/excretion rate, and the reduction in hepatic

glucose production and ATP utilization rate in β -cells could cause hypoglycemic.

Our model identifies all of the crucial factors in the GSIS process whose impairment can

either lead to hyperglycemia or hypoglycemia. Our analysis uncovers the potential strategies

for preventing the progression of T2D during these alterations. In this study, we have also

identified the probable limitations of the current antidiabetic drugs contributing to secondary

failure and this demands more in-depth study on combination therapy. In the next chapter,

we have proposed a model by incorporating the insulin synthesis and insulin granule biogen-

esis processes with the GSIS to decipher the in-depth understanding of the negative effect of

glucotoxicity in β -cell function.





6
Small-scale kinetic model and mechanistic

understanding of disease pathophysiology1

6.1 Introduction

Insulin is an endocrine peptide hormone essential for maintaining glucose homeostasis in

our body and is produced generally from the β -cells of the pancreatic islets. It controls the

blood glucose levels by promoting cellular uptake of glucose into the liver, fat, and skele-

tal muscle and regulating the metabolism of carbohydrates, lipids, and protein [444]. The

high blood insulin concentration also strongly inhibits glucose production and secretion by

the liver [444]. Glucose is the primary stimulus for insulin release from pancreatic β -cells,

1The bulk of this chapter has been communicated for possible publication in peer reviewed journal.
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though other macronutrients (fatty acids and amino acids), hormones, and neural input may

augment this response [213, 463]. In various pathophysiological conditions like diabetes, can-

cer, etc., this glucose-insulin dose-response relationship is dysregulated and ultimately affects

the body’s homeostasis. At the initial stage of type 2 diabetes (T2D), insulin resistance-induced

hyperglycemia impairs β -cell function and eventually leads to reduced insulin secretion (GSIS)

[380]. Although this is the major cause of developing T2D, the intrinsic mechanism underlying

the β -cell failure remains largely unclear [464]. Conversely, insulinoma cells, a rare type of

neuroendocrine pancreatic tumour cell, secrete insulin autonomously [465]. The insulinoma

cells can not suppress insulin secretion under low glucose conditions, leading to fasting hypo-

glycemia [465, 466].

Insulin secretion from β -cells is mainly biphasic and requires accelerated cellular uptake of

glucose, and its metabolism [467–469]. The first phase, known as the triggering pathway [470],

lasts 4-8 minutes. It involves a series of cellular events, such as uptake of glucose through glu-

cose transporters 2 (GLUT2), cytoplasmic and mitochondrial metabolism of glucose, increases

in cytoplasmic ATP/ADP concentration, closure of ATP-sensitive potassium channels (KATP),

cell membrane depolarization, Ca2+ influx through voltage-gated Ca2+ channels and exocyto-

sis of the ‘primed’ insulin granules [471, 472]. The second phase of insulin secretion, known

as the amplifying pathway [470], can be sustained for up to several hours, depending on blood

glucose levels. This phase also depends on glucose metabolism and intracellular rise of Ca2+

content and also involves signals important for recruiting, priming, and docking insulin gran-

ules [469]. Glucose is also a main physiological regulator of insulin production and influences

the production by multiple mechanisms, including the proinsulin gene transcription, mRNA sta-

bility, and the translational process [469, 472]. In the short term (<4 h), the insulin production

increases due to augmented translation of pre-existing mRNA; however, the prolonged stimulus

(>12 h) also increases the mRNA expression of the proinsulin gene either through transcription

and/ or stabilizing the mRNA [473–475]. Thus, any impairment of these processes can directly

influence the insulin level and leads to dysregulation in glucose homeostasis. However, there

is still a lack of knowledge on the mechanisms regulating glucose-stimulated insulin synthesis

and secretion under physiological and pathophysiological conditions [464].
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In the previous chapter, we investigated the GSIS process to understand the possible fac-

tors affecting insulin secretion in insulin resistance-induced hyperglycemic state [476]. We

observed that insulin secretion could be hampered due to the loss in the glucose-evoked rise in

cytosolic Ca2+ content. The probable mechanisms include the reduced activity of glucokinase

(GK), decreased ATP synthesis from glucose metabolism, increased ATP usage rate, over-

activity of the KATP channels, and increased efflux of Ca2+. Even though we found that a

diminished calcium-induced exocytosis rate of insulin-containing granules may contribute to

T2D development, the whole mechanisms still need to be fully explored. For instance, the

rate of insulin production and dynamics of formation and trafficking to the cell membrane of

insulin granules were not studied. There are also models on insulin granule dynamics that stud-

ied the defects in amplifying pathways, including translocation from the reserve pool to the

immediately releasable pool, suggesting possible other reasons behind the defective insulin se-

cretion [387, 477–479]. However, none has explored the defects in insulin synthesis processes,

although these could also cause depletion in insulin granules. It is well-known that chronic

hyperglycemia affects the insulin gene expression by reducing promoter activity and levels of

two important transcription factors, PDX1 and MAFA, and leads to diminished β -cell insulin

content [431].

In the present study, we proposed a simplified model for insulin synthesis and secretion of

insulin granules. We incorporated the insulin mRNA as a variable in the model to investigate

the consequences of defects in the transcription and translation processes of the insulin gene.

One of the aims of the study was to identify parameters that could hamper insulin secretion.

Another aim of this study is to capture the important factors responsible for the continuous

secretion of insulin by β -cells under low glucose conditions, a condition observed in insuli-

noma patients. The model was further analyzed to compare insulin synthesis and exocytosis

processes in restoring impaired insulin secretion. Finally, the study ends by proposing possible

restoration strategies against different β -cells masses.
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6.2 Formulation of the mathematical model

To capture the insulin synthesis, we here introduced two variables the insulin gene mRNA and

the proinsulin pool. Besides, the insulin granules trafficking and exocytosis processes were

explored through the dynamics of three intracellular pools of insulin granules: the reserve

pool, the pool of docked granules, and the pool of immediately releasable granules. Glucose is

the major physiological regulator of the entire system. It regulates insulin gene transcription,

mRNA stability, mRNA translation, and the secretion of insulin granules. A schematic dia-

gram of insulin biosynthesis and the formation and secretion of insulin granules processes is

presented in Fig. 6.1 and a minimal model representing schematic diagram is discussed below.

Glucose
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ATP
ADPDNA

mRNA (M )

Nucleus

Ca2+

Insulin granules
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Insulin
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Figure 6.1: Schematic diagram of the proposed mathematical model on glucose-stimulated
insulin synthesis and secretion process. The entire process was studied here by constructing
the dynamical equations for seven key players. These are as follows: 1) insulin gene mRNA,
2) the proinsulin pool, 3) ATP-to-ADP ratio, 4) cytosolic Ca2+ concentration, and three in-
tracellular pools of insulin granules: 5) the reserve pool, 6) the pool of docked granules, and
7) the pool of immediately releasable granules. The effect of glucose stimulus was imposed
by considering the increased transcription and translation rate and a regulatory function on the
dynamics of the ATP-to-ADP ratio.

Let M(t) denote the insulin mRNA level at time t. The transcription rate of the insulin

gene is controlled by complex interactions between the transcription factors (PDX1, MAFA,

BETA2, and ATF2) and the specific elements within the insulin promoter site [213, 480, 481].

Glucose enhances the transcription rate through several complementary mechanisms, including
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the recruitment of transcription factors to regulatory sites, histone modifications, and initiation

of transcription [482]. It also increases the stability of insulin mRNA [474]. For simplicity, we

considered the transcription rate a constant and a linear term for mRNA degradation. So, the

dynamical equation of M is expressed as:

dM
dt

= α1−δ1M,

where α1 and δ1 denote constant transcription rate and a constant degradation rate constant

respectively. It is reported that long-term exposure to glucose stimulus could approximately

increase a 2-fold level of insulin mRNA. So, to capture this phenomenon, we considered the

increased values for α1 and δ1 for the high glucose model simulation (see Appx. 6.4). The

insulin mRNA product encodes preproinsulin (the insulin precursor), which is translated into

the rough endoplasmic reticulum (rER) compartment. The synthesis of proinsulin is also a very

complex process. It depends on the series of steps, starting from the translational of mRNA,

translocation of the products into the rER lumen, the rapid folding, formation of the disulfide

bond, and finally, the transportation into the Golgi apparatus [483]. The biosynthesis rate of the

pool of proinsulin aggregates (P(t)) from the insulin mRNA is expressed as vM, where v is the

rate constant. Similar to the transcription rate, the proinsulin pool formation rate also increases

in glucose stimulus. Therefore, a higher value of v was considered for the high glucose model

simulation compared to the low glucose case [473]. The governing equation for P is expressed

as:
dP
dt

= vM−δ2P− kPρDIR,

where δ2 is a degradation rate constant. The last term denotes the formation rate of insulin

granules in the trans-Golgi apparatus, a function of pool of proinsulin aggregates (P(t)) and the

available free granules membrane materials. At the exocytosis of insulin granules, the granule

membrane materials become part of the plasma membrane and are successively removed and

returned to the trans-Golgi apparatus for recycling. We denoted the rate of granule membrane

fusion with the cell membrane by ρDIR, where ρ represents the rate coefficient that accounts

for the factors that promote the exocytosis of insulin granules. DIR represents the immediately
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releasable pool. The dynamical equation for the reserve pool (R) is expressed as:

dR
dt

= kPρDIR− γR,

where γR was considered as the conversion rate of reserve pool into the pool of docked granules

(D) [478]. The dynamics of the pool of docked granules and pool of immediately releasable

pool were taken from [478], and are expressed as:

dD
dt

= γR− k+1 (CT −DIR)D+ k−1 DIR,

dDIR

dt
= k+1 (CT −DIR)D− k−1 DIR−ρDIR,

where CT denotes the constant pool of total Ca2+ channels. k+1 and k−1 , respectively, are the

rate constants of association and dissociation for the binding between docked granule and Ca2+

channel. Glucose-stimulated insulin secretion from β -cells is biphasic. The first phase lasts for

4-8 minutes and involves a series of cellular events; uptake of glucose through glucose trans-

porters 2 (GLUT2); metabolism of glucose; increases in cytoplasmic ATP/ADP concentration;

closure of KATP channels; cell membrane depolarization; Ca2+ influx through voltage-gated

Ca2+ channels and exocytosis of the ‘primed’ insulin granules [471, 472]. The second phase of

insulin secretion can be sustained for up to several hours, depending on blood glucose levels.

This phase also depends on glucose metabolism and intracellular rise of Ca2+ content but also

involves signals important for recruiting, priming, and docking the insulin granules [469]. All

these are incorporated by taking a simplified dynamics of γ (factor representing ATP-to-ADP

ratio), and ρ (factor representing cytosolic Ca2+ concentration) [478]. The governing equations

of γ is as follows:
dγ

dt
= η (−γ + γb +α2(G)) ,

where η is the rate constant and γb denotes the basal value of γ at low glucose. The function

α2(G) indicates the response of glucose stimulus and is expressed as:
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α2(G) =


0, G≤ G∗

ĥ(G−G∗)
Ĝ−G∗

, G∗ < G≤ Ĝ

ĥ, G > Ĝ

where ĥ is the maximal value of α2 and is achieved at G = Ĝ. The rate equation of ρ depends

on γ with increase in the ATP-to-ADP ratio. This leads to the closure of KATP channels and

results in Ca2+ influx through voltage-gated Ca2+ channels. Thus the dynamical equation for

ρ is expressed as:
dρ

dt
= ζ

{
−ρ +ρb + kρ (γ− γb)

}
,

where ζ is the rate constant and the last term defines the action of γ on ρ . Thus, the simplified

model of insulin synthesis and the biogenesis and secretion of insulin granules is proposed by

the following system of ordinary differential equation (ODE):

dM
dt

= α1−δ1M,

dP
dt

= vM−δ2P− kPρDIR,

dR
dt

= kPρDIR− γR,

dγ

dt
= η (−γ + γb +α2) ,

dD
dt

= γR− k+1 (CT −DIR)D+ k−1 DIR,

dDIR

dt
= k+1 (CT −DIR)D− k−1 DIR−ρDIR,

dρ

dt
= ζ

{
−ρ +ρb + kρ (γ− γb)

}
,

(6.1)

with the initial conditions M(0) > 0, P(0) > 0, R(0) > 0, γ(0) > 0, D(0) > 0, DIR(0) > 0,

ρ(0)> 0. Insulin secretion rate is denoted by

[ISR](t) = I0ρDIR(t) f N, (6.2)

where I0 is the amount of insulin content in a granule, N is the total number of β -cells in the
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pancreas and f (G) represents the fraction of total β -cell population responds to the glucose

stimulus and defined by the following relation as proposed in [478]:

f (G) =

 fb, G < G∗

fb +(1− fb)
G−G∗

K f+G−G∗ , G≥ Ĝ

where fb is the fraction of responding β -cells at glucose concentration below the threshold G∗

and K f is the constant related to the effectiveness of β -cells requirement.

6.3 Analytical results

6.3.1 Positive invariance

By setting

X = (M,P,R,γ,D,DIR,ρ)
T ∈ R7

+

and F(X) = [F1(X),F2(X),F3(X),F4(X),F5(X),F6(X),F7(X)]T , Eq.(6.1) can be written as the

system

Ẋ = F(X), (6.3)

together with initial conditions X(0) = X0 ∈ R7
+. It is easy to check that whenever choosing

X(0)∈R7
+ with Xi = 0, for i= 1, ..,7, then Fi(X)|Xi=0≥ 0. Due to the lemma of Nagumo [425],

any solution of equation (6.3) with X0 ∈ R7
+, say X(t) = X(t;X0), is such that X(t) ∈ R7

+ for

all t > 0.

6.3.2 Boundedness

All solutions of the system (6.1) with positive initial conditions are uniformly bounded within

a region Γ,

where Γ = {(M,P,R,γ,D,DIR,ρ) ∈ R7
+ : 0 < M(t) ≤ M1, 0 < P(t) ≤ P1, 0 < R(t) ≤

R1, l1 ≤ γ(t) ≤ H1, 0 < D(t) ≤ D1, 0 < DIR < CT , 0 < ρ(t) ≤ H2 ∀ t ≥ 0}, with M1 =

α1
δ1

+M(0), P1 =
vM1
δ2

+P(0), l1 = γb +α2, H1 = γb +α2 + γ(0), H2 =
{

ρb + kρ (H1− γb)
}
+
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ρ(0), R1 =
kP1CT H2

l1
+R(0), D1 =

H1R1+k−1 CT

k+1 ε
+D(0).

Proof: From the first equation of (6.1), we get

dM
dt

+δ1M = α1

From the theory of differential inequalities [484], we then obtained

0≤M(t)≤ α1

δ1
(1− e−δ1t)+M(0)e−δ1t

From which we get,

M(t)≤M1,∀t ≥ 0 (6.4)

where, M1 =
α1
δ1
+M(0).

From the second equation of (6.1), we get

dP
dt

= vM−δ2P− kPρDIR

≤ vM−δ2P

≤ vM1−δ2P

Thus we obtain,

dP
dt

+δ2P≤ vM1

From the theory of differential inequalities [484], we get

0≤ P(t)≤ vM1

δ2
(1− e−δ2t)+P(0)e−δ2t
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From which we get,

P(t)≤ P1,∀t ≥ 0 (6.5)

where, P1 =
vM1
δ2

+P(0).

From the fourth equation of (6.1), we get

dγ

dt
+ηγ = η (γb +α2)

By solving this we obtained

γ(t) = (γb +α2)(1− e−ηt)+ γ(0)e−ηt

From which we get,

l1 ≤ γ(t)≤ H1,∀t ≥ 0 (6.6)

where, l1 = γb +α2 and H1 = γb +α2 + γ(0).

From the seventh equation of (6.1), we get

dρ

dt
+ζ ρ = ζ

{
ρb + kρ (γ− γb)

}
≤ ζ

{
ρb + kρ (H1− γb)

}
From the theory of differential inequalities [484], we obtained

0≤ ρ(t)≤
{

ρb + kρ (H1− γb)
}
(1− e−ζ t)+ρ(0)e−ζ t
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From which we get,

ρ(t)≤ H2,∀t ≥ 0 (6.7)

where, H2 =
{

ρb + kρ (H1− γb)
}
+ρ(0).

From the sixth equation of (6.1), we have

dDIR

dt
= k+1 (CT −DIR)D− k−1 DIR−ρDIR (6.8)

Let us assume, for any instance t1 ≥ 0 the value DIR(t1) =CT . Then from Eq. (6.8) we have

dDIR

dt
|t=t1 =−(k

−
1 +ρ)CT < 0

Thus, the value of DIR cannot crosses the threshold value CT . Hence, DIR(t1) < CT . Let us

assume, [DIR]max =CT − ε , where ε > 0. From the third equation of (6.1), we get

dR
dt

= kPρDIR− γR

≤ kPρDIR− l1R

Thus,

dR
dt

+ l1R≤ kP1CT H2

From the theory of differential inequalities [484], we obtained

0≤ R(t)≤ kP1CT H2

l1
(1− e−l1t)+R(0)e−l1t

From which we get,

R(t)≤ R1,∀t ≥ 0 (6.9)
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where, R1 =
kP1CT H2

l1
+R(0).

From the fifth equation of (6.1), we get

dD
dt

= γR− k+1 (CT −DIR)D+ k−1 DIR

≤ H1R1− k+1 εD+ k−1 CT

Thus we obtain,

dD
dt

+ k+1 εD≤ H1R1 + k−1 CT

From the theory of differential inequalities [484], we obtained

0≤ D(t)≤
H1R1 + k−1 CT

k+1 ε
(1− e−k+1 εt)+R(0)e−k+1 εt

Thus,

D(t)≤ D1,∀t ≥ 0 (6.10)

where, D1 =
H1R1+k−1 CT

k+1 ε
+D(0).

Hence, this ensures the existence of a bounded region Γ ∈ R+
7 such that for any initial values

(M(0),P(0),R(0),γ(0),D(0),DIR(0),ρ(0))T , solutions of the system (6.1) will always remain

within the region Γ. This completes the proof.

6.3.3 Equilibrium points

The system (6.1) has

I. one non-interior equilibrium point, EB0≡ (M∗0 ,P
∗
0 ,0,γ

∗
0 ,0,0,ρ

∗
0 ), where M∗0 =

α1
δ1
,P∗0 = vα1

δ1δ2
,γ∗0 =

γb +α2,ρ
∗
0 = ρb + kρα2 which exists for all parameter values, and

II. one interior equilibrium point, namely E∗ ≡ (M∗,P∗,R∗,γ∗,D∗,D∗IR,ρ
∗) is given by M∗ =
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α1
δ1

, P∗= 1
k , R∗= kvα1−δ1δ2

kδ1(γb+α2)
, γ∗= γb+α2, D∗= (kvα1−δ1δ2)(ρb+kρ α2+k−1 )

k+1 [CT kδ1(ρb+kρ α2)−(kvα1−δ1δ2)]
, D∗IR =

kvα1−δ1δ2
kδ1(ρb+kρ α2)

and ρ∗ = ρb + kρα2. E∗ exists if (i) (kvα1−δ1δ2) > 0 and (ii) CT kδ1(ρb + kρα2) > (kvα1−

δ1δ2).

6.3.4 Stability analysis

To study the local stability properties of the equilibrium points we computed the Jacobian

matrix (J) of system (6.1) around an arbitrary point (M,P,R,γ,D,DIR,ρ) and has the form

J =



−δ1 0 0 0 0 0 0

v −(δ2 + kρDIR) 0 0 0 −kPρ −kPDIR

0 kρDIR −γ −R 0 kPρ kPDIR

0 0 0 −η 0 0 0

0 0 γ R −k+1 (CT −DIR) k+1 D+ k−1 0

0 0 0 0 k+1 (CT −DIR) −(k+1 D+ k−1 +ρ) −DIR

0 0 0 ζ kρ 0 0 −ζ


(6.11)

At the non-interior equilibrium point EB0, the Jacobian becomes

JB0 =



−δ1 0 0 0 0 0 0

v −δ2 0 0 0 −kP∗0 ρ∗0 0

0 0 −γ∗0 0 0 kP∗0 ρ∗0 0

0 0 0 −η 0 0 0

0 0 γ∗0 0 −k+1 CT k−1 0

0 0 0 0 k+1 CT −(k−1 +ρ∗0 ) 0

0 0 0 ζ kρ 0 0 −ζ


The eigenvalues of JB0 are λ0i’s, i= 1 to 7, where λ01 =−δ1 < 0, λ02 =−δ2 < 0, λ04 =−η < 0,

λ07 =−ζ < 0 and λ03,05,06 are given by the root of the equation

λ
3 +A1λ

2 +A2λ +A3 = 0, (6.12)
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where,

A1 =(k+1 CT +k−1 +ρ∗0 +γ∗0 )> 0, A2 = k+1 CT ρ∗0 +γ∗0 (k
+
1 CT +k−1 +ρ∗0 )> 0 and A3 = k+1 CT ρ∗0 γ∗0 (1−

kP∗0 ).

According to Routh-Hurwitz criterion, EB0 will be locally asymptotically stable if

(i) An > 0,(n = 1,2,3),

(ii) A1A2−A3 = (k+1 CT +k−1 +ρ∗0 )
{

k+1 CT ρ∗0 + γ∗0 (k
+
1 CT + k−1 +ρ∗0 )+ γ∗0

2
}
+kk+1 CT ρ∗0 γ∗0 P∗0 >

0.

Therefore EB0 will be locally asymptotically stable if A3 > 0, and kvα1 < δ1δ2.

At the interior equilibrium point E∗, the Jacobian becomes

J∗ =



−δ1 0 0 0 0 0 0

v −(δ2 + kρ∗D∗IR) 0 0 0 −kP∗ρ∗ −kP∗D∗IR

0 kρ∗D∗IR −γ∗ −R∗ 0 kP∗ρ∗ kP∗D∗IR

0 0 0 −η 0 0 0

0 0 γ∗ R∗ −k+1 (CT −D∗IR) k+1 D∗+ k−1 0

0 0 0 0 k+1 (CT −D∗IR) −(k+1 D∗+ k−1 +ρ∗) −D∗IR

0 0 0 ζ kρ 0 0 −ζ


The eigenvalues of J∗ are λi’s, i = 1 to 7, where λ1 = −δ1 < 0, λ4 = −η < 0, λ7 = −ζ < 0

and λ2,3,5,6 are given by the root of the equation

λ
4 +A1λ

3 +A2λ
2 +A3λ +A4 = 0

where,

A1 = (B+C+ γ
∗)> 0,

A2 = {A+Bγ
∗+(B+ γ

∗)C}> 0,

A3 = {γ∗A− kP∗γ∗A+(A+ γ
∗C)B} ,

A4 = (γ∗AB−δ2kP∗γ∗A).
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The values of A, B and C are given by

A = ρ∗k+1 (CT −D∗IR)> 0

B = (δ2 + kρ∗D∗IR)> 0

C = (k+1 D∗+ k−1 +ρ∗)+ k+1 (CT −D∗IR)ρ
∗ = (k+1 D+ k−1 +ρ∗)+Aρ∗ > 0.

Thus, according to Routh-Hurwitz criterion, E∗ will be locally asymptotically stable if

a. γ
∗A+(A+ γ

∗C)B > kP∗γ∗A,

b. B > δ2kP∗,

c. (B+C+ γ
∗){A+Bγ

∗+(B+ γ
∗)C}> {γ∗A− kP∗γ∗A+(A+ γ

∗C)B} ,

d. (B+C+ γ
∗){A+Bγ

∗+(B+ γ
∗)C}{γ∗A− kP∗γ∗A+(A+ γ

∗C)B}>

{γ∗A− kP∗γ∗A+(A+ γ
∗C)B}2 +(B+C+ γ

∗)2(γ∗AB−δ2kP∗γ∗A).

If all of these conditions satisfies then E∗ will be globally asymptotically stable, since according

to the existence criterion of E∗, EB0 will be unstable.

6.4 Description on parameter estimation from literature

Numerical value of δ1: The half-life (t1/2) of insulin mRNA depends on glucose concentra-

tion, and the value is 29 h and 77 h, respectively, at low and high glucose levels [474]. We

calculated the degradation rate of insulin mRNA using the following equation:

δ1 =
ln(2)
t1/2

(6.13)

The obtained values for δ1 were 3.98×10−4 min−1 and 1.5×10−4 min−1, respectively, at low

and high glucose concentrations.

Numerical value of α1: The mRNA expression value of insulin genes is 126753 in tpm

counts [485], so we used this value as the steady state value of M (M∗). We assumed that the

system would always stay in a steady state at low glucose concentration, and the high glucose

would act as a stimulus in the system. Thus, the value of α1 at the low glucose setting was
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calculated from equation: M∗ = α1
δ1

, and the obtained value was 50.4934 tpm min−1.

It was reported that prolonged glucose stimulation (24 h) resulted in ∼2-fold increase in

insulin mRNA level (M) [473]. By solving the first equation of the system (6.1). we obtained

M(t) =
α1

δ1
(1− e−δ1t)+M(0)e−δ1t (6.14)

Now, we have information that M(t1) = 2×M(0) at t = t1=24 h. Putting these values in Eq.

(6.14), we get

2M(0) =
α1

δ1
(1− e−δ1t1)+M(0)e−δ1t1

=⇒M(0)(2− e−δ1t1) =
α1

δ1
(1− e−δ1t1)

=⇒ α1 =
M(0)δ1(2− e−δ1t1)

(1− e−δ1t1)

(6.15)

Finally, we put M(0)=126753, t1=24 h and δ1 = 1.5× 10−4 in Eq. (6.15) and obtained α1 =

116.89 for the high glucose model simulation.

6.5 Numerical results

We begin the analysis assuming that the system remains in the steady state (i.e., in interior

equilibrium point, E∗) at low glucose concentration, and the high glucose concentration would

act as a stimulus. To capture the effect of glucose stimulus on the system, two threshold val-

ues of glucose, G∗= 4.58 mmol/l and Ĝ= 10 mmol/l, were used. Based on this values, we

obtained α2=0 for low glucose setting (G ≤ 4.58 mmol/l) and α2=ĥ= 3.93× 10−3 min−1 for

high glucose setting (G ≥ 10 mmol/l). The rest of the parameters were collected or derived

from the information given in available literature (detailed descriptions are provided in Table

6.1 and Section 6.4). The values of v and k were estimated such that for low glucose, the

system (6.1) provides the stable interior equilibrium point (E∗), where M∗=126753, P∗=10,

R∗=10,000, D∗=950, D∗IR=50, γ∗=γb and ρ∗=ρb [478, 485]. It is well-known that high glucose

levels in β -cells increase the translation rate of the insulin gene [474]. So, we also increased

the value of v for the high glucose model simulation. v was estimated by reproducing the time
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series data given in [478]. The obtained parameter set (given in Table 6.1) for the high glucose

model stimulation also satisfies the existence and stability criterion for the interior equilibrium

of the system (6.1). The aim of the present study was to identify crucial parameters that signif-

icantly affect insulin secretion from β -cells under high or low-glucose conditions. This would

help to understand the pathophysiology of T2D as well as insulinoma.

Table 6.1: Description of the parameters: Values of the parameters were mostly collected
from the available literature. For some unknown parameters, we estimated their values by
using the available information literature, and detailed descriptions were provided in Appx.
6.4.

Parameters Definition Value with unit Ref.

α1 Transcription rate constant 50.4934 tpm min−1 (low glucose),

116.89 tpm min−1 (high glucose)

Section

6.4

δ1 mRNA degradation rate

constant

3.98× 10−4 min−1 (low glucose),

1.5×10−4 min−1 (high glucose)

Section

6.4

v Biosynthesis rate constant

of proinsulin aggregates

from insulin mRNA

3.16 × 10−5 tpm−1 min−1 (low

glucose), 7.89 × 10−5 tpm−1

min−1 (high glucose)

Estimated

δ2 Degradation rate constant

of proinsulin pool

0.3 min−1 [478]

k Rate constant of formation

of insulin granules

0.1 Estimated

η Rate constant for γ 4 min−1 [478]

γb Basal value of γ at low glu-

cose

10−4 min−1 [478]

ĥ Maximal value of glucose-

stimulated γ input rate

3.93×10−3 min−1 [478]

k1
+ Association rate constant

for the binding between

granule and Ca2+ channels

1.447×10−5 min−1 [478]
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CT Constant pool of total Ca2+

channels

500 [486]

k1
− Dissociation rate constant

for the binding between

granule and Ca2+ channels

0.10375 min−1 [478]

ζ Rate constant for ρ 4 min−1 [478]

ρb Basal value of ρ at low glu-

cose

0.02 min−1 [478]

kρ Sensitivity of ρ on the acti-

vatory action of γ

350 [478]

I0 Amount of insulin content

in a granule

1.6 amol [487]

fb Fraction of responding β -

cells at glucose concentra-

tion below the threshold G∗

0.05 [478]

K f Constant related to the ef-

fectiveness of β -cells re-

quirement

3.43 mmol/l [478]

N Total number of β -cells 2.76×106 [488]

6.5.1 Factors responsible for reduction in glucose-stimulated insulin se-

cretion

Global sensitivity analysis (GSA) was performed to get an initial picture of the crucial param-

eters responsible for reducing insulin secretion under a high glucose medium. The simulations

were performed for the time interval 0-120 min. The initial value for the simulation was taken

from literature [478, 485] representing the basal of the variables. We sought to identify param-

eters that hampered insulin secretion in T2D patients and focused only on the insulin secretion
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Figure 6.2: Global sensitivity analysis for glucose-stimulated insulin secretion rate. This
was performed by using Latin Hypercube Sampling (LHS) and Partial Ranked Correlation
Coefficient (PRCC) technique [438] under high glucose situation. The length of each bar
represents the sensitivity of each parameter on the output (given in figure legend). Sensitive
parameters were selected based on the threshold value ± 0.3 on PRCC value [439, 476].

rate. The highest value in the insulin secretion rate within this time interval was considered

as the peak level. The first phase of insulin secretion was denoted by the amount of insulin

secreted within 0-8 min. The second phase of insulin secretion was represented by the amount

of insulin secreted within 9-120 min. The total secreted amount was calculated by taking the

sum of the first and second phases of insulin secretion. The sensitivity of the parameter was

captured for these four outputs (Fig. 6.2). Six system parameters (η , k1
+, CT , k1

−, ζ and

kρ ) were obtained sensitive to insulin secretion and were associated with insulin granules traf-

ficking and the exocytosis processes. Among them, η , k1
− and ζ were only sensitive to peak

insulin secretion rate, and the other three were sensitive for all four outputs. To uncover the

effect of these parameters on the loss of insulin secretion in glucose stimulus, we varied them

5-fold up-and-down from their default values (provided in Table 6.1). Down-regulation of k1
+,

CT and kρ , and up-regulation of k1
− from their baseline values resulted in reduced first-and

second-phase insulin secretion (Fig. 6.3). Altered values of k1
+, k1

− and CT reflect the defects

in the formation of immediately releasable granules from the docked granules due to loss in the

level of Ca2+ channels or any impairment in binding with insulin granules. Impairment in the

value of kρ represents the defects in the activatory action of ATP on intracellular Ca2+ contents,
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Figure 6.3: Effect of sensitive parameters on glucose-stimulated insulin secretion rate. We
classified the findings into two categories: one is where down-regulation of the parameters
reduces insulin secretion (first column), and another one is where up-regulation reduces insulin
secretion (second column). Each of these parameters was varied up to 5-fold, and subsequently,
the reductions in the values of peak insulin secretion rate (first row) and amount of secreted
insulin in the first (second row) and second (third row) phases were observed.

which can be caused due to overactivity of the KATP channels. Additionally, we observed that

reducing the value of η and ζ could only diminish the value of the peak insulin secretion rate.

Any impairment of their values represents the defects in the proper rise in the ATP-to-ADP

ratio and cytosolic Ca2+ concentration in response to the glucose stimulus, respectively.

From the analytical analysis, we observed that parameters related to the insulin synthesis

process have a vital role in the existence of an axial equilibrium point (EB0). Still, their ef-

fects were not observed here in the simulations within 0-120 min intervals. The most likely

explanation is that their variations had no discernible impact on the level of proinsulin aggre-

gates during these periods. We also observed that changes to the transcription and mRNA

stability-associated parameters could not affect the insulin mRNA expression level within this
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Figure 6.4: Effect of transcription, mRNA stability and translation-associated parameters
on glucose-stimulated insulin secretion rate. To mimic the reduction in transcription and
translation rate, here we decreased the value of α1 and v, respectively, whereas the reduced
mRNA stability rate was imposed by increasing the value of δ1. All the simulations were
performed for the time interval of 0-24 hrs and the effect of parameter variations was captured
at the final time point.

short period. People with insulin resistance experience high glucose for longer than normal

individuals after taking the food. So, an important question is whether they have any impact

in the long term. It is reported that chronic hyperglycemia decreases insulin mRNA expression

by reducing promoter activity and downregulating the expression of two important transcrip-

tion factors of insulin [431]. So, exploring the effect of transcription, mRNA stability, and

translation-associated parameters on the insulin secretion rate could help us understand the

impact of reduced insulin synthesis on the pathophysiology of T2D. We varied the three pa-

rameters (α1, δ1, and v) individually and synergistically in the system for the time interval

0-24 hrs and captured the insulin secretion rate. It was found that reduction in α1 and v, and

increment in δ1 causes a marked reduction in the insulin secretion rate at the final time point

(Fig. 6.4). Among them, the impact of the reduction in v is much more than the others. This

represents the reduced biosynthesis rate of proinsulin aggregates from inulin mRNA and might

be caused due to defects in the translation and post-translational modification processes. Re-

duction in α1 and increment in δ1 causes reduced insulin secretion by reducing insulin mRNA

level and represents the defects in the transcription and mRNA stability, respectively.

In our study, the insulin secretion rate is a function of the pool of immediately releasable

pool (DIR), so it is also interesting to understand the parameters responsible for the existence

of the stable axial equilibrium point (EB0, DIR=0) in high glucose situations. It would capture
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Figure 6.5: Two-dimensional parameter space representing the nature of the equilibrium
point for the system (6.1). In the grey-colored region, the system has one stable interior
equilibrium point (E∗) and one unstable axial equilibrium point (EB0). In the blue-colored
region, condition (ii) for the existence of E∗ is not satisfied. In the red-colored region, condition
(i) for the existence of E∗ is not satisfied and the axial equilibrium point (EB0) becomes stable.

the molecular mechanisms behind the loss of insulin secretion from β -cells under high glucose

concentrations. To capture the significance of the parameters, we varied them between the

range from 0 to 10-fold up. It was observed that EB0 would be stable if either of the three

parameters α1, v, and k become zero. These three are associated with insulin’s transcription and

translation processes and the formation of insulin granules. The two-dimensional parameter

variation captures the possible ranges for the stability of EB0 (Fig. 6.5). We obtained two

additional parameters (δ1 and δ2) whose imbalance with the above three parameters made the

axial equilibrium point stable. However, the 2D parameter analysis shows the dominance of

the former three over the later two in maintaining the stable axial point. Our analysis also

highlighted that decreased values of the former three parameters and the elevated values of
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the latter two could be the possible causes for the loss of insulin secretion from β -cell. It’s

noteworthy to note that all of these primarily reflect the defects in insulin synthesis and the

formation of insulin granules.

Hence, the reduced insulin synthesis rate and defects in granule exocytosis processes cause

reduced insulin secretion from β -cells. The latter has an immediate effect and can hamper first-

and second-phase insulin secretion. Whereas the former lowers the insulin secretions after a

long period and can cause a complete loss of insulin. We were now focused on identifying pa-

rameters that can cause elevated insulin secretion from β -cell under the low glucose condition

to understand the mechanisms behind hyperinsulinemia.

6.5.2 Uncontrolled insulin secretion under low glucose

The insulinoma cell, a rare neuroendocrine pancreatic tumour cell, secretes insulin at low blood

glucose [465]. So, all insulinoma patients experience hyperinsulinemic hypoglycemia [489].

Understanding the pathophysiology of insulinoma requires identifying the factors responsible

for the elevated insulin secretion from β -cell under the low glucose condition. We assumed the

system would always stay at the basal level (i.e., in a steady state) in low glucose concentration.

The simulations focus on identifying parameters affecting the basal insulin secretion rate at low

glucose settings. To get the basal insulin secretion rate, we calculated the interior equilibrium

(E∗) point for each parameter set, and then equation (6.2) was used. GSA provided five system

parameters (α1, δ1, v, δ2 and k) sensitive to the basal insulin secretion rate (Fig. 6.6). Hence,

we concentrated on these parameters for further exploration. Each of these parameters was

varied 5-fold up-and down from their default values (provided in Table 6.1), and subsequently,

the increment in the steady-state insulin secretion rate was observed. Up-regulation of α1, v

and k, and down-regulation of δ1 and δ2 resulted in elevated steady-state insulin secretion rate

(Fig. 6.7). Interestingly, none of them are associated with the insulin granules trafficking and

exocytosis processes but rather reflect the uncontrolled insulin synthesis inside the β -cell.
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Sensitivity Analysis for Steady-state Insulin Secretion Rate

Parameters
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Figure 6.6: Global sensitivity analysis for the insulin secretion rate at the steady state of the
system. This was performed by using Latin Hypercube Sampling (LHS) and Partial Ranked
Correlation Coefficient (PRCC) technique [438] under low glucose situation. The length of
each bar represents the sensitivity of each parameter to the value of insulin secretion rate at
the interior equilibrium point (E∗). Sensitive parameters were selected based on the threshold
value ± 0.3 on PRCC value [439, 476].
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Figure 6.7: Effect of sensitive parameters on insulin secretion rate at the low glucose con-
centration. We classified the findings into two categories: one is where up-regulation of the
parameters increases insulin secretion (first column), and another one is where down-regulation
increases insulin secretion (second column). Each of these parameters was varied up to 5-fold,
and subsequently, the increment in the insulin secretion rate was observed. Each of these pa-
rameters was varied up to 5-fold, and subsequently, the increment in the steady state insulin
secretion rate was observed because we assumed that the system would stay in a steady state at
low glucose concentration.
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6.5.3 Insulin synthesis and exocytosis processes in managing the insulin

secretion dynamics
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Figure 6.8: Tuning effect of the parameters related to the insulin granule trafficking and exocy-
tosis processes in compensating insulin secretion due to decreased insulin synthesis inside the
β -cell. Here the y-axis denotes the fold changes for those parameters for which the restoration
was performed. In contrast, the x-axis represents the fold changes for the parameters by which
the tuning was made. The color bar represents the fold change value in the total secreted insulin
level compared to the default parameters for the high glucose model simulation. In all of these
cases, simulations were performed for the time interval 0-24 hrs.

It is observed that the reduced insulin synthesis rate and defects in granule exocytosis pro-

cesses cause reduced insulin secretion from β -cells. The latter has an immediate effect and the

former act after a long period. However, it was observed that only the small perturbations in

the parameters related to insulin synthesis processes were compensated by the parameters as-

sociated with insulin granule trafficking and exocytosis (Fig. 6.8). For example, up to 0.7-fold
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changes in transcription rate (α1), 3-fold changes in mRNA degradation rate (δ1), and 0.6-fold

changes in insulin granules formation rate (k) was fully compensated, but it requires almost

10-fold changes in tuning parameters. In contrast, the parameters related to insulin synthesis

showed better restoration capability in case of reduced insulin secretion due to defective insulin

granule trafficking and exocytosis (Fig. 6.9). Up-regulation of transcription (α1) and transla-

tion (v) rates were found as the most effective strategies for restoring insulin secretion during

impaired insulin granule trafficking and exocytosis.
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Figure 6.9: This figure depicts the tuning effect of the parameters related to insulin synthesis for
reverting reduced insulin secretion due to defective insulin granule trafficking and exocytosis.
Here the y-axis denotes the fold changes for those parameters for which the restoration was
performed. In contrast, the x-axis represents the fold changes for the parameters by which the
tuning was made. The color bar represents the fold change value in the total secreted insulin
level compared to the default parameters for the high glucose model simulation. In all of these
cases, simulations were performed for the time interval 0-24 hrs.

We already established that increased insulin synthesis could cause uncontrolled insulin

secretion from pancreatic β -cells during the normoglycemic state. However, single parameter

variation related to the insulin granules trafficking and exocytosis processes showed no effect

in restoring increased basal insulin secretion from β -cells (Fig. 6.10).
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Figure 6.10: This figure depicts the tuning effect of the parameters related to insulin granule
trafficking and exocytosis processes for reverting uncontrolled insulin secretion due to upreg-
ulated insulin synthesis inside the β -cell. Here the y-axis denotes the fold changes for those
parameters for which the restoration was performed. In contrast, the x-axis represents the fold
changes for the parameters by which the tuning was made. The color bar represents the fold
change value in the steady-state insulin secretion rate compared to the default parameters for
the low glucose model simulation.

6.5.4 Restoration strategies for compensating the β -cells mass

The amount of insulin released from the pancreas is mainly determined by the product of the β -

cells functional mass and the insulin secreted by each cell. So, the body requires an appropriate

number of insulin-secreting β -cells to maintain homeostasis. T2D is a complex metabolic dis-

order in which chronically increased glucose levels causes the loss of β -cell mass by promoting

cell death [377, 429, 431, 432]. Hence, we focused on identifying possible restoration strate-

gies for compensating the β -cells mass by tuning different systems parameters. Our analysis

revealed that regulation of the transcription (α1) and translation (v) have a significant impact

on restoring insulin secretion (Fig. 6.11). Besides, δ1, δ2, k, k1
+ and CT had very minor effect.

When β -cell mass increases due to a tumor inside the pancreatic islet (like in insulinoma

patients), insulin secretion also increases [490]. In this context, reducing the basal insulin



164
Chapter 6. Small-scale kinetic model and mechanistic understanding of disease

pathophysiology

secretion rate would be beneficial to control fasting hypoglycemia. We tuned each system

parameter to control the basal insulin secretion rate for different β -cell numbers. Only three

parameters (α1, v and k) were obtained as possible restoration candidates (Fig. 6.12). These

mainly reflect the reduction of the insulin synthesis through the tuning of transcription (α1) and

translation (v) and the downregulation of insulin granules formation rate (k).
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Figure 6.11: This figure depicts the tuning effect of the parameters related to insulin synthesis
and secretion processes for reverting reduced insulin secretion due to loss of β -cell mass. Here
the y-axis denotes the fold changes for the parameter representing the β -cell mass. In contrast,
the x-axis represents the fold changes for the parameters by which the tuning was made. The
color bar represents the fold change value in the total secreted insulin level compared to the
default parameters for the high glucose model simulation. In all of these cases, simulations
were performed for the time interval 0-24 hrs.

6.6 Discussion

Insulin is an endocrine peptide hormone secreted from pancreatic β -cells that plays an essential

role in maintaining glucose homeostasis in our body. Its secretion from β -cells in response to

the glucose stimulus is mainly biphasic [467–469]. Glucose also regulates insulin synthesis

by controlling various processes, including the proinsulin gene transcription, mRNA stability,

and the translational process [469, 472]. The glucose-insulin relationship gets affected under

various pathophysiological conditions like diabetes, cancer, etc [380, 465, 491]. Numerous

studies have been performed to comprehend this complex dynamical process. However, the
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Figure 6.12: This figure depicts the tuning effect of the parameters related to insulin synthesis
for controlling insulin secretion due to increased β -cell mass. Here the y-axis denotes the fold
changes for the parameter representing the β -cell mass. In contrast, the x-axis represents the
fold changes for the parameters by which the tuning was made. The color bar represents the
fold change value in the steady-state insulin secretion rate compared to the default parameters
for the low glucose model simulation.

mechanisms regulating glucose-stimulated insulin synthesis and secretion under physiological

and pathophysiological conditions are not clear [464]. This motivates us to investigate the po-

tential causes that change insulin secretion with different glucose conditions. The current study

proposed and analyzed a minimal model involving insulin synthesis, biogenesis, and secretion.

It identifies crucial factors whose abnormalities could lead to either Type 2 diabetes (T2D) or

hyperinsulinemic hypoglycemia. Here, we included the insulin mRNA level as a variable in the

model to investigate the consequences of defects in the transcription and translation processes

of the insulin gene. We first studied the model analytically and identified the existence and sta-

bility conditions for the interior (E∗) and axial (EB0, absence of insulin granules) equilibrium

points. We found that the stability of EB0 depends on five parameters satisfying the inequality

kvα1 < δ1δ2. The parameter set acquired for the numerical simulations satisfies the stability

conditions for the interior steady state as well as the normal physiology of the system. We var-

ied these parameters to obtain different conditions correlating with various pathophysiological

conditions.

β -cell dysfunctioning plays a crucial role in the initial stages of T2D development and

persists as the disease progresses [492]. We seek parameters that could hamper the insulin

secretion rate. The parameter variation analysis identified four parameters responsible for re-

ducing first and second-phase insulin secretion rates and two parameters responsible for the

diminished value in the peak insulin secretion rate. These highlights the two major areas of in-



166
Chapter 6. Small-scale kinetic model and mechanistic understanding of disease

pathophysiology

sulin granules trafficking and secretory processes. They are 1) defects in forming immediately

releasable granules from the docked granules and 2) defects in the glucose-evoked rise in in-

tracellular Ca2+ content. Our analysis suggests that immediately releasable granule formation

could be hampered due to a decreased level in Ca2+ channels or any impairment in its binding

with insulin granules. On the other hand, overactivity of the KATP channels and improper rise

in the ATP-to-ADP ratio in response to the glucose stimulus could also hamper the glucose-

evoked rise in intracellular Ca2+. It has been observed in the literature that polymorphism of

the KATP channel (E23K) could also be a risk factor for T2D [406]. It is also reported that

activating mutations in Kir6.2 and sulfonylurea receptor 1 (SUR1) subunits of the KATP chan-

nel are the major causes of neonatal diabetes [406]. The above shorter time frame simulation

did not capture the effect of decreased insulin synthesis rate on insulin secretion. However,

the impact was observed in a longer time frame simulation, which showed that reduced insulin

synthesis rates could hamper insulin secretion.

We observed that the pancreatic β -cells could become empty in insulin granules (i.e., EB0

becomes stable) due to combined reductions of any two processes: transcription, translation,

and insulin granules formulation rates. Besides, an increased degradation rate of insulin mRNA

or proinsulin pool, along with reductions in any of the above mentions three processes, could

cause the same. However, the former three are more dominant over the latter two in caus-

ing loss of insulin content inside the β -cells. Literature suggests that metabolic stress due

to the chronic oversupply of nutrients could lead to reduced expression or activity of critical

β -cell transcription factors, including FOXO1, PDX1, NKX6.1, and MAFA [493–496]. Subse-

quently, some crucial end-differentiated genes, including insulin itself, were lost [497], causing

depletion in insulin synthesis. So, defects in the insulin synthesis and the insulin granules for-

mation processes might contribute to the complete loss of insulin inside the β -cells during T2D

development.

The present study also focuses on identifying parameters that elevate insulin secretion from

the pancreas during the normoglycemic state. The investigation highlights the specific bio-

logical processes whose impairment might cause hyperinsulinemic hypoglycemia. The insulin

secretion rate is a function of several factors, including the number of granules that undergo
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exocytosis, insulin content in each granule, β -cell mass, and the fraction of cells responding

to the glucose stimulus. So, it is evident that an increase in their value might lead to excess

insulin secretion from the pancreas. Apart from these factors, we obtained five additional sys-

tem parameters that might cause abnormalities in the β -cells ability to adequately suppress

insulin release in the presence of low circulating glucose. Thus, we might conclude that the

up-regulation of insulin granule formation due to elevated transcription rate, increased mRNA

stability, elevated translation rate, or reduced degradation rate of the proinsulin pool could cause

hyperinsulinemic hypoglycemia. Although the insulin secretion rate depends on the number of

granules undergoing exocytosis, we didn’t find any impact of the parameters associated with

the insulin granules trafficking and exocytosis processes on causing increased basal insulin se-

cretion rate. Instead, our results suggest that the uncontrolled insulin synthesis inside the β -cell

or the increased β -cell mass could be the major reasons for fasting hypoglycemia in insulinoma

patients.

Our analyses revealed that alterations in the insulin synthesis and granule formation pro-

cesses are difficult to manage by tuning parameters related to granule trafficking and exocytosis.

Although these parameters could restore impaired insulin secretion due to a slight reduction in

insulin synthesis, it requires almost 10-fold perturbation. Even beyond a certain level, increas-

ing the rate of granule exocytosis cannot compensate for the decreased insulin synthesis. It

also seems reasonable, as any defects in the insulin synthesis process, either by transcription

or translation, ultimately affect the flux from the proinsulin pool to the immediately releasable

granules pool. Subsequently, the exocytosis rate might get hampered due to the loss of insulin

granules inside the β -cell. Hence, only the regulation of granules trafficking and exocytosis

processes might fail to compensate for the impaired insulin synthesis. On the other hand, the

accelerating insulin synthesis might restore the decreased insulin secretion driven by defec-

tive insulin granule trafficking and exocytosis processes. It can also potentially restore insulin

secretion from the pancreas in the case of significant loss in β -cell mass. Thus, rather than

only targeting the insulin secretion process, we need to target insulin synthesis and secretion

both in managing T2D. Recently, several GLP-1 receptor agonists have been approved in the

United States for the treatment of T2D, which have beneficial effects on both insulin synthesis
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and insulin secretion [459, 460]. These increase insulin synthesis by targeting the transcription

of insulin. However, we found that transcriptional regulation also has good restoration capa-

bilities; hence, it might give new directions toward T2D management. In the case of insuli-

noma patients, our analysis suggests that targeting insulin synthesis by reducing transcription

or translation could become a potential therapeutic strategy for controlling hyperinsulinemic

hypoglycemia. This will reduce the insulin secretion from β -cells and also have the potential

to compensate for the increased β -cell proliferation, as observed in insulinoma tumours.

In conclusion, the present study proposed a minimal model for insulin synthesis and se-

cretion of insulin granules to understand the pathophysiology of T2D and hyperinsulinemic

hypoglycemia. Defects in the insulin granule trafficking and exocytosis processes were ob-

served to be one of the main reasons for β -cell dysfunction in T2D. The long-term effect of

abnormal insulin synthesis could hamper insulin secretion and make the scenario more critical,

causing complete insulin loss inside the β -cells. Perturbations in the insulin granules trafficking

and exocytosis processes do not change the uncontrolled insulin secretion in a normoglycemic

state. Instead, upregulated insulin synthesis or the increased β -cell proliferation were two ma-

jor reasons for fasting hypoglycemia in insulinoma patients. This study also hypothesized that

targeting insulin synthesis through the regulation of transcription and translation might become

a potential therapeutic strategy and hence needs further exploration.



7
Conclusions and future directions

7.1 Conclusions

An abnormal metabolic state is the primary cause or consequence of various human diseases,

like cancer, diabetes, obesity, neurological diseases, cardiovascular disorders, etc. Therefore,

exploring metabolic alterations in disease conditions is necessary to comprehend the underlying

mechanism behind disease development and progression. In parallel, it also offers a tremendous

opportunity to identify potential drug targets and design new therapeutic strategies. Due to

the complexity and high dimensionality of human metabolism, mathematical modelling has

been extensively used to study the metabolic alterations in human diseases. However, there

still exists a lacuna of metabolic perturbations in several conditions, such as diabetes, cancer,

NAFLD, cardiovascular disorders, etc.

169
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The present thesis aims to study the role of metabolites and associated pathways in disease

progression using mathematical models and use it to develop therapeutic strategies. Here, we

have used two types of mathematical models: genome-scale metabolic model (GSMM) and or-

dinary differential equation-based small-scale kinetic model. We predicted the metabolic-flux

state of pancreatic β -cells for ten control and ten type 2 diabetes (T2D) subjects by integrat-

ing the gene expression data on a generic human GSMM. Analysis of the predicted flux state

revealed that impaired β -cell metabolism affects ATP production, activates stress-activated sig-

nalling pathways, and potentiates diabetes and associated cardiovascular complications. It pro-

vides a global view of the metabolic alterations in β -cell during diabetes, which has clinical

implications. We captured twenty-seven relevant transcription factors associated with these

metabolic changes in diabetes and identified seven secreted metabolites from β -cell associated

with cardiovascular disease (CVD) pathogenesis. In addition to exploring metabolic alter-

ation, GSMM can be applied to identify critical regulatory points from the metabolic network

through in silico knockout approaches. We performed single-gene knockout studies on exist-

ing GSMMs of the NCI-60 cell-lines obtained from nine tissue types. The metabolic genes

responsible for the growth of cancerous cells were identified, and their possible growth reduc-

tion mechanisms were explored. We obtained 13 metabolic genes whose knockout reduced

the proliferation rate of all cancer models but were inactive across all nine normal cell models.

The growth inhibitory effect of two of these genes (SOAT1 and CYTB) was experimentally

validated in four cancer cell-lines of the NCI-60 database. Although the comparison of gene

ranking results with existing shRNA screening data was not satisfactory for most of the cell-

lines, it played a significant role in deciding the activity of the drug against cell proliferation,

whereas multiple gene knockout analysis gave better correlation results. Again, the combina-

tion of these two applications of GSMM, i.e., identifying metabolic alterations and regulatory

points through in silico gene knockout, could give us the potential drug targets that might re-

vert the altered metabolic state from disease to a healthy condition. The combination of these

two approaches was used to identify potential targets for nonalcoholic steatohepatitis (NASH).

We elucidated the possible mechanism of action of these identified targets using GSMM. Our

strategy of interconnecting the metabolic modelling and protein-protein interaction network
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analysis identified three potential targets for NASH. These targets exert their effects at the gene

and metabolic levels and might reverse disease-associated molecular signatures. Inhibition

of these identified targets could attenuate hepatic steatosis by promoting higher flux rates for

the altered reactions involved in fatty acid activation and mitochondrial beta-oxidation path-

ways. Although these proposed methodologies using GSMM provide a new perspective on

addressing human diseases, it still requires small-scale kinetic models to capture the under-

lying mechanism associated with the metabolic alterations in disease conditions. Impaired

glucose-stimulated insulin secretion (GSIS) in β -cell is one of the major causes of develop-

ing T2D in the presence of insulin resistance (IR). A global picture of metabolic alterations in

β -cell under T2D was captured by integrating gene expression data on human GSMM. It was

observed that metabolic alterations in β -cell could lead to a decline in ATP synthesis, resulting

in decreased insulin secretion. By proposing and analyzing a six-dimensional kinetic model

on the GSIS process, we identified the crucial factors whose impairment can either lead to

hyperglycemia or hypoglycemia. Our analysis uncovers the potential strategies for preventing

the progression of T2D during these alterations. The probable limitations of the current anti-

diabetic drugs contributing to secondary failure were discussed. Finally, we have proposed

another seven-dimensional small-kinetic model for insulin synthesis and secretion of insulin

granules to decipher the in-depth understanding of the pathophysiology of T2D and hyperin-

sulinemic hypoglycemia. The model analysis revealed that the defects in the insulin granule

trafficking and exocytosis processes hamper first- and second-phase insulin secretion and might

be one of the main reasons for β -cell dysfunction in T2D. The long-term effect of abnormal

insulin synthesis could hamper insulin secretion and make the scenario more critical, causing

complete insulin loss inside the β -cells. Perturbations in the insulin granules trafficking and

exocytosis processes do not change the uncontrolled insulin secretion in a normoglycemic state.

Instead, upregulated insulin synthesis or the increased β -cell proliferation were two major rea-

sons for fasting hypoglycemia in insulinoma patients. Our study also suggests that targeting

insulin synthesis through the regulation of transcription and translation might become a poten-

tial therapeutic strategy for controlling impaired insulin secretion.

Overall, the work presented in this thesis explores the application of GSMMs and small-
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scale kinetic models in studying the role of metabolites and associated pathways in disease

progression. By applying GSMM, we captured the alterations in the metabolic-flux state in

human diseases and identified potential drug targets that could reverse the altered state towards

a healthy state. Using the small-scale kinetic models, we studied the underlying mechanism be-

hind impaired insulin secretion from β -cell and explored the potential strategies for preventing

the aberrant insulin secretion.

7.2 Future directions

The work presented in the thesis can be extended from various aspects of mathematical mod-

elling. We have explored the metabolic-flux state in pancreatic β -cell by integrating the tran-

scriptomics data into the generic human GSMM. It is a well-known fact that the flux state of

the cell depends on the proteome and metabolome profiles [189, 498]. Therefore, more details

data, such as proteomics and metabolomics, can be used to develop a β -cell-specific GSMM.

The primary function of β -cell is to adequately secrete insulin in response to elevated blood

glucose during the postprandial state. Therefore, it is essential to establish a proper cellular

objective function for the β -cell that can represent insulin secretion for obtaining a more accu-

rate flux state. Here, we have observed a cross-link between the diabetic-associated metabolic

alterations in β -cell and cardiovascular disease. So to better understand the pathogenesis of car-

diovascular complications in type 2 diabetic (T2D) patients, we need to analyse a multi-tissue

metabolic model.

In our gene knockout study using GSMM, we identified 13 potential targets against cancer,

however the overall correlation with the experimental data is still unsatisfactory. Therefore

the gene knockout strategies can be revisited to decipher the proper reason for obtaining the

negative results. In this context, new in silico gene knockout algorithms can be developed to

mitigate the problems.

The targets identified in the present thesis through GSMM can further be evaluated through

experiments in collaboration with biologists. Similar attempts have also been made in Chapter

3 to validate our hypothesis. We observed that the inhibition of SOAT1 and CYTB reduces the
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growth rate of 4 cancer cell lines. These establish that the identified genes have the potential to

become successful drug targets and hence need further evaluation.

The identified potential targets against NASH using combined strategy of GSMM, exhibits

the reversibility of metabolic alterations in only hepatocytes. However, lipid homeostasis in

our body can be hampered due to metabolic alterations in other tissues like adipose tissue and

skeletal muscle. So, it is necessary to investigate whole-body lipid metabolism through a math-

ematical model and identify the potential factors that can cause lipid accumulation in the liver.

These would enhance our understanding of the molecular mechanisms behind NAFLD devel-

opment. It will also help to propose therapeutic strategies for controlling NAFLD progression.

The whole-body model can be used to investigate the effect of insulin resistance (IR) on dyslipi-

demia, which would enhance our experience of the molecular mechanisms behind the various

complications related to obesity or T2D, like NAFLD, cardiovascular diseases, etc. Therefore,

the whole-body model can also establish the link between T2D and NAFLD.

The present thesis also proposed a small-scale kinetic model for insulin synthesis and the

biogenesis and secretion of insulin granules processes. This model can also be used to construct

a more realistic whole-body multi-level model for glucose homeostasis for better capturing the

physiological events that occur after a meal. This proposed model can also be modified by

considering the β -cell mass as a variable in this system to capture a clear picture of the various

stages of T2D.
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