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Abstract

Electrodermal Activity or simply EDA is the bio-electrical activity ob-
served on the human dermal surface. The activity is recorded in the form
of responses due to electrical stimulus, known as exosomatic EDA or in the
form of potential differences without any electrical stimulus, known as endo-
somatic EDA. Exosomatic EDA signals are mostly recorded for psychophys-
iological assessments of human being, though physiological information can
be captured more accurately using endosomatic EDA.

Differential dermal potential or DDP signal is a specific type of endoso-
matic EDA that has been proposed recently and is finding uses in various ap-
plications. The DDP is the potential difference between two adjacent active
sites on the skin surface without any electrical stimuli, typically the interme-
diate phalanges of the index and middle fingers of hands and feet. This signal
has initially been acquired using the commercially available RISH Multi 18S
multimeter based data acquisition system (DAS). This DAS is capable of
acquiring low voltage signals (in order of 10µV) from multiple locations si-
multaneously with moderate speed, good accuracy and acceptable precision.
It also has optical isolation to provide electrical safety. However, its major
limitations are the lack of compatibility of its computer interface software
Rishcom 100 with Windows 7 onwards updated OS platforms and its lack of
portability, specially when the number of channels are more.

In view of this, two other advanced acquisition systems (Advantech USB-
4704 and Keysight LXI) have been tested in this study but these did not
perform as expected. Advantech USB-4704 lacks the required accuracy as
well as precision, while the Keysight LXI lacks in portability and consumes
much power. Along with that, it is unable to acquire data with required
sampling speed in high resolution.

The limitations of the RISH Multi 18S based system and the unsuitabil-
ity of the other two systems tested led to the calibration and testing of a
dedicated 4-channel data acquisition system that was designed and devel-
oped indigenously by Somen Biswas, a co-author in [1], in the same research
laboratory in which the present study is done.

A standard protocol has been developed in this work for balancing and
calibrating the 4-channel DAS. This starts with a preliminary static calibra-
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tion of the 4-channel DAS to estimate its nominal performance. Thereafter,
for the balancing of the 4 channels, the addition of error curve method is
employed after comparing its performance with those of the inverse slope
multiplication and spline fitting methods. A comparison of the calibration
results of the RISH Multi 18S and the balanced and standardized 4-channel
DAS show that both these systems exhibit comparable performances. Thus,
while both these systems have been used in the present work, the preferred
system is the 4-channel DAS due to its enhanced portability and updated
interfacing abilities.

In order to fulfill the multiple objectives of this present study, four (4)
specific experiments have been designed and conducted to acquire 4 different
data sets for 6 applications in total as listed hereafter. The data sets collected
from these experiments are labelled henceforth as DS1, DS2, DS3 and DS4,
while the terms LH, RH, LL and RL denote left hand, right hand, left leg
and right leg respectively.

Experiments : DS1: DDP signals are acquired from only LH for 20 min-
utes which include 2 minutes in sitting posture, then 2 minutes
during change in posture from sitting to supine and last 16 min-
utes in supine posture

DS2: DDP signals are acquired from LH and RH of supine subjects
for 10 minutes

DS3: DDP signals are acquired from LH, RH of subjects for a specific
set sequence: supine for 4 minutes, then sitting and then standing
for 2 minutes each. This is followed by a no recording 1 minute
activity session. Then subject sits again and DDP signals are
acquired till a specified condition is met.

DS4: DDP signals acquired continuously from LH, RH, LL and RL of
supine subjects for 10 minutes

Applications : Application1: Validation of the DDP signal by comparing
it with standard recommended endosomatic EDA signals (golden
reference) using DS1 dataset

Application2: Study unilateral characteristics of DDP signals using
DS2, DS3 and DS4 data sets

Application3: Study bilateral characteristics of DDP signals using
DS4 data set

Application4: Classification of hypertensive and normotensive sub-
jects using LH and RH of DS2
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Application5: Classification of different postures using LH of DS1
and both LH and RH data of DS3

Application6: Determination of the effective duration of rest in supine
posture from LH of DS1, both hands data (LH and RH) of DS2
and all 4 channel data (LH, RH, LL and RL) of DS4 data sets
and in sitting posture from both hands data (LH and RH) of DS3
data set

In Application1, the DDP signals have been validated by establishing
the physiological basis and comparison with 2 standard endosomatic EDA
signals as well as their difference signal. Since this signal is recorded in the
DC mode, hence it is inferred from the standard RC model of the skin that
this signal primarily records the differential information communicated by the
nerve endings or the capillaries in the dermis and hypodermis, rather than
the sweat gland activity recorded in usual EDA signals. The autocorrelation
functions (ACF) of these differential signals confirmed that these signals are
non-random signals originating from inherent time-varying processes. It is
further verified that these signals are stable with settling times typically
within 2 minutes, thus validating their usability in real-time applications.

Application2 deals with the unilateral characterization of these signals for
which all the LH, RH, LL and RL signals from the DS2, DS3 and DS4 data
sets have been clubbed together into their respective classes. The character-
istics of these 4 classes of acquired signals were studied, followed by a study
of their mean values and then the study of the (mean subtracted) debiased
signals. The aspects studied include their polarities, trends, statistical, linear
regression and spectral characteristics. A significant finding is that the spec-
tral moment SM1, which can be considered as the gain-bandwidth product
(GBP), are almost identical indicating that a constant GBP is maintained
in the system.

Application3 deals with the study of the bilateral characteristics of the
hand and feet signals using the DS4 data set. The aspects studied include
the trends of signal pairs, study of the derived bilateral signals, Gap and Pair
Sum (PS), as well as the interdependence of both the hand signals and both
the feet signals.

Based on the characteristics studied, two bias parameters have been pro-
posed in this study, namely differential bias µdiff and common mode bias
µcb, to quantify the hemispheric dominance between the bias of acquired sig-
nals. Furthermore, 4 other bilateral parameters using the debiased signals
have also been proposed in this study, namely the ratios of the zero crossing
instants (ZCIratio), the ratios of the slopes (mratio), the debias ratio (DRk)
to represent the instantaneous behaviours of the debiased pair of signals and
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the log SD ratio (ξsd). All these proposed parameters have been statistically
characterized for hands as well as for feet signals.

Finally, three different human condition monitoring applications have
been presented in detail. Application4 pertains to hypertensive and nor-
motensive subject classification, Application5 to different posture classifica-
tion and Application6 to the estimation of the effective duration of rest.
In Application4 and Application5, the attribute selection and classification
have been done in WEKA version 3.9.4 using the random forest (RF) clas-
sifier using all the unilateral as well as the bilateral parameters studied in
Application2 and Application3 along with two additional derived features,
namely normalized variance and normalized kurtosis. However, mainly spec-
tral characteristics have been studied for the assessment of rest duration in
Application6.

In Application4, DS3 data has been used for classification of hyperten-
sive and normotensive subjects. Attribute selection filter selected only 5
attributes among all, of which 4 are bilateral parameters. However, the most
preferred attribute for differentiating hypertension is the SD of the left hand.
It is to be noted that while the SD is indicative of the random variations
in the signal, the LH signal is from a location that is physically closer to
the heart than the RH signal. Although the classification results are signifi-
cantly low at 75% in comparison to existing methods based on ECG, which
can differentiate these classes with accuracies well above 90%, yet the min-
imal subject discomfort during its acquisition using the simple 10 minutes
rest protocol and the simplicity of the protocol that allows even nominally
skilled health workers to handle this procedure can be useful for primary
monitoring and screening purposes.

In Application5, sitting and supine postures have been classified almost
flawlessly using the relevant 2 minute subsets of the LH signals in the DS1
data sets, while a 3-level classification of supine, sitting and standing postures
have also been done fairly accurately at 80% using the relevant subsets of
the DS3 data sets. In both cases, the mean, ZCI and slope m of the signals
are the major chosen attributes.

In Application6, the effective duration of rest of no-nap supine subjects
has been estimated using all three data sets DS1, DS2 and DS4 based on the
maxima of the system entropy. It is inferred from this study that if a subject
maintains a supine posture typically for 4 to 6 minutes, it provides effective
rest to the system. This result differs significantly from the other results of
effective duration of rest, which are typically based on short nap condition.
The same study done on subjects in sitting posture in the DS3 experiment
show trends but are not conclusive, possibly since the acquisition was not
continuous but was stopped after every 2 minutes.
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Thus it can be concluded that the differential dermal potential is an
unique signal, which is similar but not identical to the difference between
respective endosomatic EDA signals. These can be acquired reliably using
both RISH Multi 18S ans and 4 channel DAS in well designed, yet simple
experimental protocols. It is further validated that their various statistical,
spectral, linear regression and other characteristics are useful in screening
hypertensive and normotensive subjects, classifying posture changes as well
as estimating effective duration of rest.
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CHAPTER1
Introduction

Healthy living has become the prime focus for humans in this fast, dynamic
and hostile world. For this reason, human condition monitoring has become a
major topic of research nowadays. This vast field of research incorporates the
measurement and analysis of various physiological parameters, which often
makes the overall system heavy and/or expensive.

Biopotentials can provide a possible solution to these issues and are thus
being explored presently in various condition monitoring studies. These sig-
nals owe their origin to the electrochemical activity of the excitable cells that
are present in the nervous, muscular and glandular systems in the body [8].
Some of the common clinical methods for capturing these bioelectric signals
are tabulated in Table 1.1.

Table 1.1: Some Typical Bioelectric Signals [5, 8]

Bioelectric Abbreviation Biologic Frequency Dynamic
Signal Source range(Hz) range

Electrocardiogram ECG Heart surface 0.05 to 100 1 to 10 mV
Electromyogram EMG Muscle 500 to 10000 1 to 10µV

Electroencephalogram EEG Brain surface 0.5 to 100 2 to 100µV
Electrooculogram EOG Eye-dipole field dc to 100 10µV to 5mV
Electroretinogram ERG Eye retina 0.2 to 200 0:5µV to 1mV
Skin Potential EDA Skin Level 0 to 3 10mV to (-70)mV

Action Potential - Nerve or muscle 100 to 2000 10µV to 100mV

Electrocardiogram or ECG records different electrical potentials of the
heart [9]. It is the most common biopotential signal that is acquired for
clinical or research purposes. In recent studies, this has been used for ar-
rhythmia detection [10] and to assess the possible risk factors due to heart
abnormalities [11]. In Electroencephalography or EEG, voltage fluctuations
due to ionic current within the brain neurons are recorded [12]. EEG signals
are used for epilepsy detection [13], sleep disorder detection [14], measuring
depth of anaesthesia [15], prime indicator of brain death [16] and stroke [17]

1
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etc. The other bioelectric signals are sparingly used in clinical or research
applications. EMG that is recorded from the muscles is mostly used in biome-
chanics applications [18, 19] while EOG and ERG, both recorded from the
eyes, are used for eye movement detection [20,21] and optical disorder detec-
tion.

In recent studies, some of these signals have been used for other diverse
applications too. It is well established from several studies that posture
and cardiac activity are dependent on each other [22] in terms of cardiac
output [23], heart rate or R-R interval [24] or even systolic blood pressure [25].
For this reason, posture estimation has reliably been performed from cardiac
monitoring also [26,27]. Machine learning approach is typically used for this
approach in which the data for different postures are considered as different
classes for the classification [26–28].

Another research area that uses biopotential signals is the study of rest,
sleep, alertness or wakefulness. Sometimes short nap is used synonymously
to rest. There are various studies where researchers observed the effect of
short rest during various experiments like effect of 15 minute nap after a short
night sleep [29], short rest [30] and ultra short term rest [31] after noctural
sleep restriction, effect of 20 minute nap at noon [32] and afternoon [33] to
name a few. ECG and EEG signals have been used to study day time short
nap [34]. The effect of coffee, placebo [35], face wash and strong light [36]
have also been studied using ECG and EEG signals.

However, the most relevant application of ECG signals is in hypertension
studies. In a research article, the author presented a hypertension assessment
method using ECG and photoplethysmograph (PPG) signals [37]. Assess-
ment of pulmonary hypertension was also reported using ECG and some
other simple non-invasive techniques. Several indices have also been pro-
posed for hypertension detection using ECG signals [38,39]. Some recent AI
and machine learning based ECG studies focussed on detection of severity of
hypertension in human subjects [40], blood pressure classification [41], pul-
monary hypertension detection [42] and automated classification based on
HRV analysis [43].

As is evident, all these signals provide mostly either physiological or psy-
chological information. On the other hand, electrodermal activity (EDA)
signals provide both physiological as well as psychological information of the
human subject. Very recently, a special type of EDA signals termed as dif-
ferential dermal potentials (DDP) are being studied successfully for assessing
the human condition and its bilaterality.

Being relatively new, a systematic validation of the DDP signal as well
as studies of its various characteristics and further applications are yet to
be performed. Detailed analysis may lead to find out some characteristic
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features and propose some parameters, which can be used further along with
other unilateral parameters in various applications.

The aim of this research is to acquire the differential dermal potential
(DDP) reliably using a suitable data acquisition system, validate it system-
atically, characterize and determine some specific features that can be used
for specific human condition monitoring applications.

1.1 Literature review

This section contains the literature survey of the different aspects of this
research including the EDA signal, their applications as well as limitations,
evolution of DDP signals and their applications. A survey of different ac-
quisition systems and different validation techniques used for biopotentials
is also provided.

1.1.1 Electrodermal activity (EDA)

Electrical activity observed on human skin is called electrodermal activity or
EDA [3, 44]. Changes in human psychophysiology stimulate the autonomic
nervous system (ANS). This often causes change in the electrical activity
captured on the skin and can be recorded as either potential, resistance,
conductance, impedance or admittance [3].

Exosomatic and endosomatic EDA

There are 2 techniques by which EDA signals can be acquired and thereby
they are named as endosomatic or exosomatic EDA. Exosomatic EDA is
acquired while constant DC or AC stimulus is applied to the skin in the form
of resistance, conductance, impedance or admittance. This type of EDA is
significantly related to changes in sweat gland activity. In standard recom-
mended endosomatic recording, skin potential difference is recorded between
two sites (one active and one inactive), without applying any electrical stim-
uli [45, 46].

Choice of sites

Christie and Venables [47] characterized 8 palmar sites of both hands for
acquiring the EDA signals. Thereafter, a number of other sites were also
tested for acquisition of different parameters of EDA signals [47–50]. Finally
it was recommended [45, 46] to acquire EDA signals from the intermediate
phalanges of index and middle finger due to a number of advantages [2].
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Sites suitable for acquisition of EDA signals of both hand and feet are shown
in Figure 1.1 and Figure 1.2 respectively. As shown in the figures, it is
recommended in all these studies that exosomatic EDA should be recorded
in differential mode across two active sites while endosomatic EDA should
be acquired in referenced mode across an active and an inactive site.

Figure 1.1: Preferred palmar or volar electrode sites (A-D), recommended
position for the inactive electrode (E) used in endosomatic recording, and
their relationship to dermatomes (C6-C8) [2]

Figure 1.2: Medial side of the right foot with the recommended recording sites
A and B for exosomatic recording, and position C of the inactive electrode
for endosomatic recording [3]

Acquisition systems

Since the EDA signals are typically of the order of hundreds of mV, so spe-
cial acquisition systems are used for recording these signals reliably. It is
recommended that the input impedance of the amplifier for endosomatic
recording should be 1MΩ to 5 MΩ for suitable acquisition and amplifica-
tion [51]. The amplifiers used for recording skin potentials are not ordinary
ones since they record such low voltage skin potential level SPL and/or skin
potential responses SPR. Special backing-off circuits are recommended for
accurate recording of very low amplitude SPR [52,53].
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Nowadays, portable, specially wearable systems or devices are in high
demand for acquisition of EDA signals also [54]. Accordingly, an elabo-
rate human condition monitoring system has been designed and described
in a patent by Stoller [55]. In this, skin potential is acquired from 22 der-
mal surfaces of both hands and feet using multi-point differential probes.
Researchers have also designed several other wearable electrodermal signal
acquisition systems for real-time applications [54,56].

Tonic and phasic components

Electrodermal signals consist of two parts, termed as tonic and phasic com-
ponents. Tonic signifies the slow changing or quasi-static electrodermal level
EDL of the acquired signal. The low basal skin potential level SPL is one
EDL based score proposed by Christie and Venables [57]. Lykken et al.
observed inter-individual differences for the minimum SPL even in fully re-
laxed individuals [58]. One of the typical use of tonic level is in monitoring
the effect of habituation.

The phasic part of the EDA signal is called electrodermal response EDR,
although it is not always necessary to have a distinct relationship between
a stimulus and an EDR. Study of EDR is mostly done by analyzing latency
time, window, amplitude and shape of response [3]. Depending on the am-
plitude, EDA signals can be either monophasic, biphasic or even triphasic.
Exosomatic EDA signal responses are monophasic in nature, but all three
types of responses can be seen in case of endosomatic signals, which makes
it hard to interpret. Reason for these different responses have also been
studied [2, 59, 60].

Applications of EDA signals

Exosomatic EDA signals are popularly used to research psycho-sociological
states since long. Non-electrical stimuli like audio, visual even different odor-
ant stimuli are also used along with the electrical stimuli in some of these
studies [61–64]. Arousal assessment by measuring tonic EDA signals [65],
multiple arousal studies based on daily life EDA asymmetry [66], habitu-
ation [67] and dishabituation [68] studies are some such examples. EDA
studies for assessing emotional states and stress (by applying different stress-
ful stimuli) [54,69,70], anxiety disorder [71–73] and depression [74] confirmed
that both specific and non-specific responses are useful for the assessment of
stress. It was seen that SCL and NS.SCR (non-specific skin conductance
response) frequency is higher in case of patients with anxiety disorder while
SCL (skin conductance level), SCR (skin conductance response) and NS.SCR
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frequency are considered to be very useful for depression identification [75,76].
Subjects with some phobia, like spider phobia, have been identified by record-
ing SC (skin conductance) and fMRI (Functional magnetic resonance imag-
ing) together [77]. In the field of physiological research also, tests have been
conducted to understand behavior [78], gender and hemispheric dominance
using mirror image stimulus morphometry [79,80].

As mentioned, all of these studies use exosomatic EDA data acquisition
technique. However, the endosomatic EDA acquisition technique, which does
not require electrical stimuli, is known to contain more physiological infor-
mation [81] but it is not popular due to its unstable and irregular response
characteristics [3]. One of the old studies using endosomatic EDA signals
was detection of alertness [82]. In present days, wearable monitoring devices
are being developed by a group of researchers [83, 84]. These are also used
for drivers stress level detection at driving [85].

In almost all these studies, electrical and/or non-electrical stimuli have
been used. So these techniques are more representative of the system re-
sponse to the stimuli than the inherent characteristics of the human system.
The probable solution would be to acquire the recommended standard en-
dosomatic EDA signals as mentioned in [46] without any electrical or non-
electrical stimuli but as mentioned earlier, these signals are very hard to
interpret [3].

Therefore, there is a need for a suitable endosomatic signal and associated
acquisition system that can capture the inherent physiological information in
a more interpretable and reliable form.

1.1.2 Differential dermal potential (DDP)

Differential dermal potentials are a specific type of endosomatic EDA signals
that are acquired in the differential mode across two active sites in contra-
vention to the standard recommendations for endosomatic EDA signals. The
sites and mode of acquisition of this signal is similar to that of exosomatic
EDA signals but without any applied stimuli. These signals were first studied
by Bhattacharya et al. [86] in the same research lab as this present study as
generic biopotential signals representative of the global homeostasis of the
human system. Later, this signal was named as differential dermal potential
or DDP signal.

DDP acquisition

The schematic of the instrumentation system used to acquire the DDP signals
is shown in Figure 3.1. In this, a pair of bipolar, surface electrodes made
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Figure 1.3: Schematic diagram

of Ag-AgCl are used as sensors to collect the signals from the intermediate
phalanges of the index and the middle finger of both the hands of human
subjects. The following reasons are given by Bhattacharya et al. [86] and
Venables and Christie [2] in support of the site selection.

1. Since the fingers are situated far away from the major biopotential
generating organs like heart, brain etc., so they would not reflect the
information of any specific organ.

2. The middle phalanges of index and middle fingers are less prone to
scars and to the movement effect than other phalanges of the same
fingers, as well as the middle phalanges of other fingers.

3. The electrodes can be fixed easily since there is enough space to connect
them.

The DDP signals were initially acquired using the Rish Multi 18S [4]
multimeter and Rish Multi SI232 [87] adapter assembly [86]. A differential
amplifier based signal conditioning circuit was proposed by Bhattacharya et
al. [88] for this system to amplify the very low voltage acquired signals. But
this was later discontinued due to its non-linear input/output characteristics
and the distortions in the amplified characteristics, specially in the negative
voltage region. The Rish Multi 18S based system, being bulky, is also not
very portable and its interfacing Rishcom 100 software is not compatible with
the updated operating systems.

Therefore, some other existing advanced data acquisition systems need to
be tested for possible use in DDP data acquisition.

In a further development, an indigenous 4-channel data acquisition system
to acquire DDP signals was designed and developed by S. Biswas, a co-author
of [1]. This system is capable of acquiring DDP signals simultaneously from
a maximum of 4 locations and send these to the PC or laptop for monitoring
and storage purposes. This system is named henceforth as the 4-channel
data acquisition system or DAS.
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It is necessary to standardize the channels of the 4-channel DAS and for
this, proper calibration and tuning procedures need to be developed.

Comparison with standard signals

Some recent validation studies have been reported in the field of biopoten-
tial research by applying various stimuli and comparing the responses with
other established methods. An open source EDA acquisition device Obimon
has been validated using another established EDA acquisition system NeXus
10 MKII [89]. Another EDA based wrist worn person specific stressor detec-
tion system has been validated by applying different stressors and comparing
with established palm based skin conductance response (SCR) and skin con-
ductance level (SCL) measurements [90]. In another article, authors have
validated a wearable system for distress detection for visual image stimuli
using a self assessment scoring system [91].

In a similar fashion, it is necessary to validate the DDP signals acquired
using the tuned and calibrated DAS by comparing them with respect to some
standard recommended signals.

DDP signal characterization

Various time domain characteristics of the DDP signals acquired from both
hands has been reported by Bhattacharya in [5]. This includes the study
of the polarity and trends of the individual signals and detailed statistical
characterization of the signals. Thereafter the bilateral characteristics of the
signals have also been studied in terms of their interaction trends as well as
two proposed derived signals, termed as Gap and Pair Sum (PS!) signals.

A linear model of the (mean subtracted) deviation signals and certain
model parameters like zero crossing instant (ZCI) have also been proposed
in this study since the signals vary characteristically about a mean value.
A composition of the DDP signals in terms of these various parameters was
also developed in this study. In a different study, another linear model was
proposed by Nandy [92] that depends upon the first order zero crossing lag
(ZCL) of the signal autocorrelation function (ACF).

Therefore, there is a scope to characterize the feet signals also along with
the hand signals. Along with that, bilateral and other interdependencies also
need to be studied.
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1.1.3 Bilaterality studies on biopotential signals

Studies of bilateral relationship of various biopotential signals, including the
EDA and in particular the DDP signals, have been performed with different
objectives as discussed hereafter.

Bilaterality in biopotential signals

Studies in bilateral similarity and dissimilarity were conducted to understand
behaviour [78], gender, left and right handedness using mirror image stimu-
lus discrimination or morphometry [79, 80], performance of athletes [93, 94]
by studying their degree of lower body symmetry, infirmities like scoliosis
and spinal pain [95] using physical traits, as well as stroke patients identifi-
cation [96, 97] using Brain Symmetry Index (BSI) or Bilateral BSI (BBSI).
In another study, bilaterality of the brain EEG signals were analyzed for
identification and localization of brain generators [98]. Bilaterality of EMG
signals were also studied for gait phase classification [99] with 96% classi-
fication accuracy, chronic pain diagnosis [100], studying aspects of neural
synchronization [101] etc. Bilateral EOG signals have been studied in sleep
analysis [102].

Bilaterality of exosomatic EDA

Bilaterality studies were performed on exosomatic EDA signals to investigate
the physiological aspects of human beings. Analysis of bilateral EDA mea-
sured by applying DC stimuli to specific intracerebral sites have shown that
the human body shows strong ipsilateral control to limbic structure stim-
ulation [103]. Bilateral responses of these signals to various non-electrical
stimuli like audio, visual even odorant stimuli have also been studied. It has
been seen that strong acoustic stimuli cause noticeable bilateral differences
within the ratio of 1:1.5 [61] [62] and also that this is moderated due to the
habituation to such stimulus, as measured using SCR (Skin Conductance
Response) [63]. Importance of the stimulus intensity has been studied using
odorant stimuli [104].

The correlation between cardiovascular and electrodermal responses have
also been tested using adverse and non-adverse visual stimuli [64]. Bilat-
eral asymmetry of these signals has been observed to be correlated with
Autonomic Nervous System (ANS) activity [105] and subsequent studies on
bilaterality have been performed to understand depression and schizophre-
nia [106] [107]. Skin conductance level (SCL) and eye movement have been
used as indicators of bilaterality and these have been used to identify de-
pressive patients from normal subjects as well as to understand responses to
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different stimuli [108]. However, in a review of more than 50 papers [81],
it has been stated that the assumption that bilateral EDA recordings are
related to hemispheric asymmetry is ambiguous. These results are often
contradictory to each other, possibly since this signal is a response to the
applied stimuli and hence is significantly dependent on optimal experimental
conditions.

Endosomatic EDA signals

Studies on bilateral endosomatic EDA signals are very few, although it is
known that endosomatic recording does not depend on contact area. Hence
NS.EDR (Non-specific electrodermal response) may be more sensitive in en-
dosomatic recording than exosomatic recording [109]. In a patented study,
Stoller et al. [55] have collected bilateral DC bioelectric potentials from all
fingers of both hands, with respect to two reference sites at the palm of both
hands. This DC bioelectric potential is very similar to endosomatic EDA
signals. From the collected data, it has been shown that bilateral variance
of diseased subjects is much higher than that of healthy subjects. Bilateral
endosomatic EDA signals have also been studied by Wyatt to show that the
SPL of right hand is much higher than that of the left hand, irrespective of
left or right handed subject [110]. In a recent study by Hyatt et al. [111],
a comparison of SPL of 12 left handed and 12 right handed male subjects
shows higher SPL for right hand for both classes. It is observed in this study
that external stimuli also shows same result.

DDP signals

So far there is only few studies available on the bilateral asymmetry of DDP
signals. As mentioned earlier, Bhattacharya [5] has characterized the bilat-
eral asymmetry of hand signals by studying the gap and pairsum derived
signals, which are the difference between and sum of the simultaneously
acquired hand signals. In Bhattacharya et al. [86], the signals have been
analyzed statistically to ascertain parameters for health. In a very recent
study by Jaiswal et al. [112], cognitive load assessment was performed using
features of the DDP signals with an achieved F1 score of 89%. In this study,
signals were acquired from both hands as well as both feet. This study in-
dicates that feet signals have also significant characteristics to contribute in
the DDP signal based application studies.

Thus there is scope for a more detailed study of the characteristics of the
DDP signals acquired under various conditions and to study their applicability
in human condition monitoring.
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1.2 Aim and organization of the thesis

The aim of this work, as stated at the outset, is to acquire Differential Der-
mal Potentials (DDP) reliably from multiple locations, validate the signals
in terms of standard endosomatic EDA signals, study their unilateral and
bilateral characteristics and use these features for practical human condition
monitoring.

For this purpose, the work has been subdivided into multiple objectives.
In the first stage, several existing advanced data acquisition systems have
been tested for use in DDP acquisition. Thereafter, the task of calibrating
and tuning the 4-channel DAS developed earlier in the research laboratory
has been taken up. Subsequently, 4 sets of experiments were designed and
data was accordingly collected from human subjects. The collected data were
used for validation in terms of standard endosomatic EDA, characterization
studies as well as for human condition assessment applications. These have
been presented hereafter in some detail.

1.2.1 Organization of the thesis

The thesis is organized as follows:

Chapter 1 is the introduction of this thesis. It contains the review of
existing literature, followed by aim and organization of this thesis and list of
contributions.

In Chapter 2, three prevalent data acquisition systems, namely the Rish
Multi 18S multimeter and its associated adapter assembly, the Advantech
USB 4704 system and the Keysight LXI data acquisition/switching unit,
have been studied in terms of their features as well as their limitations.
The Rish Multi 18S and associated adapter assembly is discussed in Section
2.2. This system is still in use in the laboratory conditions in a limited
manner. Thereafter, the Advantech USB 4704 system and the Keysight
LXI data acquisition systems were studied in Section 2.3 and Section 2.4
respectively with the objective of testing their possible use for DDP signal
acquisition. Other peripheral components and measurements required for the
actual experimentation are discussed in Section 2.4.5. The overall findings
are discussed in Section 2.5.

Chapter 3 deals with the complete calibration, tuning and channel bal-
ancing of a dedicated 4-channel data acquisition system, henceforth referred
to as the DAS. This DAS was designed and developed by Biswas, a co-author
in [1], in the same research laboratory in which the present work has been
done. Its major characteristics and working principle are stated in Section
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3.1. The static calibration details of this DAS is presented in Section 3.2.
Different tuning methods that were tested to balance the performances of all
the channels of the DAS are presented in Section 3.3. This is followed by a
detailed static calibration of this balanced DAS in Section 3.4. Section 3.5
contains a study of the common-mode voltage characteristics. Thereafter, a
comparison of the static characteristics of the Rish Multi 18S based system
and the 4-channel DAS is provided in Section 3.6. The overall discussions is
presented in Section 3.7.

Chapter 4 includes the details of four experiments designed and conducted
to acquire DDP signals. General conditions of all 4 experiments are discussed
in Section 4.1. It contains the ethical committee details, criterion for subject
selection, material and methods used for the experiments. The 4 experiments
designed to collect the data for the various applications in this thesis are
detailed in Section 4.2. The common steps followed in all 4 experiments are
discussed in Section 4.2.1. Thereafter, all 4 experiments are detailed out in
subsequent subsections. The overview of all 4 experiments and the use of
the particular data set(s) in the various applications discussed in subsequent
Chapters is stated in Section 4.3.

Chapter 5 deals with the validation of the DDP signal in terms of stan-
dard endosomatic EDA signals as well as their unilateral and bilateral char-
acterization. The physiological basis of this DDP signals is presented in
Section 5.1. This is followed in Section 5.2 by the validation of this DDP sig-
nal by comparing it with the simultaneously acquired standard endosomatic
EDA signals. Section 5.3 and Section 5.4 contain the characterization of the
DDP signals acquired from all 4 locations during all 4 experiments stated
in Chapter 3. The unilateral characteristics are discussed in detail in Sec-
tion 5.3. The bilateral characteristics, both existing and some proposed, are
discussed in detail in Section 5.4. Section 5.5 contains the overall discussion
of this chapter.

Chapter 6 deals with 3 particular application studies that have been con-
ducted in this thesis. These are (1) classification of hypertensive and nor-
motensive subjects, (2) 2-level classification of sitting and supine postures
and 3-level classification of supine, sitting and standing postures and (3) de-
termination of the effective duration of rest in supine (or sitting) posture.
Section 6.1 contains the details of the preprocessing of the data for the appli-
cations stated. The details of the classification technique used in the first two
application studies are stated in Section 6.2. The classification studies were
done using random forest (RF) classifier. This was applied upon all the rele-
vant time domain and spectral characteristics of the signals described and/or
developed in Chapter 5. Thereafter, Section 6.3 to Section 6.5 contain the
details and results of the 3 aforementioned application studies. The overall
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discussion is presented in Section 6.6
The overall conclusion and scope for future work is presented in Chapter

7.

1.3 List of contributions

The list of contributions of this study presented chapter-wise are as follows:

1. Chapter 3: Setting up calibration, tuning and channel balancing pro-
cedures for the 4-channel Data Acquisition System (DAS) developed
erstwhile in the research laboratory. This ensures interchangeability of
the DAS devices for experimentation purposes.

2. Chapter 4: Design and implementation of 4 specific experiments in
order to achieve the various objectives of the present work.

3. Chapter 5: Systematic validation of the DDP signal in terms of stan-
dardly accepted endosomatic EDA signals. This study establishes the
independence of the DDP signals from dermal sweat gland activity as
in standard endosomatic and/or exosomatic EDA.

4. Chapter 5: Proposed new bilateral characteristics of DDP signals. This
follows the detailed unilateral and bilateral characterization of single
channel, dual channel (from both hands) as well as 4-channel (from
both hands and both feet) DDP signals using available characteristics.

5. Chapter 6: Human condition monitoring studies on

(a) Classification of hypertensive and normotensive subjects

(b) 2-level classification of sitting and supine postures and 3-level clas-
sification of supine, sitting and standing postures

(c) Determination of the effective duration of rest in supine posture
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CHAPTER2
Testing available data acquisition
systems for acquiring DDP signals

This chapter deals with the testing of the suitability of 3 available data ac-
quisition systems for acquiring the low voltage DDP signals reliably. As men-
tioned earlier, these are the RISH Multi 18S and associated adapter assembly,
the Advantech USB 4704 and the Keysight LXI data acquisition/switching
unit.

The RISH Multi 18S based system consisting of the multimeters, the
adapters, electrodes, connectors and other peripheral components have been
used successfully in acquiring the DDP signals [5]. However, further studies
require the portability as well as improvements in the compatibility, efficiency
and performance of the existing system. Consequently, this system as well
as two other comparable systems have been compared on the basis of their
accuracy, precision, resolution, portability, electrical safety, input impedance,
compatibility, cost and user friendliness.

2.1 RISH Multi 18S based system

The RISH Multi 18S based system [5, 113] consists of a battery powered
precise multimeter along with a battery powered optically isolated adapter
for each data channel being acquired, adequate number of Ag-AgCl snap
type EDA electrodes and single core coaxial snap type connectors and a
PC/Laptop for recording and display purposes. The overall instrumentation
system is described along with its features hereafter.

2.1.1 Instrumentation system

The block diagram of the RISH Multi 18S based system including the RISH
Multi SI232 adapter assembly and the Rishcom 100 software is given in Figure

15
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Figure 2.1: Block diagram of the RISH Multi 18S based data acquisition
system [4]

(a) (b) (c)

Figure 2.2: (a)Snap type Ag/AgCl electrodes , (b) Electrode connectors and
(c) RISH Multi 18S multimeter and RISH Multi SI232 adapter assembly.

2.1. The electrodes, connectors and multimeter-adapter assembly that are
actually used are shown in Figure 2.2. The experimental setup with the data
acquisition system [5] is shown in Figure 2.3.

Biopotential signals are acquired using Ag-AgCl snap type 8mm elec-
trodes (Make: Shimmer Sensing) from the respective skin surfaces (interme-
diate phalanges of index and middle fingers of hand and/or feet) and fed to
the multimeter-adapter assembly. The electrodes are connected to the skin
surface using aqueous ultrasound gel to provide skin-electrode interface. The
multimeter-adapter assembly consists of a 43

4
digit digital multimeter (Make:

Rishabh Instruments, model: RISH Multi 18S) [4] and an optically isolated
adapter (Make: Rishabh Instruments, model: RISH Multi SI232) [87] mod-
ule. Acquired data is then sent to the PC or laptop via serial cable. The
PC/laptop has a software installed in it (Make: Rishabh Instruments, model:
Rishcom 100) to interface with the multimeter-adapter assembly. It is used
to set up the multimeter, display the acquired signals in form of voltage data
log or graphical representation and store these into a data logger format.
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Figure 2.3: Experimental setup with RISH Multi 18S and RISH Multi SI232
adapter assembly [5]

2.1.2 Key features

The key properties of this data acquisition system are given hereafter.

• It is a 43
4
digit display multimeter with four digits with 0-9 display

capability and one digit with 0-2 display capability.

• It is a precise multimeter with resolution of 10 µV within ±300mV
range. Beyond this, the resolution is 100 µV upto ± 3V.

• Within ±300mV, the input impedance is >10GΩ and beyond that, it
is around 11MΩ upto 3V.

• Up to 6 multimeters can be connected together to acquire signals from
6 different locations simultaneously. However, the sampling speed is
compromised as more channels are added.

• A software, name: Rishcom 100, is required for communication with
PC for storage and display purposes.

• No additional filter is used in order to keep all the information as intact
as possible.
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Three very important features of this multimeter adapter assembly that
justify its use for DDP signal acquisition are:

(i) These multimeters have a resolution of 10µV , which is known to be the
typical minimum value of biopotentials [114].

(ii) The typical bandwidth of the EDA signals is 0-3Hz [3]. In this present
study, the sampling frequency has been set to 20 samples/second to
ensure adequate sampling rate for capturing the DDP system dynamics.
in accordance with Shannon’s sampling theorem.

(iii) It is known that if more than 5mA of current passes through the heart
of an human beings, it may cause the person to die [115]. There is
an in-built optical isolation between the multimeter and the adapter,
which provides safety to the human body from any electrical hazard
during data recording.

Static Characteristics

A detailed analysis of the static characteristics of RISH Multi 18S multime-
ters has been done by Bhattacharya [5]. The main outcomes of this study
are given hereafter.

• Maximum range of the static error lies within ±0.07% of the measured
value.

• Standard deviation of the potential signal within ± 300mV range is
0.01mV, which equals the rated resolution.

• Sensitivity is 0.999, which is very close to 1.

• The system tested has an offset of 0.02mV.

• The sum of square error (SSE) is found to be 0.151mV, whereas the
root mean square error (RMSE) is 0.075mV.

• It follows a linear input/output characteristics.

Drawbacks

Some of the major drawbacks and limitations of this system are stated here-
after.

• The Rishcom 100 runs only on Windows XP platform, which does not
support the modern day PC configurations.
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• In case more than one channel of data has to be acquired, the sys-
tem becomes unwieldy and loses portability due to the multiple sets of
multimeter-adapter assemblies required.

• Any signal lower than 10µV can not be acquired using this data acqui-
sition system.

2.2 Advantech USB-4704

The Advantech USB-4704 is a low-cost, modern, adaptable data acquisition
module from Advantech Co. Ltd with high end features. This has been tested
as a possible improvement or replacement of the RISH Multi 18S based data
acquisition system.

2.2.1 Key features

The key features of the Advantech USB-4704 system are listed hereafter.

• It has 8 input/output ports those can be used as 8 single ended or 4
differential ended terminals.

• It can be connected to PC via USB 2.0 module.

• It draws all its required power from the USB port. So no external
power, neither battery nor power adapter, is required. Power rating of
this instrument is 5V, 360mA to 5V, 450mA.

• It can be interfaced using many softwares like C#, C++, LabVIEW,
VB.Net, BCB, MFC, VB6, Delphi, Java, Matlab and Qt.

• It works well with the updated operating systems like 32-bit/64-bit
Windows 7/8/10 and Linux.

• For analog inputs, its sampling speed is 48 Ksamples/second, which is
very high compared to the RISH Multi 18S multimeter.

• It has a resolution of 14 bits or approximately 61 µV.

• The input impedance of this acquisition system is 127kΩ. However,
this is quite low compared to the recommended input impedance of
minimum 5MΩ for acquiring the potential signals [51].

• It is easy to use and rugged enough for industrial applications as well
as scientific experiments.
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2.2.2 Static characteristics

Figure 2.4: LABView virtual instrumentation system

The static input-output characteristics of this instrument was tested using
the LABView virtual instrumentation system. The designed virtual instru-
mentation (VI) system is shown in Figure 2.4. The measuring range was set
to ±1V in differential input measuring mode.

The true values (TV) were generated using Libratherm LC-05 millivolt
calibrator and the measured values (MV) were displayed in VI and stored in
an excel file for calculation. Predetermined TVs were set within ±300mV as
it was seen in [5] that DDP signals lie within this range. For the calibration,
the TVs were varied 10 times in ascending and descending order. The TVs,
MVs and mean of MVs are tabulated in Table 2.1 while the calibration curve
for mean of MV vs. TV is plotted in Figure 2.5.

From Figure 2.5 and Table 2.1, it is clear that MV vs. TV shows a
linear characteristics. Relative error (RE = TV−MV

TV
) and relative accuracy

(RA = (1− RE)× 100%) have also been calculated and tabulated in Table
2.1. It is observed that both RE and RA are good at higher TVs but the
performance degrades markedly for lower TVs. Sensitivity of this instrument
was calculated to be 0.99 but it has an offset of -6.7mV. This is a high value
when compared to the low voltage DDP signals.
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Figure 2.5: Calibration curve of Advantech USB-4704 data acquisition sys-
tem
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Table 2.1: Calibration table of Advantech USB-4704 data acquisition system

True value Measured value (MV) in mV Mean of the Relative Relative
(TV) in mV 1 2 3 4 5 6 7 8 9 10 MV in mV error Accuracy

300.00 290.47 290.50 290.27 290.36 290.47 290.21 290.56 290.56 290.30 290.01 290.37 0.03 96.79
250.00 240.94 240.56 240.99 241.04 240.85 240.66 240.58 240.56 240.61 240.97 240.78 0.04 96.31
150.00 141.77 141.66 141.79 141.69 141.89 141.89 141.73 141.70 141.69 141.80 141.76 0.05 94.51
100.00 92.22 92.22 92.30 92.21 92.36 92.35 92.39 92.29 92.37 92.27 92.30 0.08 92.30
50.00 42.81 42.78 42.80 42.83 42.76 42.78 42.83 42.80 42.81 42.77 42.80 0.14 85.60
20.00 13.09 13.09 13.09 13.09 13.09 13.10 13.10 13.09 13.09 13.10 13.09 0.35 65.45
10.00 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 0.68 32.00
5.00 -1.75 -1.75 -1.75 -1.75 -1.75 -1.75 -1.75 -1.75 -1.75 -1.75 -1.75 1.35 -35.00
1.00 -5.71 -5.71 -5.71 -5.71 -5.72 -5.70 -5.71 -5.71 -5.71 -5.70 -5.71 6.71 -571.00
0.50 -6.21 -6.21 -6.20 -6.21 -6.21 -6.21 -6.20 -6.20 -6.21 -6.20 -6.21 13.42 -1242.00
0.20 -6.51 -6.50 -6.51 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50 -6.50 33.50 -3250.00
0.10 -6.61 -6.60 -6.60 -6.60 -6.60 -6.60 -6.59 -6.61 -6.60 -6.60 -6.60 67.00 -6600.00
0.05 -6.64 -6.66 -6.66 -6.65 -6.65 -6.65 -6.65 -6.65 -6.65 -6.65 -6.65 134.00 -13300.00
0.02 -6.68 -6.68 -6.69 -6.68 -6.69 -6.68 -6.68 -6.68 -6.69 -6.69 -6.68 335.00 -33400.00
0.01 -6.69 -6.68 -6.68 -6.69 -6.69 -6.69 -6.70 -6.68 -6.69 -6.69 -6.69 670.00 -66900.00
0.00 -6.70 -6.70 -6.70 -6.70 -6.70 -6.70 -6.70 -6.70 -6.69 -6.69 -6.70 Inf -Inf
-0.01 -6.71 -6.71 -6.72 -6.71 -6.70 -6.71 -6.71 -6.71 -6.71 -6.71 -6.71 -670.00 67100.00
-0.02 -6.72 -6.72 -6.72 -6.71 -6.73 -6.72 -6.72 -6.72 -6.72 -6.73 -6.72 -335.00 33600.00
-0.05 -6.75 -6.75 -6.75 -6.75 -6.74 -6.75 -6.75 -6.75 -6.75 -6.75 -6.75 -134.00 13500.00
-0.10 -6.80 -6.80 -6.80 -6.80 -6.80 -6.80 -6.80 -6.79 -6.80 -6.79 -6.80 -67.00 6800.00
-0.20 -6.90 -6.90 -6.89 -6.90 -6.90 -6.89 -6.90 -6.90 -6.89 -6.89 -6.90 -33.50 3450.00
-0.50 -7.20 -7.19 -7.20 -7.20 -7.20 -7.19 -7.20 -7.20 -7.20 -7.19 -7.20 -13.40 1440.00
-1.00 -7.69 -7.70 -7.69 -7.68 -7.68 -7.69 -7.70 -7.68 -7.69 -7.69 -7.69 -6.69 769.00
-5.00 -11.65 -11.64 -11.65 -11.66 -11.64 -11.64 -11.66 -11.66 -11.66 -11.65 -11.65 -1.33 233.00
-10.00 -16.61 -16.59 -16.61 -16.58 -16.61 -16.60 -16.60 -16.61 -16.61 -16.61 -16.60 -0.66 166.00
-20.00 -26.49 -26.50 -26.51 -26.52 -26.52 -26.52 -26.53 -26.48 -26.52 -26.51 -26.51 -0.33 132.55
-50.00 -56.21 -56.21 -56.21 -56.24 -56.14 -56.23 -56.24 -56.15 -56.22 -56.21 -56.21 -0.12 112.42
-100.00 -105.78 -105.78 -105.69 -105.60 -105.75 -105.74 -105.81 -105.69 -105.75 -105.73 -105.73 -0.06 105.73
-150.00 -155.31 -155.18 -155.12 -155.22 -155.36 -155.36 -155.25 -155.31 -155.32 -155.32 -155.27 -0.04 103.51
-250.00 -254.40 -254.17 -254.17 -254.43 -254.12 -254.35 -254.12 -254.17 -253.97 -254.28 -254.22 -0.02 101.69
-300.00 -303.97 -303.85 -303.40 -303.58 -303.79 -303.76 -303.70 -303.64 -303.61 -303.94 -303.72 -0.01 101.24
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2.2.3 Drawbacks

Some major drawbacks of the system are thus:

• The system has a large offset voltage of −6.7mV, particularly when
compared to mV and µV level DDP signals.

• Its resolution is limited to approx. 60 µV hence it is unusable for the
DDP signals which have dynamics in the order of µVs.

• Its low input impedance makes it unsuited for potential signal acquisi-
tions.

• Its absolute accuracy is 0.1% of the full scale reading (FSR) of 1mV.
This is very high in comparison to the DDP signals.

• There is no provision for electrical safety in this device.

This system is thus unsuitable for acquiring DDP signals.

2.3 Keysight LXI Data Acquisition/Switch Unit

Another data acquisition system (make: Keysight Technologies, name: Keysight
LXI Data Acquisition/Switch Unit, model: 34972A) with multiplexor module
Module-34901A has also been tested for usability in DDP signal acquisition.

2.3.1 Key features

Some key properties of this system are:

• It is a multiplexor unit that can acquire upto 60 differential channels.

• It has a selectable resolution of 41
2
digit, 51

2
digit and 61

2
digit. However,

the speed of acquisition decreases as the resolution is increased.

• It has selectable input impedance from a nominal value of 10 MΩ to >
10,000 MΩ for the ±1V range.

• Common mode rejection ratio (CMRR) for dc measurement is 140 dB.

• This acquisition system is ac powered and weighs around 3.6kg.

• It has USB interface with PC or laptop and a dedicated software name
BenchView that is used for device set up, data display, control and
storage purposes.
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Table 2.2: Trial readings of Keysight LXI Data Acquisition/Switch Unit

Resolution Time interval Number of samples in 2 minutes
in digit in ms Theoretical Actual

6.5

1 120 120
900 133 134
800 150 150
700 171 171
600 200 200
500 240 239
400 300 298
340 353 300

5.5

340 353 352
300 400 402
200 600 597
150 800 798
100 1200 1193
75 1600 1696
50 2400 2402
40 3000 2810

4.5

40 3000 3002
30 4000 4003
20 6000 5998
10 12000 12001
5 24000 24005

2.3.2 Static Calibration

In the first test, an arbitrary constant input of 0.1mV was supplied to a
single channel of the data acquisition system and the number of samples
recorded in the system in 2 minutes duration was noted for the different
system resolution settings. Table 2.2 provides the record of the set system
resolution vs. the number of data samples acquired in 2 minutes using the
system.

From the stated characteristics, it is noted that at resolution settings of
6.5, 5.5 and 4.5, signals upto 10 nV , 1µV and 100µV respectively can be
acquired. But, as stated in the system manual, it is observed that even for
the constant dc input, the speed of acquisition decreases as the resolution
increases.

The plot of the acquired data is shown in Fig. 2.6. It can be seen from
the plot that the mean value of the acquired signal is 0.1054mV for the input
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Figure 2.6: Output of Keysight LXI Data Acquisition/Switch Unit for a
constant dc supply of 0.1mV

voltage of 0.1mV. Therefore, the % error is calculated to be 5.4% which is
on the higher side.

2.3.3 Drawbacks

The major drawbacks of this system are:

• The system is not portable due to its direct ac power requirement as
well as its weight.

• It does not provide isolation from electrical safety.

• Resolution and speed can not be achieved simultaneously in this device.
As a result, the minimum sampling speed required for capturing the
DDP dynamics cannot be achieved with the required system resolution
using this system.

• Use of multiple channels will decrease the speed proportionately. In 61
2

digit, its acquisition speed is 6 channels/sec. For 51
2
and 41

2
digit, the

acquisition speed are 54 channels/sec and 500 channels/sec respectively.

This system is also thus unsuitable for acquiring DDP signals.
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2.4 Peripheral components and measurements

Apart from the basic data acquisition system, there are several other compo-
nents that are necessary for the experimental setup and certain measurements
that are needed for conducting the experiments.

2.4.1 Electrodes and connectors

The description of electrodes and connectors used in the data acquisition
using RISH Multi acquisition system has already been stated in 2.2.1. The
same electrodes and connectors were used for testing Advantech USB-4704
and Keysight LXI data acquisition systems. For static calibration, supply was
given directly to the electrodes from voltage calibrator (Model: LC-05, Make:
Libratherm Instruments Pvt. ltd.). However, the terminals connecting the
acquisition systems of the connecting cable were modified accordingly.

2.4.2 Gel

When experimenting with human subjects, aqueous ultrasound (USG) gel
was used at the electrode-skin interface for acquiring the human skin poten-
tials since it provides good transfer of ions between electrode and skin. For
static calibration, gel was not used.

2.4.3 Power supply

RISH Multi 18S multimeter is a 9V battery powered system and the RISH
Multi SI232 adapter is a 2 × 1.5V battery powered device. The Advantech
USB-4704 takes power using the connected USB cable from the connected
PC. On the other hand, Keysight LXI acquisition system takes power directly
from the household power supply of 220V ac.

2.4.4 USB connector

The RISH Multi 18S based system is connected to PC via serial cable,
whereas both the Advantech USB 4704 and Keysight LXI are USB con-
nected devices. Advantages of USB over the serial communication have been
listed below.

• Speed: Data transfer rate using serial communication is 1 Mbps to
10 Mbps while the data transfer speed in USB communication is up to
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Table 2.3: Instruments used for health parameter measurements

Parameter Instrument Model Make

BP
Digital BP Moni-
tor

HEM-7201 Omron Healthcare

Analog BP monitor
GB101 (Sphygmo-
manometer)

Rossmax

MDF 747 Dual
Head Stethoscope

MDF Instruments
USA

Pulse rate
Digital BP Moni-
tor

HEM-7201 Omron Healthcare

Manual Using a stop watch for 1 minute duration
SpO2 Pulse Oximeter CMS50D CONTEC

10,000 Mbps, which is at least 1000 times faster compared to the serial
communication.

• Power: USB is much more capable to power the system compared to
serial communication as it delivers 5V with upto 900mA current.

• Compatibility: Nowadays, USBs are compatible with every PC or
laptop while serial connectors are rarely available.

2.4.5 Health parameters

Since the experiments involve human subjects so it is necessary to record
some physiological parameters to ensure the normalcy of the subjects. These
health parameters are: blood pressure (BP), pulse rate and oxygen saturation
level (SpO2). Instruments used for these measurements are tabulated in
Table 2.3. These parameters were recorded from the subjects both before
and after the data acquisition.

2.5 Discussions

It is observed that the RISH Multi 18S based present data acquisition system
is capable of acquiring the low voltage DDP signals from multiple locations
simultaneously with moderate speed. This system provides good accuracy
and acceptable precision. It also has optical isolation to provide electrical
safety. However, its major limitations are its lack of compatibility with up-
dated OS platforms and its lack of portability, specially when the number of
channels are more.
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In view of these limitations, two other data acquisition systems were
tested. The Advantech USB-4704 is a low powered compact, portable device
that can provide high speed data acquisition. But it lacks the accuracy
and precision required for DDP signal acquisition. The Keysight LXI Data
Acquisition/Switch Unit, on the other hand, is not portable and consumes
relatively high power but it is accurate, precise and updated. It acquires data
with good speed in low resolution but as the resolution increases, its speed
decreases. Furthermore, the acquisition speed also decreases proportionately
with increase in the number of acquiring channels.

A table has been provided comparing these 3 data acquisition systems
on the basis of the required characteristics in Table 2.4. Comparing all the
characteristics, it can be said that while the RISH Multi 18S based system
has certain limitations, it is still a reliable system but the other two systems
tested are not suitable for use as a reliable and portable acquisition system
for DDP signals.
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Table 2.4: Comparison of the available data acquisition systems

Properties Requirement
Data acquisition systems

RISH Multi 18S Advantech USB
4704

Keysight LXI
switching unit

Accuracy High Relative accuracy 100
± 0.07%

Relative error very
high in low voltage
range

Relative error also
high, 5.4% for 0.1mV

Resolution Typically
0.01mV or
better

0.01mV for ±300mV 0.12mV within ± 1V Resolution is good but
acquisition speed need
to be sacrificed.

Precision SD should lie in
the order of res-
olution, typically
0.01mV

0.01mV Precision is low The system is precise.

Portability Must be small,
light weight and
battery powered

Not portable, contain-
ing many parts

small, light weight and
USB powered

Very heavy, ac 220V
supply required, not
portable.

Electrical
safety

Some isolation
between input
and output for
electrical safety

Optical isolation for
safety

No isolation No isolation

Input
impedance

Typically greater
than 10MΩ

>10GΩ 127kΩ, which is very
low

10 MΩ or > 10,000
MΩ, satisfactory



30
A
ltern

ative
d
ata

acq
u
isition

sy
stem

s

Table 2.4 – continued from previous page

Properties Requirement
Data acquisition systems

RISH Multi 18S Advantech USB
4704

Keysight LXI
switching unit

Communication USB communi-
cation for speed
and availability

Serial communication USB communication USB communication

Compatibility Must be com-
patible with
the updated
OS as well as
the PC/Laptop
hardware

Not compatible as the
software does not work
of windows 7,8 or 10

Work on a number of
softwares and all these
are compatible with
the modern systems

BenchView is compat-
ible with windows 10
also.

Cost Should not be
cost too high

This system is expen-
sive

Low cost Expensive

User friendli-
ness

Should be user
friendly

Not too user friendly Expertise required on a
software like labView,
Matlab, Python etc.

User friendly,
BenchView is very
simple lo understand



CHAPTER3
Calibration of 4 channel DAS

The limitations of the RISH Multi 18S based system and the unsuitability
of the other two systems tested led to the necessity for developing a reliable
and portable acquisition system for DDP signals. So a dedicated 4-channel
data acquisition system was designed and developed indigenously by Somen
Biswas, a co-author in [1], in the same research laboratory in which the
present study is done.

This chapter deals with the standardization of this 4-channel data acquisi-
tion system (DAS). The characteristics of the 4-channel DAS and its working
principle have been stated at the outset. Thereafter, details of a preliminary
calibration performed to estimate its performance have been stated. Based
on the calibration results, procedures for tuning and balancing the channels
of this DAS have been tested. Thereafter, the complete static calibration
of the balanced 4-channel DAS has been stated. A study of the common
mode interference voltage of this DAS has also been presented. Finally, a
comparison with the RISH Multi 18S based system is provided.

3.1 Major characteristics

The 4-channel DAS can acquire differential potentials from maximum 4 loca-
tions. It is a battery operated micro-controller based system that is specifi-
cally designed to acquire the potential differences in the order of DDP signals.
The major characteristics of this acquisition system that make it ideal for
DDP signal acquisition have been stated hereafter.

Differential dermal signal acquisition: The DDP signals typically lie within
±500mV. So, a silicon zener diode has been used to supply the refer-
ence voltage close to that range as it has a forward voltage cutoff of
0.7V.

Accuracy, resolution and precision: To achieve the resolution of 0.01mV

31
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for this reference voltage, an ADC with at least 17 bits is needed.
Hence, a high speed 22 bit ADC has been used in each channel.

Simultaneous acquisition: Individual sample/hold circuits have been used
in each channel with a common pulse for simultaneous acquisition from
different locations.

Portability: The system is powered with rechargeable batteries.

Electrical safety: Opto-couplers have been used to provide isolation to the
communication section as it is connected to the USB of a PC/laptop.
The PC is connected to the electric AC supply. Under normal working
conditions, USB output does not cause any electrical hazard. But in
some rare situations, malfunctions of USB may cause electrical hazard.
For this reason, opto-couplers have been provides in the communica-
tion (Tx and Rx) section. However, the acquisition system is battery
powered with 3 Li-ion batteries (18650 Li-ion battery, nominal voltage
3.7V) connected in series to obtain 11.10V power supply.

Communication: The I2C protocol has been used for better communica-
tion speed.

Figure 3.1 represents the schematic diagram of the 4-channel DAS. The
DAS consists of 4 terminal units and 1 main unit. These terminal units
have a 22 bit ADCs each to acquire the DDP signals between two input
terminals. Silicon zener diodes are used in these terminal units to provide
the reference voltage of 0.650mV. All the terminals units are connected to
the main unit using input units. The main unit consists of a microcontroller
block for controlling all its operations, a multiplexor block for sequentially
data processing, a battery powered power supply block to provide portability
and a communication block for communicating with the PC or laptop via
USB. The communication block has been provided with optical isolation for
the electrical safety. An actual 4-channel DAS has been shown in Figure 3.2.

3.1.1 Working principle

The flowchart for the working of the DAS is shown in Figure 3.3. The working
principle is outlined hereafter.

1. The micro-controller in the main unit initializes all parameters with
default or user provided values when the acquisition system has been
switched on or reset. It also sets all the counters to zero at this point
of time and is ready to send the signal for starting the program.
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Figure 3.1: Schematic diagram of the 4-channel DAS.

2. After getting the software or hardware ’START’ signal, the ADCs of
the terminal units start sampling the data simultaneously and then
hold them for conversion.

3. The micro-controller then selects the first channel number that is set
using the multiplexer, checks the end of conversion bit, waits and then
reads the data after end of conversion. Next, the micro-controller stores
the data in its temporary memory.

4. The micro-controller then selects the next channel and follows the same
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Figure 3.2: A typical 4-channel DAS.

procedure as in step 3. This is repeated until it acquires the data from
all channels.

5. After storing the data of all the selected channels for a particular instant
in its temporary memory, the main unit processes the stored data and
sends it for display and/or storage through an UART to USB converter
module.

6. The process in steps 1 till 5 is repeated for a predetermined period till
the total number of samples of data to be recorded from all the selected
channels are acquired and stored.

7. After completing the total task of acquiring the data, the DAS goes
into sleep mode. A software or hardware reset is needed to bring it out
from the sleep mode.
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Figure 3.3: Flowchart of the working principle of the 4-channel DAS
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3.2 Calibration of the DAS

The DAS was calibrated systematically for determining its accuracy, preci-
sion, linearity and sensitivity. This 4 channel DAS was designed to acquire
low voltage signals within ±500mV , which covers the range of observed DDP
signals. So for its calibration, DC signals of different input voltages within
±500mV were acquired and recorded. At every input voltage, 2400 samples
of data were acquired at a sampling rate of 20 samples/s for every individual
channel. The standard input voltages were considered here as true values
(TV) and the acquired voltages were considered as measured values (MV).
The same calibration procedure was followed for every input voltage value
and for all 4 channels individually.

The calibration was done in two phases. At first, a basic calibration
was performed to get the input vs. output calibration curve. From this
the accuracy, precision, linearity and sensitivity of the DAS was determined.
After that, this calibration curve was subtracted from the ideal calibration
curve (TV vs. expected reading) to get the error curve, which was then
added to the calibration curve to get the corrected calibration curve. This
was done for all 4 channels individually. Finally, this new system was studied
systematically to find all the static parameters.

The input vs. output calibration curve was obtained as the plot of the
mean of the MV with respect to the TV as shown in Figure 3.4. It is ob-
served from the figure that the input-output relationships of all 4 channels
are almost identical. To ascertain the characteristics furthermore, few static
performance characteristics have been calculated.

3.2.1 Accuracy

Static error (SE) is defined as the difference between TV and MV [116,117],
while the corresponding terms, relative error and % relative accuracy are
defined as [118]
Relative Error (RE) = SE

TV
= TV−MV

TV

and % Relative Accuracy %(RA) = (1−RE)× 100%.

For each input voltage, the static errors were calculated for all the 2400
samples. Their maximum and minimum values are tabulated in Table 3.1and
the corresponding % RA values are tabulated in Table 3.2. From Table 3.1,
it is observed that the SE is lesser for smaller input voltages than the larger
inputs, as is to be expected. This is supported by the results in Table 3.2,
where it is observed that the overall % RA of all the channels for all the
inputs lies within 100±5%, except in a few instances. The RA of 100±5%
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Figure 3.4: Plot of measured value vs. true value for all 4 channels

is not adequate for an accurate data acquisition system. Therefore, further
tuning is required to improve the accuracy. This is discussed in Section 3.3.

3.2.2 Precision
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Figure 3.5: (a)Output voltage vs input voltage of a single channel with µ±1σ
ranges at all test points (b)Enlarged view of µ± 1σ range of the highlighted
test point.
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Table 3.1: Maximum and minimum values of Static Error (SE) for different
input voltages for all 4 channels.

True Static error

value Channel 0 Channel 1 Channel 2 Channel 3

in mV Min, Max Min, Max Min, Max Min, Max

in mV in mV in mV in mV

500 9.10, 9.64 8.05, 8.29 4.67, 5.10 -9.91, -9.81

250 3.17, 3.25 2.96, 3.03 1.30, 1.39 -5.31, -5.05

100 1.44, 1.53 1.24, 1.33 0.55, 0.65 -2.31, -2.22

50 0.65, 0.71 0.47, 0.50 0.14, 2.89 -1.25, -1.19

10 0.06, 0.10 0.06, 0.09 -0.01, 0.03 -0.29, -0.24

1 -0.04, 0.01 -0.05, -0.01 -0.05, -0.02 -0.08, -0.04

-1 -0.05, -0.01 -0.06, -0.02 -0.05, -0.01 -0.13, 0.02

-10 -0.19, -0.15 -0.06, -0.02 -0.13, -0.09 -0.64, 0.19

-50 -0.95, -0.89 -0.76, -0.72 -0.44, -0.40 0.93, 0.99

-100 -1.98, -1.82 -1.76, -1.70 -1.13, -1.03 1.76, 1.84

-250 -4.23, -4.14 -5.48, -3.95 -2.37, -2.28 3.68, 4.09

-500 -10.92, -11.84 -10.29, -9.86 -6.94, -6.69 7.61, 7.82

Precision is determined in terms of two statistical parameters, namely
mean (µ) and standard deviation (σ), also denoted as SD. The mean and
SD of the measured value were calculated for every true value (input) for
all 4 channels and tabulated in Table 3.3 and µ ± 1σ was indicated over an
input-output relation plot for a single channel in Figure 3.5. From Table 3.3
and Figure 3.5, it may be said that the instrument is precise, with very small
deviations that are well within limits.

3.2.3 Linearity and Sensitivity

Figure 3.4 shown at the outset contains the plot of the mean (µ) of the
measured values with respect to the corresponding inputs for all 4 channels.
From this figure, it can be said that the input and output follow a linear
relationship. So, a curve fitting algorithm of MATLAB software is used to
find the functional form of the best fit line. The goodness of fit (R2) and
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Table 3.2: Maximum and minimum % Relative Accuracy for different input
voltages for all 4 channels.

True % Relative Accuracy

value Channel 0 Channel 1 Channel 2 Channel 3

in mV Min, Max Min, Max Min, Max Min, Max

500 98.07, 98.17 98.34, 98.39 98.98, 99.07 101.96, 101.98

250 98.69, 98.73 98.78, 98.81 99.45, 99.48 102.02, 102.12

100 98.46, 98.56 98.66, 98.76 99.35, 99.45 102.22, 102.31

50 98.57, 98.70 98.99, 99.07 94.22, 99.72 102.39, 102.49

10 98.96, 99.37 99.13, 99.44 99.72, 100.14 102.43, 102.93

1 99.40, 103.90 101.20, 104.80 101.50, 105.30 103.90, 108.30

-1 95.00, 98.90 94.30, 97.70 95.20, 98.90 87.50, 101.90

-10 98.05, 98.47 98.07, 98.38 98.74, 99.10 93.58, 101.88

-50 98.10, 98.21 98.48, 98.55 99.13, 99.20 101.86, 101.97

-100 98.02, 98.17 98.24, 98.30 98.87, 98.97 101.76, 101.84

-250 98.30, 98.34 97.80, 98.42 99.05, 99.09 101.47, 101.64

-500 97.61, 97.83 97.94, 98.03 98.61, 98.66 101.52, 101.56

RMSE of all 4 channels were calculated and tabulated in Table 3.4. It is
evident from the plots in Figure 3.4 and the R2 of 1 for all channels with
corresponding significantly low values of RMSE that linearity of response is
established for all 4 channels of the DAS.

Sensitivity, which indicates the smallest amount of change that can be
detected due to the change of input of unit amount, is standardly defined as

Sensitivity (S)= ∆MV
∆TV

, where ∆TV is the change in measured value and
∆MV is the change in true value. The sensitivity of the DAS channels have
been determined as stated in Table 3.4. It is observed that the values of
sensitivity are close to the ideal value of 1 for all 4 channels. It is to be
mentioned that since the input vs. output characteristics is linear, therefore
slope of the best fit line and sensitivity are synonymous in this case.
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Table 3.3: Mean and SD of Measured Values for different inputs for all 4
channels.

True Measured value

value Channel 0 Channel 1 Channel 2 Channel 3

in mV µ in σ in µ in σ in µ in σ in µ in σ in

mV mV mV mV mV mV mV mV

500 490.65 0.14 491.84 0.05 495.09 0.14 509.86 0.02

250 246.78 0.01 247.00 0.01 248.66 0.01 255.19 0.06

100 98.51 0.02 98.70 0.01 99.40 0.02 102.26 0.02

50 49.32 0.01 49.52 0.01 49.84 0.06 51.22 0.01

10 9.92 0.01 9.93 0.01 9.99 0.01 10.27 0.01

1 1.02 0.01 1.03 0.01 1.03 0.01 1.06 0.01

-1 -0.97 0.01 -0.96 0 -0.97 0.01 -1 0.01

-10 -9.83 0.01 -9.82 0.01 -9.89 0.01 -10.16 0.02

-50 -49.08 0.01 -49.26 0.01 -49.58 0.01 -50.96 0.01

-100 -98.11 0.05 -98.27 0.01 -98.93 0.01 -101.80 0.01

-250 -245.81 0.01 -246.00 0.02 -247.67 0.01 -253.90 0.10

-500 -488.70 0.40 -490.00 0.07 -493.18 0.05 -507.72 0.04

Table 3.4: Table for the R2 and RMSE for different input voltages for all 4
channels.

Parameter Channel 0 Channel 1 Channel 2 Channel 3

R2 1 1 1 1

RMSE in mV 0.7019 0.5608 0.5872 0.4422

Sensitivity 0.9806 0.9828 0.9893 1.018

3.3 DAS tuning and channel balancing

In Figure 3.4, it can be seen that the calibration curves for all 4 channels of
the DAS are similar but not exactly identical to each other. As expected, this
phenomena is observed for the various channels in different data acquisition
systems also. Furthermore, it was seen from the basic calibration that since
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static error is larger for large input voltages, so this causes a decrease in
accuracy for such inputs.

This necessitates putting in place a procedure to configure the calibration
curves for each channel of a particular DAS and achieve channel balancing.
3 different approaches have been tested and these procedures are illustrated
henceforth for one specific DAS. In all cases, the modifications have been
performed stage-wise in order to correct for the remnant inaccuracy in the
previous stage.

3.3.1 Multiplying inverse slope

The first method attempts to correct the calibration curve by multiplying
the inverse of the calculated sensitivity, henceforth also referred to as slope,
to the existing output. The objective is to achieve the ideal accuracy of 100%
and the corresponding ideal slope of the input/output calibration curve as
1. This technique is very easy to implement at the programming level in the
microcontroller and takes very less time to execute. Details of the method
are stated below.

Method

Consider the initial input-output relationship

yi = m× xi + c (3.1)

where xi and yi are the input and output variables at ith instant, while m and
c are the slope and intercept of the input-output curve. For calibration pur-
poses, TV is considered to be an almost constant DC input voltage supplied
from a standard function generator (make and model: Keysight 33500B).
The instantaneous value of this voltage is considered as xi. Since the values
of c at various input voltage levels are negligibly small, so it was neglected.
Hence, the corrected output, yc, which is expected to match the TV xi, is
obtained as yc = 1/m× yi.

Result

A comparison of the accuracy and precision before and after slope correction
in Channel 1 of the DAS is shown in Table 3.5.

It is observed that while the accuracy increases, yet the SD increases
leading to a decrease in precision. Correspondingly, the uncertainty and %
error of readings also increase. This observation indicates that while the
value of the intercept is small, yet it is significant in maintaining the SD at
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Table 3.5: Comparison of accuracy and precision before and after inverse of
slope correction

True mean in mV SD in mV

value Before After Before After

in correction correction correction correction

500 490.65 497.52 0.14 0.19

250 246.78 248.38 0.01 0.02

100 98.51 98.95 0.02 0.02

50 49.32 49.56 0.01 0.02

10 9.92 9.94 0.01 0.01

1 1.02 1.01 0.01 0.01

-1 -0.97 -0.98 0.01 0.01

-10 -9.83 -9.89 0.01 0.02

-50 -49.08 -49.48 0.01 0.01

-100 -98.11 -98.91 0.05 0.02

-250 -245.81 -248.55 0.01 0.02

-500 -488.70 -496.23 0.40 0.42

lower values. Hence, a scheme accounting for the local changes in slopes and
intercepts needs to be explored for improving the performance.

3.3.2 Spline fitting

The second approach for error correction is that of fitting multiple straight
lines or splines. It was seen that % RA within the range ±10mV is very high
as compared to that for the range beyond. It is to be noted that the DAS
has been calibrated using a calibrator (Model: LC05, Make: Libratherm In-
struments Private Limited) which has 3 distinct ranges: a) within ±10mV
and b) 2 ranges of opposing signs for magnitudes beyond 10mV. This dif-
ference in the slopes of the calibrator output can be expected to affect the
DAS performance also in the similar ranges. Hence, the resultant calibration
curve contains 3 parts but with two effective slopes as follows.

For 10mV < |xi| ≤ 650mV , the resultant calibration curve slope is m1.

For −10mV ≤ xi ≤ 10mV , the resultant calibration curve slope is m2.
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Result

A comparison of the accuracy and precision obtained using the earlier stated
linear fit and using this spline fit were tabulated in Table 3.6.

Table 3.6: Comparison of accuracy and precision after spline fitting for error
correction

True mean in mV standard deviation in mV % relative accuracy

value Before After Before After Before After

in correction correction correction correction correction correction

500.00 499.76 499.76 0.14 0.24 99.95 99.95

250.00 251.21 251.21 0.01 0.05 100.49 100.49

100.00 100.11 100.11 0.02 0.02 100.11 100.11

50.00 50.18 50.18 0.01 0.02 100.35 100.35

10.00 9.82 10.01 0.01 0.02 98.21 100.08

1.00 0.75 1.00 0.01 0.01 75.29 99.71

-1.00 -1.27 -1.02 0.01 0.01 127.27 101.57

-10.00 -10.30 -9.99 0.01 0.02 103.02 99.88

-50.00 -50.48 -50.48 0.01 0.02 100.97 100.97

-100.00 -100.30 -100.30 0.02 0.02 100.30 100.30

-250.00 -250.79 -250.79 0.01 0.05 100.32 100.32

-500.00 -498.62 -498.62 0.14 0.24 99.72 99.72

It is observed that the correction has improved the accuracy in the region
−10mV ≤ x ≤ 10mV without hampering the precision. This is as expected
since the correction essentially applies only to the region −10mV ≤ x ≤
10mV , for which the slope has changed to m2. It is to be noted that the
slope m1 is identical to the slope m determined in the first method for the
overall range of voltages.

As a result of this spline fit, the mean of the measured value is now closer
to the corresponding true value for the overall range, including the region
−10mV ≤ x ≤ 10mV . The overall % RA is also closer to 100 %.

Static error using the spline fit calibration curve has also been calculated
and is plotted with error bars in Figure 3.6. It is observed that the static
error in the region −10mV ≤ x ≤ 10mV has reduced after spline fitting.

Despite the improvement in the region −10mV < x < 10mV , this tech-
nique has a major drawback that the measured value jumps between two
calibration curves at ±10mV . For this reason, the SD at ±10mV increases



44 4 channel DAS

Figure 3.6: Error bar plot for the static error for the line and spline fitting.
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Figure 3.7: Plot of the measured value at 10mV input voltage (a) for line
calibration curve (b) for spline calibration curve.

significantly. Therefore, the precision of this instrument at±10mV decreases.
As a result, the overall performance loses its continuity at ±10mV. The out-
puts at +10mV for line fit and spline fit calibration curves are plotted in
Figure 3.7a and Figure 3.7b respectively. It is clearly observed that the
precision has decreased due to spline fitting. Furthermore, spline fit also in-
troduces nonlinearity into the system. Hence an alternative method has to
be determined that overcomes this problem.
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3.3.3 Addition of error curve

The third and the most effective method that was finally used for obtaining
the final calibration curve is that of adding an error curve to the actual
curve. The previous two methods led to increase in accuracy at the cost
of precision, but loss of precision makes an instrument unreliable. For this
reason, the previous two methods have not been used although they are
easily implementable at the microcontroller programming level, while the
error correction method is cumbersome. This disadvantage of the present
method is offset by implementing it at the software level.

Method
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Figure 3.8: Error curve generation.

In the proposed method, the error curve for a particular channel of a DAS
was obtained by subtracting the ideal curve from the linear fit of the actual
channel input-output response.

The linear fit for the actual response of a DAS channel is denoted as
yi = m×xi+ c as stated in Section 3.3.1. Since the output follows the input
exactly, the corresponding ideal response can be represented as Yi = xi,
where Yi denotes the ideal output. The proposed error is thus obtained as
ei = Yi − yi = (1 − m) × xi − c. The actual linear fit, the ideal response
and the error curve are shown in Figure 3.8 for Channel 1 of the DAS. The
error curve for each individual channel was saved in the microcontroller as
a table and corrections were applied accordingly to the measured values for
the respective channels.

The comparative calibration curves for all 4 channels of a DAS for linear
fits and error curve fits shown in Figure 3.9. Although this process is time
consuming, but the results show almost ideal input-output characteristics for
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Figure 3.9: Line plot for TV vs. mean of MV for all 4 channels using linear
fit and error correction.

all the channels. Also, all 4 channels of the DAS exhibit similar balanced
performances. This has been validated hereafter by calibrating the tuned
DAS.

3.4 Calibration after DAS tuning

The overall performance of the DAS channels tuned using their respective
error correction curves has been validated by determining the static parame-
ters stated in Section 3.2. These were calculated again for all the 4 channels
in the input range [-650mV, 650mV].

3.4.1 Accuracy
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Table 3.7: Maximum and minimum values of Static Error (SE) for different
input voltages for all 4 error corrected channels

True value Static error
Channel 0 Channel 1 Channel 2 Channel 3

in mV Min, Max Min, Max Min, Max Min, Max
in mV in mV in mV in mV

650.00 0.65, 1.40 0.57, 1.47 0.58, 1.48 0.57, 1.49
500.00 1.59, 2.37 1.52, 2.44 1.51, 2.44 1.51, 2.46
300.00 1.12, 1.51 1.04, 1.60 1.04, 1.58 1.03, 1.59
100.00 0.07, 0.26 -0.01, 0.34 -0.02, 0.35 -0.01, 0.34
50.00 -0.38, -0.34 -0.47, -0.25 -0.47, -0.24 -0.47, -0.25
25.00 -0.32, -0.28 -0.41, -0.19 -0.41, -0.19 -0.41, -0.19
20.00 -0.31, -0.27 -0.40, -0.17 -0.40, -0.17 -0.40, -0.18
15.00 -0.31, -0.27 -0.40, -0.18 -0.40, -0.17 -0.40, -0.17
10.00 -0.30, -0.24 -0.39, -0.17 -0.39, -0.17 -0.39, -0.17
5.00 -0.27, -0.24 -0.37, -0.15 -0.37, -0.14 -0.37, -0.14
2.00 -0.28, -0.24 -0.36, -0.15 -0.37, -0.15 -0.37, -0.15
1.00 -0.27, -0.23 -0.36, -0.14 -0.36, -0.14 -0.36, -0.14
0.50 -0.26, -0.23 -0.36, -0.14 -0.36, -0.14 -0.36, -0.14
0.20 -0.27, -0.24 -0.37, -0.15 -0.37, -0.15 -0.37, -0.15
0.01 -0.38, -0.32 -0.46, -0.23 -0.46, -0.24 -0.46, -0.24
0.05 -0.29, -0.23 -0.37, -0.15 -0.38, -0.15 -0.38, -0.15
0.02 -0.28, -0.24 -0.37, -0.15 -0.37, -0.15 -0.38, -0.15
0.01 -0.29, -0.25 -0.38, -0.15 -0.37, -0.15 -0.38, -0.16
0.00 -0.28, -0.24 -0.37, -0.15 -0.37, -0.15 -0.37, -0.15
0.00 -0.28, -0.24 -0.37, -0.15 -0.37, -0.15 -0.37, -0.15
-0.01 -0.27, -0.23 -0.36, -0.14 -0.36, -0.14 -0.37, -0.14
-0.02 -0.27, -0.24 -0.37, -0.14 -0.36, -0.14 -0.37, -0.14
-0.05 -0.27, -0.24 -0.37, -0.15 -0.37, -0.14 -0.36, -0.14
-0.10 -0.28, -0.24 -0.37, -0.15 -0.36, -0.15 -0.37, -0.15
-0.20 -0.28, -0.24 -0.37, -0.15 -0.37, -0.15 -0.37, -0.15
-0.50 -0.27, -0.24 -0.36, -0.14 -0.36, -0.15 -0.36, -0.14
-1.00 -0.29, -0.25 -0.38, -0.15 -0.38, -0.16 -0.38, -0.16
-2.00 -0.28, -0.24 -0.37, -0.14 -0.37, -0.15 -0.37, -0.15
-5.00 -0.28, -0.24 -0.37, -0.15 -0.37, -0.15 -0.37, -0.14
-10.00 -0.26, -0.22 -0.35, -0.13 -0.35, -0.13 -0.35, -0.13
-15.00 -0.25, -0.21 -0.34, -0.12 -0.34, -0.12 -0.34, -0.12
-20.00 -0.23, -0.17 -0.32, -0.09 -0.32, -0.11 -0.32, -0.10
-25.00 -0.22, -0.18 -0.31, -0.09 -0.31, -0.09 -0.31, -0.09
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Table 3.7 – continued from previous page

True Static error
value Channel 0 Channel 1 Channel 2 Channel 3
in mV Min, Max Min, Max Min, Max Min, Max

in mV in mV in mV in mV
-50.00 -0.15, -0.11 -0.24, -0.02 -0.25, -0.02 -0.23, -0.02
-100.00 0.08, 0.15 -0.01, 0.24 -0.01, 0.23 -0.01, 0.23
-300.00 0.74, 0.83 0.65, 0.92 0.67, 0.92 0.66, 0.92
-500.00 1.11, 1.26 1.02, 1.34 1.02, 1.34 1.05, 1.35
-650.00 1.29, 1.63 1.21, 1.69 1.21, 1.71 1.20, 1.70

As in the previous case, Static Errors (SE) were calculated for all TVs
of all 4 channels and are tabulated in Table 3.7. Comparing these results
with that of Table 3.1 for the linear fit, it can be seen that SE in this case is
much smaller than the previous case. Without error correction, the maximum
amplitude of SE for all inputs and all channels was 11.84mV but this reduces
to 2.37mV using error correction method.

% Relative Accuracy (% RA) has been calculated at various input voltage
levels for all 4 channels and the maximum and the minimum values are
tabulated in Table 3.8. It is observed that even using the error correction
method, the % RA at very low input values, typically within ±1mV, is
poor. This is evident in the results for SE also, where it is observed that the
SE is larger than the TV for this range. However, comparing these results
with those in Table 3.2 for the linear fit case, it can be said that with error
correction the % RA has particularly improved in the range 10mV ¡ |xi| ¡
500mV.

Thus, on the basis of SE and %RA, it can be said that the accuracy of
this DAS has improved on using error correction.

3.4.2 Precision

As in the earlier case, the mean and SD of the acquired data were calcu-
lated and tabulated in Table 3.9 for each TV of all 4 channels as a measure
of precision of the DAS. Comparing the results with those stated in Table 3.3
for the linear fit case, it can be said that while the mean values have changed,
there is no significant change in the σ values. This is evident from the µ±1σ
error bar at a particular TV depicted in the magnified input-output relation
plot for Channel 1 of the DAS as shown in Figure 3.10.
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Table 3.8: Maximum and minimum values of % Relative Accuracy (% RA)
for different input voltages for all 4 error corrected channels

True Relative accuracy in %

value Channel 0 Channel 1 Channel 2 Channel 3

in mV Min, Max Min, Max Min, Max Min, Max

650.00 99.78, 99.90 99.77, 99.91 99.77, 99.91 99.77, 99.91

500.00 99.53, 99.68 99.51, 99.7 99.51, 99.7 99.51, 99.70

300.00 99.5, 99.63 99.47, 99.65 99.47, 99.65 99.47, 99.66

100.00 99.74, 99.93 99.66, 100.01 99.65, 100.02 99.66, 100.01

50.00 100.67, 100.75 100.49, 100.93 100.49, 100.94 100.49, 100.93

25.00 101.14, 101.28 100.76, 101.65 100.76, 101.65 100.77, 101.65

20.00 101.33, 101.53 100.85, 102.00 100.87, 102.02 100.90, 102.00

15.00 101.80, 102.04 101.18, 102.65 101.15, 102.64 101.14, 102.68

10.00 102.45, 103.01 101.70, 103.93 101.72, 103.92 101.75, 103.94

5.00 104.7, 105.49 102.93, 107.37 102.90, 107.32 102.80, 107.39

2.00 112.04, 113.84 107.32, 118.22 107.33, 118.29 107.46, 118.32

1.00 123.07, 126.53 113.56, 136.23 113.63, 135.84 113.74, 136.36

0.50 145.79, 152.50 127.23, 171.28 127.43, 171.73 127.77, 172.01

0.20 219.33, 236.98 173.43, 283.45 173.07, 285.06 173.18, 283.77

0.01 3302.43, 3865.91 2389.49, 4726.75 2508.57, 4741.08 2498.57, 4724.65

0.05 555.63, 679.03 406.99, 846.22 409.56, 854.78 406.28, 852.33

0.02 1303.50, 1494.29 839.54, 1933.28 869.51, 1962.90 835.24, 1980.38

0.01 2567.76, 2956.49 1614.12, 3871.60 1610.56, 3829.5 1669.79, 3874.47

-0.01 -2614.12, -2211.13 -3492.87, -1256.09 -3528.53, -1268.19 -3553.50, -1345.95

-0.02 -1253.57, -1080.60 -1732.17, -619.83 -1711.12, -585.60 -1735.00, -596.65

-0.05 -445.08, -372.33 -635.23, -192.16 -636.52, -189.16 -627.09, -182.33

-0.10 -175.82, -141.23 -273.75, -49.00 -264.41, -46.22 -268.47, -45.08

-0.20 -39.41, -20.51 -84.66, 25.75 -85.16, 26.46 -85.59, 27.03

-0.50 45.93, 52.64 27.50, 72.14 27.28, 70.86 27.62, 71.83

-1.00 71.47, 75.29 62.28, 84.54 62.43, 84.41 61.88, 84.38

-2.00 85.91, 88.07 81.41, 92.78 81.34, 92.55 81.46, 92.49

-5.00 94.47, 95.26 92.66, 97.05 92.54, 97.05 92.58, 97.11

-10.00 97.39, 97.82 96.46, 98.74 96.53, 98.71 96.49, 98.72

-15.00 98.36, 98.59 97.74, 99.21 97.73, 99.22 97.74, 99.2

-20.00 98.83, 99.15 98.39, 99.55 98.38, 99.47 98.39, 99.49

-25.00 99.11, 99.27 98.76, 99.64 98.75, 99.62 98.76, 99.64

-50.00 99.7, 99.78 99.51, 99.97 99.51, 99.97 99.53, 99.97

-100.00 100.08, 100.15 99.99, 100.24 99.99, 100.23 99.99, 100.23

-300.00 100.25, 100.28 100.22, 100.31 100.22, 100.31 100.22, 100.31

-500.00 100.22, 100.25 100.2, 100.27 100.2 , 100.27 100.21, 100.27

-650.00 100.20, 100.25 100.19, 100.26 100.19, 100.26 100.19, 100.26
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Table 3.9: Mean and SD of Measured Values for different input voltages for
all 4 error corrected channels

True Measured value
value Channel 0 Channel 1 Channel 2 Channel 3
in mV µ in σ in µ in σ in µ in σ in µ in σ in

mV mV mV mV mV mV mV mV
650.00 648.98 0.20 648.98 0.21 648.98 0.21 648.98 0.21
500.00 498.10 0.20 498.10 0.21 498.10 0.21 498.10 0.21
300.00 298.69 0.10 298.69 0.12 298.69 0.12 298.69 0.12
100.00 99.85 0.01 99.85 0.01 99.85 0.01 99.85 0.01
50.00 50.36 0.01 50.36 0.01 50.36 0.01 50.36 0.01
25.00 25.30 0.01 25.30 0.01 25.30 0.01 25.30 0.01
20.00 20.29 0.01 20.29 0.01 20.29 0.01 20.29 0.01
15.00 15.29 0.01 15.29 0.01 15.29 0.01 15.28 0.01
10.00 10.28 0.01 10.28 0.01 10.28 0.01 10.28 0.01
5.00 5.26 0.01 5.26 0.01 5.26 0.01 5.26 0.01
2.00 2.26 0.01 2.26 0.01 2.26 0.01 2.26 0.01
1.00 1.25 0.01 1.25 0.01 1.25 0.01 1.25 0.01
0.50 0.75 0.01 0.75 0.01 0.75 0.01 0.75 0.01
0.20 0.46 0.01 0.46 0.01 0.46 0.01 0.46 0.01
0.01 0.36 0.01 0.36 0.01 0.37 0.01 0.37 0.01
0.05 0.31 0.01 0.32 0.01 0.31 0.01 0.31 0.01
0.02 0.28 0.01 0.28 0.01 0.28 0.01 0.28 0.01
0.01 0.28 0.01 0.27 0.01 0.28 0.01 0.28 0.01
0.00 0.26 0.00 0.26 0.01 0.26 0.01 0.26 0.01
0.00 0.26 0.00 0.26 0.01 0.26 0.01 0.26 0.01
-0.01 0.24 0.01 0.24 0.01 0.24 0.01 0.24 0.01
-0.02 0.23 0.01 0.23 0.01 0.23 0.01 0.23 0.01
-0.05 0.21 0.01 0.20 0.01 0.21 0.01 0.21 0.01
-0.10 0.16 0.01 0.16 0.01 0.16 0.01 0.16 0.01
-0.20 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
-0.50 -0.25 0.01 -0.25 0.01 -0.25 0.01 -0.25 0.01
-1.00 -0.73 0.01 -0.73 0.01 -0.73 0.01 -0.73 0.01
-2.00 -1.74 0.01 -1.74 0.01 -1.74 0.01 -1.74 0.01
-5.00 -4.74 0.01 -4.75 0.01 -4.74 0.01 -4.74 0.01
-10.00 -9.76 0.01 -9.76 0.01 -9.76 0.01 -9.76 0.01
-15.00 -14.77 0.01 -14.77 0.01 -14.77 0.01 -14.77 0.01
-20.00 -19.79 0.01 -19.78 0.01 -19.78 0.01 -19.79 0.01
-25.00 -24.80 0.01 -24.80 0.01 -24.80 0.01 -24.80 0.01
-50.00 -49.87 0.01 -49.87 0.01 -49.87 0.01 -49.87 0.01
-100.00 -100.11 0.01 -100.11 0.01 -100.11 0.01 -100.11 0.01
-300.00 -300.79 0.01 -300.79 0.01 -300.79 0.01 -300.79 0.01
-500.00 -501.19 0.02 -501.19 0.01 -501.19 0.01 -501.19 0.01
-650.00 -651.47 0.07 -651.47 0.09 -651.47 0.09 -651.47 0.09
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Figure 3.10: Magnified view of precision

3.4.3 Repeatability

From Table 3.7, it can be seen that the span of SEs are very small compared to
the TVs in all cases with input magnitudes larger than 1mV. Furthermore,
from Table 3.9, it is observed that corresponding σ values are very small.
Thus, it can be said in this case also that repeatability of this DAS is very
good.

3.4.4 Linearity and Sensitivity

The mean of the MVs were plotted with respect to the TVs in this case also
and linear functions was fitted for interpreting the linearity and sensitivity.
The overall goodness of fit coefficient R2 is observed to be 1 in all cases as
expected. The RMSE and sensitivity for the linear fit and the error correction
fit cases were tabulated in Table 3.10.

It is observed that after error correction, all the channels exhibit a more
balanced performance in terms of both linearity and sensitivity. Sensitivity
has stabilized to 99.99% in all cases, which is very close to the ideal sensitivity
of 1, while the overall RMSE has stabilized at a uniform acceptable value of
0.60mV for all 4 channels in place of the earlier range of [0.44mV,0.70mV].

3.4.5 Drift

To study the drift in the channels of the DAS, time series plots of 2400
samples, acquired for 2 minutes, were shown in Figure 3.11a and Figure 3.11b
for input voltage levels of 100mV and 0.5mV respectively. It is observed that
for high inputs, MV shows a small drift but for low input voltages, MV
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Table 3.10: Table for the R2 and RMSE for different input voltages for all 4
error corrected channels

Parameter Channel 0 Channel 1 Channel 2 Channel 3

R2 1 1 1 1

RMSE
Before

0.7019 0.5608 0.5872 0.4422
correction

in mV
After

0.5993 0.5992 0.5996 0.5994
correction

Sensitivity

Before
0.9806 0.9828 0.9893 1.018

correction

After
0.9999 0.9999 0.9999 0.9999

correction

remains almost constant with time. However, further uses of this device
with the DDP signals will require the study of its drift characteristics for
longer durations.

3.4.6 Resolution

The resolution of a system is the smallest change of input that can be mea-
sured. The working range of the data acquisition system is ±700mV , hence
the span is 1.4V. A 22 bit ADC was used in this case but due to noise, only
17 bits were considered for conversion. Therefore, the theoretical resolution
of the data acquisition system is 1.4

217
≈ 1µV . However, the precision Keysight

33500B Function Generator that has been used to supply the input voltage
for calibration has a resolution of 10µV . So, it has not been possible to test
the DAS below 10µV .

3.4.7 Hysteresis

In order to test the hysteresis of the instrument, the input voltage was varied
from maximum (+650mV) to minimum (-650mV) and then back to maxi-
mum again and this was repeated 5 times, but no hysteresis was observed in
any of the channels.
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Figure 3.11: Time series plot for (a) a high input voltage of 100mV (b) a low
input voltage of 0.5mV

3.5 Analysis of common-mode interference volt-

age

In the measurement of very low mV order signals, common mode interference
voltage (CMIV), which is the voltage difference which is present at both
input leads of an analog circuit with respect to analog ground, plays a very
important role [119,120]. The source of common-mode noise is the difference
in potential between two physically remote grounds. Figure 3.12 represents
the source of common mode voltage.

Consider that Line 1 and Line 2 in Figure 3.12 are two sensor terminals
connected with connector wires of the measuring system. In case of differ-
ential measurement, stray capacitances are generated between the reference
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ground terminal (0V) and other two terminals if the reference terminal is
not physically grounded. For this reason, separate potential differences are
generated for two sensor terminals. In this figure these potential differences
are considered as V1 and V2. If V1 ̸= V2, then a potential difference can
be seen between V1 and V2 and this can be expressed as V = V 1 − V 2.
This can easily be seen by shorting two terminals (Line 1 and Line 2) and
observing the voltage.

V1-V2

V2 V1

Common

reference

Line 1

Line 2

Figure 3.12: Common mode interference voltage

To study the effect of common mode interference voltage, 2 cases were
considered.

1. Case 1: Terminals are shorted and no input voltage is applied

2. Case 2: A common voltage is applied to the shorted terminals

3.5.1 Case 1

In this experiment, Line 1 and and Line 2 were shorted for 2 minutes and
the potential was recorded. In the ideal case, there is no common mode
interference voltage and so the output voltage should be 0.00mV. But in this
present experiment, it was seen that the short circuit potential varies from
-7µV to 6µV as shown in Figure 3.13. It has already been mentioned that
this device was calibrated for the resolution of 10µV, though it is designed
to acquire a minimum of 1µV. Therefore, the CMIV lies below the resolution
limit and so does not affect the accuracy of this instrument.

Furthermore, standard statistical quantities were also calculated for this
common mode interference signal and tabulated in Table 3.11. It is observed
from the table also that the CMIV lies well below the resolution with a mean
value of 0.000 mV. Though skewness and kurtosis values lie close to normal
distribution but the chi square goodness of fit test shows that the CMIV is
not normally distributed.
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Figure 3.13: Common mode interference voltage with no input voltage

Table 3.11: Standard statistical parameters of Common Mode Interference
Voltage (CMIV) for shorted terminals with no applied voltage

Parameter
Range in mV µ in SD in Skew- Kurt-

Min Max mV mV ness osis

CMIV -0.007 0.005 0.000 .002 -0.168 2.999

3.5.2 Case 2

For the next experiment, different input voltages were applied to the shorted
terminals and output voltages were recorded for 2 minutes. In this experi-
ment, the input voltages were varied from -500mV to +500mV and applied
to both the positive and the negative terminals. The plots of the recorded
voltages for a few input voltages is shown in Figure 3.14. Comparing Figure
3.14 with Figure 3.13, it is observed that the CMIV is higher for finite non-
zero input voltages than that when no input voltage is applied. In this case,
the overall output voltage lies within ±0.08mV, which is much higher than
the resolution of this instrument (0.01mV).

To study the common mode interference voltages for different input volt-
ages, the root mean square (RMS) of output voltages were calculated for
each individual input voltage and plotted with respect to the input voltages
in Figure 3.15. It can be seen from the plot that the RMS value of output
voltages increases as the magnitude of the input voltages increase. The RMS
remains lower than the resolution of 0.01mV within an input voltage range
of ±100mV.

Standard statistical quantities of the output voltages measured for all the
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Figure 3.14: Common mode interference voltage with variable input voltages
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Figure 3.15: Plot of RMS voltages of Common Mode Interference Voltage
for shorted terminals with variable input voltage applied

different input voltages applied were calculated and tabulated in Table 3.12.
It can be seen from the table that when an input voltage is applied, common
mode interference voltages become higher and exceeds the resolution of the
DAS by a few times, although the mean value is 0.000 mV. SD is also higher
for higher input voltages. As in the case of no applied voltage, the skewness
and kurtosis values are close to normal distribution but none of these are
normally distributed.

3.6 Comparison of DAS with RISHMulti 18S
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Table 3.12: Standard statistical parameters of Common Mode Interference
Voltage when different input voltages are applied

Input Range in mV µ in SD in Skew- Kurt-
in mV Min Max mV mV ness osis
Input Range in mV µ in SD in Skew- Kurt-
in mV Min Max mV mV ness osis
-500.00 -0.078 0.083 0.000 0.024 -0.006 2.961
-250.00 -0.056 0.052 0.000 0.015 -0.114 3.045
-100.00 -0.035 0.039 0.000 0.010 -0.041 2.986
-50.00 -0.030 0.026 0.000 0.009 0.044 2.871
-25.00 -0.029 0.050 0.000 0.009 0.098 3.353
-10.00 -0.024 0.026 0.000 0.008 0.073 3.005
-2.00 -0.028 0.029 0.000 0.008 -0.052 2.932
-1.00 -0.031 0.028 0.000 0.008 -0.089 2.958
-0.50 -0.035 0.034 0.000 0.010 0.019 2.839
-0.20 -0.031 0.032 0.000 0.009 0.057 2.906
-0.10 -0.031 0.038 0.000 0.009 0.015 2.936
-0.05 -0.032 0.030 0.000 0.009 0.042 2.786
-0.02 -0.032 0.031 0.000 0.010 -0.032 2.848
-0.01 -0.034 0.034 0.000 0.009 0.029 2.972
0.00 -0.025 0.032 0.000 0.008 0.063 3.094
0.01 -0.040 0.052 0.000 0.010 0.169 4.096
0.02 -0.031 0.030 0.000 0.010 -0.019 2.794
0.05 -0.033 0.040 0.000 0.009 0.107 3.212
0.10 -0.037 0.061 0.000 0.010 0.423 4.868
0.20 -0.030 0.031 0.000 0.009 0.051 3.006
0.50 -0.030 0.030 0.000 0.010 -0.005 2.883
1.00 -0.026 0.029 0.000 0.008 0.066 2.911
2.00 -0.028 0.035 0.000 0.009 0.020 2.934
10.00 -0.031 0.028 0.000 0.008 0.020 2.961
25.00 -0.026 0.027 0.000 0.008 0.066 2.945
50.00 -0.028 0.036 0.000 0.009 -0.007 3.075
100.00 -0.032 0.030 0.000 0.009 -0.010 2.944
250.00 -0.050 0.050 0.000 0.013 -0.085 3.132
500.00 -0.076 0.065 0.000 0.02 2 0.069 3.700
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Table 3.13: Static Error and Relative Accuracy for different input voltages
for RISH Multi 18S [5]

True Measured standard Static error Mean Relative

value value (mean) deviation Min Max Mean Accuracy

in mV in mV in mV in mV in mV in mV in %

-300.00 -299.83 0.01 0.14 0.19 0.17 100.03

-200.00 -199.65 0.01 0.32 0.37 0.35 100.06

-100.00 -99.75 0.01 0.23 0.28 0.25 100.04

-50.00 -49.88 0.01 0.10 0.15 0.13 100.02

-25.00 -24.88 0.01 0.11 0.14 0.13 100.02

-10.00 -9.9 0.01 0.09 0.11 0.10 100.02

-2.00 -1.91 0.01 0.08 0.11 0.09 100.02

-1.00 -0.92 0.01 0.07 0.10 0.08 100.01

-0.50 -0.47 0.01 0.01 0.05 0.03 100.01

-0.20 -0.18 0.01 0.00 0.04 0.02 100.00

-0.10 -0.07 0.01 0.02 0.05 0.03 100.01

-0.05 -0.02 0.01 0.01 0.04 0.03 100.00

-0.02 0.00 0.01 0.00 0.05 0.02 100.00

-0.01 0.01 0.01 0.00 0.04 0.02 100.00

0.00 0.03 0.01 0.02 0.05 0.03 100.01

0.01 0.04 0.01 0.02 0.05 0.03 100.01

0.02 0.05 0.01 0.01 0.04 0.03 100.00

0.05 0.08 0.01 0.01 0.05 0.03 100.00

0.10 0.13 0.01 0.01 0.05 0.03 100.00

0.20 0.23 0.01 0.01 0.05 0.03 100.01

0.50 0.52 0.01 -0.01 0.04 0.02 100.00

1.00 1.08 0.01 0.06 0.09 0.08 100.01

2.00 2.07 0.01 0.05 0.08 0.07 100.01

10.00 10.04 0.01 0.02 0.06 0.04 100.01

25.00 25.00 0.01 -0.02 0.02 -0.00 100.00

50.00 49.97 0.01 -0.05 -0.01 -0.03 99.99

100.00 99.81 0.01 -0.22 -0.17 -0.19 99.97

200.00 199.55 0.01 -0.52 -0.42 -0.45 99.93

300.00 299.57 0.01 -0.47 -0.40 -0.43 99.93
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Figure 3.16: Plot of mean of measured voltages at different input voltages in
the range ±300mV for RISH Multi 18S [5]

Calibration results of the DAS were compared with those of the RISH
Multi 18S multimeter as stated in Bhattacharya [5] in order to validate its
performance in comparison with an existing measurement system for the
DDP signals. In order to do so, mean and SD of MV, min, max and mean
of SE and mean % RA for the output voltages measured using the RISH
multimeter for standard input voltages have been reproduced in Table 3.13
from [5]. Figure 3.16 shows the plot of mean of measured voltages at different
input voltages in the range ±300mV for RISH Multi 18S, also from [5]. It is
to be noted that the RISH multimeter was calibrated within ±300mV since
its resolution (10µV ) changes beyond this range.

Comparing Table 3.13 with Table 3.7, it can be said that SE of DAS
is little higher than RISH multimeter, though the span of SE are similar.
The % RA for both RISH multimeter and DAS are almost similar for higher
TV but for lower TVs, % RA is much better in the RISH multimeter than
the DAS. Comparing Figure 3.16 with Figure 3.9, it is observed that both
RISH multimeter and DAS show linear input-output relationship with similar
goodness of fit. However, the RMSE of DAS is higher than that of RISH
Multimeter. It has to be mentioned that no filter was used in DAS, whereas
filters were used in RISH multimeter. Despite this, both the instruments
have same SD, which signifies that precision of both these instruments are
very close to each other.

The major advantage of this DAS is that it can acquire signals from 4
channels simultaneously and precisely and for very low input voltages, which
is not possible using the RISH multimeter. This, along with the comparable
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% RA, linearity and SD outweigh the slightly worse performances of the DAS
in terms of the other parameters.

3.7 Discussions

This chapter deals with the tuning and calibration of the 4-channel DAS that
was developed earlier in the research laboratory for the specific purpose of
acquiring DDP signals.

The basic calibration of the device showed that RA is relatively high
(100±5%), but precision and other static parameters are within acceptable
limit. Therefore, the DAS has to be tuned to improve the accuracy without
hampering other static parameters. It is also necessary to make the channel
characteristics identical to each other. So, 3 tuning methods were tested
and finally an error correction procedure has been proposed which can be
implemented at the software level.

The subsequent calibration of a particular error corrected DAS estab-
lished the improved and balanced performance of all channels of the DAS.
Further analysis of its common mode interference voltage (CMIV) shows that
these values are very low. Finally, a comparison of the results of the static
calibration of the existing RISH Multi 18S system, as stated in [5], and the 4-
channel DAS establish this system as a viable alternative for acquiring DDP
signals.



CHAPTER4
Experiments for acquiring DDP signals

In order to address the multiple objectives of this thesis, a total of 4 different
experiments have been designed and conducted to acquire DDP signals for
the subsequent validation, characterization and application studies. The de-
tails of these experiments, the protocol for data acquisition using RISH Multi
18S and/or DAS and the conditions maintained during these experiments are
detailed in this chapter. DDP signals were accordingly collected from volun-
teers during various times as per the respective experiment protocols.

The data sets collected from these experiments are labelled henceforth as
DS1, DS2, DS3 and DS4, while the terms LH, RH, LL and RL denote left
hand, right hand, left leg and right leg respectively.

4.1 General conditions

The general conditions maintained for all the experiments are stated in this
section. This contains the ethical committee clearance obtained for the study,
the criteria used for subject selection and the materials and methods used
for the signal acquisition and the experiments.

4.1.1 Ethical committee clearance

All the experiments performed in this study involve human subjects. The
study, bearing approval number JU/IEC/2020/2312/01, was approved by the
Institute Ethical Committee (IEC) of Jadavpur University, Kolkata, West
Bengal, India.

In accordance with 1964 Helsinki Declaration and its later amendments
or comparable ethical standards, all the participants were informed about
the study briefly and consent forms were signed by each of the participants
before participating in the study. A common overall questionnaire was filled
up by each of the participants to record their general health condition. The
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subjects also filled a daily questionnaire for recording their self assessment
of their daily health. These consent form and the two sets of questionnaires
are affixed as Annexures A, B and C respectively.

4.1.2 Subject selection criteria

Population: A total of 32 dextral subjects participated in this study. All
the subjects were volunteers, either students, scholars or teaching and
non-teaching staff members and associated with the Salt Lake campus
of Jadavpur University.

Inclusion criterion: Subjects who are apparently healthy and gave their
consent for participation.

Exclusion criterion All who did not give consent, cognitively impaired
subjects, seriously ill patients, institutionalized persons, pregnant women,
any person who consumes or has consumed anticholinergic drugs and/or
any intoxicants (except cigarette/biri, jarda paan, tea and coffee) are
excluded from the study.

Study characteristics The general characteristics of the selected subjects
are:

Age : 24 to 58 years

Sex : both male and female

Weight : 55 to 105 kg

Height : 148 to 185 cm

Residence : Eastern India, both urban and rural localities in India

Education : Under graduate, post graduate, pursing Ph.D. or awarded.

Family : both nuclear and joint

Occupation : students, scholars, teachers or non-teaching staff mem-
bers of a Department in the Jadavpur University Salt Lake campus

Addiction : Smoking cigarette/biri, jarda paan, tea and coffee. But
consumption of alcohol and other intoxicating substances 72 hours
prior to the participation was strongly discouraged.

Medical comorbidities allowed: Hypertension, diabetes mellitus, high
cholesterol and/or thyroid problems
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4.1.3 Materials and methods

Materials

Both the RISH Multi 18S with the RISH Multi SI232 assembly and the
4-channel DAS have been used for data acquisition. 8mm round Ag-AgCl
velcro mounted snap type electrodes were used for connection along with
single core coaxial cables as connectors and aqueous ultrasonic gel as the
electrode-skin interface medium. Data were displayed and stored in a PC or
a laptop.

Both the instrumentation systems contain 4 channels labelled as Ch0,
Ch1, Ch2 and Ch3. These channels are used for collecting the signals from
LH, RH, LL and RL locations respectively.

The BP and PR were measured in all the experiments. In case of the
DS3 experiment, the oxygen saturation level (SpO2) was also recorded. The
SpO2 and the systolic and diastolic BP were measured using a pulse oxime-
ter (Make: CONTAC, Model: CMS50D) and a sphygmomanometer (Make:
Rossmax , Model: GB101) respectively while the PR was measured manually
using a stop watch.

Methods

Type of study Two types of studies were undertaken.

Observational analytical study: Analysis was done on the data col-
lected from a number of subjects using suitable non-invasive, pas-
sive electrodes as mentioned earlier. Both cohort studies and case
controlled studies are performed on these data.

Longitudinal study: For almost all the studies, data were collected
from individual subjects repeatedly on same or different dates in
different sessions.

Study Location: The study has been conducted in the Research Labora-
tory in the Instrumentation and Electronics Engineering Department,
Jadavpur University, Salt Lake Campus, Kolkata, India. There is closed
cubicle in the lab containing a bed aligned geographically North-South
direction and a chair is placed just beside the bed for conducting all
the experiments.

Environment: The light and sound levels of this closed cubicle were kept
controlled. The temperature and relative humidity were also main-
tained constant at 25oC and 50%RH respectively.
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Subject sampling: Probability sampling method has been used for the
subject sampling in this study. Based on the criterion, subjects are
chosen randomly so that all the chosen subjects have equal opportu-
nity.

Study tools: A structured protocol has been been sketched for each exper-
iment on the basis of protocols for similar studies. On the basis of the
preliminary trials, the protocol has been modified and finalized for the
experiment. It includes consent, interviews/questionnaire, check-list
and observational noting.

Study technique: Subjects were in supine posture on bed or sitting on a
chair or the same bed or standing for the data acquisition, depending
on the requirements of the experiment.

Sample size: A total number of 32 subjects participated in the 4 exper-
iments. Each of the experiments were conducted for a period of 2
months or more. As a result, the total sample size for each experiment
is suitably large, although it varies with respect to the experiment.

Methodology used: The methodology for data acquisition for each of the
4 experiments have been detailed in the subsequent Section.

4.2 Data acquisition

Each of the experiments contain some common protocol at the start where
consent was given by the participants, different questionnaires were answered.
These common protocols are explained first. The details of all 4 experiments,
DS1 to DS4, are stated thereafter.

4.2.1 Preliminary steps

Before connecting the electrodes on the hands and/or feet of the subjects, a
common protocol has been followed in all experiments as shown in Figure 4.1.
The steps are elaborated hereafter.

Step 1: When a subject comes to participate in an experiment, it is checked
whether the person is going to participate for the first time or not?

Step 2: If yes, the objectives and procedure of the study is briefed to them
and they are asked to give their consent. The consent form has been
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Subject

First time?

Daily Ques-
tionnaire fillup

Consent and com-
prehensive ques-
tionnaire fillup

Relaxation

BP, Temp., PR and
SpO2 measurement

Ready for elec-
trode connection

No

Yes

Figure 4.1: Common protocol followed prior to connecting the electrodes
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shown in Appendix A.1. Once they give their consent, the comprehen-
sive questionnaire given in Appendix A.1 for the overall health assess-
ments and any medical record was filled up by the subject. If no, then
we proceed to the next step.

Step 3: A set of daily questionnaires, as shown in Appendix A.3, Appendix A.4
and Appendix A.5, is provided to the subject regarding his physical
and mental status on that day for filling up prior to the start of the
experiment.

Step 4: Then the subject is asked to lie down on the experimental bed in
supine posture and is allowed to relax typically for 10 minutes.

Step 5: After relaxation, the BP, temperature, PR and/or SpO2 of the sub-
ject are measured and recorded.

Step 6: Thereafter, the subjects are ready for connecting electrodes.

4.2.2 DS1: 20 minutes sitting to supine LH

In the DS1 experiment, DDP signals were acquired only from the left hand
(LH) of individual subjects for 20 minutes in a predefined sequence as stated
hereafter. The dataset was acquired for 2 minutes in sitting posture. The
data recording continued in the next 2 minutes while subjects changed their
posture from sitting to supine. In the subsequent 16 minutes, the acquisition
continued while the subjects remained in supine posture.

As per standard recommendations, endosomatic signals should be ac-
quired in referenced mode with one electrode placed at the active site and
one on the inactive site [46]. In DS1, two such standard signals have been
acquired simultaneously with the LH signal for comparison studies.

A total of 60 datasets of 20 minutes duration was acquired from 26 sub-
jects within a period of 2 months.

Placement of electrodes

The DDP was acquired between the intermediate phalanges of the middle and
the index fingers of the left hand, as shown in Figure 4.2(a). As mentioned,
the golden reference in this study are standard recommended endosomatic
EDA signals [46]. Two such signals were acquired simultaneously in this
experiment, one each from the middle and the index fingers and sharing a
common reference electrode that is affixed to the forearm. These reference
signals are henceforth denoted as MLRef and ILRef respectively. Accord-
ingly, 3 multimeter-adapter assemblies/ 3 channels of DAS named as CH1,
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CH2 and CH3 have been used simultaneously to acquire the LH, MLRef

and ILRef signals respectively. An image of the hand of a subject with the
electrodes connected is shown in Figure 4.2(b).

(a)

(b)

Figure 4.2: (a)Schematic diagram of experimental setup with details of elec-
trodes and (b) Actual picture of hand with electrodes connected.

Data acquisition protocol

Figure 4.3 represents the flowchart for the data acquisition protocol for DS1.
The overall algorithm has been elaborated hereafter.
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Step 1: After completing all the steps shown in Figure 4.1, electrodes are
connected to respective earmarked sites on the fingers and forearm of
the left hand of the subject.

Step 2: The data recording of all three signals is begun simultaneously with
the subject in a relaxed sitting posture for 2 minutes.

Step 3: After that, the subject is asked to lie down in the supine posture
from the erstwhile sitting posture while the data acquisition continues.
A duration of 2 minutes is allocated for this change of posture by the
subject.

Step 4: Thereafter, the signal acquisition continues for another 16 minutes
with the subject in the supine posture.

Step 5: Then the electrodes are disconnected and again BP, pulse rate and
oxygen saturation level are recorded. Finally, the subject is asked to
resume his/her normal work.

Connect electrodes
and start acquisition

2 minutes in sit-
ting posture

Change from sitting
to supine posture

within this 2 minutes

16 minutes in
supine posture

Stop acquisition

Figure 4.3: Data acquisition protocol for DS1 experiment.
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4.2.3 DS2: 10 minutes supine LH and RH

In the DS2 experiment, DDP signals are acquired from both LH and RH of
individual subjects for 10 continuous minutes while they relax in the sitting
posture without any body movement.

A total number of 98 sessions of data were acquired from 16 subjects
within 4 months duration for this experiment.

Placement of electrodes

Figure 4.4(a) shows the experimental setup with the subject in supine posture
and the electrodes connected. The electrode connections on LH and RH are
shown in Figure 4.4(b).

(a) (b)

Figure 4.4: (a) Subject in supine posture with electrode connections, (b)
Connection of electrodes on the intermediate phalanges of both hands.

Data acquisition protocol

In this case also, all the prerequisite steps before connecting the electrodes
are as given in Figure 4.1. Protocol for data acquisition in this dataset is
shown in Figure 4.5. After the electrodes are connected, the acquisition is
started and this continues for 10 minutes. After the acquisition is stopped,
the BP and PR of the subject are recorded for normalcy checking. Then the
subjects are asked to resume their regular work.

4.2.4 DS3: Long sequence of postures LH and RH

In the DS3 experiment also, the DDP signals are recorded from the LH and
RH of subjects. However, the experimental protocol for this experiment
involves a number of steps as detailed hereafter.
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Connect electrodes
and start acquisition

10 minutes in
supine posture

Stop acquisition

Figure 4.5: Protocol for data acquisition in DS2 experiment

The experimental set up (Figure 4.4(a)) and the electrode connections
(Figure 4.4(b)) in DS3 are the same as in DS2. However, 2 pulse oximeters
are used to record the SpO2 and PR throughout the experiment. In this
experiment, BP and PR are additionally recorded after each 2 minutes of
DDP signal (and SpO2) acquisition.

3 subjects participated in this experiment over a period of 3 months and
a total of 66 datasets were recorded.

Data acquisition protocol

The data acquisition protocol followed for DS2 involves a number of steps as
given in Figure 4.6. These steps for the data acquisition are also explained
hereafter.

Step 1: Electrodes are connected to the intermediate phalanges of index
and middle fingers of the left and the right hands of the supine sub-
ject using aqueous USG gel. 2 pre-configured pulse-oximeters are also
connected to the thumbs of both hands. DDP signal acquisition and
SpO2 recording are started simultaneously.

Acquisition in this supine posture is continued for 2 minutes.

Step 2: After completion of 2 minutes, the pulse oximeters are removed and
BP and PR are recorded from both hands.

Step 3 After that, recording is resumed again for 2 minutes from both
hands with the pulse oximeters connected to both the thumbs.

Step 4: Step 2 is repeated again after completion of this 2 minutes recording.
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Connect electrodes and Pulse
Oximeter and start acquisition

Supine 1

Stop, record BP and PR from both hands and start again

Supine 2

Stop, record BP and PR from both hands

Get up and sit on the chair and start again

Sit 1

Stop, record BP and PR from both hands

Get up and stand beside the chair and start again

Stand 1

Stop, record BP and PR from both hands, electrodes disconnected

Climb down and up a flight of stairs within 1 min

Connect electrodes again and measure BP and PR

Sit i: i ∈ (2, 3, ..., n)

Stop, record BP and PR from left hand

Does BP equal
BP in Sit 1?

Continue

Stop acquisition

No

Yes

Figure 4.6: Protocol for data acquisition in DS3
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Step 5: Then the subject is asked to get up from the supine position on bed
and move to a sitting posture on the chair beside the bed and relax
without any body movement.

After sitting on the chair, the DDP signal and SpO2 recordings are
started again as in Step 3.

Step 6: Step 2 is repeated again after completion of this 2 minutes recording.

Step 7: Subject is now asked to get up and stand beside the chair. With the
subject in this standing posture, the DDP signal and SpO2 recordings
are started again as in Step 3.

Step 8: Step 2 is repeated again after completion of 2 minutes recording.
Then the electrodes are disconnected.

Step 9: Then the subjects are asked to go out, climb down a fixed flight of
stairs to the lower floor, climb back up the same way and return to the
cubicle, all within 1 minute.

Step 10: After that, the subject is asked to sit in the chair while the elec-
trodes and pulse oximeters are reconnected. Then the recording is
restarted with the subject in sitting posture.

Step 11: After 2 minutes, BP is measured from the left hand only and
compared with that recorded in Step 6.

If these are similar, then the acquisition is stopped.

Else the data recording in sitting posture is resumed again for 2 minutes
followed by the BP check for the left hand until the condition is met.

Step 12: After the acquisition is finally stopped, the electrodes are discon-
nected, all the records are saved and subjects are asked to resume their
regular work.

From the aforementioned sequence, it is evident that the dataset recorded
in this experiment can be categorized into different states as tabulated in
Table 4.1. The various measurements recorded for each state and the exper-
imental conditions are also mentioned in the Table.

4.2.5 DS4: 10 minutes supine continuous 4 locations

In the DS4 experiment, DDP signals are recorded continuously for 10 minutes
from all 4 locations, namely LH, RH, LL and RL, of a subject in supine
posture.
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Table 4.1: Different states of the DS3 data with their details

State no. Posture Name Condition

1
Supine

Sup 1
Left and Right BP, then
DDP+PR+SpO2.

2 Sup 2
DDP+PR+SpO2, then Left
and Right BP.

3 Sitting Sit 1
Left BP and PR, then
DDP+PR+SpO2.

4 Standing Stand 1
Left BP and PR, then
DDP+PR+SpO2.

5 Climb down and up a flight of stairs in 1 min

6 Sitting
Sit i,
i∈(2,3,...,n)

DDP+PR+SpO2, then Left
BP and PR. Repeat for every
2 minutes until BP matches
that in state 3 (Sit 1).

A total of 66 datasets of 10 minutes duration were acquired from 12
subjects in a duration of 2 months.

Placement of electrodes

The experimental setup is similar to that in DS2 except that the signals
are acquired in this case from all 4 locations as shown in Figure 4.7. Here
“+” and “-” represent the earmarked positive and negative terminals of the
corresponding channel in the DAS.

Figure 4.7: Electrode connections and placements in DS4
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Data acquisition protocol

The data acquisition protocol for DS4 is essentially the same as that in DS2
(Section 4.2.2) except for the electrode connections, 4 in case of DS4 and 2
in case of DS2.

4.2.6 Measures for reliable signal acquisition

The human body is a complex system and the stochasticity in its biological
communication processes plays a significant role in its overall development
and evolution [121]. In order to record this essential stochasticity of the
dermal potential reliably, all types of filters or filtering techniques have been
avoided apart from the power line interference compensator.

Additionally, the following measures were taken to ensure that the recorded
DDP signal is due to the physiological changes only.

1. It was ensured that the subject had not consumed any anticholinergic
drug within 72 hours prior to the data acquisition.

2. The signal is acquired in DC mode only and so it responds mainly
to the resistive components. Furthermore, the signal is acquired in
differential mode with the electrodes being placed on similar surfaces of
two adjacent fingers. So, it is relatively immune to sweat gland activity
since the effects of similar resistances on the adjacent electrodes cancel
out.

3. The input impedance of this acquisition system ( > 10GΩ) is much
higher than the recommended input impedance of 10MΩ for skin po-
tential measurements [3].

4. Recommended bias voltage tests have been performed on the electrodes
prior to every acquisition experiment.

5. Signal continuity is maintained by keeping the electrodes connected
from start to end of the experiment as far as feasible.

6. The potentials are acquired in differential mode across two active, ad-
jacent sites since this eliminates common mode noise (SNR > 100dB).

7. Systematic static and dynamic calibrations of the setup ensured the
recordings to be noise free.
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4.3 Experiment overview and related appli-

cations

This chapter contains details of all the 4 different experiments designed and
conducted in this work. All 4 experiments follow a common preliminary
protocol, followed by different data acquisition sequences.

The 4 different datasets are named here as DS1, DS2, DS3 and DS4.
These are used for 6 applications in total.

An overview of the 4 experiments is given hereafter.:

DS1: DDP signals are acquired from only LH for 20 minutes which include
2 minutes in sitting posture, then 2 minutes during change in posture
from sitting to supine and last 16 minutes in supine posture

DS2: DDP signals are acquired from LH and RH of supine subjects for 10
minutes

DS3: DDP signals are acquired from LH, RH of subjects for a specific set
sequence: supine for 4 minutes, then sitting and then standing for 2
minutes each. This is followed by a no recording 1 minute activity
session. Then subject sits again and DDP signals are acquired till a
specified condition is met.

DS4: DDP signals acquired continuously from LH, RH, LL and RL of supine
subjects for 10 minutes

All 4 datasets were used for 6 different applications. All these applications
are enumerated hereafter with the associated datasets mentioned alongside.

Application1: Validation of the DDP signal by comparing it with standard
recommended endosomatic EDA signals (golden reference) using DS1
dataset

Application2: Study unilateral characteristics of DDP signals using DS2,
DS3 and DS4 datasets

Application3: Study bilateral characteristics of DDP signals using DS4
dataset

Application4: Classification of hypertensive and normotensive subjects us-
ing LH and RH of DS2

Application5: Classification of different postures using LH of DS1 and both
LH and RH data of DS3
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Application6: Determination of the effective duration of rest in supine pos-
ture from LH of DS1, both hands data (LH and RH) of DS2 and all
4 channel data (LH, RH, LL and RL) of DS4 datasets and in sitting
posture from both hands data (LH and RH) of DS3 dataset



CHAPTER5
Validation and characterization of

DDP signals

The 4 experiments conducted for DDP data acquisition have been discussed
in the previous Chapter. This chapter contains the first three (3) of the total
6 applications of the datasets listed there. These applications of the DDP
signals include their

Application1: Validation by comparison with standard recommended en-
dosomatic EDA signals using DS1 dataset

Application2: Unilateral characterization using DS2, DS3 and DS4 datasets

Application3: Bilateral characterization using DS4 dataset

At the outset, a physiological basis of the DDP signals is proposed based
on their mode of measurement. This is followed by the validation of the
signals in terms of their autocorrelation and by comparing them with their
underlying standard endomatic EDA signals. Thereafter, their unilateral
and bilateral characteristics have been studied. These include trends and
polarities; various statistical, spectral and linear regression parameters; and
lateralization coefficients. Some new bilateral characteristics have also been
proposed in this Chapter.

5.1 Proposed physiological basis

As mentioned earlier, endosomatic EDA signals are acquired between an
active and inactive site of two fingers of the left hand as per the standard
recommendation [46]. However, the DDP signal is acquired between two
active sites of the two fingers in differential mode. Hence, a physiological
basis for the information content in these signals is proposed here.

77
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A well accepted electrical equivalent circuit of the skin, as shown in Fig-
ure 5.1 (a), is given by Yamamoto et al. [6]. In this model, R1 is the resistance
of the epidermis that offers protection, while R2 is the equivalent resistance of
the dermis and hypodermis layer. R and C are the equivalent resistance and
capacitance of the sweat glands, which primarily help in temperature regu-
lation and water balance [3,122]. The conventional scheme proposes that as
the sweat glands get filled with sweat, the resistance of the glands decrease
since sweat contains free ions. Along with that, the equivalent capacitances
also change, causing the impedance (Z) of the sweat glands to change.

(a) (b)

Figure 5.1: (a) Electrical equivalent model of the skin proposed by Yamamoto
et al. [6], (b) Anatomical view of palm with nerves and capillaries [7].

It is to be noted in this context that the DDP is always acquired in DC
mode. Therefore, the capacitor acts as an open circuit and the equivalent
circuit in Figure 5.1 (a) reduces to a resistive model. Furthermore, the dif-
ferential potential is acquired across the intermediate phalanges of the index
finger and the consecutive middle finger of the same hand (or feet). Hence
R due to the sweat glands as well as R1 due to the epidermis of both these
active, adjacent sites may be considered almost identical as long as there is
no scar or wound on the skin surface.

As mentioned, R2 is the resistance of the dermis and hypodermis layers,
which contain nerves as well as capillaries [3]. These contribute to the sen-
sory function, immune function and communication of the skin surface and
facilitate the heat and energy exchange at the epidermis as required by the
autonomic nervous system (ANS) [123]. In fact, using optical techniques,
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blood pressure and pulse rate can be measured directly at the wrist from the
radial artery, which is also the largest artery in the hand [124].

As evident in Figure 5.1(b), the median nerve gives sensation to both the
index and middle fingers along with the thumb and half of the ring finger
on the palmar surface. As for the blood supply, a part of the index finger
is supplied by the radial artery while the other part as well as the middle
finger is supplied by the digital arteries of the ulnar artery [7]. It is thus
hypothesized that the R2 of these two fingers are not identical and differ
primarily due to the difference in the flow in the capillaries and also due to
differences in the information at the nerve endings at both fingers.

The differential potential acquired between these adjacent sites thus pri-
marily responds to any change in the homeostasis of the subject or other
physiological or psychophysiological process that affects the nervous system
or blood flow in the capillaries. Small differences in sweat gland activity in
both fingers may also affect the differential potential as non-identical R in
both fingers. However, this effect is further reduced by the use of aqueous
USG gel at the electrode-skin interface since this facilitates bio-potential ac-
quisition while preventing additional conductivity due to ionic exchanges at
the contact surfaces [46].

5.2 Validation of DDP signals

For the validation of the DDP signals, their auto-correlations were first stud-
ied and then they were compared with simultaneously acquired underlying
endosomatic EDA signals.

5.2.1 Autocorrelation

3 sets of ACF have been studied: 1st 2 minute window for sitting posture,
2nd 2 minute window for change in posture and 3rd to 10th 2 minute windows
for supine posture and the findings are stated below.

The ACF in all these cases are non-zero and broadly exhibit 2 distinct
patterns, specifically

1. those with a single zero-crossing and a single minimum for the whole
range

2. the others.

It is also found that the these ACF patterns cannot be ascribed in par-
ticular to any specific posture, age, gender or health conditions. Thus, it can
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Figure 5.2: (a) Autocorrelation plot of all Type 1 signals and (b) Time-series
plot of all Type 1 debiased signals. (c) Autocorrelation plot of all Type 2
signals and (d) Time-series plot of all Type 2 debiased signals.
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be said that this non-random DDP owes its origin to systemic time-varying
processes [125]. The underlying LH signals have accordingly been classified
into 2 groups, named as Type 1 and Type 2 signals. The ACFs as well as
the time-series plots of the mean subtracted signals, henceforth referred to
as debiased signals, for both Type 1 and Type 2 signals in sitting posture are
shown in Figure 5.2 and their characteristics are further described as follows.

The ACF of a Type 1 signal is smooth and similar to that for a linear
signal, as shown in Figure 5.2(a). Specifically, the ACF starts from 1 and
then decreases below 0 till a negative minima. Thereafter, it increases again
and ends at 0. As expected, the underlying signals are quasi-linear in nature
(Figure 5.2(b)).

The Type 2 signals show higher order dynamic characteristics from start
till end (Figure 5.2(c)). In several cases, the ACF also crosses 0 correlation
axis multiple times. As expected, the underlying debiased signals also display
several higher order dynamics, as shown in Figure 5.2(d).

The proportion of signals showing these two types of ACF characteristics
in all three postures are calculated. It is found that 33.76%, 33.33% and
33.99% signals showed Type 1 characteristics in sitting, change and supine
postures respectively. Therefore, it can be said that irrespective of postures,
Type 2 complex signals are almost 2 times more in count than the quasi-linear
Type 1 signals.

5.2.2 Comparison with standard endosomatic EDA

As mentioned in the electrode placement details for experiment DS1 in Sec-
tion 4.2.2, the DDP signal was acquired simultaneously with the two refer-
enced signals, MLRef and ILRef . The DDP signals are validated against 3
types of standard signals, namely the respective MLRef and ILRef and their
difference signal (DiffMLIL). For this, the cross-correlations of the 3 types
of standard signals with the DDP signals as well as the stability, settling
times, statistical and spectral characteristics of all the 4 types of signals are
studied and compared.

Cross-correlation

It is known that the referenced signals MLRef and ILRef are almost similar
to each other, although a clear difference also exists between the two. A
sample plot of 2 minutes data of all three simultaneously acquired signals in
the sitting posture are shown in Figure 5.3. It is observed that in this case,
both the referenced signals are positive and amplitudes are larger compared
to that of the DDP signal.
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Figure 5.3: Sample 2 minute plot of LH, MLRef and ILRef signals during
sitting posture
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(ILRef and LH) and (DiffMLIL and LH) signals
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Figure 5.5: Sample plots of pairs of signals with cross-correlation coefficients
within (a) +0.8 to +1.0, (b) -0.8 to -1.0 and (c) -0.8 to +0.8.

To examine whether there is any direct relation between any of these two
referenced signals and the DDP signal in the short duration, the Pearson’s
correlation coefficient for 2 minutes data is calculated between the two pairs
of signals, (MLRef and LH) and (ILRef and LH). Furthermore, since the
differential signal is the potential difference between the middle and the in-
dex finger, it is expected that the DDP signal will be almost identical to
the difference signal between MLRef and ILRef , denoted as DiffMLIL. In
order to verify this, Pearson’s correlation coefficient is calculated between
LH and DiffMLIL also. Cumulative distribution function (CDF) plots of all
3 correlation coefficients are plotted in Figure 5.4.

It can be seen that in case of (MLRef and LH) and (ILRef and LH),
the correlation coefficients lie within -1 to -0.8 and 0.8 to 1 for more than
50% cases. For the remaining cases, the correlation coefficients are in the
interim zone, within -0.8 to 0.8. These correlation characteristics are thus
more weighted towards ±1. It is also evident from the plot that MLRef is
more likely to be negatively correlated with LH, while ILRef is more likely
to be positively correlated.

Furthermore, on the basis of this cross-correlation coefficients, individual
as well as pairwise characteristics are also studied. Sample plots of 3 types
of pair of signals, having cross-correlation coefficients within +0.80 to +1.00,
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Figure 5.6: 4 sample time-series plots of DiffMLIL and LH signals zoomed
in over a 10s window
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Figure 5.7: (a) Sample plot of DiffMLIL and LH, (b) Corresponding residual
and (c) ACF of residual.
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Figure 5.8: Sample autocorrelation plots of (a) all residuals, and 2 residuals
zoomed within 400 samples lag (b) Example 1, (c) Example 2.
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-0.80 to -1.00 and -0.80 to +0.80 respectively are shown in Figure 5.5. It
can be said from the visual inspection that in case of strong positive cor-
relation, the signal pairs are very similar to each other. In case of strongly
negative correlated signals, as shown in Figure 5.5b, the signals are similar
but with opposing trends, that is to say that while one of these two signals
is increasing, the other one is decreasing in nature. Rest of the signals with
cross-correlation coefficients within -0.80 to +0.80 are not similar in nature.

It is also observed that the cross-correlation coefficients of any LH and
MLRef and its corresponding LH and simultaneously acquired ILRef may or
may not be close to each other but the common factor is that the sign of
these two coefficients are always same.

From Figure 5.4, it is further observed that the LH and corresponding
DiffMLIL signals are strongly positively correlated. Their cross-correlation
coefficient in more than 75% cases is more than 0.8, yet the signals are not
identical. In order to verify this, 4 sample plots of these two signals have
been shown in Figure 5.6 over a short duration of 10s window in the supine
state. The elapsed time in all cases is chosen arbitrarily as 11 minutes 30
seconds, when the subject is expected to be in a deep restful condition. The
cross-correlation coefficients of LH and DiffMLIL for the overall 20 minutes
as well as for the 10 second window are stated in the figures.

It is observed that the overall cross-correlation value in Figure 5.6(a), is
very low (0.24), while it is very high (> 0.99) in the other 3 cases. However,
these values do not hold in the 10s windows. This finding establishes that
although the overall LH signal is very similar to its corresponding DiffMLIL

signal, yet it is not identical to it and this is evident from the signal charac-
teristics in the sub-millivolt level.

This aspect is studied in more detail and accordingly, a sample plot of
DiffMLIL and the corresponding LH is shown in Figure 5.7a. The residual
of this set of signals (=LH- DiffMLIL) is shown in Figure 5.7b, while the
ACF plot of the residual is shown in Figure 5.7c. The significant dynamics
in the ACF plot establish the non-trivial nature of the LH signal.

This observation holds for the ACF plots of all the residuals, as shown in
Figure 5.8 (a) and is further evident from the zoomed ACF plots of 2 of the
residuals shown in Figure 5.8 (b) and (c).

Thus, it is validated that the DDP signal carries unique information about
the inherent system characteristics that is separate from the standard endo-
somatic signals or their difference signal.
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Stability and settling times

In the next stage, the stability of all 4 types of signals and their settling times
are compared. Figure 5.9 (a) and (b) show two sample time-series plots of
the LH signal and the corresponding MLRef and ILRef signals acquired for
20 minutes. Figure 5.9 (c) and (d) show the respective DiffMLIL signal
along with the LH signal. In the time-series plots, the red arrow indicates
the data in sitting posture (0 to 2 minutes), green arrow indicates the data
during transition from sitting to supine posture (2 to 4 minutes) and black
arrow indicates the data in supine posture (4 to 20 minutes) for the complete
daily set of data acquired in accordance with the DS1 experiment protocol.
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Figure 5.9: (a), (b) Two sample 20 minutes time-series plots of LH, MLRef

and ILRef signals, (c), (d) Corresponding (Difference) DiffMLIL and (Dif-
ferential) LH signals. Arrows in figures are indicative of following: red arrow
- sitting posture, green arrow - transition from sitting to supine posture and
black arrow - supine posture.

As expected, the signal amplitudes of the DiffMLIL and (Differential)
LH signals are much smaller than those of the standard MLRef and ILRef
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Figure 5.10: Plot of signals shown in Figure 5.3 with their first sample instant
values subtracted.

signals. In order to observe the transient behaviours of these signals more
clearly, the 2 minute signals shown in Figure 5.3 with their first sample
instant values subtracted are plotted in Figure 5.10.

As reported [46], it is observed in these cases also that the transient
effects are much more prominent and long lasting in both the referenced
signals. This may be ascribed to the gel penetration in the sweat gland after
the electrode connection to the skin.

In case of the differential LH signals, as also the difference (DiffMLIL)
signals, it is observed that this effect is not so prominent. This validates
the expectations from the physiological basis (Section 5.1) that the transient
effects due to the epidermis and sweat glands are minimized when the signal
is acquired in the differential, or even the difference, mode.

Considering RSi to be the running slope of ith instant, xi as the data
point at ith instant and hence x1 as the data point at the 1st instant, the
running slopes of all the signals are calculated over the 20 minutes duration
using the formula 5.1

RSi =
xi − x1

i
(5.1)

A sample plot of the running slopes (in mV/instant) of all three simulta-
neously acquired signals are plotted in Figure 5.11. It is seen from this plot
that the running slope of the LH is very low compared to that of the MLRef

and ILRef signals. The histogram of the running slopes of these signals for
all the acquired datasets is shown in Figure 5.12. From this figure, it can
be seen that the peakedness (or kurtosis) of the DDP signal is much higher
and typically centred at 0mV/instant. Quantitatively it can be said that
more than 90% of running slopes of LH signals lie within ±0.05 mV/instant,
whereas less than 60% of running slopes of MLRef and ILRef signals lie
within ±0.05 mV/instant.
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Figure 5.11: Sample plot of the running slopes (in mV/instant) of (a) LH
and corresponding (b) MLRef and (c) ILRef signals
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Figure 5.12: Histograms of the running slopes of (a) LH , (b) MLRef and (c)
ILRef signals
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Figure 5.13: CDF plots of (a) running slopes for the overall span of 20
minutes, (b) settling time of all 4 signals.
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Further to this, the CDF plots as well as the signal settling times for
all the 4 types of signals are shown in Figure 5.13 (a) and (b) respec-
tively for 2.5% to 97.5% of data. It can be seen from Figure 5.13(a) that
95% of the running slope of MLRef , ILRef , DiffMLIL and LH signals lie
within -4.12 mV/minute to 13.54 mV/minute, -3.27 mV/minute to 16.26
mV/minute, -5.27 mV/minute to 5.01 mV/minute and -7.82 mV/minute to
6.63 mV/minute respectively. Thus, the MLRef and ILRef both exhibit
more dynamic characteristics while the LH and DiffMLIL signals are rela-
tively steady with inherent low amplitude stochastic characteristics as seen
earlier.

The reason is that the LH signal settles down in a much shorter time as
compared to the reference signals. This is evident from the mean and SD,
represented as a set as mean(SD), of the settling time for all the acquired
MLRef , ILRef and LH signals, which are 690.39(335.34)s, 680.95(288.85)s
and 81.17(59.63)s respectively. These have been calculated after the transi-
tion to the supine posture. The settling times of the DiffMLIL signals with
mean(SD) of 83.03(163.34)s are comparable in the mean to those of the LH
signals but have a much larger SD indicating larger variability.

5.2.3 Signal characteristics

Prior to the unilateral and bilateral characterization of the DDP signals, a
comparison of the statistical and spectral characteristics of the LH signal and
its associated MLRef , ILRef and DiffMLIL signals as recorded in the DS1
experiment are stated hereafter.

Statistical characteristics

As mentioned, the statistical parameters of all 4 types of signals, namely LH,
MLRef , ILRef and DiffMLIL are determined, as shown in Table 5.1, for all
the 60 data sets in 3 segments: the 2 minutes of the sitting posture, the 2
minutes during change of posture and the 16 minutes of the supine posture.
For this, the minimum, maximum, mean, SD, skewness and kurtosis for
subsequent 2 minute windows have been calculated.

Of these parameters, the averages are calculated for the z-normalized
data of the mean, SD and kurtosis for subsequent 2 minute windows. Z-
normalized data is obtained by dividing the respective debiased, or mean
subtracted, signal with its SD. The plots are shown in Figure 5.14 (a), (b)
and (c) respectively for all 4 types of signals.

Let us first compare the recorded values as stated in Table 5.1 and Fig-
ure 5.14 with the DAS calibration characteristics in Table 3.7 to Table 3.9
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Figure 5.14: Plots of averages of (a) mean, (b) standard deviation (SD), (c)
kurtosis and (d) average band power for subsequent 2 minutes windows over
the 20 minutes duration
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Table 5.1: Standard statistical parameters of signals collected in all three
postures

Posture Signals Min Max Mean SD Skew- Kur-
in mV in mV in mV in mV ness tosis

S
it
ti
n
g LH -44.18 45.62 3.09 19.21 -0.44 2.72

DiffMLIL -41.32 45.28 7.82 16.38 -0.44 3.19
MLRef 10.09 186.82 82.62 43.27 0.40 2.61
ILRef 10.15 183.02 73.23 40.83 0.57 3.07

C
h
a
n
ge

LH -44.42 48.90 2.25 17.85 -0.56 3.03
DiffMLIL -39.43 42.57 6.65 15.24 -0.40 3.44
MLRef 9.95 182.79 84.07 43.77 0.34 2.64
ILRef 9.23 185.90 76.13 40.55 0.45 3.09

S
u
p
in
e LH -43.83 39.69 2.41 18.12 -0.56 3.09

DiffMLIL -38.80 39.61 7.06 15.71 -0.36 3.66
MLRef 9.24 175.56 86.51 44.49 0.20 2.54
ILRef 9.13 183.50 78.33 41.16 0.25 2.95

. It is observed that the LH signals lie within ±50mV in all 3 postures.
The maximum static error in that range is 0.38mV which is 0.76% of the
maximum static error stated in Table 3.8. The time varying characteristics
of the signal is recorded in terms of its SD. This lies in the range of 0.1mV
to 0.7mV (Figure 5.14 ), which is an order higher than the SD of 0.01mV
obtained from the DAS (Table 3.9), thus validating the measured signal.

A comparison of the parameters of the LH signal with those of the
DiffMLIL signals as well as the two referenced signals themselves from Ta-
ble 5.1 and Figure 5.14 yield the following.

1. As is to be expected, the parameters for the LH and DiffMLIL signals
are similar in magnitude and sign, while those of the two referenced
signals are similar in all cases.

2. The trends for the mean values of the referenced signals are quite dif-
ferent from those of the difference and DDP signals. For the reference
signals, these increase when the subject changes to the supine posture
and then decreases slightly with longer rest. However, for the LH and
the DiffMLIL signals, the mean decreases sharply due to change in
posture and then decreases steadily as the subject enters a more restful
condition.

3. The SD ranges for the referenced signals, typically in 40−45mV range,
are > 2 times than those of the LH and DiffMLIL signals. The SD
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of the LH and DiffMLIL signals are within 15−20mV. This corrob-
orates with the findings of the earlier studies for the differential sig-
nals [92, 113]. However, it is observed from the average SD plots in
Figure 5.14(b) that the signal dynamics like posture change or long
duration of rest are captured equally well in all 4 cases.

4. Skewness values are overall low, and hence negligible, for all cases.
However, the trends are opposing for the referenced signals (right skewed)
as compared to the LH and DiffMLIL signals (left-skewed).

5. The kurtosis values are close to 3 in all cases and are almost comparable
all through the experiment for the reference signals. In case of the z-
normalized data of the LH (and to a lesser extent, the DiffMLIL)
signals, it is observed that the kurtosis increases significantly and then
drops again as the posture changes from sitting to supine, indicating
the effect of orthostatic hypotension [126].

Spectral characteristics

Two spectral characteristics of these signals, namely the Welch Power Spec-
tral Density (PSD) and the average band power, are also determined using
the respective z-normalized data. The effect of the posture change on the
PSD characteristics of all 4 signals are shown in Figure 5.15 (a)-(d). Each
plot contains the average PSDs of all 60 sets of data in the range of 0 to 1Hz
for 5 conditions: during the sitting posture, change of posture, the first 2
minutes of supine state (termed Sup 1), during 5 to 6 minutes of the supine
state (9 to 10 minutes of elapsed time) (termed Sup 3) and last 2 minutes
of supine state (termed Sup 8). As expected, the maximum power in all
these signals is concentrated in the DC bias level and reduces drastically be-
yond this frequency. The PSD of the LH and DiffMLIL signals are almost
identical in all cases and are significantly larger and exhibit slightly different
characteristics than those of the reference signals.

The average band power of the signals, as plotted in Figure 5.14(d) for
all 10 windows, is observed to be almost similar but not identical for all 4
types of signals. A common feature in all 3 plots is that the band power
starts from a high value and continuously decreases till a certain value and
then increases again. It can be interpreted that when the acquisition started,
the (human) system was in a higher energy state. As the subjects get into
(physical and mental) restful states, the energy level drops till the minima.
When the maximum restfulness is achieved, the energy level starts increasing
again. This may be in part due to the eagerness of the subjects to resume
their routine work.
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Figure 5.15: Average PSD within 0 to 1Hz at 5 different elapsed times of (a)
LH signal, (b) DiffMLIL signal, (c) MLRef signal and (d) ILRef signal.



96 Validation

These characteristics and their changes with the different conditions of
the experiment DS1 indicate the utility of the DDP signal in similar and
other physiological applications.

5.3 Unilateral characteristics

In order to use the acquired DDP signal in any application, it is needed
to establish key features and characteristics of these signals which might
be useful in subsequent classification or analysis studies. As a first step for
that, all DDP signals acquired during DS2, DS3 and DS4 have been collected
together and segregated in to the 4 classes of LH, RH, LL amd RL signals.
Since the acquired datasets are typically long term and varying in length, so
all the datasets have been quantized into suitable number of 2 minutes data
subsets. Then the unilateral characteristics of these 4 classes of 2 minutes
signals have been studied in detail in this Section.

5.3.1 Characterization of acquired signals

(a) (b)

(c) (d)

Figure 5.16: Time series plots of all (a) LH, (b) RH, (c) LL and (d) RL
signals

The time series plots of all 2 minute signals for all 4 classes of acquired
signals, namely LH, RH, LL and RL signals, are plotted in Figure 5.16a,
Figure 5.16b, Figure 5.16c and Figure 5.16d respectively while their ranges
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are stated in Table 5.2. It is observed that all the acquired signals lie ap-
proximately in the range of ±300mV .

From the study of Bhattacharya in [5], it is known that the set of simulta-
neously acquired DDP signals differ from each other. So, two signals collected
simultaneously from both hands are different. Furthermore, though these sig-
nals look almost constant, but they vary continuously with time. Hence, a
particular signal differs for different subjects and on different days for the
same subject.

As stated earlier, DDP signals from both hands and both feet have been
acquired in this study. It is observed that as in the case of the hand signals,
the feet signals are also almost constant. Also, no two signals out of the LH,
RH, LL and RL signals acquired simultaneously are identical to each other
or to the same signal acquired subsequently from the same subject or from
a different subject.

To understand the statistical distribution of the signals, standard statisti-
cal quantities of these acquired signals, namely the range, mean (µ), median,
SD (σ), skewness and kurtosis, are tabulated in Table. 5.2. It can be seen
that more than 95% of acquired signals lie within ±250mV, whereas 90%
of feet signals lie within ±200mV. Among all, the span of the LH signals is
minimum with 95% of the signals lying within (-110.06) mV to 107.93 mV,
which is less than half of the typical DDP signal range of ±250mV. Overall
mean of the LH signals is also very close to 0, but for the others, the mean
values are higher. Overall SD value of LH is also lower compared to that
of the other acquired signals. Skewness values are close to normal for all 4
classes but kurtosis of the LH and RH are higher compared to LL and RL
signals.

Table 5.2: Statistical characteristics of 4 types of acquired signals

Parameters Range in mV µ in Median σ in Skewness Kurtosis

Min Max mV in mV mV

LH -294.03 151.37 -1.52 -1.36 48.10 -0.33 5.34

RH -211.91 307.96 14.36 7.58 79.21 0.57 4.52

LL -139.41 309.99 36.79 18.96 86.98 0.68 3.33

RL -224.10 274.28 13.59 6.88 96.30 0.12 3.33

5.3.2 Polarity and trend of individual signals

In the previous study by Bhattacharya [5], it has been reported that the
acquired signals are almost equally likely to be of either positive or nega-
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tive polarity and in some cases, there are even transitions from negative to
positive or vice versa.

Furthermore, the signals are likely to have either increasing or decreasing
trends or are almost constant all through the 2 minute duration. These
characteristics also differ for the signals acquired simultaneously.

These earlier reported findings have been reviewed for the signals acquired
in the present study.
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Figure 5.17: Bar plot of different polarities in LH, RH, LL and RL signals.

It is evident from Figure 5.16 that all the acquired DDP signals are dis-
tributed over all 3 classes, namely Positive, Negative and Transitive, as al-
ready defined by Bhattacharya [5]. The conditions for these 3 classes are as
follows.

Let xi denote the DDP at the i-th instant. Then, for any particular
dataset xi, ∀ i ∈ [1, 2400],

Signal is


Positive if, xi ≥ 0.01mV

Negative if, xi ≤ −0.01mV

Transitive Otherwise

Polarities of all 4 classes of acquired signals are calculated and tabulated
in Table 5.3 and represented as bar plots in Figure 5.17. It can be seen from
the results that signals are more likely to have positive polarity, followed
by negative polarity. In any particular class of signals, less than 4% of the
signals are transitive in nature.
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Table 5.3: Occurrence (in %) of different polarities in LH, RH, LL and RL
signals.

Parameters Positive Negative Transitive

in % in % in %

LH 46.76 49.57 3.56

RH 56.60 39.36 4.04

LL 62.87 34.52 2.63

RL 57.12 40.06 2.92

Trends of individual signals

Three signal trends, namely increasing, decreasing and constant, are defined
by Bhattacharya [5]. Considering a nominal tolerance of 2 mV, these 3 trends
are defined in terms of the DDP values at the initial and final instants as
follows.

For a particular data set xi, i ∈ [1, 2400], let diff = x1 − x2400.

Signal is


Decreasing if, diff > +2mV

Increasing if, diff < −2mV

Constant , Otherwise

The occurrence of these three trends in all 4 classes of signals are calcu-
lated in % and are tabulated in Table 5.4 while their bar plots are shown in
Figure 5.18. The results show that in these cases also, all trends are almost
equally likely but among them, the constant trend is most prevalent followed
by the increasing and then the decreasing trends.
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Figure 5.18: Bar plot of different trends in LH, RH, LL and RL signals.
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Table 5.4: Occurrence (in %) of different trends in LH, RH, LL and RL
signals.

Parameters Increasing Decreasing Constant

in % in % in %

LH 31.49 22.39 46.11

RH 37.45 25.48 37.07

LL 33.63 27.19 39.18

RL 30.99 28.36 40.64
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Figure 5.19: Cdf plots of (a) 4 acquired signals, (b) their mean values (µ).

5.3.3 Bias of the signals

The bias of a particular DDP signal is considered to be its mean value for
the whole duration of the dataset or in other words, its setwise mean value.
Plots of the CDF of the 4 acquired DDP signals and their mean values are
shown in Figure 5.19a and Figure 5.19b respectively.

Standard statistical quantities of the mean values of all 2 minute signals
for the 4 classes of acquired signals are tabulated in Table 5.5. It is found
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that the overall average of the LL signals are higher than that of the LH
and also the RH signals, but the RH and RL signals have similar statistical
characteristics.

From a comparison of the cdf plots in Figure 5.19a and Figure 5.19b as
well as the statistical parameters in Table 5.5 and Table 5.2, it is observed
that they are almost identical. Hence, it can be said that the DDP signal
mean can be considered as one of its representative features.

Table 5.5: Standard statistical parameters of subsetwise mean values of LH,
RH, LL and RL signals

Parameters Range in mV µ in Median σ in Skewness Kurtosis

Min Max mV in mV mV

µLH -216.11 149.30 -1.52 -1.47 48.04 -0.32 5.32

µRH -205.13 305.59 14.36 7.77 79.14 0.57 4.51

µLL -138.54 307.22 36.79 18.76 87.08 0.68 3.33

µRL -222.72 274.06 13.59 6.55 96.40 0.12 3.33

Chi-square goodness of fit tests were performed with 5% and 10% sig-
nificance levels to check the normality of the signal mean, or bias, values.
The test results for acquired signals from hand are tabulated in Table 5.6,
whereas, feet signals are tabulated in Table 5.7. Results show that none of
these DDP signals follow normal distribution.

Table 5.6: Chi-square goodness of fit tests for µLH and µRH

Hypothesis H0: µLH is normally distributed H0: µRH is normally distributed

HA: µLH is not normally distributed HA: µRH is not normally distributed

df=15 χ2
0.10 χ2

0.05 χ2
0.10 χ2

0.05

Theoretical 22.307 24.996 22.307 24.996

Experimental 39.704 39.704 85.465 85.465

Conclusion H0 rejected H0 rejected H0 rejected H0 rejected

5.3.4 Debiased signals

In order to study the dynamic nature of these signals in more detail, the mean
value of the individual signal is subtracted from the corresponding signal for
all 4 acquired signals. Name of all these 4 signals are given hereafter. The
characteristics of these signals are studied in this section.
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Table 5.7: Chi-square goodness of fit tests for µLL and µRL

Hypothesis H0: µLL is normally distributed H0: µRL is normally distributed

HA: µLL is not normally distributed HA: µRL is not normally distributed

df=15 χ2
0.10 χ2

0.05 χ2
0.10 χ2

0.05

Theoretical 22.307 24.996 22.307 24.996

Experimental 39.704 39.704 85.465 85.465

Conclusion H0 rejected H0 rejected H0 rejected H0 rejected

1. debiased LH : Corresponding mean subtracted left hand signal = LHk

- mean(LHk)

2. debiased RH : Corresponding mean subtracted right hand signal =
RHk - mean(RHk)

3. debiased LL : Corresponding mean subtracted left feet signal = LLk -
mean(LLk)

4. debiased RL : Corresponding mean subtracted right feet signal = RLk

- mean(RLk)

where, k represents the individual 2 minute subset.
The superimposed line plots of the debiased LH, debiased RH, debiased

LL and debiased RL signals corresponding to Figure 5.16 for the all subjects
are shown in Figure 5.20. Most of the signals show a quasilinear nature and
the majority of the signals, and/or their major portions, lie within ±6mV ,
as can be expected from the CDF plot of their SD in Figure 5.21a.

A typical characteristic of these signals, as evident in Figure 5.16, is that
the cluster of all the 4 types of debiased acquired signals exhibit similar
butterfly like patterns, mostly within ±10mV . This pattern appears since
the majority of these quasilinear signals cross zero in the middle epoch, within
800 to 1600 instant (out of 2400 instants).

Standard statistical quantities of the debiased LH, debiased RH, debiased
LL and debiased RL signals are tabulated in Table 5.8, while their CDF plots
as well as the corresponding zoomed CDFs in the range ±10mV are shown
in Figure 5.21.

It is observed that the range of hand signals is higher than that of the
feet signals. It can also be seen that the overall characteristics of the in-
stantaneous debiased LH and RH signals are almost identical. Furthermore,
in all 4 cases, the data are almost equitably distributed about the median
value, which is close to 0 mV. Additionally, the kurtosis of the signals is very
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(a) (b)

(c) (d)

Figure 5.20: Time series plots of all debiased signals of (a) LH, (b) RH, (c)
LL and (d) RL signals
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Figure 5.21: CDF plots of (a) all debiased acquired signals, (b) their zoomed
plots within ±10mV
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Table 5.8: Standard statistical parameters of debiased LH, RH, LL and RL
signals

Parameter Range in mV σ in Skewness Kurtosis

Min Max mV

debiased LH -33.00 39.50 3.09 0.66 27.14

debiased RH -33.04 34.58 3.41 -0.59 17.69

debiased LL -20.02 20.04 3.36 -0.07 11.61

debiased RL -21.58 19.69 4.09 -0.22 8.15

high with typically more than 95% (2.5% to 97.5%) of the data lying within
±6mV . Characteristics of debiased LL is quite similar to that of debiased
LH and debiased RH but the characteristics of debiased RL signls are slightly
different, particularly in the mean and the kurtosis.

5.3.5 Linear regression parameters

In view of the mean as a characteristic feature of the DDP signal and the
similar quasistatic natures of the debiased signals, the linear regression equa-
tion (5.2) that was proposed in [5] is considered in this study also. Here, ZCI
is the Zero Crossing Instant, defined as the time instant when the debiased
signal crosses the 0mV axis closest to its mid point, yk is the acquired signal,
µ is the mean and ek is the residual of the acquired signal from the linear fit
at the kth instant. The slope m is defined in 5.3.

yk = µ+m× (k − ZCI) + ek; (5.2)

m = [

∑N
k=1(k − ZCI)yk∑N
k=1(k − ZCI)2

] (5.3)

Zero Crossing Instant

From Figure 5.20, it is observed that most of the debiased signals cross
0mV axis in the middle epoch (within 800 to 1600 instant). These instants
are termed as the Zero Crossing Instants (ZCI). The CDF plots of the zero
crossing instants (ZCI) of the debiased LH and RH signals of all subjects,
denoted as ZCILH and ZCIRH respectively, are shown in Figure 5.22a. The
likelihood of occurrences of the ZCILH and ZCIRH in 50% of the cases
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(F(x)=0.5 to 1) are almost identical. Statistical characterization of ZCILH
and ZCIRH are done in Table 5.9. From this table it can be said that ZCILH
and ZCIRH lies within 400 to 2000 instants and mean values lie very close
to 1200. No strong skewness can be seen in either of two sides.

Table 5.9: Statistical characterization of ZCILH , ZCIRH , ZCILL and ZCIRH

Parameters Range in mV µ in σ in Skewness Kurtosis

Min Max mV mV

ZCILH 485 1928 1150.73 197.20 0.43 5.39

ZCIRH 454 1924 1130.24 218.75 0.21 4.34

ZCILL 583 1848 1161.53 190.40 0.33 6.06

ZCIRL 662 1881 1174.32 199.68 0.67 5.20
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Figure 5.22: CDF plot of (a) ZCILH and ZCIRH and (b) ZCILL and ZCIRL

ZCI of feet signals are also studied. Here almost 90% of ZCILL and
ZCIRL lie within their middle epoch. This can be seen in the CDF plot of
ZCILL and ZCIRL in Figure 5.22b also. The standard statistical parameters
for the ZCI of all 2 minute LL and RL signals are also tabulated in Table 5.9.
It is observed that the span of ZCILL and ZCIRL are close to the span of
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ZCILH and ZCIRH . Figure 5.22b and Table 5.9 both have confirmed that
the kurtosis of the ZCI distributions are on the higher side.

Slope (m) of signals

The findings about the locations of the pairwise ZCI lead to an investigation
of the overall deviation occurring in these quasilinear signals. For this reason,
straight lines passing through the respective ZCI are fitted to the debiased LH
and RH signals. Slopes of these straight lines are denoted as mLH and mRH

respectively. The CDF plots of mLH and mRH are shown in Figure 5.23a.
It is observed that in both cases, the slopes vary between ±0.04mV/instant
and almost 99% of the data lie within ±0.01mV/instant. However, in more
than 80% cases(F(x)=0.1 to 0.9), mLH values are likely to be slightly more
negative than mRH .
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Figure 5.23: CDF plot of (a) mLH and mRH and (b) mLL and mRL

Statistical properties of mLH and mRH are stated in Table 5.10. It can be
seen from the table that range of mLH and mRH lie within -0.024mV/instant
to 0.03mV/instant, though their mean are 0. It is found that mLH and mRH

both have same SD values. Both mLH and mRH have positive skewness and
very high kurtosis.
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Table 5.10: Statistical characterization of mLH , mRH , mLL and mRL

Parameters Range in mV µ in σ in Skewness Kurtosis

Min Max mV mV

mLH -0.024 0.03 0 0.004 0.95 15.35

mRH -0.018 0.028 0 0.004 1.18 9.98

mLL -0.0092 0.0165 0.0015 0.0045 1.3747 6.0347

mRL -0.0138 0.0159 0.0012 0.0056 0.4464 4.4140

Slope of the debiased feet signals are calculated and their CDF plots
are shown in Figure 5.23b while their statistical parameters are tabulated
in Table 5.10. Slope of LL and RL signals are denoted as mLL and mRL

respectively. It is observed that mLL varies within -0.0092mV/instant to
0.0165mV/instant while mRL varies within -0.0138mV/instant to 0.0159mV
/instant. These are very low compared to ±4mV , which is the typical range
of mLH and mRH signals. In these cases also, more than 90% of data
lies within ±1mV range. Mean value of mLL and mRL lies very close to
0mV/instant.

5.3.6 Spectral features

Certain spectral features of the LH, RH, LL and RL signals have also been
studied in order to observe their overall characteristics across the various
experiments.

Power spectral density

The power spectral density (PSD) analysis is a major analysis technique
in the frequency domain. It is known that any time varying signal can be
decomposed into its composite frequency components. Power spectral density
describes the distribution of power in these different frequency components.
It can be calculated by taking the Fourier transform of the signal ACF [127].

PSD of all 4 classes of signals are studied and plots of PSD of the LH,
RH, LL and RL signals of 2 arbitrarily chosen sets are shown in Figure 5.24.

It can be seen in these plots that the spectral energy is mostly concen-
trated very close to the origin, though these signals are dynamic. Therefore,
it can be inferred that these signals contain very low frequency components
which are not directly observed from the PSD plots.
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(a) (b)

(c) (d)

Figure 5.24: Sample PSD plots of arbitrarily chosen (a) Example 1 and (b)
Example 2 and zoomed plots of (c) Figure 5.24a and (d) Figure 5.24b within
0.1 Hz normalised frequency.

Mean frequency and Power at mean frequency

The mean frequency (MNF) is defined as the ratio between the sum of prod-
ucts of the instantaneous frequencies and the power at those frequencies and
the total power (Equation 5.4) [128, 129]. Here, k is the instant and N is
the highest instant while the power at that mean frequency instant MNF is
denoted as PMNF .

MNF =

∑N
k=1 fkPk∑N
k=1 Pk

(5.4)

Table 5.11 represents the statistical characteristics of the MNF and the
PMNF whereas Figure 5.25 represents the box plots of the MNF and the
PMNF . It has been found from both table and figure that range of MNF for
LH is maximum, followed by RH, LL and RL. Along with that, the mean
values are also maximum for LH, followed by RH, LL and RL. The median
values of MNF for all 4 classes of signals are exactly identical to 0.0022. The
SD, skewness and kurtosis of MNF are all are higher for LH, followed by RH,
LL and RL.

In case of the PMNF , mean value is little low in LH, followed by RH, LL
and RL in the ascending order along with the median and standard deviation
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Table 5.11: Standard statistical quantities of MNF and PMNF of 4 acquired
signals

Param- Sig- Range in Hz µ in Median σ in Skewness Kurtosis

eters nal Min Max Hz in Hz Hz

M
N
F

LH 0.0019 4.9989 0.0087 0.0022 0.1424 28.7535 909.55

RH 0.0018 0.3810 0.0036 0.0022 0.0132 18.5370 440.52

LL 0.0021 0.0494 0.0025 0.0022 0.0027 15.1995 255.91

RL 0.0020 0.0196 0.0024 0.0022 0.0012 10.9192 142.07

Param- Sig- Range in dB µ in Median σ in Skewness Kurtosis

eters nal Min Max dB in dB dB

P
M

N
F

LH -24.1213 65.0966 26.4637 27.7776 9.7937 -0.7550 4.0772

RH -24.9699 49.7277 28.8756 30.6082 11.9576 -0.7715 3.6341

LL -7.1924 49.7821 31.4503 32.5355 11.3410 -0.9468 3.8401

RL -4.2798 48.7599 30.9012 33.1523 12.0013 -0.5648 2.5099

(a) (b)

Figure 5.25: Box plots of (a) Mean frequency and (b) Power at mean fre-
quency of all 4 classes of signals



110 Validation

also. It can also be observed that the span of RL (difference between upper
adjacent and lower adjacent) is maximum for the range of -4.28 to 48.75,
followed by LL, LH, and RH with the range of 4.67 to 49.78, 3.65 to 44.08
and 8.21 to 45.78 respectively in descending order.

Median frequency and Power at median frequency

Median frequency (MDF) is defined as the frequency which actually divides
the total spectrum into two parts of equal power, so that each half has similar
total power [129]. It is presented in Equation 5.5. Power at MDF is defined
as PMDF .

MDF∑
k=1

Pk =
N∑

k=MDF

Pk =
1

2

N∑
k=1

Pk (5.5)

Statistical parameters of MDF and PMDF are given in Table 5.12 and
box plots of MDF and PMDF are plotted in Figure 5.26 for all 4 signals.
Comparing Table 5.11 and Table 5.12, it can be seen that all the parameters
are very close to each other. Median of the MDF for all 4 signals lie at 0.0028.
This is the case for PMDF also. Both the PMNF in Table 5.11 and PMDF in
Table 5.12 are almost identical.

Comparing Figure 5.25 and Figure 5.26, it can be said that the MNF and
MDF characteristics are almost identical. The upper adjacent and the lower
adjacent of MDF of LH signal are 2.87 × 10−3 and 2.82 × 10−3. The values
are similar in case of the other 3 signals also. Compared to the range of MNF
of nearly 1.5 × 10−4 Hz, the range of MDF at nearly 5 × 10−5 Hz is low.
On the other hand, median of all 4 signals in MDF lies at 2.84 × 10−3.

Overall span of the PMDF lies within -4.27 dB to 49.78 dB, which is
almost identical to that of PMNF . Similarly, range of other 3 signals are
almost identical to the case of PMNF .

Peak frequency and Power at peak frequency

The peak frequency (PKF) is the frequency at which the maximum power
occurs and its power is called PPKF [130]. Box plots of PKF and PPKF are
plotted in Figure 5.27. It has already been seen in PSD plots in Figure 5.24
that maximum power lies very close to 0. From Figure 5.27a, it is evident
that the maximum power occurs at 0Hz for all signals, which is actually the
DC component. For this reason, this parameter has not been studied further
and is not used as a feature in any of the applications.

PKF = max(Pk), k = 1, 2, 3, ..., N (5.6)



5.3. UNILATERAL CHARACTERISTICS 111

(a) (b)

Figure 5.26: Box plots of (a) Median frequency and (b) Power at median
frequency of all 4 signals

Table 5.12: Standard statistical quantities of MDF and PMDF of 4 acquired
signals

Param- Sig- Range in Hz µ in Median σ in Skewness Kurtosis

eters nal Min Max Hz in Hz Hz

M
D
F

LH 0.0026 4.9989 0.0087 0.0028 0.1293 39.749 1.64 ×103

RH 0.0025 0.0520 0.0030 0.0028 0.0020 18.2363 391.04

LL 0.0028 0.0079 0.0029 0.0028 3.28 ×10−4 12.3676 174.99

RL 0.0027 0.0098 0.0029 0.0028 5.55 ×10−4 10.0699 110.1617

Param- Sig- Range in dB µ in Median σ in Skewness Kurtosis

eters nal Min Max dB in dB dB

P
M

D
F

LH -24.1213 65.0966 26.4637 27.7776 9.7937 -0.7550 4.0772

RH -24.9699 49.7277 28.8756 30.6082 11.9576 -0.7715 3.6341

LL -7.1924 49.7821 31.4503 32.5355 11.3410 -0.9468 3.8401

RL -4.2798 48.7599 30.9012 33.1523 12.0013 -0.5648 2.5099
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Table 5.13: Standard statistical quantities of PPKF of 4 acquired signals

Param- Sig- Range in dB µ in Median σ in Skewness Kurtosis

eters nal Min Max dB in dB dB

P
P
K
F

LH -5.3809 66.1589 45.8509 47.2214 9.8267 -0.8177 4.0791

RH -9.5719 69.1666 48.2498 50.0512 12.0757 -0.8069 3.7766

LL 11.3873 69.2218 50.8642 51.9804 11.4144 -0.9720 3.9232

RL 14.4181 68.2051 50.3183 52.5857 12.0441 -0.5745 2.5393

The mean value of PPKF is higher compared to the PMNF and PMDF ,
which is evident as it is the highest power component. The SD, skewness
and kurtosis values of PPKF are very close to those of PMNF and PMDF .

The overall pattern of PPKF is very much similar to that of PMNF and
PMDF but the range of the PPKF is higher compared to the other two as
in Figure 5.27b. Arranging all 4 signals in terms of their range of PPKF in
descending order, it can be found that RL is most spread out with the range
of 14.42 dB to 68.20 dB, followed by LL (23.81dB to 69.22 dB), LH (22.80
dB to 63.52 dB) and RH (27.50 dB to 65.21 dB) respectively.

(a) (b)

Figure 5.27: Box plots of (a) Peak frequency and (b) Power at peak frequency
of all 4 signals

Band power

Band power is defined as the average power of a signal in the spectral domain.
Box plots for the band power for all 4 signals are shown in Figure 5.28.
Comparing with the PMNF and PMDF in Figure 5.25b and Figure 5.26b, it
is found that all these 3 are exactly similar to each other. Comparing the
values in Table 5.11, Table 5.12 and Table 5.14, it is found that all three
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tables are exactly identical to each other. Therefore, it can be said that all
three parameters are identical.
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Figure 5.28: Box plots of band power of all 4 signals

Table 5.14: Standard statistical quantities of band power of 4 acquired signals

Param- Sig- Range in dB µ in Median σ in Skewness Kurtosis

eters nal Min Max dB in dB dB

B
a
n
d
P
ow

er LH -24.1213 65.0966 26.4637 27.7776 9.7937 -0.7550 4.0772

RH -24.9699 49.7277 28.8756 30.6082 11.9576 -0.7715 3.6341

LL -7.1924 49.7821 31.4503 32.5355 11.3410 -0.9468 3.8401

RL -4.2798 48.7599 30.9012 33.1523 12.0013 -0.5648 2.5099

SM1, SM2 and SM3

SM1, SM2 and SM3 are the three spectral moments. SM1 is defined as the
sum of product of the instantaneous frequency and power. Therefore, SM1
can be considered as the gain-bandwidth product of the frequency spectrum.
Similarly, SM2 and SM3 are the sum of the product of the square of in-
stantaneous frequency and power and the sum of the product of the cube
of instantaneous frequency and power respectively. SM1, SM2 and SM3 are
shown in Equation 5.7.

SM1 =
N∑
k=1

fkPk

SM2 =
N∑
k=1

f 2
kPk

SM3 =
N∑
k=1

f 3
kPk

(5.7)
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All their statistical parameters are calculated and tabulated in Table 5.15.
It can be seen that the overall ranges of LH and RH for SM1, SM2 as well as
SM3 are high compared to that of the LL and RL signals though the mean,
median and SD of all 4 signals and all 3 SM are comparable to each other.
But, skewness and kurtosis are both high for LH signals in all three cases.

Box plots of SM1, SM2 and SM3 of all 4 signals are plotted in Figure 5.29.
It can be seen from all these three plots that there is not much difference
between all 4 signals in terms of SM1, SM2 and SM3 respectively.

(a) (b)

(c)

Figure 5.29: Box plots of (a) SM1, (b) SM2 and (c) SM3 of all 4 signals

Spectral entropy

The Shannon entropy of the signal is calculated for the power spectral dis-
tribution of this signal since this is widely used in biomedical signal process-
ing [131]. The spectral entropy of a signal is defined as Equation 5.8 in terms
of the probability distribution P (k) (defined as in 5.9) as follows.

E = −
N∑
k=1

P (k)log2P (k), (5.8)
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Table 5.15: Standard statistical quantities of SM1, SM2 and SM3 of 4 ac-
quired signals

Param- Sig- Range in dBHz µ in Median σ in Skewness Kurtosis

eters nal Min Max dBHz in dBHz dBHz

S
M
1

LH -3.76 ×105 3.31 ×105 -3.06 ×105 -3.16 ×105 4.68 ×104 2.9707 25.9786

RH -3.60 ×105 3.95 ×104 -2.97 ×104 -3.05 ×105 4.42 ×104 1.2881 6.6009

LL -3.61 ×105 -1.73 ×105 -3.11 ×105 -3.16 ×105 3.61 ×104 0.8879 3.4361

RL -3.59 ×105 -1.37 ×105 -3.09 ×105 -3.18 ×105 3.87 ×104 1.2037 4.3810

Param- Sig- Range in dBHz2 µ in Median σ in Skewness Kurtosis

eters nal Min Max dBHz2 in dBHz2 dBHz2

S
M
2

LH -2.56 ×106 2.21 ×106 -2.07 ×106 -2.15 ×106 3.08 ×105 3.1852 28.3957

RH -2.45 ×106 2.22 ×105 -2.02 ×106 -2.07 ×106 2.89 ×106 1.3752 6.9766

LL -2.42 ×106 -1.19 ×106 -2.11 ×106 -2.15 ×106 2.34 ×105 0.9637 3.5990

RL -2.41 ×106 -9.21 ×105 -2.09 ×106 -2.16 ×106 2.52 ×105 1.3118 4.7953

Param- Sig- Range in dBHz3 µ in Median σ in Skewness Kurtosis

eters nal Min Max dBHz3 in dBHz3 dBHz3

S
M
3

LH -1.94 ×107 1.65 ×107 -1.56 ×107 -1.62 ×107 2.29 ×106 3.2986 29.7448

RH -1.86 ×107 1.53 ×106 -1.52 ×107 -1.56 ×106 2.15 ×106 1.4210 7.1704

LL -1.82 ×107 -9.11 ×106 -1.59 ×107 -1.62 ×107 1.73 ×106 1.0062 3.7004

RL -1.82 ×107 -6.93 ×106 -1.58 ×107 -1.63 ×107 1.86 ×106 1.3697 5.0306

For a signal x(n), the power spectrum is S(k) = |X(k)|2. Here X(k) is
the discrete Fourier transform of x(n). Then,

P (k) =
S(k)∑
i S(i)

(5.9)

Figure 5.30: Spectral entropy of all 4 signals

All the statistical parameters measured are given in Table 5.16 while the
box plots of the spectral entropy of all 4 signals are plotted in Figure 5.30.
It can be seen from the table as well as plots that the overall range lies
within 0.4868 and 0.5674, while the median values are exactly at 0.4868.
The interquartile range in Figure 5.30 of LH and RH are comparably higher



116 Validation

Table 5.16: Standard statistical quantities of spectral entropy of 4 acquired
signals

Param- Sig- Range µ Median σ Skewness Kurtosis

eters nal Min Max

E
n
tr
op

y

LH 0.4868 0.5477 0.4872 0.4868 0.0030 12.0192 184.1697

RH 0.4868 0.5674 0.4875 0.4868 0.0047 10.9010 143.9715

LL 0.4868 0.5315 0.4871 0.4868 0.0027 14.2498 228.7668

RL 0.4868 0.5020 0.4870 0.4868 0.0013 8.4672 80.1640

than LL and RL although value-wise these are very close since the difference
is in the range of 10−5. All the 4 signals are right skewed with very high
kurtosis.

5.4 Bilateral characteristics

Hereafter, the bilateral characteristics of the DDP signals have been studied
using the DS4 dataset comprising of simultaneously acquired LH, RH, LL
and RL signals.

5.4.1 Signal interactions

It is obvious that the 4 DDP signals may exhibit 3 types of 2 channel inter-
actions. These are
Bilateral: Interrelation between two bilateral location signals like LH and
RH or LL and RL.
Sidewise: Interrelation between two locations of same side (right or left)
like LH and LL or RH and RL
Cross: Interaction between signals of cross-limbs like LH and RL or RH and
LL.

Signal cross-correlations

Cross-correlations of these sets of signals have been studied and the his-
tograms of all 6 cross-correlation coefficients are shown in Figure 5.31. Here
Figure 5.31a and Figure 5.31b are the bilateral cross-correlation coefficients
of LH-RH and LL-RL respectively. Similarly Figure 5.31c (LH-LL cross-
correlation) and Figure 5.31d (RH-RL cross-correlation) represent the side-
wise and Figure 5.31e (LH-RL cross-correlation) and Figure 5.31f (RH-LL
cross-correlation) represent the crosswise relationships of DDP signals.
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It can be seen from the figures that the cross-correlation coefficients
mostly lie within ±0.8 to ±1 in all 6 cases. In case of bilateral interactions,
more than 66% of data lies within these limits as evident in Figure 5.31a and
Figure 5.31b. In the other 4 cases (Figure 5.31e - Figure 5.31f), less than
50% of cases are highly correlated. Therefore, it can be said that bilateral
relationship is the most significant among all 3 types of interactions and need
to be studied in details.

Lateralization coefficients

Lateralization coefficient for electrodermal signals, denoted henceforth as
LC1, was proposed by Myslobodsky and Rattok [132] and is defined as stated
in Equation 5.10. Here, EDRright and EDRleft denote the electrodermal re-
sponse of right and left hand, whereas EDRmax is the maximum of EDRright

and EDRleft. Another lateralization coefficient, denoted henceforth as LC2
was proposed by Schulter and Papousek [133], also in terms of EDRright and
EDRleft as stated in Equation 5.11. The difference in the two are the nor-
malization factors, which is EDRmax in case of LC1 and EDRright+EDRleft

in case of LC2.

LC1 =
EDRright − EDRleft

EDRmax

(5.10)

LC2 =
EDRright − EDRleft

EDRright + EDRleft

(5.11)

Table 5.17: Statistical parameters of LC1H, LC1L, LC2H and LC2L for the
mean of the DDP signals

Parameters Range µ Median σ Skewness Kurtosis

Min Max

LC1H 2.54 ×103 1.42 ×103 -1.77 -0.53 96.77 -16.95 529.68

LC1L -397.04 805.34 0.94 -0.21 30.40 16.87 430.52

LC2H -117.33 56.96 -0.32 0.72 9.88 -6.33 76.74

LC2L -9.66 ×103 165.13 -27.69 0.28 522.74 -18.37 339.02

In this work, LC1 and LC2 have been calculated for both the hand and
the leg signals, considering the EDR to be the mean of the respective signal.
Hence, LC1H and LC1L (alternatively, LC2H and LC2L) denote the LC1
(alternatively, LC2) parameters for the mean of the (LH, RH) and (LL, RL)
signals respectively. The statistical characteristics of these parameters are
listed in Table 5.17. It can be seen that the overall ranges are high, though
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(a) (b)

(c) (d)

(e) (f)

Figure 5.31: Histograms of the cross-correlation coefficients of (a) LH and
RH, (b) LL and RL, (c) LH and LL, (d) RH and RL, (e) LH and RL and (f)
RH and LL respectively.
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the mean values are very low except for LC2L. The median values lie within
±1 in all 4 cases. The SD value is minimum for LC2H, but is a very high
maximum for LC2L. Among the other 2 cases, the SD for LC1H is higher
than that for LC1L. These parameters are all highly left skewed except LC1L
which is highly right skewed. Kurtosis is also very high compared to the
normal distribution in all cases with that for LC2H being reasonably less.

Hence, it is evident from the characteristics of these coefficients also that
the bilaterality of the DDP signals carry significant information and further,
that this information varies for the hand and the leg signals. More specifi-
cally, while the LC1 parameters for the hand and leg signals are similar in
magnitude and indicative of their similarity, the respective LC2 parameters
being distinctly different are useful in differentiating the two sets of signals.

5.4.2 Bilaterality of DDP signals

Hence, the bilaterality of the DDP signals have been explored in more detail
in terms of their trends, bias, debiased signals as well as similar features for
a set of derived signals.

Trends of pairs of bilateral signals

To understand the bilateral relationship between left and right, signals are
considered as pair, namely the LH signal with the corresponding RH signal
and the LL signal with its corresponding RL signal. As these individual
signals are either increasing, decreasing or constant, therefore possible 4 types
of pairs can be observed. These are converging, diverging, cross-over and
parallel [5]. For the study of individual signal trends, the limit of classification
is considered as ±2mV . Hence the limit for classifying pair of signals is taken
to be ±4mV . The conditions for these 4 classes have been given as follows.

Let the first difference be denoted as d1 = xleft1 − xright1 and the last
difference be denoted as d2400 = xleft2400 − xright2400.

Pair of signal


Crossing : if d1 > 0mV and d2400 < 0mV or vice versa

Converging : if (d1 − d2400) > +4mV with same sign

Diverging : if (d1 − d2400) < −4mV with same sign

Parallel : if − 4mV ≤ (d1 − d2400) ≤ +4mV, same sign

Examples of all 4 trends of pair of signals are shown in Figure 5.36. These
different patterns have been recorded at different times from 4 randomly
selected subjects. The % occurrence of these trends for the (LH, RH) and
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(a) (b)

(c) (d)

Figure 5.32: Representative time series plots of (a) Converging pair, (b)
Diverging pair, (c) Parallel pair and (d) Cross-over pair of signals
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(LL, RL) pairs of signals have been calculated and tabulated in Table 5.18
while their bar plots are shown in Figure 5.33.

From the analysis, it is found that the % occurrence of converging, di-
verging and parallel pairs are very close to each other for both the hand and
leg pairs of signals. Among these three, parallel type dominates with 36.59%
and 40.35% for the LH-RH pair and LL-RL pair respectively. This is fol-
lowed by diverging type with 35.64% and 28.95% and converging type with
24.95% and 28.36% occurrences respectively. Cross-over patterns appear in
only 2.82% and 2.34% for the LH-RH pairs and LL-RL pairs.

Converging Diverging Parallel Cross-over

Trends of pair of  acquired signals

0

10

20

30
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50

F
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n
 %

LH-RH pair

LL-RL pair

Figure 5.33: Bar plot of different trends of pairs of acquired hand and feet
signals

Table 5.18: Occurrence in % of different trends of 2 pairs of acquired signals

Parameters Converging Diverging Parallel Cross-over

in % in % in % in %

LH-RH pair 24.94 35.64 36.60 2.82

LL-RL pair 28.36 28.95 40.35 2.34

Derived signals

As suggested in Bhattacharya [5], 4 bilateral interaction signals, henceforth
also referred to as the derived signals, have been considered in this case also.
These 4 signals are defined as:

GapH : Gap signal of hand = LHk - RHk

PSH : Pair sum signal of hand = LHk + RHk
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GapL : Gap signal of leg = LLk - RLk

PSL : Pair sum signal of leg = LLk + RLk

(a) (b)

(c) (d)

Figure 5.34: Time series plots of all (a) GapH, (b) PSH, (c) GapL and (d)
PSL signals

The time series plots of all the 4 types of derived signals are shown in
Figure 5.34 while their ranges have been tabulated in Table 5.19. It can be
seen that as in the case of the acquired DDP signals, the derived signals also
seem constant in these plots. However, the span of these derived signals are
higher compared to the acquired signals and lie within ±400mV .

The CDF plots of the 4 acquired DDP signals as well the 4 derived signals
are shown in Figure 5.35a and Figure 5.35b respectively for comparison.
The standard statistical parameters of the derived signals are tabulated in
Table. 5.19. These can be compared to those of the acquired signals as
tabulated in Table. 5.2.

It can be seen that more than 95% of acquired hand signals lie within
±200mV, whereas 90% of feet signals lie within ±200mV. In case of derived
hand signals, 90% of signals lie within ±200mV, whereas more than 80%
of derived feet signals lie within ±200mV. SD (σ) values of acquired hand
signals are higher than that of acquired feet signals. In case of derived signals
also, σ values are higher for hand signals than that of feet signals. Skewness
and kurtosis values are close to normal but none of these 8 acquired and
derived signals are normally distributed.
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Figure 5.35: CDF plots of (a) 4 acquired signals (b) 4 derived signals

Table 5.19: Statistical characteristics of 4 types of derived signals

Parameters Range in mV µ in Median σ in Skewness Kurtosis

Min Max mV in mV mV

GH -398.37 286.47 -15.88 -9.76 84.92 -0.86 5.40

PSH -397.80 337.12 12.83 7.76 99.82 0.19 3.72

GL -378.16 413.38 23.20 27.47 156.33 -0.03 2.84

PSL -258.90 280.10 50.38 46.13 96.13 -0.13 2.90
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Bias of the derived signals

As stated earlier, the setwise mean value is considered as the bias of the
corresponding signal in this work.

Plots of the CDF of the mean values of the 4 acquired and 4 derived
DDP signals are shown in Figure 5.36. It is observed that these plots are
almost identical to the CDF plots of the acquired and derived DDP signals in
Figure 5.35. So, the bias of the signals can be considered to be representative
of the actual signals for both the acquired and the derived set of signals.
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Figure 5.36: CDF plots of mean values (µ) of (a) 4 acquired signals (b) 4
derived signals

Standard statistical quantities of 4 acquired signals are tabulated in Ta-
ble 5.5, whereas, standard statistical quantities for 4 derived signals are tab-
ulated in Table 5.20. Comparing these two tables with Table 5.2 and Ta-
ble 5.19, it can be said that the mean can be treated as the representative
of the actual signals. It can further be seen from these two tables that the
span of the derived signals are significantly higher than that of the acquired
signals. Additionally, the SD of both acquired and derived feet signals are
higher than that of hand signals. The other parameters are close to each
other.
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Table 5.20: Standard statistical parameters of subsetwise mean values of
GapH,PSH, GapL and PSL signals

Parameters Range in mV µ in Median σ in Skewness Kurtosis

Min Max mV in mV mV

µGapH -394.80 284.37 -15.88 -9.95 84.82 -0.86 5.40

µPSH -378.38 332.48 12.83 7.87 99.73 0.19 3.71

µGapL -377.22 411.31 23.20 27.24 156.51 -0.04 2.84

µPSL -245.53 278.28 50.38 45.51 96.21 -0.13 2.89

Debiased derived signals

In a further study, the debiased derived signals are obtained by subtracting
the setwise mean from the derived signal dataset, as has been done to obtain
the debiased signals for the acquired DDP signals. These have been studied
in order to compare their characteristics with those of the debiased acquired
signals.

In order to study the deviation characteristics of derived signals, debiased
GapH, debiased PSH, debiased GapL and debiased PSL signals are plotted
in Figure 5.37 while their standard statistical parameters are tabulated in
Table 5.21. As expected, these derived signals have natures that are quite
similar to those of the acquired signals. In this case also, the debiased signals
are butterfly like in nature and the ranges of the derived hand signals are
higher than that of the derived feet signals.

Since neither of these debiased derived signals are totally 0, nor totally
positive or negative, hence it may be interpreted that they are instrumental
in ensuring the interdependence between the pair of bilateral signals.

Table 5.21: Standard statistical parameters of debiased GapH, PSH, GapL
and PSL signals

Parameter Range in mV σ in Skewness Kurtosis

Min Max mV

debiased GapH -35.87 68.32 4.44 1.13 25.12

debiased PSH -60.32 27.58 4.75 -0.23 25.68

debiased GapL -33.05 34.60 5.50 0.06 9.49

debiased PSL -28.59 22.03 5.08 -0.30 6.57

The CDF plots of the debiased derived signals as well as the corresponding
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(a) (b)

(c) (d)

Figure 5.37: Time series plots of all (a) debiased GapH, (b) debiased PSH,
(c) debiased GapL and (d) debiased PSL signals
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Figure 5.38: CDF plots of (a) all debiased derived signals (b) their zoomed
plots within ±10 mV

zoomed CDFs in the range ±10mV are shown in Figure 5.38. From the plot,
it can be said that the debiased GapH and PSH signals are very much similar
to each other, while the debiased GapL and PSL signals are similar to each
other. More than 80% of these 4 debiased derived signals lie within ±10 mV.

5.4.3 Interdependencies of means, ZCIs and slopes

Interdependence of signal mean values: In view of the observed inter-
dependence of the LH and RH signals, the pairwise characteristics of their
respective mean values, µLH vs. µRH , are observed using a scatter plot in
Figure 5.39. Considering (0,0) mV as reference point, it is observed that the
pairwise mean values mostly lie in a region very close to the reference point,
but spread in all four quadrants. The first quadrant contains those pairs
for which both µLH and µRH are positive. Similarly, those pairs with µLH

negative and µRH positive lie in the second quadrant. The third quadrant
contains pairs in which both µLH and µRH are negative, while those pairs
with µLH positive and µRH negative lie in the fourth quadrant.

Furthermore, for an in-depth study, each quadrant is bisected into two
segments using the lines µLH = µRH for quadrants I and III and µLH = −µRH

for quadrants II and IV. All 8 sub-regions and their corresponding names are
shown in Figure 5.39. Characteristics of data points belonging to these 8
sub-regions are stated in Table 3 along with the % data points present in
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Figure 5.39: Scatter plot of µLH vs.µRH with marked 8 sub-regions

Table 5.22: Different conditions and data present in % in 8 sub-regions of
(µLH , µRH)

Sub-regions Properties of (µLH , µRH) Count in % of

(µLH , µRH)

IL µLH ≥ µRH ≥ 0 21.35

IR µRH ≥ µLH ≥ 0 10.56

IIR1 µRH ≥ 0 ≥ µLH , |µRH | ≥ |µLH | 3.29

IIR2 µRH ≥ 0 ≥ µLH , |µRH | ≤ |µLH | 6.57

IIIR µLH ≤ µRH ≤ 0 12.68

IIIL µRH ≤ µLH ≤ 0 13.62

IVL2 µRH ≤ 0 ≤ µLH , |µLH | ≤ |µRH | 11.97

IVL1 µRH ≤ 0 ≤ µLH , |µRH | ≤ |µLH | 19.95
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each region. It can be seen from Figure 8 and Table 3 that more than 66%
signals lie below the µLH = µRH line. Hence, µLH ≥ µRH is more likely than
the other alternative by more than 2 times.

In order to understand the interdependence between the bias values of
feet signals and hand signals µLL vs. µRL is plotted in Figure 5.40. Here
also the whole region is divided into 8 sub regions. Conditions of these sub
regions are tabulated in Table 5.23. Amount of data present in % in these
regions have also been tabulated in this table. It is found from the study that
66.66% of data lie at the positive side of µLL. Therefore only 33.37% data
lies at the negative side of µLL. This finding little differs from the analysis
of Figure 5.39 that for most of the cases µLH > µRH .
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Figure 5.40: Scatter plot of µLL vs.µRL with marked 8 sub-regions

Interdependence of ZCIs: Pairwise nature of the ZCI of the debiased LH
and RH signals is studied. For this, the scatter plot of ZCILH and ZCIRH is
plotted in Figure 5.41 containing 8 sub-regions similar to that used to study
the µLH vs. µRH characteristics. The characteristics of the data points in
these 8 sub-regions and their counts in % are tabulated in in Table 5.24.
Here the (1200, 1200) instants is considered as the reference point. The sub-
regions in this case are similarly denoted as in case of Figure 5.39 and may
be similarly interpreted.
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Table 5.23: Different conditions and data present in % in 8 sub-regions of
(µLL, µRL)

Sub-regions Properties of (µLL, µRL) Count in % of

(µLL, µRL)

IL µLL ≥ µRL ≥ 0 18.18

IR µRL ≥ µLL ≥ 0 12.12

IIR1 µRL ≥ 0 ≥ µLL, |µRL| ≥ |µLL| 16.67

IIR2 µRL ≥ 0 ≥ µLL, |µRL| ≤ |µLL| 7.58

IIIR µLL ≤ µRL ≤ 0 6.06

IIIL µRL ≤ µLL ≤ 0 3.03

IVL2 µRL ≤ 0 ≤ µLL, |µLL| ≤ |µRL| 15.15

IVL1 µRL ≤ 0 ≤ µLL, |µRL| ≤ |µLL| 21.21

Figure 5.41: Scatter plot of ZCILH vs.ZCIRH with marked 8 sub-regions



5.4. BILATERAL CHARACTERISTICS 131

Table 5.24: Different conditions and data present in % in 8 sub-regions of
(ZCILH , ZCIRH)

Sub- Properties of (ZCILH , ZCIRH) Count in % of

regions (ZCILH , ZCIRH)

IL ZCILH ≥ ZCIRH ≥ 0 5.02

IR ZCIRH ≥ ZCILH ≥ 0 4.21

IIR1 ZCIRH ≥ 0 ≥ ZCILH , |ZCIRH | ≥ |ZCILH | 9.55

IIR2 ZCIRH ≥ 0 ≥ ZCILH , |ZCIRH | ≤ |ZCILH | 12.62

IIIR ZCILH ≤ ZCIRH ≤ 0 18.77

IIIL ZCIRH ≤ ZCILH ≤ 0 27.02

IVL2 ZCIRH ≤ 0 ≤ ZCILH , |ZCILH | ≤ |ZCIRH | 11.65

IVL1 ZCIRH ≤ 0 ≤ ZCILH , |ZCIRH | ≤ |ZCILH | 8.41

In this case also, the pairwise points (ZCILH , ZCIRH) are spread in
all four quadrants in a region very close to the reference point. It is fur-
ther noted that both the signals do not necessarily cross the zero value
simultaneously. However, the 3rd quadrant contains 45.79% of the data
and the 1st quadrant contains only 9.23% of the total data. Following this
analysis further, it is observed that only 28% of ZCI pairs lie above the
ZCILH = −ZCIRH line. Analytically, this region satisfies the condition
(ZCILH − 1200) > −(ZCIRH − 1200) and so, (ZCILH + ZCIRH) > 2400.
This indicates that in majority cases, ZCILH and ZCIRH are significantly
likely to be less than 1200 individually and less than 2400 as a pair.

Interdependence between ZCILL and ZCIRL has also been studied by
plotting scatter plot in Figure 5.42. The same study was performed in
sec. 5.3.5 also. Comparing Figure 5.42 with Figure 5.41 it can be said that
in hand and feet signals more than 45% data lies at the third quadrant.
Whereas data at rest of three quadrants are almost equally likely. Different
conditions at all of 8 subregions of the Figure 5.42 along with data present
in % are tabulated in Table 5.25.

Interdependence of signal slopes Furthermore mLH vs. mRH plot
is done in order to study the hemispheric dominance in terms of signal
slope. Figure 5.43 represents the scatter plot.Reference is considered at
(0,0)mV/instant. The characteristics of the data in 8 sub-regions marked
on the scatter plot along with the % data count in each sub-region are stated
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Figure 5.42: Scatter plot of ZCILL vs.ZCIRL with marked 8 sub-regions

Table 5.25: Different conditions and data present in % in 8 sub-regions of
(ZCILL, ZCIRL)

Sub- Properties of (ZCILL, ZCIRL) Count in % of

regions (ZCILL, ZCIRL)

IL ZCILL ≥ ZCIRL ≥ 0 6.06

IR ZCIRL ≥ ZCILL ≥ 0 12.12

IIR1 ZCIRL ≥ 0 ≥ ZCILL, |ZCIRL| ≥ |ZCILL| 9.09

IIR2 ZCIRL ≥ 0 ≥ ZCILL, |ZCIRL| ≤ |ZCILL| 6.06

IIIR ZCILL ≤ ZCIRL ≤ 0 24.24

IIIL ZCIRL ≤ ZCILL ≤ 0 22.73

IVL2 ZCIRL ≤ 0 ≤ ZCILL, |ZCILL| ≤ |ZCIRL| 9.09

IVL1 ZCIRL ≤ 0 ≤ ZCILL, |ZCIRL| ≤ |ZCILL| 7.58
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Figure 5.43: Scatter plot of mLH vs.mRH with marked 8 sub-regions

in Table 5.26. It is observed that both debiased LH as well as the debiased
RH signals have larger or smaller slopes as well as negative and positive
slopes. In several cases, the slopes are likely to be opposite in signs also.
Hence, almost all debiased signal pairs are crossing in nature. From the %
count of the data in the various sub-regions, it is observed that more than
55% data belong to the region above mLH = mRH . This can be interpreted
as a significant probability of mRH being larger than mLH .

In order to understand the hemispheric dominance in feet signals scatter
plot of mLL vs. mRL is plotted in Figure 5.44 as like as Figure 5.43. In
same way the whole region is divided into 8 sub regions. Conditions of all
8 subregions with number of data present in % are tabulated in Table 5.27.
From this analysis it can be seen that more than 55% data lies below mLL =
mRL line. This completely opposite finding from the finding of the study of
slope of hand signals.

5.4.4 Proposed bias parameters

Differential bias (µdiff) A new parameter differential bias (µdiff ) is pro-
posed which is the difference between setwise mean values of LH and
corresponding RH signals. This can also be considered as the mean of
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Table 5.26: Different conditions and data present in % in 8 sub-regions of
(mLH , mRH)

Sub-regions Properties of (mLH , mRH) Count in % of

(mLH , mRH)

IL mLH ≥ mRH ≥ 0 13.92

IR mRH ≥ mLH ≥ 0 13.75

IIR1 mRH ≥ 0 ≥ mLH , |mRH | ≥ |mLH | 16.99

IIR2 mRH ≥ 0 ≥ mLH , |mRH | ≤ |mLH | 13.75

IIIR mLH ≤ mRH ≤ 0 10.52

IIIL mRH ≤ mLH ≤ 0 10.52

IVL2 mRH ≤ 0 ≤ mLH , |mLH | ≤ |mRH | 11.00

IVL1 mRH ≤ 0 ≤ mLH , |mRH | ≤ |mLH | 9.55
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Figure 5.44: Scatter plot of mLL vs.mRL with marked 8 sub-regions



5.4. BILATERAL CHARACTERISTICS 135

Table 5.27: Different conditions and data present in % in 8 sub-regions of
(mLL, mRL)

Sub-regions Properties of (mLL, mRL) Count in % of

(mLL, mRL)

IL mLL ≥ mRL ≥ 0 18.18

IR mRL ≥ mLL ≥ 0 13.64

IIR1 mRL ≥ 0 ≥ mLL, |mRL| ≥ |mLL| 13.64

IIR2 mRL ≥ 0 ≥ mLL, |mRL| ≤ |mLL| 7.58

IIIR mLL ≤ mRL ≤ 0 9.09

IIIL mRL ≤ mLL ≤ 0 13.64

IVL2 mRL ≤ 0 ≤ mLL, |mLL| ≤ |mRL| 12.12

IVL1 mRL ≤ 0 ≤ mLL, |mRL| ≤ |mLL| 12.12

Gap signals. Thus,
µdiffH = µLH − µRH

µdiffL = µLL − µRL

(5.12)

In order to characterize the differential bias, its statistical parameters
are tabulated in Table 5.28. The corresponding CDF plot and quantile-
quantile plot (QQ plot) are shown in Figure 5.45, while the chi-square
test results for normality are tabulated in Table 5.29.

Table 5.28: Standard statistical parameters of µdiffH and µdiffL

Para- Range in mV µ in median σ in Skewness Kurtosis

meters Min Max mV in mV mV

µdiffH -301.55 284.37 6.13 12.92 68.15 -0.42 4.06

µdiffL -377.22 380.02 20.26 30.28 146.82 -0.10 3.12

As shown in Figure 5.45a, the nature of CDF of µdiffH shows a normal
like distribution. From this figure and the chi-square test results, it
can be seen that the data lies within the 97.5% confidence limit for
the total range. It is to be noted that in comparison to the mean and
median of the parameters µLH (8.59mV and 10.35 respectively) and
µRH (2.46mV and 1.55mV respectively), the mean (6.13mV ) and the
median (12.92mV ) for µdiffH are very close to each other. The QQ



136 Validation

Table 5.29: Chi square test for µdiffH and µdiffL

Hypothesis H0: µdiffH is normally distributed

HA: µdiffH is not normally distributed

df=11 χ2
0.975 χ2

0.95 χ2
0.05 χ2

0.025

Theoretical 3.816 4.575 19.675 21.920

Experimental 3.639 3.639 3.639 3.639

Conclusion HA rejected HA rejected HA rejected HA rejected

Hypothesis H0: µdiffL is normally distributed

HA: µdiffL is not normally distributed

df=4 χ2
0.975 χ2

0.9 χ2
0.1 χ2

0.025

Theoretical 0.48 1.06 7.78 11.143

Experimental 1.7018 1.7018 1.7018 1.7018

Conclusion H0 rejected H0 rejected HA rejected HA rejected

plot also shows that till the 2nd quantile, the data almost follows the
normal probability fit line. Therefore, it can be said that the parameter
µdiffH varies within 6.13± 136.30mV for 95% of the generally healthy
population considered in this study. Hence, it can be said that in a
healthy person, the dynamically changing LH and RH biopotentials
will not be identical. This is typically characterized by a non-zero
differential bias.
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Figure 5.45: (a) Cumulative distribution function (CDF) and (b) quantile-
quantile (QQ) plots of differential bias
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Differential bias (µdiffL)is studied and standard statistical quantities
are calculated for feet signals also. Results are tabulated in Table 5.28.
Comparing with µdiffH , it can be said that span of (µdiffL) of feet
signals is much higher than that of hand signals. Mean and median
values are also much more positive. Standard deviation is also more
than 2 times of hand signals. Skewness and kurtosis values are close to
a normal distribution.

CDF plot is done to study the distribution of this parameter in Fig-
ure 5.46a, which shows a normal like ‘S’ shape distribution. Chi-square
goodness of fit test is performed to test for normality in Table 5.29.
The result confirms the normality of µdiffL with 90% confidence limit.
Furthermore, q-q plot have also been done in Figure 5.46b. From this
figure it can be seen that this plot is linear roughly from -1 to +2
quantile.
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Figure 5.46: (a) Cumulative distribution function (CDF) and (b) quantile-
quantile (QQ) plots of differential bias of the feet signals

Common mode bias (µcb) A new parameter, common mode bias (µcbH

and µcbL), is proposed which is the sum between setwise mean values of
LH and corresponding RH signals or LL and corresponding RL signals.
This can also be considered as the mean of PS signals. Thus,

µcbH = µLH + µRH

µcbL = µLL + µRL

(5.13)

To characterize the common mode bias, its statistical parameters are
tabulated in Table 5.30. Along with corresponding CDF plot and
quantile-quantile plot (QQ plot) have also been plotted in Figure 5.47.
The chi-square test results for normality are tabulated in Table 5.31.
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Table 5.30: Standard statistical parameters of µcbH and µcbL

Para- Range in mV µ in Median σ in Skewness Kurtosis

meters Min Max mV in mV mV

µcbH -348.71 271.82 11.05 34.38 88.18 -0.25 3.98

µcbL -245.53 278.28 42.78 35.21 102.51 -0.23 3.24

Table 5.31: Chi square test for µcbH and µcbL

Hypothesis H0: µcbH is normally distributed

HA: µcbH is not normally distributed

df=7 χ2
0.975 χ2

0.95 χ2
0.05 χ2

0.025

Theoretical 1.690 2.167 14.067 16.013

Experimental 35.99 35.99 35.99 35.99

Conclusion H0 rejected H0 rejected H0 rejected H0 rejected

Hypothesis H0: µcbL is normally distributed

HA: µcbL is not normally distributed

df=4 χ2
0.975 χ2

0.90 χ2
0.10 χ2

0.025

Theoretical 0.207 1.064 7.779 11.143

Experimental 3.9658 3.9658 3.9658 3.9658

Conclusion H0 rejected H0 rejected HA rejected HA rejected
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It can be seen from Table 5.30 that range of this parameter is 620.53mV,
quite high than differential bias parameter. Standard deviation (σ) is
also very high, although skewness and kurtosis values are close to a
normal distribution. Figure 5.47a represents CDF of µcbH , shows a
normal like distribution pattern, though Q-Q plot in Figure 5.47b and
Table 5.31 have confirmed that the data is not distributed normally.
Hence, it can be said that in a healthy person, the common mode bias
of hand signals is not normally distributed.
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Figure 5.47: (a) Cumulative distribution function (CDF) and (b) quantile-
quantile (QQ) plots of common mode bias

Furthermore, common mode bias is studied for feet signals also and
named as µcbL. Standard statistical parameters are also calculated for
µcbL of feet signals in Table 5.30. Unlike the hand signals, range of
µcbL of feet signals is very low, though overall σ is higher. Chi-square
goodness of fit test shows normality of the parameter for feet signal.
Result of this test is also tabulated in Table 5.31.

5.4.5 Proposed debiased signal parameters

In order to quantify the interdependent dynamic character of the acquired
biopotentials, three new parameters are proposed. These parameters are
related to the debiased signals. These proposed parameters are

Slope ratio : A new parameter termed as slope ratio (mratioH and mratioL)
is proposed to compare the overall deviations in a pair of LH and RH
signals and LL and RL signals. This parameter is described in 5.14.
Here mratioH is the ratio of mLH and mRH , whereas, mratioL is the ratio
of mLL and mRL. Statistical characteristics of these parameters are
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Figure 5.48: (a) Cumulative distribution function (CDF) and (b) quantile-
quantile (QQ) plots of µcbL

tabulated in Table 5.32 and the zoomed CDF plot from 5% to 95%
data of mratioH and mratioL are shown in Figure 5.49.

mratioH =
mLH

mRH

mratioL =
mLL

mRL

(5.14)

Table 5.32: Statistical characterization of mratioH and mratioL

Parameters Range in mV µ in σ in Skewness Kurtosis

Min Max mV mV

mratioH -230.51 457.13 1.09 25.99 10.55 199.29

mratioL -20.73 19.29 0.12 4.82 -0.34 11.15

It is observed that the overall range of mratioH is [-230.51, 457.13]. But
from Figure 5.49 it can be observed that 90% of the data lies within
[-6.29, 6.69]. Mean of the ratio is slightly higher than 1, which signifies
that mLH is little higher than mRH . Distribution of mratioH is very
much right skewed. From the CDF plot it can be seen that F(0)=0.51.
Therefore it can be said that probability of sign of slope of LH and RH
signals to be same or not, is almost equal.

Standard statistical quantities ofmratioL are also tabulated in Table 5.32.
Along with CDF is plotted for 0.05% to 0.95% data in Figure 5.49b.
It can be seen that the range of mratioL lie almost ±20mV , but more
than 90% data lie within ±7mV which is similar to that of the mratioL.
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Figure 5.49: CDF plot of (a) mratioH and (b) mratioL

Among these 43% data lies within ±1mV only. Comparing mratioH and
mratioL in Table 5.32 it can be seen that the overall range of mratioL is
much lower than that of mratioH . Mean value of mratioL is close to 0,
but it was close to 1 for hand signals. Along with that, standard devi-
ation value also is very low for mratioL. Skewness for mratioL is slightly
negative and kurtosis is much lower than that of mratioH . Though it is
quite higher than a normal distribution.

ZCI ratio : To characterize the interrelationship a new ratio parameter is
proposed, namely ZCIratio. This parameter was calculated for both
hand and leg signals and these are named after ZCIratioH and ZCIratioL
respectively. This parameter is explained in 5.15. The statistical char-
acteristics of these are stated in Table 5.33. The CDF plot of ZCIratioH
is shown in Figure 5.50a, whereas ZCIratioL is shown in Figure 5.50b.
The whole span is divided into 4 sub-regions. These sub-regions have
also been marked in Figure 5.50. It is to be noted that in 9 cases,
ZCIRH = 1200 and hence the ZCIratioH in these cases is undetermined
and are omitted from the plots. Considering all other signals, the range
of ZCIratioH is [-134,358]. Though for 0.05 to 0.95, i.e. for 90% cases
this ratio lies within -10.98 to 4.79. From Figure 5.50 it can be seen
that likelihood of samples to occur within 0 to 1 is slightly higher than
other 3 regions.
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Inspite of the higher range of ZCIratioL of all feet signals, 90% of these
lie within -6 to 7. Furthermore, 55% of these lie within ±1. This is
similar to that of hand signals. It is noticeable that 66% of these are
positive in nature. It is little higher than that of hand signals. For
hand signals 53% of these were positive.

ZCIratioH =
ZCILH − 1200

ZCIRH − 1200

ZCIratioL =
ZCILL − 1200

ZCIRL − 1200

(5.15)
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Figure 5.50: CDF plot of (a) ZCIratioH and (b) ZCIratioL

Table 5.33: Statistical characterization of ZCIratioH and ZCIratioL

Parameters Range in mV µ in σ in Skewness Kurtosis

Min Max mV mV

ZCIratioH -229.18 471.28 0.53 27.34 10.67 219.86

ZCIratioL -180.00 34.25 -1.99 23.36 -6.93 53.58

Debias ratio : To obtain an insight into the instantaneous behaviour of
the debiased pair of hand as well as feet signals, a new instantaneous
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parameter is proposed as Debias ratio or DRk, This parameter is de-
fined underneath in 5.16, while the statistical quantities are tabulated
in Table 5.32.

DRkH =
debiasedLHk

debiasedRHk

DRkL =
debiasedLLk

debiasedRLk

(5.16)

for all k ∈ [1, 2400].
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Figure 5.51: CDF plot of (a) DRH , (b) DRL, (c) positive half of DR and
absolute of negative half of (c) DRH , (d) DRL

The CDF plots of overall DR for the range 2.5% till 97.5% is shown
in Figure 5.51a and Figure 5.51b. It is observed that this 95% of the
DRH values, lie within a small range of [-13.56, 12.69]. Beyond this, the
values are very high or infinity and they occur when the debiased RH
signal values are zero or negligibly small as compared to the respective
debiased LH signal. Inspite of a larger range of debias ratio DRL of
feet signals, 2.5% to 97.5%, i.e. 95% of data lies within a smaller range
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Table 5.34: Statistical characterization of DRH and DRL

Parameters Range in mV µ in σ in Skewness Kurtosis

Min Max mV mV

DRH -13.42 12.31 0.30 3.00 -0.18 7.76

DRL -10.22 10.38 0.10 2.68 -0.35 6.88

of almost ±10 in the CDF plot Figure 5.51b. This is close to the range
of DRH .

Table 5.34 contains the statistical quantities of DRL. Comparing Ta-
ble 5.34 it can be said that µ is smaller compared to the DRH . Both
are positively skewed but the value is larger in case of hand signals. But
kurtosis value of DRL is very much larger than that of hand signals.

Furthermore, it is observed that within the range observed in Fig-
ure 5.51, the DR values are equally likely to be positive or negative.
In order to study this similarity further, the positive segment of the
CDF plot in Figure 5.51a is overlapped with absolute of its negative
segment in Figure 5.51c. It can be seen that the nature of distribution
of these two halves are almost identical and hence the characteristics
of the absolute values of DR are representative of the debiased signal
pair in Figure 5.51c and Figure 5.51d respectively. Furthermore two
halves of this CDF is compared by plotted CDF of the positive half
and absolute of the negative half together in Figure 5.51d. Unlike the
DRk of hand signals, these two halves are not overlapping in case of
DRk of feet signals.

Log SD ratio : In view of the findings from the DR, another new parameter
is proposed which is representative of a particular signal pair. This is
termed as log SD ratio. Definition of Log SD ratio is given in 5.17. The
CDF and Q-Q plots of ξSD are shown in Figure 5.52 and its statistical
characteristics are stated in Table 5.35.

ξSDH = log10
SDLH

SDRH

ξSDL = log10
SDLL

SDRL

(5.17)

The range of ξSDH is [-1.45, 1.77] and its median is very close to 0,
as evident from Figure 5.52a. Furthermore, the skewness and kurtosis
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values are indicative of a normal distribution for this parameter. This
is supported by the observations from the Q-Q plot in Figure 5.52b,
which shows good linearity almost up to ±2 quantile. This has also
been validated using the chi-square goodness of fit test. In 95% cases,
ξSDH lies within [-1,1]. It is to be noted that negative values of ξSDH

indicate that SDLH is smaller than SDRH , while the reverse is true for
positive values. Thus, in these cases, the ratio of the SD of LH and RH
signal pairs lie approximately within 0.10 to 10 times following a log-
normal distribution and there is no significant hemispheric dominance
in this parameter for the overall data collected for this population.
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Figure 5.52: (a) CDF plot of ξSDH of hand signals with 95% confidence bound
(CB) and (b) Quantile-Quantile plot of ξSDH of hand signals, (c) CDF plot
of ξSDL of feet signals with 95% confidence bound (CB) and (b) Quantile-
Quantile plot of ξSDL of feet signals

Whereas, ξSDL lie within (-1.51, 1.13) in Table 5.35. This can also be
seen in Figure 5.52c. This range is very close to that of ξSDH . All the
statistical quantities are very close for ξSDH and ξSDL in Table 5.35.
To test the normality in distribution of ξSDL, Q-Q plot is done in Fig-
ure 5.52d. Figure shows linearity upto almost ±2 quantiles. This can
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Table 5.35: Statistical characterization of ξSDH and ξSDL

Parameters Range in mV µ in σ in Skewness Kurtosis

Min Max mV mV

ξSDH -1.45 1.77 -0.07 0.53 0.16 3.15

ξSDL -1.51 1.13 -0.05 0.59 -0.33 2.73

also be found in the study of ξSDH . To validate the result chi-square
test is performed on ξSDL and the result shows the normality with 95%
confidence limit.

5.5 Discussions

In this Chapter, the physiological basis for the information content in the
DDP signals has been analyzed at the outset. It is established that as the
recording is done in DC mode, so the information recorded in differential
mode from the dermal surface is due to differences in electrical activities at
the nerve endings and/or the capillaries of the dermis and hypodermis layers.
It is also established that the effect of sweat gland activity in the DDP signals
is minimal.

Thereafter, the DDP signals acquired in the DS1 experiment (Section 4.2.2)
have been validated in Section 5.2 in terms of its autocorrelation and by com-
paring with the underlying standard referenced endosomatic EDA signals as
stated in [46] and their difference signal. As part of this validation, the
statistical and spectral characteristics of these DDP signals have also been
compared with those of the underlying endosomatic EDA signals and their
difference signal.

This validation is followed by a detailed study of the unilateral character-
istics of the DDP signals acquired in the DS2, DS3 and DS4 experiments. For
this, the individual LH, RH, LL and RL signals in these datasets have been
subdivided into 2 minute subsets and these have then been clubbed together.
In the statistical characterization, it is observed that the LH and RH signals
lie within ±300mV , whereas LL and RL signals lie within ±400mV . Of all
signals, the LH signal has the lowest standard deviation. It is observed that
90% data of all the LH, RH, LL and RL signals lie within ±200mV. These in-
dividual signals typically exhibit mostly positive or negative polarities, show
mostly converging and diverging trends with only 4% signals being constant.

From this study, it is observed that the signal mean is a representative
of the individual signals with statistical characteristics similar to that of the
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acquired signals.
Thereafter, the (mean subtracted) debiased signals, alternatively termed

as deviation signals, have also been studied. More than 95% of these debiased
signals lie within ±6mV. Along with that, ZCI lie within the middle of the 2
minute segment, i.e. between 40s to 80s. The slope m of all these 4 signals
are of the order of 10−2 mV/instant.

The spectral characteristics of all 4 classes of signals are similar with
overall range of mean frequency (MNF) and median frequency (MDF) within
2.16 × 10−3 to 2.3 × 10−3 and 2.87 × 10−3 and 2.82 × 10−3 respectively.
From a study of the spectral entropy, it is observed that it is of the order of
10−4 and is maximum for LH, followed by RL, LL and RH.

Subsequently, the bilateral characteristics of these 4 signals have been
studied based on the simultaneously acquired signals in the DS4 experiment.
In this study, 4 derived signals named as GapH, PSH, GapL and PSL have
also been generated from the 4 classes of acquired signals. These derived
signals are little higher in magnitude, though the debiased derived signals also
range within ±6mV for 95% cases. The band-limited characteristics of these
derived signals indicate the bilateral interdependence of the acquired signals.
The interdependencies of the various pairs of signals have been studied and
this establishes that the bilateral interdependence is the most dominant.
Thereafter, a study of the bilateral interdependencies in terms of mean, ZCI
and slope have been studied.

Based on the aforementioned studies, total 6 number of bilateral param-
eters have been proposed in this study. The two bias parameters are differ-
ential bias µdiff and common mode bias µcb, while the four debiased signal
parameters are the slope and ZCI ratios mratio, ZCIratio, debias ratio DR
and log SD ratio ξSD for hands as well as feet signals. The statistical, time
domain and spectral characteristics of all these parameters have also been
studied.
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CHAPTER6
Applications in human condition

monitoring

All the unilateral and bilateral characteristics of the DDP signals, which
include their statistical, time domain, spectral and proposed interaction pa-
rameters (or, features), that have been studied in Chapter 5 have been used
in this Chapter to perform human condition monitoring studies.

Three specific applications of the DDP signals have been studied using
the datasets recorded in all four experiments, namely DS1, DS2, DS3 and
DS4 as replicated from Section 4.3.

Application4: Classification of hypertensive and normotensive subjects us-
ing LH and RH of DS2

Application5: Classification of different postures using LH of DS1 and both
LH and RH data of DS3

Application6: Determination of the effective duration of rest in supine pos-
ture from LH of DS1, both hands data (LH and RH) of DS2 and all
4 channel data (LH, RH, LL and RL) of DS4 datasets and in sitting
posture from both hands data (LH and RH) of DS3 dataset

At the outset of this Chapter, the materials and methods used for all 3
applications have been stated. This includes the details of the data prepro-
cessing, followed by the details of the classification method and procedure
used in the first two applications. Thereafter, the three different applications
have been detailed.

6.1 Preprocessing

In order to make the acquired DDP datasets in the 4 experiments ready for
the classification and inference applications, it was necessary to perform data
cleaning, z-normalization, data quantization and feature extraction.

149
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6.1.1 Data cleaning

This is an essential step to have valid data for the applications. Hence, all
the acquired signals were manually examined as soon as they were recorded.
In case abnormal local spikes, random missing bits or NaN (not a number)
appeared in the acquired data, these were replaced by the mean value of the
previous and the next data. For any other larger abnormality, the particular
dataset was discarded and a fresh dataset was acquired in the experiment.

6.1.2 Z-normalization

As stated earlier, the span of the majority of acquired DDP signals is ≈
±300mV, whereas the variation of an individual signal is very less at only
≈20mV. As is usual in trend analysis of signals, in this case also all the
individual long datasets with mean µt and standard deviation σt were Z-
normalized as follows.

X̂ =
X − µt

σt

(6.1)

This is done to remove the overall bias in the acquired long datasets and
normalize all of these datasets to zero mean and furthermore, to standardize
their variance to unity.

6.1.3 Data quantization

The z-normalized signals are thus SD normalized versions of the debiased
signals studied in Chapter 5. This enables a comparison of the 2 minute long
subsets of a longer dataset on an uniform basis.

DS1

As stated at the outset, the DS1 dataset is used for the posture change
classification and rest duration determination studies.

For this, the long 20 minute dataset has been quantized into 10 subsets of
2 minutes each. Specifically, the first 2 minute subset pertains to the sitting
posture and is denoted as Sitting. Since the next 2 minute subset is acquired
during change of posture from sitting to supine so it is not considered for the
study. The subsequent 8 subsets acquired in supine posture are denoted as
Sup 1 to Sup 8. Description of the 9 subsets pertaining to sitting and supine
postures are tabulated in Table 6.1.
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Table 6.1: List and description of different classes in DS1

Posture Subset Duration Description
in minutes

Sitting Sitting 0 to 2
Acquisition started with
subject in sitting posture.

Supine

Sup 1 4 to 6 16 minutes in restful no-
nap supine posture, di-
vided into 8 subsets. Each
subset represents a state
of restfulness. Effective
duration of rest has been
identified from the analy-
sis of these states

Sup 2 6 to 8
Sup 3 8 to 10
Sup 4 10 to 12
Sup 5 12 to 14
Sup 6 14 to 16
Sup 7 16 to 18
Sup 8 18 to 20

Of these, the Sitting and the Sup 1 subsets were compared for posture
classification, while the Sup 1 to Sup 8 subsets were considered for the esti-
mation of the duration of effective rest. Since the data for change in posture
has not been used for this study, it is neglected henceforth.

However, for classification type applications, as undertaken in this study,
a higher level of quantization is needed. So, a data matrix A1 has been
generated as follows in order to increase the resolution.

A1 =


Sitting1 Sup 11 . . . Sup 81
Sitting2 Sup 12 . . . Sup 82

...
...

...
...

Sitting684 Sup 1684 . . . Sup 8684


Thus, 57 numbers of 20 minute long datasets were considered after data

cleaning. Each dataset is then primarily quantized into 9 numbers of 2 minute
subsets, ignoring the change in posture subset as mentioned.

Thereafter, each 2 minute subset is further divided into 12 small subsets of
10s data. Therefore, the overall dataset of 57 sets contains 12 small sets ×
57 sets = 684 small sets in each of the 9 subsets. Thus, Sitting1 to
Sitting12 are 12 small subsets of 10s duration of the original 2 minutes long
Sitting subset of the first dataset. The other entries can be interpreted
accordingly.

DS2 and DS4

The DS2 and DS4 datasets both contain 10 minutes long continuous signals.
This 10 minute long data is quantized into 5 subsets of 2 minutes each,
termed as Sup 1 to Sup 5. Each of the 5 subsets are described in Table 6.2.
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As described for the DS1 dataset, the 2 minute subsets of the DS2 dataset
are further quantized into 12 small sets of 10s length and arranged into a
matrix form.

Table 6.2: List and description of different states in DS2 an DS4

State Duration Description
in minutes

Sup 1 0 to 2 Acquisition started for supine subject.

Sup 2 2 to 4
2 minutes of acquisition completed; duration
of rest more than in Sup 1.

Sup 3 4 to 6
4 minutes of acquisition completed; duration
of rest more than in Sup 2.

Sup 4 6 to 8
6 minutes of acquisition completed; duration
of rest more than in Sup 3.

Sup 5 8 to 10
8 minutes of acquisition completed; maximum
duration of rest.

DS2 contains total 98 datasets of 10 minutes each. Therefore, there are
98 datasets in each of the 5 numbers of 2 minutes long states. As in case
of DS1, here too the number of data subsets increase to 1176 small sets
(=12 small sets × 98 sets) after quantization. This data matrix is repre-
sented as A2. Similarly, since DS4 contains 66 datasets of 10 minutes each, so
the number of subsets increase to 792 small sets (=12 small sets× 66 sets),
represented as the A4 matrix. The forms of A2 and A4 matrices are given
hereafter.

A2 =


Sup 11 Sup 21 Sup 31 Sup 41 Sup 51
Sup 12 Sup 22 Sup 32 Sup 42 Sup 52

...
...

...
...

...
Sup 11176 Sup 21176 Sup 31176 Sup 41176 Sup 51176



A4 =


Sup 11 Sup 21 Sup 31 Sup 41 Sup 51
Sup 12 Sup 22 Sup 32 Sup 42 Sup 52

...
...

...
...

...
Sup 1792 Sup 2792 Sup 3792 Sup 4792 Sup 5792


DS3

In case of DS3 experiment, the acquired data vary in length as different
subjects settled down to satisfy the stated condition at different times. This
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settling time also varied for the same subject in different acquisition trials
and so was not subject specific at all.

In this case also, the overall length of a dataset was quantized into a
number of multiple subsets, named as states, of 2 minutes length. The names
and descriptions of these states or subsets are tabulated in Table 4.1 and
repeated here for ready reference as Table 6.3.

Table 6.3: Different states of the DS3 data with their details

State no. Posture Name Condition

1
Supine

Sup 1
Left and Right BP, then
DDP+PR+SpO2.

2 Sup 2
DDP+PR+SpO2, then Left
and Right BP.

3 Sitting Sit 1
Left BP and PR, then
DDP+PR+SpO2.

4 Standing Stand 1
Left BP and PR, then
DDP+PR+SpO2.

5 Climb down and up a flight of stairs in 1 min

6 Sitting
Sit i,
i∈(2,3,...,n)

DDP+PR+SpO2, then Left
BP and PR. Repeat for every
2 minutes until BP matches
that in state 3 (Sit 1).

In this case, total 65 datasets were acquired. After the final quanti-
zation of each of these datasets, the data matrix A3 has 780 small sets
(=12 small sets× 65 sets) for each state as shown hereafter.

It is to be noted that since all datasets contain at least upto Sit 5, i,e, 4
subsets after 1 minute of exercise, the datasets have been considered till that
state. All further states have been truncated in order to maintain the same
number of columns for each dataset and its subsets.

A3 =


Sup 11 Sup 21 Sit 11 Stand 11 Sit 21 . . . Sit 51
Sup 12 Sup 22 Sit 12 Stand 12 Sit 22 . . . Sit 52

...
...

...
...

...
...

...
Sup 1780 Sup 2780 Sit 1780 Stand780 Sit 2780 . . . Sit 5780


6.1.4 Feature extraction and attribute selection

As stated earlier, all the features described in Chapter 5 have been used as
the features for these applications.

Two additional statistical parameters, namely normalized variance and
normalized kurtosis, have also been considered as features. Normalized vari-
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ance is the variance of each subset of a long dataset normalized in terms of
(i.e. divided by) the variance of the last subset. Similarly, the normalized
kurtosis of a subset is obtained by normalizing it in terms of the kurtosis of
the last subset.

The list of all these features are given hereafter.

• Unilateral features of all 4 individual signals

Basic characteristics: Polarity, Trend

Statistical features: Mean, SD, variance, normalized variance, skew-
ness, kurtosis and normalized kurtosis.

Linear model: ZCI, m

Spectral features: MNF, PMNF , MDF, PMDF , SM1, SM2, SM3, E

• Bilateral features of LH-RH and LL-RL pairs

Pair of signals: Trend

Derived signals: Mean, SD, skewness, kurtosis of GapH, GapL, PSH
and PSL

Lateralisation coefficients: LC1 and LC2

Proposed features: µdiff , µcb, ZCIratio, mratio, DRk, ξsd

Among all these, the attributes that are most suitable for the particular
application are selected. Attribute selection has been done in the open source
data mining software WEKA, version 3.9.4 [134, 135]. Attribute selection is
helpful in reducing dimensionality, training time as well as over-fitting of
the data. Out of the various attribute evaluators available in the WEKA
software, the AttributeSelection filter was used in this experiment. It is a very
flexible supervised attribute filter and allows the use of various combinations
of search and evaluation methods.

6.2 Classification

Both the classification studies were done in WEKA using the random forest
(RF) classifier [136]. RF is actually an ensemble of different classification
trees. Each tree predicts a result and all results are ensembled to produce the
actual prediction of the classification. For this reason, RF minimizes error.
It also works well for imbalanced dataset and is capable of handling missing
data. But its main drawback is its complexity due to the large number of



6.2. CLASSIFICATION 155

decision trees created. For this reason, the training time for RF classifier
increases exponentially as the number of features increase. However, in the
present study, the total number of features is reasonable with the minimum
of 19 features for DS1 and the maximum of 245 features for DS2 datasets.

The end result of the classification is the 2 × 2 confusion matrix which
is used for its performance assessment. This matrix, as shown in Table 6.4
actually represents the true positive (TP), false positive (FP), true negative
(TN) and false negative (FN) predictions among all the actual cases.

Table 6.4: Structure of a confusion matrix.

Predicted output
Positive Negative Total

Actual incident
Positive TP FN TP + FN
Negative FP TN FP + TN
Total TP + FP FN + TN N

TP (TN) or true positive (negative) is defined as the number of incidents
predicted positive (negative) among all the actual positive (negative) inci-
dents. On the other hand, the total number of false predictions among all
the positive (negative) counts are defined as the false positive (negative) or
FP (FN). These 4 quantities are used to calculate performance of the classi-
fication in terms of accuracy, True Positive Rate (TPR), True Negative Rate
(TNR), F1 score, precision, Receiver Operating Characteristic (ROC) and
Precision-Recall area under the curve (PRC AUC).

Accuracy is defined as the true predictions among all predictions and
is calculated as in (6.2). Two other terms TPR (alternatively Recall or
Sensitivity) and TNR (alternatively Specificity) are calculated as in (6.3). Of
these, TPR is the ratio of the true positive outcomes to the actual positive
counts, while TNR is the ratio of the true negative outcomes to the actual
negative counts. Accuracy is alternatively determined using the weighted
accuracy (WA) formula, which is the average of TPR and TNR.

accuracy =
TP + TN

TP + TN + FP + FN
; (6.2)

TPR =
TP

TP + FN
; TNR =

TN

TN + FP
(6.3)

Precision(PPV ) =
TP

TP + FP
(6.4)

NPV =
TN

TN + FN
(6.5)
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F1− score =
2×Recall × Precision

Recall + Precision
(6.6)

In case of a heterogeneous dataset, i.e. where all the classes are not
equally numbered, the accuracy is predicted in terms of the F1 score 6.6,
which is calculated in terms of precision and recall. Precision (6.4), also
known as positive prediction value (PPV), has also been calculated along
with negative prediction value (NPV) 6.5. NPV is defined as the actual
negative incidents among all the negative outcomes. The trade-off between
the TPR and the FPR is studied from the ROC-AUC along with the PRC-
AUC.

Three cross validation techniques are used in this experiment, namely 10
fold cross validation (10FCV), leave one out cross validation (LOOCV) and
leave one subject out cross validation (LOSOCV).

In 10FCV, the total dataset is grouped into 10 number of subsets with
equal populations. Among these, 9 subsets are used to train the model and
the remaining 1 subset is kept for testing purpose. In the next cycle, a
different subset is used for testing while the remaining 9 are used for training
purpose. This process is repeated for 10 iterations. Performance is calculated
by averaging all 10 predictions.

LOOCV is similar to 10FCV but with all subsets being considered at a
time in place of 10 groups. So, the number of iterations in this case is the
same as the number of subsets.

In LOSOCV, which is used to eliminate the subject bias, all the datasets
of one subject are kept for testing purpose in a particular iteration, while
the rest are considered as training sets. Thus, in this case, the number of
iterations is the number of subjects.

6.3 Hypertensive and normotensive classifi-

cation

In this study, a method is proposed to classify hypertensive and normotensive
subjects using the changes in DDP signal characteristics during extended
periods of rest. This assumes that the progression of rest is dependent upon
blood pressure. The hypertensive and normotensive subject classification has
been done using DS2 dataset where the subjects are supine for 10 minutes.
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6.3.1 Selected attributes

Total 5 attributes were selected out of a total set of 245 features. The selected
attributes are tabulated in Table 6.5.

Table 6.5: List of selected attributes for hypertensive and normotensive sub-
ject classification

Attributes Parameter Signal State No.

SDLH3 SD LH State 3

mGapH3 Slope (m) Gap State 3

mGapH4 Slope (m) Gap State 4

mPSH3 Slope (m) PS State 3

LC1µ2 LC1 of mean LH and RH State 2

It is observed that the SD of the left hand, which is physically located
closer to the heart, is the most preferred attribute for differentiating hyper-
tension. It is also important to note the contributions of the derived signals
GapH and the common mode signal PSH. The variations in their signal
slopes with increased duration of rest are different for normal and hyper-
tensive subjects. In addition, the lateralization coefficient of the mean also
performs effectively in differentiating the two classes.

6.3.2 Result and findings

The results of the RF classification for 10FCV, LOOCV and LOSOCV are
given in Table 6.6. It can be seen from the analysis of the 10FCV results
that out of 98 instants, the classifier model successfully classified 75 instants,
which yields an overall accuracy of 0.765 with precision and F1 score of
0.752. The weighted average (WA) of precision and recall are 0.774 and 0.776
respectively. Furthermore, the weighted averages of F1-score and PRC area
under the curve (AUC) are 0.749 and 0.776 respectively. The consistency of
all these measures are indicative of the efficacy of the classification.

The LOOCV and LOSOCV results are similar to that of the 10FCV re-
sults. The weighted average (WA) of the TPR in both LOOCV and LOSOCV
are 0.769 and 0.739 respectively. The F1 score in these two cases are 0.756
and 0.738 respectively. The ROC-AUC is marginally low in LOOCV and
LOSOCV, but PRC-AUC is relatively high in all 3 cross-validation tests.

Box plot representations of the 5 selected attributes for both classes,
hypertensive and normotensive, are shown in Figure 6.1. As expected, the
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Table 6.6: Results of RF classification of hypertensive and normotensive
subjects

Application TPR TNR Precision F-1 score PRC-AUC ROC-AUC

1
0F

C
V

Hypertensive 0.700 0.793 0.767 0.732 0.749 0.747
Normotensive 0.793 0.700 0.742 0.767 0.749 0.797

WA 0.765 0.739 0.752 0.752 0.749 0.776

L
O
O
C
V Hypertensive 0.810 0.742 0.739 0.772 0.688 0.758

Normotensive 0.742 0.810 0.748 0.745 0.688 0.755
WA 0.769 0.782 0.744 0.756 0.688 0.756

L
O
S
O
C
V Hypertensive 0.753 0.729 0.739 0.746 0.666 0.748

Normotensive 0.729 0.753 0.740 0.734 0.666 0.769
WA 0.739 0.743 0.739 0.738 0.666 0.760

Table 6.7: Comparison of different classification techniques in 10FCV

Tech- PPV NPV Sensi- Speci- F1-score

nique tivity ficity

RF 0.75 0.82 0.76 0.73 0.75

SVM 0.54 0.67 0.58 0.64 0.61

k-NN 0.58 0.72 0.65 0.65 0.65
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(a) (b)

(c) (d)

(e)

Figure 6.1: Box plots of (a) SD of LH of the Sup 3, (b)slope (m) of the GapH
of the sup 3, (c) slope (m) of the GapH of the sup 4, (d) slope (m) of the
PSH of the sup 3, (e) LC1 of hands of sup 2.
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box plots of the SD of LH 3rd state as well as the GapH of the 3rd and
4th states are easily distinguishable for the normotensive and hypertensive
classes. The contribution of the remaining 2 parameters are significantly less
as also apparent from their box plots.

Comparison of the results of RF classifier with those of SVM and k-NN
classifiers for 10FCV is presented in Table 6.7. The 5 measures compared
are PPV, also called precision; NPV; sensitivity, also called TPR; specificity,
also called TNR; and the F1-score. From the results, it is seen that among
all three techniques tested, RF performed best in terms of all 5 measures
presented in Table 6.7.

All these results are satisfactory to say that hypertensive and normoten-
sive subjects can be classified using this technique.

6.3.3 Comparison with existing methods

Hypertension causes many severe health complications like heart problem,
stroke or even death. According to the WHO report [137], 17.9 million people
have died in 2019 due to cardiovascular diseases. Among these, 85% were
due to heart attack and stroke [138]. 63% of the total deaths in India are
due to noncommunicable diseases, of which 27% are due to cardiovascular
diseases [139]. The different stages of hypertension are detailed in [140].
Since this fatality occurs due to lack of awareness, lack of primary care and
follow up, so it is essential to have a simple, reliable automated screening
system along with the usual BP monitoring system.
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Table 6.8: Comparison of the existing methods for classifying hypertension

Serial Authors & year Experiment
Classification tech-
nique

Accuracy

1
Yongbo Liang et al.
(2018) [37]

Hypertension assessment
using ECG and PPG

Logistic Regression,
AdaBoost Tree,
Bagged Tree, and
k-NN

F1 score of 94.84%

2
Gabor Kovacs et al.
(2016) [141]

Pulmonary hypertension as-
sessment using ECG and
other non-invasive tools

multivariate logistic
regression

PPV:92%, NPV:97%

3
J. S. Rajput et al.
(2019) [38]

Discrimination of high-risk
hypertension ECG signals

optimal orthogonal
wavelet filter bank

p<0.01

4
P. Y. Courand et al.
(2014) [39]

R wave of ECG in aVL lead
as hypertension index

ECG recordings were
analyzed in a prospec-
tive cohort

p<0.05

5
J. S. Rajput et al.
(2020) [40]

Automatic detection of
severity of hypertension
ECG signals

Optimal bi-orthogonal
wavelet filter bank

Average accu-
racy 99.95%

6
Hongbo Ni et al.
(2015) [140]

Severity of hypertension

Multiscale fine-
grained hart rate
variability (HRV)
analysis

Precision 95.1%

7
M. Simjanoska et al.
(2018) [41]

Blood pressure classifica-
tion from ECG signals

Complexity analysis-
based machine learn-
ing

Precision
96.68%
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Table 6.8 – continued from previous page

Serial Authors & year Experiment
Classification tech-
nique

Accuracy

8
Tim Seidler et al.
(2019) [42]

Pulmonary hypertension
detection from electrocar-
diographic signals

random forest of clas-
sification trees and re-
gression trees, lasso
penalized logistic re-
gression, boosted clas-
sification trees, sup-
port vector machines

Accuracy of 95%
with area under
curve 0.87

9
M.G.Poddar et al.
(2019) [43]

automated hypertension
classification technique
from the HRV analysis

PNN, k-NN, and SVM
classifiers 96.67% in SVM

9 Present method Features of DDP signals RF
Accuracy of
80.60%
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A comparison of the existing methods for classifying hypertensive subjects
is presented in Table 6.8. It is observed that there exists methods based
on ECG with accuracies well above 90%. In comparison, the classification
accuracy of the DDP signals based method is at most 80.60%. Yet, the
simplicity of its acquisition even by nominally skilled health workers and the
minimal subject discomfort during its acquisition using the simple 10 minutes
rest protocol can be useful for primary monitoring and screening purposes.

6.4 Posture classification

In this study, changes in the features of the DDP signals have been used to
classify the sitting and supine and/or standing postures. Accordingly, only
the sitting and supine posture components of the DS1 datasets, specifically
the Sitting and Sup 1 states listed in Table 6.1, have been considered for a
binary classification. In case of the DS3 datasets, the three states Sup 2, Sit
1 and Stand 1 listed in Table 6.3 have been considered for classification into
one of 3 classes. As already known, the DS1 datasets contain LH data only,
whereas the DS3 datasets contains LH and RH data.

6.4.1 Selected attributes

List of the selected attributes for the DS1 and DS3 feature sets are tabulated
in Table 6.9. It is observed that in case of DS1, only 3 variables were selected
out of 19 features of LH signals provided to perform the binary classification
of sitting and supine posture. These are the mean (µLH), SD (σLH) and
normalized variance (NvarLH).

For the supine, sitting and standing posture classifications in DS3, 4 more
features have been selected along with the 3 selected features as in DS1 out
of a total of 49 features. Thus the selected features are the mean, SD and
normalized variance of both LH and RH and the lateralization coefficient of
the mean (LC1H) of the signals.

6.4.2 Result and findings

The confusion matrices of the RF classification for 10FCV, LOOCV and
LOSOCV are shown in Table 6.10, while the results of these classifications
are stated in Table 6.11. It is to be noted that since this study deals with
balanced data, i.e. the total number of sets available for each of the two (or
three) classes are the same, so the overall accuracy, TPR, F1 score and TNR
are equivalent to each other [142,143].
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Table 6.9: List of selected attributes for posture classification in application
4 using DS3

Sl. No Attributes Description
DS1 DS3

1 µLH µLH Mean value of the LH signal
2 σLH σLH Standard deviation of LH

3 NvarLH NvarLH
Normalized variance of the
LH signal

4 × µRH Mean value of the RH signal
5 × σRH Standard deviation of RH

6 × NvarRH
Normalized variance of the
RH signal

7 × LC1µ
Lateralization coefficient 1
of the mean values

Table 6.10: Confusion matrices of RF classifier for posture classification of
DS1 and DS3 datasets

Prediction
DS1, N=684 DS3, N=792

Supine Sitting Standing Supine Sitting Standing

A
ct
u
al

10FCV
Supine 682 2 × 722 39 31
Sitting 0 684 × 34 682 76
Standing × × × 36 103 653

LOOCV
Supine 678 6 × 713 37 42
Sitting 9 675 × 40 673 79
Standing × × × 48 106 638

LOSOCV
Supine 652 32 × 717 40 35
Sitting 51 633 × 43 645 104
Standing × × × 38 126 628
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Table 6.11: Results for posture classification of DS1 and DS3 datasets using
RF classifier

Application TPR Precision PRC-AUC ROC-AUC

1
0F

C
V

D
S
1 Supine 0.997 1.000 1.000 1.000

Sitting 1.000 0.997 1.000 1.000
WA 0.999 0.999 1.000 1.000

D
S
3

Supine 0.912 0.912 0.969 0.982
Sitting 0.861 0.828 0.907 0.953
Standing 0.824 0.859 0.913 0.951

WA 0.866 0.866 0.930 0.962

L
O
O
C
V D

S
1 Supine 0.991 0.987 0.989 0.983

Sitting 0.987 0.991 0.989 0.985
WA 0.989 0.989 0.989 0.984

D
S
3

Supine 0.900 0.886 0.958 0.976
Sitting 0.854 0.825 0.900 0.948
Standing 0.808 0.848 0.907 0.947

WA 0.853 0.853 0.922 0.957

L
O
S
O
C
V D
S
1 Supine 0.953 0.904 0.939 0.919

Sitting 0.926 0.926 0.940 0.966
WA 0.939 0.915 0.939 0.942

D
S
1 Supine 0.905 0.898 0.960 0.976

Sitting 0.814 0.795 0.873 0.935
Standing 0.793 0.819 0.887 0.934

WA 0.838 0.838 0.907 0.948
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Figure 6.2: Box plots of (a) mean values, (b) standard deviation (SD) values
and (c) normalized variance of the z-normalized preprocessed signals of sit-
ting and supine postures in application 4 using DS1
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Figure 6.3: Box plots of (a) Mean of LH, (b)Mean of RH, (c) SD of LH, (d)
SD of RH, (e)Normalized variance of LH, (f) Normalized variance of RH and
(g) LC1 of the mean values of all three classes.
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It is seen from Table 6.10 that out of the 684 instances for DS1, the
RF model can predict 684 and 675 sitting postures as well as 682 and 678
supine postures correctly in 10FCV and LOOCV experiments respectively.
Therefore, the overall accuracy (or TPR) in 10FCV and LOOCV are 0.999
and 0.989 respectively (Table 6.11). Furthermore, precision, (PRC-AUC) and
(ROC-AUC) for 10FCV experiments are 0.999, 1.000 and 1.000 respectively
and for LOOCV experiments are 0.989, 0.989 and 0.984 respectively. Both
these results are thus consistent and significantly high.

In case of subject wise analysis using the LOSOCV experiment, 633 sitting
instants and 652 supine instants out of 684 instances have been detected
correctly. Thus, the results of LOSOCV experiments yield overall accuracy
and PRC-AUC of 0.939, ROC-AUC of 0.942 and a precision of 0.915. Since
these are also consistently above 0.9, thus it can be said that subject biases
are not very relevant in this experiment.

In the 3 level classification in DS3, it is observed that 10FCV can predict
722, 682 and 653 instants correctly, whereas LOOCV can predict 713, 673
and 638 instants correctly for supine, sitting and standing classes respectively
among 792 instants. The results of LOSOCV are also similar to that of other
two cross validations and the numbers in this case are 717, 645 and 628
respectively. Therefore, the accuracy of all 3 cross validation tests - 10FCV,
LOOCV and LOSOCV - are 0.866, 0.853 and 0.838 respectively. Along with
that, the PRC area under the curve is found to be 0.930, 0.922 and 0.907 for
the 3 cross-validations respectively, which is significantly high. Furthermore,
ROC-AUC values are 0.962, 0.957 and 0.948 respectively, which are also very
high.

Box plots of the underlying 3 selected attributes in DS1, namely µLH ,
σLH and NvarLH , are shown in Figure 6.2 and their statistical parameters
are stated in Table 6.12. It is observed that the range and inter quartile range
(IQR) of these parameters, as well as their median values are comparatively
higher in sitting posture than in the supine posture.

It is to be noted that while the mean represents the slow changing tonic
component, the SD and normalized variance represent the quick changing
phasic component of the normalized signal. This analysis thus establishes
that the acquired biopotentials differ in both these aspects for these two
postures.

Box plots of the 7 selected attributes in DS3 are shown in Figure 6.3 and
their statistical parameters are stated in Table 6.12. The differences among
the three postures for the 7 select4d attributes of DS3 are clearly visible
from the box plots, as also validated from Table 6.12. These differences are
most prominent in the signal mean for both hands, µLH and µRH , and the
normalized variance for the left hand NvarLH .
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Table 6.12: Box plot parameters for posture classification using DS1 and DS3
datasets

DS Signals Posture
Lower Lower

Median
Upper Upper

Adjacent Quantile Quantile Adjacent

D
S
1

µLH
Sitting -4.68 -1.37 0.47 1.95 6.78
Supine -1.57 -0.30 0.29 0.66 1.81

σLH
Sitting 0 0.03 0.06 0.10 0.21
Supine 0.00 0.01 0.02 0.03 0.68

NvarLH
Sitting 0.00 0.95 7.93 101.98 252.36
Supine 0.00 0.3 1.39 6.57 14.83

D
S
3

µLH

Supine -2.08 -0.94 -0.27 0.90 2.24
Sitting -2.41 -0.56 0.44 0.97 1.60
Standing -1.61 -0.92 -0.01 0.93 2.18

σLH

Supine 0.00 0.00 0.01 0.02 0.05
Sitting 0.00 0.00 0.01 0.02 0.04
Standing 0.00 0.00 0.01 0.02 0.04

NvarLH

Supine 0.00 0.71 4.04 18.33 44.54
Sitting 0.00 0.44 2.59 7.78 18.79
Standing 0.00 0.09 1.61 10.64 25.14

µRH

Supine -1.66 -0.95 -0.31 0.61 1.64
Sitting -2.07 -1.04 -0.38 0.92 1.92
Standing -1.83 -0.82 0.10 0.89 1.57

σRH

Supine 0.00 0.00 0.00 0.01 0.03
Sitting 0.00 0.00 0.00 0.01 0.02
Standing 0.00 0.00 0.00 0.01 0.02

NvarRH

Supine 0.00 0.32 1.79 8.13 19.71
Sitting 0.00 0.25 1.20 8.47 20.03
Standing 0.00 0.00 0.85 9.02 21.81

LC1H

Supine -5.04 -1.60 -0.18 0.70 4.74
Sitting -5.65 -1.94 -0.27 0.78 4.74
Standing -2.30 -0.51 -0.07 0.69 2.45
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6.4.3 Comparison with existing methods

A comparison of recent methods for posture classification is presented in Ta-
ble 6.13. In a study, Foubert et al. proposed a sitting and supine classification
technique using bed-based pressure sensor array and videography [144]. Re-
sults show very low miss rate with significantly high accuracy. In another
study, a smart chair system has been developed combining six infra-red reflec-
tive distance with pressure sensor array for posture classification [145]. Use
of IMU (inertial measurement unit) sensor in posture classification shows
mixed performances in terms of accuracy [146,147]. Overall accuracy in the
experiment by Lockhart et al. is greater than 0.95 [146], while Vo states
the classification accuracy of sitting posture to be 0.60 only, which is very
low [147]. A common method of posture classification is by using data from
multiple accelerometers such as light weight thigh worn activePal accelerom-
eters [148–150]. The classification accuracy of this accelerometer data are
very high in almost all cases, except the standing/light activity in upright
posture in the experiment performed by Bassett et al. [149]. Furthermore,
electrocardiogram (ECG) is also used for posture classification in many ex-
periments. In these experiments, signals were acquired using normal ECG
monitor [151], or Holter monitor [27] or even downloaded data available in
online repository [152].

Comparing the results of these existing methods for posture classification
with the present DDP signal based method with an accuracy of 99.9% in
binary and 86.6% in 3 level classifications, it can be said that the present
approach performs creditably and is even better in some cases.
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Table 6.13: Comparison of the existing methods for classifying sitting and supine posture

Serial Authors & year Experiment
Classification tech-
nique

Accuracy

1
Nicholas Foubert et al.
(2012) [144]

Pressure sensor array SVM, k-NN 0.94

2
Thurmon E. Lockhart
et al. (2013) [146]

IMU signal
Wavelet based ap-
proach

0.968

3
David R. Bassett et al.
(2014) [149]

2 accelerometers (activePal)
data used

Coken kappa statistics 1.00

4
Nhat Nguyen Vo
(2014) [147]

Accelerometer based sensor
ANN

Supine: 0.972
sitting: 0.608

5
Saeid Wahabi et al.
(2015) [26]

ECG signal SVM
Sitting: 0.98 and
Supine: 0.94

6
Kate Lyden et al.
(2016) [148]

thigh-worn, tri-axial activ-
PAL3 accelerometer their novel method

supine: 0.967,
sitting: 0.929

7
Dai Sasakawa et al.
(2018) [28]

Height and a Doppler radar
cross section (RCS)

k-NN
Sitting 0.965,
supine 1.00

8
Nindynar Rikatsih
(2018) [153]

Movement data of UCI Ma-
chine Learning Repository

k-NN 0.995

9
Angel D. Ruiz1 et al.
(2019) [152]

Electrocardiography and
respiratory flow

linear SVM 0.995

10
Yutaka Yoshida et al.
(2019) [27]

Holter electrocardiographic
(ECG) recorder with built-
in accelerometer

RF
Supine: 0.98,
Sitting: 0.717

11 Present study
RF classification using
mean, SD and normalized
variance

binary RF
Supine: 1.00,
Sitting: 0.997
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Table 6.13 – continued from previous page

Serial Authors & year Experiment
Classification tech-
nique

Accuracy

12 Present study

RF classification using
mean, SD, normalized
variance, lateralization
coefficient

3 level RF
Supine: 0.912,
Sitting: 0.861
Standing: 0.824
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6.5 Effective duration of rest estimation

It has been observed in Figure 5.14(d) of Section 5.2.3 that during a prolonged
period of rest in the DS1 dataset, the average band power starts from a high
value and continuously decreases till a certain value and then increases again.
This feature is absent in the mean or the SD or the kurtosis of the signals
(Figure 5.14(a)-(c)). Thus it can be said that the restfulness of a human
being causes definitive changes in their spectral domain features, but not so
in their statistical features.

In the present study, this observation in the spectral characteristics has
been used to estimate the effective duration of rest of supine subjects in the
DS1, DS2 and DS4 datasets. The effect of prolonged sitting has also been
studied in analogous manner using the DS3 dataset.

However, for a detailed investigation of this aspect, all the statistical,
spectral as well as other features listed in Section 6.1.4 has been estimated
for all of these datasets and the earlier findings in Section 5.2.3 have been
compared. Accordingly, the results and findings for those features in which
the effect of rest is discernible have been provided in the following subsec-
tion. A comparison with other existing methods for estimation rest are given
thereafter.

6.5.1 Result and findings

It was seen in Section 5.3.6 that the peak frequency PKF is a constant at
dc and hence is not considered as a distinguishing parameter. On the other
hand, the characteristics of the central frequency components MNF and MDF
are almost identical, while the PMNF , PMDF , Band power and PPKF form
another almost identical set. Hence, only the central frequency MNF and the
power at this central frequency PMNF have been studied for this application.

DS1

The effect of restfulness on different states were observed for these spectral
features in DS1. In order to do so, these characteristics were studied for the
supine states Sup 1 to Sup 8 in A1 (Section 6.1.3) and the corresponding box
plots have been shown in Figure 6.4(a) and Figure 6.4(b) respectively.

It is observed that the median values as well as the IQR of the MNF
in Figure 6.4(a) increase up to a maxima at some interim state and then
decrease till the Sup 8 state. The median value is maximum at Sup 3, whereas
the IQR is maximum in Sup 4. It is observed from Figure 6.4(b) that the
characteristics of PMNF are almost the reverse of the MNF in Figure 6.4(a).
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that is to say that in this case, the median value decreases with time upto
Sup 3 and increases again till Sup 8. Along with that, the upper adjacent
and lower adjacent levels also decrease upto Sup 3 and then increase upto
Sup 8.

In order to validate the reversal of the two characteristics of PMNF and
MNF, the first moment SM1 has been observed. The box plots of SM1,
as shown in Figure 6.4(c), are observed to be almost constant in nature.
The SM1 can be thought of as the gain bandwidth product (GBP) where,
PMNF is the gain and MNF is the central frequency band. It is thus inferred
that while the frequency bandwidth increases with restfulness, the power
gets distributed over the larger bandwidth and so the system maintains a
constant GBP by virtue of the reversal of the two characteristics.

Box plots of the spectral entropy of all the states are shown in Fig-
ure 6.5(a). The characteristics of median and IQR of the spectral entropy
are similar to that of MNF in Figure 6.4(a), i.e. it increases upto a certain
state and then decreases till the end. In this case, the maximum of the me-
dian, IQR and the overall range are all maximum at Sup 3. Thus it can be
interpreted that the power spectral distribution increases till Sup 3 both in
median sense as well as the in the range of values as evident from the IQR.

This is further validated in terms of the histogram of the occurrence of the
maximum entropy in a set shown in Figure 6.5(b). It can be seen that most
frequent occurrence of maximum entropy is the Sup 3 state, which is 4 to 6
minutes in the supine posture. This result has been stated in Table 6.14. As
mentioned earlier, an interesting observation from Figure 6.4 and Figure 6.5
is that after this short duration, the system starts becoming active in some
sense, thus leading to a decrease of system entropy and related changes in
the associated features.

DS2

The same study has been conducted for the LH and RH acquired data in the
DS2 datasets also where signals were acquired continuously for 10 minutes.
Similar box plots have been plotted for both LH and RH for MNF, PMNF and
spectral entropy in Figure 6.6. Comparing Figure 6.6 with Figure 6.4, it can
be seen that the same patterns are also observed for DS2. In Figure 6.6(a)
and Figure 6.6(b), the median, IQR and the overall range of MNF is seen to
be highest in Sup 3 for both LH and RH data. This is expectedly referred in
the PMNF plots in Figure 6.6(c) and Figure 6.6(d) where the median, upper
and the lower adjacent levels are minimum in Sup 3 but the span of the
IQR is maximum. It can also be seen from the spectral entropy plots in
Figure 6.6(e) and Figure 6.6(f) that the maximum of median, IQR as well as
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Figure 6.4: Box plots of (a) Mean frequency (MNF), (b) power at mean
frequency PMNF and (c) first moment (SM1) for the states Sup 1 to Sup 8
in DS1
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Figure 6.5: (a) Box plots of the entropy of the signal in 10 subsets and (b)
Histogram of the occurrence of maximum entropy in DS1.
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span occurs at the Sup 3. Furthermore, in all 6 plots, the respective changes
from start to maximum/minimum to end transitions are continuous as in
case of the DS1 data.
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Figure 6.6: Box plots of (a) MNFLH , (b) MNFRH , (c)PMNFLH ,
(d)PMNFRH , (e)ELH and (f)ERH of the 5 supine states in DS2
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DS4

The effective rest duration was also studied from the acquired LH, RH, LL
and RL data in DS4 datasets. The same unimodal character (maximum
at Sup 3) is observed in the MNF characteristics and occurs between 4 to
6 minutes, as evident from Figure 6.4. In Sup 3, the median value, range
and span of the IQR of MNF are maximum. Exactly this feature can be
observed in MNF plot of all the 4 classes of acquired signals in Figure 6.7.
As expected, the characteristics are reversed in PMNF , where the minimum
of median, IQR upper and lower adjacent levels and maximum of the span
of IQR occur at Sup 3 in all 4 respective plots of Figure 6.8.

(a) (b)

(c) (d)

Figure 6.7: Mean frequency (MNF) of (a) LH, (b) RH, (c) LL and (d) RL of
the 10 minutes 4 channel data in DS4
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(a) (b)

(c) (d)

Figure 6.8: Power at mean frequency (PMNF) of (a) LH, (b) RH, (c) LL and
(d) RL of the 10 minutes 4 channel data in DS4
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As in the case of DS1 (Figure 6.5), in these cases also, the maximum
spectral entropy occurs at Sup 3 for all 4 classes of data as seen in Figure 6.9.
The spectral entropy is initially very low in Sup 1. Then it increases upto
Sup 3 and further decreases again continuously till the end.

(a) (b)

(c) (d)

Figure 6.9: Spectral entropy of (a) LH, (b) RH, (c) LL and (d) RL of the 10
minutes 4 channel data in DS4

In order to compare the effect of rest on the acquired and the derived
signals, the box plots of the mean values of all 4 acquired and 4 derived
signals have been shown in Figure 6.10. It is observed that for the 4 acquired
signals, the median keeps on increasing from Sup 1 to Sup 5 while the IQRs
decrease till Sup 3 and then increase again. However, the mean of all 4
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Figure 6.10: Box plots of mean values of (a) LH, (b) RH, (c) LL, (d) RL, (e)
GH, (f) PSH, (g) GL and (h) PSL of the 10 minutes 4 channel data in DS4
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derived signals have similar, almost constant characteristics both in terms of
the median and the IQR in all the states.

Thus while the statistical mean also shows a definite change in charac-
teristics with increasing duration of rest, the derived bilateral difference and
common mode signals exhibit a constancy irrespective of the duration of rest.

In the next stage, the box plots of the SD of all 8 acquired and derived
signals have been shown in Figure 6.11. It is observed that unlike the two
distinctly separate characteristics exhibited for the mean, the SDs are con-
stantly decreasing, both in terms of the median and the IQR, from Sup 1 to
Sup 5 in all the acquired as well as the derived signals. However, the rate
of decrease slowly reduces from Sup 1 till Sup 5. This phenomena may be
indicative of the habituation of the system to this restful posture or to the
reduction of orthostatic hypotension as the system relaxes from the sitting
posture to the supine posture [126].

DS3

In the DS3 experiment, the duration of rest of the subjects pertained to the
prolonged sitting posture after they returned from a walk. Also, after every
2 minutes, the acquisition was stopped and the BP and PR of the subjects
were measured.

The box plots for the MNF, PMNF as well as the spectral entropy for
both LH and RH signals are plotted in Figure 6.12. The results for MNF for
LH and RH show decreasing trends in the median as well as the IQR from
Sit 2 till Sit 4. The PMNF of RH also shows a reversed trend in both these
aspects, as expected. However, this is not valid for the PMNF of the LH
signal and further, the results for the spectral entropy are inconclusive with
notches extending beyond the ends of the box in both signals, presumably
due to small sample size [154].

6.5.2 Comparison with existing methods

Rest in terms of short nap has been a topic of research in several studies
as tabulated in Table 6.14. In most of these studies, sophisticated standard
techniques like ECG and EEG have been used for sleepiness or alertness
detection, while in some cases EOG has also been used to track slow eye
movement that occurs due to fatigue or drowsiness along with EMG. Self
reporting or performing definite tasks have been used in almost all cases to
check change in efficiency and the output is measured using any standard
scale.
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Figure 6.11: Box plots of SD values of (a) LH, (b) RH, (c) LL, (d) RL, (e)
GH, (f) PSH, (g) GL and (h) PSL of the 10 minutes 4 channel data in DS4
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Figure 6.12: Box plots of (a) MNFLH , (c)PMNFLH , (e) EntropyLH , (b)
MNFRH , (d)PMNFRH , (f) EntropyRH and (g) zoomed plot of EntropyRH

in the prolonged sitting phase in DS3 after the walk.
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The outcomes of these experiments in terms of the duration that provides
subsequent enhancement in subject efficiency vary between 7.3 minutes to 20
minutes, but most of these studies converge to an effective duration of around
10 minutes.

In the present case, the objective is to determine a physiologically deter-
minable effective duration of rest while the subject was in daytime no-nap
supine condition in a controlled environment. Hence, the subjects were not
disturbed during the experiment and neither was any self reporting done
by them. It has already been established in Section 6.5.1 that the effect of
restfulness is obtained almost singularly from the maximum entropy of the
acquired DDP signals. The results across all the three protocols of DS1, DS2
and DS4 experiments are identical. In all cases, the value of the effective
duration of rest is obtained from the maxima of the median as well as the
IQR of the maximum entropy parameter as 4 to 6 minutes.
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Table 6.14: Estimation of effective duration of rest

Serial Authors & year Experiment Measurement Outcome

1
Mats Gillberg et
al. (1996) [34]

Effect of short nap at day
time

Self reported sleepi-
ness/alertness, ECG and
EEG

19.8 minutes

2
J. A. Horne et al.
(1996) [35]

Effect of nap, coffee and
placebo on drivers sleepi-
ness/alertness

Self reported sleepiness,
ECG indicates alertness

10.8 minutes

3
Masaya Taka-
hashi et al.
(2000) [29]

Effect of 15 minute nap af-
ter a short night sleep

Polygraph monitoring for
sleep, Visual analog scale
and ECG for subjective
sleepiness and logical rea-
soning test for alertness

10.2 minutes

4
Amber J. Tietzel
et al. (2001) [30]

Estimation of effective du-
ration of short term rest af-
ter noctural sleep restriction

ECG and EOG measure-
ment

10 minutes

5
Amber J. Tietzel
et al. (2002) [31]

Estimation of effective du-
ration of short term and ul-
tra short rest after noctural
sleep restriction

EEG and EOG measure-
ment, different tests

10 minutes

6
Mitsuo Hayashi
et al. (2005)
[155]

Corrective power of short
day time nap

Subjective mood, visual de-
tection and symbol-digit
substitution tasks, and slow
eye movements

9.1 minutes
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Table 6.14 – continued from previous page

Serial Authors & year Experiment Measurement Outcome

7
Mitsuo Hayashi
et al. (1999) [32]

Effect of 20 minute nap and
no nap at noon

EEG, mood, performance,
and self-ratings of perfor-
mance level

20 minutes

8
Mitsuo Hayashi
et al. (1999) [33]

Effect of 20 minute after-
noon nap on mood, perfor-
mance and cardiac activity

EEG, mood, performance,
and self-ratings of perfor-
mance level

20 minutes

9
Mitsuo Hayashi
et al. (2003) [36]

Effect of short daytime nap
with caffeine, bright light
and face washing on day
time sleepiness

event related potentials
(ERP) and EEG power
spectra

15 minutes

10
Masaya Taka-
hashi et al.
(1998) [156]

Effect of post lunch short
nap on alertness, perfor-
mance, and autonomic bal-
ance

event-related potential,
subjective sleepiness and
ECG

7.3 minutes

11
Amber Brooks et
al. (2006) [157]

Comparison of different
length of afternoon nap

ECG, EMG, EOG 10 minutes

12
Nasser Al-
Busaidi
(2018) [158]

Subjective and objective ef-
fects of post lunch short nap

EEG,EOG and work place
questionnaire

10 minutes

13
Cassie J.
Hilditch
(2016) [159]

10 or 30 minutes nap, which
one associated with sleep in-
ertia

The Samn-Perelli Fatigue
Scale for fatigue measure-
ment, polysomnography
(PSG), EEG, EMG, EOG

10 minutes
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Table 6.14 – continued from previous page

Serial Authors & year Experiment Measurement Outcome

14
Mohamed
Romdhani
(2020) [160]

Effects of nap after sleep
loss on reaction time, mood,
and biochemical response in
athletes

Anaerobic sprint test, re-
action time, Hooper index,
Epworth Sleepiness Scale,
biomarkers and antioxidant
status.

20 minutes

15 Present method

Spectral entropy and other
relevant features of DDP
signals

Maximum entropy calcula-
tion

4 - 6 minutes
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6.6 Discussions

Three different human condition monitoring applications are presented in
this Chapter. These are hypertensive and normotensive subject classification,
different posture classification and estimation of the effective duration of rest.
The data acquisition experiments have been detailed in Chapter 4. The data
used in each of these applications has been listed at the outset of this Chapter
also.

In all cases, the acquired datasets have been preprocessed in a definite
manner. At first data cleaning has been done to remove anomalies or to
address missing data, this has been followed by z-normalization of the data.
Thereafter, the datasets have been suitably quantized to enable the classifica-
tion and interpretation. All the unilateral as well as the bilateral parameters
presented in Chapter 5 have been listed in Section 6.1.4 for use as features in
these applications. In the first two applications, the attribute selection and
classification have been done in WEKA version 3.9.4 using the RF classifier.

Hypertensive and normotensive subject classification was done using DS2
where DDP signals were collected from two hands continuously for 10 min-
utes. After using attribute selection filter on the total set of features, only
5 parameters were selected, of which 4 are bilateral parameters. However,
the most preferred attribute for differentiating hypertension is the standard
deviation (indicating the random variations) of the left hand, which is physi-
cally located closer to the heart than the right hand. It is interesting to note
that with increased duration of rest, the variations in the signal slopes of
the derived signals of the hands, that is the bilateral difference signal GapH
and the common mode signal PSH, are different for normal and hypertensive
subjects. The lateralization coefficient of the mean is also helpful in this
classification.

RF classification was used for this experiment with 10FCV and LOOCV.
10FCV tests were also done using SVM and k-NN classifiers. The best result
provides an accuracy of 0.80 using LOOCV for RF classifier. It is known
that methods based on ECG can differentiate these classes with accuracies
well above 90%. In comparison, the classification accuracy of the DDP sig-
nals based method at 80.60% is significantly low. Yet, the minimal subject
discomfort during its acquisition using the simple 10 minutes rest protocol
and the simplicity of the protocol that allows even nominally skilled health
workers to handle this procedure can be useful for primary monitoring and
screening purposes.

In the next application, different postures were classified using parameters
of DDP signals. While classifying sitting and supine postures from left hand
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data only of the DS1 experiment, the accuracy achieved is 0.99 from just 3
parameters, specifically the mean, the SD and the normalized variance. The
result has been cross-validated using 10FCV, LOOCV and LOSOCV.

While classifying sitting, supine and standing postures using LH and RH
signals of the DS3 dataset, the accuracy achieved is 0.866 using 7 parameters
only, of which 6 are the mean, the SD and the normalized variance of both
hand signals and the remaining is the lateralization coefficient of the mean.

It can thus be said that the effect of posture change is mainly detected in
the two most standard statistical features of the signals, namely their mean
and SD or variance, and their combination, namely the lateralization coeffi-
cient of the mean. Furthermore, these affect the slow changing tonic as well
as the fast changing phasic components of the DDP signals through the com-
bination of the mean and its lateralization coefficient and the combination
of SD and normalized variance of the signals respectively.

From the RF classifier results for 10FCV, LOOCV and LOSOCV, it is
evident that the sitting and supine postures can be classified with an accuracy
higher than 90% using these DDP signal features and this result is free from
significant subjective bias. This is comparable to that achieved using several
of the existing more complex methods.

In terms of the physiology of rest, it can be said that since the natural
order of a system is disorder, and hence higher entropy [161], so an indicator
of relaxation or relief from the stressors would be the increase of the spectral
entropy, as also the maximum spectral entropy. Spectral entropy is the mea-
sure of system randomness. It is known from [162] that in a system with high
entropy, the power spectrum is distributed over a wider range of frequencies.

It has been observed from the small IQRs of the MNF and PMNF box
plots in the initial Sup states in case of DS1, DS2 and DS4 experiments that
the power is initially concentrated near the central frequencies. Thereafter, it
can be said that as the body becomes restful, the system bandwidth increases
and its total power gets distributed over a larger frequency range causing the
IQR of the MNF and PMNF box plots to spread but in reversed manner,
while GBP in the box-plots of SM1 remain constant till typically the Sup 3
state. Thereafter this effect is reversed to some extent, indicative of a return
from the maximal restful condition physiologically achieved. This duration
for the 3rd supine state from the start (Sup 3), that is 4 to 6 minutes in the
supine posture, has thus been termed the effective duration of rest in this
study.

This obtained result differs significantly from the other results of effective
duration of rest. A probable cause is that those results are based on short
nap, while in the present study, restfulness has been studied in terms of
physiological changes and determined in no-nap condition.
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In the DS3 experiment, the subjects assumed restful sitting posture after
returning from a walk. So this provided a scope to explore whether a pro-
longed duration of sitting is comparable to that in a supine posture in the
physiological sense. However, it is to be noted that since the acquisition was
stopped after every 2 minutes in order to measure the BP and PR, so the
restfulness of the subjects was in a sense disturbed and its effect is likely to
be limited. As expected, some of the characteristics, particularly the mean
frequency, exhibited the effect of rest but it was difficult to determine an
effective duration of rest in this scenario.



CHAPTER7
Conclusions and Scope for future work

The conclusions from all the studies conducted are summarized in this chap-
ter, followed by a discussion of the scope for future work.

7.1 Conclusions

Differential dermal potential or DDP signal is the potential difference be-
tween two adjacent active sites on the skin surface without any electrical
stimuli, typically the intermediate phalanges of the index and middle fingers
of hands and feet. This signal has initially been acquired using the RISH
Multi 18S multimeter based data acquisition system (DAS), i.e. RISH Multi
18S multimeter and RISH Multi SI232 assembly. This DAS is capable of
acquiring low voltage signals (in order of 10µV) from multiple locations si-
multaneously with moderate speed, good accuracy and acceptable precision.
It also has optical isolation to provide electrical safety. However, its major
limitations are the lack of compatibility of its computer interface software
Rishcom 100 with Windows 7 onwards updated OS platforms and its lack of
portability, specially when the number of channels are more.

In view of this, two other advanced acquisition systems (Advantech USB-
4704 and Keysight LXI) have been tested but these did not perform as ex-
pected. Advantech USB-4704 lacks the required accuracy as well as precision,
while the Keysight LXI lacks in portability and consumes much power. It is
also not able to acquire data with required sampling speed in high resolution.

The limitations of the RISH Multi 18S based system and the unsuitabil-
ity of the other two systems tested led to the calibration and testing of a
dedicated 4-channel data acquisition system that was designed and devel-
oped indigenously by Somen Biswas, a co-author in [1], in the same research
laboratory in which the present study is done.

A standard protocol has been developed in this work for balancing and
calibrating the 4-channel DAS. At first, a preliminary static calibration of

191



192 Conclusion

the 4-channel DAS is performed to estimate its nominal performance. It is
typically found that all 4 channels are linear but not identical. To balance all
4 channels as well as to increase the relative accuracy, three tuning methods
have been tested. These are: i) inverse slope multiplication, ii) spline fitting
and iii) addition of error curve. The third method has been adopted due to
its comparatively low standard deviation (SD) value in the operating voltage
range. The DAS, thus updated, is calibrated again. It typically shows very
good accuracy with very low static error as well as improved precision and
sensitivity. Although the RMSE increases marginally after tuning but all
4 channels are balanced and hence, interchangeable. The common mode
interference voltage (CMIV) of this balanced DAS is also observed to be
very low. Finally, a comparison of the calibration results of the RISH Multi
18S and the balanced and standardized 4-channel DAS show that both these
systems exhibit comparable performances. Thus, while both these systems
have been used in the present work, the preferred system is the 4-channel
DAS due to its enhanced portability and updated interfacing abilities.

In order to fulfill the multiple objectives of this present study, four (4)
specific experiments have been designed and conducted to acquire 4 different
datasets for 6 applications in total. All 4 experiments have certain common
general conditions pertaining to subject selection, material and methods and
experimental conditions maintained. The experiments thus start with a com-
mon preliminary protocol, followed by different data acquisition sequences.

The data sets collected from these experiments are labelled henceforth as
DS1, DS2, DS3 and DS4, while the terms LH, RH, LL and RL denote left
hand, right hand, left leg and right leg respectively. The description of all 4
experiments and all 6 applications are given hereafter.

Experiments : DS1: DDP signals are acquired from only LH for 20 min-
utes which include 2 minutes in sitting posture, then 2 minutes
during change in posture from sitting to supine and last 16 min-
utes in supine posture

DS2: DDP signals are acquired from LH and RH of supine subjects
for 10 minutes

DS3: DDP signals are acquired from LH, RH of subjects for a specific
set sequence: supine for 4 minutes, then sitting and then standing
for 2 minutes each. This is followed by a no recording 1 minute
activity session. Then subject sits again and DDP signals are
acquired till a specified condition is met.

DS4: DDP signals acquired continuously from LH, RH, LL and RL of
supine subjects for 10 minutes
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Applications : Application1: Validation of the DDP signal by comparing
it with standard recommended endosomatic EDA signals (golden
reference) using DS1 dataset

Application2: Study unilateral characteristics of DDP signals using
DS2, DS3 and DS4 datasets

Application3: Study bilateral characteristics of DDP signals using
DS4 dataset

Application4: Classification of hypertensive and normotensive sub-
jects using LH and RH of DS2

Application5: Classification of different postures using LH of DS1
and both LH and RH data of DS3

Application6: Determination of the effective duration of rest in supine
posture from LH of DS1, both hands data (LH and RH) of DS2
and all 4 channel data (LH, RH, LL and RL) of DS4 datasets
and in sitting posture from both hands data (LH and RH) of DS3
dataset

In Application1, the DDP signals have been validated by establishing the
physiological basis and comparison with 2 standard endosomatic EDA sig-
nals as well as their difference signal. Since this signal is recorded in the
DC mode, hence it is inferred from the standard RC model of the skin that
this signal primarily records the differential information communicated by
the nerve endings or the capillaries in the dermis and hypodermis, rather
than the sweat gland activity recorded in usual EDA signals. The autocor-
relation functions (ACF) of these differential signals confirmed that these
signals are non-random signals originating from inherent time-varying pro-
cesses. Furthermore, two distinct patterns of the ACF have been identified
that are correlated with 2 classes of underlying signals. The cross-correlation
studies however established that these two signals differ significantly in the
information contained at sub-millivolt levels. The next study showed that
both these signals are stable and have low settling times, typically within 2
minutes, thus validating their usability in real-time applications.

Two statistical features of these signals, namely average mean and kur-
tosis, determined over the total duration of the experiment are found to be
similar for the differential and difference signals, but these differ from those
of the two reference signals. It is further found that these characteristics
of the differential signal can be used to differentiate the sitting posture and
change in posture from the supine posture.

The standard deviation and kurtosis as well as the 2 spectral characteris-
tics, namely power spectral density (PSD) and average band power, of all 4
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types of signals are similar. Furthermore, the standard deviation and kurto-
sis show measurable and consistent differences during the change in posture
while 2 of the spectral characteristics, namely power spectral density (PSD)
and average band power, are affected by the extended rest of the subjects.

Application2 involves the unilateral characterization of these signals. This
has been done by clubbing together all the LH, RH, LL and RL signals from
the DS2, DS3 and DS4 datasets into these four classes. Then all the datasets
of durations longer than 2 minutes were sub-divided into multiple numbers
of 2 minutes subsets. Thereafter the basic characteristics of these 4 classes of
acquired signals were studied, followed by a study of their mean values and
then the study of the (mean subtracted) debiased signals.

As was evident in the earlier study of hand signals by Bhattacharya [5],
in this case also, 90% of all the acquired signals lie typically within ±200mV
and are mostly positive or negative with very few transitive signals. But in
this study, the analysis of the trends of signals show a marginal dominance
of the constant signals (i.e. with variations within ±4mV) with the remain-
ing signals being equitably distributed among the increasing and decreasing
trends.

A comparative study of the overall characteristics of the signal mean, also
referred as the bias, of all 4 signals and those of the original signals establish
that they are almost identical. This reiterates the finding in Bhattacharya [5]
that the mean, or bias, is representative of the acquired signal.

In case of the debiased signals, it is found that these lie within ±6mV in
more than 95% cases, though the overall range is relatively high. Further-
more, from the zero crossing instant value (ZCI) and the slope of the fit (m),
it is found that in more than 90% cases, signals cross 0mV axis within 800th

to 1600th instant, i.e. within 40s to 80s, which is the middle of the whole
epoch of 2 minutes. Slope of these signals are also very low (in the order
of 10−2) mV/instant). These findings are also in accordance with those in
Bhattacharya [5].

In this study, a detailed spectral characterization of these signals has been
performed. It is found that the characteristics of the power spectral density of
these 4 classes of signals are similar and the maximum or peak frequency PKF
occurs very close to the origin. Furthermore, the mean frequency MNF and
median frequency MDF show similar characteristics with marginally higher
magnitude in case of MDF. The overall range of MNF is 2.16 × 10−3 to
2.3 × 10−3, whereas the overall range of MDF is 2.87 × 10−3 and 2.82 ×
10−3 in this analysis. The respective power at these frequencies PMNF and
PMDF are also similar to each other but that for the peak frequency PPKF is
little higher in magnitude. 3 moment parameters SM1, SM2 and SM3 have
also been studied. SM1 can actually be considered as the gain-bandwidth
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product (GBP). It is found that SM1 of all 4 parameters are very close
to each other as if a constant GBP is maintained in the system. As the
frequency components are very small and very similar to each other, SM1,
SM2 and SM3 are similar in characteristics but with different values. Finally,
the spectral entropy of the acquired signals have been studied. It is seen that
LH has the maximum entropy, followed by RL, LL and RH and the difference
is in the order of 10−4. Their median values are almost similar for all 4 cases.

Application3 pertaining to the relational aspects of these 4 signals have
been studied using the DS4 dataset and this establishes the prevalence of bi-
lateral interrelations over all other combinations. A subsequent study of the
bilateral characteristics of the hand and feet signals show that converging,
diverging and parallel trends of pair of signals are almost equally prevalent,
while cross-over appears in only very few number of cases. Furthermore,
bilateral derived signals GapH, PSH, GapL and PSL, proposed by A. Bhat-
tacharya [5] have also been studied. These are found to lie typically within
±400mV, which is higher than that of the acquired signals. Two lateralisa-
tion coefficients LC1 and LC2 have also been characterized statistically.

The interdependence of both the hand signals and both the feet signals
have been further studied by plotting the bilateral parameters in two different
axes and dividing the 4 quadrants into 8 sub regions. Some patterns are
observed in µLH vs. µRH , µLL vs. µRL, ZCILH vs. ZCIRH and ZCILL vs.
ZCIRL plots but no clear pattern is evident in the mLH vs. mRH or the mLL

vs. mRL plots.
On the basis of the detailed characterizations, two bias parameters have

been proposed in this study, namely differential bias µdiff and common mode
bias µcb, to quantify the hemispheric dominance between the bias of acquired
signals. Typical ranges of these parameters have been determined. The Q-Q
plot and chi-square test for normality for both these parameters establish
their normality.

Furthermore, 4 ratio parameters have also been proposed in this study.
These are the two ratios of the ZCIs, namely ZCIratioH and ZCIratioL, and
the two ratios of the slopes, namely mratioH and mratioL. Another parameter,
termed debias ratio (DRk), has been proposed to represent the instantaneous
behaviours of the debiased pair of signals. Its typical range is within ±14
for 95% cases. In view of the findings from the DR, another new parameter
termed as log SD ratio ξsd, which is representative of a particular signal pair,
is proposed for hands as well as for feet signals. It is found that the ratio of
the SD of LH (or LL) and RH (or RL) signal pairs lie approximately within
0.10 to 10 times following a log-normal distribution and there is no signifi-
cant hemispheric dominance in this parameter for the overall data collected
for this population. All these proposed parameters have been statistically
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characterized.
Finally, three different human condition monitoring applications are pre-

sented in detail. Application4 pertains to hypertensive and normotensive
subject classification, Application5 to different posture classification and Ap-
plication6 to the estimation of the effective duration of rest. In all cases,
firstly data cleaning of the acquired datasets has been done to remove anoma-
lies or to address missing data, followed by the z-normalization of the indi-
vidual long datasets. After that, all the long datasets have been subdivided
into 2 minute subsets, which have been further quantized into small sets
of 10s to make them ready for use in these applications. In Application4
and Application5, the attribute selection and classification have been done
in WEKA version 3.9.4 using the random forest (RF) classifier using all the
unilateral as well as the bilateral parameters studied in Application2 and
Application3 along with two additional derived features, namely normalized
variance and normalized kurtosis. However, based on the preliminary obser-
vations in Application1, mainly spectral characteristics have been studied for
the assessment of rest duration in Application6.

In Application4, DS3 data has been used for classification of hyperten-
sive and normotensive subjects. Attribute selection filter selected only 5
attributes among all, of which 4 are bilateral parameters. However, the most
preferred attribute for differentiating hypertension is the SD of the left hand.
It is to be noted that while the SD is indicative of the random variations in
the signal, the LH signal is from a location that is physically closer to the
heart than the RH signal.

Study using RF classifier confirmed that both accuracy and F1 score
are more than 0.75. 3 cross-validation (CV) experiments, i.e. 10 fold CV
(10FCV), leave one out CV (LOOCV) and leave one subject out (LOSOCV)
have been performed. Additionally, the RF results have been compared with
those of k-nearest neighbour (kNN) and support vector machine (SVM). The
results confirm that the best performance is achieved using the RF classifier.
Although these results are significantly low in comparison to existing methods
based on ECG, which can differentiate these classes with accuracies well
above 90%, yet the minimal subject discomfort during its acquisition using
the simple 10 minutes rest protocol and the simplicity of the protocol that
allows even nominally skilled health workers to handle this procedure can be
useful for primary monitoring and screening purposes.

In the first part of Application5, sitting and supine postures have been
classified using the relevant 2 minute subsets of the LH signals in the DS1
datasets. This binary classification result shows that 10FCV in RF method
can classify sitting posture with accuracy of 1.0, and supine posture with
accuracy of 0.997 respectively using mean, SD and normalized variance. The
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LOOCV and LOSOCV tests performed for cross-validation also support the
10FCV result. In the second part, a 3-level classification of supine, sitting
and standing postures have been done using the relevant subsets of the DS3
datasets in a similar manner as in the earlier case. It is found that the
same parameters as selected in the binary classification, only that this time
they are from both hands, have majorly contributed in this application too.
Along with that, 1 bilateral parameter, that of the laterization coefficient
of the mean, also contributed to achieve the classification accuracy of more
than 0.8.

In Application6, the effective duration of rest of supine subjects has been
estimated using all three datasets DS1, DS2 and DS4. In terms of the phys-
iology of rest, it can be said that since the natural order of a system is
disorder, and hence higher entropy [161], or system randomness, is an indi-
cator of relaxation or relief from the stressors. It is further known from [162]
that in a system with high entropy, the power spectrum is distributed over
a wider range of frequencies.

Accordingly, in all these cases, the system entropy shows a pronounced
increase till the 3rd supine state lasting from 4 to 6 minutes, followed by a
slight decrease as the human system gets into a state of prolonged rest. This
is substantiated by analogous characteristics of the MNF and PMNF . Thus,
it is inferred that if a subject maintains a supine posture typically for 4 to 6
minutes, it provides effective rest to the system.

This obtained result differs significantly from the other results of effective
duration of rest. A probable cause is that those results are based on short
nap, while in the present study, restfulness has been studied in terms of
physiological changes and determined in no-nap condition.

As part of this application, the same was tested for the prolonged sitting
posture of the subjects in DS3. However, possibly since the acquisition was
stopped after every 2 minutes to measure the blood pressure and pulse rate,
the restfulness of the subjects was disturbed to some extent. The analysis
also supports this finding since some of the characteristics, particularly the
MNF, exhibited the effect of rest but it was difficult to determine an effective
duration of rest in this scenario.

One interesting aspect noticeable from Application5 and Application6 is
that the effect of posture change from one static posture to another is mainly
detected in the time-domain statistical features of the signals, while the ef-
fect of rest is most discernible in the frequency domain or spectral features.
Furthermore, posture change affects the slow changing tonic as well as the
fast changing phasic components of the DDP signals through the combina-
tion of the mean and its lateralization coefficient and the combination of SD
and normalized variance of the signals respectively.
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Thus the differential dermal potentials have been established as valid sig-
nals with independent information content. These can be acquired reliably
using suitable, yet simple data acquisition systems in well designed, yet sim-
ple experimental protocols. It is further validated that their various statisti-
cal, spectral, linear regression and other parameters are useful in screening,
classification as well as monitoring of inherent or changing or static human
conditions.

7.2 Scope for future work

For the present work, 4 channel DAS could be calibrated for a maximum
resolution of 10µV although it has been designed for 1µV resolution. It needs
to be calibrated for 1µV resolution with a suitable calibrator. The drift of
this device has been studied for 2 minutes only. In order to use it for other
long term uses, it is needed to study the drift of the DAS for longer periods.
It is also possible to alter the sampling rate of the DAS to 50samples/s. In
order to use that feature, detailed calibration and preliminary study will be
needed.

In the study of the ACF of the DDP signals, two distinct patterns have
been observed which are shown to result from two types of signal patterns.
The reason behind these two patterns in the ACF characteristics and their
implications, if any, in terms of the human system dynamics could be inves-
tigated in future.

The DDP signal has been modelled as a simple linear model in this study
and has accordingly been represented in terms of its mean value, ZCI and the
slope m. But from the study, it is seen that the signals are not exactly linear
in characteristics. There is thus a scope to determine a method to determine
the exact order of the signals and a suitable model to fit it and/or to develop
some other complex mathematical model to represent these signals.

In this study, the 3-level classification of the sitting, standing and supine
postures have been done using the hand data. It can be seen in future whether
these postures can be classified using feet data also. Some other postures can
also be tested. The effect of transition between postures on these signals can
also be investigated with possible use in detecting human dynamics or flaws
thereof.

The effective duration of rest of supine subjects has been estimated using
these signals. It remains to be studied whether a similar physiological effect
and/or an associated duration can be detected for a prolonged sitting posture.
It is also to be seen whether these DDP signals can be used for sleep study
and/or differentiating the different stages of sleep.
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DDP signals were used for 3 condition monitoring experiments in this
whole study. These results can be used as a baseline for further studies on
human condition detection using electrical or non-electrical stimuli. It can
also be tested whether this signal can be used for other human condition or
abnormality assessment purposes.

Stretch receptor electrical activity [163], the electro-tonicity of the sub-
surface muscles [164] and similar studies are topics of emergent research. It
will be useful to investigate the utility of the DDP signals in these applica-
tions.
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APPENDIXA
Appendix

A.1 Consent form

Note to the subjects:
You are being asked to take part in the research project described below.

There are no known risks associated with this research. If you do not take
part in the study, there will be no penalty. If you choose to take part, you
have the right to stop at any time. However, we encourage you to talk to
the research group so that we know why you are leaving the project. If there
are any new findings during the study that may affect you, you will be told
about them. Your part in this study is confidential. None of the information
will identify you by name. All records will be maintained in codes so that
identity is not disclosed. The collected data and information may be used
and transferred to other research studied in the Research Laboratory. Your
personal information will be suitably anonymised and/or masked to prevent
tracing or identifying your identity. If you decide to enrol in this project, your
involvement will be required in 2 or 3 phases for the experimental portion
only and this may last for about 10-12 weeks in a phase. The results of this
research study may be presented at meetings or in publications; however,
your identity will not be disclosed in those presentations.

ABOUT THE RESEARCH TOPIC:

Topic: “Study and characterization of the relational aspects of human
biopotentials externally acquired from multiple locations”

Biopotential based systems like Electrocardiogram (ECG), Electroen-
cephalogram (EEG) and Electrodermal activity (EDA) based sensors are
used abundantly to characterize several infirmities or diseases in humans
since the biopotentials in different parts of the human body change under
various physical, mental as well as social stressors. In a recent study, biopo-
tentials have been acquired bilaterally from human subjects using a low cost,
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passive, non-invasive EDA based system. A preliminary investigation of these
potentials has indicated the existence of inter-relations between these bilat-
eral signals. The aim of the present research is to perform a detailed study
of the relational aspect of these and other biopotentials acquired externally
from human subjects and to derive some definitive indices. The scope of re-
search includes a feasibility study of using these indices in an expert system
to classify the overall condition of the human health inclusive of physical,
mental, social and spiritual wellbeing.

The bilateral biopotentials will be acquired using two systems. The first
system comprises of 4 sets of multimeters (Make: RISH Multi 18S) with com-
patible adapters (Make: RISH Multi SI232) for online simultaneous recording
of a maximum of 4 channels of data to the PC. The second system has been
built indigenously in this laboratory, which can acquire potentials simulta-
neously from 4 locations and send to the PC. Both systems transmit data to
the PC via optically isolated transmitter-receiver module to ensure safety to
the human body from electrical hazards.

I, Mr./Mrs./Dr./Ms. -------------------------------------------------------------------
------ resident of ------------------------------------------------------------------------------
------------------------------------------- do hereby give consent voluntarily to record
my endosomatic skin potential and other data pertaining to the research work
being conducted by Mr. Arindam Sarkar under the guidance of Prof. Ratna
Ghosh and Prof. Bhaswati Goswami in Instrumentation and Electronics
Engineering Department, Jadavpur University. I have no objection to publi-
cation of my case study details without my name in any journal or any other
reviews. I am signing this consent form voluntarily, out of free will, without
any pressure and in my full senses.

Date: Full Signature:

Place:

Consent form explained/witnessed by: -------------------------------------------
-------------------------------------

Date: Full Signature:

Place:



Comprehensive questionnaire  

 

 

SUBJECT CODE : S_ _ _ 

 Full name পুর ো নোম  

 Sex (Male/Female) লিঙ্গ(রেরি/রমরে)  

 Age (years) বেস(বে )  

 

 
Please Answer the following - (write Y for yes 

and N for no): 

নিম্ননিনিতপ্রশ্নগুনির (হ্যাঁ বয িয নিয়ে) 

উত্তর নিি 

Do you take 

any medicine 

prescribed by 

doctor? 

Do you take 

any medicine 

on your own? 

Remarks, if 

any. 

1. 
Do you have any disease from the following 

list (any history of Chronic illness)? (Y/N) 

আপনো  লনরে  লিখো বযোলিগুলি লেরে, এে বো 

এরে  লবশী লেোরনো বযোলি  (ীীঘ স্থাোেী অেবো 

ীু োর োগ্য) আরে?  (্যো বো নো) 

লেোরনো ল োগ্ 

েোেরি, ্যো বো 

নো লীরে উত্ত  

লীন 

আপলন লে 

ডোক্তোর   বিো 

লেোরনো ওষুি 

খোন?  

আপলন লে 

লনেলমত লনরে 

লেরে লেোরনো 

ওষুি খোন?  

 High Blood Pressure/ Hyper tension  উচ্চ  ক্তেোপ     

 Diabetes মিুরম্    

 Kidney problem লেডলন  সমসযো    

 High Cholesterol  লেোরিরে ি লবশী     

 Chronic Constipation ীীঘ স্থাোেীরেোষ্ট-েোঠিনয     

 Chronic Cardiac problem ীীঘ স্থাোেী ্োরটস্থ  সমসযো     

 Chronic Indigestion  ীীঘ স্থাোেী বী্েরম  সমসযো     

 Any other Chronic illness আ  অনয লেোরনো ীীঘ স্থাোেী বযোলি     

 Prone to cold infection সলীস্থ-েোশী  িোত     

 Asthma ্ো াঁপোলন    

 Headache মোেো বযোেো     

 Migraine মোইরেন    

 Prostrate problem প্ররেট সমসযো     

 Jaundice নযোবো/পোণ্ডুর োগ্     

 Dengue লডঙু্গ    

 Chicken pox লেরেন-পক্স     

 Menstrual problem মোলসরে  সমসযো     

 Others (mention) অনয লেোরনো সমসযো  (েোেরি েোনোন)    

 Mumps মোম্পস্    

 Toncil টনলসি    
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A.2 Overall Questionnaire



 

 

 

 

 

 

 Answer these questions in Yes/No নিয়ের প্রশ্নগুনির হ্য বয িয তত উত্তর িযও  Yes (Y) No (N) 

2 Do you have any dominant or recurrent pain? 
আপনো  লেোরনো ীীঘ স্থাোেী বো ল োেেো  লবেো 

আরে? 
  

 If yes (Y), please specify region. ্যো ্রি লেোেোে?  

3 Have you had surgery before? আপনো  লেোরনো অস্ত্রপেো  ্রেরে?   

 If yes (Y), please specify  ্যো ্রি লেোেোে?  

4 
For females only: Any Hormone replacement 

(HR) therapy done? 

মল্িোরী  েনয: আপনো  লেোরনো ্ রমোরন  

লেলেত্সো ল্রেরে? 
  

5 Are you a consumer of alcohol?  আপলন লে মীযপোন ের ন?   

 

if yes (Y) then, 

daily/weekly/monthly/occasional? 

is it more than 2 pegsor less? 

্যো ্রি, লের োে/সপ্তোর্/মোরস/মোরে মরিয? 

২ লপরগ্  লবলশ নো েম? 
 

6 Do you smoke? আপলন লে িুমপোন ের ন?   

 if yes (Y), then what (cigarette/ biri/ cigar) ? ্যো ্রি  ( লসগ্োর ট/লবলি/লসগ্ো )?  

 Is it more than 10 nos. daily or less? লীরন ১০টো  লবলশ নো েম?  

7 Do you take drugs? আপলন লে মোীে লসবন ের ন?   

 if yes (Y), then 

daily/weekly/monthly/occasional ? 
্যো ্রি, ল োে/সপ্তোর্/মোরস/মোরে মরিয?  

8 Do  you take Jardapaan? আপলন লে েীস্থো পোন খোন?   

9 Do  you take Jarda masala / pan parag/ chutki 

/gutkha? 

আপলন লে েীস্থো মশিো/পোন 

প োগ্/েুটলে/গুটখো খোন? 
  

 If yes (Y), please tell what?, How much?   ্যো ্রি লেোনঠট? েতটো?  

10 Are you left handed? আপলন লে বোম ্োরত েোে ের ন? `  

  

 Measured Physical parameters - শযরীনরকপনরমযপ  

 Weight in kg. ওেন লেরিোেোরম   

 Height in meters উচ্চতো লমটোর    

 BMI (Body mass Index) in metric BMI সংখযোে  

 Waist measure in cm. লেোম  লসলিলমটোর   

 Hip measure in cm. লনতম্বরসলিলমটোর   

 WHR (Waist to Hip Ratio) লেোম  ও লনতরম্ব  অনুপোত   
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A.3 Daily Questionnaire set 1

Questions DDMMYYYY DDMMYYYY
Have you taken any drug from the list pro-
vided in table below within 24 hours?
Please specify medicines or treatment that
you are undergoing as on date, if different
from that stated in comprehensive question-
naire.
Has subject taken any anticholinergic drug
knowingly or unknowingly? (If NO, then
proceed for daily questionnaire 2, followed by
acquisition of data, else exclude the subject
for today)

Strong or moderate AC effect: Amitriptyline (Elavil), Atropine, Benztropine
(Cogentin), Chlorpheniramine (Actifed, Allergy & Congestion Relief,
Chlor-Trimeton, Codeprex, Efidac-24 Chlorpheniramine, etc), Chlor-
promazine (Thorazine), Clomipramine (Anafranil), Clozapine (Clozaril),
Cyclobenzaprine (Amrix, Fexmid, Flexeril), Cyproheptadine (Periactin),
Desipramine (Norpramin), Dexchlorpheniramine, Dicyclomine (Bentyl),
Diphenhydramine (Advil PM, Aleve PM, Bayer PM, Benadryl, Ex-
cedrin PM, Nytol, Simply Sleep, Sominex, Tylenol PM, Unisom, etc.),
Doxepin (Adapin, Silenor, Sinequan), Fesoterodine (Toviaz), Hydrox-
yzine (Atarax, Vistaril), Hyoscyamine (Anaspaz, Levbid, Levsin, Levsinex,
NuLev), Imipramine (Tofranil), Meclizine (Antivert, Bonine), Nortripty-
line (Pamelor), Orphenadrine (Norflex), Oxybutynin (Ditropan, Oxytrol),
Paroxetine (Brisdelle, Paxil), Perphenazine (Trilafon), Prochlorperazine
(Compazine), Promethazine (Phenergan), Protriptyline (Vivactil), Pseu-
doephedrine Cl/Triprolidine, HCl (Aprodine), Scopolamine (TransdermScop),
Thioridazine (Mellaril), Tolterodine (Detrol), Trifluoperazine (Stelazine),
Trimipramine (Surmontil)

Lesser AC effect: Alprazolam (Xanax), Fluphenazine (Prolixin), Amanta-
dine (Symmetrel), Baclofen Carisoprodol (Soma), Cetirizine (Zyrtec),
Cimetidine (Tagamet), Clorazepate (Tranxene), Codeine, Colchicine,
Digoxin (Lanoxicaps, Lanoxin), Diphenoxylate (Lomotil), Furosemide
(Lasix), Hydrochlorothiazide (Esidrix, Dyazide, HydroDIURIL, Maxzide
& literally scores of other medications for high blood pressure), Lop-
eramide (Imodium), Loratadine (Alavert, Claritin), Maprotiline, Nifedip-
ine (Adalat, Procardia), Ranitidine (Zantac), Thiothixene (Navane),
Tizanidine (Zanaflex)
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A.4 Daily Questionnaire set 2

Questions DDMMYYYY DDMMYYYY
Are you stressed? Provide rating in scale of
0-5
If yes, is the stress a) work related, b) emo-
tional or c) any other? Please specify
Have you taken any psychotic or antidepres-
sant drug within 1 week?
If yes, then provide the reason, list of
medicine and time of taking medicine.
Do you have any specific pain? Provide rat-
ing in scale of 0-5
If yes, is the pain short term or long term?
Is the pain in a) left half or b) right half of
body or c) overall or d) not localized? If a)
or b), please specify location.
Do you have fever? Provide rating in scale
of 0-5
Do you have cough or cold? Provide rating
in scale of 0-5
Do you have any headache? Provide rating
in scale of 0-5
If yes, is the headache in a) left half or b)
right half or c) overall or d) not localized? If
a) or b), please specify location.
Have you taken any cigarettes or any other
intoxicating substance or caffeine containing
drink within 72 hours?

A.5 Daily Questionnaire set 3

Question DDMMYYYY DDMMYYYY

Clothing of the subject (Light,
Moderate, Heavy)
Body temperature

Bias voltages measured for 4 elec-
trodes with respect to 1 reference
electrode.

Tag Volt Tag Volt
Rish IL Rish IL
Rish ML Rish ML
Rish IR Rish IR
Rish MR Rish MR
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of a short daytime nap after restricted night sleep,” Sleep, vol. 19, no. 7,
pp. 570–575, 1996.

[35] J. A. Horne and L. A. Reyner, “Counteracting driver sleepiness: effects
of napping, caffeine, and placebo,” Psychophysiology, vol. 33, no. 3, pp.
306–309, 1996.

[36] M. Hayashi, A. Masuda, and T. Hori, “The alerting effects of caffeine,
bright light and face washing after a short daytime nap,” Clinical Neu-
rophysiology, vol. 114, no. 12, pp. 2268–2278, 2003.

[37] Y. Liang, Z. Chen, R. Ward, and M. Elgendi, “Hypertension assess-
ment via ecg and ppg signals: An evaluation using mimic database,”
Diagnostics, vol. 8, no. 3, p. 65, 2018.

[38] J. S. Rajput, M. Sharma, and U. R. Acharya, “Hypertension diagno-
sis index for discrimination of high-risk hypertension ecg signals using
optimal orthogonal wavelet filter bank,” International journal of envi-
ronmental research and public health, vol. 16, no. 21, p. 4068, 2019.

[39] P.-Y. Courand, S. Jenck, G. Bricca, H. Milon, and P. Lantelme, “R
wave in avl lead: an outstanding ecg index in hypertension,” Journal
of hypertension, vol. 32, no. 6, pp. 1317–1325, 2014.

[40] J. S. Rajput, M. Sharma, R. San Tan, and U. R. Acharya, “Automated
detection of severity of hypertension ecg signals using an optimal bi-
orthogonal wavelet filter bank,” Computers in Biology and Medicine,
vol. 123, p. 103924, 2020.



BIBLIOGRAPHY 211

[41] M. Simjanoska, M. Gjoreski, A. M. Bogdanova, B. Koteska, M. Gams,
and J. F. Tasic, “Ecg-derived blood pressure classification using com-
plexity analysis-based machine learning.” in HEALTHINF, 2018, pp.
282–292.

[42] T. Seidler, K. Hellenkamp, B. Unsoeld, S. Mushemi-Blake, A. Shah,
G. Hasenfuss, and A. Leha, “A machine learning approach for the pre-
diction of pulmonary hypertension,” Journal of the American College
of Cardiology, vol. 73, no. 9S1, pp. 1589–1589, 2019.

[43] M. Poddar, A. C. Birajdar, J. Virmani et al., “Automated classification
of hypertension and coronary artery disease patients by pnn, knn, and
svm classifiers using hrv analysis,” in Machine learning in Bio-signal
analysis and diagnostic imaging. Elsevier, 2019, pp. 99–125.

[44] W. Prokasy, Electrodermal activity in psychological research. Elsevier,
2012.

[45] P. Venables and M. Christie, “Mechanisms, instrumentation, recording
techniques, and quantification of responses,” Electrodermal activity in
psychological research, 2012.

[46] Society for Psychophysiological Research Ad Hoc Committee on Elec-
trodermal Measures, W. Boucsein, D. C. Fowles, S. Grimnes, G. Ben-
Shakhar, W. T. Roth, M. E. Dawson, and D. L. Filion, “Publication
recommendations for electrodermal measurements,” Psychophysiology,
vol. 49, no. 8, pp. 1017–1034, 2012.

[47] M. J. Christie and P. H. Venables, “Site, state, and subject character-
istics of palmar skin potential levels,” Psychophysiology, vol. 9, no. 6,
pp. 645–649, 1972.

[48] A. S. Scerbo, L. W. Freedman, A. Raine, M. E. Dawson, and P. H.
Venables, “A major effect of recording site on measurement of electro-
dermal activity,” Psychophysiology, vol. 29, no. 2, pp. 241–246, 1992.

[49] R. Edelberg, “Electrical properties of the skin,”Methods in psychophys-
iology, pp. 1–53, 1967.

[50] W. Rickles Jr and J. Day, “Electrodermal activity in non-palmer skin
sites,” Psychophysiology, vol. 4, no. 4, pp. 421–435, 1968.

[51] P. Venables and E. Sayer, “On the measurement of the level of skin
potential,” British Journal of Psychology, vol. 54, no. 3, p. 251, 1963.



212 BIBLIOGRAPHY

[52] P. H. Venables and I. Martin, A manual of psychophysiological methods.
Amsterdam: North-Holland Publishing Company; New York: Wiley,
1967.

[53] P. Venables and M. Christie, “Electrodermal activity. in 1. martin &
venables ph (eds.), techniques in psychophysiology (pp. 3–67),” 1980.

[54] R. Zangroniz, A. Martinez Rodrigo, J. M. Pastor Garćıa,
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